WO2001092219A1 - Glycinamide - Google Patents

Glycinamide Download PDF

Info

Publication number
WO2001092219A1
WO2001092219A1 PCT/EP2001/004110 EP0104110W WO0192219A1 WO 2001092219 A1 WO2001092219 A1 WO 2001092219A1 EP 0104110 W EP0104110 W EP 0104110W WO 0192219 A1 WO0192219 A1 WO 0192219A1
Authority
WO
WIPO (PCT)
Prior art keywords
acetamide
coo
biphenyl
aminosulfonyl
amidinophenyl
Prior art date
Application number
PCT/EP2001/004110
Other languages
English (en)
French (fr)
Inventor
Werner Mederski
Horst Juraszyk
Dieter Dorsch
Christos Tsaklakidis
Johannes Gleitz
Christopher Barnes
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to JP2002500834A priority Critical patent/JP2003535075A/ja
Priority to CA002410627A priority patent/CA2410627A1/en
Priority to EP01933811A priority patent/EP1284961A1/de
Priority to AU2001260192A priority patent/AU2001260192A1/en
Publication of WO2001092219A1 publication Critical patent/WO2001092219A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/28Radicals substituted by singly-bound oxygen or sulphur atoms
    • C07D213/30Oxygen atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/30Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/37Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound nitrogen atoms, not being part of nitro or nitroso groups having the sulfur atom of at least one of the sulfonamide groups bound to a carbon atom of a six-membered aromatic ring
    • C07C311/38Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound nitrogen atoms, not being part of nitro or nitroso groups having the sulfur atom of at least one of the sulfonamide groups bound to a carbon atom of a six-membered aromatic ring having sulfur atoms of sulfonamide groups and amino groups bound to carbon atoms of six-membered rings of the same carbon skeleton
    • C07C311/39Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound nitrogen atoms, not being part of nitro or nitroso groups having the sulfur atom of at least one of the sulfonamide groups bound to a carbon atom of a six-membered aromatic ring having sulfur atoms of sulfonamide groups and amino groups bound to carbon atoms of six-membered rings of the same carbon skeleton having the nitrogen atom of at least one of the sulfonamide groups bound to hydrogen atoms or to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • C07C317/26Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
    • C07C317/32Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton with sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/36Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D211/40Oxygen atoms
    • C07D211/44Oxygen atoms attached in position 4
    • C07D211/46Oxygen atoms attached in position 4 having a hydrogen atom as the second substituent in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D257/00Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms
    • C07D257/02Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D257/04Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D271/00Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms
    • C07D271/02Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms not condensed with other rings
    • C07D271/061,2,4-Oxadiazoles; Hydrogenated 1,2,4-oxadiazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the invention relates to compounds of the formula
  • R 1 unbranched, branched or cyclic alkyl having 1-20 C atoms, in which one or two CH 2 groups can be replaced by O or S atoms, Ar, Ar 'or X,
  • R ⁇ simply phenyl substituted by S (0) p A, S (0) p NHA, CF 3 , COOA, CH 2 NHA, CN or OA,
  • Ar unsubstituted or mono-, di- or trisubstituted by A, OA, NAA ', N0 2 , CF 3 , CN, shark, NHCOA, COOA, CONAA', S (0) p A, S (0) pNAA ' or naphthyl, Ar '- (CH 2 ) n -Ar,
  • the invention also relates to the optically active forms, the racemates, the diastereomers and the hydrates and solvates, e.g. Alcohololates, these compounds.
  • the invention was based on the task of finding new compounds with valuable properties, in particular those which can be used for the production of medicaments.
  • the compounds of the formula I and their salts have very valuable pharmacological properties with good tolerability.
  • they show factor Xa inhibitory properties and can therefore be used to combat and prevent thromboembolic disorders such as thrombosis, myocardial infarction, arteriosclerosis, inflammation, apoplexy, angina pectoris, restenosis after angioplasty and intermittent claudication.
  • the compounds of the formula I according to the invention can furthermore be inhibitors of the coagulation factors factor VIIa, factor IXa and thrombin of the blood coagulation cascade.
  • Aromatic amidine derivatives with antithrombotic activity are e.g. known from EP 0 540 051 B1.
  • Cyclic guanidines for the treatment of thromboembolic disorders are e.g. described in WO 97/08165.
  • Aromatic heterocycles with factor Xa inhibitory activity are e.g. known from WO 96/10022.
  • Substituted N - [(aminoimino-methyl) phenylalkyl] azaheterocyclylamides as factor Xa inhibitors are in
  • the antithrombotic and anticoagulant effect of the compounds according to the invention is attributed to the inhibitory action against the activated coagulation protease, known under the name factor Xa, or to the inhibition of other activated serine proteases such as factor VIIa, factor IXa or thrombin.
  • Factor Xa is one of the proteases involved in the complex process of blood clotting. Factor Xa catalyzes the conversion of prothrombin to thrombin. Thrombin cleaves fibrinogen into fibrin monomers which, after cross-linking, make an elementary contribution to thrombus formation. Activation of thrombin can lead to the occurrence of thromboembolic disorders. However, inhibition of thrombin can inhibit fibrin formation involved in thrombus formation. The measurement of the inhibition of thrombin can e.g. using the method of G.F. Cousins et al. in Circulation 1996, 94, 1705-1712.
  • Inhibition of factor Xa can thus prevent thrombin from being formed.
  • the compounds of formula I according to the invention and their salts interfere with the blood coagulation process by inhibiting factor Xa and thus inhibit the formation of thrombi.
  • the inhibition of factor Xa by the compounds according to the invention and the measurement of the anticoagulant and antithrombotic activity can be determined by customary in vitro or in vivo methods. A suitable method is described, for example, by J. Hauptmann et al. in Thrombosis and Haemostasis 1990, 63, 220-223.
  • the measurement of the inhibition of factor Xa can e.g. using the method of T. Hara et al. in thromb. Haemostas. 1994, 71, 314-319.
  • the coagulation factor VIa initiates the extrinsic part of the coagulation cascade after binding to the tissue factor and contributes to the activation of factor X to factor Xa. Inhibition of factor VIIa thus prevents the formation of factor Xa and thus the subsequent formation of thrombin.
  • the inhibition of the factor VIIa by the compounds according to the invention and the measurement of the anticoagulant and antithrombotic activity can be determined by customary in vitro or in vivo methods.
  • a common method for measuring the inhibition of factor VIIa is e.g. by H. F. Ronning et al. in Thrombosis Research 1996, 84, 73-81.
  • Coagulation factor IXa is generated in the intrinsic coagulation cascade and is also involved in the activation of factor X to factor Xa. Inhibition of factor IXa can therefore otherwise prevent factor Xa from being formed.
  • the inhibition of factor IXa by the compounds according to the invention and the measurement of the anticoagulant and antithrombotic activity can be determined by customary in vitro or in vivo methods.
  • a suitable method is e.g. by J. Chang et al. in Journal of Biological Chemistry 1998, 273, 12089-12094.
  • the invention relates to the compounds of the formula I according to claims 1 to 2 and to their physiologically acceptable salts and solvates as medicaments.
  • the compounds of formula I can be used as active pharmaceutical ingredients in human and veterinary medicine, in particular for combating and preventing thromboembolic disorders such as thrombosis, myocardial infarction, arteriosclerosis, inflammation, apoplexy, angina pectoris, restenosis after angioplasty and claudication intermediate ,
  • the invention therefore also relates to the pharmaceutical active substances mentioned as inhibitors of the coagulation factor Xa and to these medicaments for the treatment of thromboses, myocardial infarction, arteriosclerosis, inflammation, apoplexy, angina pectoris, restenosis after angioplasty and intermittent claudication.
  • the invention relates to the compounds of the formula I and their salts and to a process for the preparation of compounds of the formula I according to claim 1, in which R is amidino, and their salts, characterized in that
  • Trt trityl (triphenylmethyl).
  • Alkyl is unbranched (linear) or branched, and has 1 to 20, preferably 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 carbon atoms.
  • Alkyl preferably means methyl, furthermore ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl or tert-butyl, further also pentyl, 1-, 2- or 3-methylbutyl, 1, 1-, 1, 2- or 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1-, 2-, 3- or 4-methylpentyl, 1, 1-, 1, 2-, 1, 3-, 2,2-, 2,3- or 3,3-dimethylbutyl, 1- or 2-ethylbutyl, 1-ethyl-1-methylpropyl, 1-ethyl-2-methylpropyl, 1, 1, 2- or 1, 2,2-trimethylpropyl, more preferably e.g.
  • Trifluoromethyl A very particularly preferably denotes alkyl having 1-6 C atoms, preferably methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl or hexyl.
  • Cyclic alkyl or cycloalkyl preferably means cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl.
  • Shark preferably means F, Cl or Br, but also Ar means unsubstituted or single, double or triple by A, OA, NAA ', N0 2 , CF 3 , CN, Hai, NHCOA, COOA, CONAA', S (0) p A, S (0) p NAA ' substituted phenyl or naphthyl.
  • Preferred substituents for phenyl or naphthyl are, for example, methyl, ethyl, propyl, butyl, OH, methoxy, ethoxy, propoxy, butoxy, amino, methylamino, dimethylamino, ethylamino, diethylamino, nitro, trifluoromethyl, fluorine, chlorine, acetamido, methoxycarbonyl, Ethoxycarbonyl, aminocarbonyl, sulfonamido, methylsulfonamido, ethylsulfonamido, propylsulfonamido, butylsulfonamido, tert.-butylsulfonamido, tert.-butylaminosulfonyl, dimethylsulfonamido, phenylsulfonamido, carboxy, propylsulfonamyl, acylocyl,
  • Ar particularly preferably means, for example, unsubstituted phenyl or simply phenyl substituted by SO2NH2, SO2CH 3 , fluorine or alkoxy, such as methoxy.
  • Ar 'means - (CH 2 ) n -Ar preferably unsubstituted or mono-, di- or trisubstituted by fluorine and / or chlorine-substituted benzyl.
  • Y preferably means e.g. Methoxycarbonyl, ethoxycarbonyl or 1-methyl-tetrazol-5-yl.
  • n is preferably e.g. 1 or 2.
  • Het preferably means e.g. 2- or 3-furyl, 2- or 3-thienyl, 1-, 2- or 3-pyrrolyl, 1-, 2, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2 -, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2 -, 4-, 5- or 6-pyrimidinyl, further preferably 1, 2,3-triazoM-, -4- or -5-yl, 1, 2,4-triazol-1-, -3- or 5-yl , 1- or 5-tetrazolyl, 1, 2,3-oxadiazol-4- or -5-yl, 1, 2,4-oxadiazol-3- or - 5-yl, 1, 3,4-thiadiazol-2- or -5-yl, 1, 2,4-thiadiazol-3- or -5-yl, 1, 2,3-
  • Het can, for. B. also mean 2,3-dihydro-2-, -3-, -4- or -5-furyl, 2,5-dihydro-2-, -3-, -4- or 5-furyl, tetrahydro-2 - or -3-furyl, 1, 3-dioxolan-4-yl, tetrahydro-2- or -3-thienyl, 2,3-dihydro-1-, -2-, -3-, -4- or -5-pyrrolyl, 2,5-dihydro-1 -, -2-, -3-, -4- or -5-pyrrolyl, 1 -, 2- or 3-pyrrolidinyl, tetrahydro-1-, -2 - or -4-imidazolyl, 2,3-dihydro-1-, -2-, -3-, -4- or -5-pyrazolyl, tetrahydro-1-, -3- or -4-pyrazolyl,
  • Het particularly preferably means e.g. Furyl, thienyl, thiazolyl, imidazolyl, [2,1, 3] -benzothiadiazolyl, oxazolyl, pyridyl, indolyl, 1-methyl-piperidinyl, piperidinyl or pyrrolidinyl, pyridyl, 1-methyl-piperidin-4- is very particularly preferred yl or piperidin-4-yl.
  • R 1 preferably means, for example, benzyl, methyl, ethyl, propyl, butyl, iso-
  • R 2 preferably means, for example, phenyl which is simply substituted by S0 2 NH 2 or S0 2 Me.
  • the compounds of the formula I can have one or more chiral centers and therefore exist in various stereoisomeric forms.
  • Formula I encompasses all of these forms.
  • the invention relates in particular to those compounds of the formula I in which at least one of the radicals mentioned has one of the preferred meanings indicated above.
  • Some preferred groups of compounds can be expressed by the following sub-formulas Ia to Ih, which correspond to the formula I and in which the radicals not specified have the meaning given for the formula I, but in which
  • R 1 unbranched, branched or cyclic alkyl with 1-8
  • R 1 unbranched, branched or cyclic alkyl with 1-8
  • CN or OA is substituted phenyl
  • R 1 unbranched, branched or cyclic alkyl with 1-8
  • R 2 simply by S0 2 A, S0 2 NHA, CF 3 , COOA, CH 2 NHA,
  • R 1 unbranched, branched or cyclic alkyl with 1-8
  • R 2 simply by S0 2 A, S0 2 NHA, CF 3 , COOA, CH 2 NHA,
  • R 1 unbranched, branched or cyclic alkyl with 1-8
  • R 2 simply by S0 2 A, S0 2 NHA, CF 3 , COOA, CH 2 NHA,
  • R 1 unbranched, branched or cyclic alkyl with 1-8
  • R 2 is simply phenyl substituted by S0 2 A, S0 2 NHA, CF 3 , COOA, CH 2 NHA, CN or OA,
  • R 1 unbranched, branched or cyclic alkyl with 1-8
  • R 2 is simply phenyl substituted by S0 2 A, S0 2 NHA, CF 3 , COOA, CH 2 NHA, CN or OA,
  • Ar unsubstituted or mono-, di- or trisubstituted by fluorine-substituted benzyl, A, A 'each independently of one another H, unbranched, branched or cyclic alkyl having 1-8 C atoms,
  • Het is a mononuclear saturated or aromatic heterocycle with 1 to 2 N and / or O atoms
  • the starting materials can also be formed in situ, so that they are not isolated from the reaction mixture, but instead are immediately reacted further to give the compounds of the formula I.
  • Compounds of formula I can preferably be obtained by liberating compounds of formula I from one of their functional derivatives by treatment with a solvolysing or hydrogenolysing agent.
  • Preferred starting materials for solvolysis or hydrogenolysis are those which otherwise correspond to the formula I, but instead of one or more free amino and / or hydroxyl groups contain corresponding protected amino and / or hydroxyl groups, preferably those which instead of an H atom, which is connected to an N atom carry an amino protective group, in particular those which carry an R'-N group instead of an HN group, in which R 'represents an amino protective group, and / or those which have one instead of the H atom Hydroxy group carry a hydroxyl protective group, for example those which have the formula! correspond - lo ⁇
  • chen but instead of a group -COOH carry a group -COOR ", in which R" denotes a hydroxy protective group.
  • Preferred starting materials are also the oxadiazole derivatives, which can be converted into the corresponding amidino compounds.
  • the release of the amidino group from its oxadiazole derivative can e.g. by treatment with hydrogen in the presence of a catalyst (e.g. water-moist Raney nickel).
  • a catalyst e.g. water-moist Raney nickel
  • Suitable solvents are those specified below, in particular alcohols such as methanol or ethanol, organic acids such as acetic acid or propionic acid or mixtures thereof.
  • the hydrogenolysis is generally carried out at temperatures between about 0 and 100 ° and pressures between about 1 and 200 bar, preferably at 20-30 ° (room temperature) and 1-10 bar.
  • the introduction of the oxadiazole group succeeds e.g. by reaction of the cyan compounds with hydroxylamine and reaction with phosgene, dialkyl carbonate, chloroformate, N, N'-carbonyldiimidazole or acetic anhydride.
  • amino protecting group is generally known and refers to groups which are suitable for protecting (blocking) an amino group from chemical reactions, but which are easily removable after the desired chemical reaction has been carried out at other locations in the molecule. Unsubstituted or substituted acyl, aryl, aralkoxymethyl or aralkyl groups are particularly typical of such groups. Since the amino protective groups are removed after the desired reaction (or reaction sequence), their type and size is otherwise not critical; however, preference is given to those having 1-20, in particular 1-8, carbon atoms.
  • acyl group is to be understood in the broadest sense in connection with the present process.
  • He um- includes acyl groups derived from aliphatic, araliphatic, aromatic or heterocyclic carboxylic acids or sulfonic acids and in particular alkoxycarbonyl, aryloxycarbonyl and especially aralkoxycarbonyl groups.
  • acyl groups are alkanoyl such as acetyl, propionyl, butyryl; Aralkanoyl such as phenylacetyl; Aroyl such as benzoyl or toluyl; Aryloxyalkanoyl such as POA; Alkoxycarbonyl such as methoxycarbonyl, ethoxycarbonyl, 2,2,2-trichloroethoxycarbonyl, BOC (tert-butyloxycarbonyl), 2-iodoethoxycarbonyl; Aralkyloxycarbonyl such as CBZ ("carbobenzoxy"), 4-methoxybenzyloxycarbonyl, FMOC; Arylsulfonyl such as Mtr.
  • Preferred amino protective groups are BOC and Mtr, furthermore CBZ, Fmoc, benzyl and acetyl.
  • Suitable inert solvents are preferably organic, for example carboxylic acids such as acetic acid, ethers such as tetrahydrofuran or dioxane, amides such as DMF, halogenated hydrocarbons such as dichloromethane, and also alcohols such as methanol, ethanol or isopropanol, and water. Mixtures of the abovementioned solvents are also suitable. TFA is preferably used in excess without the addition of another solvent, perchloric acid in the form of a mixture of acetic acid and 70% perchloric acid in a ratio of 9: 1.
  • the reaction temperatures for the cleavage are advantageously between about 0 and about 50 °, preferably between 15 and 30 ° (room temperature).
  • the groups BOC, OBut and Mtr can e.g. B. preferably with TFA in dichloromethane or with about 3 to 5N HCl in dioxane at 15-30 °, the FMOC group with an about 5 to 50% solution of dimethylamine, diethylamine or piperidine in DMF at 15-30 °.
  • Hydrogenolytically removable protective groups e.g. CBZ, benzyl or the release of the amidino group from their oxadiazole derivative
  • a catalyst z. B. a noble metal catalyst such as palladium, advantageously on a support such as coal.
  • Suitable solvents are the above, especially z. B.
  • the hydrogenolysis is generally carried out at temperatures between about 0 and 100 ° and pressures between about 1 and 200 bar, preferably at 20-30 ° and 1-10 bar.
  • Hydrogenolysis of the CBZ group succeeds e.g. B. good on 5 to 10% Pd / C in methanol or with ammonium formate (instead of hydrogen) on Pd / C in metha ⁇ ol / DMF at 20-30 °.
  • Suitable inert solvents are e.g. Hydrocarbons such as hexane, petroleum ether, benzene, toluene or xylene; chlorinated hydrocarbons such as trichlorethylene, 1, 2-dichloroethane, carbon tetrachloride, trifluoromethylbenzene, chloroform or dichloromethane; Alcohols such as methanol, ethanol, isopropanol, n-propanol, n-butanol or tert-butanol; Ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran (THF) or dioxane; Glycol ethers such as ethylene glycol monomethyl or monoethyl ether (methyl glycol or ethyl glycol), ethylene glycol dimethyl ether (diglyme); Ketones such as acetone or butanone; Amides such as acetamide, dimethylacetamide
  • An S0 2 NH 2 group for example in R 2 , is preferably used in the form of its tert-butyl derivative.
  • the tert-butyl group is split off, for example, using TFA with or without the addition of an inert solvent, preferably with the addition of a small amount of anisole (1-10% by volume).
  • the conversion of a cyano group into an amidino group takes place by reaction with, for example, hydroxylamine and subsequent reduction of the N- Hydroxyamidine with hydrogen in the presence of a catalyst such as Pd / C.
  • ammonia can also be added to a nitrile.
  • the addition is preferably carried out in several stages by, in a manner known per se, a) converting the nitrile with H 2 S into a thioamide, which is converted into the corresponding S-alkylimidothioester using an alkylating agent, for example CH 3 I, which in turn contains NH 3 reacts to the amidine, b) the nitrile is converted to the corresponding imidoester with an alcohol, for example ethanol in the presence of HCl, and treated with ammonia, or c) the nitrile is reacted with lithium bis (trimethylsilyl) amide and the product then hydrolyzed.
  • an alkylating agent for example CH 3 I
  • R 1 has the meaning given in claim 1 and L is Cl, Br, I or a free or reactive functional OH group,
  • R has the meaning given in claim 1, but a free NH 2 or OH group is substituted by a protective group.
  • L is preferably Cl, Br, I or a free or reactively modified OH group such as e.g. an activated ester, an imidazolide or alkylsulfonyloxy with 1-6 C atoms (preferably methylsulfonyloxy) or arylsulfonyloxy with 6-10 C atoms (preferably phenyl- or p-tolylsulfonyloxy).
  • a free or reactively modified OH group such as e.g. an activated ester, an imidazolide or alkylsulfonyloxy with 1-6 C atoms (preferably methylsulfonyloxy) or arylsulfonyloxy with 6-10 C atoms (preferably phenyl- or p-tolylsulfonyloxy).
  • the precursors of the compounds of the formula I can be prepared by reacting compounds of the formula IV
  • R 2 has the meaning given in claim 1, but a free NH 2 or OH group is substituted by a protective group.
  • L preferably denotes Cl, Br, I or a free or reactive modified OH group such as e.g. an activated ester, an imidazolide or alkylsulfonyloxy with 1-6 C atoms (preferably methylsulfonyloxy) or arylsulfonyloxy with 6-10 C atoms (preferably phenyl- or p-tolylsulfonyloxy).
  • a free or reactive modified OH group such as e.g. an activated ester, an imidazolide or alkylsulfonyloxy with 1-6 C atoms (preferably methylsulfonyloxy) or arylsulfonyloxy with 6-10 C atoms (preferably phenyl- or p-tolylsulfonyloxy).
  • Amine components of the formula III or IV are preferably carried out in a manner known per se in a protic or aprotic polar or non-polar inert organic solvent.
  • Some of the compounds of the formulas II, III, IV and V used as intermediates are known or can be prepared by customary methods.
  • a preferred variant also consists in reacting the reactants directly with one another without the addition of a solvent.
  • Suitable bases are preferably e.g. Alkali metal or alkaline earth metal hydroxides, carbonates, alcoholates or organic bases such as triethylamine or pyridine, which are also used in excess and can then simultaneously serve as solvents.
  • Alcohols such as methanol, ethanol, isopropanol, n-butanol or tert-butanol are particularly suitable as inert solvents; Ethers such as diethyl ether, diisopropyl ether, THF or dioxane; Glycol ethers such as ethylene glycol monomethyl or monoethyl ether (methyl glycol or ethyl glycol), ethylene glycol dimethyl ether (diglyme); Ketones such as acetone or butanone; Nitriles such as acetonitrile; Nitro compounds such as nitromethane or nitrobenzene; Esters such as ethyl acetate; Amides such as phosphoric acid hexamethyl triamide; Sulfoxides such as dimethyl sulfoxide (DMSO); chlorinated hydrocarbons such as dichloromethane, chloroform, trichlorethylene, 1, 2-dichloroethane or carbon tetrachloride; Hydrocarbon
  • Particularly suitable solvents are methanol, THF, dimethoxyethane, dioxane, water or mixtures which can be prepared therefrom.
  • temperatures between 20 ° and the boiling point of the solvent are suitable as the reaction temperature.
  • the reaction times are between 5 minutes and 30 hours.
  • an acid scavenger in the reaction.
  • Any type of base that does not interfere with the reaction itself is suitable for this.
  • the use of inorganic bases such as potassium carbonate or of organic bases such as triethylamine or pyridine is particularly suitable.
  • Esters can be saponified, for example, with acetic acid or with NaOH or KOH in water, water-THF or water-dioxane at temperatures between 0 and 100 °.
  • free amino groups can be acylated in the usual way with an acid chloride or anhydride or alkylated with an unsubstituted or substituted alkyl halide, advantageously in an inert solvent such as dichloromethane or THF and / or in the presence of a base such as triethylamine or pyridine at temperatures between -60 and + 30 °.
  • a base of the formula I can be converted into the associated acid addition salt using an acid, for example by reacting equivalent amounts of the base and the acid in an inert solvent such as ethanol and subsequent evaporation.
  • acids that provide physiologically acceptable salts are suitable for this implementation.
  • So inorganic acids can be used, e.g. Sulfuric acid, nitric acid, hydrogen halide acids such as hydrochloric acid or hydrobromic acid, phosphoric acids such as orthophosphoric acid, sulfamic acid, furthermore organic acids, in particular aliphatic, alicyclic, araliphatic, aromatic or heterocyclic mono- or polybasic carboxylic, sulfonic or sulfuric acids, e.g.
  • compounds of the formula I with bases for example sodium or potassium hydroxide or carbonate
  • bases for example sodium or potassium hydroxide or carbonate
  • compounds of the formula I with bases can be used in the corresponding metal, in particular special alkali metal or alkaline earth metal, or be converted into the corresponding ammonium salts.
  • physiologically harmless organic bases e.g. Ethanolamine can be used.
  • the pharmaceutical activity of the racemates or the stereoisomers of the compounds according to the invention can differ, it may be desirable to use the enantiomers.
  • the end product or even the intermediates can be separated into enantiomeric compounds by chemical or physical measures known to the person skilled in the art or can already be used as such in the synthesis.
  • diastereomers are formed from the mixture by reaction with an optically active release agent.
  • Suitable release agents are e.g. optically active acids, such as the R and S forms of tartaric acid, diacetytartaric acid, dibenzoyltartaric acid, mandelic acid, malic acid, lactic acid, suitable N-protected amino acids (e.g. N-benzoylproline or N-benzenesulfonylproline) or the various optically active camphorsulfonic acids.
  • optically active acids such as the R and S forms of tartaric acid, diacetytartaric acid, dibenzoyltartaric acid, mandelic acid, malic acid, lactic acid, suitable N-protected amino acids (e.g. N-benzoylproline or N-benzenesulfonylproline) or the various optically active camphorsulfonic acids.
  • Aqueous or alcoholic solvent mixtures such as e.g. Hexane / isopropanol / acetonitrile e.g. in the ratio 82: 15: 3.
  • the invention furthermore relates to the use of the compounds of the formula I and / or their physiologically acceptable salts for the production of pharmaceutical preparations, in particular by a non-chemical route.
  • they can be combined with at least one solid, liquid and / or semi-liquid carrier or auxiliary and if necessary, be brought into a suitable dosage form in combination with one or more further active ingredients.
  • the invention thus also relates to pharmaceutical preparations containing at least one medicament according to one of claims 5 to 6 and, if appropriate, carriers and / or auxiliaries and, if appropriate, other active compounds.
  • Suitable carriers are organic or inorganic substances which are suitable for enteral (for example oral), parenteral or topical application and do not react with the new compounds, for example water, vegetable oils, benzyl alcohols, alkylene glycols, polyethylene glycols, glycerol triacetate, gelatin , Carbohydrates such as lactose or starch, magnesium stearate, talc, petroleum jelly.
  • tablets, pills, dragees, capsules, powders, granules, syrups, juices or drops are used, for rectal use suppositories, for parenteral use, solutions, preferably oily or aqueous solutions, furthermore suspensions, emulsions or implants, for topical use Ointments, creams or powder.
  • the new compounds can also be lyophilized and the lyophilizates obtained e.g. can be used for the production of injectables.
  • the specified preparations can be sterilized and / or contain auxiliaries such as lubricants, preservatives, stabilizers and / or wetting agents, emulsifiers, salts for influencing the osmotic pressure, buffer substances, coloring, flavoring and / or several other active substances, eg one or more vitamins.
  • auxiliaries such as lubricants, preservatives, stabilizers and / or wetting agents, emulsifiers, salts for influencing the osmotic pressure, buffer substances, coloring, flavoring and / or several other active substances, eg one or more vitamins.
  • the invention also relates to the use of compounds according to claims 1 to 2 and / or their physiologically acceptable salts for the manufacture of a medicament for combating thromboembolic disorders such as thrombosis, myocardial infarction, arteriosclerosis, inflammation, apoplexy, angina pectoris, restenosis Intermittent angioplasty and claudication
  • thromboembolic disorders such as thrombosis, myocardial infarction, arteriosclerosis, inflammation, apoplexy, angina pectoris, restenosis Intermittent angioplasty and claudication
  • the substances according to the invention are generally preferably used in doses between about 1 and 500 mg, in particular between 5 and 100 mg per dosage unit administered.
  • the daily dosage is preferably between about 0.02 and 10 mg / kg body weight.
  • the specific dose for each patient depends on a wide variety of factors, for example on the effectiveness of the particular compound used, on the age, body weight, general health, sex, on the diet, on the time and route of administration, on the rate of elimination and combination of drugs and severity of the respective disease to which the therapy applies. Oral application is preferred.
  • Example 6 The implementation is analogous to SM Rahmathullah et al. in J. Med. Chem. 1999, 42, 3994-4000.
  • compound 2 is obtained by reacting 3- / - [3- (5-methyl- [1,2,4] oxadiazol-3-yl) phenyl] -2,2,2-trifluoroacetamide by reaction with ethyl bromoacetate - [3- (5-Methyl- [1, 2,4] oxadiazol-3-yl) phenylamino] acetic acid ethyl ester and further analogously as described above the compound ⁇ / - (2'-methylsulfonyl-biphenyl-4- yl) -2 - [(3-amidinophenyl) -N- (ethoxycarbonylmethyl) amino] acetamide.
  • Example A Injection glasses
  • a solution of 100 g of an active ingredient of the formula I and 5 g of disodium hydrogenphosphate is adjusted to pH 6.5 in 3 l of double-distilled water with 2N hydrochloric acid, sterile filtered, filled into injection glasses, lyophilized under sterile conditions and sealed sterile. Each injection jar contains 5 mg of active ingredient.
  • a mixture of 20 g of an active ingredient of the formula I is melted with 100 g of soy lecithin and 1400 g of cocoa butter, poured into molds and allowed to cool. Each suppository contains 20 mg of active ingredient.
  • a solution of 1 g of an active ingredient is prepared of the formula I, 9.38 g of NaH 2 P0 4 • 2 H 2 0, 28.48 g Na 2 HP0 4 • 12 H 2 0 and 0.1 g of benzalkonium chloride in 940 ml of double distilled water. It is adjusted to pH 6.8, made up to 1 I and sterilized by irradiation. This solution can be used in the form of eye drops.
  • Example D ointment
  • 500 mg of an active ingredient of the formula I are mixed with 99.5 g of petroleum jelly under aseptic conditions.
  • Example F coated tablets
  • Example E tablets are pressed, which are then coated in a conventional manner with a coating of sucrose, potato starch, talc, tragacanth and colorant.
  • Example G capsules
  • each capsule contains 20 mg of the active ingredient.
  • a solution of 1 kg of active ingredient of the formula I in 60 l of double-distilled water is sterile filtered, filled into ampoules, lyophilized under sterile conditions and sealed sterile. Each ampoule contains 10 mg of active ingredient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Pain & Pain Management (AREA)
  • Diabetes (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Rheumatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyridine Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Hydrogenated Pyridines (AREA)

Abstract

Neue Verbindungen der Formel (I), worin R, R?1 und R2¿ die in Patentanspruch 1 angegebene Bedeutung haben, sind Inhibitoren des Koagulationsfaktors Xa und können zur Prophylaxe und/oder Therapie von thromboembolischen Erkrankungen eingesetzt werden.

Description

Glycinamide
Die Erfindung betrifft Verbindungen der Formel
Figure imgf000002_0001
worin R -CO-N=C(NH2)2, -NH-C(=NH)-NH2 oder -C(=NH)-NH2, das auch einfach durch OH, -OCOOA, -OCOO(CH2)nNAA', -COO(CH2)nNAA\ -OCOO(CH2)m-Het, -COO(CH2)m-Het, -CO-CAA'-R3, -COO-CAA'-R3, COOA, COSA, COOAr, COOAr' oder durch eine konventionelle Aminoschutzgruppe substituiert sein kann,
Figure imgf000002_0002
R1 unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-20 C- Atomen, worin eine oder zwei CH2-Gruppen durch O- oder S- Atome ersetzt sein können, Ar, Ar' oder X,
R^ einfach durch S(0)pA, S(0)pNHA, CF3, COOA, CH2NHA, CN oder OA substituiertes Phenyl,
RJ -C(Hal)3, -0(C=0)A oder
Figure imgf000002_0003
Ar unsubstituiertes oder ein-, zwei- oder dreifach durch A, OA, NAA', N02, CF3, CN, Hai, NHCOA, COOA, CONAA', S(0)pA, S(0)pNAA' substituiertes Phenyl oder Naphthyl, Ar' -(CH2)n-Ar,
A, A' jeweils unabhängig voneinander H, unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-20 C-Atomen,
Het einen ein- oder zweikernigen gesättigten, ungesättigten oder aro- matischen Heterocyclus mit 1 bis 4 N-, O- und/oder S-Atomen, über N oder C gebunden, der unsubstituiert oder durch A substituiert sein kann, X -(CH2)n-Y,
Figure imgf000003_0001
Hai F, Cl, Br oder I, m O oder l , n 1 , 2, 3, 4, 5 oder 6, p 0, 1 oder 2 bedeuten, sowie ihre pharmazeutisch verträglichen Salze und Solvate.
Gegenstand der Erfindung sind auch die optisch aktiven Formen, die Ra- cemate, die Diastereomeren sowie die Hydrate und Solvate, z.B. Alkoho- late, dieser Verbindungen.
Der Erfindung lag die Aufgabe zugrunde, neue Verbindungen mit wertvollen Eigenschaften aufzufinden, insbesondere solche, die zur Herstellung von Arzneimitteln verwendet werden können.
Es wurde gefunden, daß die Verbindungen der Formel I und ihre Salze bei guter Verträglichkeit sehr wertvolle pharmakologische Eigenschaften besitzen. Insbesondere zeigen sie Faktor Xa inhibierende Eigenschaften und können daher zur Bekämpfung und Verhütung von thromboembolischen Erkrankungen wie Thrombose, myocardialem Infarkt, Arteriosklerose, Ent- Zündungen, Apoplexie, Angina pectoris, Restenose nach Angioplastie und Claudicatio intermittens eingesetzt werden. Die erfindungsgemäßen Verbindungen der Formel I können weiterhin Inhibitoren der Gerinnungsfaktoren Faktor Vlla, Faktor IXa und Thrombin der Blutgerinnungskaskade sein.
Aromatische Amidinderivate mit antithrombotischer Wirkung sind z.B. aus der EP 0 540 051 B1 bekannt. Cyclische Guanidine zur Behandlung thromboembolischer Erkrankungen sind z.B. in der WO 97/08165 beschrieben. Aromatische Heterocyclen mit Faktor Xa inhibitorischer Aktivität sind z.B. aus der WO 96/10022 bekannt. Substituierte N-[(Aminoimino- methyl)phenylalkyl]-azaheterocyclylamide als Faktor Xa Inhibitoren sind in
WO 96/40679 beschrieben.
Andere Verbindungen sind beschrieben in der WO 97/30971 oder WO
99/10361.
Der antithrombotische und antikoagulierende Effekt der erfindungsgemäßen Verbindungen wird auf die inhibierende Wirkung gegenüber der aktivierten Gerinnungsprotease, bekannt unter dem Namen Faktor Xa, oder auf die Hemmung anderer aktivierter Serinproteasen wie Faktor Vlla, Faktor IXa oder Thrombin zurückgeführt.
Faktor Xa ist eine der Proteasen, die in den komplexen Vorgang der Blutgerinnung involviert ist. Faktor Xa katalysiert die Umwandlung von Pro- thrombin in Thrombin. Thrombin spaltet Fibrinogen in Fibrinmonomere, die nach Quervernetzung elementar zur Thrombusbildung beitragen. Eine Aktivierung von Thrombin kann zum Auftreten von thromboembolischen Erkrankungen führen. Eine Hemmung von Thrombin kann jedoch die in die Thrombusbildung involvierte Fibrinbildung inhibieren. Die Messung der Inhibierung von Thrombin kann z.B. nach der Methode von G. F. Cousins et al. in Circulation 1996, 94, 1705-1712 erfolgen.
Eine Inhibierung des Faktors Xa kann somit verhindern, daß Thrombin gebildet wird.
Die erfindungsgemäßen Verbindungen der Formel I sowie ihre Salze grei- fen durch Inhibierung des Faktors Xa in den Blutgerinnungsprozeß ein und hemmen so die Entstehung von Thromben. Die Inhibierung des Faktors Xa durch die erfindungsgemäßen Verbindungen und die Messung der antikoagulierenden und antithrombotischen Aktivität kann nach üblichen in vitro- oder in vivo-Methoden ermittelt werden. Ein geeignetes Verfahren wird z.B. von J. Hauptmann et al. in Thrombosis and Haemostasis 1990, 63, 220-223 beschrieben.
Die Messung der Inhibierung von Faktor Xa kann z.B. nach der Methode von T. Hara et al. in Thromb. Haemostas. 1994, 71, 314-319 erfolgen.
Der Gerinnungsfaktor Vlla initiiert nach Bindung an Tissue Faktor den ex- trinsischen Teil der Gerinnungskaskade und trägt zur Aktivierung des Faktors X zu Faktor Xa bei. Eine Inhibierung von Faktor Vlla verhindert somit die Entstehung des Faktors Xa und damit eine nachfolgende Thrombinbildung.
Die Inhibierung des Faktors Vlla durch die erfindungsgemäßen Verbindungen und die Messung der antikoagulierenden und antithrombotischen Aktivität kann nach üblichen in vitro- oder in vivo-Methoden ermittelt werden. Ein übliches Verfahren zur Messung der Inhibierung von Faktor Vlla wird z.B. von H. F. Ronning et al. in Thrombosis Research 1996, 84, 73-81 beschrieben.
Der Gerinnungsfaktor IXa wird in der intrinsischen Gerinnungskaskade generiert und ist ebenfalls an der Aktivierung von Faktor X zu Faktor Xa be- teiligt. Eine Inhibierung von Faktor IXa kann daher auf andere Weise verhindern, daß Faktor Xa gebildet wird.
Die Inhibierung von Faktor IXa durch die erfindungsgemäßen Verbindungen und die Messung der antikoagulierenden und antithrombotischen Aktivität kann nach üblichen in vitro- oder in vivo-Methoden ermittelt werden. Ein geeignetes Verfahren wird z.B. von J. Chang et al. in Journal of Biolo- gical Chemistry 1998, 273, 12089-12094 beschrieben.
Gegenstand der Erfindung sind die Verbindungen der Formel l gemäß den Ansprüchen 1 bis 2 sowie deren physiologisch unbedenklichen Salze und Solvate als Arzneimittel. Die Verbindungen der Formel I können als Arzneimittelwirkstoffe in der Human- und Veterinärmedizin eingesetzt werden, insbesondere zur Bekämpfung und Verhütung von thromboembolischen Erkrankungen wie Thrombose, myocardialem Infarkt, Arteriosklerose, Entzündungen, Apo- plexie, Angina pectoris, Restenose nach Angioplastie und Claudicatio in- termittens.
Gegenstand der Erfindung sind daher auch die genannten Arzneimittelwirkstoffe als als Inhibitoren des Koagulationsfaktors Xa sowie diese Arz- neimittel zur Behandlung von Thrombosen, myocardialem Infarkt, Arteriosklerose, Entzündungen, Apoplexie, Angina pectoris, Restenose nach Angioplastie und Claudicatio intermittens.
Gegenstand der Erfindung sind die Verbindungen der Formel I und ihre Salze sowie ein Verfahren zur Herstellung von Verbindungen der Formel l nach Anspruch 1 , worin R Amidino bedeutet, sowie ihrer Salze, dadurch gekennzeichnet, daß man
a) sie aus einem ihrer funktionellen Derivate durch Behandeln mit ei- nem solvolysierenden oder hydrogenolysierenden Mittel in Freiheit setzt,
und/oder
b) eine Base oder Säure der Formel I in eines ihrer Salze umwandelt.
Für alle Reste, die mehrfach auftreten, gilt, daß deren Bedeutungen unabhängig voneinander sind.
Es bedeuten nachstehend:
Ac Acetyl
BOG tert.-Butoxycarbonyl
CBZ oder Z Benzyloxycarbonyl
DAPECI N-(3-DimethyIaminopropyl)-N-ethyl-carbodiimid DCCl Dicyclohexylcarbodii id
D F Dimethylformamid Et Ethyl
Fmoc 9-Fluorenylmethoxycarbonyl
HOBt 1 -Hydroxybenzotriazol
Me Methyl
HONSu N-Hydroxysuccinimid
OBut tert.-Butylester
Oct Octanoyl
OMe Methylester
OEt Ethylester
RT Raumtemperatur
THF Tetra hydrofu ran
TFA Trifluoressigsäure
Trt Trityl (Triphenylmethyl).
Vor- und nachstehend haben die Reste bzw. Parameter R, R1, R2, R3, Ar, Ar', A, A", Het, X, Y, n, m und p die bei der Formel I angegebenen Bedeutungen, falls nicht ausdrücklich etwas anderes angegeben ist.
Alkyl ist unverzweigt (linear) oder verzweigt, und hat 1 bis 20, vorzugsweise 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 C-Atome. Alkyl bedeutet vorzugsweise Methyl, weiterhin Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sek.-Butyl oder tert.-Butyl, ferner auch Pentyl, 1-, 2- oder 3-Methylbutyl, 1 ,1- , 1 ,2- oder 2,2-Dimethylpropyl, 1-Ethylpropyl, Hexyl, 1- , 2- , 3- oder 4- Methylpentyl, 1 ,1- , 1 ,2- , 1 ,3- , 2,2- , 2,3- oder 3,3-Dimethylbutyl, 1- oder 2-Ethylbutyl, 1-Ethyl-1-methylpropyl, 1-Ethyl-2-methylpropyl, 1 ,1 ,2- oder 1 ,2,2-Trimethylpropyl, weiter bevorzugt z.B. Trifluormethyl. A bedeutet ganz besonders bevorzugt Alkyl mit 1-6 C-Atomen, vorzugsweise Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sek.-Butyl, tert.- Butyl, Pentyl oder Hexyl.
Cyclisches Alkyl oder Cycloalkyl bedeutet vorzugsweise Cyclopropyl, Cy- clobutyl, Cylopentyl, Cyclohexyl oder Cycloheptyl.
Hai bedeutet vorzugsweise F, Cl oder Br, aber auch Ar bedeutet unsubstituiertes oder ein-, zwei- oder dreifach durch A, OA, NAA', N02, CF3, CN, Hai, NHCOA, COOA, CONAA', S(0)pA, S(0)pNAA' substituiertes Phenyl oder Naphthyl. Bevorzugte Substituenten für Phenyl oder Naphthyl sind z.B. Methyl, Ethyl, Propyl, Butyl, OH, Methoxy, Ethoxy, Propoxy, Butoxy, Amino, Methylami- no, Dimethylamino, Ethylamino, Diethylamino, Nitro, Trifluormethyl, Fluor, Chlor, Acetamido, Methoxycarbonyl, Ethoxycarbonyl, Aminocarbonyl, Sul- fonamido, Methylsulfonamido, Ethylsulfonamido, Propylsulfonamido, Bu- tylsulfonamido, tert.-Butylsulfonamido, tert.-Butylaminosulfonyl, Dimethyl- sulfonamido, Phenylsulfonamido, Carboxy, Dimethylaminocarbonyl, Phe- nylaminocarbonyl, Acetyl, Propionyl, Benzoyl, Methylsulfonyl oder Phenyl- sulfonyl.
Ar bedeutet besonders bevorzugt z.B. unsubstituiertes Phenyl oder einfach durch SO2NH2, SO2CH3, Fluor oder Alkoxy, wie z.B. Methoxy, substituier- tes Phenyl,.
Ar' bedeutet -(CH2)n-Ar, vorzugsweise unsubstituiertes oder ein-, zwei- oder dreifach durch Fluor und/oder Chlor substituiertes Benzyl.
Y bedeutet vorzugsweise z.B. Methoxycarbonyl, Ethoxycarbonyl oder 1- Methyl-tetrazol-5-yl. In X bedeutet n vorzugsweise z.B. 1 oder 2.
Het bedeutet vorzugsweise z.B. 2- oder 3-Furyl, 2- oder 3-Thienyl, 1-, 2- oder 3-Pyrrolyl, 1-, 2, 4- oder 5-lmidazolyl, 1-, 3-, 4- oder 5-Pyrazolyl, 2-, 4- oder 5-Oxazolyl, 3-, 4- oder 5-lsoxazolyl, 2-, 4- oder 5-Thiazolyl, 3-, 4- oder 5-lsothiazolyl, 2-, 3- oder 4-Pyridyl, 2-, 4-, 5- oder 6-Pyrimidinyl, weiterhin bevorzugt 1 ,2,3-TriazoM-, -4- oder -5-yl, 1 ,2,4-Triazol-1-, -3- oder 5-yl, 1- oder 5-Tetrazolyl, 1 ,2,3-Oxadiazol-4- oder -5-yl, 1 ,2,4-Oxadiazol-3- oder - 5-yl, 1 ,3,4-Thiadiazol-2- oder -5-yl, 1 ,2,4-Thiadiazol-3- oder -5-yl, 1 ,2,3-
Thiadiazol-4- oder -5-yl, 3- oder4-Pyridazinyl, Pyrazinyl, 1-, 2-, 3-, 4-, 5-, 6- oder 7-lndolyl, 4- oder 5-lsoindolyl, 1-, 2-, 4- oder 5-Benzimidazolyl, 1-, 3-, 4-, 5-, 6- oder 7-Benzopyrazolyl, 2-, 4-, 5-, 6- oder 7-Benzoxazolyl, 3-, 4-, 5-, 6- oder 7- Benzisoxazolyl, 2-, 4-, 5-, 6- oder 7-Benzothiazolyl, 2-, 4-, 5-, 6- oder 7-Benzisothiazolyl, 4-, 5-, 6- oder 7-Benz-2,1 ,3-oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- oder 8-Chinolyl, 1-, 3-, 4-, 5-, 6-, 7- oder 8-lsochinolyl, 3-, 4-, 5-, 6-, 7- oder 8-Cinnolinyl, 2-, 4-, 5-, 6-, 7- oder 8-Chinazolinyl, 5- oder 6- Chinoxalinyl, 2-, 3-, 5-, 6-, 7- oder 8-2H-Benzo[1 ,4]oxazinyl, weiter bevorzugt 1 ,3-Benzodioxol-5-yl, 1 ,4-Benzodioxan-6-yl, 2,1 ,3-Benzothiadiazol-4- oder -5-yl oder 2,1 ,3-Benzoxadiazol-5-yl. Die heterocyclischen Reste können auch teilweise oder vollständig hydriert sein.
Het kann also z. B. auch bedeuten 2,3-Dihydro-2-, -3-, -4- oder -5-furyl, 2,5-Dihydro-2-, -3-, -4- oder 5-furyl, Tetrahydro-2- oder -3-furyl, 1 ,3-Dioxo- lan-4-yl, Tetrahydro-2- oder -3-thienyl, 2,3-Dihydro-1-, -2-, -3-, -4- oder -5- pyrrolyl, 2,5-Dihydro-1 -, -2-, -3-, -4- oder -5-pyrrolyl, 1 -, 2- oder 3-Pyrroli- dinyl, Tetrahydro-1-, -2- oder -4-imidazolyl, 2,3-Dihydro-1-, -2-, -3-, -4- oder -5-pyrazolyl, Tetrahydro-1-, -3- oder -4-pyrazolyl, 1 ,4-Dihydro-1-, -2-, -3- oder -4-pyridyl, 1 ,2,3,4-Tetrahydro-1-, -2-, -3-, -4-, -5- oder -6-pyridyl, 1-, 2- , 3- oder 4-Piperidinyl, 2-, 3- oder 4-Morpholinyl, Tetrahydro-2-, -3- oder -4- pyranyl, 1 ,4-Dioxanyl, 1 ,3-Dioxan-2-, -4- oder -5-yl, Hexahydro-1 -, -3- oder
-4-pyridazinyl, Hexahydro-1-, -2-, -4- oder -5-pyrimidinyl, 1-, 2- oder 3- Piperazinyl, 1 ,2,3,4-Tetrahydro-1-, -2-, -3-, -4-, -5-, -6-, -7- oder -8-chinolyl, 1 ,2,3,4-Tetrahydro-1-,-2-,-3-, -4-, -5-, -6-, -7- oder -8-isochinolyl, 2-, 3-, 5-, 6-, 7- oder 8- 3,4-Dihydro-2H-benzo[1 ,4]oxazinyl, weiter bevorzugt 2,3- Methylendioxyphenyl, 3,4-Methylendioxyphenyl, 2,3-Ethylendioxyphenyl, 3,4-Ethylendioxyphenyl, 3,4-(Difluormethylendioxy)phenyl, 2,3-Dihydro- benzofuran-5- oder 6-yl, 2,3-(2-Oxo-methylendioxy)-phenyl oder auch 3,4- Dihydro-2H-1 ,5-benzodioxepin-6- oder -7-yl, ferner bevorzugt 2,3-Dihydro- benzofuranyl oder 2,3-Dihydro-2-oxo-furanyl.
Het bedeutet besonders bevorzugt z.B. Furyl, Thienyl, Thiazolyl, Imidazo- lyl, [2,1 ,3]-Benzothiadiazolyl, Oxazolyl, Pyridyl, Indolyl, 1-Methyl-piperidinyl, Piperidinyl oder Pyrrolidinyl, ganz besonders bevorzugt ist Pyridyl, 1- Methyl-piperidin-4-yl oder Piperidin-4-yl.
R bedeutet vorzugsweise z.B. Amidino, N-Methoxycarbonyl-amidino, N- Ethoxycarbonyl-amidino, N-(2,2,2-Trichlorethoxy-carbonyl)-amidino, N- Ethylthiocarbonyl-amidino, N-Benzyloxycarbonyl-amidino, N-Phenoxy- carbonyl-amidino, N-(4-Fluorphenoxy-carbonyl)-amidino, N-(4-Methoxy- phenyl-thiocarbonyl)-amidin, N-[CH3CO-0-CH(CH3)-0-CO]-amidin = N- Acetoxyethoxycarbonyl-amidin, N-Ethoxycarbonyloxy-amidin, N-(N,N- Diethylaminoethoxy-carbonyl)-amidino, N-[(1-Methyl-piperidin-4-yl)- oxycarbonyl]-amidino oder N-[(Pyridin-2-yl)-ethoxycarbonyl]-amidino.
R1 bedeutet vorzugsweise z.B. Benzyl, Methyl, Ethyl, Propyl, Butyl, iso-
Propyl, iso-Butyl, sek.-Butyl, Pentyl, Pent-3-yl, Cyclohexylmethyl, 4- Fluorbenzyl, Ethoxycarbonylmethyl, Ethoxycarbonylethyl, (1-Methyl- tetrazol-5-yl)-ethyl, Methoxyethyl, Methoxymethyl oder Methoxybutyl.
R2 bedeutet vorzugsweise z.B. einfach durch S02NH2 oder S02Me substituiertes Phenyl.
Die Verbindungen der Formel I können ein oder mehrere chirale Zentren besitzen und daher in verschiedenen stereoisomeren Formen vorkommen. Die Formel I umschließt alle diese Formen.
Dementsprechend sind Gegenstand der Erfindung insbesondere diejenigen Verbindungen der Formel I, in denen mindestens einer der genannten Reste eine der vorstehend angegebenen bevorzugten Bedeutungen hat. Einige bevorzugte Gruppen von Verbindungen können durch die folgenden Teilformeln la bis Ih ausgedrückt werden, die der Formel I entsprechen und worin die nicht näher bezeichneten Reste die bei der Formel l angegebene Bedeutung haben, worin jedoch
in la R -C(=NH)-NH2, das auch einfach durch OH, -OCOOA, -
-COO(CH2)nNAA\ -COO(CH2)m-Het, -COO-CAA'-R3, COOA, COSA, COOAr, COOAr' oder eine konventionelle Aminoschutzgruppe substituiert sein kann.
Figure imgf000010_0001
bedeutet; in Ib R -C(=NH)-NH2, das auch einfach durch OH, -OCOOA, -
-COO(CH2)nNAA', -COO(CH2)m-Het, -COO-CAA'-R3, COOA, COSA, COOAr, COOAr' oder eine konventionelle Aminoschutzgruppe substituiert sein kann,
Figure imgf000011_0001
R1 unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-8
C-Atomen, worin eine CH2-Gruppe durch O ersetzt sein kann, Ar, Ar' oder X bedeuten;
in Ic R -C(=NH)-NH2, das auch einfach durch OH, -OCOOA, -
-COO(CH2)nNAA', -COO(CH2)m-Het, -COO-CAA'-R3, COOA, COSA, COOAr, COOAr' oder eine konventionelle Aminoschutzgruppe substituiert sein kann,
Figure imgf000011_0002
R1 unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-8
C-Atomen, worin eine CH2-Gruppe durch O ersetzt sein kann, Ar, Ar' oder X, R2 einfach durch S02A, S02NHA, CF3, COOA, CH2NHA,
CN oder OA substituiertes Phenyl bedeuten;
in Id R -C(=NH)-NH2, das auch einfach durch OH, -OCOOA,
-COO(CH2)nNAA', -COO(CH2)m-Het, -COO-CAA'-R3, COOA, COSA, COOAr, COOAr' oder eine konventionelle Aminoschutzgruppe substituiert sein kann,
Figure imgf000012_0001
R1 unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-8
C-Atomen, worin eine CH2-Gruppe durch O ersetzt sein kann, Ar, Ar' oder X,
R2 einfach durch S02A, S02NHA, CF3, COOA, CH2NHA,
CN oder OA substituiertes Phenyl,
RJ --CCCCII33 ooddeerr -0(C=0)A bedeuten;
R -C(=NH)-NH2, das auch einfach durch OH, -OCOOA, -
-COO(CH2)nNAA', -COO(CH2)m-Het, -COO-CAA'-R3, COOA, COSA, COOAr, COOAr' oder eine konventionelle Aminoschutzgruppe substituiert sein kann,
Figure imgf000012_0002
R1 unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-8
C-Atomen, worin eine CH2-Gruppe durch O ersetzt sein kann, Ar, Ar' oder X,
R2 einfach durch S02A, S02NHA, CF3, COOA, CH2NHA,
CN oder OA substituiertes Phenyl, R3 -CCI3 oder -0(C=0)A,
Ar unsubstituiertes oder einfach durch A, OA, CF3, Hai oder S02NH2 substituiertes Phenyl bedeuten; in If R -C(=NH)-NH2, das auch einfach durch OH, -OCOOA, -
-COO(CH2)nNAA', -COO(CH2)m-Het, -COO-CAA'-R3, COOA, COSA, COOAr, COOAr' oder eine konventionelle Aminoschutzgruppe substituiert sein kann,
Figure imgf000013_0001
R1 unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-8
C-Atomen, worin eine CH2-Gruppe durch O ersetzt sein kann, Ar, Ar' oder X,
R2 einfach durch S02A, S02NHA, CF3, COOA, CH2NHA,
CN oder OA substituiertes Phenyl, R3 -CCl3 oder -0(C=0)A,
Ar unsubstituiertes oder einfach durch A, OA, CF3, Hai oder S02NH2 substituiertes Phenyl,
Ar' unsubstituiertes oder ein-, zwei- oder dreifach durch
Fluor substituiertes Benzyl bedeuten;
in Ig R -C(=NH)-NH2, das auch einfach durch OH, -OCOOA, -
-COO(CH2)nNAA', -COO(CH2)m-Het, -COO-CAA'-R3, COOA, COSA, COOAr, COOAr' oder eine konventionelle Aminoschutzgruppe substituiert sein kann,
Figure imgf000013_0002
R1 unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-8
C-Atomen, worin eine CH2-Gruppe durch O ersetzt sein kann, Ar, Ar' oder X,
R2 einfach durch S02A, S02NHA, CF3, COOA, CH2NHA, CN oder OA substituiertes Phenyl,
R3 -CCI3 oder -0(C=0)A,
Ar unsubstituiertes oder einfach durch A, OA, CF3, Hai oder S02NH2 substituiertes Phenyl,
Ar' unsubstituiertes oder ein-, zwei- oder dreifach durch Fluor substituiertes Benzyl,
A,A' jeweils unabhängig voneinander H, unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-8 C-Atomen bedeuten;
R -C(=NH)-NH2, das auch einfach durch OH, -OCOOA, -
-COO(CH2)nNAA\ -COO(CH2)m-Het, -COO-CAA'-R3, COOA, COSA, COOAr, COOAr' oder eine konventionelle Aminoschutzgruppe substituiert sein kann,
Figure imgf000014_0001
R1 unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-8
C-Atomen, worin eine CH2-Gruppe durch O ersetzt sein kann, Ar, Ar' oder X,
R2 einfach durch S02A, S02NHA, CF3, COOA, CH2NHA, CN oder OA substituiertes Phenyl,
R3 -CCI3 oder -0(C=0)A,
Ar unsubstituiertes oder einfach durch A, OA, CF3, Hai oder S02NH2 substituiertes Phenyl,
Ar' unsubstituiertes oder ein-, zwei- oder dreifach durch Fluor substituiertes Benzyl, A,A' jeweils unabhängig voneinander H, unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-8 C-Atomen,
Het einen einkernigen gesättigten oder aromatischen He- terocyclus mit 1 bis 2 N- und/oder O-Atomen bedeuten,
sowie ihre pharmazeutisch verträglichen Salze und Solvate.
Die Verbindungen der Formel I und auch die Ausgangsstoffe zu ihrer Her- Stellung werden im übrigen nach an sich bekannten Methoden hergestellt, wie sie in der Literatur (z.B. in den Standardwerken wie Houben-Weyl, Methoden der organischen Chemie, Georg-Thieme-Verlag, Stuttgart) beschrieben sind, und zwar unter Reaktionsbedingungen, die für die genannten Umsetzungen bekannt und geeignet sind. Dabei kann man auch von an sich bekannten, hier nicht näher erwähnten Varianten Gebrauch machen.
Die Ausgangsstoffe können, falls erwünscht, auch in situ gebildet werden, so daß man sie aus dem Reaktionsgemisch nicht isoliert, sondern sofort weiter zu den Verbindungen der Formel l umsetzt.
Verbindungen der Formel I können vorzugsweise erhalten werden, indem man Verbindungen der Formel I aus einem ihrer funktioneilen Derivate durch Behandeln mit einem solvolysierenden oder hydrogenolysierenden Mittel in Freiheit setzt.
Bevorzugte Ausgangsstoffe für die Solvolyse bzw. Hydrogenolyse sind solche, die sonst der Formel I entsprechen, aber anstelle einer oder mehrerer freier Amino- und/oder Hydroxygruppen entsprechende geschützte Amino- und/oder Hydroxygruppen enthalten, vorzugsweise solche, die anstelle eines H-Atoms, das mit einem N-Atom verbunden ist, eine Aminoschutzgruppe tragen, insbesondere solche, die anstelle einer HN- Gruppe eine R'-N-Gruppe tragen, worin R' eine Aminoschutzgruppe bedeutet, und/oder solche, die anstelle des H-Atoms einer Hydroxygruppe eine Hydroxyschutzgruppe tragen, z.B. solche, die der Formel ! entspre- - lo ¬
chen, jedoch anstelle einer Gruppe -COOH eine Gruppe -COOR" tragen, worin R" eine Hydroxyschutzgruppe bedeutet. Bevorzugte Ausgangsstoffe sind auch die Oxadiazolderivate, die in die entsprechenden Amidinoverbindungen überführt werden können.
Die Freisetzung der Amidinogruppe aus ihrem Oxadiazolderivat kann z.B. durch Behandeln mit Wasserstoff in Gegenwart eines Katalysators (z.B. wasserfeuchtes Raney-Nickel) abgespalten werden. Als Lösungsmittel eignen sich die nachfolgend angegebenen, insbesondere Alkohole wie Methanol oder Ethanol, organische Säuren wie Essigsäure oder Propion- säure oder Mischungen daraus. Die Hydrogenolyse wird in der Regel bei Temperaturen zwischen etwa 0 und 100° und Drucken zwischen etwa 1 und 200 bar, bevorzugt bei 20-30° (Raumtemperatur) und 1-10 bar durchgeführt.
Die Einführung der Oxadiazolgruppe gelingt z.B. durch Umsetzung der Cyanverbindungen mit Hydroxylamin und Reaktion mit Phosgen, Dialkyla- carbonat, Chlorameisensäureester, N,N'-Carbonyldiimidazol oder Acetan- hydrid.
Es können auch mehrere - gleiche oder verschiedene - geschützte Amino- und/oder Hydroxygruppen im Molekül des Ausgangsstoffes vorhanden sein. Falls die vorhandenen Schutzgruppen voneinander verschieden sind, können sie in vielen Fällen selektiv abgespalten werden.
Der Ausdruck "Aminoschutzgruppe" ist allgemein bekannt und bezieht sich auf Gruppen, die geeignet sind, eine Aminogruppe vor chemischen Umsetzungen zu schützen (zu blockieren), die aber leicht entfernbar sind, nachdem die gewünschte chemische Reaktion an anderen Stellen des Moleküls durchgeführt worden ist. Typisch für solche Gruppen sind insbesondere unsubstituierte oder substituierte Acyl-, Aryl-, Aralkoxymethyl- oder Aralkylgruppen. Da die Aminoschutzgruppen nach der gewünschten Reaktion (oder Reaktionsfolge) entfernt werden, ist ihre Art und Größe im übrigen nicht kritisch; bevorzugt werden jedoch solche mit 1-20, insbeson- dere 1-8 C-Atomen. Der Ausdruck "Acylgruppe" ist im Zusammenhang mit dem vorliegenden Verfahren in weitestem Sinne aufzufassen. Er um- schließt von aliphatischen, araliphatischen, aromatischen oder heterocyclischen Carbonsäuren oder Sulfonsäuren abgeleitete Acylgruppen sowie insbesondere Alkoxycarbonyl-, Aryloxycarbonyl- und vor allem Aral- koxycarbonylgruppen. Beispiele für derartige Acylgruppen sind Alkanoyl wie Acetyl, Propionyl, Butyryl; Aralkanoyl wie Phenylacetyl; Aroyl wie Ben- zoyl oder Toluyl; Aryloxyalkanoyl wie POA; Alkoxycarbonyl wie Methoxycarbonyl, Ethoxycarbonyl, 2,2,2-Trichlorethoxycarbonyl, BOC (tert.-Butyl- oxycarbonyl), 2-lodethoxycarbonyl; Aralkyloxycarbonyl wie CBZ ("Carbo- benzoxy"), 4-Methoxybenzyloxycarbonyl, FMOC; Arylsulfonyl wie Mtr. Be- vorzugte Aminoschutzgruppen sind BOC und Mtr, ferner CBZ, Fmoc, Benzyl und Acetyl.
Das In-Freiheit-Setzen der Verbindungen der Formel I aus ihren funktioneilen Derivaten gelingt - je nach der benutzten Schutzgruppe - z. B. mit star- ken Säuren, zweckmäßig mit TFA oder Perchlorsäure, aber auch mit anderen starken anorganischen Säuren wie Salzsäure oder Schwefelsäure, starken organischen Carbonsäuren wie Trichloressigsäure oder Sulfonsäuren wie Benzol- oder p-Toluolsulfonsäure. Die Anwesenheit eines zusätzlichen inerten Lösungsmittels ist möglich, aber nicht immer erforderlich. Als inerte Lösungsmittel eignen sich vorzugsweise organische, beispielsweise Carbonsäuren wie Essigsäure, Ether wie Tetrahydrofuran oder Dioxan, Amide wie DMF, halogenierte Kohlenwasserstoffe wie Dichlormethan, ferner auch Alkohole wie Methanol, Ethanol oder Isopropanol, sowie Wasser. Ferner kommen Gemische der vorgenannten Lösungsmittel in Frage. TFA wird vorzugsweise im Überschuß ohne Zusatz eines weiteren Lösungsmittels verwendet, Perchlorsäure in Form eines Gemisches aus Essigsäure und 70 %iger Perchlorsäure im Verhältnis 9:1. Die Reaktionstemperaturen für die Spaltung liegen zweckmäßig zwischen etwa 0 und etwa 50°, vorzugsweise arbeitet man zwischen 15 und 30° (Raumtemperatur).
Die Gruppen BOC, OBut und Mtr können z. B. bevorzugt mit TFA in Dichlormethan oder mit etwa 3 bis 5n HCI in Dioxan bei 15-30° abgespalten werden, die FMOC-Gruppe mit einer etwa 5- bis 50 %igen Lösung von Dimethylamin, Diethylamin oder Piperidin in DMF bei 15-30°. Hydrogenolytisch entfernbare Schutzgruppen (z. B. CBZ, Benzyl oder die Freisetzung der Amidinogruppe aus ihrem Oxadiazolderivat)) können z. B. durch Behandeln mit Wasserstoff in Gegenwart eines Katalysators (z. B. eines Edelmetallkatalysators wie Palladium, zweckmäßig auf einem Träger wie Kohle) abgespalten werden. Als Lösungsmittel eignen sich dabei die oben angegebenen, insbesondere z. B. Alkohole wie Methanol oder Etha- nol oder Amide wie DMF. Die Hydrogenolyse wird in der Regel bei Temperaturen zwischen etwa 0 und 100° und Drucken zwischen etwa 1 und 200 bar, bevorzugt bei 20-30° und 1-10 bar durchgeführt. Eine Hydrogenolyse der CBZ-Gruppe gelingt z. B. gut an 5 bis 10 %igem Pd/C in Methanol oder mit Ammoniumformiat (anstelle von Wasserstoff) an Pd/C in Metha- πol/DMF bei 20-30°.
Als inerte Lösungsmittel eignen sich z.B. Kohlenwasserstoffe wie Hexan, Petrolether, Benzol, Toluol oder Xylol; chlorierte Kohlenwasserstoffe wie Trichlorethylen, 1 ,2-Dichlorethan,Tetrachlorkohlenstoff, Trifluormethylben- zol, Chloroform oder Dichlormethan; Alkohole wie Methanol, Ethanol, Iso- propanol, n-Propanol, n-Butanol oder tert.-Butanol; Ether wie Diethylether, Diisopropylether, Tetrahydrofuran (THF) oder Dioxan; Glykolether wie Ethylenglykolmonomethyl- oder -monoethylether (Methylglykol oder Ethyl- glykol), Ethylenglykoldimethylether (Diglyme); Ketone wie Aceton oder Butanon; Amide wie Acetamid, Dimethylacetamid, N-Methylpyrrolidon (NMP) oder Dimethylformamid (DMF); Nitrile wie Acetonitril; Sulfoxide wie Dimethylsulfoxid (DMSO); Schwefelkohlenstoff; Carbonsäuren wie Amei- sensäure oder Essigsäure; Nitroverbindungen wie Nitromethan oder Nitro- benzol; Ester wie Ethylacetat oder Gemische der genannten Lösungsmittel.
Eine S02NH2-Gruppe, z.B. in R2, wird vorzugsweise in Form ihres tert.- Butylderivates eingesetzt. Die Abspaltung der tert.-Butylgruppe erfolgt z.B. mit TFA mit oder ohne Zusatz eines inerten Lösungsmittels, vorzugsweise unter Zusatz einer geringen Menge an Anisol (1-10 Vol %).
Die Umwandlung einer Cyangruppe in eine Amidinogruppe erfolgt durch Umsetzung mit z.B. Hydroxylamin und anschließender Reduktion des N- Hydroxyamidins mit Wasserstoff in Anwesenheit eines Katalysators wie z.B. Pd/C.
Zur Herstellung eines Amidins der Formel I (z.B. Ar = einfach durch C(=NH)-NH2 substituiertes Phenyl) kann man an ein Nitril auch Ammoniak anlagern. Die Anlagerung erfolgt bevorzugt mehrstufig, indem man in an sich bekannter Weise a) das Nitril mit H2S in ein Thioamid umwandelt, das mit einem Alkylierungsmittel, z.B. CH3I, in den entsprechenden S-Alkyl- imidothioester übergeführt wird, welcher seinerseits mit NH3 zum Amidin reagiert, b) das Nitril mit einem Alkohol, z.B. Ethanol in Gegenwart von HCI in den entsprechenden Imidoester umwandelt und diesen mit Ammoniak behandelt, oder c) das Nitril mit Lithium-bis-(trimethylsilyl)-amid umsetzt und das Produkt anschließend hydrolysiert.
Die Herstellung der Vorstufen der Verbindungen der Formel I erfolgt z.B. durch Umsetzung von Verbindungen der Formel II
Figure imgf000019_0001
worin
R CN, -CO-N=C(NH2)2, -NH-C(=NH)-NH2 oder -C(=NH)-NH2, das einfach durch OH, -OCOOA, -OCOO(CH2)πNAA',
Figure imgf000019_0002
-OCOO(CH2)m-Het, -COO(CH2)m-Het, -CO-CAA'-R3, -COO-CAA'-R3, COOA, COSA, COOAr, COOAr' oder durch eine konventionelle Aminoschutzgruppe substituiert ist,
Figure imgf000019_0003
bedeutet, R1 die in Anspruch 1 angegebene Bedeutung hat und L Cl, Br, I oder eine freie oder reaktionsfähig funktionell abgewandelte OH-Gruppe bedeutet,
mit Verbindungen der Formel III
Figure imgf000020_0001
worin R die in Anspruch 1 angegebene Bedeutung hat, wobei jedoch eine freie NH2- oder OH-Gruppe durch eine Schutzgruppe substituiert ist.
In den Verbindungen der Formel II bedeutet L vorzugsweise Cl, Br, I oder eine freie oder reaktionsfähig abgewandelte OH-Gruppe wie z.B. ein aktivierter Ester, ein Imidazolid oder Alkylsulfonyloxy mit 1-6 C-Atomen (bevorzugt Methylsulfonyloxy) oder Arylsulfonyloxy mit 6-10 C-Atomen (bevorzugt Phenyl- oder p-Tolylsulfonyloxy).
Die Herstellung der Vorstufen der Verbindungen der Formel I kann alternativ erfolgen durch Umsetzung von Verbindungen der Formel IV
Figure imgf000020_0002
worin R CN, -CO-N=C(NH2)2, -NH-C(=NH)-NH2 oder -C(=NH)-NH2, das einfach durch OH, -OCOOA, -OCOO(CH2)nNAA', -COO(CH2)nNAA', -OCOO(CH2)m-Het, -COO(CH2)m-Het, -CO-CAA'-R3, -COO-CAA'-R3, COOA, COSA, COOAr, COOAr' oder durch eine konventionelle Aminoschutzgruppe substituiert ist,
Figure imgf000021_0001
bedeutet, und R1 die in Anspruch 1 angegebene Bedeutung hat,
mit Verbindungen der Formel V
Figure imgf000021_0002
worin R2 die in Anspruch 1 angegebene Bedeutung hat, wobei jedoch eine freie NH2- oder OH-Gruppe durch eine Schutzgruppe substituiert ist.
In den Verbindungen der Formel V bedeutet L vorzugsweise Cl, Br, I oder eine freie oder reaktionsfähig abgewandelte OH-Gruppe wie z.B. ein aktivierter Ester, ein Imidazolid oder Alkylsulfonyloxy mit 1-6 C-Atomen (bevorzugt Methylsulfonyloxy) oder Arylsulfonyloxy mit 6-10 C-Atomen (bevorzugt Phenyl- oder p-Tolylsulfonyloxy).
Vorzugsweise werden Ausgangsverbindungen der Formel II bzw. IV eingesetzt, in denen R CN bedeutet. Die Cyangruppe kann dann wie beschrieben z.B. in eine Amidinogruppe umgewandelt werden, die dann ihrerseits derivatisiert werden kann.
Die Umsetzung der Carbonsäurederivate der Formel II bzw. V mit den
Aminkomponenten der Formel III bzw. IV erfolgt in an sich bekannter Weise vorzugsweise in einem protischen oder aprotischen polaren oder unpolaren inerten organischen Lösungsmittel. Die als Zwischenstufen verwendeten Verbindungen der Formel II, III, IV und V sind zum Teil bekannt oder können nach üblichen Methoden hergestellt werden.
Eine bevorzugte Variante besteht allerdings auch darin, daß man die Reaktionspartner direkt, ohne Zusatz eines Lösungsmittels, miteinander zur Reaktion bringt.
Bei den beschriebenen Umsetzungen ist es ebenfalls zweckmäßig, in Ge- genwart einer Base oder mit einem Überschuß der basischen Komponente zu arbeiten. Als Basen eignen sich bevorzugt z.B. Alkalimetall- oder Erdalkalimetallhydroxide, -carbonate, -alkoholate oder organische Basen wie Triethylamin oder Pyridin, die auch im Überschuß angewendet werden und dann gleichzeitig als Lösungsmittel dienen können.
Als inerte Lösungsmittel eignen sich insbesondere Alkohole wie Methanol, Ethanol, Isopropanol, n-Butanol oder tert.-Butanol; Ether wie Diethylether, Diisopropylether, THF oder Dioxan; Glykolether wie Ethylenglykolmono- methyl- oder -monoethylether (Methylglykol oder Ethylglykol), Ethylen- glykoldimethylether (Diglyme); Ketone wie Aceton oder Butanon; Nitrile wie Acetonitril; Nitroverbindungen wie Nitromethan oder Nitrobenzol; Ester wie Ethylacetat; Amide wie Phosphorsäurehexamethyltriamid; Sulfoxide wie Dimethylsulfoxid (DMSO); chlorierte Kohlenwasserstoffe wie Dichlor- methan, Chloroform, Trichlorethylen, 1 ,2-Dichlorethan oder Kohlenstoff- tetrachlorid; Kohlenwasserstoffe wie Benzol, Toluol oder Xylol. Weiterhin eignen sich Gemische dieser Lösungsmittel untereinander.
Besonders geeignete Lösungsmittel sind Methanol, THF, Dimethoxyethan, Dioxan, Wasser oder daraus herstellbare Gemische. Als Reaktionstem- peratur sind beispielsweise Temperaturen zwischen 20° und dem Siedepunkt des Lösungsmittels geeignet. Die Reaktionszeiten liegen zwischen 5 Min. und 30 Std. Es ist zweckmäßig, bei der Reaktion einen Säurefänger einzusetzen. Hierzu eignen sich jeglische Arten von Basen, die die Reaktion selbst nicht stören. Besonders geeignet ist jedoch die Verwendung von anorganischen Basen wie Kaliumcarbonat oder von organischen Basen wie Triethylamin oder Pyridin. Ester können z.B. mit Essigsäure oder mit NaOH oder KOH in Wasser, Wasser-THF oder Wasser-Dioxan bei Temperaturen zwischen 0 und 100° verseift werden.
Ferner kann man freie Aminogruppen in üblicher Weise mit einem Säurechlorid oder -anhydrid acylieren oder mit einem unsubstituierten oder substituierten Alkylhalogenid alkylieren, zweckmäßig in einem inerten Lösungsmittel wie Dichlormethan oder THF und /oder in Gegenwart einer Base wie Triethylamin oder Pyridin bei Temperaturen zwischen -60 und +30°.
Eine Base der Formel l kann mit einer Säure in das zugehörige Säureadditionssalz übergeführt werden, beispielsweise durch Umsetzung äqui- valenter Mengen der Base und der Säure in einem inerten Lösungsmittel wie Ethanol und anschließendes Eindampfen. Für diese Umsetzung kommen insbesondere Säuren in Frage, die physiologisch unbedenkliche Salze liefern. So können anorganische Säuren verwendet werden, z.B. Schwefelsäure, Salpetersäure, Halogen wasserstoffsäuren wie Chlorwas- serstoffsäure oder Bromwasserstoffsäure, Phosphorsäuren wie Ortho- phosphorsäure, Sulfaminsäure, ferner organische Säuren, insbesondere aliphatische, alicyclische, araliphatische, aromatische oder heterocyclische ein- oder mehrbasige Carbon-, Sulfon- oder Schwefelsäuren, z.B. Ameisensäure, Essigsäure, Propionsäure, Pivalinsäure, Diethylessigsäure, Malonsäure, Bernsteinsäure, Pimelinsäure, Fumarsäure, Maleinsäure, Milchsäure, Weinsäure, Äpfelsäure, Citronensäure, Gluconsäure, Ascor- binsäure, Nicotinsäure, Isonicotinsäure, Methan- oder Ethansulfonsäure, Ethandisulfonsäure, 2-Hydroxyethansulfonsäure, Benzolsulfonsäure, p- Toluolsulfonsäure, Naphthalin-mono- und -disulfonsäuren, Laurylschwefel- säure. Salze mit physiologisch nicht unbedenklichen Säuren, z.B. Pikrate, können zur Isolierung und /oder Aufreinigung der Verbindungen der Formel I verwendet werden.
Andererseits können Verbindungen der Formel I mit Basen (z.B. Natrium- oder Kaliumhydroxid oder -carbonat) in die entsprechenden Metall-, ins- besondere Alkalimetall- oder Erdalkalimetall-, oder in die entsprechenden Ammoniumsalze umgewandelt werden.
Auch physiologisch unbedenkliche organische Basen, wie z.B. Ethanol- amin können verwendet werden.
Erfindungsgemäße Verbindungen der Formel I können aufgrund ihrer Molekülstruktur chiral sein und können dementsprechend in verschiedenen enantiomeren Formen auftreten. Sie können daher in racemischer oder in optisch aktiver Form vorliegen.
Da sich die pharmazeutische Wirksamkeit der Racemate bzw. der Stereoisomeren der erfindungsgemäßen Verbindungen unterscheiden kann, kann es wünschenswert sein, die Enantiomere zu verwenden. In diesen Fällen kann das Endprodukt oder aber bereits die Zwischenprodukte in enantiomere Verbindungen, durch dem Fachmann bekannte chemische oder physikalische Maßnahmen, aufgetrennt oder bereits als solche bei der Synthese eingesetzt werden.
Im Falle racemischer Amine werden aus dem Gemisch durch Umsetzung mit einem optisch aktiven Trennmittel Diastereomere gebildet. Als Trennmittel eignen sich z.B. optisch aktive Säuren, wie die R- und S-Formen von Weinsäure, Diacetyiweinsäure, Dibenzoylweinsäure, Mandelsäure, Äpfelsäure, Milchsäure, geeignet N-geschützte Aminosäuren (z.B. N-Ben- zoylprolin oder N-Benzolsulfonylprolin) oder die verschiedenen optisch aktiven Camphersulfonsäuren. Vorteilhaft ist auch eine chromatographische Enantiomerentrennung mit Hilfe eines optisch aktiven Trennmittels (z.B. Dinitrobenzoylphenylglycin, Cellulosetriacetat oder andere Derivate von Kohlenhydraten oder auf Kieselgel fixierte chiral derivatisierte Methacrylat- polymere). Als Laufmittel eignen sich hierfür wäßrige oder alkoholische Lösungsmittelgemische wie z.B. Hexan/Isopropanol/ Acetonitril z.B. im Verhältnis 82:15:3.
Gegenstand der Erfindung ist ferner die Verwendung der Verbindungen der Formel I und/oder ihrer physiologisch unbedenklichen Salze zur Herstellung pharmazeutischer Zubereitungen, insbesondere auf nicht-chem- ischem Wege. Hierbei können sie zusammen mit mindestens einem festen, flüssigen und/oder halbflüssigen Träger- oder Hilfsstoff und gege- benenfalls in Kombination mit einem oder mehreren weiteren Wirkstoffen in eine geeignete Dosierungsform gebracht werden. Gegenstand der Erfindung sind somit auch pharmazeutische Zubereitungen, enthaltend mindestens ein Arzneimittel gemäß einem der Ansprüche 5 bis 6 sowie gegebenenfalls Träger- und/oder Hilfsstoffe und gegebenenfalls andere Wirkstoffe.
Diese Zubereitungen können als Arzneimittel in der Human- oder Veterinärmedizin verwendet werden. Als Trägerstoffe kommen organische oder anorganische Substanzen in Frage, die sich für die enterale (z.B. orale), parenterale oder topische Applikation eignen und mit den neuen Verbindungen nicht reagieren, beispielsweise Wasser, pflanzliche Öle, Benzyl- alkohole, Alkylenglykole, Polyethylenglykole, Glycerintriacetat, Gelatine, Kohlehydrate wie Lactose oder Stärke, Magnesiumstearat, Talk, Vaseline. Zur oralen Anwendung dienen insbesondere Tabletten, Pillen, Dragees, Kapseln, Pulver, Granulate, Sirupe, Säfte oder Tropfen, zur rektalen Anwendung Suppositorien, zur parenteralen Anwendung Lösungen, vorzugsweise ölige oder wässrige Lösungen, femer Suspensionen, Emulsionen oder Implantate, für die topische Anwendung Salben, Cremes oder Puder. Die neuen Verbindungen können auch lyophilisiert und die erhaltenen Lyo- philisate z.B. zur Herstellung von Injektionspräparaten verwendet werden. Die angegebenen Zubereitungen können sterilisiert sein und/oder Hilfsstoffe wie Gleit-, Konservierungs-, Stabilisierungs- und/oder Netzmittel, Emulgatoren, Salze zur Beeinflussung des osmotischen Druckes, Puffer- Substanzen, Färb-, Geschmacks- und /oder mehrere weitere Wirkstoffe enthalten, z.B. ein oder mehrere Vitamine.
Gegenstand der Erfindung ist auch die Verwendung von Verbindungen gemäß der Ansprüche 1 bis 2 und/oder ihre physiologisch unbedenklichen Salze zur Herstellung eines Arzneimittels zur Bekämpfung von thromboembolischen Erkrankungen wie Thrombose, myocardialem Infarkt, Arte- riosklerose, Entzündungen, Apoplexie, Angina pectoris, Restenose nach Angioplastie und Claudicatio intermittens
Dabei werden die erfindungsgemäßen Substanzen in der Regel vorzugsweise in Dosierungen zwischen etwa 1 und 500 mg, insbesondere zwi- schen 5 und 100 mg pro Dosierungseinheit verabreicht. Die tägliche Dosierung liegt vorzugsweise zwischen etwa 0,02 und 10 mg/kg Körpergewicht. Die spezielle Dosis für jeden Patienten hängt jedoch von den verschiedensten Faktoren ab, beispielsweise von der Wirksamkeit der eingesetzten speziellen Verbindung, vom Alter, Körpergewicht, allgemeinen Gesundheitszustand, Geschlecht, von der Kost, vom Verabreichungszeitpunkt und -weg, von der Ausscheidungsgeschwindigkeit, Arzneistoffkom- bination und Schwere der jeweiligen Erkrankung, welcher die Therapie gilt. Die orale Applikation ist bevorzugt.
Vor- und nachstehend sind alle Temperaturen in °C angegeben. In den nachfolgenden Beispielen bedeutet "übliche Aufarbeitung": Man gibt, falls erforderlich, Wasser hinzu, stellt, falls erforderlich, je nach Konstitution des Endprodukts auf pH-Werte zwischen 2 und 10 ein, extrahiert mit Ethyla- cetat oder Dichlormethan, trennt ab, trocknet die organische Phase über Natriumsulfat, dampft ein und reinigt durch Chromatographie an Kieselgel und /oder durch Kristallisation. Rf-Werte an Kieselgel; Laufmittel: Ethyla- cetat/Methanol 9:1. Massenspektrometrie (MS): El (Elektronenstoß-Ionisation) M+ FAB (Fast Atom Bombardment) (M+H)+
ESI (Electrospray lonization) (M+H)+ Beispiel 1
Herstellung von Edukten der Formel II
1.1 (aktivierte Variante) 1.1.1
Eine Lösung von 5,91 g 3-Aminobenzonitril in 50 ml THF wird mit 9,0 ml Triethylamin versetzt. Anschließend wird 7,65 ml Trifluoressigsäureanhy- drid zugetropft. Nach 4 h Rühren wird wie üblich aufgearbeitet und man erhält 8,35 g Λ/-(3-Cyan-phenyl)-2,2,2-trifluoracetamid ("AA") als weisse Kristalle, El 214.
1.1.2 Eine Lösung von 8,35 g "AA" in 150 ml DMF wird mit 19,1 g Cäsiumcarbo- nat versetzt und 0,5 h bei RT gerührt. Anschließend werden 6,95 ml Ben- zylbromid zugetropft und 18 h nachgerührt. Nach üblicher Aufarbeitung erhält man 4,85 g 3-Benzylamino-benzonitril ("AB") als gelbes Öl, FAB 208.
1.1.3
Eine Lösung von 4,26 g "AB" in 25 ml DMF wird mit 3,93 g Natriumtertiär- butylat versetzt und 30 Minuten nachgerührt. Man gibt 6,0 ml tert.- Butylbromacetat zu, rührt 20 h nach und arbeitet wie üblich auf. Man erhält 3,14 g [Benzyl-(3-cyan-phenyl)-amino]-essigsäure-tert-butylester ("AC") als gelbes Öl, FAB 323.
1.1.4
Eine Lösung von 3,0 g "AC" in 30 ml Dioxan wird mit 30 ml 4M HCI in Dioxan versetzt und 24 h bei RT gerührt. Nachüblicher Aufarbeitung erhält man 0,48 g [Benzyl-(3-cyan-phenyl)-amino]-essigsäure ("AD"), El 266.
1.2 (nicht-aktivierte Varinate)
29,5 g 3-Aminobenzonitril wird mit 18,2 ml Propionaldehyd und anschließend mit 91 ,5 ml Tetraisopropylorthotitanat versetzt und 3 h bei RT gerührt. Nach Zugabe von 250 ml Ethanol werden portionsweise 10,5 g Natriumcyanoborhydrid unter Eiskühlung hinzugefügt und anschließend noch 20 h nachgerührt. Nach üblicher Aufarbeitung erhält man 9,8 g 3- Propylamino-benzonitril ("AE"), El 160.
Analog 1.1.3 erhält man aus "AE" [Propyl-(3-cyan-phenyl)-amino]-essigsäure-tert-butylester ("AF"), El 274.
Analog 1.1.4 erhält man aus "AF" [Propyl-(3-cyan-phenyl)-amino]-essigsäure ("AG"), El 218.
1.3 (Variante über Glycinderivate)
Zu einer Mischung aus 10 ml Pyridin, 25 ml 1-Methyl-2-pyrrolidon und 2,5 ml Wasser gibt man nacheinander 1 ,158 g Sarcosin, 2,977 g 3-lodbenzo- nitril, 0,759 g Tetrakis(triphenylphosphin)-palladium(ll), 124 mg Kupfer-(l)- iodid, 1 ,8 g Kaliumcarbonat, 0,72 g Tetrabutylammoiumiodid und rührt 20 h bei 100°. Nach üblicher Aufarbeitung erhält man 470 mg [Methyl-(3-cyan-phenyl)- aminoj-essigsäure ("AH"), El 190.
Beispiel 2
2.1
Eine Lösung von 0,39 g "AD" , 0,446 g 4'-Amino-biphenyl-2-sulfonsäure- tert.-butylamid ("AI"), 0,224 g HOBt, 0,28 g DAPECl und 0,16 ml 4-Methyl- morpholin in 50 ml DMF wird 20 h bei RT gerührt. Nach üblicher Aufarbei- tung erhält man 0,5 g 2-[Benzyl-(3-cyan-phenyl)-amino]-Λ/-(2'-tert.- butylsulfamoyl-biphenyl-4-yl)-acetamid ("AJ"), FAB 553.
2.2
Eine Lösung von 0,51 g "AJ" in 30 ml Ethanol wird nacheinander mit 0,18 g Hydroxylammoniumchlorid und 0,36 ml Triethylamin versetzt und 6 h unter Rückfluß erhitzt. Nach üblicher Aufarbeitung erhält man 0,5 g 2- {Benzyl-[3-(Λ/-hydroxyamidino)-phenyl]-amino}-Λ/-(2'-tert.-butylsulfamoyl- biphenyl-4-yl)-acetamid ("AK"), FAB 586.
2.3
Eine Lösung von 0,49 g "AK" in 5 ml Methanol und 1ml THF wird mit 0,1 ml Eisessig versetzt und nach Zugabe von 50 mg Raney-Nickel unter Wasserstoff-Atmosphäre 48 h gerührt. Nach Abtrennung des Katalysators und üblicher Aufarbeitung erhält man 0,31 g 2-[Benzyl-(3-amidino-phenyl)- amino]-Λ/-(2'-tert.-butylsulfamoyl-biphenyl-4-yl)-acetamid ("AL"), FAB 570.
2.4
Eine Lösung von 0,3 g "AL" in 10 ml TFA wird 10 h bei RT gerührt. Nach üblicher Aufarbeitung erhält man Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3- amidinophenyl)-N-benzyl-amino]-acetamid, FAB 514.
Affinität zu Rezeptoren:
ICso-Werte [nM/Liter] IC50 (Faktor Xa, human) = 81.0 IQ» (T VIIa) = 15.0 Beispiel 3
Durch Umsetzung von "AB" mit A/-(2'-tert.-Butylsulfamoyl-biphenyl-4-yl)-2- chlor-acetamid ("AM") analog 1.1.3 sowie 2.2, 2.3 und 2.4 erhält man N- (2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N-benzyl-amino]- acetamid.
Analog erhält man die nachstehenden Verbindungen
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N-methyl- aminoj-acetamid
Affinität zu Rezeptoren:
IC50-Werte [nM/Liter] IC50 (Faktor Xa, human) = 10.0
IC50 (TFΛ/Ila) = 25.0 ;
sowie
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N-ethyl- aminoj-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyi-4-yl)-2-[(3-amidinophenyl)-N-propyl- aminoj-acetamid, ESI 466, ICso-Werte [nM/Liter] IC50 (Faktor Xa, human) = 130.0
IC50 (TFΛ/Ila) = 44.0
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N-butyl- aminoj-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N-iso-propyl- aminoj-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N-iso-butyl- aminoj-acetamid, ESI 480,
ICso-Werte [nM/Liter] IC50 (Faktor Xa, human) = 480.0 IC50 (TFΛ/Ila) = 370.0
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N-pentyl- aminoj-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N-sek.-butyl- amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N-(1-ethyl- propyl)-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N-cyclohexyl- methyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N-(4- fluorbenzyl)-amino]-acetamid.
Beispiel 4
Analog Beispiel 3 erhält man die nachstehenden Verbindungen, wobei jedoch die Stufe nach 2.4 entfällt
Λ/-(2'-Methylsulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N-benzyl- amino]-acetamid,
Λ/-(2'-Methylsulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N-methyl- amino]-acetamid,
Λ/-(2'-Methylsulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N-ethyl- aminoj-acetamid,
Λ/-(2'-Methylsulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N-propyl- amino]-acetamid, FAB 465,
IC5o-Werte [nM/Liter] IC50 (Faktor Xa, human) = 120.0 ICso (TFΛ/Ila) = 31.0 Λ/-(2'-Methylsulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N-butyl- amino]-acetamid,
Λ/-(2'-Methylsulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N-iso-propyl- amino]-acetamid,
Λ/-(2'-Methylsulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N-iso-butyl- amino]-acetamid,
Λ/-(2'-Methylsulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N-pentyl- amino]-acetamid,
Λ/-(2'-Methylsulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N-sek.-butyl- amino]-acetamid,
Λ/-(2'-Methylsulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N-(1-ethyl- propyl)-amino]-acetamid,
Λ/-(2'-Methylosulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N- cyclohexylmethyl-aminoj-acetamid,
Λ/-(2'-Methylsulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N-(4- fluorbenzyl)-amino]-acetamid.
Beispiel 5
Die in diesem Beispiel beschriebenen Umsetzungen erfolgen analog der Arbeitsvorschrift von S.M. Rahmathullah et al. in J. Med. Chem. 1999, 42, 3994-4000. Die entsprechenden Säurechloride werden zunächst zu den 4-Nitrophenylcarbonat-Verbindungen derivatisiert, die dann mit den Amidi- noverbindungen weiter umgesetzt werden.
Ausgehend von Chlorameisensäuremethylester und Umsetzung der nachstehenden "Amidino-Verbindungen" Λ/-(2'-Aminosulfonyl-biphenyl-4-yl •2-[(3-amidinophenyl)-N-benzyl- amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl -2-[(3-amidinophenyl)-N-methyl- aminoj-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl •2-[(3-amidinophenyl)-N-ethyl- amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl H2-[(3-amidinophenyl)-N-propyl- amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl -2-[(3-amidinophenyl)-N-butyl- aminoj-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl •2-[(3-amidinophenyl)-N-iso-propyl- amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl •2-[(3-amidinophenyl)-N-iso-butyl- amino]-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl -2-[(3-amidinophenyl)-N-pentyl- aminoj-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl 2-[(3-amidinophenyl)-N-sek.-butyl- aminoj-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl •2-[(3-amidinophenyl)-N-(1-ethyl- propyl)-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl •2-[(3-amidinophenyl)-N-cyclohexyl- methyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl -2-[(3-amidinophenyl)-N-(4- fluorbenzyl)-amino]-acetamid
erhält man
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-methoxycarbonyl-ami- dinophenyl)-N-benzyl-amino]-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-methoxycarbonyl- amidinophenyl)-N-methyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-methoxycarbonyl- amidinophenyl)-N-ethyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-/V-methoxycarbonyl- amidinophenyl)-N-propyl-amino]-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-methoxycarbonyl- amidinophenyl)-N-butyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-methoxycarbonyl- amidinophenyl)-N-iso-propyl-amino]-acetamid, N-(2'-Aminosuifonyl-biphenyl-4-yl)-2-[(3-Λ/-methoxycarbonyl-ami- dinophenyl)-N-iso-butyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyi-4-yl)-2-[(3-A/-methoxycarbonyl- amidinophenyl)-N-pentyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-methoxycarbonyl- amidinophenyl)-N-sek.-butyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-methoxycarbonyl- amidinophenyl)-N-(1-ethylpropyl)-amino]-acetamid,
A/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-methoxycarbonyl- amidinophenyl)-N-cyclohexylmethyl-amino]-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-methoxycarbonyl- amidinophenyl)-N-(4-fluorbenzyl)-amino]-acetamid.
Ausgehend von Chlorameisensäure-thioethylester und durch Umsetzung der "Amidino-Verbindungen" hält man
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-ethylthiocarbonyl-ami- dinophenyl)-N-benzyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-A/-ethylthiocarbonyl- amidinophenyl)-N-methyl-amino]-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-ethylthiocarbonyl- amidinophenyl)-N-ethyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-ethylthiocarbonyl- amidinophenyl)-N-propyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-ethylthiocarbonyl- amidinophenyl)-N-butyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-ethylthiocarbonyl- amidinophenyl)-N-iso-propyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-ethylthiocarbonyl- amidinophenyl)-N-iso-butyl-amino]-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-ethylthiocarbonyl- amidinophenyl)-N-pentyl-amino]-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-ethylthiocarbonyl- amidinophenyl)-N-sek.-butyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-ethylthiocarbonyl- amidinophenyl)-N-(1-ethylpropyl)-amino]-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-ethylthiocarbonyl- amidinophenyl)-N-cyclohexylmethyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-ethylthiocarbonyl- amidinophenyl)-N-(4-fluorbenzyl)-amino]-acetamid.
Ausgehend von Chlorameisensäure-2,2,2-trichlorethylester und durch Umsetzung der "Amidino-Verbindungen" erhält man
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3- /-(2,2,2- trichlorethoxycarbonyl)-amidinophenyl]-N-benzyl-amino}-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(2,2,2- trichlorethoxycarbonyl)-amidinophenyl]-N-methyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(2,2,2- trichlorethoxycarbonyl)-amidinophenyl]-N-ethyl-amino}-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3- -(2,2,2- trichlorethoxycarbonyl)-amidinophenyl]-N-propyl-amino}-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(2,2,2- trichlorethoxycarbonyl)-amidinophenyl]-N-butyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(2,2,2- trichlorethoxycarbonyl)-amidinophenyl]-N-iso-propyl-amino}-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(2,2,2- trichlorethoxycarbonyl)-amidinophenyl]-N-iso-butyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(2,2,2- trichlorethoxycarbonyl)-amidinophenyl]-N-pentyl-amino}-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(2,2,2- trichlorethoxycarbonyl)-amidinophenyl]-N-sek.-butyl-amino}-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(2,2,2- trichlorethoxycarbonyl)-amidinophenyl]-N-(1-ethylpropyl)-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-A/-(2,2,2- trichlorethoxycarbonyl)-amidinophenyl]-N-cyclohexylmethyl-amino}- acetamid, /V-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(2,2,2- trichlorethoxycarbonyl)-amidinophenyl]-N-(4-fluorbenzyl)-amino}-acetamid.
Ausgehend von Chlorameisensäure-benzylester und durch Umsetzung der "Amidino-Verbindungen" erhält man
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-/\/-benzyloxycarbonyl-ami- dinophenyl)-N-benzyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-benzyloxycarbonyl-- amidinophenyl)-N-methyl-amino]-acetamid,
N-(2'-Aminosuifonyl-biphenyl-4-yl)-2-[(3-Λ/-benzyloxycarbonyl- amidinophenyl)-N-ethyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-benzyloxycarbonyl- amidinophenyl)-N-propyl-amino]-acetamid, Λ-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-benzyloxycarbonyl- amidinophenyl)-N-butyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-benzyloxycarbonyl- amidinophenyl)-N-iso-propyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-A/-benzyloxycarbonyl- amidinophenyl)-N-iso-butyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-/V-benzyloxycarbonyl- amidinophenyl)-N-pentyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-/V-benzyloxycarbonyl- amidinophenyl)-N-sek.-butyl-amino]-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-/V-benzyloxycarbonyl- amidinophenyl)-N-(1-ethylpropyl)-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-benzyloxycarbonyl- amidinophenyl)-N-cyclohexylmethyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-benzyloxycarbonyl- amidinophenyl)-N-(4-fluorbenzyl)-amino]-acetamid.
Ausgehend von Chlorameisensäure-phenylester und durch Umsetzung der "Amidino-Verbindungen" erhält man
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-phenoxycarbonyl-ami- dinophenyl)-N-benzyl-amino]-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-phenoxycarbonyl- amidinophenyl)-N-methyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-phenoxycarbonyl- amidinophenyl)-N-ethyl-amino]-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-phenoxycarbonyl- amidinophenyl)-N-propyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-/V-phenoxycarbonyl- amidinophenyl)-N-butyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-A/-phenoxycarbonyl- amidinophenyl)-N-iso-propyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-phenoxycarbonyl- amidinophenyl)-N-iso-butyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-phenoxycarbonyl- amidinophenyl)-N-pentyl-amino]-acetamid, Λ -(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-phenoxycarbonyl- amidinophenyl)-N-sek.-butyl-amino]-acetamid,
/V-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-phenoxycarbonyl- amidinophenyl)-N-(1-ethylpropyl)-amino]-acetamid,
/V-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-phenoxycarbonyl- amidinophenyl)-N-cyclohexylmethyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-phenoxycarbonyl- amidinophenyl)-N-(4-fluorbenzyl)-amino]-acetamid.
Ausgehend von Chlorameisensäure-4-fluorphenylester und durch Umset- zung der "Amidino-Verbindungen" erhält man
Λ -(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3- V-(4-fluorphenoxycarbonyl)- amidinophenyl]-N-benzyl-amino}-acetamid,
Λ -(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(4-fluorphenoxycarbonyl)- amidinophenyl]-N-methyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(4-fluorphenoxycarbonyl)- amidinophenyl]-N-ethyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(4-fluorphenoxycarbonyl)- amidinophenyl]-N-propyl-amino}-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(4-fluorphenoxycarbonyl)- amidinophenyl]-N-butyl-amino}-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(4-fluorphenoxycarbonyl)- amidinophenyl]-N-iso-propyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(4-fluorphenoxycarbonyl)- amidinophenyl]-N-iso-butyl-amino}-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ -(4-fluorphenoxycarbonyl)- amidinophenyl]-N-pentyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(4-fluorphenoxycarbonyl)- amidinophenyl]-N-sek.-butyl-amino}-acetamid,
ΛV-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(4-fluorphenoxycarbonyl)- amidinophenyl]-N-(1 -ethylpropyl)-amino}-acetamid,
A-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(4-fluorphenoxycarbonyl)- amidinophenyl]-N-cyclohexylmethyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(4-fluorphenoxycarbonyl)- amidinophenyl]-N-(4-fluorbenzyl)-amino}-acetamid.
Ausgehend von Chlorameisensäure-thio-4-methoxyphenylester und durch Umsetzung der "Amidino-Verbindungen" erhält man
/V-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(4-methoxyphenyl- thiocarbonyl)-amidinophenyl]-N-benzyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(4-methoxyphenyl- thiocarbonyl)-amidinophenyl]-N-methyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(4-methoxyphenyl- thiocarbonyl)-amidinophenyl]-N-ethyl-amino}-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(4-methoxyphenyl- thiocarbonyl)-amidinophenyl]-N-propyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-A/-(4-methoxyphenyl- thiocarbonyl)-amidinophenyl]-N-butyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(4-methoxyphenyl- thiocarbonyl)-amidinophenyl]-N-iso-propyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(4-methoxyphenyl- thiocarbonyl)-amidinophenyl]-N-iso-butyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(4-methoxyphenyl- thiocarbonyl)-amidinophenyl]-N-pentyl-amino}-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(4-methoxyphenyl- thiocarbonyl)-amidinophenyl]-N-sek.-butyl-amino}-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(4-methoxyphenyl- thiocarbonyl)-amidinophenyl]-N-(1-ethylpropyl)-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(4-methoxyphenyl- thiocarbonyl)-amidinophenyl]-N-cyclohexylmethyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(4-methoxyphenyl- thiocarbonyl)-amidinophenyl]-N-(4-fluorbenzyl)-amino}-acetamid.
Durch Umsetzung der "Amidino-Verbindungen" mit 1 -Acetoxyethyl-4- nitrophenylcarbonat erhält man
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-A/-acetoxyethoxycarbonyl- amidinophenyl)-N-benzyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-acetoxyethoxycarbonyl- amidinophenyl)-N-methyl-amino]-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-acetoxyethoxycarbonyl- amidinophenyl)-N-ethyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-acetoxyethoxycarbonyl- amidinophenyl)-N-propyl-amino]-acetamid, -(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-acetoxyethoxycarbonyl- amidinophenyl)-N-butyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-A/-acetoxyethoxycarbonyl- amidinophenyl)-N-iso-propyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-acetoxyethoxycarbonyl- amidinophenyl)-N-iso-butyl-amino]-acetamid, -(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-acetoxyethoxycarbonyl- amidinophenyl)-N-pentyl-amino]-acetamid,
/\/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-acetoxyethoxycarbonyl- amidinophenyl)-N-sek.-butyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-A/-acetoxyethoxycarbonyl- amidinophenyl)-N-(1-ethylpropyl)-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-A/-acetoxyethoxycarbonyl- amidinophenyl)-N-cyclohexylmethyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-acetoxyethoxycarbonyl- amidinophenyl)-N-(4-fluorbenzyl)-amino]-acetamid.
Beispiel 6 Die Umsetzung erfolgt analog S.M. Rahmathullah et al. in J. Med. Chem. 1999, 42, 3994-4000.
Durch Umsetzung von Chlorameisensäureethylester und der nachstehenden "N-Hydroxy-amidino-Verbindungen"
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-hydroxy-amidinophenyl)-N- benzyl-amino]-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-hydroxy-amidinophenyl)-N- methyl-amino]-acetamid,
Λy-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-hydroxy-amidinophenyl)-N- ethyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-hydroxy-amidinophenyl)-N- propyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-hydroxy-amidinophenyl)-N- butyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-hydroxy-amidinophenyl)-N- iso-propyl-amino]-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-hydroxy-amidinophenyl)-N- iso-butyl-amino]-acetamid,
/V-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-hydroxy-amidinophenyl)-N- pentyl-aminoj-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-hydroxy-amidinophenyl)-N- sek.-butyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-hydroxy-amidinophenyl)-N- (1-ethylpropyl)-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-hydroxy-amidinophenyl)-N- cyclohexylmethyl-amino]-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-hydroxy-amidinophenyl)-N-
(4-fluorbenzyl)-amino]-acetamid
erhält man
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-/\/-ethoxycarbonyloxy-ami- dinophenyl)-N-benzyl-amino]-acetamid, Λ/-(2,-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-ethoxycarbonyloxy- amidinophenyl)-N-methyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-ethoxycarbonyloxy- amidinophenyl)-N-ethyl-amino]-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-ethoxycarbonyloxy- amidinophenyl)-N-propyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-ethoxycarbonyloxy- amidinophenyl)-N-butyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-ethoxycarbonyloxy- amidinophenyl)-N-iso-propyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-ethoxycarbonyloxy-ami- dinophenyl)-N-iso-butyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-ethoxycarbonyloxy- amidinophenyl)-N-pentyl-amino]-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-ethoxycarbonyloxy- amidinophenyl)-N-sek.-butyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-ethoxycarbonyloxy- amidinophenyl)-N-(1-ethylpropyl)-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-Λ/-ethoxycarbonyloxy- amidinophenyl)-N-cyclohexylmethyl-amino]-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-/\/-ethoxycarbonyloxy- amidinophenyl)-N-(4-fluorbenzyl)-amino]-acetamid.
Beispiel 7
Analog Beispiel 5 erhält man die nachstehenden Verbindungen
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(Λ/,A/-diethylaminoethoxy- carbonyl)-amidinophenyl]-N-benzyl-amino}-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(Λ/,Λ/-diethylaminoethoxy- carbonyl)-amidinophenyl]-N-methyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl-{[3-/V-(Λ/,Λ/-diethylaminoethoxy- carbonyl)-amidinophenyl]--N-ethyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(Λy,A/-diethylaminoethoxy- carbonyl)-amidinophenyl]-N-propyl-amino}-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-A/-(/V,Λ/-diethylaminoethoxy- carbonyl)-amidinophenyl]-N-butyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(Λ/,Λ/-diethylaminoethoxy- carbonyl)-amidinophenyl]-N-iso-propyl-amino}-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(Λy,A/-diethylaminoethoxy- carbonyl)-amidinophenyl]-N-iso-butyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(Λ/,Λ/-diethylaminoethoxy- carbonyl)-amidinophenyl]-N-pentyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-A/-(Λ/,Λ/-diethylaminoethoxy- carbonyl)-amidinophenyl]-N-sek.-butyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-A/-(Λ/,Λ/-diethyIaminoethoxy- carbonyl)-amidinophenyl]-N-(1-ethylpropyl)-amino}-acetamid,
A/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-A/-(A/,Λ/-diethylaminoethoxy- carbonyl)-amidinophenyl]-N-cyclohexylmethyl-amino}-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(Λ/,Λ/-diethylaminoethoxy- carbonyl)-amidinophenyl]-N-(4-fluorbenzyl)-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(/\/-methyl-piperidin-4- yloxycarbonyl)-amidinophenyl]-N-benzyl-amino}-acetamid, A/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(/V-methyl-piperidin-4- yloxycarbonyl)-amidinophenyl]-N-methyl-amino}-acetamid,
Λ/-(2,-Aminosulfonyl-biphenyl-4-yl-{[3-Λ/-(Λ/-methyl-piperidin-4-yloxy- carbonyl)-amidinophenyl]-N-ethyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-A/-(Λ/-methyl-piperidin-4- yloxycarbonyl)-amidinophenyl]-N-propyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-/V-(Λ/-methyl-piperidin-4- yloxycarbonyl)-amidinophenyl]-N-butyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(Λ/-methyl-piperidin-4- yloxycarbonyl)-amidinophenyl]-N-iso-propyl-amino}-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(/\/-methyl-piperidin-4- yloxycarbonyl)-amidinophenyl]-N-iso-butyl-amino}-acetamid,
/V-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(Λ/-methyl-piperidin-4- yloxycarbonyl)-amidinophenyl]-N-pentyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(Λ/-methyl-piperidin-4- yloxycarbonyl)-amidinophenyl]-N-sek.-butyl-amino}-acetamid , Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-/\/-(/\/-methyl-piperidin-4- yloxycarbonyl)-amidinophenyl]-N-(1-ethylpropyl)-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-/V-(Λ/-methyl-piperidin-4- yloxycarbonyl)-amidinophenyl]-N-cyclohexylmethyl-amino}-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(/V-methyl-piperidin-4- yloxycarbonyl)-amidinophenyl]-N-(4-fluorbenzyl)-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(pyridin-2-yl-ethoxy- carbonyl)-amidinophenyl]-N-benzyl-amino}-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-/V-(pyridin-2-yl-ethoxy- carbonyl)-amidinophenyl]-N-methyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl-{[3-Λ/-(pyridin-2-yl-ethoxycarbonyl)- amidinophenyl]-N-ethyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(pyridin-2-yl-ethoxy- carbonyl)-amidinophenyl]-N-propyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(pyridin-2-yl-ethoxy- carbonyl)-amidinophenyl]-N-butyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(pyridin-2-yl-ethoxy- carbonyl)-amidinophenyl]-N-iso-propyl-amino}-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(pyridin-2-yl-ethoxy- carbonyl)-amidinophenyl]-N-iso-butyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(pyridin-2-yl-ethoxy- carbonyl)-amidinophenyl]-N-pentyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(pyridin-2-yl-ethoxy- carbonyl)-amidinophenyl]-N-sek.-butyl-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-/V-(pyridin-2-yl-ethoxy- carbonyl)-amidinophenyl]-N-(1-ethylpropyl)-amino}-acetamid,
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-Λ/-(pyridin-2-yl-ethoxy- carbonyl)-amidinophenyl]-N-cyclohexylmethyl-amino}-acetamid, Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-{[3-/\/-(pyridin-2-yl-ethoxy- carbonyl)-amidinophenyi]-N-(4-fluorbenzyl)-amino}-acetamid.
Beispiel 8
Durch Reaktion von "AB" mit Bromessigsäureethylester analog 1.1.3, weitere Umsetzung analog 1.1.4, und durch Umsetzung mit "AI" analog 2.1 bis 2.4 erhält man A/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)- N-ethoxycarbonylmethyl-amino]-acetamid.
Analog erhält man durch Umsetzung mit Brompropionsäureethylester die Verbindung Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N- ethoxycarbonylethyl-amino]-acetamid.
Beispiel 9
Herstellung von Λ/-(2'-Methylsulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N- (1-methyl-tetrazol-5-ylethyl)-amino]-acetamid:
Analog der Umsetzung von "AA" zu "AB" erhält man aus Λ/-[3-(5-Methyl- [1 ,2,4]oxadiazol-3-yl)-phenyl]-2,2,2-trifluor-acetamid durch Reaktion mit 3- Brom-propionitril die Verbindung 3-[3-(5-Methyl-[1 ,2,4]oxadiazol-3-yl)- phenylamino]-propionitril ("BA").
Analog der Umsetzung von "AB" zu "AC" und weiter zu "AD" erhält man aus "BA" die Verbindung 2-{(2-Cyan-ethyl)-[3-(5-methyl-[1 ,2,4]oxadiazol-3- yl)-phenyl]-amino}-Λ/-(2'-methylsulfonyl-biphenyl-4-yl)-acetamid ("BB")
Figure imgf000043_0001
Die Umwandlung der Cyangruppe in die 1H-Tetrazol-5-ylgruppe erfolgt nach üblichen Verfahren durch Umsetzung mit Natriumazid oder Trimethyl- silylazid. Man erhält 2-{(2-(1 H-tetrazol-5-yl)-ethyl)-[3-(5-methyl- [1 ,2,4]oxadiazol-3-yl)-phenyl]-amino}-Λ/-(2'-methylsulfonyl-biphenyl-4-yl)- acetamid ("BC"). Durch Methylierung von "BC" mit Methyliodid und anschließender Hydrierung in Methanol/Essigsäure unter Raney-Nickel-Katalyse erhält man nach Abtrennung des Katalysators und üblicher Aufarbeitung die Verbindung Λ/-(2'-Methylsulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N-(1-methyl- tetrazoI-5-ylethyl)-amino]-acetamid.
Analog erhält man die Verbindung Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3- amidinophenyl)-N-(1-methyl-tetrazol-5-ylethyl)-amino]-acetamid.
Analog erhält man durch Umsetzung von Λ/-[3-(5-Methyl-[1 ,2,4]oxadiazol- 3-yl)-phenyl]-2,2,2-trifluor-acetamid durch Reaktion mit Bromessigsäureethylester die Verbindung 2-[3-(5-Methyl-[1 ,2,4]oxadiazol-3-yl)-phenyl- amino]-essigsäureethylester und weiter analog wie oben beschrieben die Verbindung Λ/-(2'-Methylsulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N-(ethoxy- carbonylmethyl)-amino]-acetamid.
Analog erhält man
Λ/-(2'-Methylsulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N-(ethoxy- carbonylethyl)-amino]-acetamid
sowie die entsprechenden Aminosulfonylderivate
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N-(ethoxy- carbonylmethyl)-amino]-acetamid und
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N-(ethoxy- carbonylethyl)-amino]-acetamid.
Beispiel 10
Ausgehend von [Methoxyethyl-(3-cyanphenyl)-amino]-essigsäure und Umsetzung analog Beispiel 2 erhält man die Verbindung
Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N- methoxyethyl-amino]-acetamid.
Analog werden die nachstehenden Verbindungen erhalten Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N- methoxymethyl-aminoj-acetamid und
A/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N- methoxybutyl-aminoj-acetamid.
Die nachfolgenden Beispiele betreffen pharmazeutische Zubereitungen:
Beispiel A: Injektionsgläser
Eine Lösung von 100 g eines Wirkstoffes der Formel I und 5 g Dinatrium- hydrogenphosphat wird in 3 I zweifach destilliertem Wasser mit 2 n Salzsäure auf pH 6,5 eingestellt, steril filtriert, in Injektionsgläser abgefüllt, unter sterilen Bedingungen lyophilisiert und steril verschlossen. Jedes Injektionsglas enthält 5 mg Wirkstoff.
Beispiel B: Suppositorien
Man schmilzt ein Gemisch von 20 g eines Wirkstoffes der Formel I mit 100 g Sojalecithin und 1400 g Kakaobutter, gießt in Formen und läßt er- kalten. Jedes Suppositorium enthält 20 mg Wirkstoff.
Beispiel C: Lösung
Man bereitet eine Lösung aus 1 g eines Wirkstoffes der Formel I, 9,38 g NaH2P04 • 2 H20, 28,48 g Na2HP04 • 12 H20 und 0,1 g Benzalkonium- chlorid in 940 ml zweifach destilliertem Wasser. Man stellt auf pH 6,8 ein, füllt auf 1 I auf und sterilisiert durch Bestrahlung. Diese Lösung kann in Form von Augentropfen verwendet werden.
Beispiel D: Salbe
Man mischt 500 mg eines Wirkstoffes der Formel I mit 99,5 g Vaseline unter aseptischen Bedingungen.
Beispiel E: Tabletten
Ein Gemisch von 1 kg Wirkstoff der Formel I, 4 kg Lactose, 1 ,2 kg Kartoffelstärke, 0,2 kg Talk und 0,1 kg Magnesiumstearat wird in üblicher Weise zu Tabletten verpreßt, derart, daß jede Tablette 10 mg Wirkstoff enthält. Beispiel F: Dragees
Analog Beispiel E werden Tabletten gepreßt, die anschließend in üblicher Weise mit einem Überzug aus Saccharose, Kartoffelstärke, Talk, Tragant und Farbstoff überzogen werden.
Beispiel G: Kapseln
2 kg Wirkstoff der Formel I werden in üblicher Weise in Hartgelatine- kapseln gefüllt, so daß jede Kapsel 20 mg des Wirkstoffs enthält.
Beispiel H: Ampullen
Eine Lösung von 1 kg Wirkstoff der Formel I in 60 I zweifach destilliertem Wasser wird steril filtriert, in Ampullen abgefüllt, unter sterilen Bedingungen lyophilisiert und steril verschlossen. Jede Ampulle enthält 10 mg Wirkstoff.

Claims

Patentansprüche
Verbindungen der Formel I
Figure imgf000048_0001
worin R -CO-N=C(NH2)2, -NH-C(=NH)-NH2 oder -C(=NH)-NH2, das auch einfach durch OH, -OCOOA, -OCOO(CH2)nNAA', -COO(CH2)nNAA', -OCOO(CH2)m-Het, -COO(CH2)m-Het, -CO-CAA'-R3, -COO-CAA'-R3, COOA, COSA, COOAr, COOAr' oder durch eine konventionelle Aminoschutzgruppe substituiert sein kann,
Figure imgf000048_0002
R1 unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-20 C-Atomen, worin eine oder zwei CH2-Gruppen durch O- oder S-Atome ersetzt sein können, Ar, Ar' oder X,
R^ einfach durch S(0)pA, S(0)pNHA, CF3, COOA, CH2NHA, CN oder OA substituiertes Phenyl,
Rύ -C(Hal)3, -0(C=0)A oder
Figure imgf000048_0003
Ar unsubstituiertes oder ein-, zwei- oder dreifach durch A, OA, NAA', N02, CF3, CN, Hai, NHCOA, COOA, CONAA', S(0)pA, S(0)pNAA' substituiertes Phenyl oder Naphthyl, Ar' -(CH2)n-Ar,
A, A' jeweils unabhängig voneinander H, unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-20 C-Atomen,
Het einen ein- oder zweikernigen gesättigten, ungesättigten oder aromatischen Heterocyclus mit 1 bis 4 N-, 0- und/oder S-Atomen, über N oder C gebunden, der unsub- stituiert oder durch A substituiert sein kann,
X -(CH2)n-Y,
Figure imgf000049_0001
Hai F, Cl, Br oder l, m 0 oder 1 , n 1 , 2, 3, 4, 5 oder 6,
P 0, 1 oder 2 bedeuten » sowie ihre ) pharmazeutisch verträglichen Salze und Solvate
Verbindungen nach Anspruch 1 , worin
R -C(=NH)-NH2, das auch einfach durch OH, -OCOOA, -
-COO(CH2)nNAA', -COO(CH2)m-Het, -COO-CAA'-R3, COOA, COSA, COOAr, COOAr' oder eine konventionelle Aminoschutzgruppe substituiert sein kann,
Figure imgf000049_0002
bedeutet, sowie ihre pharmazeutisch verträglichen Salze und Solvate.
Verbindungen nach Anspruch 1 , worin R -C(=NH)-NH2, das auch einfach durch OH, -OCOOA, - -COO(CH2)nNAA\ -COO(CH2)m-Het,
-COO-CAA'-R3, COOA, COSA, COOAr, COOAr' oder eine konventionelle Aminoschutzgruppe substituiert sein kann,
Figure imgf000050_0001
R1 unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-8 C-
Atomen, worin eine CH2-Gruppe durch O ersetzt sein kann, Ar,
Ar' oder X bedeuten, sowie ihre pharmazeutisch verträglichen Salze und Solvate.
Verbindungen nach Anspruch 1 , worin
R -C(=NH)-NH2, das auch einfach durch OH, -OCOOA, - -COO(CH2)nNAA', -COO(CH2)m-Het,
-COO-CAA'-R3, COOA, COSA, COOAr, COOAr' oder eine konventionelle Aminoschutzgruppe substituiert sein kann,
Figure imgf000050_0002
R1 unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-8 C- Atomen, worin eine CH2-Gruppe durch O ersetzt sein kann, Ar, Ar' oder X,
R2 einfach durch S02A, S02NHA, CF3, COOA, CH2NHA, CN oder
OA substituiertes Phenyl, bedeuten, sowie ihre pharmazeutisch verträglichen Salze und Solvate. Verbindungen nach Anspruch 1 , worin
R -C(=NH)-NH2, das auch einfach durch OH, -OCOOA, - -COO(CH2)nNAA', -COO(CH2)m-Het,
-COO-CAA'-R3, COOA, COSA, COOAr, COOAr' oder eine konventionelle Aminoschutzgruppe substituiert sein kann,
Figure imgf000051_0001
R1 unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-8 C- Atomen, worin eine CH2-Gruppe durch O ersetzt sein kann, Ar, Ar' oder X, R2 einfach durch S02A, S02NHA, CF3, COOA, CH2NHA, CN oder
OA substituiertes Phenyl,
R3 -CCI3 oder -0(C=0)A bedeuten, sowie ihre pharmazeutisch verträglichen Salze und Solvate.
Verbindungen nach Anspruch 1 , worin
R -C(=NH)-NH2, das auch einfach durch OH, -OCOOA, -
-COO(CH2)nNAA', -COO(CH2)m-Het, - -CCOOOO--CCAAAA''--RR33,, CCOOOOAA,, CCOOSSAA,, CCOOOOAr, COOAr' oder eine kon- ventionelle Aminoschutzgruppe substituiert sein kann,
Figure imgf000051_0002
R1 unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-8 C- Atomen, worin eine CH2-Gruppe durch O ersetzt sein kann, Ar, Ar1 oder X, R2 einfach durch S02A, S02NHA, CF3, COOA, CH2NHA, CN oder
OA substituiertes Phenyl, R3 -CCI3 oder -0(C=0)A,
Ar unsubstituiertes oder einfach durch A, OA, CF3, Hai oder '
S02NH2 substituiertes Phenyl, bedeuten, sowie ihre pharmazeutisch verträglichen Salze und Solvate.
Verbindungen nach Anspruch 1 , worin
R -C(=NH)-NH2, das auch einfach durch OH, -OCOOA, -
-COO(CH2)nNAA', -COO(CH2)m-Het,
-COO-CAA'-R3, COOA, COSA, COOAr, COOAr' oder eine kon- ventionelle Aminoschutzgruppe substituiert sein kann,
Figure imgf000052_0001
R1 unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-8 C-
Atomen, worin eine CH2-Gruppe durch O ersetzt sein kann, Ar,
Ar' oder X, R2 einfach durch S02A, S02NHA, CF3, COOA, CH2NHA, CN oder
OA substituiertes Phenyl, R3 -CCIs oder -0(C=0)A, Ar unsubstituiertes oder einfach durch A, OA, CF3, Hai oder
S02NH2 substituiertes Phenyl, Ar' unsubstituiertes oder ein-, zwei- oder dreifach durch Fluor sub- stituiertes Benzyl bedeuten, sowie ihre pharmazeutisch verträglichen Salze und Solvate.
Verbindungen nach Anspruch 1 , worin R -C(=NH)-NH2, das auch einfach durch OH, -OCOOA, - -COO(CH2)nNAA\ -COO(CH2)m-Het,
-COO-CAA'-R3, COOA, COSA, COOAr, COOAr' oder eine konventionelle Aminoschutzgruppe substituiert sein kann,
Figure imgf000053_0001
1
R unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-8 C-
Atomen, worin eine CH2-Gruppe durch O ersetzt sein kann, Ar,
Ar' oder X,
R2 einfach durch S02A, S02NHA, CF3, COOA, CH2NHA, CN oder OA substituiertes Phenyl,
R3 -CCI3 oder -0(C=0)A,
Ar unsubstituiertes oder einfach durch A, OA, CF3, Hai oder S02NH2 substituiertes Phenyl,
Ar' unsubstituiertes oder ein-, zwei- oder dreifach durch Fluor substituiertes Benzyl,
A,A' jeweils unabhängig voneinander H, unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-8 C-Atomen bedeuten, sowie ihre pharmazeutisch verträglichen Salze und Solvate.
Verbindungen nach Anspruch 1 , worin
R -C(=NH)-NH2, das auch einfach durch OH, -OCOOA, - -COO(CH2)nNAA', -COO(CH2)m-Het,
-COO-CAA'-R3, COOA, COSA, COOAr, COOAr' oder eine konventionelle Aminoschutzgruppe substituiert sein kann,
Figure imgf000054_0001
R1 unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-8 C-
Atomen, worin eine CH2-Gruppe durch O ersetzt sein kann, Ar,
Ar' oder X, R2 einfach durch S02A, S02NHA, CF3, COOA, CH2NHA, CN oder
OA substituiertes Phenyl, R3 -CCI3 oder -0(C=0)A,
Ar unsubstituiertes oder einfach durch A, OA, CF3, Hai oder
S02NH2 substituiertes Phenyl, Ar' unsubstituiertes oder ein-, zwei- oder dreifach durch Fluor sub- stituiertes Benzyl,
A,A' jeweils unabhängig voneinander H, unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-8 C-Atomen, Het einen einkernigen gesättigten oder aromatischen Heterocyclus mit 1 bis 2 N- und/oder O-Atomen bedeuten, sowie ihre pharmazeutisch verträglichen Salze und Solvate.
Verbindungen gemäß Anspruch 1
a) Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N- methyl-amino]-acetamid, b) Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N- benzyl-amino]-acetamid, c) Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N- propyl-amino]-acetamid, d) Λ/-(2'-Aminosulfonyl-biphenyl-4-yl)-2-[(3-amidinophenyl)-N-iso- butyl-amino]-acetamid sowie ihre pharmazeutisch verträglichen Salze und Solvate.
1. Verfahren zur Herstellung von Verbindungen der Formel I nach^ei- nem oder mehreren der Ansprüche 1 bis 9, worin R Amidino bedeutet, sowie ihrer Salze, dadurch gekennzeichnet, daß man
a) sie aus einem ihrer funktionellen Derivate durch Behandeln mit einem solvolysierenden oder hydrogenolysierenden Mittel in Freiheit setzt,
und/oder
b) eine Base oder Säure der Formel I in eines ihrer Salze umwandelt.
12. Verbindungen der Formel I gemäß den Ansprüchen 1 bis 10 sowie deren physiologisch unbedenklichen Salze und Solvate als Arznei- mittelwirkstoffe.
13. Arzneimittelwirkstoffe nach Anspruch 12 als Inhibitoren des Koagulationsfaktors Xa.
14. Arzneimittelwirkstoffe nach Anspruch 12 oder 13 zur Behandlung von
Thrombosen, myocardialem Infarkt, Arteriosklerose, Entzündungen, Apoplexie, Angina pectoris, Restenose nach Angioplastie und Claudicatio intermittens.
15. Pharmazeutische Zubereitung, enthaltend mindestens eine Verbindung gemäß einem oder mehrerer der Ansprüche 1 bis 10 sowie gegebenenfalls Träger- und/oder Hilfsstoffe und gegebenenfalls andere Wirkstoffe. Verwendung von Verbindungen gemäß einem oder meherer der Ansprüche 1 bis 10 und/oder ihre physiologisch unbedenklichen Salze zur Herstellung eines Arzneimittels zur Bekämpfung von Erkrankungen.
Verwendung nach Anspruch 16 zur Herstellung eines Arzneimittels zur Bekämpfung von Thrombosen, myocardialem Infarkt, Arterioskle- rose, Entzündungen, Apoplexie, Angina pectoris, Restenose nach Angioplastie und Claudicatio intermittens.
PCT/EP2001/004110 2000-05-31 2001-04-10 Glycinamide WO2001092219A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002500834A JP2003535075A (ja) 2000-05-31 2001-04-10 グリシンアミド
CA002410627A CA2410627A1 (en) 2000-05-31 2001-04-10 Glycinamides
EP01933811A EP1284961A1 (de) 2000-05-31 2001-04-10 Glycinamide
AU2001260192A AU2001260192A1 (en) 2000-05-31 2001-04-10 Glycinamides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10027025.5 2000-05-31
DE10027025A DE10027025A1 (de) 2000-05-31 2000-05-31 Clycinamide

Publications (1)

Publication Number Publication Date
WO2001092219A1 true WO2001092219A1 (de) 2001-12-06

Family

ID=7644255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/004110 WO2001092219A1 (de) 2000-05-31 2001-04-10 Glycinamide

Country Status (7)

Country Link
US (1) US20030166694A1 (de)
EP (1) EP1284961A1 (de)
JP (1) JP2003535075A (de)
AU (1) AU2001260192A1 (de)
CA (1) CA2410627A1 (de)
DE (1) DE10027025A1 (de)
WO (1) WO2001092219A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002030880A2 (de) * 2000-10-13 2002-04-18 Merck Patent Gmbh N-SUBSTITUIERTE AMINOSÄUREDERIVATE (FAKTOR Xa INHIBITOREN)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10214832A1 (de) * 2002-04-04 2003-10-16 Merck Patent Gmbh Phenylderivate 4
PL378163A1 (pl) * 2003-02-21 2006-03-06 Tripep Ab Pochodna glicynoamidu do hamowania replikacji HIV
US20050096319A1 (en) * 2003-02-21 2005-05-05 Balzarini Jan M.R. Identification of compounds that inhibit replication of human immunodeficiency virus
EP1856096B1 (de) * 2005-01-10 2010-09-01 Bristol-Myers Squibb Company Als antikoagulanzien verwendbare phenylglycinamid-derivate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997030971A1 (en) * 1996-02-22 1997-08-28 The Du Pont Merck Pharmaceutical Company M-AMIDINO PHENYL ANALOGS AS FACTOR Xa INHIBITORS
WO1998028282A2 (en) * 1996-12-23 1998-07-02 Du Pont Pharmaceuticals Company OXYGEN OR SULFUR CONTAINING 5-MEMBERED HETEROAROMATICS AS FACTOR Xa INHIBITORS
WO1999010361A1 (fr) * 1997-08-26 1999-03-04 Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R.A.S.) Oligonucleotides permettant l'identification de precurseurs d'hormones polypeptidiques amidees
EP1020434A1 (de) * 1997-08-27 2000-07-19 Kissei Pharmaceutical Co., Ltd. 3-amidinoanilin-derivate, inhibitoren des aktivierten blutgerinnungsfaktors x und zwischenpodukte zur herstellung beider
WO2000071507A2 (en) * 1999-05-24 2000-11-30 Cor Therapeutics, Inc. INHIBITORS OF FACTOR Xa

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997030971A1 (en) * 1996-02-22 1997-08-28 The Du Pont Merck Pharmaceutical Company M-AMIDINO PHENYL ANALOGS AS FACTOR Xa INHIBITORS
WO1998028282A2 (en) * 1996-12-23 1998-07-02 Du Pont Pharmaceuticals Company OXYGEN OR SULFUR CONTAINING 5-MEMBERED HETEROAROMATICS AS FACTOR Xa INHIBITORS
WO1999010361A1 (fr) * 1997-08-26 1999-03-04 Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R.A.S.) Oligonucleotides permettant l'identification de precurseurs d'hormones polypeptidiques amidees
EP1020434A1 (de) * 1997-08-27 2000-07-19 Kissei Pharmaceutical Co., Ltd. 3-amidinoanilin-derivate, inhibitoren des aktivierten blutgerinnungsfaktors x und zwischenpodukte zur herstellung beider
WO2000071507A2 (en) * 1999-05-24 2000-11-30 Cor Therapeutics, Inc. INHIBITORS OF FACTOR Xa

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002030880A2 (de) * 2000-10-13 2002-04-18 Merck Patent Gmbh N-SUBSTITUIERTE AMINOSÄUREDERIVATE (FAKTOR Xa INHIBITOREN)
WO2002030880A3 (de) * 2000-10-13 2002-10-03 Merck Patent Gmbh N-SUBSTITUIERTE AMINOSÄUREDERIVATE (FAKTOR Xa INHIBITOREN)

Also Published As

Publication number Publication date
JP2003535075A (ja) 2003-11-25
AU2001260192A1 (en) 2001-12-11
EP1284961A1 (de) 2003-02-26
US20030166694A1 (en) 2003-09-04
DE10027025A1 (de) 2001-12-06
CA2410627A1 (en) 2002-11-28

Similar Documents

Publication Publication Date Title
EP1025086B1 (de) Benzamidinderivate als faktor xa-inhibitoren
DE10063008A1 (de) Carbonsäureamidderivate
DE10102322A1 (de) Phenylderivate
EP1558247A1 (de) Benzimidazolderivate
DE10112768A1 (de) Phenylderivate 3
WO2004002477A1 (de) 2-(phenyl)-2h-pyrazol-3-carbonsäure-n-4-(thioxo-heterocyclyl)-phenyl-amid derivate und entsprechende imino-heterocyclyl derivate sowie verwandte verbindungen als inhibitoren der koagulationsfaktoren xa und/oder viia zur behandlung bon thrombosen
WO2000051989A1 (de) Pyrazol-3-on-derivate als faktor xa inhibitoren
DE10117823A1 (de) Oxalsäurederivate
DE10155075A1 (de) Cyclische Sulfonamide
WO2003084533A1 (de) N-`4-(2-imino-pyrrolidin-1-yl)phenyl!-acetemid-und entsprechende piperidinderivate als faktor xa inhibitoren zur behandlung von thromboembolischen erkrankungen
WO2001092219A1 (de) Glycinamide
DE10035144A1 (de) Cyclische Aminosäurederivate
WO2003013531A1 (de) Phenylderivate als faktor xa inhibitoren
WO2002074735A2 (de) Biurethanderivate
EP1303482A2 (de) N-substituierte-1-amino-1,1-dialkylcarbonsäurederivate
EP1585730A1 (de) Carbonsäureamidderivate und ihre verwendung als faktor xa inhibitoren
DE10110325A1 (de) Phenylderivate 2
WO2001092214A1 (de) Carbaminsäureester als inhibitoren des faktors xa
WO2002010127A1 (de) Acetamidderivate und ihre verwendung als inhibitoren des koagulationsfaktors xa und viia
EP1309573A1 (de) Urethanderivate
EP1480948A1 (de) Semicarbazidderivate und ihre verwendung als antithrombotika

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CO CR CU CZ DE DK DM DZ EE ES GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 2001933811

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10296751

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2410627

Country of ref document: CA

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 500834

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2001933811

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001933811

Country of ref document: EP