WO2001092589A1 - Titanium alloy excellent in ductility, fatigue strength and rigidity and method for producing the same - Google Patents

Titanium alloy excellent in ductility, fatigue strength and rigidity and method for producing the same Download PDF

Info

Publication number
WO2001092589A1
WO2001092589A1 PCT/JP2000/003461 JP0003461W WO0192589A1 WO 2001092589 A1 WO2001092589 A1 WO 2001092589A1 JP 0003461 W JP0003461 W JP 0003461W WO 0192589 A1 WO0192589 A1 WO 0192589A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium alloy
fatigue strength
ductility
rigidity
producing
Prior art date
Application number
PCT/JP2000/003461
Other languages
French (fr)
Japanese (ja)
Inventor
Nozomu Ariyasu
Satoshi Matsumoto
Original Assignee
Sumitomo Metal Industries, Ltd.
Honda Giken Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd., Honda Giken Kogyo Kabushiki Kaisha filed Critical Sumitomo Metal Industries, Ltd.
Priority to PCT/JP2000/003461 priority Critical patent/WO2001092589A1/en
Priority to EP00929912A priority patent/EP1295955A4/en
Publication of WO2001092589A1 publication Critical patent/WO2001092589A1/en
Priority to US10/303,731 priority patent/US20030084970A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Definitions

  • Titanium alloy with excellent ductility, fatigue strength and rigidity and its manufacturing method
  • the present invention is useful for structural parts that require light weight and excellent mechanical properties, such as automobile engine conrods, valves, camshafts, crankshafts, pushrods, aircraft, and high-speed railway vehicles.
  • the present invention relates to a titanium alloy having high rigidity and excellent ductility and fatigue strength, and a method for producing the same. Background art
  • Titanium alloys are lightweight, have high strength, and are also excellent in corrosion resistance and heat resistance. Therefore, application to various mechanical parts for automobiles, aircraft, and high-speed railway vehicles is being studied.
  • titanium alloys have a Young's modulus that is about half that of steel materials, so when applied to mechanical structural materials, the occurrence of buckling and bending must be considered.
  • a design that increases the cross-sectional area of the part is required to secure a certain strength.
  • Such component design makes it impossible to take advantage of the excellent properties of titanium alloy such as light weight and high strength.
  • JP-A-5-5142 proposes a method for producing a titanium-based composite material in which a TiB solid solution is dispersed at a predetermined volume ratio in a matrix made of a titanium alloy. According to this manufacturing method, a composite material exhibiting excellent properties such as strength, rigidity, and abrasion resistance from room temperature to high temperature can be obtained.
  • melting, sintering, or powder metallurgy was premised because of poor plastic workability, and application to large structural materials was difficult.
  • knowledge on the matrix structure of the manufactured composite materials is not disclosed, and it is unclear whether ductility and fatigue strength required for structural materials can be secured.
  • Japanese Patent Application Laid-Open No. 10-1760 proposes a particle-reinforced titanium-based composite material containing TiB or TiC particles and using a 1-type titanium alloy as a matrix and controlling the structure to a needle-like phase structure.
  • a particle-reinforced titanium-based composite material containing TiB or TiC particles and using a 1-type titanium alloy as a matrix and controlling the structure to a needle-like phase structure.
  • TiB or TiC is used as the ceramic particles for reinforcement, so the powder metallurgy method is premised on its production, and it is difficult to apply it to large structural materials.
  • the matrix structure becomes a needle-like structure, the Young's modulus is high, but sufficient ductility cannot be obtained. Disclosure of the invention
  • titanium alloys have excellent specific strength, but have a problem that their Young's modulus is significantly lower than that of steel materials.
  • various types of composite materials have been studied, but problems remain in hot workability and ductility.
  • structural components are used in even more severe environments and are required to reduce manufacturing costs, and are required to have excellent hot workability and to have predetermined strength characteristics. Become so.
  • automotive condolution parts are required to have hot workability, high rigidity, excellent ductility and excellent fatigue strength. It has become.
  • titanium alloys having these characteristics have not been developed yet.
  • the present invention has been made in view of a request for development of a titanium alloy used for such a mechanical component, and is a titanium alloy which is hot workable and has excellent ductility, fatigue strength and rigidity, and a method for producing the same. Intended to provide ing.
  • a specific object of the present invention is to be able to perform hot forging or hot rolling, to have a high rigidity with a tensile strength of at least lOOMpa and a Young's modulus of at least 130 Gpa, and to have a predetermined ductility and fatigue strength. We are developing titanium alloys.
  • the present inventors conducted various studies on the components, finely dispersed particles, and matrix structure in order to develop the above-mentioned titanium alloy. As a result, the following findings (a) to (c) were obtained. I got it.
  • Applicable dispersed particles include titanium carbide or titanium boride generated by crystallization and / or precipitation reaction in the matrix, but their Young's modulus as particles is 1.3 times or more larger than titanium carbide It is effective to use titanium boride.
  • phase stabilizing elements When aging treatment is performed on titanium alloys containing Hf with Al, oxygen, or Sn or I, these components exhibit age hardening that promotes the formation of intermetallic compounds (Ti 3 Al). Fatigue strength can be greatly improved.
  • the ⁇ -phase stabilizing element has an effect of lowering the Young's modulus, but has an effect of improving hot workability.
  • the present invention has been completed on the basis of the above findings, and has a method for producing a titanium alloy of the following (1), (3) and (4), and a titanium alloy of the following (2), (3) and (4): The main point is.
  • 0.5 to 3.0%
  • a titanium alloy in which metal boride is uniformly crystallized and / or precipitated in the matrix, and the matrix structure is equiaxed ⁇ structure Is a titanium alloy having excellent ductility, fatigue strength and stiffness characterized by having a content of at least 40 vol%.
  • This titanium alloy is of type or ⁇ + type.
  • This is a method for producing a titanium alloy with excellent ductility, fatigue strength and rigidity, characterized in that the heating temperature of the alloy is set to be 10 ° C or lower than that of Transus.
  • the solution treatment is performed in a temperature range of (? Transus-350 ° C) to (? Transzas-10 ° C), and if necessary, an aging treatment is performed.
  • FIG. 1 is a diagram showing various properties of a titanium alloy tested in Example 1 after solution treatment.
  • FIG. 2 is a view showing various properties of the titanium alloy tested in Example 1 after solution treatment or after aging treatment.
  • the metal boride is finely crystallized and / or precipitated and uniformly dispersed in the matrix, and if necessary, an appropriate amount of a phase stabilizing element such as Al or oxygen is contained.
  • the matrix structure is controlled to have an equiaxial structure ratio (hereinafter also referred to as “equiaxial ratio”) of at least 40% in terms of area ratio (same as volume ratio), thereby improving ductility and It is characterized by ensuring fatigue strength.
  • Sn, Zr, and Hf which are neutral elements, may be contained as necessary to improve high-temperature strength, improve creep resistance, or use a ⁇ phase stabilizing element as a ⁇ phase monolayer.
  • the amount of addition is limited by the V equivalent to such an extent that it does not become too small, so that ⁇ transduction is reduced and hot workability is improved.
  • Titanium alloys are classified into three types according to their microstructure at room temperature: type 5, +5 and '/ ?, and the present invention is directed to ⁇ and type + titanium alloys. .
  • equiaxed tissue is superior to acicular tissue.
  • a mixture with a needle-like structure generated by transformation from the ⁇ phase may be used.
  • the ratio of the equiaxed structure that is, the equiaxed ratio must be 40% or more in area ratio.
  • the equiaxed ratio is 50% or more.
  • the microstructure can be observed with an optical microscope after a sample is taken from the alloy matrix and polished and corroded.
  • the area ratio of the equiaxed ⁇ -structure specified in the present invention is obtained by performing image processing on the matrix of a microscopically observed tissue photograph, classifying the matrix into equiaxed tissue and needle-shaped tissue, and determining the ratio. Measure.
  • the reason why the equiaxial ratio is defined in the present invention is that the properties of the ductility and the fatigue strength of the titanium alloy largely depend on the area ratio of the equiaxial braided structure. 2.
  • the metal boride (Ti B) in the matrix of the titanium alloy B is contained and crystallized and / or precipitated during solidification and cooling.
  • the Young's modulus of the titanium alloy is very high relative to the titanium alloy, and the Young's modulus of the titanium alloy can be improved in accordance with the composite rule.
  • the content is set to 0.5 to 3.0%.
  • ⁇ -phase stabilizing element Al and oxygen are phase stabilizing elements, have a large solid solution hardening effect, and significantly improve the Young's modulus. However, if 1 is less than 5.5% and oxygen is less than 0.07%, the effect is not sufficiently exhibited, while if A1 exceeds 10% and oxygen exceeds 0.25%, workability and ductility decrease. I do. Therefore, the content of both should be A1: 5.5 to 10% and 0: 0.07 to 0.25%. Desirably, A1: 7 to 9% and oxygen: 0.07 to 0.15%.
  • phase stabilizing elements include C, H and N, all of which reduce the room-temperature ductility, so the upper limits are C: 0.1%, H: 0.05% and N: 0.1%. .
  • a neutral element or a Z and? Phase stabilizing element can be blended.
  • any of the added elements dissolve in the matrix.
  • most of the neutral elements Zr and Hf form solid solutions in the matrix, but crystallize and / or precipitate zirconium boride and hafnium borohydride as metal borides in trace amounts. Since these are very small, improvement in Young's modulus cannot be expected.
  • Sn, Zr, and Hf which are neutral elements, can be contained.
  • Sn, Zr, and Hf exert the effect of solid solution strengthening and have little effect on improving Young's modulus, but can increase high-temperature strength.
  • the upper limit is set to 20% in total. Desirably, the total is 5% or less.
  • Phase stabilizing elements include V, Mo, Cr, Fe, Nb, Ni and W.
  • the contained / phase stabilizing element has the effect of lowering the transus and improving the hot workability.
  • these elements form a solid solution in the titanium alloy matrix and suppress intermetallic compounds (Ti 3 Al) generated more than necessary. This has the effect of increasing the content of A1.
  • an excessive content greatly reduces the Young's modulus, so one or more types can be added in a range of 10% or less in V equivalent shown by the following formula (a). Desirably, the V equivalent is 5% or less.
  • Titanium alloy ingots are produced by adding titanium sponge, which is a titanium raw material, to pure Al, electrolytic Sn, Zr sponge, pure Hf, A1-V master alloy, Al-Mo master alloy, and Mo, Cr, V, etc.
  • a single substance is appropriately selected and blended in a predetermined amount to prepare a compacted molten raw material.
  • A1 boride and Fe boride are used as the B source in the raw material to crystallize, precipitate and disperse Ti B in the titanium alloy.
  • the oxygen content of Ingo' metropolitan can be adjusted to some extent by the type of titanium sponge, if you need to adjust in large amounts, the Ti_ ⁇ 2 is used as the adjustment member.
  • the adjusted raw material is arc-melted by melting a consumable electrode by a vacuum melting furnace or by non-consumable electrode melting by plasma arc melting to produce an alloy ingot.
  • the produced titanium alloy ingot is subjected to hot working by forging or rolling to obtain a predetermined microstructure, and is appropriately subjected to heat treatment to adjust mechanical properties.
  • heat treatment to adjust mechanical properties.
  • the structure in the matrix varies greatly depending on the heating conditions in the vicinity of the transus.
  • hot working is performed at a temperature higher than the transus, needle-like ⁇ -structures are likely to appear, and the heat at a temperature lower than the transus In the case of cold working, equiaxed tissue is likely to appear.
  • the heating temperature at the time of finishing hot working is lower than the temperature of Transus.
  • the phase and the / phase are mixed.
  • the acicular structure and the equiaxed structure mix.
  • the heating temperature during finishing hot working must be at least 10 ° C lower than Transus.
  • the lower limit of the heating temperature is not particularly limited, but may be any temperature higher than the lower limit of the hot working.
  • the heating temperature at the time of finishing hot working is specified, and the heating temperature at the time of rough working before finish working may be a temperature exceeding ⁇ transus.
  • hot working of a titanium alloy ingot is necessary not only to work to approximate the part shape, but also to make the matrix a predetermined microstructure.
  • the equiaxed structure in order for the equiaxed structure to appear in the matrix, it is necessary to apply a heat treatment after applying the processing strain. For example, once the microstructure becomes a needle-like structure, it cannot be made into an equiaxed structure no matter how much heat treatment is applied thereafter.
  • To change the matrix from acicular to equiaxed it is necessary to heat it again to a temperature lower than?
  • the hot-worked titanium alloy is subjected to a solution treatment or an aging heat treatment to adjust its mechanical properties.
  • a solution treatment or an aging heat treatment By making the temperature of the solution treatment 10 ° C or more lower than that of Transus, it is possible to secure the equiaxed tissue formed by hot working as it is.
  • the treatment temperature is too low, the effect of the solution treatment is lost, so that the temperature is set to (? Transus-350 ° C) or more. Therefore, in the present invention, the solution treatment is performed at (? Transus-350 ° C) to ⁇ Transus-10 ° C), and more preferably
  • the temperature range is from ⁇ Transus-200 ° C) to (? Transus-100 ° C). Furthermore, the aging treatment promotes the formation of intermetallic compounds (Ti 3 Al), thereby further improving the fatigue strength of the titanium alloy.
  • the conditions of the aging treatment vary depending on the alloy composition, but it is desirable that the treatment temperature is 500 to 600 ° C and the treatment time is 5 hours or more.
  • a titanium alloy having the composition shown in Table 1 was arc-melted using a vacuum melting furnace to produce an ingot with a diameter of 140.
  • the T / A trans of the titanium alloy tested is 1070 ° C.
  • the obtained alloy ingot was subjected to hot forging and solution treatment twice under the following conditions to obtain a test material.
  • Rough forging Forging dimension Outer diameter 80mm (working ratio 68%, forging ratio 3)
  • Heating temperature 1170 ° C ( ⁇ Transus + 100.C)
  • Heating temperature 1040 ° C to 1170 ° C (The individual heating temperature is shown in Fig. 1.)
  • Heating temperature 700 ° C ⁇ : 1100 ° C (The individual heating temperature is shown in Fig. 1.)
  • Fig. 1 From the results in Fig. 1, it can be seen that the tensile strength of all the test materials is l lOO Mpa or higher, the Young's modulus is 130 Gpa or higher, and high rigidity is ensured. 3-6 have an equiaxed ratio of 40 vol% or more, and have excellent fatigue strength and ductility in addition to rigidity.
  • Example 1 Using the alloy ingot obtained in Example 1, the conditions of hot forging were changed, and the effect of the aging treatment after the solution treatment was confirmed.
  • the tested titanium alloys were subjected to the following processes A to D.
  • Forging dimension 25mm outside diameter (working rate 97%, forging ratio 30) Heating temperature: 1170 ° C (? Transas + 100 ° C)
  • Forging and elongation dimensions 25 mm outside diameter (working ratio 97%, forging ratio 30) Heating temperature: 1170 ° C ( ⁇ Transus + 100 ° C)
  • Forging / extension size Outer diameter 80 dragon (working ratio 68%, forging ratio 3) Heating temperature: 1170 ° C ( ⁇ Transus + 100 ° C)
  • Forging / stretching dimensions Outer diameter 25mm (Processing ratio 90%, Forging ratio 10) Heating temperature: 1040 ° C ⁇ Transus — 30 ° C) 4-3 Solution treatment
  • Processes A and B which are comparative examples, have a tensile strength of llOOMpa or higher, a Young's modulus of 130 Gpa or higher, and high rigidity.However, the heating temperature of finish forging is inappropriate. The ductility and fatigue strength are not secured.
  • processes C and D which are examples of the invention, exhibit excellent ductility and fatigue strength in addition to high rigidity. Further, in the process D, by performing the aging treatment, it becomes possible to increase the heat resistance and the tensile strength and further improve the fatigue strength.
  • the titanium alloy of this invention since it has the characteristic which is high rigidity required as a structural material, and is excellent in ductility and fatigue strength, it provides a mechanical part which satisfies excellent mechanical properties with a light weight. it can. Therefore, the titanium alloy of the present invention can be widely used for automobile engine conrods, camshafts, crankshafts and pushrods, aircraft structural members, high-speed railway vehicle parts, and the like.

Abstract

A titanium alloy having a metal boride homogeneously crystallizated or/and deposited in the matrix thereof, characterized in that the matrix has an equiaxial α structure in an amount of 40 vol % or more. Such titanium alloy can be produced by subjecting it to a hot finishing working at a temperature 10 °C or more lower than its β transus temperture. This titanium alloy has a high rigidity, excellent ductility and excellent fatigue strength, which are properties required to a structural member, and can be widely used for parts of an automobile engine, structural members for an air craft, parts for a rapid transit rail car and the like.

Description

明 細 書  Specification
延性、 疲労強度および剛性に優れるチタン合金とその製造方法 技術分野 Titanium alloy with excellent ductility, fatigue strength and rigidity and its manufacturing method
本発明は、 軽量で優れた機械的性質が要求される機械部品、 例えば自 動車ェンジンのコンロッ ド、 バルブ、 カムシャフ ト、 クランクシャフ ト、 プッシュロッ ドや航空機、 高速鉄道車両等の構造材料に有用な、 高剛性 でかつ延性および疲労強度に優れたチタン合金とその製造方法に関する ものである。 背景技術  INDUSTRIAL APPLICABILITY The present invention is useful for structural parts that require light weight and excellent mechanical properties, such as automobile engine conrods, valves, camshafts, crankshafts, pushrods, aircraft, and high-speed railway vehicles. The present invention relates to a titanium alloy having high rigidity and excellent ductility and fatigue strength, and a method for producing the same. Background art
チタン合金は、 軽量で強度が高く、 さらに耐食性や耐熱性に優れてい ることから、 自動車、 航空機および高速鉄道車両用として、 各種の機械 部品への適用が検討されている。 ところが、 チタン合金は、 鉄鋼材料に 比べ、 ヤング率が約 1/2と低いため、 機械構造材に適用する場合には、 座 屈ゃ撓みの発生を考慮しなければならない。 例えば、 チタン合金をシャ フ トゃコンロッ ドのように長尺の機械部品へ適用する場合には、 一定の 強度を確保するため、 部品の断面積を増加させるような設計が必要にな る。 このよう部品設計を行っていると、 チタン合金が有する軽量で高強 度という優れた特性を生かすことができない。  Titanium alloys are lightweight, have high strength, and are also excellent in corrosion resistance and heat resistance. Therefore, application to various mechanical parts for automobiles, aircraft, and high-speed railway vehicles is being studied. However, titanium alloys have a Young's modulus that is about half that of steel materials, so when applied to mechanical structural materials, the occurrence of buckling and bending must be considered. For example, when a titanium alloy is applied to a long mechanical part such as a shaft condensor, a design that increases the cross-sectional area of the part is required to secure a certain strength. Such component design makes it impossible to take advantage of the excellent properties of titanium alloy such as light weight and high strength.
そこで、 従来から、.チタン合金のヤング率を向上させる手段として、 高いヤング率の繊維や粒子をチタン中に配合する複合材の検討が種々行 われている。 例えば、 特開平 5— 5142号公報では、 チタン合金からなる マト リ ックス中に所定の体積比で Ti B固溶体を分散したチタン基複合材 料の製造方法が提案されている。 この製造方法によれば、 室温から高温 に至るまで、 強度、 剛性、 耐摩耗性等で優れた特性を発揮する複合材が 得られるとしている。 しかしながら、 提案された製造方法では、 塑性加工性に乏しいことか ら、 溶解 ,錶造法、 或いは粉末冶金法が前提とされており、 大型構造材 への適用は困難であった。 さらに、 製造された複合材のマトリ ックス組 織に関する知見が開示されておらず、 構造材として要求される延性ゃ疲 労強度が確保できるか否かは不明である。 Therefore, conventionally, as a means for improving the Young's modulus of titanium alloys, various studies have been conducted on composite materials in which fibers or particles having a high Young's modulus are mixed in titanium. For example, JP-A-5-5142 proposes a method for producing a titanium-based composite material in which a TiB solid solution is dispersed at a predetermined volume ratio in a matrix made of a titanium alloy. According to this manufacturing method, a composite material exhibiting excellent properties such as strength, rigidity, and abrasion resistance from room temperature to high temperature can be obtained. However, in the proposed manufacturing method, melting, sintering, or powder metallurgy was premised because of poor plastic workability, and application to large structural materials was difficult. In addition, knowledge on the matrix structure of the manufactured composite materials is not disclosed, and it is unclear whether ductility and fatigue strength required for structural materials can be secured.
また、 特開平 10- 1760号公報では、 Ti Bまたは Ti C粒子を含有し、 一 ^型チタン合金をマトリ ックスとして、 その組織を針状 相組織に制御 する粒子強化型チタン基複合材料が提案されている。 しかし、 提案され た複合材料でも、 強化用セラミックス粒子として Ti Bまたは Ti Cを用い るため、 その製法は粉末冶金法が前提とされており、 大型構造材への適 用は困難である。 しかも、 マト リ ックス組織が針状組織となるため、 ャ ング率は高いものの、 十分な延性が得られない。 発明の開示  Japanese Patent Application Laid-Open No. 10-1760 proposes a particle-reinforced titanium-based composite material containing TiB or TiC particles and using a 1-type titanium alloy as a matrix and controlling the structure to a needle-like phase structure. Have been. However, even in the proposed composite material, TiB or TiC is used as the ceramic particles for reinforcement, so the powder metallurgy method is premised on its production, and it is difficult to apply it to large structural materials. In addition, since the matrix structure becomes a needle-like structure, the Young's modulus is high, but sufficient ductility cannot be obtained. Disclosure of the invention
上述の通り、 チタン合金は比強度に優れるものの、 鉄鋼材料に比べて 著しくヤング率が低いという問題がある。 この問題を解決するため、 各 種の複合材が検討されてきたが、 熱間加工性ゃ延性等に問題が残る。 一方、 構造部品は、 さらに使用される環境が過酷になるとともに、 製 造コス トの削減が要請されるようになり、 熱間加工性に優れるとともに、 所定の強度特性を具備することが要求されるようになる。 例えば、 自動 車用のコンロッ ド部品等では、 厳しい使用条件に耐え、 コス ト低減も満 足させるため、 熱間加工性を備え、 高剛性で、 優れた延性および疲労強 度が要求されるようになっている。 しかし、 これらの特性を具備するよ うなチタン合金の開発は、 まだなされていなかった。  As described above, titanium alloys have excellent specific strength, but have a problem that their Young's modulus is significantly lower than that of steel materials. To solve this problem, various types of composite materials have been studied, but problems remain in hot workability and ductility. On the other hand, structural components are used in even more severe environments and are required to reduce manufacturing costs, and are required to have excellent hot workability and to have predetermined strength characteristics. Become so. For example, in order to withstand severe use conditions and satisfy cost reductions, for example, automotive condolution parts are required to have hot workability, high rigidity, excellent ductility and excellent fatigue strength. It has become. However, titanium alloys having these characteristics have not been developed yet.
本発明は、 このような機械部品に用いられるチタン合金の開発要請に 鑑みてなされた'ものであり、 熱間加工が可能で、 かつ延性、 疲労強度お よび剛性に優れるチタン合金とその製造方法を提供することを目的とし ている。 本発明の具体的な目的は、 熱間鍛造、 または熱間圧延が可能で あり、 引張強度が l lOOMpa以上、 ヤング率が 130 G pa以上の高剛性で、 か つ所定の延性や疲労強度を具備するチタン合金の開発にある。 The present invention has been made in view of a request for development of a titanium alloy used for such a mechanical component, and is a titanium alloy which is hot workable and has excellent ductility, fatigue strength and rigidity, and a method for producing the same. Intended to provide ing. A specific object of the present invention is to be able to perform hot forging or hot rolling, to have a high rigidity with a tensile strength of at least lOOMpa and a Young's modulus of at least 130 Gpa, and to have a predetermined ductility and fatigue strength. We are developing titanium alloys.
本発明者らは、 上記のチタン合金を開発するため、 配合成分、 微細分 散粒子およびマトリックス組織に付いて、 種々の検討を行った結果、 以 下の(a)〜(c )の知見を得ることができた。  The present inventors conducted various studies on the components, finely dispersed particles, and matrix structure in order to develop the above-mentioned titanium alloy. As a result, the following findings (a) to (c) were obtained. I got it.
( a) チタン合金のヤング率を向上させるには、 マト リックス中に高ヤン グ率の粒子を分散させるのが有効である。 該当する分散粒子は、 マ ト リ ヅクス中に晶出および/または析出反応によって生成する炭化チタン、 またはホウ化チタンがあるが、 炭化チタンに比べ、 粒子としてのヤング 率が 1. 3倍以上大きなホウ化チタンを採用するのが効果的である。  (a) To improve the Young's modulus of a titanium alloy, it is effective to disperse particles with a high Young's modulus in the matrix. Applicable dispersed particles include titanium carbide or titanium boride generated by crystallization and / or precipitation reaction in the matrix, but their Young's modulus as particles is 1.3 times or more larger than titanium carbide It is effective to use titanium boride.
(b) チタン合金において、 同一の合金組成であっても種々のマトリ ヅク ス組織が出現するが、 これらの組織は基本的に等軸 組織および針状 a 組織に大別される。 延性および疲労強度を確保するには、 マト リックス 組織が一定の比率で等軸ひ組織であることが必要である。  (b) In titanium alloys, various matrix structures appear even with the same alloy composition, but these structures are basically roughly classified into equiaxed structures and acicular structures. To ensure ductility and fatigue strength, the matrix structure must be equiaxed at a certain ratio.
マトリックス中に等軸 組織を形成するには、 加工歪みを与えた後、 熱処理を行う必要があるが、 そのときに施される熱間加工時の加熱温度 は ? トランザスより低くする必要がある。 さらに、 その後の溶体化処理 においても、 y5 トランザスより低い温度で実施するのが望ましい。  In order to form an equiaxed structure in the matrix, it is necessary to perform a heat treatment after applying a processing strain, but the heating temperature during hot working performed at that time must be lower than that of Transus. Further, in the subsequent solution treatment, it is desirable to perform the treatment at a temperature lower than that of y5 transus.
( c ) α相安定化元素である Al、 酸素 (0 ) 、 C、 Hおよび Nは、 適量含 有させることによってマト リックスのヤング率を向上させる。 また、 中 性型元素である Sn、 Zr、 Hfは、 ヤング率の向上効果は小さいが、 高温強 度ゃ耐クリープ性を向上させる効果がある。 (c) Al, oxygen (0), C, H and N, which are α-phase stabilizing elements, are contained in appropriate amounts to improve the Young's modulus of the matrix. Neutral elements such as Sn, Zr, and Hf have a small effect of improving Young's modulus, but have an effect of improving high-temperature strength and creep resistance.
上記の Al、 酸素、 または Sn、 Iで、 Hfを含有したチタン合金に時効処理 を施すと、 これらの成分は金属間化合物 (Ti 3Al ) の生成を促進する時効 硬化性を発揮するので、 疲労強度を大幅に向上させることができる。 . ^相安定化元素のうち、 全率固溶型の V、 Moはヤング率を著しく低下 させる効果があるが、 共析型の Fe、 Crは全率固溶型ほど著しくない。 β 相安定化元素は、 ヤング率を低下させる作用があるが、 熱間加工性を向 上させる作用を発揮するので、 適宜添加するが望ましい。 When aging treatment is performed on titanium alloys containing Hf with Al, oxygen, or Sn or I, these components exhibit age hardening that promotes the formation of intermetallic compounds (Ti 3 Al). Fatigue strength can be greatly improved. ^ Among phase stabilizing elements, solid solution V and Mo significantly lower Young's modulus However, the eutectoid type Fe and Cr are not so remarkable as the solid solution type. The β-phase stabilizing element has an effect of lowering the Young's modulus, but has an effect of improving hot workability.
本発明は上記の知見に基づいて完成されたものであり、 下記(1)、 (3) および(4)のチタン合金、 および(2)、 (3)および(4)のチタン合金の製造 方法を要旨としている。  The present invention has been completed on the basis of the above findings, and has a method for producing a titanium alloy of the following (1), (3) and (4), and a titanium alloy of the following (2), (3) and (4): The main point is.
(1) 質量%で、 Β : 0.5〜3.0%を含み、 そのマトリックスに金属ホウ化 物を均一に晶出または/および析出させたチタン合金であって、 このマ トリ ックス組織は等軸 α組織が 40vol%以上あることを特徴とする延性、 疲労強度および剛性に優れるチタン合金である。 このチタン合金は、 型、 または α + 型である。  (1) In mass%, Β: 0.5 to 3.0%, a titanium alloy in which metal boride is uniformly crystallized and / or precipitated in the matrix, and the matrix structure is equiaxed α structure Is a titanium alloy having excellent ductility, fatigue strength and stiffness characterized by having a content of at least 40 vol%. This titanium alloy is of type or α + type.
(2) 質量%で、 Β : 0.5〜3.0%を含ませ、 そのマト リ ックスに金属ホウ 化物を均一に晶出またはノおよび析出させたチタン合金の製造方法であ つて、 仕上げ熱間加工時の加熱温度を ? トランザスより 10°C以上低くす ることを特徴とする延性、 疲労強度および剛性に優れたチタン合金の製 造方法である。  (2) A method for producing a titanium alloy in which %: 0.5 to 3.0% is contained by mass%, and a metal boride is uniformly crystallized or precipitated in the matrix. This is a method for producing a titanium alloy with excellent ductility, fatigue strength and rigidity, characterized in that the heating temperature of the alloy is set to be 10 ° C or lower than that of Transus.
上記の製造方法では、 溶体化処理を ( ? トランザス一 350°C) 〜 ( ? ト ランザス— 10°C) の温度範囲で施し、 さらに必要ある場合には、 時効処 理を施すのが望ましい。  In the above-mentioned production method, it is preferable that the solution treatment is performed in a temperature range of (? Transus-350 ° C) to (? Transzas-10 ° C), and if necessary, an aging treatment is performed.
(3) 上記(1)、 (2)のチタン合金に、 さらに、 質量%で、 Al : 5.5〜10%、 酸素 : 0.07〜0.25%、 C : 0.1%以下、 H : 0.05%以下および N : 0.1% 以下を含むようにするのが望ましい。  (3) In addition to the above titanium alloys (1) and (2), by mass%, Al: 5.5 to 10%, oxygen: 0.07 to 0.25%, C: 0.1% or less, H: 0.05% or less, and N: It is desirable to include 0.1% or less.
(4) 同様に、 上記(3)のチタン合金に、 Sn、 Zrおよび Hfの 1種または 2種 以上を合計で 20%以下、 またはノおよび/?相安定化元素の 1種または 2 種以上を、 下記(a)式で示される V当量で 10%以下を含むようにするのが 望ましい。 1 15 15 15 (4) Similarly, in the titanium alloy of (3) above, one or more of Sn, Zr, and Hf in a total of 20% or less, or one or more of the stabilizing elements of nitrogen and / or It is desirable to include 10% or less in the V equivalent shown by the following equation (a). 1 15 15 15
-— Fe+ ~ b+—Ni +— W (a) v当量 =v+ Mo+ 4. 0 36 9 25 -— Fe + ~ b + —Ni + — W (a) v equivalent = v + Mo + 4.0 36 9 25
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施例 1において供試されたチタン合金の溶体化処理後の諸 特性を示す図である。  FIG. 1 is a diagram showing various properties of a titanium alloy tested in Example 1 after solution treatment.
図 2は、 実施例 1において供試されたチタン合金の溶体化処理後、 若 しくは時効処理後の諸特性を示す図である。 発明を実施するための最良の形態  FIG. 2 is a view showing various properties of the titanium alloy tested in Example 1 after solution treatment or after aging treatment. BEST MODE FOR CARRYING OUT THE INVENTION
本発明のチタン合金は、 マトリ ックス中に金属ホウ化物を微細に晶出 または/および析出し均一分散させ、 必要がある場合には、 相安定化 元素である Al、 酸素等を適量含有させることによって、 ヤング率を向上 させると同時に、 マトリ ックス組織を等軸 組織の比率 (以下、 「等軸 率」 ともいう) を面積率 (体積率と同じ) で 40 %以上に制御して、 延性 および疲労強度を確保することを特徴としている。  In the titanium alloy of the present invention, the metal boride is finely crystallized and / or precipitated and uniformly dispersed in the matrix, and if necessary, an appropriate amount of a phase stabilizing element such as Al or oxygen is contained. In addition to improving the Young's modulus, the matrix structure is controlled to have an equiaxial structure ratio (hereinafter also referred to as “equiaxial ratio”) of at least 40% in terms of area ratio (same as volume ratio), thereby improving ductility and It is characterized by ensuring fatigue strength.
さらに、 本発明のチタン合金では、 必要に応じて、 中性型元素の Sn、 Zr、 Hfを含有させ、 高温強度ゃ耐クリープ性を向上させ、 或いは^相安 定化元素を^相単層とならない程度に V当量で添加量を制限して、 β ト ランザスを下げて熱間加工性を向上させるようにしている。 次に、 本発 明の構成を、 上記のように規定した理由をミクロ組織、 成分組成および 製造方法に区分して説明する。  Furthermore, in the titanium alloy of the present invention, Sn, Zr, and Hf, which are neutral elements, may be contained as necessary to improve high-temperature strength, improve creep resistance, or use a ^ phase stabilizing element as a ^ phase monolayer. The amount of addition is limited by the V equivalent to such an extent that it does not become too small, so that β transduction is reduced and hot workability is improved. Next, the configuration of the present invention will be described with respect to the microstructure, component composition, and manufacturing method for the reasons specified above.
1 . ミクロ組織  1. Microstructure
チタン合金は、 常温でのミクロ組織によってひ型、 + 5型および'/? 型の 3種類に分類されるが、 本発明が対象とするのは、 α型およびひ + ?型チタン合金である。  Titanium alloys are classified into three types according to their microstructure at room temperature: type 5, +5 and '/ ?, and the present invention is directed to α and type + titanium alloys. .
通常、 ひ型合金およびひ + ?型合金においては、 延性、 疲労強度に関 しては等軸 組織の方が、 針状 組織に比べ優れている。 さらに、 本発 明者らの検討によれば、 合金マトリックスの全てにおいて、 等軸ひ組織 にする必要はなく、 ^相から変態して生成された針状組織との混合であ つてもよい。 しかし、 混合組織において延性および疲労強度を確保する には、 等軸 組織の比率、 すなわち、 等軸率が面積率で 40 %以上にする 必要がある。 さらに、 安定した延性および疲労強度を確保するには、 等 軸率を 50%以上にするのが望ましい。 In general, for cast alloys and cast iron alloys, ductility and fatigue strength are not considered. Thus, equiaxed tissue is superior to acicular tissue. Further, according to the study by the present inventors, it is not necessary to form an equiaxed structure in all of the alloy matrix, and a mixture with a needle-like structure generated by transformation from the ^ phase may be used. However, in order to ensure ductility and fatigue strength in the mixed structure, the ratio of the equiaxed structure, that is, the equiaxed ratio must be 40% or more in area ratio. Furthermore, to ensure stable ductility and fatigue strength, it is desirable that the equiaxed ratio is 50% or more.
ミクロ組織は、 合金マトリ ックスから試料を採取して、 研磨、 腐食後 に光学顕微鏡で観察される。 本発明で規定する等軸 α組織の面積率、 す なわち、 等軸率は、 ミクロ観察した組織写真のマト リックスを画像処理 して、 等軸 組織と針状組織とに色分けしその比率を測定する。 本発明 において等軸率を規定しているのは、 チタン合金の延性および疲労強度 の特性は、 等軸ひ組織の面積比率に大きく依存しているためである。 2 . 成分組成  The microstructure can be observed with an optical microscope after a sample is taken from the alloy matrix and polished and corroded. The area ratio of the equiaxed α-structure specified in the present invention, that is, the isometric ratio, is obtained by performing image processing on the matrix of a microscopically observed tissue photograph, classifying the matrix into equiaxed tissue and needle-shaped tissue, and determining the ratio. Measure. The reason why the equiaxial ratio is defined in the present invention is that the properties of the ductility and the fatigue strength of the titanium alloy largely depend on the area ratio of the equiaxial braided structure. 2. Ingredient composition
Β成分:  Β Ingredients:
チタン合金のマトリックスに金属ホウ化物 (Ti B ) を均一に分散する には、 Bを含有させて凝固および冷却時に晶出または/および析出させ ることになる。 これにより、 チタン合金に対しヤング率が極めて高い Ti Bの粒子体積量に比例し、 複合則にしたがって、 チタン合金のヤング率 を向上させることができる。  In order to uniformly disperse the metal boride (Ti B) in the matrix of the titanium alloy, B is contained and crystallized and / or precipitated during solidification and cooling. As a result, the Young's modulus of the titanium alloy is very high relative to the titanium alloy, and the Young's modulus of the titanium alloy can be improved in accordance with the composite rule.
Bの含有量が 0. 5 %未満では、 Ti Bが晶出または/および析出する量が 少なく、 チタン合金のヤング率が充分に向上しない。 一方、 Bの含有量 が 3. 0%を超えると、 Ti Bの分散量が多くなりすぎて、 マト リックスのャ ング率が向上するものの、 熱間延性および冷間延性が著しく低下する。 そのため、 Bを含有させる場合には、 0.5〜3.0%とする。  If the B content is less than 0.5%, the amount of Ti B crystallized and / or precipitated is small, and the Young's modulus of the titanium alloy is not sufficiently improved. On the other hand, if the B content exceeds 3.0%, the dispersion amount of Ti B becomes too large, and the Young's modulus of the matrix is improved, but the hot ductility and the cold ductility are significantly reduced. Therefore, when B is contained, the content is set to 0.5 to 3.0%.
α相安定化元素 : Al、 酸素は 相安定化元素であり、 固溶硬化の効果が大きく、 ヤング 率を著しく向上させる。 しかし、 1が5. 5 %未満、 酸素が 0.07%未満では その効果が充分に発揮されず、 一方、 A1が 10%を超え、 酸素が 0.25 %を 超える場合には、 加工性および延性が低下する。 そのため、 両者の含有 量は、 A1: 5. 5〜10%、 0: 0.07〜0.25 %とする。 望ましくは A1: 7 〜 9 %、 酸素 : 0.07〜0. 15%である。 α-phase stabilizing element: Al and oxygen are phase stabilizing elements, have a large solid solution hardening effect, and significantly improve the Young's modulus. However, if 1 is less than 5.5% and oxygen is less than 0.07%, the effect is not sufficiently exhibited, while if A1 exceeds 10% and oxygen exceeds 0.25%, workability and ductility decrease. I do. Therefore, the content of both should be A1: 5.5 to 10% and 0: 0.07 to 0.25%. Desirably, A1: 7 to 9% and oxygen: 0.07 to 0.15%.
他の 相安定化元素として C、 Hおよび Nがあるが、 これらはいずれ も常温延性を低下させるので、 その上限を C : 0. 1 %、 H : 0.05 %および N : 0. 1 %とする。  Other phase stabilizing elements include C, H and N, all of which reduce the room-temperature ductility, so the upper limits are C: 0.1%, H: 0.05% and N: 0.1%. .
中性型元素  Neutral element
本発明では、 中性型元素または Zおよび ?相安定化元素を配合するこ とができる。 この場合には、 いずれの添加元素ともマト リックス中に固 溶する。 しかし、 中性型元素の Zr、 Hfは、 大部分がマト リックスに固溶 するが、 微量ながら金属ホウ化物としてホウ化ジルコ二ユウムおよびほ う化ハフニウムを晶出または/および析出する。 これらは微量であるた め、 ヤング率の向上を期待できない。  In the present invention, a neutral element or a Z and? Phase stabilizing element can be blended. In this case, any of the added elements dissolve in the matrix. However, most of the neutral elements Zr and Hf form solid solutions in the matrix, but crystallize and / or precipitate zirconium boride and hafnium borohydride as metal borides in trace amounts. Since these are very small, improvement in Young's modulus cannot be expected.
中性型元素である Sn、 Zr、 Hfのうち 1種または 2種以上を含有させる ことができる。 Sn、 Zr、 Hfは固溶強化の作用を発揮して、 ヤング率向上 の効果が少ないが、 高温強度を大きくすることができる。 しかし、 1種 または 2種以上の含有が合計で 20%を超えるようになると、 熱間および 冷間加工性を低下させるとともに、 合金コス トを上昇させるので、 上限 は合計で 20%とする。 望ましくは、 合計 5 %以下である。  One or more of Sn, Zr, and Hf, which are neutral elements, can be contained. Sn, Zr, and Hf exert the effect of solid solution strengthening and have little effect on improving Young's modulus, but can increase high-temperature strength. However, if the total content of one or more types exceeds 20%, the hot and cold workability is reduced and the alloy cost is increased. Therefore, the upper limit is set to 20% in total. Desirably, the total is 5% or less.
相安定化元素 : Phase stabilizing element:
?相安定化元素としては、 V、 Mo、 Cr、 Fe、 Nb、 Niおよび W等が挙げ られる。 含有された/?相安定化元素は、 ? トランザスを下げて、 熱間加 ェ性を改善する効果を発揮する。 また、 これらの元素は、 チタン合金マ トリックス中で固溶し、 必要以上に生成する金属間化合物 (Ti3Al) を抑 制する作用があるので、 A1をより多く含有させ得る効果もある。 しかし、 過剰な含有はヤング率の大幅な低下を来すので、 1種または 2種以上を 下記(a)式で示される V当量で 10 %以下の範囲で添加できることとしてい る。 望ましくは、 V当量で 5 %以下とする。 ? Phase stabilizing elements include V, Mo, Cr, Fe, Nb, Ni and W. The contained / phase stabilizing element has the effect of lowering the transus and improving the hot workability. In addition, these elements form a solid solution in the titanium alloy matrix and suppress intermetallic compounds (Ti 3 Al) generated more than necessary. This has the effect of increasing the content of A1. However, an excessive content greatly reduces the Young's modulus, so one or more types can be added in a range of 10% or less in V equivalent shown by the following formula (a). Desirably, the V equivalent is 5% or less.
一 , s 15 15 15 15 15 15 tOne, s 15 15 15 15 15 15 t ,
V当量 = V +— Mo+"^Cr+ ^Fe+ ^r b+ 7Ni +一 W * · · (a)  V equivalent = V + — Mo + "^ Cr + ^ Fe + ^ r b + 7Ni + one W *
10 6. 3 4. 0 36 9 25  10 6.3 4.0 36 9 25
3 . 製造工程 3. Manufacturing process
チタン合金ィンゴヅ トの製造は、 チタン原料であるチタンスポンジに、 純 Al、 電解 Sn、 Zrスポンジ、 純 Hf、 A1— V母合金、 Al— Mo母合金、 そし て Mo、 Cr、 V等の各単体を適宜選択して所定量配合して、 コンパク ト状 の溶解原料を作製する。 チタン合金中に Ti Bを晶出、 析出させて分散さ せるために、 原料中の B源として A1ホウ化物や Feホウ化物が用いられる。 また、 インゴッ トの酸素量は、 チタンスポンジの種類によってある程度 調整できるが、 大量に調整する必要ある場合には、 調整材として Ti〇2を 用いる。 調整された溶解原料は、 真空溶解炉による消耗電極溶解やブラ ズマアーク溶解による非消耗電極溶解等によってアーク溶解され、 合金 ィンゴッ トが製造される。 Titanium alloy ingots are produced by adding titanium sponge, which is a titanium raw material, to pure Al, electrolytic Sn, Zr sponge, pure Hf, A1-V master alloy, Al-Mo master alloy, and Mo, Cr, V, etc. A single substance is appropriately selected and blended in a predetermined amount to prepare a compacted molten raw material. A1 boride and Fe boride are used as the B source in the raw material to crystallize, precipitate and disperse Ti B in the titanium alloy. The oxygen content of Ingo' metropolitan, can be adjusted to some extent by the type of titanium sponge, if you need to adjust in large amounts, the Ti_〇 2 is used as the adjustment member. The adjusted raw material is arc-melted by melting a consumable electrode by a vacuum melting furnace or by non-consumable electrode melting by plasma arc melting to produce an alloy ingot.
製造されたチタン合金ィンゴッ トは、 所定のミクロ組織を得るため、 鍛造または圧延による熱間加工され、 機械的性質を調整するため、 適宜 熱処理が施される。 前述の通り、 等軸 組織をマトリックス中に出現さ せるには、 加工歪みを与えた後に適正な熱履歴を経る必要がある。  The produced titanium alloy ingot is subjected to hot working by forging or rolling to obtain a predetermined microstructure, and is appropriately subjected to heat treatment to adjust mechanical properties. As mentioned above, in order for the equiaxed structure to appear in the matrix, it is necessary to go through an appropriate thermal history after applying processing strain.
マトリヅクス中の組織は、 ? トランザスの近傍での加熱条件によって 大きく変動し、 ? トランザスより高い温度で熱間加工を行う場合には、 針状 α組織が出現し易く、 ^ トランザスより低い温度で熱間加工を行う 場合には、 等軸ひ組織が出現し易くなる。 このため、 本発明の製造方法 では、 仕上げ熱間加工時の加熱温度が/? トランザスより低くなるように 制御する必要がある。 ところで、 β トランザス直下の温度域では 相と/?相が混在するため. 常温までの冷却すると、 針状組織と等軸組織とが混合する。 前述の通り- 所定の延性および疲労強度を確保するため、 等軸 α組織を面積率で 40 % 以上を確保するには、 仕上げ熱間加工時の加熱温度を/? トランザスより 10°C以上低くする必要がある。 また、 加熱温度の下限は、 特に規定しな いが、 熱間加工の下限温度より高い温度であればよい。 なお、 本発明の 製造方法では仕上げ熱間加工時の加熱温度を規定するものであり、 仕上 げ加工前の粗加工時の加熱温度は^ トランザスを超える温度であっても よい。 The structure in the matrix varies greatly depending on the heating conditions in the vicinity of the transus. When hot working is performed at a temperature higher than the transus, needle-like α-structures are likely to appear, and the heat at a temperature lower than the transus In the case of cold working, equiaxed tissue is likely to appear. For this reason, in the manufacturing method of the present invention, it is necessary to control the heating temperature at the time of finishing hot working to be lower than the temperature of Transus. By the way, in the temperature range just below the β transus, the phase and the / phase are mixed. When cooled to room temperature, the acicular structure and the equiaxed structure mix. As mentioned above-In order to secure the prescribed ductility and fatigue strength, to secure the equiaxed α-structure at an area ratio of 40% or more, the heating temperature during finishing hot working must be at least 10 ° C lower than Transus. There is a need to. The lower limit of the heating temperature is not particularly limited, but may be any temperature higher than the lower limit of the hot working. In the production method of the present invention, the heating temperature at the time of finishing hot working is specified, and the heating temperature at the time of rough working before finish working may be a temperature exceeding ^ transus.
換言すると、 チタン合金インゴッ トの熱間加工は、 部品形状に近似す るまで加工するだけでなく、 マトリ ックスを所定のミクロ組織にするた めに必要である。 前述の通り、 等軸 組織をマトリックス中に出現させ るには、 加工歪みを与えた後に熱処理を加えることが必要になる。 例え ば、 一旦ミクロ組織が針状組織になった場合には、 その後いく ら熱処理 を加えても等軸組織にすることができない。 マトリックスを針状組織か ら等軸組織にするには、 再度、 ? トランザスより低い温度に加熱して、 熱間加工を施すことが必要になる。  In other words, hot working of a titanium alloy ingot is necessary not only to work to approximate the part shape, but also to make the matrix a predetermined microstructure. As described above, in order for the equiaxed structure to appear in the matrix, it is necessary to apply a heat treatment after applying the processing strain. For example, once the microstructure becomes a needle-like structure, it cannot be made into an equiaxed structure no matter how much heat treatment is applied thereafter. To change the matrix from acicular to equiaxed, it is necessary to heat it again to a temperature lower than?
マトリックスを針状組織から等軸組織に確実に変化させるには、 十分 な加工歪みを与えるのが有効であり、 熱間加工の加工率は 50 %以上確保 するのが望ましい。 また、 マトリ ックス中に Ti Bが粗大に晶出、 析出し た場合には、 延性や疲労強度が低下する。 これを防止するには、 熱間加 ェによって粗大な晶出、 析出を破壊する必要があり、 この場合の加工率 は 70 %以上にするのが望ましい。  In order to change the matrix from the needle-like structure to the equiaxed structure reliably, it is effective to apply a sufficient working strain, and it is desirable to secure a working ratio of 50% or more for hot working. Also, if Ti B is coarsely crystallized and precipitated in the matrix, ductility and fatigue strength decrease. In order to prevent this, it is necessary to destroy coarse crystallization and precipitation by hot working. In this case, it is desirable that the processing rate is 70% or more.
チタン合金では加工温度が下がると、 熱間加工性が低下し加工割れ等 が発生し易くなる。 そこで、 加工温度を確保するため、 インゴッ トに保 温材を塗布したり、 雰囲気温度を温間若しくは熱間領域まで上昇させた り、 または降温後に/? トランザス以下の温度まで再加熱するのが有効で ある。 In the case of a titanium alloy, when the processing temperature is lowered, hot workability is reduced, and work cracks and the like are likely to occur. Therefore, in order to secure the processing temperature, it is necessary to apply a heat insulating material to the ingot, raise the ambient temperature to a warm or hot region, or reheat the ingot to a temperature below /? Valid is there.
熱間加工されたチタン合金は、 機械的性質を調整するため溶体化処理 や時効処理による熱処理が施される。 溶体化処理の温度を/? トランザス より 10°C以上低くすることによって、 熱間加工によって形成された等軸 ひ組織をそのまま確保することができる。 一方、 処理温度が低すぎると 溶体化処理の効果がなくなるので、 ( ? トランザス一 350°C ) 以上とする. したがって、 本発明では、 溶体化処理を ( ? トランザス— 350°C ) 〜 、β トランザス— 10°C ) の温度範囲で施す必要があり、 さらに望ましくは The hot-worked titanium alloy is subjected to a solution treatment or an aging heat treatment to adjust its mechanical properties. By making the temperature of the solution treatment 10 ° C or more lower than that of Transus, it is possible to secure the equiaxed tissue formed by hot working as it is. On the other hand, if the treatment temperature is too low, the effect of the solution treatment is lost, so that the temperature is set to (? Transus-350 ° C) or more. Therefore, in the present invention, the solution treatment is performed at (? Transus-350 ° C) to β Transus-10 ° C), and more preferably
{ トランザス一 200°C ) 〜 ( ? トランザス一 100°C ) の温度範囲である。 さらに、 時効処理によって、 金属間化合物 (Ti 3Al ) の生成を促進する ので、 チタン合金の疲労強度が一層改善される。 時効処理の条件は合金 組成によって異なるが、 処理温度が 500〜600°Cで、 処理時間は 5時間以 上が望ましい。 The temperature range is from {Transus-200 ° C) to (? Transus-100 ° C). Furthermore, the aging treatment promotes the formation of intermetallic compounds (Ti 3 Al), thereby further improving the fatigue strength of the titanium alloy. The conditions of the aging treatment vary depending on the alloy composition, but it is desirable that the treatment temperature is 500 to 600 ° C and the treatment time is 5 hours or more.
(実施例)  (Example)
本発明の効果を、 熱間鍛造加工後溶体化処理をした場合 (実施例 1 ) およびさらに時効処理をした場合 (実施例 2 ) に基づいて詳細に説明す る ο  The effect of the present invention will be described in detail based on the case where solution treatment is performed after hot forging (Example 1) and the case where aging treatment is further performed (Example 2).
(実施例 1 )  (Example 1)
表 1に示す組成のチタン合金を、 真空溶解炉を用いてアーク溶解し、 直径 140顧のィンゴッ トを溶製した。 供試されるチタン合金の/? トランザ スは 1070°Cである。  A titanium alloy having the composition shown in Table 1 was arc-melted using a vacuum melting furnace to produce an ingot with a diameter of 140. The T / A trans of the titanium alloy tested is 1070 ° C.
表 1 成分組成 (質量%を示す。 )
Figure imgf000011_0001
Table 1 Ingredient composition (in mass%)
Figure imgf000011_0001
得られた合金インゴッ トに 2回の熱間鍛造と溶体化処理を、 下記の条 件で加えて供試材'とした。  The obtained alloy ingot was subjected to hot forging and solution treatment twice under the following conditions to obtain a test material.
1 . 粗鍛造 鍛伸寸法 :外径 80mm (加工率 68%、 鍛鍊比 3 ) 1. Rough forging Forging dimension: Outer diameter 80mm (working ratio 68%, forging ratio 3)
加熱温度 : 1170°C ( ^ トランザス + 100。C )  Heating temperature: 1170 ° C (^ Transus + 100.C)
2 . 仕上げ鍛造  2. Finish forging
鍛伸寸法 :外径 25mm (加工率 90 %、 鍛鍊比 10)  Forging and elongation dimensions: Outer diameter 25mm (Processing ratio 90%, Forging ratio 10)
加熱温度 : 1040°C〜1170°C (個別の加熱温度は図 1に示す。 )  Heating temperature: 1040 ° C to 1170 ° C (The individual heating temperature is shown in Fig. 1.)
3 . 溶体化処理  3. Solution treatment
加熱温度 : 700°C〜: 1100°C (個別の加熱温度は図 1に示す。 )  Heating temperature: 700 ° C ~: 1100 ° C (The individual heating temperature is shown in Fig. 1.)
加熱時間 : 2時間  Heating time: 2 hours
供試されたチタン合金の溶体化処理後での諸特性として、 常温引張性 質、 常温疲労強度およびヤング率を測定した。 また、 各試験片のミクロ 観察を行い、 マトリックスの等軸率 (vol % ) を換算した。 これらの結果 を図 1に示す。  Room temperature tensile properties, room temperature fatigue strength, and Young's modulus were measured as various properties of the test titanium alloy after solution treatment. Microscopic observation of each test piece was performed, and the equiaxed ratio (vol%) of the matrix was converted. Figure 1 shows these results.
図 1の結果から、 いずれの供試材とも、 引張強度が l lOO Mpa以上で、 ャング率が 130 G pa以上確保され、 高剛性が確保されていることが分かる , 特に、 発明例である No . 3〜 6は、 等軸率が 40vol %以上であり、 剛性に 加え、 疲労強度や延性も優れている。  From the results in Fig. 1, it can be seen that the tensile strength of all the test materials is l lOO Mpa or higher, the Young's modulus is 130 Gpa or higher, and high rigidity is ensured. 3-6 have an equiaxed ratio of 40 vol% or more, and have excellent fatigue strength and ductility in addition to rigidity.
すなわち、 仕上げ熱間加工時の加熱温度が ? トランザスより 10°C以上 低くすることによって、 本発明で規定する等軸 組織の比率を確保すれ ば、 高剛性の特性を低下させることなく、 高延性、 高疲労強度を確保す ることができる。  That is, if the heating temperature at the time of finishing hot working is lower than Transus by 10 ° C or more, if the ratio of the equiaxed structure specified in the present invention is secured, high ductility can be achieved without deteriorating high rigidity characteristics. In addition, high fatigue strength can be ensured.
(実施例 2 )  (Example 2)
実施例 1で得られた合金イ ンゴッ トを用いて、 熱間鍛造の条件を変化 させるとともに、 溶体化処理後の時効処理の効果を確認した。 供試され たチタン合金は、 下記のプロセス A〜Dを処理した。  Using the alloy ingot obtained in Example 1, the conditions of hot forging were changed, and the effect of the aging treatment after the solution treatment was confirmed. The tested titanium alloys were subjected to the following processes A to D.
1 . プロセス A (比較例)  1. Process A (Comparative example)
1 - 1仕上げ鍛造'  1-1 Finish Forging '
鍛伸寸法 :外径 25mm (加工率 97%、 鍛鍊比 30) 加熱温度 : 1170°C ( ? トランザス +100°C)Forging dimension: 25mm outside diameter (working rate 97%, forging ratio 30) Heating temperature: 1170 ° C (? Transas + 100 ° C)
1- 2溶体化処理 1-2 Solution treatment
処理条件 : 900°C X 2時間  Processing conditions: 900 ° C x 2 hours
. プロセス B (比較例)  Process B (Comparative example)
2-1仕上げ鍛造 2-1 Finish forging
鍛伸寸法 :外径 25歷 (加工率 97%、 鍛鍊比 30) 加熱温度 : 1170°C {β トランザス +100°C) Forging and elongation dimensions: 25 mm outside diameter (working ratio 97%, forging ratio 30) Heating temperature: 1170 ° C (β Transus + 100 ° C)
2- 2溶体化処理 2-2 Solution treatment
処理条件 : 900°C X 2時間  Processing conditions: 900 ° C x 2 hours
2-3時効処理 2-3 Aging treatment
処理条件 : 580°C X 8時間  Processing conditions: 580 ° C for 8 hours
. プロセス C (発明例)  Process C (Invention example)
3- 1粗鍛造  3- 1 rough forging
鍛伸寸法 :外径 80龍 (加工率 68%、 鍛鍊比 3 ) 加熱温度 : 1170°C {β トランザス + 100°C) Forging / extension size: Outer diameter 80 dragon (working ratio 68%, forging ratio 3) Heating temperature: 1170 ° C (β Transus + 100 ° C)
3-2仕上げ鍛造 3-2 Finish forging
鍛伸寸法 :外径 25匪 (加工率 90%、 鍛鍊比 10) 加熱温度 : 1040°C ( ? トランザス— 30°C) Forging and stretching dimensions: 25 outside diameter (working rate 90%, forging ratio 10) Heating temperature: 1040 ° C (? Transus-30 ° C)
3- 3溶体化処理 3-3 Solution treatment
処理条件: 900°C X 2時間  Processing conditions: 900 ° C x 2 hours
. プロセス D (発明例)  Process D (Invention example)
4- 1粗鍛造  4- 1 rough forging
鍛伸寸法 :外径 80mm (加工率 68%、 鍛鍊比 3 ) 加熱温度 : 1170°C (/3 トランザス +100°C) 4- 2仕上げ鍛造  Forging and elongation dimensions: Outer diameter 80mm (Working ratio 68%, Forging ratio 3) Heating temperature: 1170 ° C (/ 3 Transus + 100 ° C) 4- 2 Finish forging
鍛伸寸法 :外径 25mm (加工率 90%、 鍛鍊比 10) 加熱温度 : 1040°C { トランザス— 30°C) 4-3溶体化処理 Forging / stretching dimensions: Outer diameter 25mm (Processing ratio 90%, Forging ratio 10) Heating temperature: 1040 ° C {Transus — 30 ° C) 4-3 Solution treatment
処理条件 : 900°C X 2時間  Processing conditions: 900 ° C x 2 hours
4 - 3時効処理  4-3 Aging treatment
処理条件 : 580°C X 8時間  Processing conditions: 580 ° C for 8 hours
供試されたチタン合金の溶体化処理後、 若しくは時効処理後での諸特 性として、 常温引張性質、 常温疲労強度、 ヤング率、 さらにマト リ ック スの等軸率 (vol% ) を測定して、 その結果を図 2に示す。  After the solution treatment or the aging treatment of the test titanium alloy, the room temperature tensile properties, room temperature fatigue strength, Young's modulus, and matrix equiaxed ratio (vol%) were measured. Figure 2 shows the results.
比較例であるプロセス A、 Bは、 引張強度が llOOMpa以上で、 ヤング 率が 130 G pa以上確保されており、 高剛性が確保されているが、 仕上げ鍛 造の加熱温度が不適切であるため、 延性および疲労強度が確保されてい ない。 これに対し、 発明例であるプロセス C、 Dは、 高剛性に加え、 優 れた延性および疲労強度を発揮している。 さらに、 プロセス Dでは、 時 効処理を施すことによって、 耐カ、 引張強度を上昇させ、 疲労強度を一 層向上させることが可能になる。 産業上の利用の可能性  Processes A and B, which are comparative examples, have a tensile strength of llOOMpa or higher, a Young's modulus of 130 Gpa or higher, and high rigidity.However, the heating temperature of finish forging is inappropriate. The ductility and fatigue strength are not secured. In contrast, processes C and D, which are examples of the invention, exhibit excellent ductility and fatigue strength in addition to high rigidity. Further, in the process D, by performing the aging treatment, it becomes possible to increase the heat resistance and the tensile strength and further improve the fatigue strength. Industrial applicability
本発明のチタン合金とその製造方法によれば、 構造材料として要求さ れる高剛性でかつ延性および疲労強度に優れる特性を具備するので、 軽 量で優れた機械的性質を満足する機械部品を提供できる。 そのため、 本 発明のチタン合金は、 自動車エンジンのコンロッ ド、 カムシャフ ト、 ク ランクシャフ トおよびプッシュロッ ド、 並びに航空機用構造部材および 高速鉄道車両部品等に広範囲に利用することができる。  ADVANTAGE OF THE INVENTION According to the titanium alloy of this invention and its manufacturing method, since it has the characteristic which is high rigidity required as a structural material, and is excellent in ductility and fatigue strength, it provides a mechanical part which satisfies excellent mechanical properties with a light weight. it can. Therefore, the titanium alloy of the present invention can be widely used for automobile engine conrods, camshafts, crankshafts and pushrods, aircraft structural members, high-speed railway vehicle parts, and the like.

Claims

請 求 の 範. 囲 The scope of the claims
1. 質量%で、 ; B : 0.5〜3.0%を含み、 そのマト リヅクスに金属ホウ化 物を均一に晶出または/および析出させたチタン合金であって、 このマ トリ ックス組織は等軸《組織が 40vol %以上あることを特徴とする延性、 疲労強度および剛性に優れるチタン'合金。  B: 0.5 to 3.0% by mass; a titanium alloy in which a metal boride is uniformly crystallized and / or precipitated in the matrix, and whose matrix structure is equiaxed. Titanium 'alloy with excellent ductility, fatigue strength and rigidity characterized by having a structure of 40 vol% or more.
2. 上記チタン合金がひ型、 または + 5型であることを特徴とする請 求項 1記載の延性、 疲労強度および剛性に優れるチタン合金。  2. The titanium alloy having excellent ductility, fatigue strength, and rigidity according to claim 1, wherein the titanium alloy is a cast or a +5 type.
3. さらに、 質量%で、 Al : 5.5〜; 0%、 酸素 (0) : 0.07〜0.25%、 C : 0.1%以下、 H : 0。05%以下および N ': 0.1%以下を含むことを特徴と する請求項 1記載の延性、 疲労強度および剛性に優れるチタン合金。 . 3. In addition, it must contain Al: 5.5 ~; 0%, oxygen (0): 0.07 ~ 0.25%, C: 0.1% or less, H: 0.05% or less and N ': 0.1% or less by mass%. The titanium alloy according to claim 1, which is excellent in ductility, fatigue strength and rigidity. .
4. 請求項 3記載のチタン合金に、 さらに、 Sn、 Zrおよび Hfの 1種また は 2種以上を合計で 20%以下、 または/および/?相安定化元素の 1種ま たは 2種以上を、 下記(a)式で示される V当量で 10%以下を含むことを特 徴とする延性、 疲労強度および剛性に優れるチタン合金。 4. The titanium alloy according to claim 3, further comprising one or more of Sn, Zr, and Hf in a total amount of 20% or less, and / or one or two of phase stabilizing elements. The above is a titanium alloy excellent in ductility, fatigue strength and rigidity, characterized by containing 10% or less in V equivalent shown by the following equation (a).
V当量 W · · · (a)
Figure imgf000015_0001
V equivalent W · · · (a)
Figure imgf000015_0001
5. 質量%で、 B : 0·5〜3.0%を含ませ、 そのマトリ ックスに金属ホウ 化物を均一に晶出または/および析出させたチタン合金の製造方法であ つて、 仕上げ熱間加工時の加熱温度を ? トランザスより 10°C以上低くす ることを特徴とする延性、 疲労強度および剛性に優れたチタン合金の製 造方法。 5. A method for producing a titanium alloy in which B: 0.5 to 3.0% is contained by mass%, and a metal boride is uniformly crystallized and / or precipitated in the matrix. A method for producing a titanium alloy having excellent ductility, fatigue strength and rigidity, characterized in that the heating temperature of the alloy is 10 ° C or lower than that of Transus.
6. 請求項 5記載のチタン合金の製造方法であって、 溶体化処理を ( ? トランザス一 350°C) 〜 (^ トランザス一 10°C) の温度範囲で施すことを 特徴とする延性、 疲労強度および剛性に優れるチタン合金の製造方法。  6. The method for producing a titanium alloy according to claim 5, wherein the solution treatment is performed in a temperature range of (? Transus-1 350 ° C) to (^ Transus-1 10 ° C). A method for producing a titanium alloy having excellent strength and rigidity.
7 - 請求項 6記載のチタン合金の製造方法であって、 さらに時効処理を 施すことを特徴'とする延性、 疲労強度および剛性に優れるチタン合金の 製造方法。 7. The method for producing a titanium alloy according to claim 6, further comprising aging treatment. 7) A method for producing a titanium alloy having excellent ductility, fatigue strength, and rigidity.
8. 上記チタン合金に、 さらに、 質量%で、 Al : 5.5〜10%、 酸素 (0) : 0.07〜0.25%、 C : 0.1%以下、 H : 0.05%以下および N : 0.1%以下 が含まれることを特徴とする請求項 5〜 7のいずれかに記載の延性、 疲 労強度および剛性に優れるチタン合金の製造方法。 8. The above titanium alloy further contains, by mass%, Al: 5.5 to 10%, Oxygen (0): 0.07 to 0.25%, C: 0.1% or less, H: 0.05% or less, and N: 0.1% or less. The method for producing a titanium alloy according to any one of claims 5 to 7, which is excellent in ductility, fatigue strength, and rigidity.
9. 請求項 8記載のチタン合金に、 さらに、 Sn、 Zrおよび Hfの 1種また は 2種以上が合計で 20%以下、 または/および/?相安定化元素の 1種ま たは 2種以上が、 下記(a)式で示される V当量で 10%以下含まれることを 特徴とする延性、 疲労強度および剛性に優れるチタン合金の製造方法。  9. The titanium alloy according to claim 8, further comprising one or more of Sn, Zr, and Hf in a total amount of 20% or less, and / or one or two of phase stabilizing elements. The above is a method for producing a titanium alloy having excellent ductility, fatigue strength and stiffness, characterized in that the V equivalent represented by the following equation (a) is 10% or less.
1 c I K 15 1 15  1 c I K 15 1 15
V当量 =V + _Mo+—— Cr+— -Fe+— Nb+— Ni +— W · · 。 (a)  V equivalent = V + _Mo + —— Cr + — -Fe + —Nb + —Ni + —W · ·. (A)
10 6.3 4.0 36 9 25  10 6.3 4.0 36 9 25
PCT/JP2000/003461 2000-05-29 2000-05-29 Titanium alloy excellent in ductility, fatigue strength and rigidity and method for producing the same WO2001092589A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2000/003461 WO2001092589A1 (en) 2000-05-29 2000-05-29 Titanium alloy excellent in ductility, fatigue strength and rigidity and method for producing the same
EP00929912A EP1295955A4 (en) 2000-05-29 2000-05-29 Titanium alloy excellent in ductility, fatigue strength and rigidity and method for producing the same
US10/303,731 US20030084970A1 (en) 2000-05-29 2002-11-26 Titanium alloy having high ductility, fatigue strength and rigidity and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/003461 WO2001092589A1 (en) 2000-05-29 2000-05-29 Titanium alloy excellent in ductility, fatigue strength and rigidity and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/303,731 Continuation US20030084970A1 (en) 2000-05-29 2002-11-26 Titanium alloy having high ductility, fatigue strength and rigidity and method of manufacturing same

Publications (1)

Publication Number Publication Date
WO2001092589A1 true WO2001092589A1 (en) 2001-12-06

Family

ID=11736086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003461 WO2001092589A1 (en) 2000-05-29 2000-05-29 Titanium alloy excellent in ductility, fatigue strength and rigidity and method for producing the same

Country Status (3)

Country Link
US (1) US20030084970A1 (en)
EP (1) EP1295955A4 (en)
WO (1) WO2001092589A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174709A (en) * 2007-12-25 2009-08-06 Yamaha Motor Co Ltd Fracture split-type connecting rod, internal combustion engine, transportation apparatus, and production method for fracture split-type connecting rod
JP2019512046A (en) * 2015-12-22 2019-05-09 ストック カンパニー“チェペトスキー メカニカル プラント” Method of manufacturing bar from titanium alloy

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7531021B2 (en) 2004-11-12 2009-05-12 General Electric Company Article having a dispersion of ultrafine titanium boride particles in a titanium-base matrix
US7559853B2 (en) * 2005-06-20 2009-07-14 Sri Sports Limited Golf club head and method for manufacturing the same
US20080035250A1 (en) * 2006-08-09 2008-02-14 United Technologies Corporation Grain refinement of titanium alloys
FR2940319B1 (en) * 2008-12-24 2011-11-25 Aubert & Duval Sa PROCESS FOR THERMALLY PROCESSING A TITANIUM ALLOY, AND PIECE THUS OBTAINED
WO2013124001A1 (en) 2012-02-25 2013-08-29 Adamco Ag Self stabilizing halloysite aluminum metal matrix compound
US9957836B2 (en) 2012-07-19 2018-05-01 Rti International Metals, Inc. Titanium alloy having good oxidation resistance and high strength at elevated temperatures
CN107377842B (en) * 2017-09-19 2018-08-03 陕西华镁特材科技有限公司 A kind of preparation method of Ti6Al7Nb titanium alloy large sizes slab
RU2710407C1 (en) * 2019-07-26 2019-12-26 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт конструкционных материалов "Прометей" имени И.В. Горынина Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ЦНИИ КМ "Прометей") Titanium-based alloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159564A (en) * 1985-01-07 1986-07-19 Nippon Steel Corp Production of titanium alloy material having (alpha+beta) two-phase structure of equiaxial fine grain
JPH04355A (en) * 1990-04-09 1992-01-06 Daido Steel Co Ltd Production of titanium alloy
JPH05209251A (en) * 1991-08-29 1993-08-20 Sumitomo Metal Ind Ltd High rigidity ti alloy and its production

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4631092A (en) * 1984-10-18 1986-12-23 The Garrett Corporation Method for heat treating cast titanium articles to improve their mechanical properties
US4807798A (en) * 1986-11-26 1989-02-28 The United States Of America As Represented By The Secretary Of The Air Force Method to produce metal matrix composite articles from lean metastable beta titanium alloys
US5024369A (en) * 1989-05-05 1991-06-18 The United States Of America As Represented By The Secretary Of The Air Force Method to produce superplastically formed titanium alloy components
US5545227A (en) * 1989-12-21 1996-08-13 Smith & Nephew Richards, Inc. Biocompatible low modulus medical implants
DE69128692T2 (en) * 1990-11-09 1998-06-18 Toyoda Chuo Kenkyusho Kk Titanium alloy made of sintered powder and process for its production
JP3303641B2 (en) * 1995-12-15 2002-07-22 住友金属工業株式会社 Heat resistant titanium alloy
JPH10155942A (en) * 1996-12-05 1998-06-16 Sumitomo Metal Ind Ltd Golf club head

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159564A (en) * 1985-01-07 1986-07-19 Nippon Steel Corp Production of titanium alloy material having (alpha+beta) two-phase structure of equiaxial fine grain
JPH04355A (en) * 1990-04-09 1992-01-06 Daido Steel Co Ltd Production of titanium alloy
JPH05209251A (en) * 1991-08-29 1993-08-20 Sumitomo Metal Ind Ltd High rigidity ti alloy and its production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1295955A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174709A (en) * 2007-12-25 2009-08-06 Yamaha Motor Co Ltd Fracture split-type connecting rod, internal combustion engine, transportation apparatus, and production method for fracture split-type connecting rod
JP2019512046A (en) * 2015-12-22 2019-05-09 ストック カンパニー“チェペトスキー メカニカル プラント” Method of manufacturing bar from titanium alloy

Also Published As

Publication number Publication date
EP1295955A4 (en) 2004-05-12
EP1295955A1 (en) 2003-03-26
US20030084970A1 (en) 2003-05-08

Similar Documents

Publication Publication Date Title
JP3027200B2 (en) Oxidation resistant low expansion alloy
JP2697400B2 (en) Aluminum alloy for forging
JPH07145441A (en) Superplastic aluminum alloy and its production
KR20130134014A (en) Beta type titanium alloy with low elastic modulus and high strength
JP2019513897A (en) Lightweight steel with improved elastic modulus, steel plate and method for producing the same
JP2004010963A (en) HIGH STRENGTH Ti ALLOY AND ITS PRODUCTION METHOD
JPH03104832A (en) Gamma-titanium-aluminum alloy modified with chrome and silicon and its manufacture
WO2014027677A1 (en) Resource-saving titanium alloy member having excellent strength and toughness, and method for manufacturing same
WO2001092589A1 (en) Titanium alloy excellent in ductility, fatigue strength and rigidity and method for producing the same
JP7144840B2 (en) Titanium alloy, method for producing the same, and engine parts using the same
JP5589861B2 (en) Α + β type titanium alloy member having high strength and low Young's modulus and method for producing the same
JP7146763B2 (en) Cold-rolled and heat-treated steel sheet, method of manufacture thereof and use of such steel for manufacturing vehicle parts
JP2020152965A (en) Aluminum alloy material, method for producing the same, and impeller
JP2004091893A (en) High strength titanium alloy
KR101708285B1 (en) Metal composite material including an aligned precipitation and method of manufacturing the metal composite material
JP2663802B2 (en) High rigidity Ti alloy and method for producing the same
JP3920656B2 (en) High rigidity aluminum alloy containing boron
JP2005139494A (en) Aluminum alloy sheet for forming, and its production method
JP2005154850A (en) High strength beta-type titanium alloy
KR101967910B1 (en) Titanium alloy with high formability at room temperature and manufacturing method for the same
Bahadur et al. Ductility improvement in iron aluminides
JP2003286552A (en) METHOD FOR MANUFACTURING Al-Mg-Si ALLOY SHEET
JP7126915B2 (en) Aluminum alloy extruded material and its manufacturing method
JP3331625B2 (en) Method for producing Ti-Al-based intermetallic compound-based alloy
CA3229257A1 (en) Alpha-beta ti alloy with improved high temperature properties

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 611740

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10303731

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000929912

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000929912

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000929912

Country of ref document: EP