WO2002003005A1 - Method of operating rotating regenerative heat exchanger - Google Patents

Method of operating rotating regenerative heat exchanger Download PDF

Info

Publication number
WO2002003005A1
WO2002003005A1 PCT/JP2001/005721 JP0105721W WO0203005A1 WO 2002003005 A1 WO2002003005 A1 WO 2002003005A1 JP 0105721 W JP0105721 W JP 0105721W WO 0203005 A1 WO0203005 A1 WO 0203005A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
heat exchanger
regenerative heat
temperature
furnace
Prior art date
Application number
PCT/JP2001/005721
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiko Fukutani
Toshihiro Ohkohchi
Shuichi Tsuboi
Tomoharu Miyamoto
Original Assignee
Nippon Steel Corporation
Alstom Power N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation, Alstom Power N.V. filed Critical Nippon Steel Corporation
Priority to AU2001267903A priority Critical patent/AU2001267903A1/en
Publication of WO2002003005A1 publication Critical patent/WO2002003005A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/02Arrangements of regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D19/00Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
    • F28D19/04Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier
    • F28D19/041Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier with axial flow through the intermediate heat-transfer medium
    • F28D19/042Rotors; Assemblies of heat absorbing masses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • F27D2017/007Systems for reclaiming waste heat including regenerators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the present invention relates to a method for operating a rotary regenerative heat exchanger installed in a furnace such as a billet heating furnace, a billet heat treatment furnace, and an ingot soaking furnace.
  • a rotary regenerative heat exchanger has been used to recover the retained heat of the high-temperature exhaust gas discharged from furnaces such as a billet heating furnace and a heat treatment furnace.
  • this rotary regenerative heat exchanger as shown in Fig. 1, the inside of the housing 1 is divided by a sector plate 2, and the exhaust gas flows on one side and the combustion air flows on the other side. Then, the rotor 3 is rotated to perform heat exchange.
  • a heat storage body made of corrugated steel sheet is provided in Row 3 to be heated on the exhaust gas side and rotate to the combustion gas side to preheat the combustion air.
  • Rotary regenerative heat exchangers have been used mainly for low-temperature exhaust gas of 400 ° C or less, but in recent years the usable temperature has increased to around 100 ° C.
  • the thermal expansion of the mouth 3 increases, and especially when the furnace temperature fluctuates greatly, such as when the furnace is heated, the thermal expansion of the housing 1 and the thermal expansion of the mouth 3 become unbalanced. As a result, excessive contact may occur at the rotating sliding part, and the rotation of the mouth 3 may stop.
  • the present invention has been made to solve the conventional problems described above and to provide an operation method of a rotary regenerative heat exchanger that can prevent excessive contact of a rotary sliding portion even when a furnace temperature fluctuates greatly. Things.
  • the present invention made to solve the above-mentioned problem is characterized in that a part of the exhaust gas that exits the rotary regenerative heat exchanger is provided on the exhaust gas inlet side of the rotary regenerative heat exchanger that recovers exhaust heat from the furnace exhaust gas.
  • a sharp change in the exhaust gas temperature at the exhaust gas inlet side during furnace temperature fluctuations is prevented.
  • Means for suppressing the amount of exhaust gas entering the regenerative heat exchanger may be used in combination. Then, it is preferable to control the exhaust gas temperature on the exhaust gas inlet side to 150 ° C./Hr or less.
  • a part of the exhaust gas that has exited the rotary regenerative heat exchanger when the furnace is heated or the like is returned to the exhaust gas inlet side of the rotary regenerative heat exchanger.
  • FIG. 1 is a cross-sectional view of a rotary regenerative heat exchanger.
  • FIG. 2 is a system diagram showing the first embodiment of the present invention.
  • FIG. 3 is a system diagram showing a second embodiment of the present invention.
  • FIG. 2 is a diagram showing a first embodiment of the present invention.
  • reference numeral 10 denotes a rotary regenerative heat exchanger shown in FIG. 1, which supplies high-temperature exhaust gas discharged from furnaces such as a billet heating furnace and a heat treatment furnace (not shown), and supplies a burner 11 to a parner. Heat is exchanged with the combustion air.
  • An exhaust gas suction pipe 13 is installed in the exhaust gas channel 12 on the outlet side of the regenerative heat exchanger 10. The exhaust gas that has passed through the regenerative heat exchanger 10 and has dropped in temperature is collected by the chimney 1 Sent to 4.
  • Reference numeral 15 denotes an exhaust gas circulation passage for extracting a part of the exhaust gas from between the exhaust gas suction blower 13 and the chimney 14.
  • the low-temperature exhaust gas extracted through the exhaust gas circulation channel 15 is returned to the exhaust gas channel 17 on the entry side of the rotary regenerative heat exchanger 10 via the dilution damper 16.
  • the opening and closing of the dilution damper 16 is controlled by a temperature control program 17.
  • the temperature control program 17 monitors the temperature of the exhaust gas on the inlet side of the regenerative heat exchanger 10 by using a temperature sensor 18 provided in the exhaust gas flow path 17 on the inlet side.
  • the rising gradient of the exhaust gas temperature may be set so as not to cause excessive contact of the rotary sliding portion of the regenerative heat exchanger 10 .
  • the exhaust gas temperature at the entrance of the regenerative heat exchanger 10 Is preferably suppressed to 150 ° C./Hr or less.
  • a fresh air suction damper 20 is newly provided in the exhaust gas passage 12 on the outlet side of the rotary regenerative heat exchanger 10.
  • the opening / closing of the outside air suction damper 20 is also controlled by the temperature control program 17 as in the first embodiment.
  • the outside air suction damper 20 is opened, the outside air is sucked by the draft in the chimney 14 and the amount of exhaust gas and exhaust gas heat flowing into the regenerative heat exchanger 10 is reduced by that amount. The effect of suppressing a rapid rise in the exhaust gas temperature on the inlet side of the exchanger 10 can be obtained.
  • the low-temperature exhaust gas shown in the first embodiment is passed through the dilution damper 16 to the exhaust gas passage 19 on the entry side of the rotary regenerative heat exchanger 10.
  • the exhaust gas temperature can be controlled more reliably by using both the means for returning to the temperature and the outside air suction means by the outside air suction damper 20.
  • the present invention was applied to a rotary regeneration heat exchanger installed in a billet heating furnace.
  • the slab heating furnace is heated from room temperature to the target heating temperature of the steel material, and the target heating temperature of the steel material also varies in the range of 900 to 130 ° C. Therefore, the temperature of the exhaust gas on the inlet side of the regenerative heat exchanger is also in the range of room temperature to 1000. It fluctuates in the range of about C o If the temperature of the exhaust gas on the inlet side of the rotary regenerative heat exchanger rises, the temperature rises to 200 ° C / Hr or more during the heating work, and over-contact of the sliding parts due to the rapid temperature rise may occur. In some cases, the rotary drive was overloaded and heat exchange was interrupted.
  • the present invention was applied to a rotary regenerative heat exchanger installed in a steel ingot soaking furnace in which a target heating temperature varies in a range of 900 to 140 ° C.
  • the exhaust gas temperature on the inlet side of this rotary regeneration type heat exchanger fluctuates in the range from normal temperature to 1200 ° C. Fluctuations in the exhaust gas temperature on the inlet side of the regenerative heat exchanger are more than 300 ° C / Hr when temperature control is not performed.
  • the drive was overloaded and heat exchange was interrupted.
  • the low-temperature exhaust gas after passing through the rotary regeneration heat exchanger is returned to the exhaust gas channel 19 on the entry side of the rotary regeneration heat exchanger 10 via the dilution damper 16.
  • the fluctuations in the exhaust gas temperature on the inlet side of the regenerative heat exchanger were reduced to 150 ° C / Hr or less by this method. could be done.
  • a part of the low-temperature exhaust gas exiting the rotary regenerative heat exchanger is provided on the exhaust gas inlet side of the rotary regenerative heat exchanger that recovers exhaust heat from the exhaust gas of the furnace.

Abstract

A method of operating a rotating regenerative heat exchanger capable of preventing the excessive contact of a rotatingly sliding part even when a furnace temperature varies largely, comprising the steps of providing a dilution damper (16) to return a part of the low temperature exhaust gas from the rotating regenerative heat exchanger (10) on the exhaust gas inlet side of the rotating regenerative heat exchanger (10) recovering an exhaust heat of the exhaust gas from a furnace such as a billet heating furnace, a billet heat treatment furnace, and an ingot soaking pit, and opening the dilution damper (16) when the furnace temperature varies, whereby an abrupt change in the exhaust gas temperature on an exhaust gas inlet side can be prevented, an outside air sucking damper (20) installed on the exhaust gas outlet side capable of being used together with the dilution damper, the exhaust gas temperature on the exhaust gas inlet side being desirable to be suppressed to 150 ° /Hr or below.

Description

明 細 書 回転再生式熱交換器の運転方法 発明の属する技術分野  Description Method of operating a rotary regeneration heat exchanger Technical field to which the invention pertains
本発明は、 鋼片加熱炉、 鋼片熱処理炉、 鋼塊均熱炉などの炉に設置されている 回転再生式熱交換器の運転方法に関するものである。  The present invention relates to a method for operating a rotary regenerative heat exchanger installed in a furnace such as a billet heating furnace, a billet heat treatment furnace, and an ingot soaking furnace.
従来の技術  Conventional technology
鋼片加熱炉ゃ熱処理炉などの炉から排出される高温の排ガスの保有熱を回収す るために、 従来から回転再生式熱交換器が使用されている。 この回転再生式熱交 換器は、 図 1に示すようにハウシング 1の内部をセクタ一プレート 2により分割 し、 その片側に排ガスを流し、 他方の側に燃焼空気を流しながらこのハウシング 1の内部でロータ 3を回転させ、 熱交換を行わせるものである。  Conventionally, a rotary regenerative heat exchanger has been used to recover the retained heat of the high-temperature exhaust gas discharged from furnaces such as a billet heating furnace and a heat treatment furnace. In this rotary regenerative heat exchanger, as shown in Fig. 1, the inside of the housing 1 is divided by a sector plate 2, and the exhaust gas flows on one side and the combustion air flows on the other side. Then, the rotor 3 is rotated to perform heat exchange.
ロー夕 3には波板鋼鈑等よりなる蓄熱体が設けられており、 排ガス側で加熱さ れ、 燃焼ガス側に回転して燃焼空気を予熱する。 回転再生式熱交換器は従来主と して 4 0 0 °C以下の低温の排ガスに用いられていたのであるが、 近年においては 使用可能温度が 1 0 0 0 °C付近まで高まっている。 そのため口一夕 3の熱膨張が 大きくなり、 特に炉の昇温時等のように炉温が大きく変動する時には、 ハウシン グ 1の熱膨張と口一夕 3の熱膨張とがアンバランスになって、 回転摺動部で過接 触が生じ、 口一夕 3の回転が停止してしまうことがあった。  A heat storage body made of corrugated steel sheet is provided in Row 3 to be heated on the exhaust gas side and rotate to the combustion gas side to preheat the combustion air. Rotary regenerative heat exchangers have been used mainly for low-temperature exhaust gas of 400 ° C or less, but in recent years the usable temperature has increased to around 100 ° C. As a result, the thermal expansion of the mouth 3 increases, and especially when the furnace temperature fluctuates greatly, such as when the furnace is heated, the thermal expansion of the housing 1 and the thermal expansion of the mouth 3 become unbalanced. As a result, excessive contact may occur at the rotating sliding part, and the rotation of the mouth 3 may stop.
発明の要約  Summary of the Invention
本発明は上記した従来の問題点を解決し、 炉温が大きく変動する時にも回転摺 動部の過接触を防止することができる回転再生式熱交換器の運転方法を提供する ためになされたものである。  The present invention has been made to solve the conventional problems described above and to provide an operation method of a rotary regenerative heat exchanger that can prevent excessive contact of a rotary sliding portion even when a furnace temperature fluctuates greatly. Things.
上記の課題を解決するためになされた本発明は、 炉の排ガスから排熱回収を行 う回転再生式熱交換器の排ガス入り側に、 この回転再生式熱交換器を出た排ガス の一部を戻すことにより、 炉温変動時における排ガス入り側の排ガス温度の急激 な変化を防止することを特徴とするものである。  The present invention made to solve the above-mentioned problem is characterized in that a part of the exhaust gas that exits the rotary regenerative heat exchanger is provided on the exhaust gas inlet side of the rotary regenerative heat exchanger that recovers exhaust heat from the furnace exhaust gas. Thus, a sharp change in the exhaust gas temperature at the exhaust gas inlet side during furnace temperature fluctuations is prevented.
なお、 排ガス出側に設けられた外気吸引ダンパ一から外気を吸引することにより、 回転再生式熱交換器に入る排ガス量を抑制する手段を併用してもよい。 そして排 ガス入り側の排ガス温度を、 1 5 0 °C/H r以下に抑制することが好ましい。 In addition, by sucking outside air from the outside air suction damper provided on the exhaust gas outlet side, Means for suppressing the amount of exhaust gas entering the regenerative heat exchanger may be used in combination. Then, it is preferable to control the exhaust gas temperature on the exhaust gas inlet side to 150 ° C./Hr or less.
本発明の回転再生式熱交換器の運転方法によれば、 炉の昇温時等に回転再生式 熱交換器を出た排ガスの一部をこの回転再生式熱交換器の排ガス入り側に戻すこ とにより、 排ガス入り側の排ガス温度の急激な変化を防止することができるので、 熱交換器の全体が均一に膨張収縮するようになり、 ハウシングの熱膨張と口一夕 の熱膨張とのアンバランスによる回転摺動部の過接触を防止することができる。 またこれと同時に排ガス出側に設けられた外気吸引ダンパーから外気を吸引する ようにすれば、 回転再生式熱交換器に入る排ガス量を抑制できるので、 さらに確 実に排ガス入り側の排ガス温度の急激な変化を防止することができる。  According to the method of operating the rotary regenerative heat exchanger of the present invention, a part of the exhaust gas that has exited the rotary regenerative heat exchanger when the furnace is heated or the like is returned to the exhaust gas inlet side of the rotary regenerative heat exchanger. This makes it possible to prevent a rapid change in the exhaust gas temperature on the exhaust gas inlet side, so that the entire heat exchanger expands and contracts uniformly, and the thermal expansion of the housing and the thermal expansion of the mouth are reduced. Excessive contact of the rotating sliding portion due to imbalance can be prevented. At the same time, if the outside air is sucked from the outside air suction damper provided on the exhaust gas outlet side, the amount of exhaust gas entering the rotary regenerative heat exchanger can be suppressed, so that the exhaust gas temperature on the exhaust gas inlet side can be more surely increased. Change can be prevented.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1は回転再生式熱交換器の断面図である。  FIG. 1 is a cross-sectional view of a rotary regenerative heat exchanger.
図 2は本発明の第 1の実施形態を示す系統図である。  FIG. 2 is a system diagram showing the first embodiment of the present invention.
図 3は本発明の第 2の実施形態を示す系統図である。  FIG. 3 is a system diagram showing a second embodiment of the present invention.
好適な実施例  Preferred embodiment
以下に本発明の好ましい実施形態を示す。  Hereinafter, preferred embodiments of the present invention will be described.
図 2は本発明の第 1の実施形態を示す図である。 この図中、 1 0は図1に示し た回転再生式熱交換器であり、 図示しない鋼片加熱炉ゃ熱処理炉などの炉から排 出される高温の排ガスと、 燃焼ブロワ 1 1からパーナに供給される燃焼空気との 間で熱交換を行っている。 回転再生式熱交換器 1 0の出側の排ガス流路 1 2には 排ガス吸引プロヮ 1 3が設置されており、 回転再生式熱交換器 1 0を通過して温 度降下した排ガスを煙突 1 4に送っている。  FIG. 2 is a diagram showing a first embodiment of the present invention. In this figure, reference numeral 10 denotes a rotary regenerative heat exchanger shown in FIG. 1, which supplies high-temperature exhaust gas discharged from furnaces such as a billet heating furnace and a heat treatment furnace (not shown), and supplies a burner 11 to a parner. Heat is exchanged with the combustion air. An exhaust gas suction pipe 13 is installed in the exhaust gas channel 12 on the outlet side of the regenerative heat exchanger 10. The exhaust gas that has passed through the regenerative heat exchanger 10 and has dropped in temperature is collected by the chimney 1 Sent to 4.
1 5は、 この排ガス吸引ブロワ 1 3と煙突 1 4との間から排ガスの一部を抜き 出す排ガス循環流路である。 本発明では、 この排ガス循環流路 1 5により抜き出 された低温の排ガスは、 希釈ダンパ一 1 6を経由して回転再生式熱交換器 1 0の 入り側の排ガス流路 1 7に戻される。 この希釈ダンパー 1 6の開閉は、 温度制御 プログラム 1 7により制御されている。 温度制御プログラム 1 7は、 入り側の排 ガス流路 1 7に設けられた温度センサ 1 8により回転再生式熱交換器 1 0の入り 側の排ガス温度をモニタリングし、 炉の昇温時等のように炉温が変動して排ガス 温度が急激に高まった場合には、 希釈ダンパー 1 6の開度を大きくして排ガス循 環流路 1 5からの低温の排ガスを入り側の排ガス流路 1 9に導入し、 回転再生式 熱交換器 1 0の入り側の排ガス温度の急上昇を抑制する。 Reference numeral 15 denotes an exhaust gas circulation passage for extracting a part of the exhaust gas from between the exhaust gas suction blower 13 and the chimney 14. In the present invention, the low-temperature exhaust gas extracted through the exhaust gas circulation channel 15 is returned to the exhaust gas channel 17 on the entry side of the rotary regenerative heat exchanger 10 via the dilution damper 16. . The opening and closing of the dilution damper 16 is controlled by a temperature control program 17. The temperature control program 17 monitors the temperature of the exhaust gas on the inlet side of the regenerative heat exchanger 10 by using a temperature sensor 18 provided in the exhaust gas flow path 17 on the inlet side. Fluctuating furnace temperature If the temperature rises sharply, the degree of opening of the dilution damper 16 is increased, and low-temperature exhaust gas from the exhaust gas circulation channel 15 is introduced into the exhaust gas channel 19 on the inlet side, and the rotary regeneration heat exchange is performed. The exhaust gas temperature on the inlet side of the vessel 10 is suppressed from rising rapidly.
排ガス温度の上昇勾配は、 回転再生式熱交換器 1 0の回転摺動部の過接触を発 生させない程度に設定すればよく、 例えば回転再生式熱交換器 1 0の入り側の排 ガス温度の変動を常に 1 5 0 °C/H r以下に抑制することが好ましい。 これによ りハウシングの熱膨張と口一夕の熱膨張とのアンバランスによる回転摺動部の過 接触を防止することができる。  The rising gradient of the exhaust gas temperature may be set so as not to cause excessive contact of the rotary sliding portion of the regenerative heat exchanger 10 .For example, the exhaust gas temperature at the entrance of the regenerative heat exchanger 10 Is preferably suppressed to 150 ° C./Hr or less. Thus, it is possible to prevent the rotational sliding portion from being excessively contacted due to the unbalance between the thermal expansion of the housing and the thermal expansion of the mouth.
なお、 このように入り側の排ガス温度を抑制することは回転再生式熱交換器 1 0 の熱効率を低下させるので、 炉温が安定した後は速やかに希釈ダンパー 1 6を閉 じることが好ましい。 In addition, since suppressing the temperature of the exhaust gas on the inlet side reduces the thermal efficiency of the rotary regenerative heat exchanger 10, it is preferable to close the dilution damper 16 immediately after the furnace temperature is stabilized. .
図 3に示す第 2の実施形態では、 回転再生式熱交換器 1 0の出側の排ガス流路 1 2に新たに外気吸引ダンパー 2 0を設けてある。 この外気吸引ダンパ一 2 0も 第 1の実施形態と同様に温度制御プログラム 1 7により開閉を制御される。外気 吸引ダンパー 2 0が開かれると煙突 1 4でのドラフトにより外気が吸引され、 そ の分だけ回転再生式熱交換器 1 0に流入する排ガス量及び排ガス熱量が減少する ので、 回転再生式熱交換器 1 0の入り側の排ガス温度の急上昇を抑制する効果が 得られる。  In the second embodiment shown in FIG. 3, a fresh air suction damper 20 is newly provided in the exhaust gas passage 12 on the outlet side of the rotary regenerative heat exchanger 10. The opening / closing of the outside air suction damper 20 is also controlled by the temperature control program 17 as in the first embodiment. When the outside air suction damper 20 is opened, the outside air is sucked by the draft in the chimney 14 and the amount of exhaust gas and exhaust gas heat flowing into the regenerative heat exchanger 10 is reduced by that amount. The effect of suppressing a rapid rise in the exhaust gas temperature on the inlet side of the exchanger 10 can be obtained.
このように第 2の実施形態では、 第 1の実施形態に示された低温の排ガスを、 希釈ダンバ一 1 6を経由して回転再生式熱交換器 1 0の入り側の排ガス流路 1 9 に戻す手段と、 外気吸引ダンパ一 2 0による外気吸引手段との併用により、 より 確実に排ガス温度の制御を行うことができる。  As described above, in the second embodiment, the low-temperature exhaust gas shown in the first embodiment is passed through the dilution damper 16 to the exhaust gas passage 19 on the entry side of the rotary regenerative heat exchanger 10. The exhaust gas temperature can be controlled more reliably by using both the means for returning to the temperature and the outside air suction means by the outside air suction damper 20.
以下に本発明の実施例を示す。  Hereinafter, examples of the present invention will be described.
(実施例 1 )  (Example 1)
鋼片加熱炉に設置された回転再生式熱交換器に本発明を適用した。 この鋼片加 熱炉は、 常温から鋼材の目標加熱温度まで昇温されるものであり、 かつ鋼材の目 標加熱温度も 9 0 0〜1 3 0 0 °Cの範囲でバラヅキがある。 従って、 回転再生式 熱交 ί奐器の入り側排ガス温度も常温〜 1 0 0 0。C程度の範囲で変動するものであ o 回転再生式熱交換器の入り側排ガス温度の上昇は、 なりゆきに任せた場合には 加熱作業時に 2 0 0 °C/H r以上となり、 急激な温度上昇に伴う摺動部の過接触 が原因で回転駆動装置が過負荷となり、 熱交換が中断されることがあった。 これ に対して図 3に示したように、 回転再生式熱交換器通過後の低温の排ガスを回転 再生式熱交換器 1 0の入り側の排ガス流路 1 9に希釈ダンパ一 1 6を介して戻す とともに、 外気吸引ダンパー 2 0から外気を吸引して昇温時における回転再生式 熱交換器の入り側排ガス温度の変動を 1 0 0 °C/H r以下に抑制したところ、 過 接触による回転駆動装置の過負荷はなくなり、 連続して安定な熱交換を行うこと ができた。 The present invention was applied to a rotary regeneration heat exchanger installed in a billet heating furnace. The slab heating furnace is heated from room temperature to the target heating temperature of the steel material, and the target heating temperature of the steel material also varies in the range of 900 to 130 ° C. Therefore, the temperature of the exhaust gas on the inlet side of the regenerative heat exchanger is also in the range of room temperature to 1000. It fluctuates in the range of about C o If the temperature of the exhaust gas on the inlet side of the rotary regenerative heat exchanger rises, the temperature rises to 200 ° C / Hr or more during the heating work, and over-contact of the sliding parts due to the rapid temperature rise may occur. In some cases, the rotary drive was overloaded and heat exchange was interrupted. On the other hand, as shown in Fig. 3, low-temperature exhaust gas after passing through the rotary regenerative heat exchanger is passed through the dilution damper 16 to the exhaust gas channel 19 on the entry side of the rotary regenerative heat exchanger 10. At the same time, the temperature of the exhaust gas on the inlet side of the regenerative heat exchanger during temperature rise was suppressed to 100 ° C / Hr or less when the outside air was sucked from the outside air suction damper 20 and the temperature was raised. The overload of the rotary drive was eliminated, and stable and stable heat exchange was possible.
(実施例 2 )  (Example 2)
目標加熱温度が 9 0 0〜1 4 0 0 °Cの範囲でばらつく鋼塊均熱炉に設置された 回転再生式熱交換器に、 本発明を適用した。 この回転再生式熱交換器の入り側排 ガス温度は常温〜 1 2 0 0 °Cの範囲で変動するものである。 回転再生式熱交換器 の入り側排ガス温度の変動は、 温度制御を行わない場合には 3 0 0 °C/H r以上 となり、 急激な温度上昇に伴う摺動部の過接触が原因で回転駆動装置が過負荷と なり、 熱交換が中断されることがあった。  The present invention was applied to a rotary regenerative heat exchanger installed in a steel ingot soaking furnace in which a target heating temperature varies in a range of 900 to 140 ° C. The exhaust gas temperature on the inlet side of this rotary regeneration type heat exchanger fluctuates in the range from normal temperature to 1200 ° C. Fluctuations in the exhaust gas temperature on the inlet side of the regenerative heat exchanger are more than 300 ° C / Hr when temperature control is not performed. The drive was overloaded and heat exchange was interrupted.
しかし図 2に示したように回転再生式熱交換器通過後の低温の排ガスを回転再 生式熱交換器 1 0の入り側の排ガス流路 1 9に希釈ダンパー 1 6を介して戻すこ とによって回転再生式熱交換器の入り側排ガス温度の変動を 1 5 0 °C/H r以下 に抑制したところ、 過接触による回転駆動装置の過負荷はなくなり、 連続して安 定な熱交換を行うことができた。  However, as shown in Fig. 2, the low-temperature exhaust gas after passing through the rotary regeneration heat exchanger is returned to the exhaust gas channel 19 on the entry side of the rotary regeneration heat exchanger 10 via the dilution damper 16. The fluctuations in the exhaust gas temperature on the inlet side of the regenerative heat exchanger were reduced to 150 ° C / Hr or less by this method. Could be done.
以上に説明したように、 本発明によれば炉の排ガスから排熱回収を行う回転再 生式熱交換器の排ガス入り側に、 この回転再生式熱交換器を出た低温の排ガスの 一部を戻すことにより、 炉温の急激な変動時における入り側排ガス温度の急激な 変化を防止するようにしたので、 熱膨張のアンバランスによる回転再生式熱交換 器の回転摺動部の過接触を防止することができる効果がある。 また請求項 2の発 明のように外気吸引手段を併用すれば、 より効果的に入り側排ガス温度の制御が 可能である。  As described above, according to the present invention, a part of the low-temperature exhaust gas exiting the rotary regenerative heat exchanger is provided on the exhaust gas inlet side of the rotary regenerative heat exchanger that recovers exhaust heat from the exhaust gas of the furnace. To prevent a sudden change in the inlet exhaust gas temperature when the furnace temperature fluctuates suddenly, so that the rotating sliding part of the rotary regenerative heat exchanger due to thermal expansion imbalance may be over-contacted. There is an effect that can be prevented. Further, when the outside air suction means is used in combination as in the invention of claim 2, it is possible to more effectively control the inlet exhaust gas temperature.

Claims

請 求 の 範 囲 The scope of the claims
1 . 炉の排ガスから排熱回収を行う回転再生式熱交換器の排ガス入り側に、 この回転再生式熱交換器を出た排ガスの一部を戻すことにより、 炉温変動時にお ける排ガス入り側の排ガス温度の急激な変化を防止することを特徴とする回転再 生式熱交換器の運転方法。 1. By returning a part of the exhaust gas that has exited the rotary regenerative heat exchanger to the exhaust gas inlet side of the rotary regenerative heat exchanger that recovers exhaust heat from the furnace exhaust gas, A method for operating a regenerative heat exchanger, characterized by preventing a sudden change in exhaust gas temperature on the side.
2 . 排ガス出側に設けられた外気吸引ダンバ一から外気を吸引することによ り、 回転再生式熱交換器に入る排ガス量を抑制する M求項 1記載の回転再生式熱 交換器の運転方法。  2. Operation of the rotary regenerative heat exchanger according to claim 1, wherein the amount of exhaust gas entering the rotary regenerative heat exchanger is suppressed by sucking external air from the external air suction damper provided on the exhaust gas outlet side. Method.
3 . 排ガス入り側の排ガス温度を 1 5 0 °C/H r以下に抑制する請求項 1〜 3のいずれか記載の回転再生式熱交換器の運転方法。  3. The method for operating a rotary regenerative heat exchanger according to any one of claims 1 to 3, wherein the exhaust gas temperature on the exhaust gas inlet side is suppressed to 150 ° C / Hr or less.
PCT/JP2001/005721 2000-06-30 2001-07-02 Method of operating rotating regenerative heat exchanger WO2002003005A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001267903A AU2001267903A1 (en) 2000-06-30 2001-07-02 Method of operating rotating regenerative heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-197708 2000-06-30
JP2000197708A JP3649999B2 (en) 2000-06-30 2000-06-30 Operation method of rotary regenerative heat exchanger

Publications (1)

Publication Number Publication Date
WO2002003005A1 true WO2002003005A1 (en) 2002-01-10

Family

ID=18695995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005721 WO2002003005A1 (en) 2000-06-30 2001-07-02 Method of operating rotating regenerative heat exchanger

Country Status (4)

Country Link
JP (1) JP3649999B2 (en)
AU (1) AU2001267903A1 (en)
TW (1) TW505702B (en)
WO (1) WO2002003005A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103201579A (en) * 2010-10-07 2013-07-10 宇部兴产株式会社 Thermal efficiency improvement method for heating furnace and thermal efficiency improvement device for heating furnace
CN104100993A (en) * 2014-06-19 2014-10-15 钟小葵 Reciprocating-type air preheater

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5432466B2 (en) * 2008-03-31 2014-03-05 大阪瓦斯株式会社 Combustion device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239228Y2 (en) * 1986-04-02 1990-10-22
US6007761A (en) * 1997-01-31 1999-12-28 Kawasaki Steel Corporation Heat treating furnace for a continously supplied metal strip

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239228Y2 (en) * 1986-04-02 1990-10-22
US6007761A (en) * 1997-01-31 1999-12-28 Kawasaki Steel Corporation Heat treating furnace for a continously supplied metal strip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103201579A (en) * 2010-10-07 2013-07-10 宇部兴产株式会社 Thermal efficiency improvement method for heating furnace and thermal efficiency improvement device for heating furnace
CN104100993A (en) * 2014-06-19 2014-10-15 钟小葵 Reciprocating-type air preheater
CN104100993B (en) * 2014-06-19 2016-02-10 钟小葵 A kind of reciprocating air preheater

Also Published As

Publication number Publication date
AU2001267903A1 (en) 2002-01-14
JP3649999B2 (en) 2005-05-18
TW505702B (en) 2002-10-11
JP2002013891A (en) 2002-01-18

Similar Documents

Publication Publication Date Title
CN107655027A (en) Rotary regenerative air preheater and its Secondary Air side subtract the obstruction-proof method that leaks out
JP2003287240A (en) Air-conditioner
JP3587744B2 (en) Waste heat recovery method and waste heat recovery device for exhaust gas
CN107842872A (en) Rotary regenerative air preheater and its subtract the obstruction-proof method that leaks out
WO2002003005A1 (en) Method of operating rotating regenerative heat exchanger
JP2003232581A (en) Air conditioner
WO2002003004A1 (en) Method of operating rotating regenerative heat exchanger
JP2899247B2 (en) Gas turbine inlet heating and cooling system
JP4241239B2 (en) gas turbine
JP4147728B2 (en) Number control method of boiler
US6863523B2 (en) Crossflow air heater bypass
JP2003269174A (en) Air conditioning device
JP2002115836A (en) Regenerative exhaust gas processing unit
JP2004044914A (en) Combustion device
JP3209913B2 (en) Filter insulation device for refuse incinerator equipment
JP2683016B2 (en) Cupola exhaust gas combustion control device
JP3683780B2 (en) Heat exchange method
JP2003322329A (en) Rotation regenerated air preheater and its soot blower method
JP3515044B2 (en) Gas turbine equipment
JP2004044912A (en) Combustion device
JP3073643B2 (en) Heat exchanger in incinerator
JPS6126343Y2 (en)
KR100390064B1 (en) Heat exchanger combined blower
JPH06123518A (en) Air conditioning and hot water supplying device
JP2020148443A (en) Waste treatment facility

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN ID IN KR MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase