WO2002031030A1 - Formed resin article - Google Patents

Formed resin article Download PDF

Info

Publication number
WO2002031030A1
WO2002031030A1 PCT/JP2001/008868 JP0108868W WO0231030A1 WO 2002031030 A1 WO2002031030 A1 WO 2002031030A1 JP 0108868 W JP0108868 W JP 0108868W WO 0231030 A1 WO0231030 A1 WO 0231030A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin molded
resin
conductive filler
molded article
electric field
Prior art date
Application number
PCT/JP2001/008868
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroya Kakegawa
Original Assignee
Osaka Gas Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co., Ltd. filed Critical Osaka Gas Co., Ltd.
Publication of WO2002031030A1 publication Critical patent/WO2002031030A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Definitions

  • the present invention relates to a molded article, and more particularly to a resin molded article.
  • Molded articles made of resin materials have been widely used in the field of electric and electronic components because of their generally excellent electrical insulation properties.
  • electric and electronic component materials obtained by molding resin materials themselves are generally easily charged because of their high electrical insulation properties, and damage to electronic products such as integrated circuits due to the adhesion or discharge of dust.
  • a method of applying a surfactant solution to the resin molded body is known.
  • a surfactant is applied in a separate step to the already manufactured resin molded article in a separate step. Therefore, in addition to the resin material forming step, the surfactant step is applied. Is needed.
  • the conductivity of the resin molded body obtained by such a method is easily affected by humidity, and exhibits the required conductivity under conditions where the surface of the resin molded body is easily wet (that is, in a high humidity state). Although it is easy to perform, it is difficult to exhibit the required conductivity under conditions where the surface is hardly wet (in other words, dry).
  • the applied surfactant is often removed from the surface by friction, and it is inevitable that the conductivity decreases with time. For this reason, such a resin molded product is removed because it is difficult to maintain the conductivity for a long time. Surfactants may cause contamination in the semiconductor manufacturing process.
  • a resin material having conductivity is realized by adding a conductivity-imparting material to a resin material in advance, mixing or kneading the resin material, and forming such a resin material into a required shape.
  • the conductivity-imparting material used at this time is usually an antistatic agent such as a surfactant, or a conductive filler such as a metal material or a carbon material.
  • the antistatic agent such as a surfactant was selected as the conductivity-imparting agent, but the antistatic agent gradually turned from the inside of the resin molded body to the surface. It takes a long time to develop the properties.
  • the effect of the antistatic agent differs depending on the type of resin material, it is necessary to select an antistatic agent suitable for the resin material while taking into account the glass transition, crystallinity, and compatibility with the resin material of the resin material. There is.
  • the antistatic agent that is held on the surface of the resin molded article is often removed by friction, as in the above-described coating method, and may cause contamination in the semiconductor manufacturing process and the like. There is also.
  • the raw conductive film can quickly and quickly impart conductivity to the resin molded article only by mixing an appropriate amount of the resin material with the resin material. Because there is no need to consider the combination with the resin material (ie, because it has versatility for various resin materials), it is more stable for resin moldings than ⁇ using antistatic agents. Properties can be easily imparted.
  • Japanese Patent Application Laid-Open No. 62-110117 discloses that a linear body (core) formed of a polymer (resin material) containing a conductive substance is coated with an insulating polymer. It describes a conductive composite linear body obtained by subjecting a composite linear body on which layers are arranged to a treatment with a high voltage of 10 kV or less, that is, a resin molded body.
  • Conductive material used here is, for example, carbon black, and amount thereof is for example for the polymer weight is 2 0-2 0 0 Weight 0/0.
  • the conductive filler is more expensive than the resin material.
  • the prices in Japan of polypropylene resin and modified polyphenylene oxide resin widely used for manufacturing resin molded products are as follows at the time of filing of the present application: g and 1,000 yen / kg, respectively, while the price of pitch-based carbon used as a conductive substance »and carbon black in Japan during the same period are approximately 3,000 yen and kg, respectively. It is 500 to 1,000 yen / kg. Therefore, all of the resin molded articles described in the above-mentioned publications have a large amount of conductive filler mixed with the resin material, and thus can be provided with required conductivity, but are extremely expensive.
  • the resin molded article described in the above-mentioned Japanese Patent Application Laid-Open No. 63-53017 contains a large amount of conductive filler, its color tone is strongly affected by the color of the conductive filler.
  • the resin molded body described in the examples of this publication contains a large amount of carbon fiber or graphite powder as the conductive filler, the color naturally becomes black, and the desired color itself is obtained. It is extremely difficult to grant freely.
  • the resin molded article described in Japanese Patent Application Laid-Open No. Sho 62-1100917 has a disadvantage in that such a resin molded article is required to have a color that is in harmony with other non-conductive '! As a result of arranging the cover for realizing the color, a two-layer structure of the core and the cover layer is formed, and the configuration is ⁇ I.
  • This resin molded body includes a matrix made of a resin material and a conductive filler dispersed in the matrix, the content of the conductive filler is regulated to less than 20% by weight, and a matrix of 20 kV or more is used.
  • An object of the present invention is to increase the conductivity of the entire resin molded body while suppressing the amount of the conductive filler to be added, and in particular, to reduce the volume resistance of the resin molded body. Disclosure of the invention
  • the resin molded article of the present invention includes a matrix made of a resin material, and a conductive filler dispersed in the matrix.
  • the resin molded body In a unit time of less than 1 ⁇ 10 16 seconds, the resin molded body has an electric field strength of at least 200 VZm and an electric field strength corresponding to the insulation rupture mjH of Matrittus. It is placed in an environment where intensity changes occur.
  • the resin molded body is subjected to, for example, a process of being arranged under the above-described environment that is continuously formed.
  • this environment for example, it is possible to form an electric field having the maximum electric field strength within a range of 200 V / m or more and less than the electric field strength corresponding to the beautiful breakdown of the matrix, and the power frequency is 1 MHz. It is formed continuously using waves below 2.45 GHz.
  • the conductive '[- raw FILLER one used in the resin molding, for example, the FILLER group electrical resistance is more than 1 0 5 ⁇ cm or less 1 0- 2 ⁇ cm.
  • the conductive filler is, for example, a »-shaped conductive filler. It is preferable that the average diameter of the conductive filler is not less than 0.02 ⁇ m and not more than 15 ⁇ m. In addition, the average residual aspect ratio of the conductive filler is preferably 10 or more and 100 or less. Further, in the resin molded article of the present invention, for example, the content of the conductive filler is set to less than 20% by weight.
  • the molded article of the present invention further contains, for example, a coloring material dispersed in a matrix together with the conductive filler.
  • the conductive raw filler is, for example, at least one of carbon »1 and graphite fiber.
  • the resin molded article of the present invention further includes a concealing material for concealing the color of the conductive filler, which is dispersed in a matrix together with the conductive filler and the coloring material, for example.
  • Tree fat moldings of the present invention as described is typically a volume resistivity is less than 1 0 4 ⁇ cm or 1 0 12 ⁇ cm.
  • the resin molded article of the present invention Since the resin molded article of the present invention is subjected to the above-described treatment of arranging under a specific fiber, the resin molded article has higher conductivity and lower conductivity than other resin molded articles containing the same amount of conductive filler. In particular, it can exhibit low volume resistance. In other words, the resin molded body can exhibit higher conductivity than that normally achievable due to the content of the conductive filler contained therein, in particular, small volume resistance.
  • the content of the conductive filler is regulated within the above-mentioned range, and the coloring material is dispersed in the matrix ⁇ ⁇ It exhibits a color according to the color of the coloring material. obtain.
  • a resin molded article according to another aspect of the present invention includes a matrix made of a resin material, and a conductive filler dispersed in the matrix.
  • This resin molded body has a volume resistance after heating to the softening point of the resin material and cooling to room temperature that is at least 10 times the volume resistance before the heat treatment.
  • the resin molded body has an electric field strength range of 200 VZm or more and less than the electric field strength corresponding to the dielectric breakdown voltage of the matrix within a unit time of less than 1 ⁇ 10 16 seconds.
  • the volume resistance of the element that has been subjected to the processing arranged under the environment in which the electric field intensity change having the maximum electric field strength occurs is less than or equal to l Z i 0 of the volume resistance before the processing.
  • the resin molded article for example, the content of the conductive filler 2 0 weight 0/0 is less than.
  • the resin molded body further contains, for example, a coloring material dispersed in the matrix together with the conductive filler.
  • the resin molded body further includes, for example, a concealing material for concealing the color of the conductive '1 ⁇ raw filler, dispersed in a matrix together with a conductive filler and a coloring material.
  • the resin molded article according to these aspects has a lower resistance and can exhibit higher-level conductivity than other resin molded articles containing the same amount of conductive filler. Further, in the resin molded article, the amount of the conductive filler added is regulated to the above range, and the coloring material is dispersed in the matrix ⁇ , and the coloring according to the color of the coloring material is exhibited. I can do it.
  • Method for producing a resin molded body includes the steps of preparing a molding material comprising a resin material and a conductive filler, a step of molding the molding material into a predetermined shape, less than 1 X 1 0- 6 seconds In a unit time, the molding is performed under the condition that the electric field intensity has the maximum electric field intensity within the electric field intensity range of 200 VZm or more and the electric field intensity corresponding to the dielectric breakdown of the resin material. Placing the material. In this manufacturing method, for example, a molded material is placed under the above-described environment that is continuously formed.
  • an electric field having a maximum electric field strength within a range of electric field strength corresponding to insulation rupture of a resin material of 200 VZm or more and a droplet force of 1 MHz can be formed. It is formed continuously using electromagnetic waves above z and below 2.45 GHz.
  • the content of the conductive filler in the molding material used in this manufacturing method is, for example, less than 20% by weight.
  • the molding material further includes, for example, a coloring material, and further includes a concealing material for concealing the color of the conductive filler.
  • FIG. 1 is a diagram showing the results of thermogravimetric analysis of one example of the resin molded article of the present invention.
  • FIG. 2 is a diagram showing a thermogravimetric analysis result of the disk obtained in Example 2.
  • FIG. 3 is a diagram showing a thermogravimetric analysis result of the disk obtained in Example 3.
  • FIG. 4 is a diagram showing a thermogravimetric analysis result of the disk obtained in Example 4.
  • the resin molded article of the present invention mainly includes a matrix and a conductive filler dispersed in the matrix.
  • the matrix is made of a resin material and is formed into a desired shape.
  • the resin material used here is not particularly limited, and is a thermoplastic resin of ⁇ P or a fusible resin.
  • thermoplastic resin examples include general-purpose plastics such as polyethylene resin, polypropylene resin, polystyrene resin and polyacrylstyrene resin, acrylic-butadiene-styrene shelf (ABS), polyphenylene ether resin, and polyacetal.
  • general-purpose plastics such as polyethylene resin, polypropylene resin, polystyrene resin and polyacrylstyrene resin, acrylic-butadiene-styrene shelf (ABS), polyphenylene ether resin, and polyacetal.
  • Resin polycarbonate resin, polybutylene terephthalate resin S, polyethylene terephthalate resin S, engineering plastics such as nylon 6 and nylon 6,6, as well as polyether ether phenolic resin, polyamide resin, polyimide resin, polysulfone resin , 4-futsudani ethylene-ethylene copolymer resin, polyvinylidene fluoride resin, 4-ethylene-perfluoroalkylbutyl ether copolymer resin, polyetherimide resin, polyether Rusarufon resins, Porifue two sulfide off eyed resins, modified Porifue two Renokisaido resin, and super engineering plastics such as Porifue two ether resin and liquid crystal polymer.
  • the thinning resin include a phenol resin, an epoxy resin, a polyimide resin, and an unsaturated polyester resin. .
  • the conductive filler dispersed in the matrix itself has conductivity, and is generally used for imparting conductivity to a resin molded product.
  • the conductivity referred to here is conductivity caused by movement of electrons in the conductive filler, that is, electron conductivity, and is a physical characteristic inherently provided in the conductive filler itself. This conductivity is different from the ionic conductivity exhibited by surfactants, etc., and it does not affect the surroundings (for example, in the absence of moisture such as in a vacuum or in a completely dry environment at 0% humidity). It is a conductive property that is manifested by the filter itself.
  • this conductive filler is not dissolved in the above-mentioned resin material constituting the matrix, but can be present in the above-mentioned matrix while being dispersed in a tangible state as a filler.
  • the conductive filler used in the present invention is not particularly limited as long as it has the above-mentioned characteristics, but is usually a metal material, a carbon material, a material coated with a metal material, It is a free material coated with a metal material, a free material coated with carbon or a free material coated with graphite, or a mixture of two or more arbitrarily selected from these.
  • examples of the metal material include silver, copper, nickel, iron, aluminum, and stainless steel tin oxide.
  • examples of the carbon material include carbon, carbon black, acetylene black, ketjen plaque, and black
  • examples of the metal-coated material include nickel-coated resin. Nickel-coated My power, silver coated Glass, aluminum-coated glass, nickel plating glass, nickel plating carbon and the like can be exemplified.
  • Examples of the carbon-free coated garbage can include carbon-coated potassium titanate. As the free material coated with black bell, for example, potassium titanate coated with black bell can be exemplified.
  • the above-mentioned conductive filler is various kinds such as a granular form, a flake form, a whisker form and a work form, or an arbitrary mixture thereof, and the shape is not particularly limited.
  • the granular material copper powder, eckenole powder, iron powder, oxidized tin powder as a metal material, and silver-coated glass beads as a metal material-coated free material
  • carbon black, acetylene black, and Ketjen black can be mentioned as those made of carbon materials.
  • the flakes include aluminum flakes and nickel methanol.
  • the whiskers include carbon-coated TO-free lithium titanate whiskers, and graphite whiskers made of carbon material.
  • a metal material such as aluminum, copper, stainless steel, etc. is used, and a metal material coated wattless material is used.
  • a preferable conductive film used in the present invention is that it is possible to realize a required conductivity, particularly a small volume resistance, in a resin molded body with a smaller shelf amount. Because it can, FILLER group electric resistance value is not less than 1 0 5 ⁇ cm or less 1 0- 2 ⁇ cm, more preferably not less than 1 0 4 ⁇ cm or less 1 0- 2 ⁇ cm.
  • the group of electrical resistance values of the filler is not the electrical resistance value of the individual pieces of the conductive filler contained in the resin molded product, but the electrical resistance value of the group of conductive f raw fillers (aggregate). It means what is required as follows.
  • an electrical insulator having a through hole with a diameter of 0.8 cm in the center is prepared, and one end of the through hole is sealed with a copper electrode. Then, a group of 0.5 g conductive filler was filled in the through hole, and a copper push rod was inserted from the other end of the through hole to generate a pressure of 20 kgf / cm 2 to form a group of conductive fillers. Form into a column with a height of X cm. In this state, a measuring device is connected between the electrode and the push rod, and the electric resistance value of the conductive filler group compressed in the through hole is measured.
  • FILLER group electric resistance the area of the end face of the conductive filler group of molded bodies on the measured electric resistance value (i.e., 0. 4 2 ⁇ . ⁇ 2) multiplied by and dividing the value by the height X cm It can be obtained as the resistance value ( ⁇ cm).
  • the measuring device used to measure the electric resistance of a group of conductive fillers is one that can cancel the electric resistance of the blank, that is, the electric resistance of the electrode and the push rod that are directly inverted. Preferred is, for example, a digital multimeter “R6552” of Adpantest Co., Ltd.
  • the term “filer group electric resistance value” refers to the volume resistance value of the aggregate of the conductive fillers thus determined.
  • a preferred conductive film is a »-shaped one, and particularly an ultra-fine strip having an average fiber diameter of not less than 0.02 ⁇ m and not more than 15 ⁇ m.
  • the required conductivity particularly a small resistance
  • the resin molded body with a smaller amount of use.
  • Especially vivid colors can be easily imparted to the resin molded body.
  • the conductive filler is used only with a coloring material described later, that is, without using a concealing material described later. It becomes easy to give clear to the resin molded article.
  • the above-mentioned »-shaped conductive filler is used as the conductive filler.
  • ⁇ ⁇ The resin molded product of the present invention has an average residual factor ratio of the conductive filler of 10 or more and 100, 0 or more. It is preferably manufactured so as to be not more than 00, more preferably not less than 15 and not more than 100,000. If the average residual factor ratio is less than 10 in about 3i, the desired conductivity, particularly small volume resistance, may not be achieved unless the amount of the conductive filler is increased. Conversely, it is generally difficult to manufacture a resin molded product in which the average residual aspect ratio of the conductive raw fiber exceeds 100,000.
  • the residual aspect ratio here is not the above-described aspect ratio of the conductive filler before being mixed with the resin material, but is mixed with the resin material to form the resin material. It means the aspect ratio / length of the conductive filler later.
  • this residual aspect ratio is determined by, for example, separating the conductive filler from the resin molded product by dissolving the resin material constituting the resin molded product in a solvent or a solvent for heating the resin material.
  • the average length and average diameter of a book are measured with an optical microscope or a scanning electron microscope, it can be determined based on those values. .
  • the resin molded article of the present invention may further include a coloring material dispersed in a matrix together with the above-mentioned conductive filler.
  • This coloring material is used for imparting a desired color to the 'resin molded body of the present invention, and is a non-conductive material.
  • the types are not particularly limited, and include various types of pigments and inorganic pigments.
  • Specific examples of the additives preferably used include azo pigments such as naphthol red, condensed azo yellow and condensed azo red; phthalocyanine pigments such as copper cyanide green / copper cyanine blue / cyanine green; and dianthraquinolyl.
  • condensed polycyclic pigments such as redd, thioindigo, verinone orange, beryllen scarlet, quinatalidone magenta, isoindolinone yellow, quinophthalone yellow, and pyrrolino red.
  • preferably used inorganic pigments include oxide pigments such as titanium oxide, titanium oxide, red iron oxide, chromium oxyacid, cono-green, and co-paltopur; sulfide pigments such as cadmium erotic and force-mido red; and ultramarine blue.
  • examples thereof include carbonic acid such as acetic acid carbonate, canolecium carbonate and the like, and phosphate such as manganese biorelate. It is preferable that these coloring materials are appropriately selected and used in consideration of the compatibility I ”with the resin material to be used, and they may be appropriately mixed and used to obtain a desired color.
  • the resin molded article of the present invention may further include a concealing material for concealing the color of the conductive filler, which contains the above-described coloring material, is dispersed in a matrix together with the conductive filler and the coloring material.
  • a concealing material for concealing the color of the conductive filler which contains the above-described coloring material, is dispersed in a matrix together with the conductive filler and the coloring material.
  • the concealing material used here suppresses the color of the resin molded body provided by the coloring material from being affected by the color of the conductive filler, and makes the resin molded body exhibit a vivid color by the coloring material.
  • non-conductive white granules are preferred. Specifically, for example, titanium oxide, My power, talc, and calcium carbonate are used.
  • the content of the above-mentioned conductive filler is less than 2 0% by weight, preferably from 0.0 1 wt 0/0 or 2 0 weight 0 / less than 0, more preferably 0.1 weight % To 18% by weight, more preferably 1.0% to 16% by weight.
  • this content is 20% by weight or more:
  • the conductive filler may fall off the resin molded article and cause contamination.
  • the color of the resin molded product is strongly influenced by the color of the conductive filler, and it is difficult to set the resin molded product to a desired color corresponding to the color of the coloring material even when the concealing material is used. Become.
  • the specific strength S of the resin molded article is reduced to the extent that the conductive filler is granular.
  • the resin molded body is likely to be warped, and the surface roughness of the resin molded body is increased, and the surface smoothness may be impaired.
  • the content of the coloring material and the concealing material in the matrix is not particularly limited, and can be arbitrarily set according to the saturation and lightness of the color to be applied to the resin molded product. , Les, Shi preferred to set the Rere about various kinds JP I 1 production is inhibited in a resin molded body to be granted by the resin material constituting the matrix. Specifically, it is preferable to set the colorant to be 0.1% by weight or more and 5.0% by weight or less of the weight of the resin molded body, and to be 0.2% by weight or more and 2.0% by weight or less. It is more preferable to set. Further, concealment material is preferably set to be 0. 1 wt 0/0 or 1 0 wt 0/0 following resin forming the weight, 0. 2 weight 0/0 or 5. 0 wt% or less It is more preferable to set it to be.
  • titanium oxide used as a coloring material or a concealing material can function as a photo-oxidation catalyst, a resin molded article containing a large amount of the titanium oxide tends to be oxidized and degraded under light irradiation. Therefore, when titanium oxide is used as a coloring material or a concealing material, its content is preferably as small as possible, specifically, about 0.1 to 2.0% by weight of the resin molded body.
  • the resin molding of the present invention is subjected to a processing force S to be arranged below a predetermined fiber.
  • a resin molded body made of the above-mentioned resin material which is formed by containing the conductive filler and, if necessary, the coloring material and the concealing material, is placed under a predetermined environment. You. At this time, the resin molded body may be in a non-belt state or in a charged state (charged state).
  • the above-mentioned “” means that a predetermined electric field strength change occurs within a predetermined unit time.
  • the unit of time times of less than 1 X 1 0- 6 seconds, preferably 0. 4 0 8 X 1 0 one 9 seconds 1 X 1 0- less than 6 seconds. This unit time is 1 X 1
  • the unit time is 0. 4 0 8 X 1 0- of less than 9 seconds, there is a possibility that the resin molded body or ignite or deform.
  • Such an electric field strength change within a unit time is a change in the maximum electric field strength falling within a predetermined range, and the maximum electric field strength may be on the + (plus) side
  • the predetermined range here is an electric field intensity range having an absolute value of 200 VZm or more and less than the electric field intensity corresponding to the above-mentioned Malingeras dielectric breakdown E. ⁇ , whose strength is less than 20 O VZm, has the effect of improving the conductivity of the resin molded body, especially the effect of lowering the volume resistance; As long as the electric field strength equal to or higher than the electric field strength corresponding to the voltage, the resin molded article may be broken.
  • the above-mentioned dielectric breakdown voltage is a value specific to the resin material constituting the matrix of the resin molded product, and is described in various handbooks and other documents, and such a description should be referred to. Can be.
  • the dielectric breakdown voltage shown in various documents is usually expressed in units of MV / m, and is a value for a molded body having a thickness of lm formed using a resin material. It is preferable to appropriately calculate the insulation rupture ⁇ value according to the thickness of the resin molded product.
  • the dielectric rupture value calculated according to the thickness of the resin molded product is:
  • the “I & Roku destruction « 1 equivalent electric field strength ”of the matrix that constitutes the resin molded product will be substantially equivalent.
  • the resin molded body of the present invention has been subjected to at least one of the treatments described below. That is, the resin molded article of the present invention only needs to be disposed at least once in an environment in which the above-mentioned electric field intensity change occurs within the above-mentioned unit time.
  • a treatment of arranging the resin molded article under the above-described environment is required. It is preferable to apply several times continuously. Such a treatment can be achieved by arranging the resin molded body under the above-described environment that is continuously formed.
  • the environment that is continuously formed is, for example, an electromagnetic wave capable of forming an electric field having the maximum electric field strength within the above-described electric field strength range within the unit time, that is, an electromagnetic wave capable of forming the electric field. This can be achieved with an electromagnetic skin whose frequency is above 1 MHz and below 2.45 GHz.
  • an electromagnetic wave that satisfies the above requirements can be formed by adjusting the output of the transmitting device that transmits the frequency within the above range.
  • Examples of a method for arranging the resin molded body under the above-described environment continuously formed by the electromagnetic skin include, for example, a method of irradiating the resin molded body with the above wave, and a method of arranging the resin molded body in the resin molded body.
  • Examples of the method include a method of passing the electrode and a method of arranging a resin molded body under the electrode.
  • a molding material is prepared by mixing the above-described resin material, conductive filler, and if necessary, a coloring material and a concealing material.
  • the mixing amount of the conductive filler is usually less than 20% by weight in the molding material, preferably less than 0.01% by weight. Less than the upper 2 0 weight 0/0, more preferably 0.1 wt% or more 1 8 wt% or less, more preferably 1. Set 0 wt% or more 1 6% by weight or less so as.
  • the coloring material is used in a proportion of 0.1 to 5.0% by weight, preferably 0.2 to 2.0% by weight in the molding material. Set. Further, when a concealing material is used, its mixing amount is set so that the proportion in the molding material is 0.1% by weight or more and 10% by weight or less, preferably 0.2% by weight or more and 5.0% by weight or less.
  • the method of mixing the resin material and the conductive filler is not particularly limited, and for example, a method in which a conductive filler is supplied to the resin material using various feeders or the like and kneaded is adopted. be able to. At this time, the viscosity of the resin material may be adjusted in advance as needed in order to enhance the dispersibility of the conductive filler.
  • the molding material contains a coloring material and a concealing material
  • these can be mixed with the resin material by the above-described method at the same time as the conductive filler.
  • the coloring material and the concealing material are dispersed in the resin material together with the conductive filler, and the molding material is colored in a color corresponding to the type of the coloring material used.
  • the obtained molding material is molded into a desired shape, for example, a plate shape or a fibrous shape, to obtain a resin molded body.
  • various molding methods of ⁇ P such as a kamen pressure molding method, an injection molding method, and an extrusion molding method, can be adopted.
  • the molding material contains a coloring material
  • the resin molded body obtained here will exhibit a color corresponding to the coloring material used.
  • the resin material exhibits a vivid color according to the colorant used, since the molding material effectively covers the color of the conductive filler, even if the molding material contains a masking material. Will be.
  • the obtained resin molded body is placed under the above-described environment.
  • the resin molding is placed under the fiber only once ⁇ , for example, the fiber can be formed It is possible to adopt a method of giving a proper pulse to the resin molded body.
  • the ⁇ method 1 is performed, for example, in a anechoic chamber or the like, disposing a resin molded body in a non-worming state near an antenna connected to a transmitter capable of transmitting the electromagnetic wave, and applying the resin molded body to the resin molded body.
  • * f and a method of irradiating the electromagnetic wave transmitted from the antenna can be adopted.
  • the type of antenna used here is not particularly limited, but a directivity type is preferable because the resin molded body is easily arranged in the above environment.
  • Carry out method 3 Connect the ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ (transformer cell) to the coaxial cape nose connected to the transmitter capable of transmitting the above-mentioned electric power, and put the resin in the ⁇ ⁇ cell.
  • a method can be employed in which the electromagnetic waves from the radio transceiver are guided into the cell through a coaxial cable in a state where the molded body is arranged.
  • the resin molded article of the present invention obtained through the above steps is compared with other resin molded articles in which a conductive filler is dispersed in a matrix made of a resin material, based on the amount of the conductive filler contained therein. Shows high conductivity, which is usually difficult to achieve, and particularly low volume resistance.
  • the resin molded article of the present invention contains a conductive filler. Even the amount is suppressed to be less than 2 0% by weight, the volume resistivity of 1 0 4 Omega cm or 1 0 12 Omega cm or less in the range that is a general need Te semiconductor manufacturing field odor, or 1 0 2 ⁇ . It can exhibit body reading resistance of not less than m and not more than 10 13 ⁇ cm.
  • the content of the conductive filler is larger by less than 3% (usually about 3 to 5% by weight). It can exhibit the same conductivity or volume resistance as the molded article.
  • the higher the probability that conductive fillers can be converted the higher the conductivity.
  • the smaller the content of conductive filler the lower the probability.
  • the reason why the resin molded article of the present invention exhibits the above-described high conductivity (small volume resistance) as compared with a normal molded article can be considered as follows, for example.
  • the resin molded article of the present invention can exhibit high conductivity that cannot be normally achieved with such an added amount of the conductive filler while suppressing the addition amount of the expensive conductive filler.
  • the resin molded body can exhibit higher conductivity than can normally be expected from the content of the conductive filler. Therefore, this resin molded product can be made at a lower cost than other resin molded products exhibiting the same conductivity (resistance).
  • the resin molded article of the present invention exhibits such a unique effect, and as a result, has a conductive film. It is also possible to achieve a volume resistance value that is difficult to achieve with conventional resin moldings including slag. For example, when carbon fibers are used as the conductive filler, the amount of addition to the resin material is gradually increased, and the volume resistivity of the resin molded product becomes 10 14 to 10 to a certain amount. The electrical insulation is maintained at about 10 15 ⁇ cm, but when the addition exceeds a certain amount, the conductivity of the resin molded product becomes extremely small with only a slight change in the addition.
  • the volume resistivity would risen (i.e., the volume resistivity will be summer extremely small), setting the volume resistivity of the resin molded body in the range of 1 0 4 ⁇ 1 0 12 ⁇ c m3 ⁇ 43 ⁇ 4 sought in general in the semiconductor manufacturing field It is known to be extremely difficult to do.
  • the resin molded article of the present invention even if a conductive filler such as carbon which exhibits such a phenomenon is used, as long as the relationship between the amount and the conductivity gradually changes, the resin molded body may be used.
  • the volume resistivity 1 0 4 ⁇ 1 0 12 ⁇ cm in the range of about, or 1 (gamma to set the range of 2 ⁇ 1 0 13 ⁇ cm is relatively easy.
  • the age at which the resin molded body containing the conductive filler is manufactured generally, the viscosity of the resin material decreases during molding of the molding material as described above, so that a skin layer is formed on the surface of the resin molded body. It is known that a layer not containing a conductive filler made of only a resin material is easily formed. This skin layer is formed from the fact that the fluidity of the conductive filler is lower than that of the resin material, and the conductive filler is susceptible to resistance in the wing. As a result, the conductivity of the resin molded article is impaired.
  • the resin molded article of the present invention has been subjected to the treatment for disposing under the fiber as described above, so that the influence of the skin layer is reduced and stable electric conductivity can be exhibited.
  • the molded article is provided with conductivity by the conductive filler as described above, the molded article is required to have an antistatic property and a dust adhesion preventive property, for example, in semiconductor manufacturing. It can be used for various purposes such as jigs, IC trays, and carriers.
  • the resin molded body is given various colors by the coloring material as described above, the use and the type can be distinguished by the color. For example, there are cases where various types of IC trays having different surface resistances are prepared depending on the purpose of use. However, the IC trays made of the resin molded article of the present invention have different colors for each type of volume resistance. This makes it possible to easily identify, based on colors, various types of necessary components in the manufacturing process of electric and electronic components.
  • the resin molded article of the present invention is used in the above-described fields and objects because conductivity is imparted to the whole including the central part, that is, the volume resistance s is reduced. For example, even if ⁇ is subjected to processing such as cutting, the conductivity before processing, that is, volume resistance can be maintained.
  • the resin molded body is given a color by a coloring material. Since the coloring material is dispersed throughout the matrix constituting the resin molded body, the color is changed in the processed portion as described above. Will also appear.
  • the resin molded article of the present invention can be recycled and reused again in a similar resin molded article. That is, the resin molded article of the present invention is re-formed into a similar resin molded article having a small volume resistance when the resin molded article of the present invention is again formed into a desired shape after pulverization, and further subjected to a process of arranging under the above-described environment; m humiliate.
  • the color of the resin molded body is given by the coloring material, the same color can be reflected on the resin molded body after the reproduction.
  • a conventional resin molded product in particular, a resin molded product according to Japanese Patent Application Laid-Open No.
  • thermogravimetric analysis is performed on the resin molded body whose body resistance has been measured in advance, and the amount and type of the conductive filler contained in the resin molded body are analyzed. If the previously measured volume resistance of the molded article is not attainable with the amount of conductive filler determined from the results of thermogravimetric analysis (that is, it is smaller than the normally achievable volume resistance ⁇ ), The resin molded article can usually be determined to be the resin molded article of the present invention.
  • thermogravimetric analysis When performing thermogravimetric analysis on a shelf molded product, usually, the resin molded product is heated from room temperature to 1 ooo ° c at room temperature at a temperature rise rate of 10 ° CZ min 3 ⁇ 4Jt in air. Examine the weight change.
  • the resin matrix after heat tl does not leave carbon ⁇ ,
  • the force of the resin molded body during thermogravimetric analysis B heat can also be carried out in an inert gas such as nitrogen.
  • the non-conductive inorganic material is a mixture of several kinds of inorganic substances including titanium oxide used as a concealing material.
  • Figure 1 The value indicated by / 0 indicates the weight loss between the inflection points.
  • the resin molded product is analyzed through the may contain from about 1 5 weight 0/0 carbon material-based conductive filler of a non-conductive inorganic material of about 1 5 wt% Understand.
  • the weight loss of 29.5% in the range of 549.5 to 637.76 ° C is due to the carbon of the polysulfone resin constituting the matrix of the resin molded product. Since the combustion rate is significantly higher than that of carbon or other carbon-based conductive filler, it can be easily determined that the burning is not caused by carbon as the conductive filler.
  • thermogravimetric analysis instead of thermogravimetric analysis, analysis using ESCA (Electron-Potatroscopy-for-chemical-analysis) or ⁇ ⁇ (Electron-probe microanalyzer) is performed, and the conductivity contained in the resin molded body is measured. It is also possible to estimate the type and amount of the filler.
  • ESCA Electro-Potatroscopy-for-chemical-analysis
  • ⁇ ⁇ Electron-probe microanalyzer
  • the resin molded body is heated to the softening point or higher of the resin material constituting the resin molded body, then cooled to room temperature, and the volume resistance of the resin molded body is measured.
  • the insulating rupture portion is healed by such a calo heat treatment, and the volume resistance after the calo heat treatment S becomes larger than the resistance before the heat treatment.
  • the resin molded product of the present invention usually has a fiber resistance after calo-heat treatment, which is at least 10 times the volume resistance of the resin before heat treatment.
  • a resin molded body different from that of the present invention that is, a resin molded body having no history of treatment to be placed under the above-described environment does not have the insulating rupture portion, Even with such a heat treatment, the volume resistance is hardly increased.
  • the resin molded article of the present invention which has been subjected to the heat treatment as described above, is again subjected to the treatment of being placed under the above-described environment. ⁇ ⁇ It can be complicated.
  • the resin molded body containing 20% by weight or more of the carbon material-based conductive filler as used in the present invention has a black color as a whole. The corresponding color cannot be exhibited.
  • a color is imparted only to the surface portion of the resin molded article, such as ⁇ (for example, a shelf molded article described in Japanese Patent Application Laid-Open No. Sho 62-109709). In the case, a uniform color cannot appear over the entire cross section of the resin molded body.
  • the above group of 3 ⁇ 4 ⁇ was supplied to a polyphenylene oxide resin (trade name “Noryl PPO534” of Nippon General Electric Co., Ltd.), which is a tree material, using a feeder and mixed. Then, a pellet (molding material) made of a resin material containing a fiber group was prepared. The mixing ratio of was set to be 6.0% by weight in the pellet.
  • a polyphenylene oxide resin trade name “Noryl PPO534” of Nippon General Electric Co., Ltd.
  • the pellets are heated at a resin temperature of 240. C, injection pressure 1, 200 kg / cm 2 and mold temperature 60. Molding was performed using a PROMAT injection molding machine manufactured by Sumitomo Heavy Industries, Ltd. under the conditions of C to obtain a disk having a diameter of 50 mm and a thickness of 3 mm, that is, a resin molded body. The body resistance of this disk was 4 ⁇ 10 15 ⁇ cm.
  • the volume resistance of the disk The resistance was measured as follows. First, a pair of electrodes was formed on both surfaces of a disk using silver paste, and the electrical resistance between the electrodes was measured using a product name “R8340” of Adpan Test Co., Ltd. From the measured values, the volume resistance (Qcm) was calculated in consideration of the electrode area and the thickness of the disk. Hereinafter, “volume resistance” refers to the resistance value thus obtained.
  • the average residual arc ratio of the polyatari port-tolyl-based carbon steel in the disc was 28.6.
  • this average residual aspect ratio was calculated by dissolving a disk in methylene chloride and separating polyacrylonitrile-based carbon short » and measuring the average length and average diameter of 400 of them using an optical microscope. It was done. Next, the obtained disk was treated with a magnetic skin. Here, a high-frequency generator to which an amplifier was connected was prepared, and a coaxial cable having a penitita lip connected to one end was connected to the output terminal of the amplifier. Then, both sides of the disk were sandwiched by penic clips, and an electromagnetic wave having a frequency of 1 OMHz and an output of 10 OW was passed through the disk for 10 seconds.
  • the high frequency generator OHDE & SCHW ARZ's trade name "SIGNAL GENERATOR SMY-02" was used.
  • the amplifier uses KALM US's product name "MODEL 122FC-CE” for waves of 1 to 250 MHz, and uses the company's product name of 250 MHz to 1 GHz for skin.
  • MODEL 717 FC — CE was used.
  • the output of the wave used the power meter built in the amplifier.
  • the disk can be thought of as being placed underneath a change in the electric field strength with a maximum electric field strength of at least 1,000 V / m.
  • the disc that has been treated with electricity as described above!
  • the volume resistivity was 1 ⁇ 10 12 ⁇ cm, which was significantly lower than before the wave treatment. Examples 2 to 4
  • Polyacrylonitrile-based carbon with an average fiber diameter of 7 ⁇ m, an average aspect ratio of 857, and a polypropylene resin (Novatec BC 3 B, trade name of Japan Polychem Co., Ltd.)
  • a group of fibers consisting of Tanhui ⁇ (Mitsubishi Rayon Co., Ltd. product name “Paiguchi Fill”) with a group of electric resistance of 0.06 Q cm was mixed in the same manner as in Example 1 to obtain pellets. .
  • the mixing ratio of the invitation group was set as shown in Table 1 in the pellet.
  • a disc was manufactured from the obtained pellets through the same forming process as in Example 1.
  • Table 1 shows the volume resistance of this disk.
  • the average residual aspect ratio of the polyacrylo-tolyl-based carbon short HP in the obtained disk was 51.1.
  • the average residual aspect ratio was determined in the same manner as in Example 1 except that thermal decalin was used as a solvent for dissolving the disc.
  • the obtained disk was treated with electric leather.
  • a high-frequency generator to which an amplifier was connected was prepared, and a TEM cell was connected to the output terminal of the amplifier through a coaxial cable.
  • a 50 ⁇ termination resistor was connected to the other end of the TEM cell.
  • the same high-frequency generator and amplifier as those used in Example 1 were used, and the TEM cell was a product name “T EM CELL P / N: NTEM-JM1 S / N: 9918 "(DC to 1,200MHz, effective septum height 5 Omm) was used.
  • E the electric field strength (V / m)
  • P the input power (W)
  • R the impedance of the TEM cell ( ⁇ )
  • h the height of the septum of the TEM cell (m).
  • R can be considered to be 50 ⁇ because a 50 ⁇ termination resistor is connected to the TEM sensor.
  • H is 0.05 m. According to this, it can be considered that the disc in the TEM cell is placed under the fiber where the electric field intensity change becomes 1.00 VZm.
  • FIGS. 2 to 4 show the results of thermogravimetric analysis performed on the disc before treatment with electromagnetic waves.
  • the thermogravimetric analysis results shown in FIGS. 2 to 4 indicate that the »group weight in the disc is as shown in Table 1, and this value is based on the mixing ratio used in producing the disc. It turns out that it is almost in agreement with the ratio.
  • a disc was manufactured from the obtained pellets through the same molding process as in ⁇ of Example 1, and the volume resistance and the surface resistance were measured. Table 2 shows the results.
  • the surface resistance The resistance ( ⁇ / D) was determined by forming a pair of electrodes on one side of a disk using a silver paste and measuring the electrical resistance between the electrodes.
  • the term “surface resistance” refers to the resistance value measured in this manner.
  • the obtained disk was subjected to pulse processing.
  • a disk was placed between the gun with the needle electrode and the ground plane electrode m), and the distance between the disk and the tip of the discharge gun was set to 3 O mm.
  • the norms for raising +30 kV at 0.7 ns were given 5 times at 1 second intervals.
  • the disk was placed in an environment in which the electric field intensity changed so that the maximum electric field intensity became 1, OO OkV / m.
  • an electrostatic discharger “Ess-200AX” manufactured by Noise Laboratory Co., Ltd. was used.
  • Table 2 shows the results of examining the volume resistance and surface resistance of the disk after the pulse treatment as described above.
  • the discs obtained in each of the examples exhibited a vivid red color due to the coloring material, and their colors did not change even after the treatment with Panoles.
  • the surface layer on both sides of the disk after the pulse treatment was cut to a thickness of 0.25 mm and removed, and the surface resistance and volume resistance of the disk were examined. .
  • Table 2 shows the results.
  • the disks obtained in Examples 5 to 7 were placed on a grounded plate, and an electrode group consisting of a large number of needle-like electrodes was placed above the disks. At this time, the distance between the plate and the g group was set to 3 Omm so that the electrode group did not directly touch the disk. Then, an AC voltage of 30, OOOV (60 Hz) was applied to the electrode group for 10 seconds so that the electrode I was positive. The volume resistance and the surface resistance were measured for the disk on which the voltage application treatment was performed as described above.
  • the volume resistance after the heat treatment was examined on the disk obtained by the pulse treatment in Example 6.
  • the disk was heated for 30 minutes as shown in Table 4 and then cooled and cooled to room temperature over 10 minutes, and four heating-cooling cycles were performed for each disk, and then the volume resistance was measured.
  • Table 4 shows the results.
  • the range of the heat treatment temperature was 100 to 120 ° C
  • the resistance after the heat treatment was almost the same as that before the heat treatment, and no significant change was observed. It can be seen that after heat treatment above the resin softening point (Vicat softening point) of 150 ° C, the volume resistance has risen significantly to the level before the pulsed treatment.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

A formed resin article which comprises a matrix comprising a resin material and an electroconductive filler dispersed in the matrix and has been exposed to a circumstance such that, in a unit time less than 1 X 10-6 seconds, an electric field strength change takes place which has the maximum electric field strength in the range of electric field strength from 200 V/m to a value less than an electric field strength corresponding to the breakdown voltage of the matrix. The formed resin article exhibits a higher electroconductivity, in particular a less volume resistance than that being conventionally expected from the content of the electroconductive filler. For example, such a formed resin article having a content of the electroconductive filler of less than 20 wt % exhibits generally a volume resistance of 10?4 to 1012¿ ΦOcm.

Description

樹脂成形体  Resin molding
技術分野  Technical field
本発明は、 成形体、 特に、 樹脂成形体に関する  The present invention relates to a molded article, and more particularly to a resin molded article.
樹脂材料からなる成形体は、 一般明に優れた電気絶縁性を示すことから、 電気 '電子部品分野において広く用いられて田いる。 ところが、 樹脂材料そのものを 成形して得られた電気 ·電子部品材料は、 一般に高い電気絶縁性を有するため に帯電し易く、 塵埃の付着或いは放電により集積回路などの電子 ϋ品へダメー ジを与える場合がある等の不具合がある。 このため、 半導体製造分野等におい て用いられる樹脂成形体は、 通常、 各種の手法により微弱な導電性が付与され ている。 Molded articles made of resin materials have been widely used in the field of electric and electronic components because of their generally excellent electrical insulation properties. However, electric and electronic component materials obtained by molding resin materials themselves are generally easily charged because of their high electrical insulation properties, and damage to electronic products such as integrated circuits due to the adhesion or discharge of dust. There is a problem such as the case. For this reason, a resin molded body used in the semiconductor manufacturing field or the like is usually given weak conductivity by various methods.
樹脂成形体に対して導電性を付与するための最も簡易な手法として、 樹脂成 形体に対して界面活性剤溶液を塗布する手法が知られている。 しかし、 この手 法は、 既に製造された樹脂成形体に対して別工程で界面活性剤 を另リ途塗布 することになるため、 樹脂材料の成形工程に加えて界面活性剤赚の塗布工程 が 的に必要になる。 また、 このような手法により得られる樹脂成形体の導 電'性は、 湿度の影響を受けやすく、 樹脂成形体の表面が湿り易い状態 (即ち、 高湿状態) 下では所要の導電性を発揮し易いものの、 表面が湿り難い状態 (即 ち、 乾燥状態) 下では必要な導電性を発揮しにくい。 さらに、 この手法により 得られた樹脂成形体は、 塗布された界面活性剤が摩擦によつて表面から除去さ れることが多く、 経時的な導電性の低下が避けられない。 このため、 このよう な樹脂成形体は、 導電性を長期間維持するのが困難であるばかり力、 除去され た界面活性剤により半導体製造工程においてコンタミネーションを引き起こす 可能性もある。 As a simplest method for imparting conductivity to a resin molded body, a method of applying a surfactant solution to the resin molded body is known. However, in this method, a surfactant is applied in a separate step to the already manufactured resin molded article in a separate step. Therefore, in addition to the resin material forming step, the surfactant step is applied. Is needed. In addition, the conductivity of the resin molded body obtained by such a method is easily affected by humidity, and exhibits the required conductivity under conditions where the surface of the resin molded body is easily wet (that is, in a high humidity state). Although it is easy to perform, it is difficult to exhibit the required conductivity under conditions where the surface is hardly wet (in other words, dry). Further, in the resin molded article obtained by this method, the applied surfactant is often removed from the surface by friction, and it is inevitable that the conductivity decreases with time. For this reason, such a resin molded product is removed because it is difficult to maintain the conductivity for a long time. Surfactants may cause contamination in the semiconductor manufacturing process.
そこで、 最近は、 上述のような界面活性剤溶液の塗布による事後的な導電性 付与手法に代えて、 樹脂成形体そのものに当初から導電性を付与する試みがな されてレヽる。 ここでは、 樹脂材料に対して予め導電性付与材を添加して混合ま たは練和し、 そのような樹脂材料を所要の形状に成形することにより導電性を 有する樹脂成形体を実現している。 この際に用いられる導電性付与材は、 通常、 界面活性剤などの帯電防止剤、 または金属材料や炭素材料などの導電'性フィラ 一である。  Therefore, recently, attempts have been made to impart conductivity to the resin molded article itself from the beginning instead of the above-described method of imparting conductivity later by applying a surfactant solution. Here, a resin material having conductivity is realized by adding a conductivity-imparting material to a resin material in advance, mixing or kneading the resin material, and forming such a resin material into a required shape. I have. The conductivity-imparting material used at this time is usually an antistatic agent such as a surfactant, or a conductive filler such as a metal material or a carbon material.
ここで、 導電性付与材として界面活性剤などの帯電防止剤を選択した ^^は、 帯電防止剤が徐々に樹脂成形体の内部から表面に ^することになるため、 樹 脂成形体が導電性を発現するまでに長時間を要する。 また、 帯電防止剤による 効果は樹脂材料の種類により異なるため、 樹脂材料のガラス転移 や結晶性 および榭脂材料との相溶性などを考慮しつつ樹脂材料に適した帯電防止剤を選 択する必要がある。 さらに、 樹脂成形体の表面に銜した帯電防止剤は、 上述 のような塗布手法の と同様に、 摩擦により除去されてしまうことが多く、 結果的に半導体製造工程などにおいてコンタミネーションを引き起こす可能性 もある。  Here, the antistatic agent such as a surfactant was selected as the conductivity-imparting agent, but the antistatic agent gradually turned from the inside of the resin molded body to the surface. It takes a long time to develop the properties. In addition, since the effect of the antistatic agent differs depending on the type of resin material, it is necessary to select an antistatic agent suitable for the resin material while taking into account the glass transition, crystallinity, and compatibility with the resin material of the resin material. There is. Furthermore, the antistatic agent that is held on the surface of the resin molded article is often removed by friction, as in the above-described coating method, and may cause contamination in the semiconductor manufacturing process and the like. There is also.
これに対し、 導電'生フイラ一は、 適量を樹脂材料と混合するだけで樹脂成形 体に対して速やカゝに導電性を付与することができ、 また、 帯電防止剤の;^と は異なり樹脂材料との組合せを考慮する必要が無いため (すなわち、 各種の樹 脂材料に対して汎用性を有するため) 、 帯電防止剤を用いる^^に比べて樹脂 成形体に対して安定な導電性を容易に付与することができる。  On the other hand, the raw conductive film can quickly and quickly impart conductivity to the resin molded article only by mixing an appropriate amount of the resin material with the resin material. Because there is no need to consider the combination with the resin material (ie, because it has versatility for various resin materials), it is more stable for resin moldings than ^^ using antistatic agents. Properties can be easily imparted.
ところで、 導電性フィラ一を含む樹脂成形体として、 特開昭 6 3— 5 3 0 1 7号公報には、 6 4〜 8 0体積0 /0の樹 j§旨と 3 6〜 2 0体積0 /0の導電性物質とを 含む樹脂組成物を成形して得られる樹脂成形体であって、 1, 0 0 0 V以下の 電圧を印加することにより所望の抵抗値を達成したものが記載されてレヽる。 こ こで用いられる導電性物質は、 金属、 金属酸化物および炭素等の電気良伝導体 の粒子若しくは繊維あるいはこれらの混合物であり、 その比重は通常 1以上で あるものと考えられること力ら、 その樹脂成形体は少なくとも 2 0重量0 /0の導 電性物質を含むものと考えられる。 Incidentally, as a resin molded article containing a conductive filler and foremost, in JP 63- 5 3 0 1 7 No. 6 4-8 0 tree j§ effect of volume 0/0 and 3 6-2 0 vol 0/0 of a conductive material A resin molded article obtained by molding a resin composition containing the resin composition and achieving a desired resistance value by applying a voltage of 1,000 V or less is described. The conductive substance used here is a particle or fiber of a good electrical conductor such as a metal, a metal oxide, and carbon, or a mixture thereof, and the specific gravity is usually considered to be 1 or more. the resin molded article is considered to contain at least 2 0 weight 0/0 of the conductive material.
また、 特開昭 6 2— 1 1 0 9 1 7号には、 導電性物質を含有する重合体 (樹 脂材料) から形成される線状体 (芯体) に絶縁性重合体からなる被覆層を配置 した複合線状体に対して 1 0 k V以下の高電圧による処理を施した導電性複合 線状体、 すなわち樹脂成形体が記載されている。 ここで用いられている導電性 物質は、 例えばカーボンブラックであり、 その使用量は、 例えば重合体重量に 対して 2 0〜 2 0 0重量0 /0である。 Also, Japanese Patent Application Laid-Open No. 62-110117 discloses that a linear body (core) formed of a polymer (resin material) containing a conductive substance is coated with an insulating polymer. It describes a conductive composite linear body obtained by subjecting a composite linear body on which layers are arranged to a treatment with a high voltage of 10 kV or less, that is, a resin molded body. Conductive material used here is, for example, carbon black, and amount thereof is for example for the polymer weight is 2 0-2 0 0 Weight 0/0.
しかしながら、 導電性フイラ一は樹脂材料に比べて高価である。 例えば、 樹 脂成形体を製造するために広く用いられているポリプロピレン樹脂および変性 ポリフエ二レン才キサイド樹脂の日本国內における価格は、 本願出願時頃にお いてそれぞ U¾ね 1 0 0円 Zk gおよび 1 , 0 0 0円/ k gであるのに対し、 導電性物質として用いられるピッチ系炭素 »およびカーボンブラックの同時 期における日本国内における価格は、 それぞれ概ね 3 , 0 0 0円ノ k gおよび 5 0 0〜1, 0 0 0円/ k gである。 したがって、 上述の各公報に記載された 樹脂成形体は、 いずれも樹脂材料に対して多量の導電性フイラ一を混合してい るため、 所要の導電性が付与され得るものの極めて高価になる。 特に、 樹脂成 形体に対して金属に近い導電性を付与し、 «波に対するシールド性を高める 必要がある は、 樹脂材料に対して添加すべき導電性フィラーの量が多量に なるため、 そのような樹脂成形体は他のものに比べて著しく高価になる。 また、 この場合は、 樹脂成形体に含まれる多量の導電性フィラーが樹脂材料によって 本来的に達成される各種の特 I1生を阻害する可能性があり、 また、 樹脂成形体か ら導電性フィラーが脱落し易くなつてコンタミネーシヨンを引き起こすおそれ もある。 However, the conductive filler is more expensive than the resin material. For example, the prices in Japan of polypropylene resin and modified polyphenylene oxide resin widely used for manufacturing resin molded products are as follows at the time of filing of the present application: g and 1,000 yen / kg, respectively, while the price of pitch-based carbon used as a conductive substance »and carbon black in Japan during the same period are approximately 3,000 yen and kg, respectively. It is 500 to 1,000 yen / kg. Therefore, all of the resin molded articles described in the above-mentioned publications have a large amount of conductive filler mixed with the resin material, and thus can be provided with required conductivity, but are extremely expensive. In particular, it is necessary to impart conductivity close to that of a metal to the resin molded body to enhance the shielding property against waves.However, since the amount of the conductive filler to be added to the resin material becomes large, such a case is required. Such a resin molded product is significantly more expensive than other products. Also, in this case, a large amount of conductive filler contained in the resin molded body depends on the resin material. It may inhibit various Japanese I 1 Raw which is inherently achieved, also, if we conductive filler resin molded body is also likely to cause easy connexion-contamination Chillon fall off.
さらに、 上述の特開昭 6 3 - 5 3 0 1 7号公報に記載の樹脂成形体は、 多量 の導電性フィラーを含んでいるため、 その色調が導電性フィラーの色彩の影響 を強く受ける。 特に、 当該公報の実施例に記載されている樹脂成形体は、 導電 性フイラ一として多量のカーボンファイバーやグラフアイトパウダーを含んで いるため、 色彩が自ずと黒色になり、 それ自体に所望の色彩を自由に付与する のは極めて困難である。 一方、 特開昭 6 2— 1 1 0 9 1 7号公報に記載の樹脂 成形体は、 他の非導電'! ¾ 維と調和する色彩を実現するために、 芯体に対して そのような色彩を実現するための被 を配置している結果、 芯体と被覆層と の 2層構造になり、 構成が^ Iである。  Furthermore, since the resin molded article described in the above-mentioned Japanese Patent Application Laid-Open No. 63-53017 contains a large amount of conductive filler, its color tone is strongly affected by the color of the conductive filler. In particular, since the resin molded body described in the examples of this publication contains a large amount of carbon fiber or graphite powder as the conductive filler, the color naturally becomes black, and the desired color itself is obtained. It is extremely difficult to grant freely. On the other hand, the resin molded article described in Japanese Patent Application Laid-Open No. Sho 62-1100917 has a disadvantage in that such a resin molded article is required to have a color that is in harmony with other non-conductive '! As a result of arranging the cover for realizing the color, a two-layer structure of the core and the cover layer is formed, and the configuration is ^ I.
以上のような背景の下、 本発明者は、 導電性フィラーの添加量を抑制し、 し カゝも簡素な構成により導電性を高めた樹脂成形体を先に提案している (WO 0 0 / 4 0 6 4 2 ) 。 この樹脂成形体は、 樹脂材料からなるマトリックスと、 当該マトリックス内に分散された導電性フィラーとを含み、 導電性フィラーの 含有量が 2 0重量%未満に規制されかつ 2 0 k V以上マトリッタスの絶縁石皮壊 電圧未満の ¾EEの印加処理を施したものである力 樹脂成形体の表面部分の導 電' f生を高めることができるに止まり (すなわち、 樹脂成形体の表面抵抗を低下 させることができるに止まり) 、 樹脂成形体全体としての導電性を高める (す なわち、 樹脂成形体の 抵抗を低下させる) ことができるには至っていない。 したがって、 この樹脂成形体は、 例えば加工処理等により表面部分を削除する と、 導電性力 S低下する力又は失われることになる。  Against this background, the present inventor has previously proposed a resin molded body in which the amount of conductive filler added is suppressed and the conductivity is improved by a simple structure (WO 00 / 4 0 6 4 2). This resin molded body includes a matrix made of a resin material and a conductive filler dispersed in the matrix, the content of the conductive filler is regulated to less than 20% by weight, and a matrix of 20 kV or more is used. A force that has been subjected to an application of ¾EE that is less than the insulating bark breaking voltage. It can only increase the electrical conductivity of the surface of the resin molded product (that is, lowering the surface resistance of the resin molded product). However, it has not yet been possible to increase the conductivity of the resin molded body as a whole (that is, reduce the resistance of the resin molded body). Therefore, when the surface of the resin molded body is removed by, for example, processing, the conductive force S is reduced or lost.
本発明の目的は、 導電性フィラーの添加量を抑制しつつ、 樹脂成形体全体の 導電性を高めること、 特に、 樹脂成形体の体積抵抗を低下させることにある。 発明の開示 An object of the present invention is to increase the conductivity of the entire resin molded body while suppressing the amount of the conductive filler to be added, and in particular, to reduce the volume resistance of the resin molded body. Disclosure of the invention
本発明の樹脂成形体は、 樹脂材料からなるマトリックスと、 当該マトリック ス内に分散された導電性フィラーとを含んでいる。 この樹脂成形体は、 1 X 1 0一6秒未満の単位時間内において、 2 0 0 VZm以上マトリツタスの絶縁破壌 mjHこ相当する電界強 ^満の電界強度範囲内に最大電界強度を有する電界強 度変ィヒが生じる環境の下に配置する処理が施されている。 The resin molded article of the present invention includes a matrix made of a resin material, and a conductive filler dispersed in the matrix. In a unit time of less than 1 × 10 16 seconds, the resin molded body has an electric field strength of at least 200 VZm and an electric field strength corresponding to the insulation rupture mjH of Matrittus. It is placed in an environment where intensity changes occur.
ここで、 樹脂成形体は、 例えば、 連続的に形成される上記環境の下に配置す る処理が施されている。 この 、 当 境は、 例えば、 2 0 0 V/m以上マ トリッタスの絶豫破壊 に相当する電界強度未満の範囲内に最大電界強度を 有する電界を形成可能であり力つ周波数が 1 MH zを超え力つ 2. 4 5 GH z 未満の 波を用レ、て連続的に形成されている。  Here, the resin molded body is subjected to, for example, a process of being arranged under the above-described environment that is continuously formed. In this environment, for example, it is possible to form an electric field having the maximum electric field strength within a range of 200 V / m or more and less than the electric field strength corresponding to the magnificent breakdown of the matrix, and the power frequency is 1 MHz. It is formed continuously using waves below 2.45 GHz.
この樹脂成形体において用いられる導電 '[·生フイラ一は、 例えば、 そのフイラ 一群電気抵抗値が 1 0 5 Ω c m以下 1 0— 2 Ω c m以上のものである。 また、 導電 性フイラ一は、 例えば、 »状のものである。 この^、 導電性フィラーの平 均 »径は、 0. 0 0 2 ^ m以上 1 5 μ m以下が好ましい。 また、 導電性フィ ラーの平均残存ァスぺクト比は、 1 0以上 1 0 0, 0 0 0以下が好ましい。 さらに、 本発明の樹脂成形体は、 例えば、 導電性フィラーの含有量が 2 0重 量%未満に設定されている。 この^^、本発明の棚旨成形体は、 例えば、 導電 性フイラ一と共にマトリックス内に分散された着色材をさらに含んでいる。 ま た、 導電生フイラ一は、 例えば、 炭素 »1および黒鉛繊維のうちの少なくとも 一つである。 さらに、 これらの^ \ 本発明の樹脂成形体は、 例えば、 導電性 フィラーおよび着色材と共にマトリックス内に分散された、 導電性フィラーの 色彩を隠蔽するための隠蔽材をさらに含んでいる。 これらのような本発明の樹 脂成形体は、 通常、 体積抵抗が 1 04Ω c m以上 1 012 Ω c m以下である。 本発明の樹脂成形体は、 上述のような特定の纖の下に配置する処理が施さ れて ヽるため、 同量の導電性フィラーを含む他の樹脂成形体に比べて高 ヽ導電 性、 特に、 小さな体積抵抗を示し得る。 換言すると、 この樹脂成形体は、 そこ に含まれる導電性フィラーの含有量により通常達成できる導電性よりも高い導 電性、 特に、 小さな体積抵抗を示し得る。 また、 この樹脂成形体は、 導電性フ ィラーの含有量が上述の範囲に規制されており、 しかもマトリックス内に着色 材が分散されて ヽる^ \ 当該着色材の色彩に応じた色彩を呈し得る。 The conductive '[- raw FILLER one used in the resin molding, for example, the FILLER group electrical resistance is more than 1 0 5 Ω cm or less 1 0- 2 Ω cm. The conductive filler is, for example, a »-shaped conductive filler. It is preferable that the average diameter of the conductive filler is not less than 0.02 ^ m and not more than 15 µm. In addition, the average residual aspect ratio of the conductive filler is preferably 10 or more and 100 or less. Further, in the resin molded article of the present invention, for example, the content of the conductive filler is set to less than 20% by weight. In this case, the molded article of the present invention further contains, for example, a coloring material dispersed in a matrix together with the conductive filler. The conductive raw filler is, for example, at least one of carbon »1 and graphite fiber. Further, the resin molded article of the present invention further includes a concealing material for concealing the color of the conductive filler, which is dispersed in a matrix together with the conductive filler and the coloring material, for example. Tree fat moldings of the present invention as described is typically a volume resistivity is less than 1 0 4 Ω cm or 1 0 12 Ω cm. Since the resin molded article of the present invention is subjected to the above-described treatment of arranging under a specific fiber, the resin molded article has higher conductivity and lower conductivity than other resin molded articles containing the same amount of conductive filler. In particular, it can exhibit low volume resistance. In other words, the resin molded body can exhibit higher conductivity than that normally achievable due to the content of the conductive filler contained therein, in particular, small volume resistance. In addition, in this resin molded product, the content of the conductive filler is regulated within the above-mentioned range, and the coloring material is dispersed in the matrix ^ \ It exhibits a color according to the color of the coloring material. obtain.
本発明の他の見地に係る樹脂成形体は、 樹脂材料からなるマトリックスと、 当該マトリックス内に分散された導電性フィラーとを含んでいる。 この樹脂成 形体は、 樹脂材料の軟化点に加熱処理して室温まで冷却した後の体積抵抗がカロ 熱処理する前の体積抵抗の 1 0倍以上である。  A resin molded article according to another aspect of the present invention includes a matrix made of a resin material, and a conductive filler dispersed in the matrix. This resin molded body has a volume resistance after heating to the softening point of the resin material and cooling to room temperature that is at least 10 times the volume resistance before the heat treatment.
この樹脂成形体は、 例えば、 上 13¾ロ熱処理の後に、 1 X 1 0一6秒未満の単位 時間内において、 2 0 0 VZm以上マトリックスの絶縁破壊電圧に相当する電 界強度未満の電界強度範囲内に最大電界強度を有する電界強度変ィヒが生じる環 境の下に配置する処理を施した の体積抵抗が、 当該処理を施す前の体積抵 抗の l Z i 0以下である。 For example, after the above heat treatment, the resin molded body has an electric field strength range of 200 VZm or more and less than the electric field strength corresponding to the dielectric breakdown voltage of the matrix within a unit time of less than 1 × 10 16 seconds. The volume resistance of the element that has been subjected to the processing arranged under the environment in which the electric field intensity change having the maximum electric field strength occurs is less than or equal to l Z i 0 of the volume resistance before the processing.
また、 この樹脂成形体は、 例えば、 導電性フィラーの含有量が 2 0重量0 /0未 満である。 この:^、樹脂成形体は、 例えば、 導電性フィラーと共にマトリツ タス内に分散された着色材をさらに含んでいる。 また、 樹脂成形体は、 例えば、 導電性フィラーおよび着色材と共にマトリックス内に分散された、 導電 '1·生フィ ラーの色彩を隠蔽するための隠蔽材をさらに含んでいる。 Further, the resin molded article, for example, the content of the conductive filler 2 0 weight 0/0 is less than. In this case, the resin molded body further contains, for example, a coloring material dispersed in the matrix together with the conductive filler. In addition, the resin molded body further includes, for example, a concealing material for concealing the color of the conductive '1 · raw filler, dispersed in a matrix together with a conductive filler and a coloring material.
これらの見地に係る樹脂成形体は、 同量の導電性フィラーを含む他の樹脂成 形体に比べて 抵抗が小さく、 高レヽ導電性を示し得る。 また、 この樹脂成形 体は、 導電性フィラーの添加量が上述の範囲に規制されており、 しかもマトリ ックス内に着色材が分散されている^^、 当該着色材の色彩に応じた色彩を呈 し得る。 The resin molded article according to these aspects has a lower resistance and can exhibit higher-level conductivity than other resin molded articles containing the same amount of conductive filler. Further, in the resin molded article, the amount of the conductive filler added is regulated to the above range, and the coloring material is dispersed in the matrix ^^, and the coloring according to the color of the coloring material is exhibited. I can do it.
本発明に係る樹脂成形体の製造方法は、 樹脂材料と導電性フィラーとを含む 成形材料を調製する工程と、 成形材料を所定の形状に成形する工程と、 1 X 1 0—6秒未満の単位時間内にぉ 、て、 2 0 0 VZm以上樹脂材料の絶縁破壊 に相当する電界強^満の電界強度範囲内に最大電界強度を有する電界強度変 化が生じる の下に、 成形された成形材料を配置する工程とを含んでいる。 この製造方法では、 例えば、 連続的に形成される上記環境の下に、 成形され た成形材料を配置している。 この 、 当該環境は、 例えば、 2 0 0 VZm以 上樹脂材料の絶縁破壌 misこ相当する電界強^ ¾滴の範囲内に最大電界強度を 有する電界を形成可能であり力つ周波数が 1 MH zを超えかつ 2 . 4 5 GH z 未満の電磁波を用いて連続的に形成されている。 Method for producing a resin molded body according to the present invention includes the steps of preparing a molding material comprising a resin material and a conductive filler, a step of molding the molding material into a predetermined shape, less than 1 X 1 0- 6 seconds In a unit time, the molding is performed under the condition that the electric field intensity has the maximum electric field intensity within the electric field intensity range of 200 VZm or more and the electric field intensity corresponding to the dielectric breakdown of the resin material. Placing the material. In this manufacturing method, for example, a molded material is placed under the above-described environment that is continuously formed. In this environment, for example, an electric field having a maximum electric field strength within a range of electric field strength corresponding to insulation rupture of a resin material of 200 VZm or more and a droplet force of 1 MHz can be formed. It is formed continuously using electromagnetic waves above z and below 2.45 GHz.
なお、 この製造方法で用いられる成形材料における導電性フィラーの含有量 は、 例えば 2 0重量%未満である。 この 、 成形材料は、 例えば、 着色材を さらに含んでおり、 導電性フィラーの色彩を隠蔽するための隠蔽材をさらに含 んでいるのが好ましい。  The content of the conductive filler in the molding material used in this manufacturing method is, for example, less than 20% by weight. Preferably, the molding material further includes, for example, a coloring material, and further includes a concealing material for concealing the color of the conductive filler.
このような本発明の製造方法では、 導電性フィラーを含み力つ所定の形状に 成形された成形材料を上述のような特定の環境の下に配置しているため、 導電 性フイラ一の含有量から通常達成できる導電性よりも高い導電性、 特に、 導電 性フィラーの含有量から通常達成できる体積抵抗よりも小さな髓抵抗を示す 樹脂成形体を製造することができる。 また、 この製造方法では、 成形材料中の 導電性フィラーの含有量を上述の範囲に規制し、 しかも成形材料が着色材を含 む ^は、 当該着色材に応じた色彩を樹脂成形体に付与することができる。 本発明の他の目的および効果は、 以下の詳細な説明から明らかになるであろ o 図面の簡単な説明 In such a manufacturing method of the present invention, since the molding material containing the conductive filler and formed into a predetermined shape is placed under the specific environment as described above, the content of the conductive filler Thus, it is possible to produce a resin molded body exhibiting higher conductivity than that normally attainable, and particularly, having a lower medullary resistance than the volume resistance normally attainable from the content of the conductive filler. Further, in this production method, the content of the conductive filler in the molding material is restricted to the above-described range, and the molding material contains a coloring material. ^ Indicates that the resin molding has a color corresponding to the coloring material. can do. Other objects and advantages of the present invention will become apparent from the following detailed description.o BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の樹脂成形体の一例について雄した熱重量分析の結果を示 す図である。  FIG. 1 is a diagram showing the results of thermogravimetric analysis of one example of the resin molded article of the present invention.
図 2は、 実施例 2で得られた円板の熱重量分析結果を示す図である。  FIG. 2 is a diagram showing a thermogravimetric analysis result of the disk obtained in Example 2.
図 3は、 実施例 3で得られた円板の熱重量分析結果を示す図である。  FIG. 3 is a diagram showing a thermogravimetric analysis result of the disk obtained in Example 3.
図 4は、 実施例 4で得られた円板の熱重量分析結果を示す図である。 発明を実施するための最良の形態  FIG. 4 is a diagram showing a thermogravimetric analysis result of the disk obtained in Example 4. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の樹脂成形体は、 主に、 マトリックスと、 当該マトリックス内に分散 された導電性フイラ一とを含んでレ、る。  The resin molded article of the present invention mainly includes a matrix and a conductive filler dispersed in the matrix.
マトリックスは、 樹脂材料からなるものであって所望の形状に成形されたも のである。 ここで用いられる樹脂材料は、 特に限定されるものではなく、 ^P の熱可塑性樹脂や «化性樹脂である。  The matrix is made of a resin material and is formed into a desired shape. The resin material used here is not particularly limited, and is a thermoplastic resin of ^ P or a fusible resin.
ここで、 熱可塑性樹脂としては、 例えば、 ポリエチレン樹脂, ポリプロピレ ン樹脂, ポリスチレン樹脂およびポリアクリルスチレン樹脂などの汎用プラス チック、 アクリル一ブタジエン一スチレン棚旨 (AB S ) , ポリフエニノレエ一 テル樹脂, ポリアセタール榭脂, ポリカーボネート樹脂, ポリブチレンテレフ タレート樹 S旨, ポリエチレンテレフタレート樹 S旨, ナイロン 6およびナイロン 6 , 6などのエンジニアリングプラスチック、 並ぴにポリエーテルエーテノレケ トン樹脂, ポリアミド樹脂, ポリイミド樹脂, ポリスルホン樹脂, 4—フツイ匕 ェチレンーェチレン共重合体樹脂, ポリフッ化ビニリデン樹脂, 4—フッ化ェ チレン一パーフルォロアルキルビュルエーテル共重合体樹脂, ポリエーテルィ ミド樹脂, ポリエーテルサルフォン樹脂, ポリフエ二レンサルフアイド樹脂, 変性ポリフエ二レンォキサイド樹脂, ポリフエ二レンエーテル樹脂および液晶 ポリマーなどの超エンジニアリングプラスチックなどを挙げることができる。 また、 細化性樹脂としては、 例えば、 フエノール樹脂、 エポキシ樹脂、 ポリ ィミド樹脂および不飽和ポリエステル樹月旨などを挙げることができる。. Here, examples of the thermoplastic resin include general-purpose plastics such as polyethylene resin, polypropylene resin, polystyrene resin and polyacrylstyrene resin, acrylic-butadiene-styrene shelf (ABS), polyphenylene ether resin, and polyacetal. Resin, polycarbonate resin, polybutylene terephthalate resin S, polyethylene terephthalate resin S, engineering plastics such as nylon 6 and nylon 6,6, as well as polyether ether phenolic resin, polyamide resin, polyimide resin, polysulfone resin , 4-futsudani ethylene-ethylene copolymer resin, polyvinylidene fluoride resin, 4-ethylene-perfluoroalkylbutyl ether copolymer resin, polyetherimide resin, polyether Rusarufon resins, Porifue two sulfide off eyed resins, modified Porifue two Renokisaido resin, and super engineering plastics such as Porifue two ether resin and liquid crystal polymer. Examples of the thinning resin include a phenol resin, an epoxy resin, a polyimide resin, and an unsaturated polyester resin. .
一方、 マトリックス中に分散されている導電性フイラ一は、 それ自体が導電 性を有するものであり、 樹脂成形体に対して導電性を付与するために通常用い られるものである。 ここで言う導電性は、 導電性フィラー内において電子の移 動が起こることにより発現する導電性、 即ち電子導電性であり、 導電性フイラ 一そのものが先天的に備えた物理的特生である。 この導電性は、 界面活性剤等 が示すイオン導電性とは異なる特性であり、 周辺 (例えば、 真空 下や 湿度 0 %の絶乾環境等の水分が存在しなレ、 ) に拘わらず導電性フイラ一そ のものが発現する導電性である。  On the other hand, the conductive filler dispersed in the matrix itself has conductivity, and is generally used for imparting conductivity to a resin molded product. The conductivity referred to here is conductivity caused by movement of electrons in the conductive filler, that is, electron conductivity, and is a physical characteristic inherently provided in the conductive filler itself. This conductivity is different from the ionic conductivity exhibited by surfactants, etc., and it does not affect the surroundings (for example, in the absence of moisture such as in a vacuum or in a completely dry environment at 0% humidity). It is a conductive property that is manifested by the filter itself.
また、 この導電性フイラ一は、 マトリックスを構成する上述の樹脂材料中に 、溶解するものではなく、 上述のマトリックス内において充¾^才として有形状態 で分散しながら存在し得るものである。  Further, this conductive filler is not dissolved in the above-mentioned resin material constituting the matrix, but can be present in the above-mentioned matrix while being dispersed in a tangible state as a filler.
本発明で用いられる導電性フイラ一は、 上述のような特徴を有するものであ れば特に限定されるものではないが、 通常、 金属材料、 炭素材料、 金属材料が コートされた有 »料、 金属材料がコートされた無 料、 炭素がコートされ た無餅才料若しくは黒鉛がコートされた無 »料、 又はこれらのものから任意 に選択された 2種以上のものの混合物である。  The conductive filler used in the present invention is not particularly limited as long as it has the above-mentioned characteristics, but is usually a metal material, a carbon material, a material coated with a metal material, It is a free material coated with a metal material, a free material coated with carbon or a free material coated with graphite, or a mixture of two or more arbitrarily selected from these.
ここで、 金属材料としては、 銀、 銅、 ニッケル、 鉄、 アルミニウム、 ステン レスおょぴ酸化錫などを例示することができる。 炭素材料としては、 ポリアク リロ二トリノレ樹脂, ピッチ, カイノーノレ樹脂, レーヨンおよびリグニンなどの 炭素前駆体を焼成して得られる炭素、 カーボンブラック、 アセチレンブラック、 ケッチェンプラック並びに黒 |&を例示することができる。 金属材料がコートさ れた有 »料としては、 二ッケルコートされた樹脂を例示することができる。 金属材料がコートされた無灘料としては、 ニッケルコートマイ力、 銀コート ガラス、 アルミコートガラス、 ニッケルメツキガラスおよびニッケルメツキ炭 素などを例示することができる。 炭素がコートされた無置料としては、 炭素 がコートされたチタン酸カリウムを例示することができる。 黒鈴がコートされ た無 料としては、 黒鈴がコートされたチタン酸カリゥムを例示することが できる。 Here, examples of the metal material include silver, copper, nickel, iron, aluminum, and stainless steel tin oxide. Examples of the carbon material include carbon, carbon black, acetylene black, ketjen plaque, and black | & obtained by firing carbon precursors such as polyacrylonitrile resin, pitch, kainore resin, rayon, and lignin. it can. Examples of the metal-coated material include nickel-coated resin. Nickel-coated My power, silver coated Glass, aluminum-coated glass, nickel plating glass, nickel plating carbon and the like can be exemplified. Examples of the carbon-free coated garbage can include carbon-coated potassium titanate. As the free material coated with black bell, for example, potassium titanate coated with black bell can be exemplified.
また、 上述の導電性フイラ一は、 粒状、 フレーク状、 ゥイスカー状およひ職 維状などの各種のもの、 またはこれらの任意の混合物であり、 形状が特に限定 されるものではない。 例えば、 粒状のものとしては、 金属材料からなるものと して 銅粉、 エッケノレ粉、 鉄粉、 酸ィ匕錫粉を、 また、 金属材料がコートさ れた無«#料として銀コートガラスビーズを、 さらに、 炭素材料からなるもの としてカーボンブラック、 アセチレンブラック、 ケッチェンブラックを挙げる ことができる。 また、 フレーク状のものとして、 アルミフレークやニッケルコ 一トマイカを挙げることができる。 さらに、 ゥイスカー状のものとしては、 炭 素がコートされた無 TO料として炭素がコートされたチタン酸力リウムゥイス カーを、 また、 炭素材料からなるものとして黒鉛ウイスカーを挙げることがで きる。 さらに、 β状のものとしては、 金属材料からなるものとしてアルミ二 ゥム, 銅おょぴステンレスなどの長隱ゃ短衡锥を、 また、 金属材料がコート された無 ¾W料からなるものとしてァノレミコートガラス繊維やニッケルメツキ ガラス «を、 さらに、 金属材料がコートされた有 ¾W料からなるものとして ニッケルコートされた樹脂条灘を、 さらに、 炭素材料からなるものとしてポリ アクリロニトリル系炭素 |¾锥, 等方性ピッチ系炭素条灘, 異方性ピッチ系炭素 mm, カイノーノレ樹脂系炭素 n, レーヨン系炭素 »锥およびリグニン系炭素 β等の炭素!^ t並びに黒口 推をそれぞれ例示することができる。  In addition, the above-mentioned conductive filler is various kinds such as a granular form, a flake form, a whisker form and a work form, or an arbitrary mixture thereof, and the shape is not particularly limited. For example, as the granular material, copper powder, eckenole powder, iron powder, oxidized tin powder as a metal material, and silver-coated glass beads as a metal material-coated free material Further, carbon black, acetylene black, and Ketjen black can be mentioned as those made of carbon materials. Examples of the flakes include aluminum flakes and nickel methanol. Examples of the whiskers include carbon-coated TO-free lithium titanate whiskers, and graphite whiskers made of carbon material. Further, as the β-shaped material, a metal material such as aluminum, copper, stainless steel, etc. is used, and a metal material coated wattless material is used. Anoremi-coated glass fiber and nickel plating glass, nickel-coated resin strips as a material made of metal-coated aluminum, and polyacrylonitrile-based carbon as a carbon material | ¾ 锥, isotropic pitch-based carbon strips, anisotropic pitch-based carbon mm, kainore resin-based carbon n, rayon-based carbon »锥 and lignin-based carbon β, etc. be able to.
なお、 本発明で用いられる導電性フイラ一として好ましいものは、 より少な い棚量で所要の導電性、 特に小さい体積抵抗を樹脂成形体に実現することが できることから、 フイラ一群電気抵抗値が 1 05Ω c m以下 1 0— 2 Ω c m以上の もの、 より好ましくは 1 04Ω c m以下 1 0— 2Ω c m以上のものである。 ここで、 フイラ一群電気抵抗値とは、 樹脂成形体に含まれる導電性フィラーの個々の片 の電気抵抗値ではなく、 導電 f生フイラ一の群 (集合体) としての電気抵抗値で あり、 次のようにして求められるものをいう。 先ず、 中心部に直径 0 . 8 c m の貫通孔を有する電気絶縁体を用意し、 その貫通孔の一端を銅製の電極で封止 する。 そして、 貫通孔内に 0 . 5 gの導電性フイラ一群を充填し、 貫通孔の他 端から銅製の押し棒を揷入して 2 0 k g f / c m2の圧力をカロえて導電性フィラ 一群を高さ X c mの円柱状に成形する。 この状態で電極と押し棒との間に測定 器を接続し、 貫通孔内で圧縮された導電性フィラー群の電気抵抗値を測定する。 フイラ一群電気抵抗値は、 測定された電気抵抗値に導電性フィラ一群の成形体 の端面の面積 (すなわち、 0 . 42 π。πι2) を掛け、 その値を高さ X c mで割る と 抵抗値 (Ω c m) として求めることができる。 なお、 導電性フイラ一群 の電気抵抗値を測定する際に用いられる測定器は、 ブランク時の電気抵抗値、 すなわち、 電極と押し棒とを直接に翻虫させた の電気抵抗値をキャンセル できるものが好ましく、 例えば、 アドパンテスト株式会社のデジタルマルチメ 一ター "R 6 5 5 2 " を挙げることができる。 以下、 フイラ一群電気抵抗値と 言う場合は、 このようにして求めた導電性フィラーの集合体の体積抵抗値を言 うものとする。 It is to be noted that a preferable conductive film used in the present invention is that it is possible to realize a required conductivity, particularly a small volume resistance, in a resin molded body with a smaller shelf amount. Because it can, FILLER group electric resistance value is not less than 1 0 5 Ω cm or less 1 0- 2 Ω cm, more preferably not less than 1 0 4 Ω cm or less 1 0- 2 Ω cm. Here, the group of electrical resistance values of the filler is not the electrical resistance value of the individual pieces of the conductive filler contained in the resin molded product, but the electrical resistance value of the group of conductive f raw fillers (aggregate). It means what is required as follows. First, an electrical insulator having a through hole with a diameter of 0.8 cm in the center is prepared, and one end of the through hole is sealed with a copper electrode. Then, a group of 0.5 g conductive filler was filled in the through hole, and a copper push rod was inserted from the other end of the through hole to generate a pressure of 20 kgf / cm 2 to form a group of conductive fillers. Form into a column with a height of X cm. In this state, a measuring device is connected between the electrode and the push rod, and the electric resistance value of the conductive filler group compressed in the through hole is measured. FILLER group electric resistance, the area of the end face of the conductive filler group of molded bodies on the measured electric resistance value (i.e., 0. 4 2 π.πι 2) multiplied by and dividing the value by the height X cm It can be obtained as the resistance value (Ω cm). The measuring device used to measure the electric resistance of a group of conductive fillers is one that can cancel the electric resistance of the blank, that is, the electric resistance of the electrode and the push rod that are directly inverted. Preferred is, for example, a digital multimeter “R6552” of Adpantest Co., Ltd. Hereinafter, the term “filer group electric resistance value” refers to the volume resistance value of the aggregate of the conductive fillers thus determined.
また、 導電性フイラ一として好ましいものは、 »状のもの、 特に、 平均繊 維径が 0 . 0 0 2 μ m以上 1 5 μ m以下の極細条灘状のものである。 このよう な 状の導電性フィラーを用いた場合は、 より少ない使用量で所要の導電性、 特に小さい 抵抗を樹脂成形体に ¾ϋすることができ、 しカゝも、 後述する着 色材による所望の色彩、 特に鮮明な色彩を樹脂成形体に対して自由に付与し易 くなる。 なお、 平:^ β径が 0 . 0 0 2 m以上 2 μ m以下の超極細 H !状の 導電性フィラーを用いた は、 仮にそれが黒色の炭素材料からなる炭素霧維 や黒鉛繊維などであったとしても、 後述する着色材のみにより、 すなわち、 後 述する隠蔽材を用いなくても、 鮮明な を樹脂成形体に対して付与し易くな る。 Also, a preferred conductive film is a »-shaped one, and particularly an ultra-fine strip having an average fiber diameter of not less than 0.02 μm and not more than 15 μm. When such a conductive filler is used, the required conductivity, particularly a small resistance, can be provided to the resin molded body with a smaller amount of use. , Especially vivid colors, can be easily imparted to the resin molded body. Flat: ^ β diameter of 0.02 m or more and 2 μm or less Even if the conductive filler is a carbon fiber or a graphite fiber made of a black carbon material, the conductive filler is used only with a coloring material described later, that is, without using a concealing material described later. It becomes easy to give clear to the resin molded article.
因みに、 平均!^径が 0 . 0 0 2 μ m程度の超極細 «状の導電性フイラ一 としては、 例えば炭素 の一種であるハイペリオン (ハイペリオン社の商品 名) を挙げることができる。  By the way, average! ^ An example of the ultra-fine conductive film having a diameter of about 0.02 μm is Hyperion (a trade name of Hyperion), which is a kind of carbon.
導電性フィラーとして、 上述のような »状のものが用いられている^ \ 本発明の樹脂成形体は、 当該導電性フィラーの平均残存ァスぺクト比が 1 0以 上 1 0 0, 0 0 0以下になるよう製造されているのが好ましく、 1 5以上 1 0, 0 0 0以下になるよう製造されているのがより好ましい。 この平均残存ァスぺ クト比が製 3 i§程において 1 0未満になった は、 導電性フィラーの添加量 を増やさないと所望の導電性、 特に、 小さな体積抵抗を達成できないおそれが ある。 逆に、 導電†生フイラ一の平均残存ァスぺクト比が 1 0 0, 0 0 0を超え る樹脂成形体は、 一般に製造が困難である。 なお、 ここでいう残存アスペクト 比は、 上述の樹脂材料に対して混合する前の導電性フィラーのァスぺクト比で はなく、 樹脂材料に対して混合されカゝっ樹脂材料が成形された後の導電性フィ ラーのァスぺクト比 長/ 径) を意味している。 因みに、 この残存ァ スぺクト比は、 例えば、 樹脂成形体を構成する樹脂材料を熱 させる力又は 溶媒に溶解させることにより、 樹脂成形体から導電性フィラーを分離し、 通常 はそのうちの数百本の平均長さおよび平均径を光学顕微鏡または走査型電子顕 微鏡で測定すると、 それらの値に基づいて求めることができる。 .  The above-mentioned »-shaped conductive filler is used as the conductive filler. ^ \ The resin molded product of the present invention has an average residual factor ratio of the conductive filler of 10 or more and 100, 0 or more. It is preferably manufactured so as to be not more than 00, more preferably not less than 15 and not more than 100,000. If the average residual factor ratio is less than 10 in about 3i, the desired conductivity, particularly small volume resistance, may not be achieved unless the amount of the conductive filler is increased. Conversely, it is generally difficult to manufacture a resin molded product in which the average residual aspect ratio of the conductive raw fiber exceeds 100,000. Note that the residual aspect ratio here is not the above-described aspect ratio of the conductive filler before being mixed with the resin material, but is mixed with the resin material to form the resin material. It means the aspect ratio / length of the conductive filler later. Incidentally, this residual aspect ratio is determined by, for example, separating the conductive filler from the resin molded product by dissolving the resin material constituting the resin molded product in a solvent or a solvent for heating the resin material. When the average length and average diameter of a book are measured with an optical microscope or a scanning electron microscope, it can be determined based on those values. .
また、 本発明の樹脂成形体は、 上述の導電性フィラーと共にマトリックス中 に分散された着色材をさらに含んでいてもよい。 この着色材は、 本発明の'樹脂 成形体に所望の色彩を付与するためのものであつて非導電'性のものであれば種 類が特に限定されるものではなく、 各種の «顔料や無機顔料である。 好まし く用いられる有»料の具体例としては、 ナフトールレツド、 縮合ァゾエロー および縮合ァゾレッドなどのァゾ系顔料、銅フタ口シァニンブルーゃ銅フタ口 シアニングリーンなどのフタロシアニン系顔料、 ジアンスラキノリルレツド、 チォインジゴ、 ベリノンオレンジ、 ベリレンスカーレット、 キナタリドンマゼ ンタ、 イソインドリノンエロー、 キノフタロンエロー、 ピロ一ノレレッドなどの 縮合多環顔料等を例示することができる。 また、 好ましく用いられる無機顔料 の具体例としては、 亜 ,、 酸化チタン、 弁柄、 酸ィヒクロム、 コノルトグリー ン、 コパルトプル一などの酸化物顔料、 カドミウムエロ一や力ドミゥムレッド などの硫化物顔料、 群青などの娃酸 ¾®料、 炭酸カノレシゥムなどの炭酸 料、 マンガンバイオレツトなどのりん酸 料等を例示することができる。 これら の着色材は、 利用する樹脂材料との適合 I"生を考慮しつつ適宜選択して用いられ るのが好ましく、 また、 所望の色彩を するために適宜混合して用いられて もよい。 Further, the resin molded article of the present invention may further include a coloring material dispersed in a matrix together with the above-mentioned conductive filler. This coloring material is used for imparting a desired color to the 'resin molded body of the present invention, and is a non-conductive material. The types are not particularly limited, and include various types of pigments and inorganic pigments. Specific examples of the additives preferably used include azo pigments such as naphthol red, condensed azo yellow and condensed azo red; phthalocyanine pigments such as copper cyanide green / copper cyanine blue / cyanine green; and dianthraquinolyl. Examples thereof include condensed polycyclic pigments such as redd, thioindigo, verinone orange, beryllen scarlet, quinatalidone magenta, isoindolinone yellow, quinophthalone yellow, and pyrrolino red. Specific examples of preferably used inorganic pigments include oxide pigments such as titanium oxide, titanium oxide, red iron oxide, chromium oxyacid, cono-green, and co-paltopur; sulfide pigments such as cadmium erotic and force-mido red; and ultramarine blue. Examples thereof include carbonic acid such as acetic acid carbonate, canolecium carbonate and the like, and phosphate such as manganese biorelate. It is preferable that these coloring materials are appropriately selected and used in consideration of the compatibility I ”with the resin material to be used, and they may be appropriately mixed and used to obtain a desired color.
さらに、 本発明の樹脂成形体は、 上述の着色材を含む 、 導電性フィラー および着色材と共にマトリックス中に分散された、 導電性フィラーの色彩を隠 蔽するための隠蔽材をさらに含んでいてもよい。 ここで用いられる隠蔽材は、 着色材により付与される樹脂成形体の色彩が導電性フィラーの色彩により影響 を受けるのを抑制し、 樹脂成形体が着色材による鮮やかな色彩を呈するように するためのものであり、 通常、 非導電性で白色の粒状のものが好ましい。 具体 的には、 例えば、 酸化チタン、 マイ力、 タルク、 炭酸カルシウムが用いられる。 本発明の樹脂成形体において、 上述の導電性フィラーの含有量は、 2 0重量 %未満、 好ましくは 0. 0 1重量0 /0以上 2 0重量0 /0未満、 より好ましくは 0. 1重量%以上 1 8重量%以下、 さらに好ましくは 1 . 0重量%以上 1 6重量% 以下になるよう設定されている。 この含有量が 2 0重量%以上の: は、 樹脂 成形体がコスト高となるばかりカゝ、 樹脂成形体から導電性フィラーが脱落して コンタミネーシヨンを引き起こすおそれがある。 また、 樹脂成形体の色彩が導 電性フィラーの色彩に強く影響され、 隠蔽材を用いた齢であっても樹脂成形 体を着色材の色彩に対応した所望の色彩に設定するのが困難になる。 さらに、 導電性フィラーが粒状の^ 1ま、 樹脂成形体の «的強度力 S低下するおそれが ある。 一方、 導電 'I生フイラ一が «状の場合は、 樹脂成形体に反りが生じ易く なり、 また、 樹脂成形体の表面粗度が高まり、 表面平滑性が損なわれるおそれ がある。 Further, the resin molded article of the present invention may further include a concealing material for concealing the color of the conductive filler, which contains the above-described coloring material, is dispersed in a matrix together with the conductive filler and the coloring material. Good. The concealing material used here suppresses the color of the resin molded body provided by the coloring material from being affected by the color of the conductive filler, and makes the resin molded body exhibit a vivid color by the coloring material. Usually, non-conductive white granules are preferred. Specifically, for example, titanium oxide, My power, talc, and calcium carbonate are used. In the resin molding of the present invention, the content of the above-mentioned conductive filler is less than 2 0% by weight, preferably from 0.0 1 wt 0/0 or 2 0 weight 0 / less than 0, more preferably 0.1 weight % To 18% by weight, more preferably 1.0% to 16% by weight. When this content is 20% by weight or more: In addition to increasing the cost of the molded article, the conductive filler may fall off the resin molded article and cause contamination. In addition, the color of the resin molded product is strongly influenced by the color of the conductive filler, and it is difficult to set the resin molded product to a desired color corresponding to the color of the coloring material even when the concealing material is used. Become. Further, there is a possibility that the specific strength S of the resin molded article is reduced to the extent that the conductive filler is granular. On the other hand, if the conductive film I is flat, the resin molded body is likely to be warped, and the surface roughness of the resin molded body is increased, and the surface smoothness may be impaired.
また、 マトリックス中における着色材および隠蔽材の含有量は、 特に限定さ れるものではなく、 樹脂成形体に付与する色彩の彩度や明度等に応じて任意に 設定することができるが、 通常は、 マトリックスを構成する樹脂材料により付 与される樹脂成形体の各種特 I1生が阻害されなレヽ程度に設定するのが好ましレ、。 具体的には、 着色材については樹脂成形体重量の 0 · 1重量%以上 5 . 0重量 %以下になるよう設定するのが好ましく、 0 . 2重量%以上 2 . 0重量%以下 になるよう設定するのがより好ましい。 また、 隠蔽材は、 樹脂成形体重量の 0 . 1重量0 /0以上 1 0重量0 /0以下になるよう設定するのが好ましく、 0 . 2重量0 /0 以上 5 . 0重量%以下になるよう設定するのがより好ましレ、。 Further, the content of the coloring material and the concealing material in the matrix is not particularly limited, and can be arbitrarily set according to the saturation and lightness of the color to be applied to the resin molded product. , Les, Shi preferred to set the Rere about various kinds JP I 1 production is inhibited in a resin molded body to be granted by the resin material constituting the matrix. Specifically, it is preferable to set the colorant to be 0.1% by weight or more and 5.0% by weight or less of the weight of the resin molded body, and to be 0.2% by weight or more and 2.0% by weight or less. It is more preferable to set. Further, concealment material is preferably set to be 0. 1 wt 0/0 or 1 0 wt 0/0 following resin forming the weight, 0. 2 weight 0/0 or 5. 0 wt% or less It is more preferable to set it to be.
因みに、 着色材または隠蔽材として用いられる酸化チタンは、 光酸化触媒と して機能し得るので、 それを多量に含む樹脂成形体は、 光の照射下で酸化劣化 し易くなる。 したがって、 酸化チタンを着色材または隠蔽材として用いる 、 その含有量は可能な限り少量に、 具体的には樹脂成形体重量の 0 . 1〜2 . 0 重量%程度に留めるのが好ましレヽ。  Incidentally, since titanium oxide used as a coloring material or a concealing material can function as a photo-oxidation catalyst, a resin molded article containing a large amount of the titanium oxide tends to be oxidized and degraded under light irradiation. Therefore, when titanium oxide is used as a coloring material or a concealing material, its content is preferably as small as possible, specifically, about 0.1 to 2.0% by weight of the resin molded body.
本発明の樹脂成形体は、 所定の纖の下に配置する処理力 S施されている。 こ の処理では、 導電性フィラ一並びに必要に応じて着色材および隠蔽材を含みか つ成形された、 上述の樹脂材料からなる樹脂成形体を所定の環境の下に配置す る。 この際、 樹脂成形体は、 非帯職態であってもよいし、 帯電した状態 (蓄 電状態) であってもよレヽ。 The resin molding of the present invention is subjected to a processing force S to be arranged below a predetermined fiber. In this treatment, a resin molded body made of the above-mentioned resin material, which is formed by containing the conductive filler and, if necessary, the coloring material and the concealing material, is placed under a predetermined environment. You. At this time, the resin molded body may be in a non-belt state or in a charged state (charged state).
上述の 「 」 とは、 所定の単位時間内において所定の電界強度変ィヒが生じ る^^をいう。 ここでの単位時間は、 1 X 1 0— 6秒未満の時間、 好ましくは 0 . 4 0 8 X 1 0一9秒以上 1 X 1 0—6秒未満の時間である。 この単位時間が 1 X 1The above-mentioned “” means that a predetermined electric field strength change occurs within a predetermined unit time. Wherein the unit of time, times of less than 1 X 1 0- 6 seconds, preferably 0. 4 0 8 X 1 0 one 9 seconds 1 X 1 0- less than 6 seconds. This unit time is 1 X 1
0—6秒以上の齢は、 樹脂成形体の導電性の改善効果、 特に体積抵抗の低下効 果が発現しにくくなる可能性がある。 逆に、 この単位時間が 0 . 4 0 8 X 1 0— 9秒未満の は、 樹脂成形体が変形したり発火したりするおそれがある。 0 6 seconds or more age, there is a possibility that the conductive effect of improving the resin molded body, decrease effect of especially the volume resistivity hardly exhibited. Conversely, the unit time is 0. 4 0 8 X 1 0- of less than 9 seconds, there is a possibility that the resin molded body or ignite or deform.
一方、 このような単位時間内における電界強度変ィ匕は、 最大電界強度が所定 の範囲内に到 ¾ "る変ィ匕であり、 最大電界強度は + (プラス) 側でもよいし、 一 (マイナス) 側であってもよい。 ここでの所定の範囲は、 絶対値として 2 0 0 VZm以上でありかつ上記マトリッタスの絶縁破壊 ®Eに相当する電界強度 未満の電界強度範囲である。 最大電界強度が 2 0 O VZm未満にある^^は、 榭脂成形体の導電性の改善効果、 特に、 体積抵抗の低下効果;^発現しにくい。 逆に、 最大電界強度が上記マトリックスの絶縁破壌電圧に相当する電界強度以 上の^ 1ま、 樹脂成形体が破壊されてしまう可能性がある。  On the other hand, such an electric field strength change within a unit time is a change in the maximum electric field strength falling within a predetermined range, and the maximum electric field strength may be on the + (plus) side, The predetermined range here is an electric field intensity range having an absolute value of 200 VZm or more and less than the electric field intensity corresponding to the above-mentioned Matrittas dielectric breakdown E. ^^, whose strength is less than 20 O VZm, has the effect of improving the conductivity of the resin molded body, especially the effect of lowering the volume resistance; As long as the electric field strength equal to or higher than the electric field strength corresponding to the voltage, the resin molded article may be broken.
なお、 上述の絶縁破壊電圧は、 樹脂成形体のマトリックスを構成する樹脂材 料に固有の値であって各種の便覧などの文献に記載されており、 そのような記 载內容を参考にすることができる。 因みに、 各種文献に示されている絶縁破壊 電圧は、 単位が通常 MV/mで示されており、 樹脂材料を用いて形成した厚さ l mの成形体についての値であるため、 本発明では、 樹脂成形体の厚さに応じ た絶縁破壌 ®Ξ値を適宜計算するのが好ましい。 また、 この絶縁破壊 «]£の単 位は、 電界艇を示す単位 (V/m) と実質的に一致しているため、 樹脂成形 体の厚さに応じて計算した絶縁破壌 値は、 当該樹脂成形体を構成するマト リックスの 「I &禄破壊 «1 こ相当する電界強度」 と実質的に ることにな る。 The above-mentioned dielectric breakdown voltage is a value specific to the resin material constituting the matrix of the resin molded product, and is described in various handbooks and other documents, and such a description should be referred to. Can be. Incidentally, the dielectric breakdown voltage shown in various documents is usually expressed in units of MV / m, and is a value for a molded body having a thickness of lm formed using a resin material. It is preferable to appropriately calculate the insulation rupture Ξ value according to the thickness of the resin molded product. Also, since the unit of the dielectric breakdown «] £ substantially matches the unit (V / m) indicating the electric field boat, the dielectric rupture value calculated according to the thickness of the resin molded product is: The “I & Roku destruction« 1 equivalent electric field strength ”of the matrix that constitutes the resin molded product will be substantially equivalent. You.
本発明の樹脂成形体は、 上述の の下に配置される処理が少なくとも 1回 施されていればよレヽ。 すなわち、 本発明の樹脂成形体は、 上述の単位時間内に おいて上述の電界強度変ィヒが生じる環境の下に少なくとも 1回配置されていれ ばよい。  It is only necessary that the resin molded body of the present invention has been subjected to at least one of the treatments described below. That is, the resin molded article of the present invention only needs to be disposed at least once in an environment in which the above-mentioned electric field intensity change occurs within the above-mentioned unit time.
但し、 本発明の樹脂成形体について、 より効果的力 安定な導電性の改善効 果、 すなわち、 体積抵抗の低下効果を得るためには、 上述の環境の下に樹脂成 形体を配置する処理を複数回連続的に施すのが好ましレヽ。 このような処理は、 連続的に形成される上記環境の下に樹脂成形体を配置すると達成することがで きる。 なお、 連続的に形成される上記環境は、 例えば、 上述の電界強度範囲内 に上記最大電界強度を有する電界を上記単位時間内において形成可能な電磁波、 すなわち、 当該電界を形成可能であり力つ周波数が 1 MH zを超えかつ 2 . 4 5 GH z未満の電磁皮により実現することができる。 したがって、 そのような 電磁波により形成される電界中に樹脂成形体を配置すると、 当該樹脂成形体は、 上述の の下に配置する処理が連続的に複数回施されることになる。 因みに、 上述のような要件を満たす電磁波は、 上述の範囲の周波数の《«を発信する 発信装置において、 その出力を調整すると形成することができる。  However, in order to obtain a more effective force and a more stable effect of improving the conductivity of the resin molded article of the present invention, that is, an effect of lowering the volume resistance, a treatment of arranging the resin molded article under the above-described environment is required. It is preferable to apply several times continuously. Such a treatment can be achieved by arranging the resin molded body under the above-described environment that is continuously formed. The environment that is continuously formed is, for example, an electromagnetic wave capable of forming an electric field having the maximum electric field strength within the above-described electric field strength range within the unit time, that is, an electromagnetic wave capable of forming the electric field. This can be achieved with an electromagnetic skin whose frequency is above 1 MHz and below 2.45 GHz. Therefore, when the resin molded body is arranged in an electric field formed by such an electromagnetic wave, the resin molded body is subjected to the above-described process of arranging under the plural times continuously. Incidentally, an electromagnetic wave that satisfies the above requirements can be formed by adjusting the output of the transmitting device that transmits the frequency within the above range.
上述のような電磁皮により連続的に形成される上記環境の下に樹脂成形体を 配置するための方法としては、 例えば、 樹脂成形体に対して上記飄波を照射 する方法、 樹脂成形体内に上記電«を通過させる方法および上記電磁皮が通 過する «下に樹脂成形体を配置する方法を挙げることができる。  Examples of a method for arranging the resin molded body under the above-described environment continuously formed by the electromagnetic skin include, for example, a method of irradiating the resin molded body with the above wave, and a method of arranging the resin molded body in the resin molded body. Examples of the method include a method of passing the electrode and a method of arranging a resin molded body under the electrode.
次に、 本発明の樹脂成形体の製造方法について説明する。  Next, a method for producing the resin molded article of the present invention will be described.
先ず、 上述の樹脂材料、 導電性フィラー並びに必要に応じて着色材ぉよび隠 蔽材を混合し、 成形材料を調製する。 ここで、 導電性フィラーの混合量は、 通 常、 成形材料中における割合が 2 0重量%未満、 好ましくは 0 . 0 1重量%以 上 2 0重量0 /0未満、 より好ましくは 0. 1重量%以上 1 8重量%以下、 さらに 好ましくは 1 . 0重量%以上 1 6重量%以下になるよう設定する。 また、 着色 材を用いる^^、 その混合量は、 成形材料中における割合が 0 . 1重量%以上 5 . 0重量%以下、 好ましくは 0. 2重量%以上 2. 0重量%以下になるよう 設定する。 さらに、 隠蔽材を用いる 、 その混合量は、 成形材料中における 割合が 0. 1重量%以上 1 0重量%以下、 好ましくは 0. 2重量%以上 5 . 0 重量%以下になるよう設定する。 First, a molding material is prepared by mixing the above-described resin material, conductive filler, and if necessary, a coloring material and a concealing material. Here, the mixing amount of the conductive filler is usually less than 20% by weight in the molding material, preferably less than 0.01% by weight. Less than the upper 2 0 weight 0/0, more preferably 0.1 wt% or more 1 8 wt% or less, more preferably 1. Set 0 wt% or more 1 6% by weight or less so as. In addition, the coloring material is used in a proportion of 0.1 to 5.0% by weight, preferably 0.2 to 2.0% by weight in the molding material. Set. Further, when a concealing material is used, its mixing amount is set so that the proportion in the molding material is 0.1% by weight or more and 10% by weight or less, preferably 0.2% by weight or more and 5.0% by weight or less.
樹脂材料と導電性フイラ一との混合方法は、 特に限定されるものではなく、 例えば、 樹脂材料に対し、 の各種のフィーダ一等を用いて導電性フィラー を供給して混練する方法を採用することができる。 この際、 樹脂材料は、 導電 性フイラ一の分散性を高めるため、 必要に応じて予め粘度調整されていてもよ レ、。  The method of mixing the resin material and the conductive filler is not particularly limited, and for example, a method in which a conductive filler is supplied to the resin material using various feeders or the like and kneaded is adopted. be able to. At this time, the viscosity of the resin material may be adjusted in advance as needed in order to enhance the dispersibility of the conductive filler.
なお、 成形材料が着色材および隠蔽材を含む 、 これらは導電性フィラー と同時に、 上述の方法により樹脂材料に対して混合することができる。 この場 合、 着色材および隠蔽材は、 導電性フィラーと共に樹脂材料中に分散し、 成形 材料を、 利用した着色材の種類に応じた色彩に着色することになる。  When the molding material contains a coloring material and a concealing material, these can be mixed with the resin material by the above-described method at the same time as the conductive filler. In this case, the coloring material and the concealing material are dispersed in the resin material together with the conductive filler, and the molding material is colored in a color corresponding to the type of the coloring material used.
次に、 得られた成形材料を所望の形状、 例えば板状や繊維状等に成形し、 樹 脂成形体を得る。 ここでは、カ卩圧成形法、 射出成形法、 押出し成形法等の^ P の各種の成形法を採用することができる。 なお、 成形材料が着色材を含む^、 ここで得られる樹脂成形体は、 利用した着色材に応じた色彩を呈することにな る。 特に、 成形材料が隠蔽材を含む^ mま、 それが導電性フィラーの色彩を効 果的に隠蔽することになるので、 樹脂成形体は、利用した着色材に応じた鮮ゃ かな色彩を呈することになる。  Next, the obtained molding material is molded into a desired shape, for example, a plate shape or a fibrous shape, to obtain a resin molded body. Here, various molding methods of ^ P, such as a kamen pressure molding method, an injection molding method, and an extrusion molding method, can be adopted. It should be noted that the molding material contains a coloring material, and the resin molded body obtained here will exhibit a color corresponding to the coloring material used. In particular, the resin material exhibits a vivid color according to the colorant used, since the molding material effectively covers the color of the conductive filler, even if the molding material contains a masking material. Will be.
次に、 得られた樹脂成形体を、 上述の環境の下に配置する。 ここで、 樹脂成 形体を上記繊の下に 1回だけ配置する^^は、 例えば、 上記纖を形成可能 なパルスを樹脂成形体に対して与える方法を採用することができる。 Next, the obtained resin molded body is placed under the above-described environment. Here, the resin molding is placed under the fiber only once ^^, for example, the fiber can be formed It is possible to adopt a method of giving a proper pulse to the resin molded body.
一方、 上記環境の下に樹脂成形体を配置する処理を複数回連続的に施す場合 は、 例えば、 上述の通り、 樹脂成形体に対して上記電赚を照 # る方法 (方 法 1 ) 、 樹脂成形体内に上記電磁波を通過させる方法 (方法 2 ) または上記電 «が通過する環境下に樹脂成形体を配置する方法 (方法 3 ) を採用すること ができる。  On the other hand, when the process of arranging the resin molded body under the above environment is continuously performed a plurality of times, for example, as described above, the method of irradiating the resin molded body with the above-described electric power (method 1), The method of passing the electromagnetic wave through the resin molded body (method 2) or the method of arranging the resin molded body in an environment where the electrode passes (method 3) can be adopted.
方法 1を実施する^^は、 例えば、 電波暗室内等で、 上記電磁波を発信可能 な発信機に接続された空中線の近傍に樹脂成形体を非翻虫状態で配置し、 その 樹脂成形体に *fして当該空中線から発信される上記電磁波を照射する方法を採 用することができる。 ここで用いられる空中線の種類は、 特に限定されるもの ではないが、 樹脂成形体を上記環境の下に配置し易いことから、 指向性のもの が好ましい。  The ^^ method 1 is performed, for example, in a anechoic chamber or the like, disposing a resin molded body in a non-worming state near an antenna connected to a transmitter capable of transmitting the electromagnetic wave, and applying the resin molded body to the resin molded body. * f and a method of irradiating the electromagnetic wave transmitted from the antenna can be adopted. The type of antenna used here is not particularly limited, but a directivity type is preferable because the resin molded body is easily arranged in the above environment.
方法 2を実施する は、 上記■皮を発信可能な発信機に接続された同軸 ケーブルを樹脂成形体に対して直接に接続し、 同軸ケーブルを通じて伝送され る発信機からの電碰を樹脂成形体中に通過させる方法を採用することができ る。  To carry out method 2, connect the coaxial cable connected to the transmitter capable of transmitting the skin directly to the resin molded product, and then transmit the power from the transmitter transmitted through the coaxial cable to the resin molded product. The method of passing through can be adopted.
方法 3を実施する ¾ ^は、 上記電赚を発信可能な発信機に接続された同軸 ケープノレに Τ ΕΜセノレ (トランスノ ースェレクト口ンマグネテイツクフィール ドセル) を接続し、 当該 Τ ΕΜセル中に樹脂成形体を配置した状態で突信機か らの上記電磁波を同軸ケーブルを通じて Τ ΕΜセル内に導く方法を採用するこ とができる。  Carry out method 3. Connect the ΕΜ ノ ノ レ レ ト ラ ン ス ト ラ ン ス (transformer cell) to the coaxial cape nose connected to the transmitter capable of transmitting the above-mentioned electric power, and put the resin in the ΕΜ ΕΜ cell. A method can be employed in which the electromagnetic waves from the radio transceiver are guided into the cell through a coaxial cable in a state where the molded body is arranged.
以上の工程を経て得られる本発明の樹脂成形体は、 樹脂材料からなるマトリ ックス内に導電'性フィラーが分散された他の樹脂成形体と比較した^ \ そこ に含まれる導電性フィラー量からは通常達成しにくい高い導電性、 特に、 小さ な体積抵抗値を示す。 例えば、 本発明の樹脂成形体は、 導電性フィラーの含有 量が 2 0重量%未満に抑制されている であっても、 半導体製造分野におい て一般に求められている 1 04Ω c m以上 1 012 Ω c m以下の範囲の体積抵抗、 若しくは 1 0— 2 Ω。 m以上 1 013 Ω c m以下の体讀抵抗を示し得る。 より具体的 には、 例えばポリアクリロニトリル系炭素短繊維を導電性フィラーとして用い る場合は、 その導電性フィラーの含有量がそれよりも ¾量% (通常は 3〜 5 重量%程度) 多い棚旨成形体と同等の導電性または体積抵抗を示し得る。 樹脂成形体は、 通常、 導電性フィラー同士が翻 し得る確率が高い程導電性 が高まり、 導電性フィラーの含有量が少ないとその確率が小さくなるため導電 性を発現しにくくなるのであるが、 それにも拘わらず本発明の樹脂成形体が通 常のものに比べて上述のような高い導電性 (小さな体積抵抗) を示す理由は、 例えば、 次のように考えることができる。 樹脂材料からなるマトリックス内に 導電性フィラーが分散された樹脂成形体においては、 導電性フィラーと、 その 間に存在するマトリックス (すなわち樹脂材料) とから構成される多数の、若 しくは無数のコンデンサの集合体が内部に形成されているものと考えられる。 本発明の樹脂成形体は、 上述のような の下に配置する処理が施されている ため、 このようなコンデンサを構成する導 ®1生フィラー間においてマトリック スの絶縁破壊が生じ、 その結果、 樹脂成形体の全体に渡って電流の通路が形成 され、 導電性が高まっているものと推察される。 The resin molded article of the present invention obtained through the above steps is compared with other resin molded articles in which a conductive filler is dispersed in a matrix made of a resin material, based on the amount of the conductive filler contained therein. Shows high conductivity, which is usually difficult to achieve, and particularly low volume resistance. For example, the resin molded article of the present invention contains a conductive filler. Even the amount is suppressed to be less than 2 0% by weight, the volume resistivity of 1 0 4 Omega cm or 1 0 12 Omega cm or less in the range that is a general need Te semiconductor manufacturing field odor, or 1 0 2 Ω. It can exhibit body reading resistance of not less than m and not more than 10 13 Ωcm. More specifically, for example, when polyacrylonitrile-based carbon short fiber is used as the conductive filler, the content of the conductive filler is larger by less than 3% (usually about 3 to 5% by weight). It can exhibit the same conductivity or volume resistance as the molded article. Generally, in a resin molded body, the higher the probability that conductive fillers can be converted, the higher the conductivity.The smaller the content of conductive filler, the lower the probability. Nevertheless, the reason why the resin molded article of the present invention exhibits the above-described high conductivity (small volume resistance) as compared with a normal molded article can be considered as follows, for example. In a resin molded body in which conductive fillers are dispersed in a matrix made of a resin material, a large number or a small number of capacitors composed of the conductive fillers and a matrix (that is, a resin material) interposed therebetween. Is considered to be formed inside. Since the resin molded article of the present invention is subjected to the treatment of disposing under the above as described above, dielectric breakdown of the matrix occurs between the raw fillers 1 constituting such a capacitor, and as a result, It is presumed that a current passage was formed throughout the resin molded body, and the conductivity was increased.
このため、 本発明の樹脂成形体は、 高価な導電性フィラーの添 量を抑制し つつ、 そのような導電性フィラーの添加量では通常達成できない高い導電性を 発揮することができる。 換言すると、 この樹脂成形体は、 導電性フィラーの含 有量から通常期待できる導電性よりも高い導電性を発揮することができる。 し たがって、 この樹脂成形体は、 同等の導電性 ( 抵抗) を発揮する他の樹脂 成形体に比べて安価に^ ftすることができる。  For this reason, the resin molded article of the present invention can exhibit high conductivity that cannot be normally achieved with such an added amount of the conductive filler while suppressing the addition amount of the expensive conductive filler. In other words, the resin molded body can exhibit higher conductivity than can normally be expected from the content of the conductive filler. Therefore, this resin molded product can be made at a lower cost than other resin molded products exhibiting the same conductivity (resistance).
本突明の樹脂成形体は、 このような特有の効果を発揮する結果、 導電性フィ ラーを含むこれまでの樹脂成形体では達成しにくカゝった体積抵抗値を実現する こともできる。 例えば、 導電性フイラ一として炭素繊維を用いる 、 樹脂材 料に対するその添加量を徐々に増加させて行くと、 樹脂成形体は、 添加量があ る程度の量までは体積抵抗が 1 014〜1 015 Ω c m程度であって電気絶縁性を維 持しているが、 ある一定の添加量を超えると、 添加量がごく僅かに変ィヒしただ けで樹脂成形体の導電性が極端に高まってしまい (すなわち、 体積抵抗が極端 に小さくなつてしまい) 、 樹脂成形体の体積抵抗を半導体製造分野において一 般に求められている 1 04〜1 012 Ω c m¾¾の範囲に設定するのが極めて困難 なことが知られている。 本発明の樹脂成形体は、 このような現象を発現する炭 素,のような導電性フィラーを用いる^^であっても、 その 量と導電性 との関係が緩やかに変化する範囲内でその添加量を設定するだけで、 その添加 量により通常達成できる導電性よりも高い導電性を実現することができるので、 体積抵抗を 1 04〜 1 012Ω c m程度の範囲、 若しくは 1 (Γ2〜 1 013Ω c mの範 囲に設定するのが比較的容易になる。 The resin molded article of the present invention exhibits such a unique effect, and as a result, has a conductive film. It is also possible to achieve a volume resistance value that is difficult to achieve with conventional resin moldings including slag. For example, when carbon fibers are used as the conductive filler, the amount of addition to the resin material is gradually increased, and the volume resistivity of the resin molded product becomes 10 14 to 10 to a certain amount. The electrical insulation is maintained at about 10 15 Ωcm, but when the addition exceeds a certain amount, the conductivity of the resin molded product becomes extremely small with only a slight change in the addition. would risen (i.e., the volume resistivity will be summer extremely small), setting the volume resistivity of the resin molded body in the range of 1 0 4 ~1 0 12 Ω c m¾¾ sought in general in the semiconductor manufacturing field It is known to be extremely difficult to do. In the resin molded article of the present invention, even if a conductive filler such as carbon which exhibits such a phenomenon is used, as long as the relationship between the amount and the conductivity gradually changes, the resin molded body may be used. simply by setting the addition amount, it is possible to achieve a higher conductivity than conductive normally be achieved by the addition amount thereof, the volume resistivity 1 0 4 ~ 1 0 12 Ω cm in the range of about, or 1 (gamma to set the range of 2 ~ 1 0 13 Ω cm is relatively easy.
なお、 導電性フィラーを含む榭脂成形体を製造する齢、 一般的に、 上述の ような成形材料の成形時において、 樹脂材料の粘度が低下することから、 樹脂 成形体の表面部分にスキン層といわれる樹脂材料のみからなる導電性フイラ一 を含まない層が形成されやすいことが知られている。 このスキン層は、 導電性 フィラーの流動性が樹脂材料よりも低く、 導電性フイラ一力 S成开翅内で抵抗を 受けやす ヽことから形成されるものであるが、 樹脂成形体の表面部分の導電性 を損なうことになる結果、 樹脂成形体全体の導電性を損なうことになる。 これ に対し、 本発明の樹脂成形体は、 上述のような纖の下に配置される処理が施 されているため、 スキン層の影響が緩和され、 安定な導電性を発揮し得る。 本発明の 旨成形体は、 上述のような導電'性フィラーによる導電性が付与さ れているため、 帯電防止や埃の付着防止が求められる分野、 例えば半導体製造 用治具、 I Cトレー、 キヤリヤーなどの各種の用途に利用することができる。 この 、 樹脂成形体は、 上述のように着色材による各種の色彩が付与さ るので、 色彩により用途や種類を区別することができる。 例えば、 I Cトレー は、 利用目的に応じて表面抵抗の異なる多種類のものを用意する場合があるが、 本発明の樹脂成形体からなる I Cトレーは、 体積抵抗の種類毎に色彩を変ィ匕さ せることができるので、 電気 ·電子部品の製造工程等において多種類のものの 中から必要なものを色彩に基づいて容易に識別することができる。 In addition, the age at which the resin molded body containing the conductive filler is manufactured, generally, the viscosity of the resin material decreases during molding of the molding material as described above, so that a skin layer is formed on the surface of the resin molded body. It is known that a layer not containing a conductive filler made of only a resin material is easily formed. This skin layer is formed from the fact that the fluidity of the conductive filler is lower than that of the resin material, and the conductive filler is susceptible to resistance in the wing. As a result, the conductivity of the resin molded article is impaired. On the other hand, the resin molded article of the present invention has been subjected to the treatment for disposing under the fiber as described above, so that the influence of the skin layer is reduced and stable electric conductivity can be exhibited. Since the molded article is provided with conductivity by the conductive filler as described above, the molded article is required to have an antistatic property and a dust adhesion preventive property, for example, in semiconductor manufacturing. It can be used for various purposes such as jigs, IC trays, and carriers. Since the resin molded body is given various colors by the coloring material as described above, the use and the type can be distinguished by the color. For example, there are cases where various types of IC trays having different surface resistances are prepared depending on the purpose of use. However, the IC trays made of the resin molded article of the present invention have different colors for each type of volume resistance. This makes it possible to easily identify, based on colors, various types of necessary components in the manufacturing process of electric and electronic components.
また、 本発明の樹脂成形体は、 中心部を含む全体に導電性が付与されている ため、 すなわち、 体積抵抗力 s低減されているため、 上述のような分野 · 目的に おいて使用される 、 例えば切削等の加工を施した^^であっても、 加工前 の導電性、 すなわち体積抵抗を維持することができる。 また、 樹脂成形体が着 色材による色彩を付与されている 、 その着色材は、 樹脂成形体を構成する マトリックス内の全体に分散されているため、 当該色彩は、 上述のような加工 部分においても現れることになる。  In addition, the resin molded article of the present invention is used in the above-described fields and objects because conductivity is imparted to the whole including the central part, that is, the volume resistance s is reduced. For example, even if ^^ is subjected to processing such as cutting, the conductivity before processing, that is, volume resistance can be maintained. In addition, the resin molded body is given a color by a coloring material. Since the coloring material is dispersed throughout the matrix constituting the resin molded body, the color is changed in the processed portion as described above. Will also appear.
さらに、 本発明の樹脂成形体は、 リサイクルして再度同様の樹脂成形体に再 生することもできる。 すなわち、 本発明の樹脂成形体は、 粉砕後に再度所望の 形状に成形し、 さらに上述のような環境の下に配置する処理を施すと、 体積抵 抗が小さな同様の樹脂成形体に再生さ; m辱る。 因みに、 樹脂成形体が着色材に よる色彩を付与されている 、 再生後の樹脂成形体には同様の色彩が反映さ れ得る。 これに対し、 従来の樹脂成形体、 特に、 特開昭 6 2— 1 1 0 9 1 7号 に係る樹脂成形体は、 上述のように芯体と被覆層との 2層構造を有しているた め、 リサイクルして再度同様の樹脂成形体に再生するのは実質的に困難である。 本発明の樹脂成形体は、 爆形態等において他の樹脂成形体と特に異なるこ とが無いため、 iW 態に基づいて他の樹脂成形体から識別するのは困難であ る力 例えば次のような方法で他の樹脂成形体から判別することができる。 (方法 1 ) Furthermore, the resin molded article of the present invention can be recycled and reused again in a similar resin molded article. That is, the resin molded article of the present invention is re-formed into a similar resin molded article having a small volume resistance when the resin molded article of the present invention is again formed into a desired shape after pulverization, and further subjected to a process of arranging under the above-described environment; m humiliate. Incidentally, when the color of the resin molded body is given by the coloring material, the same color can be reflected on the resin molded body after the reproduction. On the other hand, a conventional resin molded product, in particular, a resin molded product according to Japanese Patent Application Laid-Open No. 62-110177 has a two-layer structure of a core and a coating layer as described above. Therefore, it is practically difficult to recycle and regenerate the same resin molded article again. Since the resin molded article of the present invention does not particularly differ from other resin molded articles in an explosive form or the like, it is difficult to distinguish the resin molded article from other resin molded articles based on the iW state. It can be distinguished from other resin moldings by any suitable method. (Method 1)
予め體抵抗が測定された樹脂成形体に対して熱重量分析を し、 当該樹 脂成形体に含まれる導電性フィラーの量と種類を分析する。 そして、 予め測定 された棚旨成形体の体積抵抗が、 熱重量分析結果から判明した導電性フィラー の量では通常達成できないレベルである場合 (すなわち、 通常達成できる体積 抵抗よりも小さい^^) 、 当該樹脂成形体は、 通常、 本発明の樹脂成形体であ ると判定することができる。  A thermogravimetric analysis is performed on the resin molded body whose body resistance has been measured in advance, and the amount and type of the conductive filler contained in the resin molded body are analyzed. If the previously measured volume resistance of the molded article is not attainable with the amount of conductive filler determined from the results of thermogravimetric analysis (that is, it is smaller than the normally achievable volume resistance ^^), The resin molded article can usually be determined to be the resin molded article of the present invention.
棚旨成形体に対して熱重量分析を実施する際は、 通常、 空気中において 1 0 °CZ分 ¾Jtの昇温速度で室温から 1 , o o o°cまで樹脂成形体を加熱し、 その 間の重量変化を調べる。 力 tl熱後の樹脂マトリックスが炭素を残さない^^、 熱 重量分析時における樹脂成形体の力 B熱は、 窒素等の不活性ガス中で実施するこ ともできる。  When performing thermogravimetric analysis on a shelf molded product, usually, the resin molded product is heated from room temperature to 1 ooo ° c at room temperature at a temperature rise rate of 10 ° CZ min ¾Jt in air. Examine the weight change. The resin matrix after heat tl does not leave carbon ^^, The force of the resin molded body during thermogravimetric analysis B heat can also be carried out in an inert gas such as nitrogen.
図 1に、 1 5重量0 /0の炭素繊锥と 1 5重量%の非導電性無機物とを含む、 体 積抵抗が 1 . 4 X 1 04 Ω c mのポリスノレホン編旨 0¾熱処理後に炭素を残す樹 脂) 力 らなる樹脂成形体についての熱重量分析結果を示す。 なお、 非導電性無 機物は、 隠蔽材として用いられる酸化チタンを含む、 数種類の無機物の混合物 である。 図 1に。 /0で表示された数値は、 変曲点間の重量減少を示している。 図 におレ、て、 6 3 7. 6〜7 6 3 . 5 °Cの範囲で 1 4. %の重量減少が認めら れ、 これは樹脂成形体に含まれる炭素 の量と略一致してレヽることがわかる.。 また、 8 0 0°Cでの残留分は略 1 5 %であり、 これは樹脂成形体に含まれる非 導電性無機物の量と略一致していることがわかる。 このような熱重量分析結果 により、 分析通である樹脂成形体は、 約 1 5重量0 /0の炭素材料系導電性フィ ラーと、 約 1 5重量%の非導電性無機物とを含むことがわかる。 1, 1 5 and a weight 0/0 carbon繊锥and 1 5 wt% of the non-conductive inorganic material, the body volume resistance of 1. The 4 X 1 0 4 Omega carbon Porisunorehon eds fact 0¾ after heat treatment cm Resin to be left) The results of thermogravimetric analysis of the resin molded body consisting of the power are shown. The non-conductive inorganic material is a mixture of several kinds of inorganic substances including titanium oxide used as a concealing material. Figure 1. The value indicated by / 0 indicates the weight loss between the inflection points. As shown in the figure, a weight loss of 14.4% was observed in the range of 637.6 to 763.5 ° C, which almost coincided with the amount of carbon contained in the resin molded product. You can see it. In addition, the residual at 800 ° C. was approximately 15%, which indicates that it substantially coincides with the amount of the non-conductive inorganic substance contained in the resin molded product. Such thermogravimetric analysis, the resin molded product is analyzed through the may contain from about 1 5 weight 0/0 carbon material-based conductive filler of a non-conductive inorganic material of about 1 5 wt% Understand.
因みに、 5 4 9 . 5〜6 3 7. 6 °Cの範囲における 2 9. 5 %の重量減少は、 樹脂成形体のマトリックスを構成するポリスルホン樹脂の炭ィヒによるものであ り、燃焼速度が炭素 や他の炭素材料系の導電性フィラーに比べて著しく速 いため、 導電性フィラーである炭素 «に起因するものでないことが容易に判 別できる。 Incidentally, the weight loss of 29.5% in the range of 549.5 to 637.76 ° C is due to the carbon of the polysulfone resin constituting the matrix of the resin molded product. Since the combustion rate is significantly higher than that of carbon or other carbon-based conductive filler, it can be easily determined that the burning is not caused by carbon as the conductive filler.
なお、 樹脂成形体に含まれる導電性ブイラーが金属材料系のものである^^ は、 その導電性フィラーの酸化による重 *ϋ加力観測されることになる。 した がって、 熱重量分析結果において重 *ϋ加が認められた は、 樹脂成形体が 金属材料系の導電性フィラーを含んでいるものと推測することができる。  When the conductive boiler contained in the resin molded product is a metal-based conductive boiler, ^ * is observed as a heavy * ϋ addition force due to oxidation of the conductive filler. Therefore, the addition of weight * was recognized in the thermogravimetric analysis results, which suggests that the resin molded body contains a metallic material-based conductive filler.
この方法は、 熱重量分析に代えて E S C A (エレクトロンスぺタトロスコピ 一フォーケミカノレアナリシス) や Ε ΡΜΑ (エレクトロンプロープマイクロア ナライザ一) を用いた分析を実施して樹脂成形体中に含まれる導電性フィラー の種類や量を推測した も同様に実施することができる。  According to this method, instead of thermogravimetric analysis, analysis using ESCA (Electron-Potatroscopy-for-chemical-analysis) or Ε ΡΜΑ (Electron-probe microanalyzer) is performed, and the conductivity contained in the resin molded body is measured. It is also possible to estimate the type and amount of the filler.
(方法 2 )  (Method 2)
樹脂成形体を、 それを構成する樹脂材料の軟化点またはそれ以上に加熱処理 した後に室温まで冷却し、 当該樹脂成形体について体積抵抗を測定する。 本発 明の樹脂成形体は、 このようなカロ熱処理により絶縁破壌部分が治癒され、 カロ熱 処理後の体積抵抗力 S加熱処理する前の 抵抗に比べて大きくなる。 より具体 的には、 本発明の樹脂成形体は、 通常;カロ熱処理後の繊抵抗力幼口熱処理する 前の体積抵抗の 1 0倍以上になる。 これに対し、 本発明のものとは異なる樹脂 成形体、 すなわち、 上述のような環境の下に配置する処理の履歴が無い樹脂成 形体は、 絶縁破壌部分を有していないため、 上述のようなカ卩熱処理を施しても、 体積抵抗が増加し難い。  The resin molded body is heated to the softening point or higher of the resin material constituting the resin molded body, then cooled to room temperature, and the volume resistance of the resin molded body is measured. In the resin molded article of the present invention, the insulating rupture portion is healed by such a calo heat treatment, and the volume resistance after the calo heat treatment S becomes larger than the resistance before the heat treatment. More specifically, the resin molded product of the present invention usually has a fiber resistance after calo-heat treatment, which is at least 10 times the volume resistance of the resin before heat treatment. On the other hand, a resin molded body different from that of the present invention, that is, a resin molded body having no history of treatment to be placed under the above-described environment does not have the insulating rupture portion, Even with such a heat treatment, the volume resistance is hardly increased.
なお、 上述のようにして加熱処理された本発明の樹脂成形体は、 その後、 再 度上述のような環境の下に配置する処理を施すと、 体積抵抗が当該処理前の 1 / 1 0以下 ίこなり得る。  The resin molded article of the present invention, which has been subjected to the heat treatment as described above, is again subjected to the treatment of being placed under the above-described environment.得 る It can be complicated.
(方法 3 ) 樹脂成形体が黒色系以外の色彩を有している こお 、て、 その色彩が棚旨 成形体の断面全体に渡つて実質的に均一に現れており、 しかもその体積抵抗が(Method 3) Since the resin molded body has a color other than black, the color is substantially uniform over the entire cross section of the shelf molded body, and the volume resistance is low.
1 04〜1 012Q cni體の範囲、 若しくは 1 0— 2〜1 013Ω cmである^^、 そ の樹脂成形体は本発明の樹脂成形体の可能性がある。 因みに、 本発明で用いら れるような炭素材料系の導電性フィラーを 20重量%以上含む樹脂成形体は、 全体が黒色を呈することになるため、 着色材を含んでいても、 当該着色材に応 じた色彩を呈し得ない。 また、 樹脂成形体の表面部分にのみ色彩が付与されて レ、る^^ (例えば、 先に挙げた特開昭 6 2— 1 10 9 1 7号公報に記載の棚旨 成形体のような場合) は、 当該樹脂成形体の断面全体に渡って均一な色彩は現 れ得ない。 1 0 4 ~1 0 12 Q cni congregation range, or 1 0- 2 ~1 0 13 Ω cm at a ^^, resin molding of that is the possibility of resin molding of the present invention. Incidentally, the resin molded body containing 20% by weight or more of the carbon material-based conductive filler as used in the present invention has a black color as a whole. The corresponding color cannot be exhibited. In addition, a color is imparted only to the surface portion of the resin molded article, such as ^^ (for example, a shelf molded article described in Japanese Patent Application Laid-Open No. Sho 62-109709). In the case, a uniform color cannot appear over the entire cross section of the resin molded body.
次に、 実施例に基づいて、 本発明をより詳細に説明する。  Next, the present invention will be described in more detail based on examples.
実施例 1 Example 1
平均 H!径が 7 μ mであり力つ平均ァスぺクト比が 85 7のポリアクリロ- トリル系炭素短鶴 (三菱レーヨン株式会社の商品名 "パイ口フィル" ) 力ら なる、 フイラ一群電気抵抗値が 0. 060。111の ¾锥群 (導電' I1生フイラ一) を 用恩し/ o An average H! Diameter of 7 μm and an average power ratio of 857. Polyacrylo-tolyl-based carbon short crane (Mitsubishi Rayon Co., Ltd. product name “Paiguchi Fill”). resistance 0.1 060.1 1 1 ¾锥群the (conductive 'I 1 production FILLER I) use Eun and / o
次に、 樹旨材料であるポリフエ二レンオキサイド樹脂 (日本ゼネラルエレク トリック株式会社の商品名 "ノリル P PO 5 34" ) に対して上述の |¾锥群を フィーダ一を用いて供給して混合し、繊锥群を含む樹脂材料からなるペレツト (成形材料) を調製した。 なお、 の混合割合は、 ペレット中において 6. 0重量%になるよう設定した。  Next, the above group of ¾ 锥 was supplied to a polyphenylene oxide resin (trade name “Noryl PPO534” of Nippon General Electric Co., Ltd.), which is a tree material, using a feeder and mixed. Then, a pellet (molding material) made of a resin material containing a fiber group was prepared. The mixing ratio of was set to be 6.0% by weight in the pellet.
このペレットを、 樹脂温度 240。C、 射出圧力 1, 200 k g/c m2および 金型温度 6 0。Cの条件で住友重機械工業株式会社製の P R OMAT射出成形機 を用いて成形し、 直径 50mm、 厚さ 3 mmの円板、 すなわち樹脂成形体を得 た。 この円板の體抵抗は、 4 X 1 015Ω cmであった。 ここで、 円板の体積抵 抗は、 次のようにして測定した。 先ず、 円板の両面に銀ペーストを用いて 1対 の電極を形成し、 当該電極間の電気抵抗をアドパンテスト株式会社の商品名 " R8340" を用いて測定した。 そして、 その測定値から、 電極面積と円板の 厚みとを考慮して、 体積抵抗 (Qcm) を算出した。 以下、 「体積抵抗」 とい う は、 このようにして求めた抵抗値を言うものとする。 The pellets are heated at a resin temperature of 240. C, injection pressure 1, 200 kg / cm 2 and mold temperature 60. Molding was performed using a PROMAT injection molding machine manufactured by Sumitomo Heavy Industries, Ltd. under the conditions of C to obtain a disk having a diameter of 50 mm and a thickness of 3 mm, that is, a resin molded body. The body resistance of this disk was 4 × 10 15 Ωcm. Here, the volume resistance of the disk The resistance was measured as follows. First, a pair of electrodes was formed on both surfaces of a disk using silver paste, and the electrical resistance between the electrodes was measured using a product name “R8340” of Adpan Test Co., Ltd. From the measured values, the volume resistance (Qcm) was calculated in consideration of the electrode area and the thickness of the disk. Hereinafter, “volume resistance” refers to the resistance value thus obtained.
また、 円板中におけるポリアタリ口-トリル系炭素綱佳の平均残存ァスぺク ト比は 28. 6であった。 因みに、 この平均残存アスペクト比は、 円板を塩ィ匕 メチレンに溶解してポリアクリロ二トリル系炭素短 »を分離し、 そのうちの 400本の平均長さと平均径とを光学顕微鏡で測定して算出したものである。 次に、 得られた円板に対し、 電磁皮による処理を施した。 ここでは、 増幅器 を接続した高周波発生器を用意し、 一端にヮニグチタリップが接続された同軸 ケ-ブルを増幅器の出力端子に接続した。 そして、 円板の両面をヮニグチクリッ プにより挟み込み、 円板に対して周波数 1 OMH z、 出力 10 OWの電磁波を 10秒間通過させた。 ここで、 高周波発生器として: OHDE & SCHW ARZ社の商品名 " S I GNAL GENERATOR SMY— 02" を用 いた。 また、 増幅器には、 1〜250MHzの 波用のものとして KALM US社の商品名 "MODEL 122FC— CE" を用い、 また、 250MH z〜l GHzの電礮皮用のものとして同社の商品名 "MODEL 717 FC — CE" を用いた。 なお、 波の出力は、 増幅器に内臓されているパワーメ 一ターを利用して した。  In addition, the average residual arc ratio of the polyatari port-tolyl-based carbon steel in the disc was 28.6. Incidentally, this average residual aspect ratio was calculated by dissolving a disk in methylene chloride and separating polyacrylonitrile-based carbon short », and measuring the average length and average diameter of 400 of them using an optical microscope. It was done. Next, the obtained disk was treated with a magnetic skin. Here, a high-frequency generator to which an amplifier was connected was prepared, and a coaxial cable having a penitita lip connected to one end was connected to the output terminal of the amplifier. Then, both sides of the disk were sandwiched by penic clips, and an electromagnetic wave having a frequency of 1 OMHz and an output of 10 OW was passed through the disk for 10 seconds. Here, as the high frequency generator: OHDE & SCHW ARZ's trade name "SIGNAL GENERATOR SMY-02" was used. The amplifier uses KALM US's product name "MODEL 122FC-CE" for waves of 1 to 250 MHz, and uses the company's product name of 250 MHz to 1 GHz for skin. MODEL 717 FC — CE "was used. In addition, the output of the wave used the power meter built in the amplifier.
この処理において、 円板は、 最大電界強度が少なくとも 1, 000 V/mに なる電界強度変化が生じる 下に配置されたものと考えることができる。 上述のようにして電«による処理が施された円板につ!/、て、 再度 ίΦ¾抵抗 を調べたところ、 体積抵抗は 1 X 1012 Ω c mであり、 波による処理前に比 ベて大幅に低下していることが^:された。 実施例 2〜4 In this process, the disk can be thought of as being placed underneath a change in the electric field strength with a maximum electric field strength of at least 1,000 V / m. The disc that has been treated with electricity as described above! When the ίΦ¾ resistance was examined again, it was found that the volume resistivity was 1 × 10 12 Ωcm, which was significantly lower than before the wave treatment. Examples 2 to 4
樹脂材料であるポリプロピレン樹脂 (日本ポリケム株式会社の商品名 "ノバ テック B C 3 B" ) に対し、 平均繊維径が 7 μ mであり力、つ平均ァスぺクト比 が 857のポリアクリロニトリル系炭素短徽锥 (三菱レーョン株式会社の商品 名"パイ口フィル") からなる、 フイラ一群電気抵抗値が 0. 06Q cmの繊 維群を難例 1の と同様にして混合し、 ペレットを得た。 なお、 誘群の 混合割合は、 ペレツト中において表 1に示すように設定した。  Polyacrylonitrile-based carbon with an average fiber diameter of 7 µm, an average aspect ratio of 857, and a polypropylene resin (Novatec BC 3 B, trade name of Japan Polychem Co., Ltd.) A group of fibers consisting of Tanhui 锥 (Mitsubishi Rayon Co., Ltd. product name “Paiguchi Fill”) with a group of electric resistance of 0.06 Q cm was mixed in the same manner as in Example 1 to obtain pellets. . The mixing ratio of the invitation group was set as shown in Table 1 in the pellet.
得られたペレツトから実施例 1の と同様の成形過程を経て円板を製造し た。 この円板の体積抵抗は、 表 1の通りである。 また、 得られた円板中におけ るポリアクリロ-トリル系炭素短 HPの平均残存ァスぺクト比は 51. 1であ つた。 この平均残存アスペクト比は、 円板を溶解するための溶媒として熱デカ リンを用いた点を除き、 実施例 1の^^と同様にして求めたものである。  A disc was manufactured from the obtained pellets through the same forming process as in Example 1. Table 1 shows the volume resistance of this disk. The average residual aspect ratio of the polyacrylo-tolyl-based carbon short HP in the obtained disk was 51.1. The average residual aspect ratio was determined in the same manner as in Example 1 except that thermal decalin was used as a solvent for dissolving the disc.
次に、 得られた円板に対し、 電衞皮による処理を施した。 ここでは、 増幅器 を接続した高周波発生器を用意し、 その増幅器の出力端子に同軸ケ-ブルを通じ て T E Mセルを接続した。 また、 T E Mセルの他端には、 50 Ωの終端抵抗を 接続した。 なお、 高周波発生器および増幅器としては、 実施例 1で用いたもの と同じものを用い、 T EMセルとしては、 株式会社ノィズ研究所の商品名 "T EM CELL P/N: NTEM- JM1 S/N: 9918" (DC〜1, 200MHz用、 有効セプタム高さ 5 Omm) を用いた。 そして、 TEMセル の内部に円板を配置し、 その状態で周波数 1 GHz、 出力 50 Wの電磁波を T EMセルの内部に導き、 円板を当該電磁波の通過する環境下に配置した。 なお、 この処理において、 T EMセル内の電界強度は次式で示される。
Figure imgf000028_0001
式中、 Eは電界強度 (V/m) 、 Pは入力電力 (W) 、 Rは TEMセルのィ ンピーダンス (Ω) 、 hは T EMセルのセプタムの高さ (m) である。 ここで、 Rは、 TEMセノレに 5 0 Ωの終端抵抗を接続しているため、 5 Ο Ωと考えるこ とができる。 また、 hは 0 . 0 5 mである。 これによると、 TEMセル内の円 板は、 最大電界強度が 1 , 0 0 0 VZmになる電界強度変ィ匕が生じる纖下に 配置されたものと考えることができる。
Next, the obtained disk was treated with electric leather. Here, a high-frequency generator to which an amplifier was connected was prepared, and a TEM cell was connected to the output terminal of the amplifier through a coaxial cable. A 50 Ω termination resistor was connected to the other end of the TEM cell. The same high-frequency generator and amplifier as those used in Example 1 were used, and the TEM cell was a product name “T EM CELL P / N: NTEM-JM1 S / N: 9918 "(DC to 1,200MHz, effective septum height 5 Omm) was used. Then, a disk was placed inside the TEM cell, and in that state, an electromagnetic wave having a frequency of 1 GHz and an output of 50 W was guided into the TEM cell, and the disk was placed in an environment where the electromagnetic wave passed. In this process, the electric field strength in the TEM cell is expressed by the following equation.
Figure imgf000028_0001
Where E is the electric field strength (V / m), P is the input power (W), R is the impedance of the TEM cell (Ω), and h is the height of the septum of the TEM cell (m). Here, R can be considered to be 50ΟΩ because a 50 Ω termination resistor is connected to the TEM sensor. H is 0.05 m. According to this, it can be considered that the disc in the TEM cell is placed under the fiber where the electric field intensity change becomes 1.00 VZm.
上述のようにして電磁波による処理が施された円板について、 再度体積抵抗 を調べたところ、 表 1に示す結果が得られ、 電磁皮による処理前に比べて大幅 に低下していることが された。  When the volume resistance of the disk treated with electromagnetic waves as described above was examined again, the results shown in Table 1 were obtained, indicating that the results were significantly lower than those before treatment with the electromagnetic skin. Was.
また、 電磁波による処理前の円板について熱重量分析を実施した結果を図 2 〜図 4に示す。 この熱重量分析結果は、 熱重量分析器としてセイコーインスッ ルメント株式会社の商品名 "TG/D TA 3 2 " を用い、 分析条件を測定 範囲 = 2 0〜 1 , 0 0 0 °C、 昇温速度 = 1 0 °C /分および空気流量 = 2 0 0. 0 m 1ノ分にそれぞれ設定して得られたものであり、 そこに%で表示された数 値は重量の残存率である。 図 2〜図 4に示された熱重量分析結果は、 円板中の »群重量が表 1の通りであることを示しており、 この値は、 円板を製造する 際に用いた の混合割合と概ね一致していることが分かる。 Figures 2 to 4 show the results of thermogravimetric analysis performed on the disc before treatment with electromagnetic waves. The thermogravimetric analysis results were obtained by using Seiko Instruments Co., Ltd. product name "TG / DTA32" as the thermogravimetric analyzer, and measuring the analysis conditions.Range = 20 to 1,000 ° C, Temperature rate = 10 ° C / min and air flow rate = 20.0 m1 min, respectively, and the value indicated in% is the residual rate of weight. . The thermogravimetric analysis results shown in FIGS. 2 to 4 indicate that the »group weight in the disc is as shown in Table 1, and this value is based on the mixing ratio used in producing the disc. It turns out that it is almost in agreement with the ratio.
表 1 table 1
Figure imgf000030_0001
実施例 5〜7
Figure imgf000030_0001
Examples 5 to 7
樹脂材料であるポリプロピレン樹脂 (日本ポリケム株式会社の商品名 テック B C 3 B" ) に対し、 平均霧径が 13 mであり力つ平均ァスぺクト 比が 54のピッチ系炭素短 » (株式会社ドナックの商品名 " ドナ力ーポ S 2 44" ) 力らなる、 フイラ一群電気 ί氐抗値が 0. 10。!11の|»、 赤色の着 色材 (東洋化雌式会社の商品名 "CB328" ) 、 隠蔽材である酸化チタン (石原産業株式会社の商品名 "CR60" ) およびタルク (富士タルク株式会 社の商品名 "# 1000" ) を実施例 1の ^と同様にして混合し、 ペレツト を得た。 なお、 «群の混合割合は、 ペレット中において表 2に示すようにな るよう設定した。 また、 着色材、 酸化チタンおょぴタルクの混合割合は、 いず れの実施例についても、 それぞれ 1. 0重量0 /0、 0. 2重量0 /0および 3. 0重 量%になるよう設定した。 Pitch-based carbon short with an average mist diameter of 13 m and an average power ratio of 54 to polypropylene resin (trade name: Tech BC 3 B "of Nippon Polychem Co., Ltd.)» Donac's product name "Donna Rippo S 2 44") Powerful, Fira group of electric resistance value is 0.10 !! 11 | », red coloring material (trade name of Toyo Kagaku type company) "CB328"), concealment material titanium oxide (trade name "CR60" of Ishihara Sangyo Co., Ltd.) and talc (trade name "# 1000" of Fuji Talc Co., Ltd.) are mixed in the same manner as ^ in Example 1. The mixing ratio of the group was set in the pellets as shown in Table 2. The mixing ratio of the coloring material and titanium oxide talc was not changed. for examples were also set respectively 1.0 wt 0/0, 0.2 weight 0/0 and 3. so as 0 by weight%
得られたペレツトから実施例 1の^^と同様の成形過程を経て円板を製造し、 その体積抵抗および表面抵抗を測定した。 結果を表 2に示す。 ここで、 表面抵 抗 (Ω/D) は、 円板の片面に銀ペーストを用いて一対の電極を形成し、 当該 電極間の電気抵抗を測定することにより求めた。 以下、 「表面抵抗」 と言う場 合は、 このようにして測定した抵抗値を言うものとする。 A disc was manufactured from the obtained pellets through the same molding process as in ^^ of Example 1, and the volume resistance and the surface resistance were measured. Table 2 shows the results. Here, the surface resistance The resistance (Ω / D) was determined by forming a pair of electrodes on one side of a disk using a silver paste and measuring the electrical resistance between the electrodes. Hereinafter, the term “surface resistance” refers to the resistance value measured in this manner.
次に、 得られた円板に対し、 パルスによる処理を施した。 ここでは、 針状電 極を備えた ガンとグランドプレーン電極 m) との間に円板を配置し、 当該円板に対して当該円板と放電ガン先端との距離を 3 O mmに設定した状態 で、 + 3 0 k Vを 0 . 7ナノ秒で立ち上げるノルスを 1秒間隔で 5回与えた。 この際、 円板は、 最大電界強度が 1, O O O k V/mになる電界強度変ィ匕が生 じる環境下に配置されたことになるものと考えることができる。 なお、 放電ガ ンとしては、 株式会社ノィズ研究所の静電気放 験器 "E S S— 2 0 0 AX " を用いた。  Next, the obtained disk was subjected to pulse processing. Here, a disk was placed between the gun with the needle electrode and the ground plane electrode m), and the distance between the disk and the tip of the discharge gun was set to 3 O mm. In this state, the norms for raising +30 kV at 0.7 ns were given 5 times at 1 second intervals. At this time, it can be considered that the disk was placed in an environment in which the electric field intensity changed so that the maximum electric field intensity became 1, OO OkV / m. As the discharge gun, an electrostatic discharger “Ess-200AX” manufactured by Noise Laboratory Co., Ltd. was used.
上述のようなパルスによる処理後の円板の体積抵抗および表面抵抗を調べた 結果を表 2に示す。 なお、 各実施例で得られた円板は、 着色材による鮮やかな 赤色を呈し、 その色彩は、 パノレスによる処理後であっても変ィ匕しなかった。 続レ、て、 パルスによる処理後の円板の両面の表層部分をそれぞれ 0 . 2 5 m mの厚さで切削して削除し、 その後の円板の表面抵抗おょぴ体積抵抗を調べた。 結果を表2に示す。 Table 2 shows the results of examining the volume resistance and surface resistance of the disk after the pulse treatment as described above. The discs obtained in each of the examples exhibited a vivid red color due to the coloring material, and their colors did not change even after the treatment with Panoles. The surface layer on both sides of the disk after the pulse treatment was cut to a thickness of 0.25 mm and removed, and the surface resistance and volume resistance of the disk were examined. . Table 2 shows the results.
表 2 Table 2
Figure imgf000032_0001
比較例 1〜 3
Figure imgf000032_0001
Comparative Examples 1-3
実施例 5〜7で得られた円板 (パルスによる処理前のもの) を接地されたプ レート上に配置し、 また、 円板の上方に多数の針状電極からなる電極群を配置 した。 この際、 プレートと «g群との間隔は 3 Ommに設定し、 電極群が円板 に直接触れないようにした。 そして、 電極群に対し、 その極 I生がプラスになる よう 30, OOOVの交流電圧 (60Hz) を 10秒間印加した。 このように して電圧の印加処理が施された円板について、 体積抵抗および表面抵抗を測定 した。  The disks obtained in Examples 5 to 7 (before the pulse treatment) were placed on a grounded plate, and an electrode group consisting of a large number of needle-like electrodes was placed above the disks. At this time, the distance between the plate and the g group was set to 3 Omm so that the electrode group did not directly touch the disk. Then, an AC voltage of 30, OOOV (60 Hz) was applied to the electrode group for 10 seconds so that the electrode I was positive. The volume resistance and the surface resistance were measured for the disk on which the voltage application treatment was performed as described above.
また、 電圧の印加処理後の円板について、 両面の表層部分をそれぞれ 0. 2 5 mmの厚さで切削して削除し、 その後の円板の表面抵抗および体積抵抗を調 ベた。 結果を表 3に示す。 表 3 In addition, on the disc after voltage application, the surface layer on both sides was cut to a thickness of 0.25 mm and removed, and then the surface resistance and volume resistance of the disc were examined. Table 3 shows the results. Table 3
Figure imgf000033_0001
実施例 8
Figure imgf000033_0001
Example 8
実施例 6で得られたパルスによる処理後の円板にっ 、て、 加熱処理後の体積 抵抗を調べた。 ここでは、 円板を表 4に示 ½で 3 0分間加熱し、 その後 1 0分かけて室温まで冷却する加熱一冷却サイクルを各¾¾について 4サイクル 実施し、 その後に体積抵抗を測定した。 結果を表 4に示す。 加熱処理温度のレ ンジが 1 0 0〜: 1 2 0 °Cの は、カロ熱処理後の 抵抗は加熱処理前と略同 じであって大幅な変化は見られなかったが、 実施例 6で用いた樹脂の軟化点 ( ビカツト軟化点) である 1 5 5 °C以上での加熱処理後は、 体積抵抗がパルスに よる処理前のレベルまで大幅に上昇していることがわかる。 表 4 The volume resistance after the heat treatment was examined on the disk obtained by the pulse treatment in Example 6. Here, the disk was heated for 30 minutes as shown in Table 4 and then cooled and cooled to room temperature over 10 minutes, and four heating-cooling cycles were performed for each disk, and then the volume resistance was measured. Table 4 shows the results. When the range of the heat treatment temperature was 100 to 120 ° C, the resistance after the heat treatment was almost the same as that before the heat treatment, and no significant change was observed. It can be seen that after heat treatment above the resin softening point (Vicat softening point) of 150 ° C, the volume resistance has risen significantly to the level before the pulsed treatment. Table 4
Figure imgf000034_0001
本発明は、 その精神または主要な特徴から逸脱することなく、 他のいろいろ な形で実施することができる。 そのため、 上述の実施の形態若しくは実験例は あらゆる点で単なる例示に過ぎず、 限定的に解釈してはならない。 本発明の範 囲は、 請求の範囲によって示すものであって、 明細書本文にはなんら拘束され ない。 さらに、 請求の範囲の均等範囲に属する変形や変更は、 すべて本発明の 範囲内のものである。
Figure imgf000034_0001
The present invention may be embodied in various other forms without departing from its spirit or essential characteristics. Therefore, the above-described embodiment or experimental example is merely an example in every aspect, and should not be construed as limiting. The scope of the present invention is defined by the appended claims, and is not limited by the specification. Furthermore, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

Claims

請 求 の 範 囲 The scope of the claims
1. 樹!旨材料からなるマトリックスと、 1. A tree made of tree material
ΙΐΠ己マトリックス内に分散された導電性フィラーとを含み、  導電 including a conductive filler dispersed within the self-matrix,
1 X 10一6秒未満の単位時間内において、 200 VZm以上前記マトリック スの絶縁破壊 に相当する電界強 満の電界強度範囲内に最大電界強度を 有する電界強度変ィ匕が生じる環境の下に配置する処理力施されている、 樹脂成形体。 In a unit time of less than 1 X 10 16 seconds, under an environment in which an electric field intensity change having a maximum electric field intensity within the electric field intensity range of 200 VZm or more corresponding to the dielectric breakdown of the matrix occurs. A resin molding that has been subjected to processing power to be placed.
2. 連続的に形成される前記環境の下に配置する処理が施されている、 請求の 範囲 1に記載の樹脂成形体。  2. The resin molded article according to claim 1, wherein a treatment for arranging the resin molded article under the environment is performed.
3. 前記環境は、 200 V/m以上前記マトリックスの絶縁破壊 に相当す る電界強^満の範囲内に最大電界強度を有する電界を形成可能でありかつ周 波数が 1MHzを超え力つ 2. 45GHz未満の電磁波を用いて連続的に形成 されている、 請求の範囲 2に記載の樹脂成形体。  3. The environment is capable of forming an electric field having a maximum electric field intensity within a range of electric field intensity of 200 V / m or more corresponding to the dielectric breakdown of the matrix, and having a frequency exceeding 1 MHz. 3. The resin molded article according to claim 2, wherein the resin molded article is continuously formed using electromagnetic waves of less than 45 GHz.
4. 前記導電 ' フィラ一は、 そのフイラ一群電気抵抗値が 105 Ω c m以下 10 一2 Ω c m以上のものである、 請求の範囲 1に記載の樹脂成形体。 4. The resin molded product according to claim 1, wherein the conductive filler has a group of electric resistance values of 10 5 Ωcm or less and 10 12 Ωcm or more.
5. 前記導電性フィラーが «状のものである、 請求の範囲 1に記載の樹脂成 形体。  5. The resin molded article according to claim 1, wherein the conductive filler is a hollow filler.
6. 前記導電'性フィラーの平均繊锥径が 0. 002 μ m以上 15 ^ m以下であ る、 請求の範囲 5に記載の樹脂成形体。  6. The resin molded article according to claim 5, wherein an average fiber diameter of the conductive filler is 0.002 μm or more and 15 ^ m or less.
7 , 前記導電' 14フィラ一の平均残存ァスぺクト比が 10以上 100, 000以 下である、 請求の範囲 6に記載の樹脂成形体。  7. The resin molded article according to claim 6, wherein an average residual aspect ratio of the conductive layer is 10 or more and 100,000 or less.
8 · 前記導電十生フィラ一の含有量が 20重量0 /0未満に設定されて 、る、 請求の 範囲 1に記載の樹脂成形体。 8 - The content of the conductive ten raw filler one is set to less than 20 weight 0/0, Ru, resin molding according to claim 1, wherein.
9. 前記導電性フィラーと共に前記マトリックス内に分散された着色材をさら に含む、 請求の範囲 8に記載の樹脂成形体。 9. The coloring material dispersed in the matrix together with the conductive filler is further exposed. 9. The resin molded article according to claim 8, which comprises:
1 0. ΙίΐΒ導電' I生フィラーが炭素 »および黒翁 »のうちの少なくとも一つ である、 請求の範囲 9に記載の樹脂成形体。  10. The resin molded product according to claim 9, wherein the ΙίΐΒconductive ’I raw filler is at least one of carbon» and kuroo ».
1 1 . 籠己導電性フィラーおよび前記着色材と共に前記マトリックス内に分散 された、 前記導電性フィラーの色彩を隠蔽するための隠蔽材をさらに含む、 請 求の範囲 9に記載の樹脂成形体。  11. The resin molded article according to claim 9, further comprising a concealing material for concealing the color of the conductive filler, dispersed in the matrix together with the conductive filler and the coloring material.
1 2. 体積抵抗が 1 04Ω c m以上 1 012Ω c m以下である、 請求の範囲 8に記 載の樹脂成形体。 1 2. The volume resistivity is less than 1 0 4 Omega cm or 1 0 12 Ω cm, resin molding of the mounting serial ranges 8 claims.
1 3 . 樹脂材料からなるマトリックスと、  1 3. A matrix made of resin material,
肅己マトリックス内に分散された導電性フイラ一とを含み、  A conductive filler dispersed within the Shukki matrix,
嫌己樹脂材料の軟化点に加熱処理して室温まで冷却した後の体積抵抗がカロ熱 処理する前の体積抵抗の 1 0倍以上である、  The volume resistance after heat treatment to the softening point of the disgusting resin material and cooling to room temperature is at least 10 times the volume resistance before caro heat treatment,
樹脂成形体。 Resin molding.
1 4 . 前記加熱処理の後に、 1 X 1 0— 6秒未満の単位時間内において、 2 0 0 VZm以上前記マトリッタスの絶縁破壊電圧に相当する電界強^満の電界強 度範囲内に最大電界強度を有する電界強度変ィ匕が生じる環境の下に配置する処 理を施した場合の体積抵抗が、 当該処理を施す前の体積抵抗の 1 Z 1 0以下で ある、 請求の範囲 1 3に記載の樹脂成形体。 1 4. The after heat treatment, within 1 X 1 0- units of less than 6 seconds, 2 0 0 vzm above the field strength corresponding to the breakdown voltage of Matorittasu ^ maximum electric field in the electric field strength of a range of fully 13. The volume resistance according to claim 13, wherein a volume resistance in a case where a process of arranging under an environment in which a strong electric field intensity change occurs is performed is equal to or less than 1 Z 10 of a volume resistance before performing the process. The resin molded article according to the above.
1 5 . 嫌己導電性フィラーの含有量が 2 0重量0 /0未満である、 請求の範囲 1 3 に記載の樹脂成形体。 1 5. Iyaonore content of the conductive filler is less than 2 0 weight 0/0, the resin molded article according to claim 1 3 claims.
1 6 . 前記導電性フィラーと共に嫌己マトリックス内に分散された着色材をさ らに含む、 請求の範囲 1 5に記載の樹脂成形体。  16. The resin molded article according to claim 15, further comprising a coloring material dispersed in a disgusting matrix together with the conductive filler.
1 7 . 廳己導電性フィラーおよび歸己着色材と共に前記マトリックス内に分散 された、 前記導電性フィラーの色彩を隠蔽するための隠蔽材をさらに含む、 請 求の範囲 1 6に記載の樹脂成形体。 17. The resin molding according to claim 16, further comprising a concealing material for concealing the color of the conductive filler, dispersed in the matrix together with the self-conductive filler and the self-coloring material. body.
1 8 . 樹脂材料と導電性フィラーとを含む成形材料を調製する工程と、 tfif己成形材料を所定の形状に成形する工程と、 18. A step of preparing a molding material containing a resin material and a conductive filler, and a step of molding the tfif self-molding material into a predetermined shape;
1 X 1 0 _6秒未満の単位時間内において、 2 0 0 V/m以上前記樹脂材料の 絶縁破壊電圧に相当する電界強^満の電界強度範囲内に最大電界強度を有す る電界強度変化が生じる環境の下に、 成形された t&IB成形材料を配置する工程 と、 Within 1 X 1 0 _ 6 seconds less than the time unit, the electric field strength that have a maximum field strength on 2 0 0 field strength corresponding to the breakdown voltage of V / m or more wherein the resin material ^ full field strength in the range Placing the molded t & IB molding material in a changing environment;
を含む樹脂成形体の製造方法。 A method for producing a resin molded article comprising:
1 9. 連続的に形成される前記環境の下に、 成形された前記成形材料を配置す る、 請求の範囲 1 8に記載の樹脂成形体の製造方法。  19. The method for producing a resin molded article according to claim 18, wherein the molded material is placed under the environment that is continuously formed.
2 0. 前記環境は、 2 O O VZm以上前記樹脂材料の絶縁破壌電圧に相当する 電界強^満の範囲内に最大電界強度を有する電界を形成可能でありカつ周波 数が 1 MH zを超え力、つ 2. 4 5 GH z未満の βί»を用いて連続的に形成さ れている、 請求の範囲 1 9に記載の樹脂成形体の製造方法。  20. The environment is capable of forming an electric field having a maximum electric field strength within a range of electric field strength equal to or greater than 20 OO VZm and an insulation breakdown voltage of the resin material, and a power frequency of 1 MHz. 20. The method for producing a resin molded article according to claim 19, wherein the resin molded article is continuously formed using a β force of less than 2.45 GHz.
2 1 . 前記成形材料における前記導電性フィラーの含有量が 2 0重量0 /0未満で ある、 請求の範囲 1 8に記載の樹脂成形体の製造方法。 2 1. The content of the conductive filler in the molding material is less than 2 0 weight 0/0, method for producing a resin molded article according to claim 1 8 claims.
2 2. 嫌己成形材料が着色材をさらに含んでいる、 請求の範囲 2 1に記載の樹 脂成形体の製造方法。  2 2. The method for producing a resin molded article according to claim 21, wherein the disgusting molding material further contains a coloring material.
2 3. 前記成形材料が前記導電性フィラーの色彩を隠蔽するための隠蔽材をさ らに含んでいる、 請求の範囲 2 2に記載の樹脂成形体の製造方法。  23. The method for producing a resin molded product according to claim 22, wherein the molding material further includes a concealing material for concealing the color of the conductive filler.
PCT/JP2001/008868 2000-10-12 2001-10-09 Formed resin article WO2002031030A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000311542A JP2002121304A (en) 2000-10-12 2000-10-12 Resin molding and its production method
JP2000-311542 2000-10-12

Publications (1)

Publication Number Publication Date
WO2002031030A1 true WO2002031030A1 (en) 2002-04-18

Family

ID=18791283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008868 WO2002031030A1 (en) 2000-10-12 2001-10-09 Formed resin article

Country Status (2)

Country Link
JP (1) JP2002121304A (en)
WO (1) WO2002031030A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2041758A4 (en) * 2006-07-13 2009-07-08 Orica Explosives Tech Pty Ltd Electrical conductive element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03258837A (en) * 1990-03-07 1991-11-19 Mitsubishi Petrochem Co Ltd Film with freshness-preserving ability
WO1992020728A1 (en) * 1991-05-10 1992-11-26 N.V. Kema Method for producing an ionomer
JPH05200743A (en) * 1992-01-24 1993-08-10 Furukawa Electric Co Ltd:The Production of molded object composed of conductive resin composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3634752B2 (en) * 1998-12-28 2005-03-30 大阪瓦斯株式会社 Resin molding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03258837A (en) * 1990-03-07 1991-11-19 Mitsubishi Petrochem Co Ltd Film with freshness-preserving ability
WO1992020728A1 (en) * 1991-05-10 1992-11-26 N.V. Kema Method for producing an ionomer
JPH05200743A (en) * 1992-01-24 1993-08-10 Furukawa Electric Co Ltd:The Production of molded object composed of conductive resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2041758A4 (en) * 2006-07-13 2009-07-08 Orica Explosives Tech Pty Ltd Electrical conductive element

Also Published As

Publication number Publication date
JP2002121304A (en) 2002-04-23

Similar Documents

Publication Publication Date Title
Paligová et al. Electromagnetic shielding of epoxy resin composites containing carbon fibers coated with polyaniline base
Gargama et al. Polyvinylidene fluoride/nickel composite materials for charge storing, electromagnetic interference absorption, and shielding applications
KR101307378B1 (en) Thermoplastic resin composition having good EMI shielding property
KR20200105625A (en) Composite material for shielding electromagnetic radiation, raw material for additive manufacturing methods and a product comprising the composite material as well as a method of manufacturing the product
Aal et al. New antistatic charge and electromagnetic shielding effectiveness from conductive epoxy resin/plasticized carbon black composites
US20110017501A1 (en) Composite material and manufacturing method thereof
US10947367B2 (en) Polytetrafluoroethylene hexaferrite composites
Bagwell et al. Short shaped copper fibers in an epoxy matrix: their role in a multifunctional composite
WO2005038824A1 (en) Electromagnetic shielding material having carbon nanotube and metal as electrical conductor
KR20130091210A (en) Electromagnetic wave shielding composite and manufacturing method for thereof
Hou et al. Ultrahigh dielectric loss of epsilon-negative copper granular composites
KR20140107119A (en) Thermoplastic Resin Composition Having Excellent EMI Shielding Property
JP5424606B2 (en) Noise suppressor and manufacturing method thereof
TW557310B (en) Resin molded article
Srivastava et al. Advanced nanostructured materials in electromagnetic interference shielding
Kulthe et al. Electrical, mechanical, and electromagnetic interference shielding properties of poly (ether-ketone)-MWCNT nanocomposites
WO2002031030A1 (en) Formed resin article
JP3634752B2 (en) Resin molding
KR950012656B1 (en) Electric conductive resin product for shielding electromagnetic wave
Narkis et al. Electrically conductive composites prepared from polymer particles coated with metals by electroless deposition
Sunitha et al. Electromagnetic interference shielding effectiveness and electrical conductivity of Ni coated PCABS/PPS composites with reinforcement of carbon fibre
Bespyatykh et al. Electromagnetic properties of hybrid polymer composites
Duan et al. Effect of a coupling agent on the electromagnetic and mechanical properties of carbon black/acrylonitrile–butadiene–styrene composites
KR100814278B1 (en) Using for b-stage cured resin films electromagnetic waves absorbent material and method for manufacturing the same
JP2001098092A (en) Resin molding to be electrostatically coated and method for production thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)