WO2001098805A1 - Gimbal connection structure for connecting undersea equipment and submarine cable - Google Patents

Gimbal connection structure for connecting undersea equipment and submarine cable Download PDF

Info

Publication number
WO2001098805A1
WO2001098805A1 PCT/JP2000/004025 JP0004025W WO0198805A1 WO 2001098805 A1 WO2001098805 A1 WO 2001098805A1 JP 0004025 W JP0004025 W JP 0004025W WO 0198805 A1 WO0198805 A1 WO 0198805A1
Authority
WO
WIPO (PCT)
Prior art keywords
gimbal
connection structure
submarine cable
holes
pair
Prior art date
Application number
PCT/JP2000/004025
Other languages
French (fr)
Japanese (ja)
Inventor
Taiichi Takeda
Makoto Hayakawa
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2000/004025 priority Critical patent/WO2001098805A1/en
Publication of WO2001098805A1 publication Critical patent/WO2001098805A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables
    • G02B6/50Underground or underwater installation; Installation through tubing, conduits or ducts
    • G02B6/506Underwater installation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/08Cable junctions
    • H02G15/10Cable junctions protected by boxes, e.g. by distribution, connection or junction boxes
    • H02G15/12Cable junctions protected by boxes, e.g. by distribution, connection or junction boxes for incorporating transformers, loading coils or amplifiers
    • H02G15/14Cable junctions protected by boxes, e.g. by distribution, connection or junction boxes for incorporating transformers, loading coils or amplifiers specially adapted for submarine cables

Definitions

  • the present invention relates to a gimbal connection structure between a submarine cable such as a submarine repeater and a gain equalizer and a submarine cable.
  • the optical submarine cable is transmitted at appropriate intervals to amplify the attenuated optical signal and prevent deterioration of the transmitted signal.
  • a repeater is provided.
  • the optical submarine cable transmission system generally employs a wavelength division multiplexing system, and a gain equalizer is inserted at a predetermined interval to equalize the gain of each channel.
  • an optical undersea optical branching device is required to split optical submarine cables.
  • Underwater equipment and optical submarine cables in the optical submarine cable transmission system are connected in advance on the ground, and then laid on the seabed by laying vessels.
  • the optical submarine cable is wound up on the ship after passing through a 3-meter diameter sieve installed at the bow of the laying ship and collected from the seabed.
  • customers make various requirements such as the ability to use existing laying vessels, the depth of the recovered water, the recovery speed, and the recovery angle.
  • a gimbal connection structure or an armadillo connection structure has been adopted as the mechanical connection between the underwater equipment and the optical submarine cable.
  • the optical submarine repeater is configured by accommodating a plurality of circuit units including a power supply circuit unit and an amplifier circuit unit in a cylindrical pressure-resistant casing 1 for protecting the inside of the repeater from water pressure.
  • a cylindrical gimbal housing 3 is fixed to both ends of the pressure-resistant casing 1 in the axial direction (hereinafter referred to as the casing axis).
  • the vicinity of the distal end of the gimbal housing 3 is formed thinner than the part on the pressure-resistant housing side to form a ring accommodating portion 3a, and the gimbal ring 5 is inserted and arranged inside the ring accommodating portion 3a.
  • the ring accommodating portion 3a and the gimbal ring 5 are rotatably connected by a first pin 7 orthogonal to the housing axis.
  • a cable retaining part 9 is attached to the end of the optical submarine cable, and a gimbal 11 having a protruding part 11a at the tip is attached to the cable retaining part 9 physically.
  • the gimbal 11 is attached to the gimbal ring 5 by means of the housing shaft and the second pin 13 orthogonal to the first pin 7 with the protruding portion 11 a at the tip inserted inside the gimbal ring 5. It is rotatably connected.
  • the tail cable 17 is drawn out of the pressure-resistant housing 1 through the feedthrough 15. As shown in FIG.
  • Jinparuri ring 5 is to jump out to the inside of the gimbal housing 3 (to prevent interference of the tail cable 1 I and Jinbaruri ring 5 1B, a clearance of about 20 mm is provided between the gimbal ring 5 and the tail cable 17. Therefore, in the conventional gimbal connection structure, both ends of the pressure-resistant housing 1 are provided. The distance between the gimbal pins was relatively long.
  • the optical submarine repeater and the optical submarine cable can be bent about the first pin 7 and can be bent about the second pin 13 orthogonal to this. However, it can be bent in any direction.
  • the maximum bending angle between the optical submarine repeater and the optical submarine cable is about 50 to 55 degrees.
  • An optical submarine cable, in which a plurality of optical submarine repeaters are connected at predetermined intervals, passes through a sheave with a diameter of about 3 m arranged at the bow of the laying ship from the viewpoint of transportation, laying, and recovery work. From the sea floor.
  • Optical submarine cables have been used to increase the length of packing at As a result, the pulling strength of thin cables is lower than that of typical conventional cables.
  • the optical submarine cable transmission system generally responds to the increase in transmission capacity by increasing the number of systems. As the number of systems increases. As shown in Figs. 2A to 2C, the length of the cylinder and length of the underwater equipment increases. 2A to 2C, CI, C2 and C3 indicate the cylinder length, and L1, L2 and L3 indicate the entire length of the device. Table 1 shows the relationship between the number of systems, the cylinder length, and the total length of the equipment. The unit of length is mm.
  • the M values according to the number of systems are shown. As is evident from Table 1, as the GL length increases, the M value increases, and the T2 must be managed with a value that allows for safety in the cable breakage value, and thus may not meet customer requirements.
  • an object of the present invention is to provide a gimbal connection structure between an undersea device and a submarine cable that can reduce the distance between gimbal pins as compared with a conventional structure.
  • a gimbal connection structure between an undersea device and a submarine cable the annular gimbal housing having a pair of first holes fixed to an end of the undersea device; A gimbal ring having a second hole and a first arc-shaped elongated hole; and a pair of gimbal rings inserted into the first and second holes, respectively, and rotatably connecting the gimbal ring to the gimbal housing.
  • the gimbal ring has a second elongated hole formed in a direction orthogonal to the arc-shaped first elongated hole.
  • the first end of the gimbal is inserted into the second elongated hole, and the gimbal is rotatably and slideably connected to the gimbal ring by the second pin.
  • the pair of first holes and the pair of second holes are linearly aligned.
  • the first arc-shaped long hole formed in the gimbal ring has the center of the arc inside the gimbal ring.
  • a gimbal connection structure between an undersea device and a submarine cable wherein the annular gimbal housing has a pair of first holes and is fixed to an end of the undersea device; A gimbal housing having an arc-shaped first elongated hole, and a second elongated hole orthogonal to the arc-shaped first elongated hole and extending in the same direction; A pair of first pins which are inserted and fixed in the holes of 2 and rotatably connect the gimbal ring to the gimbal housing; a first end having a pair of third six formed on both sides thereof; A gimbal having a second end to which a submarine cable is connected, the first end being inserted into the second slot; and a gimbal being inserted into the arc-shaped first slot; In front of the gimbal inserted and fixed in the third hole A pair of second pins rotatably and slidably connected to the g
  • FIG. 1A is a cross-sectional view showing a conventional gimbal connection structure
  • Figure 1B is a cross-sectional view along the line 1B-1B of Figure 1A;
  • Figures 2A to 2C show how the length of the cylinder and the total length of the equipment increase with the number of systems
  • FIG. 3 illustrates the tension balance during cable recovery
  • Fig. 4 shows a gimbal connection structure between the undersea equipment and the submarine cable according to the embodiment of the present invention
  • Fig. 5 is an enlarged view of the gimbal connection structure shown in Fig. 4;
  • Figure 6 is a perspective view of the gimbal housing
  • Figure 7 is a perspective view of the gimbal ring
  • Figure 8 is a cross-sectional view along the line 8-8 in Figure 7;
  • FIG. 9 is a perspective view of the gimbal. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 4 there is shown a side view of the gimbal connection structure 22 between the optical submarine repeater 16 and the optical submarine cable 18 according to the embodiment of the present invention.
  • Reference numeral 14 denotes a sieve with a diameter of 3 m, which is usually installed at the bow of a cable-laying ship.
  • the optical submarine cable 18 is connected to the cable retaining section 20.
  • the optical submarine repeater 16 and the cable retaining section 20 are connected by a gimbal connection structure 22.
  • Reference numeral 44 denotes a bending center of the cable retaining portion 20 with respect to the optical submarine repeater 16.
  • CL is the length of the cylinder of the optical submarine repeater 16
  • GL is the distance between the gimbal pins at both ends of the optical submarine repeater 16.
  • annular gimbal housing 24 is fixed to the end of the optical submarine repeater 16.
  • Gimbal housing 24 Two holes made of beryllium copper and aligned in a straight line as shown in Figure 6.
  • the arched gimbal ring 28 has two screw holes (only one is shown) 30 corresponding to the holes 26 of the gimbal housing 24.
  • the gimbal ring 28 further has an arc-shaped elongated hole 32 and an elongated hole 34 orthogonal to the arc-shaped elongated hole 32 as apparent from FIG.
  • the arc-shaped slots 32 and 34 both extend in the longitudinal direction of the gimbal ring 28.
  • the gimbal ring 28 is made of, for example, perium copper.
  • the gimbal ring 28 is screwed into the gimbal housing 24 by inserting the pin 36 into the screw hole 30 of the gimbal ring 28 through the hole 26 of the gimbal housing 24. It is attached so that it can rotate with 6 as the center of rotation.
  • the gimbal 38 has four screw holes 40 on both sides of its end. Insert the end of the gimbal 38 into the long hole 34 of the gimbal ring 28 and screw the pin 42 into each screw hole 40. As a result, each pin 42 fixed to the gimbal 38 slides in the arc-shaped long hole 32 of the gimbal ring 28, so that the gimbal
  • the gimbal 38 is attached to the gimbal ring 28 so that it can rotate and slide.
  • the gimbal 38 is made of, for example, beryllium copper.
  • Reference numeral 46 denotes a feedthrough of the optical submarine repeater 16, and a tail cable 48 from the optical submarine repeater 16 is taken out of the repeater via the power supply feedthrough — 46, and the gimbal 3 8
  • Each optical fiber of the telescope 48 is spliced with each optical fiber of the optical submarine cable 18 by being introduced into the cable retaining portion 20 through the inside of the optical fiber.
  • the pins 42 are screwed into the respective screw holes 40 of the gimbal 38 from both sides, but the present invention is not limited to this.
  • two screw holes penetrating the end of the gimbal 38 may be formed, and a pin having an intermediate thread may be screwed into each screw hole.
  • two through holes may be formed at the end of the gimbal 38, and a pin may be inserted into each through hole, and then fixed by a suitable fixing means.
  • one pin 42 may be provided on each side of the end of the gimbal 38.
  • the gimbal connection structure between the optical submarine repeater and the optical submarine cable has been described, but the present invention is not limited to this.
  • the present invention can be similarly applied to the connection of other submarine equipment such as gain equalizers and submarine branching equipment to submarine cables.
  • the gimbal ring 28 has an arc-shaped elongated hole 32 in which the pin 42 fixed to the gimbal 38 slides. Since the power supply feedthrough 46 and the tail cable 48 can be accommodated, the gimbal interface can be downsized, and the distance between the end of the underwater equipment and the gimbal rotation center can be reduced to about 50 mm. In the conventional structure, this distance is about 200 mm, so that it can be significantly reduced. As a result, the distance between the gimbal pins on both sides of the underwater equipment is greatly reduced compared to the conventional structure, and the M value can be made relatively small. Therefore, when recovering the optical submarine cable from the deep sea through the existing sheep, the cable tension on the ship can be suppressed to a lower value, and it becomes possible to prevent cable breakage.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Cable Accessories (AREA)

Abstract

A gimbal connection structure for connecting undersea equipment and a submarine cable which includes an annular gimbal housing fixed to the end of the undersea equipment and having a pair of first holes, a gimbal ring having a pair of second holes and an arcuate elongated hole, and a gimbal having a first end formed with a third hole and a second end to which the submarine cable is connected. The pair of first pins are inserted in the first and second holes, respectively, and the gimbal ring is turnably connected to the gimbal housing. Further, the second pin is fixedly inserted in the third hole in the gimbal through the arcuate elongated hole in the gimbal ring. Thereby, the gimbal is turnably and slidably connected to the gimbal ring.

Description

明 細 書 海中機器と海底ケーブルのジンバル接続構造 技 術 分 野  Description Gimbal connection structure between undersea equipment and submarine cables
本発明は、 海底中継器、 利得等化器等の海中機器と海底ケーブルのジンバル接 続構造に関する。 背 景 技 術  The present invention relates to a gimbal connection structure between a submarine cable such as a submarine repeater and a gain equalizer and a submarine cable. Background technology
同軸ケーブルと比較して伝送容量が大きい光ファイバケーブルを採用した光海 底ケーブル伝送方式においては、 減衰した光信号を増幅し且つ伝送信号の劣化を 防止するために、 適当な間隔毎に光海底中継器が設けられる。 近年の光海底ケ一 ブル伝送方式は波長分割多重方式が一般的であり、 各チャネルの利得を等しくす るために利得等化器が所定間隔每に揷入される。 また、 光海底ケーブルを分岐さ せるためには光海中分岐装置が必要である。  In an optical submarine cable transmission system that uses an optical fiber cable that has a larger transmission capacity than a coaxial cable, the optical submarine cable is transmitted at appropriate intervals to amplify the attenuated optical signal and prevent deterioration of the transmitted signal. A repeater is provided. In recent years, the optical submarine cable transmission system generally employs a wavelength division multiplexing system, and a gain equalizer is inserted at a predetermined interval to equalize the gain of each channel. In addition, an optical undersea optical branching device is required to split optical submarine cables.
このような光海底中継器、 利得等化器、 光海中分岐装置等の海中機器と光海底 ケーブルとの接続構造においては、 海中機器の多システム化に伴い装置全長が長 くなる傾向にあるため、 海中機器の接続された光海底ケーブルをケーブル回収時 に所定直径のシーブを通過させる関係上、 装置全長をなるベく短くすることの可 能な海中機器と海底ケーブルのジンバル接続構造が要請されている。  In such a connection structure between an undersea device such as an optical submarine repeater, a gain equalizer, and an optical submarine branching device and an optical submarine cable, the total length of the device tends to become longer as the number of submarine devices increases. Since the optical submarine cable connected to the submarine equipment passes through a sheave with a predetermined diameter when recovering the cable, a gimbal connection structure between the submarine equipment and the submarine cable that can shorten the total length of the equipment is required. ing.
光海底ケーブル伝送方式における海中機器と光海底ケーブルは予め地上で接続 してから敷設船で海底へ敷設される。 また、 ケーブル障害時等には敷設船の船首 に設置した直径 3メートルのシーブを通過し船上に光海底ケーブルが巻き取られ て海底から回収される。 この光海底ケーブルの回収作業については、 既存の敷設 船の使用が可能であること、 回収水深、 回収速度、 回収角度等の種々の要求が顧 客から成される。 これらの回収作業の要求に対応するため、 海中機器と光海底ケ —プル間の機械的接続として、 ジンバル接続構造又はアルマジロ接続構造が採用 されている。  Underwater equipment and optical submarine cables in the optical submarine cable transmission system are connected in advance on the ground, and then laid on the seabed by laying vessels. In the event of a cable failure, etc., the optical submarine cable is wound up on the ship after passing through a 3-meter diameter sieve installed at the bow of the laying ship and collected from the seabed. For this optical submarine cable recovery work, customers make various requirements such as the ability to use existing laying vessels, the depth of the recovered water, the recovery speed, and the recovery angle. In order to meet the demands of these recovery operations, a gimbal connection structure or an armadillo connection structure has been adopted as the mechanical connection between the underwater equipment and the optical submarine cable.
光海底中継器と光海底ケーブルの接続に、 従来使用されているジンバル接続構 造について図 1 A及び図 1 Bを参照してその概要を以下に説明する。 光海底中継 器は、 中継器内部を水圧から保護する円筒状の耐圧筐体 1 内に、 給電回路ュニッ トゃ増幅回路ユニッ トを含む複数の回路ユニッ トを収容して構成される。 耐圧筐 体 1 の軸 (以下筐体軸という) 方向の両端部には、 円筒状のジンバルハウジング 3が固定されている。 ジンバルハウジング 3の先端部近傍は耐圧筐体側の部分よ り も細く形成されてリ ング収容部 3 aとなっており、 このリ ング収容部 3 aの内 側にジンパルリ ング 5が挿入配置され、 リ ング収容部 3 aとジンバルリ ング 5は 筐体軸に直交する第 1 ピン 7 によ り回動自在に連結されている。 Gimbal connection structure conventionally used to connect optical submarine repeaters and optical submarine cables The outline of the structure is described below with reference to FIGS. 1A and 1B. The optical submarine repeater is configured by accommodating a plurality of circuit units including a power supply circuit unit and an amplifier circuit unit in a cylindrical pressure-resistant casing 1 for protecting the inside of the repeater from water pressure. A cylindrical gimbal housing 3 is fixed to both ends of the pressure-resistant casing 1 in the axial direction (hereinafter referred to as the casing axis). The vicinity of the distal end of the gimbal housing 3 is formed thinner than the part on the pressure-resistant housing side to form a ring accommodating portion 3a, and the gimbal ring 5 is inserted and arranged inside the ring accommodating portion 3a. The ring accommodating portion 3a and the gimbal ring 5 are rotatably connected by a first pin 7 orthogonal to the housing axis.
一方、 光海底ケーブルの端部にはケーブル引き留め部 9がー体的に取り付けら れており、 ケーブル引き留め部 9 には先端に突出部 1 1 aを有するジンバル 1 1 がー体的に取り付けられている。 このジンバル 1 1はジンバルリ ング 5の内側に 先端の突出部 1 1 aが挿入配置された状態で、 筐体軸及び第 1 のピン 7 に直交す る第 2のピン 1 3 によりジンバルリ ング 5に回動自在に連結されている。 フィ一 ドスルー 1 5 を介してテールケ一ブル 1 7が耐圧筐体 1の内部から引き出されて いる。 図 1 Bに示すように、 ジンバル 1 1がジンバルハウジング 3 に対して屈曲 すると、 ジンパルリ ング 5がジンバルハウジング 3の内側に飛び出すことになる ( テールケーブル 1 Ί とジンバルリ ング 5の干渉を防止するため、 図 1 Bの状態で ジンバルリ ング 5 とテールケ一ブル 1 7 との間には約 2 0 m mのク リアランスが 設けられている。 このため、 従来のジンバル接続構造では、 耐圧筐体 1 の両端に 配置したジンバルピン間距離が比較的長くなっていた。 On the other hand, a cable retaining part 9 is attached to the end of the optical submarine cable, and a gimbal 11 having a protruding part 11a at the tip is attached to the cable retaining part 9 physically. ing. The gimbal 11 is attached to the gimbal ring 5 by means of the housing shaft and the second pin 13 orthogonal to the first pin 7 with the protruding portion 11 a at the tip inserted inside the gimbal ring 5. It is rotatably connected. The tail cable 17 is drawn out of the pressure-resistant housing 1 through the feedthrough 15. As shown in FIG. 1 B, the bending result against the gimbal 1 1 gimbal housing 3, Jinparuri ring 5 is to jump out to the inside of the gimbal housing 3 (to prevent interference of the tail cable 1 I and Jinbaruri ring 5 1B, a clearance of about 20 mm is provided between the gimbal ring 5 and the tail cable 17. Therefore, in the conventional gimbal connection structure, both ends of the pressure-resistant housing 1 are provided. The distance between the gimbal pins was relatively long.
上述したようなジンバル接続構造によると、 光海底中継器と光海底ケーブルと は、 互いに第 1 ピン 7を中心として屈曲でき、 且つこれに直交する第 2 ピン 1 3 を中心と して屈曲できるため、 任意の方向に屈曲できるようになつている。 この ような従来のジンバル接続構造によると、 光海底中継器と光海底ケーブルとの最 大曲げ角度はおよそ 5 0度〜 5 5度程度である。 複数の光海底中継器が所定の間 隔で接続された光海底ケーブルは、 運搬、 敷設、 回収作業上の観点から、 敷設船 の船首に配置された直径 3 m程度のシーブを通過することによ り、 海底から回収 される。  According to the gimbal connection structure as described above, the optical submarine repeater and the optical submarine cable can be bent about the first pin 7 and can be bent about the second pin 13 orthogonal to this. However, it can be bent in any direction. According to such a conventional gimbal connection structure, the maximum bending angle between the optical submarine repeater and the optical submarine cable is about 50 to 55 degrees. An optical submarine cable, in which a plurality of optical submarine repeaters are connected at predetermined intervals, passes through a sheave with a diameter of about 3 m arranged at the bow of the laying ship from the viewpoint of transportation, laying, and recovery work. From the sea floor.
光海底ケーブルは、 敷設船に一度に詰めこむ長さを増やすためと低価格化のた めに細径化の傾向にあり、 細径ケーブルは典型的な従来のケ一プルに比較して引 つ張り強度が低下している。 光海底ケーブル伝送方式では、 伝送容量の増大に対 応して、 一般的にシステム数を増大して対処している。 システム数を増大すると. 図 2 A〜図 2 Cに示すように海中機器のシリ ンダ長及び装置全長が長くなる。 図 2 A〜図 2 Cにおいて、 C I , C 2及び C 3がシリ ンダ長を示しており、 L 1 , L 2及び L 3が装置全長を示している。 システム数とシリ ンダ長及び装置全長の 関係を表 1に示す。 長さの単位は mmである。 Optical submarine cables have been used to increase the length of packing at As a result, the pulling strength of thin cables is lower than that of typical conventional cables. The optical submarine cable transmission system generally responds to the increase in transmission capacity by increasing the number of systems. As the number of systems increases. As shown in Figs. 2A to 2C, the length of the cylinder and length of the underwater equipment increases. 2A to 2C, CI, C2 and C3 indicate the cylinder length, and L1, L2 and L3 indicate the entire length of the device. Table 1 shows the relationship between the number of systems, the cylinder length, and the total length of the equipment. The unit of length is mm.
Figure imgf000005_0001
図 3を参照して、 ケーブル回収時のケーブル張力のバランスについて説明する < ケーブル敷設船 2の船首には直径 3メートルのシーブ 4が設けられており、 ケー ブル敷設船 2は海 6を航行している。 光海底中継器 1 0はケーブルカツプリ ング 1 2を介して光海底ケーブル 8に接続されている。 今、 下方向のケーブル張力を T l、 船上のケーブル張力を Τ 2と仮定する と、 Τ 1 ΧΑ= Τ 2 ΧΒとなる。 図 から A > Βであるため、 T 1 < T 2となる。 T 2 /T 1 = M (マグ二フィケーシ ヨ ン . ファクター) とすると、 M値はジンバルピン間距離 (装置全長) = GL、 シリ ンダ外径等によ り決定される。 表 1を参照するとシステム数に応じた M値が 示されている。 表 1から明らかなように GLが長くなると M値が大き くな り、 T 2はケーブル破壊値に安全を見込んだ値で管理する必要があるため、 顧客要求諸 条件を満足できない場合がある。
Figure imgf000005_0001
Referring to Fig. 3, the cable tension balance at the time of cable recovery will be described. <The sheave 4 with a diameter of 3 meters is provided at the bow of the cable laying vessel 2, and the cable laying vessel 2 sails in the sea 6. ing. The optical submarine repeater 10 is connected to the optical submarine cable 8 via a cable coupling 12. Assuming that the downward cable tension is T l and the cable tension on the ship is Τ2, Τ1ΧΑ = ΧΑ2ΧΒ. Since A> A from the figure, T 1 <T 2. If T 2 / T 1 = M (magnitude factor), the M value is determined by the gimbal pin distance (total length of the device) = GL, cylinder outer diameter, and so on. Referring to Table 1, the M values according to the number of systems are shown. As is evident from Table 1, as the GL length increases, the M value increases, and the T2 must be managed with a value that allows for safety in the cable breakage value, and thus may not meet customer requirements.
例えば、 光海底ケーブル 8の N T T S (ノ ミナル . トランジェン ト · テンサイ ル ' ス ト レンクス) が 5 0 k N (ニュートン) の場合、 M= l . 2とする と、 T 2 = 1 . 2 x 5 0 = 6 0 kNとなり、 ケーブル強度を超えて しまう。 よって、 T 1の張力が 4 0 k N以下となるように、 ケーブル回収作業を行うこ とが必須とな る。 しかるに、 従来の海中機器と海底ケーブルのジンバル接続構造では、 多シス テム化すると装置全長 (G L) が長くなり、 それに応じて M値が大きくなるため 顧客要求諸条件を満足できない場合があるという問題があった。 よって本発明の目的は、 従来の構造より もジンバルピン間距離を短くすること の可能な海中機器と海底ケーブルのジンバル接続構造を提供することである。 発明の開示 . For example, if the NTTS (nominal.transient tensile 'strength') of the optical submarine cable 8 is 50 kN (Newton), then T = 1.2 x 5 0 = 60 kN, which exceeds the cable strength. Therefore, it is indispensable to carry out the cable recovery work so that the tension of T1 becomes 40 kN or less. However, in the conventional gimbal connection structure between underwater equipment and submarine cables, if multiple systems are used, the overall length (GL) of the equipment will increase, and the M value will increase accordingly. was there. Therefore, an object of the present invention is to provide a gimbal connection structure between an undersea device and a submarine cable that can reduce the distance between gimbal pins as compared with a conventional structure. DISCLOSURE OF THE INVENTION.
本発明の 1つの側面によると、 海中機器と海底ケーブルのジンパル接続構造で あって、 前記海中機器の端部に固定された、 一対の第 1の穴を有する環状ジンバ ルハウジングと ; 一対の第 2の穴と第 1の円弧状の長穴を有するジンバルリング と ; それぞれ前記第 1及び第 2の穴中に挿入され、 前記ジンバルリ ングを前記ジ ンバルハウジングに回動可能に連結する一対の第 1 ピンと ; 第 3の穴が形成され た第 1端部と前記海底ケーブルが連結された第 2端部を有するジンバルと ; 前記 円弧状の第 1の長穴中に挿入されるとともに前記第 3の穴中に挿入固定された、 前記ジンバルを前記ジンバルリ ングに回動可能且つスライ ド可能に連結する第 2 ピンと ; を具備したことを特徴とする海中機器と海底ケーブルのジンバル接続構 造が提供される。  According to one aspect of the present invention, there is provided a gimbal connection structure between an undersea device and a submarine cable, the annular gimbal housing having a pair of first holes fixed to an end of the undersea device; A gimbal ring having a second hole and a first arc-shaped elongated hole; and a pair of gimbal rings inserted into the first and second holes, respectively, and rotatably connecting the gimbal ring to the gimbal housing. A first pin; a gimbal having a first end formed with a third hole and a second end connected to the submarine cable; and a gimbal inserted into the first arc-shaped long hole and And a second pin inserted and fixed in the hole of No. 3 and rotatably and slidingly connecting the gimbal to the gimbal ring; and a gimbal connection structure between the undersea equipment and the submarine cable. Provided That.
好ま しくは、 ジンバルリ ングは円弧状の第 1の長穴に直交する方向に形成され た第 2の長穴を有している。 この第 2の長穴中にジンバルの第 1端部が挿入され、 ジンバルがジンバルリ ングに対して回動可能且つスライ ド可能に第 2ピンにより 連結される。 好ま しくは、 一対の第 1の穴及び一対の第 2の穴は直線上に整列し ている。 ジンバルリ ングに形成された円弧状の第 1 の長穴は、 ジンバルリ ングの 内側に円弧の中心を有している。  Preferably, the gimbal ring has a second elongated hole formed in a direction orthogonal to the arc-shaped first elongated hole. The first end of the gimbal is inserted into the second elongated hole, and the gimbal is rotatably and slideably connected to the gimbal ring by the second pin. Preferably, the pair of first holes and the pair of second holes are linearly aligned. The first arc-shaped long hole formed in the gimbal ring has the center of the arc inside the gimbal ring.
本発明の他の側面によると、 海中機器と海底ケーブルのジンバル接続構造であ つて、 前記海中機器の端部に固定された、 一対の第 1 の穴を有する環状ジンバル ハウジングと ; 一対の第 2の穴と、 円弧状の第 1の長穴と、 該円弧状の第 1の長 穴と直交し且つ同一方向に伸長する第 2の長穴を有するジンバルハウジングと ; それそれ前記第 1及び第 2の穴中に挿入固定され、 前記ジンバルリ ングを前記ジ ンバルハウジングに回動可能に連結する一対の第 1 ピンと ; その両側に一対の第 3の六が形成された第 1端部と前記海底ケーブルが連結された第 2端部を有し、 該第 1端部が前記第 2の長穴中に挿入されたジンバルと ; 前記円弧状の第 1の長 穴中に挿入されるとともに前記第 3の穴中に揷入固定された、 前記ジンバルを前 記ジンバルリ ングに回動可能且つスラィ ド可能に連結する一対の第 2ピンと ; を 具備したことを特徴とする海中機器と海底ケーブルのジンバル接続構造が提供さ れる。 図面の簡単な説明 According to another aspect of the present invention, there is provided a gimbal connection structure between an undersea device and a submarine cable, wherein the annular gimbal housing has a pair of first holes and is fixed to an end of the undersea device; A gimbal housing having an arc-shaped first elongated hole, and a second elongated hole orthogonal to the arc-shaped first elongated hole and extending in the same direction; A pair of first pins which are inserted and fixed in the holes of 2 and rotatably connect the gimbal ring to the gimbal housing; a first end having a pair of third six formed on both sides thereof; A gimbal having a second end to which a submarine cable is connected, the first end being inserted into the second slot; and a gimbal being inserted into the arc-shaped first slot; In front of the gimbal inserted and fixed in the third hole A pair of second pins rotatably and slidably connected to the gimbal ring; and a gimbal connection structure between the undersea equipment and the submarine cable. BRIEF DESCRIPTION OF THE FIGURES
図 1 Aは従来のジンバル接続構造を示す断面図 ;  FIG. 1A is a cross-sectional view showing a conventional gimbal connection structure;
図 1 Bは図 1 Aの 1 B— 1 B線に沿った断面図 ;  Figure 1B is a cross-sectional view along the line 1B-1B of Figure 1A;
図 2 A〜図 2 Cはシステム数に応じてシリ ンダ長及び装置全長が増加する様子 を示す図 ;  Figures 2A to 2C show how the length of the cylinder and the total length of the equipment increase with the number of systems;
図 3はケーブル回収時の張力バランスを説明する図 ;  Figure 3 illustrates the tension balance during cable recovery;
図 4は本発明実施形態の海中機器と海底ケーブルのジンバル接続構造を示す 図 ;  Fig. 4 shows a gimbal connection structure between the undersea equipment and the submarine cable according to the embodiment of the present invention;
図 5は図 4に示したジンバル接続構造の拡大図 ;  Fig. 5 is an enlarged view of the gimbal connection structure shown in Fig. 4;
図 6はジンバルハゥジング斜視図 ;  Figure 6 is a perspective view of the gimbal housing;
図 7はジンバルリ ング斜視図 ;  Figure 7 is a perspective view of the gimbal ring;
図 8は図 7の 8— 8線に沿った断面図 ;  Figure 8 is a cross-sectional view along the line 8-8 in Figure 7;
図 9はジンバルの斜視図である。 発明を実施するための最良の態様  FIG. 9 is a perspective view of the gimbal. BEST MODE FOR CARRYING OUT THE INVENTION
図 4を参照する と、 本発明実施形態の光海底中継器 1 6 と光海底ケーブル 1 8 のジンパル接続構造 2 2の側面図が示されている。 符号 1 4は直径 3 mのシ一ブ であり、 通常ケーブル敷設船の船首に設置されている。 光海底ケーブル 1 8はケ 一ブル引き留め部 2 0.に接続されており、 光海底中継器 1 6 とケーブル引き留め 部 2 0がジンバル接続構造 2 2により接続されている。 4 4は光海底中継器 1 6 に対するケーブル引き留め部 2 0の屈曲中心を示している。 C Lは光海底中継器 1 6のシリ ンダ長であり、 G Lは光海底中継器 1 6両端のジンバルピン間距離を 示している。  Referring to FIG. 4, there is shown a side view of the gimbal connection structure 22 between the optical submarine repeater 16 and the optical submarine cable 18 according to the embodiment of the present invention. Reference numeral 14 denotes a sieve with a diameter of 3 m, which is usually installed at the bow of a cable-laying ship. The optical submarine cable 18 is connected to the cable retaining section 20. The optical submarine repeater 16 and the cable retaining section 20 are connected by a gimbal connection structure 22. Reference numeral 44 denotes a bending center of the cable retaining portion 20 with respect to the optical submarine repeater 16. CL is the length of the cylinder of the optical submarine repeater 16, and GL is the distance between the gimbal pins at both ends of the optical submarine repeater 16.
図 5のジンバル接続構造詳細図に示すように、 光海底中継器 1 6の端部に環状 のジンバルハ ジング 2 4が固定されている。 ジンバルハウジング 2 4は例えば ベリ リ ゥム銅から形成されており、 図 6に示すように直線上に整列した 2個の穴As shown in the detailed diagram of the gimbal connection structure in FIG. 5, an annular gimbal housing 24 is fixed to the end of the optical submarine repeater 16. Gimbal housing 24 Two holes made of beryllium copper and aligned in a straight line as shown in Figure 6.
2 6を有している。 図 7に示すように、 アーチ状のジンバルリ ング 2 8はジンバ ルハウジング 2 4の穴 2 6 に対応する 2個のネジ穴 ( 1つのみ図示) 3 0を有し ている。 ジンバルリ ング 2 8は更に、 円弧状の長^ 3 2 と、 図 8を参照する と明 らかなよう にこの円弧状の長穴 3 2 に直交する長穴 3 4を有している。 円弧状の 長穴 3 2及び長穴 3 4はともにジンバルリ ング 2 8の縦方向に伸長している。 ジ ンバルリ ング 2 8は例えばペリ リ ウム銅から形成されている。 Has 26. As shown in FIG. 7, the arched gimbal ring 28 has two screw holes (only one is shown) 30 corresponding to the holes 26 of the gimbal housing 24. The gimbal ring 28 further has an arc-shaped elongated hole 32 and an elongated hole 34 orthogonal to the arc-shaped elongated hole 32 as apparent from FIG. The arc-shaped slots 32 and 34 both extend in the longitudinal direction of the gimbal ring 28. The gimbal ring 28 is made of, for example, perium copper.
図 5に示すように、 ピン 3 6をジンバルハウジング 2 4の穴 2 6を通してジン バルリ ング 2 8のネジ穴 3 0にねじ込むことによ り、 ジンバルリ ング 2 8はジン パルハウジング 2 4にピン 3 6を回動中心と して回動可能に取り付けられる。 図 9を参照する と、 ジンバル 3 8はその端部両側に 4個のネジ穴 4 0を有して いる。 ジンバル 3 8の端部をジンバルリ ング 2 8の長穴 3 4中に挿入し、 ピン 4 2を各ネジ穴 4 0 中にねじ込む。 これにより、 ジンバル 3 8に固定された各ピン 4 2がジンパルリ ング 2 8の円弧状の長穴 3 2中をスライ ドするため、 ジンバル As shown in Fig. 5, the gimbal ring 28 is screwed into the gimbal housing 24 by inserting the pin 36 into the screw hole 30 of the gimbal ring 28 through the hole 26 of the gimbal housing 24. It is attached so that it can rotate with 6 as the center of rotation. Referring to FIG. 9, the gimbal 38 has four screw holes 40 on both sides of its end. Insert the end of the gimbal 38 into the long hole 34 of the gimbal ring 28 and screw the pin 42 into each screw hole 40. As a result, each pin 42 fixed to the gimbal 38 slides in the arc-shaped long hole 32 of the gimbal ring 28, so that the gimbal
3 8はジンバルリ ング 2 8に回動可能且つスラィ ド可能に取り付けられる。 ジン バル 3 8は例えばベリ リ ゥム銅から形成されている。 38 is attached to the gimbal ring 28 so that it can rotate and slide. The gimbal 38 is made of, for example, beryllium copper.
4 6は光海底中継器 1 6の給電フイードスルーであり、 この給電フィ一ドスル — 4 6を介して光海底中継器 1 6からのテールケーブル 4 8が中継器外部に取り 出され、 ジンパル 3 8の内部を通ってケーブル引き留め部 2 0内に導入され、 テ —ルケ一プル 4 8の各光フアイバが光海底ケーブル 1 8の各光ファイバとスプラ イシングされる。  Reference numeral 46 denotes a feedthrough of the optical submarine repeater 16, and a tail cable 48 from the optical submarine repeater 16 is taken out of the repeater via the power supply feedthrough — 46, and the gimbal 3 8 Each optical fiber of the telescope 48 is spliced with each optical fiber of the optical submarine cable 18 by being introduced into the cable retaining portion 20 through the inside of the optical fiber.
上述した実施形態では、 ジンバル 3 8の各ネジ穴 4 0中に両側からピン 4 2 を 螺合しているが、 本発明はこれに限定されるものではない。 例えば、 ジンバル 3 8の端部を貫通する 2個のネジ穴を形成し、 各ネジ穴中に中間部にネジ山を有す るピンをねじ込むようにしてもよい。 或いは、 ジンバル 3 8の端部に 2個の貫通 穴を形成し、 各貫通穴中にピンを挿入してから適当な固定手段によ り固定しても よい。 更に、 ジンバル 3 8の端部の両側にピン 4 2を 1個ずつ設けるようにして もよい。 また、 以上説明した実施形態では、 光海底中継器と光海底ケーブルのジ ンバル接続構造について説明したが、 本発明はこれに限定されるものではなく、 利得等化器、 海中分岐装置等の他の海中機器と海底ケーブルとの接続にも同様に 適用可能である。 産業上の利用可能性 In the above-described embodiment, the pins 42 are screwed into the respective screw holes 40 of the gimbal 38 from both sides, but the present invention is not limited to this. For example, two screw holes penetrating the end of the gimbal 38 may be formed, and a pin having an intermediate thread may be screwed into each screw hole. Alternatively, two through holes may be formed at the end of the gimbal 38, and a pin may be inserted into each through hole, and then fixed by a suitable fixing means. Further, one pin 42 may be provided on each side of the end of the gimbal 38. Further, in the embodiment described above, the gimbal connection structure between the optical submarine repeater and the optical submarine cable has been described, but the present invention is not limited to this. The present invention can be similarly applied to the connection of other submarine equipment such as gain equalizers and submarine branching equipment to submarine cables. Industrial applicability
本発明の海中機器と海底ケーブルのジンバル接続構造によると、 ジンバル 3 8 に固定されたピン 4 2が摺動する円弧状の長穴 3 2内を有するアーチ状のジンバ ルリ ング 2 8の内側に、 給電フィ一ドスルー 4 6及びテールケーブル 4 8を収容 できるため、 ジンバルインターフェースを小型化でき、 海中機器の端部とジンバ ル回転中心との間の距離を約 5 0 m m程度に短縮化できる。 従来構造ではこの距 離は約 2 0 0 m m程度であったため、 大幅な短縮化が可能となる。 その結果、 海 中機器両側のジンバルピン間距離が従来構造に比較して大幅に短縮化され、 M値 を比較的小さ くすることができる。 よって、 光海底ケーブルを既存のシープを介 して深海中から回収する場合、 船上のケーブル張力をより低い値に抑えることが でき、 ケーブルの破壊を防止することが可能となる。  According to the gimbal connection structure between the undersea equipment and the submarine cable of the present invention, the gimbal ring 28 has an arc-shaped elongated hole 32 in which the pin 42 fixed to the gimbal 38 slides. Since the power supply feedthrough 46 and the tail cable 48 can be accommodated, the gimbal interface can be downsized, and the distance between the end of the underwater equipment and the gimbal rotation center can be reduced to about 50 mm. In the conventional structure, this distance is about 200 mm, so that it can be significantly reduced. As a result, the distance between the gimbal pins on both sides of the underwater equipment is greatly reduced compared to the conventional structure, and the M value can be made relatively small. Therefore, when recovering the optical submarine cable from the deep sea through the existing sheep, the cable tension on the ship can be suppressed to a lower value, and it becomes possible to prevent cable breakage.

Claims

請 求 の 範 囲 The scope of the claims
1 . 海中機器と海底ケーブルのジンバル接続構造であって、 1. Gimbal connection structure between underwater equipment and submarine cable,
前記海中機器の端部に固定された、 一対の第 1の穴を有する環状ジンバルハゥ ジングと ;  An annular gimbal housing having a pair of first holes fixed to an end of the undersea equipment;
一対の第 2の穴と円弧状の第 1 の長穴を有するジンバルリ ングと ; ' それぞれ前記第 1及び第 2の穴中に挿入され、 前記ジンバルリ ングを前記ジン バルハウジングに回動可能に連結する一対の第 1 ピンと ;  A gimbal ring having a pair of second holes and an arc-shaped first elongated hole; 'inserted into the first and second holes, respectively, and rotatably connecting the gimbal ring to the gimbal housing. A pair of first pins to perform;
第 3の穴が形成された第 1端部と前記海底ケーブルが連結された第 2端部を有 するジンパルと ;  A gimbal having a first end in which a third hole is formed and a second end to which the submarine cable is connected;
前記円弧状の第 1の長穴中に挿入されるとともに前記第 3の穴中に挿入固定さ れた、 前記ジンバルを前記ジンバルリ ングに回動可能且つスライ ド可能に連結す る第 2 ピンと ;  A second pin inserted into the first arc-shaped long hole and inserted and fixed into the third hole, for connecting the gimbal to the gimbal ring so as to be rotatable and slidable;
を具備したことを特徴とする海中機器と海底ケーブルのジンバル接続構造。 A gimbal connection structure between undersea equipment and a submarine cable, comprising:
2 . 前記ジンパルリ ングは、 前記ジンバルの第 1端部が挿入される前記円弧状 の第 1の長六と直交する第 2の長穴を有している請求項 1記載の海中機器と海底 ケーブルのジンバル接続構造。 2. The undersea equipment and submarine cable according to claim 1, wherein the gimbal ring has a second elongated hole orthogonal to the arc-shaped first elongated hole into which the first end of the gimbal is inserted. Gimbal connection structure.
3 . 前記第 2 ピンは前記ジンバルの第 1端部に互いに離間して一対挿入固定さ れており、 該一対の第 2 ピンが前記ジンバルリ ングの前記円弧状の第 1の長穴中 に揷入されている請求項 2記載の海中機器と海底ケーブルのジンバル接続構造。 3. The second pin is inserted and fixed to the first end of the gimbal while being spaced apart from each other, and the pair of second pins are inserted into the arc-shaped first elongated hole of the gimbal ring. 3. The gimbal connection structure for submarine equipment and a submarine cable according to claim 2, wherein
4 . 前記一対の第 1の穴と一対の第 2の穴は直線上に整列している請求項 2記 載の海中機器と海底ケーブルのジンバル接続構造。 4. The gimbal connection structure of undersea equipment and a submarine cable according to claim 2, wherein the pair of first holes and the pair of second holes are aligned in a straight line.
5 . 前記円弧状の第 1の長穴は前記ジンバルリ ングの内側に円弧の中心を有す る請求項 2記載の海中機器と海底ケーブルのジンバル接続構造。  5. The gimbal connection structure for undersea equipment and a submarine cable according to claim 2, wherein the arc-shaped first elongated hole has a center of the arc inside the gimbal ring.
6 . 海中機器と海底ケーブルのジンパル接続構造であって、  6. Gimpal connection structure between underwater equipment and submarine cable,
前記海中機器の端部に固定された、 一対の第 1の穴を有する環状ジンバルハウ ジングと ;  An annular gimbal housing having a pair of first holes secured to an end of the undersea equipment;
一対の第 2の穴と、 円弧状の第 1の長穴と、 該円弧状の第 1の長穴と直交し且 つ同一方向に伸長する第 2の長穴を有するジンバルハウジングと ; それそれ前記第 1及び第 2の穴中に挿入固定され、 前記ジンバルリングを前記 ジンバルハゥジングに回動可能に連結する一対の第 1 ピンと ; A pair of second holes, an arc-shaped first elongated hole, and an orthogonal to the arc-shaped first elongated hole; A gimbal housing having a second elongated hole extending in the same direction; and a pair of gimbal housings inserted and fixed in the first and second holes, respectively, and rotatably connecting the gimbal ring to the gimbal housing. The first pin;
その両側に一対の第 3の穴が形成された第 1端部と前記海底ケーブルが連結さ れた第 2端部を有し、 該第 1端部が前記第 2の長六中に挿入されたジンバルと ; 前記円弧状の第 1の長穴中に挿入されるとともに前記第 3の穴中に挿入固定さ れた、 前記ジンバルを前記ジンバルリ ングに回動可能且つスライ ド可能に連結す る一対の第 2ピンと ;  It has a first end having a pair of third holes formed on both sides thereof and a second end to which the submarine cable is connected, and the first end is inserted into the second slot. Connecting the gimbal inserted into the arc-shaped first elongated hole and fixedly inserted into the third hole, to the gimbal ring so as to be rotatable and slidable. A pair of second pins;
を具備したことを特徴とする海中機器と海底ケーブルのジンバル接続構造。  A gimbal connection structure between undersea equipment and a submarine cable, comprising:
7 . 前記第 3の穴は前記ジンバルの第 1端部の両側に 2対形成されており、 前 記第 2ピンは 2対設けられそれぞれ前記第 3の穴中に揷入固定されている請求項 6記載の海中機器と海底ケーブルのジンパル接続構造。 7. Two pairs of the third holes are formed on both sides of the first end of the gimbal, and two pairs of the second pins are provided and are respectively inserted and fixed in the third holes. Item 6. The underground equipment and submarine cable gimbal connection structure according to item 6.
PCT/JP2000/004025 2000-06-21 2000-06-21 Gimbal connection structure for connecting undersea equipment and submarine cable WO2001098805A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/004025 WO2001098805A1 (en) 2000-06-21 2000-06-21 Gimbal connection structure for connecting undersea equipment and submarine cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/004025 WO2001098805A1 (en) 2000-06-21 2000-06-21 Gimbal connection structure for connecting undersea equipment and submarine cable

Publications (1)

Publication Number Publication Date
WO2001098805A1 true WO2001098805A1 (en) 2001-12-27

Family

ID=11736166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004025 WO2001098805A1 (en) 2000-06-21 2000-06-21 Gimbal connection structure for connecting undersea equipment and submarine cable

Country Status (1)

Country Link
WO (1) WO2001098805A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01131017U (en) * 1988-03-01 1989-09-06
JPH03212113A (en) * 1989-11-15 1991-09-17 Stc Plc Flexible cable termination
JPH10260331A (en) * 1997-03-17 1998-09-29 Fujitsu Ltd Gimbals connection structure between underwater equipment and submarine cable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01131017U (en) * 1988-03-01 1989-09-06
JPH03212113A (en) * 1989-11-15 1991-09-17 Stc Plc Flexible cable termination
JPH10260331A (en) * 1997-03-17 1998-09-29 Fujitsu Ltd Gimbals connection structure between underwater equipment and submarine cable

Similar Documents

Publication Publication Date Title
US9176295B2 (en) Stranded optical cable with connectors
ES2674887T3 (en) Interconnect cable for optical fibers
US7603012B1 (en) Optical cable with peelable strength member portion
JPH05142428A (en) Optical fiber cable having fiber branch without splice and manufacture thereof
EP2589995B1 (en) Optical cable connection box with auxiliary device for gap filling and waterproofing
KR20200030544A (en) Inlet head assembly
NO180609B (en) Tensile head for ribbon-type fiber optic cables provided with respective end connector pieces
EP3786679A1 (en) Bendable optical fibre cable
JP2010237153A (en) Sea-floor observation system
US9164233B2 (en) Field installable cable splice system
NO327818B1 (en) Electrical coupling device for interconnecting power cable segments
US20050238311A1 (en) Support fixture and method for supporting subscriber specific fiber optic drop wire
WO2001098805A1 (en) Gimbal connection structure for connecting undersea equipment and submarine cable
KR20200030545A (en) Inlet head assembly
JP4454500B2 (en) Optical amplifier module built in universal cable joint for submarine optical transmission system
US20230228962A1 (en) Optical cable member,towing member, and towing method
GB2329487A (en) Combined optic fibre/electrical well logging cable
CN111999822B (en) Optical fiber tensile plate
JP2007101955A (en) Optical fiber unit and optical fiber cable
US9715073B1 (en) Optical trunk cable having web-connected sub-unitized configuration
US20070230879A1 (en) Armored fiber optic cable having a centering element and methods of making
JPH1048491A (en) Terminal structure of optical cable with connector
JP2005201915A (en) Connection structure of underwater equipment and underwater cable
AU735821B2 (en) Submarine optical cable joint with terminating sockets
JP2009128711A (en) Optical fiber cable and information wiring system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

NENP Non-entry into the national phase

Ref country code: JP

Ref country code: JP

Ref country code: JP

Ref country code: JP

Ref country code: JP