WO2001077717A1 - Process for producing sulfurized episulfide resin lens and the lens - Google Patents

Process for producing sulfurized episulfide resin lens and the lens Download PDF

Info

Publication number
WO2001077717A1
WO2001077717A1 PCT/JP2001/002909 JP0102909W WO0177717A1 WO 2001077717 A1 WO2001077717 A1 WO 2001077717A1 JP 0102909 W JP0102909 W JP 0102909W WO 0177717 A1 WO0177717 A1 WO 0177717A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
resin
polymerization
refractive index
raw material
Prior art date
Application number
PCT/JP2001/002909
Other languages
French (fr)
Japanese (ja)
Inventor
Kazunori Kagei
Yuyoshi Saito
Yoshihiro Yamamoto
Original Assignee
Asahi Lite Optical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Lite Optical Co., Ltd. filed Critical Asahi Lite Optical Co., Ltd.
Publication of WO2001077717A1 publication Critical patent/WO2001077717A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/06Polythioethers from cyclic thioethers
    • C08G75/08Polythioethers from cyclic thioethers from thiiranes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • the present invention relates to a high refractive resin lens using a sulfur-containing ebisulfide resin and a method for producing the same.
  • plastic lenses Compared with inorganic glass, plastic lenses have characteristics such as light weight, resistance to breakage, and easy coloring, and have been widely used for eyeglass lenses that emphasize fashionability.
  • Diethylene glycol bisaryl carbonate resin (CR-39) has been used as the resin for spectacle lenses.
  • this CR_39 has a refractive index of 1.50, and when used for spectacle lenses, the negative lens has a thicker core and the plus lens has a medium thickness. The wearing feeling or appearance was not always satisfactory for the spectacle wearer. To remedy this drawback, plastic lenses with higher refractive index have been developed.
  • Resin is used as a typical resin, and a high-refractive-index resin lens having a refractive index of 1.6 to 1.7 has been put to practical use.
  • the refractive index of inorganic glass lenses is still higher, and further development of optical resins is being pursued in order to follow this trend, and resin products obtained by polymerizing and curing a compound having an episulphide group have been proposed.
  • excellent properties with a refractive index of 1.70 or more are obtained, and a high refractive index resin with a refractive index of 1.74 is also on the market.
  • this sulfur-containing ebisulphide resin having a refractive index of 1.74 is not easy to handle because it has a strong off-flavor in the lens molding process and is anaerobic, so that uncured portions adhere to the surroundings.
  • plastic lenses for eyeglasses have fatal drawbacks such as reddish color when exposed outdoors, and yellow in normal long-time heat polymerization. Change.
  • a high-refractive index resin of 1.74 is difficult to obtain, a study for eliminating these disadvantages is being actively conducted. + '
  • the problem to be solved by the present invention is to provide a high-refractive-index plastic lens for spectacles in which the red coloring and yellowing of a resin lens using a sulfur-containing ebisulfide resin are eliminated. Disclosure of the invention
  • the resin lens of the present invention has a maximum polymerization temperature in the range of 80 to 14 ° C. and a light transmittance after molding in the molding of an extremely high refractive index lens made of sulfur-containing ebisulfide resin. It is characterized in that an ultraviolet absorber is added in such an amount as to significantly drop from the vicinity of the optical region of 420 nm to the region on the shorter wavelength side.
  • the maximum polymerization temperatures are the polymerization temperatures of cast polymerization for molding lens raw materials and heat polymerization for annealing to remove the distortion of the molded product after mold release and stabilize the form. It refers to the maximum temperature for performing polymerization.
  • Sulfur-containing episulfide resin has a refractive index of 1.74, which is the highest refractive index for a lens resin, but it becomes reddish in weathering tests such as outdoor exposure. Cannot be put to practical use.
  • Inventors of the present invention have found from numerous experimental examples that ultraviolet absorbers are extremely effective in eliminating specific polymerization conditions and reddish color, and have led to the present invention. It is a thing.
  • the value of around 420 nm was found to be the center value of the most favorable condition because the addition of a small amount of the ultraviolet absorber causes some variation in the product, so As a result, the average transmittance of visible light can be kept high.However, when the color tone of the lens is adjusted by using a blueing prescription described later, light transmission in the range of 420-43 O nm is achieved. Conditions that significantly reduce the rate can also be put to practical use. In addition, it is preferable that the light transmittance at a wavelength of 400 nm is less than 10% because the reddish coloring can be prevented by removing rays having a wavelength shorter than 420 nm as much as possible.
  • sulfur-containing Ebisulfide resin is used as an eyeglass lens, use a specified mold and gasket to determine the properties of the lens in the environment in which it will be used.
  • the above resin was cast and heat-polymerized while gradually increasing the temperature within the range of 30 ° C to less than 80 ° C to form a plurality of lenses.
  • a lens having the following was obtained. These lenses were divided into two sets, and one set was subjected to scratch-resistant coating processing (hereafter referred to as hard coating) at 110 ° C, and the other sets were exposed to red when exposed outdoors. I have.
  • an ultraviolet absorber added to prevent deterioration in the resin molded product was added, and after the lens molded under the above polymerization conditions was exposed outdoors, the reddish color was slightly reduced. Focusing on this, the amount and variety of UV absorbers were set variously, and the light transmittance was measured and compared. As a result, as a condition common to very little coloring, the wavelength positions at which the light transmittance exhibits a remarkable drop are almost the same. I found something.
  • the UV absorber include benzophenone-based, salicylic acid-based, cyanoacrylate-based, and benzotriazole-based agents, but the compatibility with the resin and the amount of the additive may be slightly different. Therefore, there are various options.
  • Benzotriazole-based resins are preferred as the episulfide resin, but those with a small amount of addition and high UV absorption efficiency are selected.
  • the amount of the UV absorber added is preferably in the range of 0.01 to 4.0% by weight relative to the resin, and if too much, the transparent molded product is colored yellow, which impairs the value of the product. If it is too small, discoloration cannot be removed.
  • 1 to 3% by weight of benzotriazole-based tinuvin 320 from Ciba-Geigy Inc. is used as an ultraviolet absorber, and the amount of 1/1000 of the target is used. Since there are varieties that can be achieved, it is not meaningful to limit the amount of addition.
  • the ultraviolet absorber referred to in the present invention means all substances having the action, and is not limited to the above-mentioned ultraviolet absorber.
  • a hard-coated lens is usually heated at an appropriate temperature in the range of 80 ° C to 120 ° C in order to polymerize the formed hard-coating film. If the polymerization temperature is too low, there is a case in which deformation occurs due to the pressure of the jig holding the lens due to heating in the hard coating process in the subsequent process. From this, it was determined that the lower limit of the casting polymerization temperature at the time of molding the lens raw material was 80 ° C. In the present invention, the range of the maximum polymerization temperature is set to 80 to 140 ° C. in all the polymerization steps for obtaining a lens, and the range of the heating temperature is within this range.
  • the resin lens according to the present invention has a refractive index of 1.74, which is currently the highest It has a high refractive index, has optical properties approaching the refractive index of inorganic glass of 1.8, has a thin lens barrel, surpasses inorganic glass in terms of dyeability and weight, and has a hard coat.
  • sulfur-containing ebisulfide resin requires at least the conditions of casting and heat polymerization and reduction of light transmittance in the short wavelength side region of visible light in order to enhance weather resistance.
  • it since it does not have complete colorless transparency, it is possible to enhance the value of the product by adjusting the color tone to give a transparent feeling.
  • a colorant is added to the resin of the lens raw material and / or the hard coat material to be subsequently processed, and the reflected light in the antireflection layer is adjusted. It is also possible to adjust the color tone.
  • Fig. 1 (a) is a graph showing the entire light transmittance of raw material No. 1, and (b) is a graph enlarging a part of it.
  • Figure 2 (a) is a graph showing the entire light transmittance of raw material No. 7, and (b) is a graph in which a part of it is enlarged.
  • Fig. 3 (a) is a graph showing the entire light transmittance of raw material No. 2, and (b) is a graph enlarging a part of it.
  • Fig. 4 (a) is a graph showing the entire light transmittance of raw material No. 4, and (b) is a graph enlarging a part thereof.
  • Fig. 5 (a) is a graph showing the entire light transmittance of raw material No. 8, and (b) is a graph enlarging a part of it.
  • BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to tables and drawings.
  • Table 1 shows the results of examining the relationship between the heat polymerization conditions of the sulfur-containing ebisulfide resin used in the present invention and the ultraviolet absorber. The resin molded body before being completed as a lens was referred to as a raw material.
  • Table 1 Redness test
  • Table 1 shows the results of the exposure test.
  • the casting polymerization temperature of the lens raw material shows only the highest temperature and the heating time among the long polymerization times. Shows whether or not annealing is performed after demolding to remove mechanical distortion, the heating temperature, and the result of adding 1% of tinuvin 320 as an ultraviolet absorber to prevent red color change. .
  • This result indicates that the degree of discoloration is closely related to casting and heat polymerization conditions when an ultraviolet absorber is added.
  • numbers 1, 3, 5, and 7 indicate the raw material numbers of the lenses. It matches.
  • discoloration red indicates that the resin has a strong reddish tint. If the discoloration is simply described, the resin itself slightly yellows due to casting and heat polymerization conditions, and the degree of yellowing and redness are mixed. It shows what they are meeting.
  • Table 2 shows an example in which the addition amount of the UV absorber was changed to 3% by weight to obtain a lens with extremely little coloration in appearance.
  • the relationship between the polymerization conditions and the addition amount of the UV absorber was closely related. For example, improvement in discoloration is seen as shown in Table 2 for raw material numbers 4 and 6 for raw material numbers 3 and 5 in Table 1. It can be understood that the range of particularly preferable polymerization conditions is limited. In this example, as an example, the result of using 3% by weight of benzotriazole-based tinuvin 320 as an ultraviolet absorber is shown.
  • Table 2 also shows the basis for determining the polymerization conditions of the present invention. That is, raw material No.
  • Raw material No. 8 was substantially heat-polymerized at 140 ° C, and raw material 8 that had been annealed for an additional hour had discolored, but had not been annealed. Although the raw wood slightly discolored, a less colored one was obtained by adjusting the color tone such as pulling.
  • the heating temperature of 140 ° C is a favorable condition for morphological stability.
  • Table 1 the raw material without addition of the UV absorber was suitable for the polymerization conditions, but it turned red in the exposure test.
  • an ultraviolet absorber is added to prevent resin deterioration due to light rays.
  • an object of the present invention is to reduce light rays in a shorter wavelength region than near 420 nm. In this way, the color balance of the resin lens is changed to eliminate the redness.
  • the figure is an enlarged view for a light transmittance of 70% or more.
  • the casting polymerization temperature was in the range of 30 to 80 ° C
  • the annealing was performed at 110 ° C for 3 hours
  • the UV absorber was added. Not something.
  • Raw material number 1 before exposure shown in FIG. 1 (a) shows the essential light transmittance when the sulfur-containing ebisulfide resin used in the present invention is molded as a lens. It is almost constant between 420 and 700 nm and has a transmittance of 83% or more. As a result of the annealing, the color slightly yellowed and the transmittance decreased between 400 and 420 nm, but the transmittance still exceeded 76%. It is almost transparent visually. However, it was strongly red-yellow-colored in a four-day outdoor exposure test, making it impractical. Figure 1 shows this phenomenon enlarged
  • Figure 2 (a) shows that the casting polymerization at molding was performed at a high temperature of 140 ° C, and the resin molding was performed at a high temperature. Indicates an excess rate. These polymerization conditions were aimed at complete curing of the resin, but since it had already turned yellow when removed from the heating furnace,
  • Figs. 3, 4, and 5 show examples of the addition of 3% of an ultraviolet absorber as a preferable condition.
  • the numbers 2, 4, and 8 indicate the raw material numbers.
  • Figures 3 and 4 show the light transmittance of the raw material with almost no discoloration after outdoor exposure
  • Figure 5 shows the light transmittance of raw material No. 8, which was heated too long at the upper limit temperature and was red. This is an example in which yellow coloring is visually recognized.
  • the raw material will take on a slight yellow tint, but the raw material will be slightly green due to the use of a blueing agent.
  • a practically usable raw material can be provided. In this case, although the light transmittance slightly decreases, the hue balance can be reduced to zero by supplementing the light in the insufficient wavelength range.
  • composition of the chemicals for lens molding and the polymerization conditions are shown below.
  • Example 2 The liquid prepared in Example 1 was poured into a glass mold, the temperature was gradually raised to 30 to 120 ° C., and the polymerization was completed in 15 hours.
  • the resin lens obtained by releasing the mold after cooling was subjected to an outdoor exposure test for 4 days. As a result, as shown in Table 2, the lens hardly discolored.
  • the resin lens obtained in Example 1 was annealed at 110 ° C. for 3 hours and subjected to a 4-day outdoor exposure test.
  • This lens corresponds to raw material No. 4 in Table 2, and as shown in Table 2, hardly discolored.
  • a plastic lens obtained in the same manner as in Example 1 was subjected to a 4-day outdoor exposure test on the plastic lens obtained in the same manner as in Example 1 except for the ultraviolet absorbent only from the liquid prepared in Example 1. As a result, as shown in Table 1, the lens turned strongly reddish brown. .
  • the plastic lens obtained in Comparative Example 1 was annealed at 110 ° C. for 3 hours, and the same outdoor exposure test was performed. This lens corresponds to the raw material number 3 in Table 1, and as shown in Table 1, the lens turned strongly reddish brown. [Example 4]
  • the lens obtained by the present invention is suitably used as a spectacle lens.

Abstract

A plastic spectacle lens with a high refractive index which is made of a sulfurized episulfide resin and which is prevented from assuming a red color and yellowing. The process for molding a lens made of a sulfurized episulfide resin and having an extremely high refractive index is characterized in that the maximum polymerization temperatures are in the range of from 80 to 140°C and that an ultraviolet absorber is added in such an amount that the light transmittance after molding significantly decreases as the wavelength decreases from around 420 nm, which is in the visible light region, to the shorter-wavelength side thereof. The maximum polymerization temperatures are that for cast polymerization wherein a raw lens material is molded and that for thermal polymerization wherein the molded object released from the mold is annealed for eliminating the distortion thereof and stabilizing its shape. Namely, these temperatures mean the maximum temperatures for conducting substantial polymerizations.

Description

明 細 含硫ェビスルフィ ド樹脂レンズの製造方法とそのレンズ 技術分野  Manufacturing method of sulfur-containing ebisulphide resin lens and lens
本発明は、 含硫ェビスルフ ィ ド樹脂を用いた高屈折樹脂レンズとその 製造方法に関する。 背景技術  The present invention relates to a high refractive resin lens using a sulfur-containing ebisulfide resin and a method for producing the same. Background art
プラスチヅク レンズは無機ガラスと比較して、 軽量、 割れに く い、 染 色が容易などの特性を有することから、 ファ ッショ ン性を重視する眼鏡 レンズなどに広く使用されよう になつてきた。 この眼鏡レンズ用樹脂と しては、 ジエチレングリ コールビスァ リルカーボネー 卜樹脂 ( C R— 3 9 ) が用い られてきた。 しかしながら、 この C R _ 3 9 は屈折率が 1 . 5 0 であ り、 眼鏡レンズに使用した場合に、 マイ ナス レ ンズでは、 こば 厚、 プラス レンズでは中.心厚がそれぞれ厚く な り、 眼鏡装着者にとって 装着感あるいは外観上必ずしも満足のい く ものとはいえなかった。 この 欠点を改良するために屈折率のよ り高いプラスチ ヅク レンズの開発が進 められてきた。  Compared with inorganic glass, plastic lenses have characteristics such as light weight, resistance to breakage, and easy coloring, and have been widely used for eyeglass lenses that emphasize fashionability. Diethylene glycol bisaryl carbonate resin (CR-39) has been used as the resin for spectacle lenses. However, this CR_39 has a refractive index of 1.50, and when used for spectacle lenses, the negative lens has a thicker core and the plus lens has a medium thickness. The wearing feeling or appearance was not always satisfactory for the spectacle wearer. To remedy this drawback, plastic lenses with higher refractive index have been developed.
屈折率を高く する方法と して、 ハロゲン (フ ッ素を除く ) 原子の導 入、 芳香璟の導入、 硫黄原子の導入などの方法が提案されている。 レ ン ズ用樹脂と しては、 屈折率が高く、 アッベ数が高いこ とが望ま しいが、 両者は屈折率が上昇する とアッペ数が低く なる という相反する物性であ るために両物性を同時に向上させるこ とは困難であった。 アッペ数の低 下を抑制しながらよ り高い屈折率を有する樹脂の検討が行われ、 い く つ かの提案がなされている。 近年、 高屈折率光学用樹脂と し "tチォウレ夕 ン樹脂が代表的な樹脂として用いられ、 屈折率も 1 . 6 0 〜 1 . 7の 高屈折率樹脂レンズが実用化されている。 しかしながら無機ガラス.レン ズの屈折率は更に高く、 これに追従するために更なる光学用樹脂の開発 が進められており、 ェピスルフ ィ ド基を有する化合物を重合硬化せしめ た樹脂生成物が提案されて、 屈折率が 1 . 7 0以上の優れた特性が得ら れ、 更に屈折率が 1 . 7 4なる高屈折率樹脂も上市されている。 As methods for increasing the refractive index, methods such as introduction of halogen (excluding fluorine) atoms, introduction of aromatic atoms, and introduction of sulfur atoms have been proposed. As a lens resin, it is desirable that the refractive index is high and the Abbe number is high.However, both properties are contradictory because the Abbe number decreases as the refractive index increases. It was difficult to improve at the same time. Investigations have been made on resins having a higher refractive index while suppressing a decrease in the number of Abbes, and some proposals have been made. In recent years, as a resin for high refractive index optics, Resin is used as a typical resin, and a high-refractive-index resin lens having a refractive index of 1.6 to 1.7 has been put to practical use. However, the refractive index of inorganic glass lenses is still higher, and further development of optical resins is being pursued in order to follow this trend, and resin products obtained by polymerizing and curing a compound having an episulphide group have been proposed. As a result, excellent properties with a refractive index of 1.70 or more are obtained, and a high refractive index resin with a refractive index of 1.74 is also on the market.
しかしながらこの屈折率 1 . 7 4の含硫ェビスルフィ ド樹脂はレンズ 成形工程では異臭が強く、 嫌気性であるために未硬化部分が周囲に付着 するなど取扱いは容易なものではない。 作業上の困難性は克服されたと しても、 眼鏡用プラスチヅク レンズとしては、 屋外暴露した場合、 .赤く 発色するなどの致命的な欠点を有しており、 通常の長時間にわたる加熱 重合では黄変する。 しかし、 1 . 7 4 という高屈折率樹脂は他に得難い ものであるために、 これらの欠点を除去する研究が盛んに行われている ところである。 + '  However, this sulfur-containing ebisulphide resin having a refractive index of 1.74 is not easy to handle because it has a strong off-flavor in the lens molding process and is anaerobic, so that uncured portions adhere to the surroundings. Despite overcoming the operational difficulties, plastic lenses for eyeglasses have fatal drawbacks such as reddish color when exposed outdoors, and yellow in normal long-time heat polymerization. Change. However, since a high-refractive index resin of 1.74 is difficult to obtain, a study for eliminating these disadvantages is being actively conducted. + '
本発明が解決しょう とする課題は、 含硫ェビスルフ ィ ド樹脂を用いた 樹脂レンズの赤色発色と黄変を除去した眼鏡用高屈折率プラスチック レ ンズを提供することである。 発明の開示  The problem to be solved by the present invention is to provide a high-refractive-index plastic lens for spectacles in which the red coloring and yellowing of a resin lens using a sulfur-containing ebisulfide resin are eliminated. Disclosure of the invention
本発明の樹脂レンズは、 含硫ェビスルフィ ド樹脂製の極めて屈折率が 高いレンズの成形において、 最高重合温度が 8 0 〜 1 4 ◦ °Cの範囲であ り、 成形後の光線透過率が可視光領域 4 2 0 n m近傍からその短波長側 領域に顕著に降下する量の紫外線吸収剤を添加することを特徴とする。 最高重合温度とは、 レンズ生材を成形する注型重合、 離型後の成形物の 歪みを除去し、 形態を安定化するアニーリ ングを行う加熱重合の各重合 温度であって、 実質的な重合を行うための最高温度をいうものである。 含硫ェピスルフ イ ド樹脂は、 屈折率が 1 . 7 4 とレンズ用樹脂と しては 最高の屈折率を有するが、 屋外暴露などの耐候性試験に対し赤味を帯び て しまうので、 そのままでは実用化できない。 本発明者等はその原因を 探究する.う ちに、 特定の重合条件と赤味を解消するために紫外線吸収剤 が極めて有効であるこ とを多数の実験例から知見し、 本発明に至ったも のである。 4 2 0 n m近傍と したのは、 紫外線吸収剤を微量添加するた めに多少のバラ ヅキが製品に生ずるために、 4 2 0 n mがもっ とも好ま しい条件の中心値であるこ とを知見した結果であり、 可視光の平均透過 率を高く維持するこ とが出来るが、 後述するブルーイ ング処方などによ る レ ンズの色調調整を施すと 4 2 0 - 4 3 O n mの範囲で光線透過率を 顕著に降下させるような条件も実用化できる。 また、 4 2 0 n mよ り短 波長側の光線は出来るだけ除去した方が赤味を帯びた着色を防止できる ので、 4 0 0 n mにおける光線透過率は 1 0 %未満が好ま しい。 The resin lens of the present invention has a maximum polymerization temperature in the range of 80 to 14 ° C. and a light transmittance after molding in the molding of an extremely high refractive index lens made of sulfur-containing ebisulfide resin. It is characterized in that an ultraviolet absorber is added in such an amount as to significantly drop from the vicinity of the optical region of 420 nm to the region on the shorter wavelength side. The maximum polymerization temperatures are the polymerization temperatures of cast polymerization for molding lens raw materials and heat polymerization for annealing to remove the distortion of the molded product after mold release and stabilize the form. It refers to the maximum temperature for performing polymerization. Sulfur-containing episulfide resin has a refractive index of 1.74, which is the highest refractive index for a lens resin, but it becomes reddish in weathering tests such as outdoor exposure. Cannot be put to practical use. Inventors of the present invention have found from numerous experimental examples that ultraviolet absorbers are extremely effective in eliminating specific polymerization conditions and reddish color, and have led to the present invention. It is a thing. The value of around 420 nm was found to be the center value of the most favorable condition because the addition of a small amount of the ultraviolet absorber causes some variation in the product, so As a result, the average transmittance of visible light can be kept high.However, when the color tone of the lens is adjusted by using a blueing prescription described later, light transmission in the range of 420-43 O nm is achieved. Conditions that significantly reduce the rate can also be put to practical use. In addition, it is preferable that the light transmittance at a wavelength of 400 nm is less than 10% because the reddish coloring can be prevented by removing rays having a wavelength shorter than 420 nm as much as possible.
含硫ェビスルフ ィ ド樹脂を眼鏡レンズと して用.いる場合、 レンズが使 用される環境においてどの程度の特性を有しているかを調べるために、 所定のモール ド とガスケッ ト によ りセルを作成し、 前記樹脂を注型して 3 0 °C〜 8 0 °C未満の範囲で温度を徐々に上げながら加熱重合し、 複数 枚のレンズを成形したところ、 レンズ全体にわずかながら黄色味を有す る レンズを得た。 これらのレ ンズを 2組に分けて、 1組に耐擦傷性被膜 加工 (以後、 ハー ドコー ト という) を 1 1 0 °Cで行い、 他の組を屋外暴 露したところ全数赤味を帯びて しまった。 そこで樹脂成形品に於ける劣 化防止のために添加する紫外線吸収剤を微量添加して、 上述した重合条 件で再度成形したレンズを屋外暴露しだ後、 赤味が僅かながら少ないこ とに着目 し、 紫外線吸収剤の量及び品種を種々設定し、 光線透過率を測 定して比較検討した。 その結果、 着色の極めて少ないものに共通する条 件と して、 光線透過率が顕著な降下,を呈示する波長の位置がほぼ同じで ある こ とを突き止めた。 紫外線吸収剤の例と しては、 ベンゾフ エ ノ ン 系、 サ リチル酸系、 シァノ アク リ レー ト系、 ベンゾ ト リ アゾ一ル系など が挙げられるが、 樹脂に対する相溶性や添加量の多少によ り選択肢は種 々存在する。 ェピスルフ ィ ド樹脂にはべンゾ ト リ アゾ一ル系が好ま しい が、 添加量が少なく て紫外線吸収効率の良いものが選択される。 総じて 紫外線吸収剤の添加量は樹脂に対して重量比で 0 . 0 1.〜 4 . 0 %の範 囲が好ま し く、 多すぎる と透明な成型品が黄色く着色して製品の価値を 損なう原因にな り、 少なすぎる と変色を除去するこ とはできない。 本例 では、 紫外線吸収剤と してチバガイギ一社のペンゾ ト リ アゾ一ル系のチ ヌ ビン 3 2 0を 1 〜 3重量%用いているが、 その 1 / 1 0 0の量で目的 を達成する ような品種も存在するから、 添加量を数値限定する こ とはあ ま り意味がない。 本発明でいう紫外線吸収剤はその作用を有する もの総 てを意味し、 上記の紫外線吸収剤に限定されるものではない。 If sulfur-containing Ebisulfide resin is used as an eyeglass lens, use a specified mold and gasket to determine the properties of the lens in the environment in which it will be used. The above resin was cast and heat-polymerized while gradually increasing the temperature within the range of 30 ° C to less than 80 ° C to form a plurality of lenses. A lens having the following was obtained. These lenses were divided into two sets, and one set was subjected to scratch-resistant coating processing (hereafter referred to as hard coating) at 110 ° C, and the other sets were exposed to red when exposed outdoors. I have. Therefore, a small amount of an ultraviolet absorber added to prevent deterioration in the resin molded product was added, and after the lens molded under the above polymerization conditions was exposed outdoors, the reddish color was slightly reduced. Focusing on this, the amount and variety of UV absorbers were set variously, and the light transmittance was measured and compared. As a result, as a condition common to very little coloring, the wavelength positions at which the light transmittance exhibits a remarkable drop are almost the same. I found something. Examples of the UV absorber include benzophenone-based, salicylic acid-based, cyanoacrylate-based, and benzotriazole-based agents, but the compatibility with the resin and the amount of the additive may be slightly different. Therefore, there are various options. Benzotriazole-based resins are preferred as the episulfide resin, but those with a small amount of addition and high UV absorption efficiency are selected. In general, the amount of the UV absorber added is preferably in the range of 0.01 to 4.0% by weight relative to the resin, and if too much, the transparent molded product is colored yellow, which impairs the value of the product. If it is too small, discoloration cannot be removed. In this example, 1 to 3% by weight of benzotriazole-based tinuvin 320 from Ciba-Geigy Inc. is used as an ultraviolet absorber, and the amount of 1/1000 of the target is used. Since there are varieties that can be achieved, it is not meaningful to limit the amount of addition. The ultraviolet absorber referred to in the present invention means all substances having the action, and is not limited to the above-mentioned ultraviolet absorber.
一方、 ハー ドコー トを行ったレンズは、 作成されたハー ドコ一 ト被膜 を重合させるため、 通常 8 0 °Cから 1 2 0での範囲の適宜温度で加熱す るが、 レンズ成型時の最高重合温度があま りに低い場合は、 後工程での ハー ドコー ト加工工程における加熱によ り レンズを把持する治具の加圧 で変形する ものがあ り、 一つには形態安定性の視点から、 レンズ生材成 形時の注型重合温度と しては 8 0 °Cが下限である と判断した。 本発明に おいて最高重合温度の範囲を 8 0〜 1 4 0 °Cと しているのはレ ンズを得 る総ての工程に於ける重合工程において、 加熱温度の領域がこの範囲内 にある ものを対象にしている ものであ り、 注型成形する際の注型重合、 離型後の加熱重合、 ハー ドコ一 ト被膜の加熱重合などレ ンズ完成のため に行われる重合に必要な温度を意味するものであ り、 仮に 8 0 °Cよ り低 い温度領域で注型重合したとする と、 その後のァニ一リ ング工程で幾ら 高い温度で加熱重合してもハー ドコー ト工程における生材レンズの熱変 形は防止できない。 一方、 ェビスルフィ ド樹脂レンズの赤色変化に関し ては注型重合とァニ一リ ングのための加熱重合の最高重合温度が極めて 重要であり、 ハ一 ドコ一 トにおける最高重合温度だけを幾ら高く しても 良好な結果は得られないものである。 これは、 先述したように、 3 0 。C 〜 8 0 °C未満の範囲で注型重合したレンズにハー ドコー トを施した場 合、 赤味を帯びたことで証朋されている。 On the other hand, a hard-coated lens is usually heated at an appropriate temperature in the range of 80 ° C to 120 ° C in order to polymerize the formed hard-coating film. If the polymerization temperature is too low, there is a case in which deformation occurs due to the pressure of the jig holding the lens due to heating in the hard coating process in the subsequent process. From this, it was determined that the lower limit of the casting polymerization temperature at the time of molding the lens raw material was 80 ° C. In the present invention, the range of the maximum polymerization temperature is set to 80 to 140 ° C. in all the polymerization steps for obtaining a lens, and the range of the heating temperature is within this range. It is intended for a certain product and is necessary for polymerization performed to complete the lens, such as casting polymerization at the time of casting, heat polymerization after release, and heat polymerization of a hard coat film. It means the temperature, and if casting polymerization is performed in a temperature range lower than 80 ° C, even if it is heated at a higher temperature in the subsequent annealing process, hard coating Transformation of raw material lens in the process Shape cannot be prevented. On the other hand, regarding the red color change of ebisulfide resin lenses, the maximum polymerization temperature of heat polymerization for casting polymerization and annealing is extremely important, and only the maximum polymerization temperature in hardcoat is increased. However, good results cannot be obtained. This is 30 as described above. It has been proved that when a hard coat is applied to a lens that has been cast and polymerized in the range of C to less than 80 ° C, it becomes reddish.
また、 高い方の温度領域では、 1 4 0 °Cを越える温度で重合を行った としても、 短時間の加熱、 例えば 1 0 〜 2 0時間という長い時間をかけ る注型重合のうちの数十分間 1 4 0 °Cを越える温度で加熱した場合は、 実質的な重合を行っているわけではない。 なお、 温度領域の上限を' 1 4 0 °Cとしたことの意味については後述の中で明らかにする。 成形後のレ ンズ生材を実用化するためには、 その後の加工工程で回復できない変形 を排除することは当然のことであり、 安定したレンズを供給するための 重合条件を見出すことも大切である。 樹脂レンズを成形する場合、 セル に封入した状態で注型重合するが、 樹脂の重合度が増し硬化するにつれ て、 モ一ル ドに密着する一方、 体積の収縮が生起して内部応力が生じる ため、 一般的には離型後再び生材を加熱して内部応力を除去するァニー リングを行っている。 この間の加熱重合温度について最高温度を種々試 みたところ、 暴露テス ト後顕著な ¾異が認められ、 更に、 レンズ生材の 重合条件と赤味変色を低減するための紫外線吸収剤の作用には密接な関 係があることを知見した。 レンズ生材が暴露テス トで赤味を帯びる原因 は、 高屈折率を追求した樹脂の分子構造に起 Hしていると思われ、 一旦 屋外暴露で赤味を帯びたレンズは屋内に持ち込んでも元の色調に戻るこ とはなかった。 自然光の特定の波長域の光線に励起され、 分子構造に変 化が生じたものと思われる。 ,  In addition, in the higher temperature range, even if the polymerization is performed at a temperature exceeding 140 ° C, only a few of the casting polymerizations, which require a short heating time, for example, a long time of 10 to 20 hours. When heating is performed at a temperature exceeding 140 ° C for a sufficient time, substantial polymerization is not performed. The meaning of setting the upper limit of the temperature range to '140 ° C will be clarified later. In order to put the lens raw material after molding into practical use, it is natural to eliminate deformation that cannot be recovered in the subsequent processing steps, and it is also important to find out the polymerization conditions for supplying a stable lens. is there. When a resin lens is molded, it is cast and polymerized while it is sealed in a cell, but as the degree of polymerization of the resin increases and cures, it adheres to the mold while shrinking in volume, causing internal stress Therefore, annealing is generally performed to remove the internal stress by heating the raw material again after release. The maximum temperature of the heat polymerization during this time was tested variously, and a remarkable difference was observed after the exposure test.Furthermore, the polymerization conditions of the lens raw material and the action of the ultraviolet absorber to reduce red discoloration were observed. We found that there is a close relationship. The reason that the raw lens material becomes reddish in the exposure test is thought to be caused by the molecular structure of the resin in pursuit of a high refractive index. It never returned to its original tone. It is presumed that the molecular structure was changed by being excited by light in a specific wavelength range of natural light. ,
本発明に係る樹脂レンズは、 屈折率 1 . 7 4であ り、 現状では最高の 高屈折率を示し、 無機ガラスの屈折率 1 . 8 0 に迫る光学特性を有し、 レンズのこば厚も薄いものとな り、 染色性と重量の点では無機ガラスを 凌ぎ、 ハー ドコー ト層を工夫することで割れに く いレンズを提供するこ とができる。 The resin lens according to the present invention has a refractive index of 1.74, which is currently the highest It has a high refractive index, has optical properties approaching the refractive index of inorganic glass of 1.8, has a thin lens barrel, surpasses inorganic glass in terms of dyeability and weight, and has a hard coat. By devising layers, it is possible to provide a lens that is resistant to cracking.
以上述べたよう に、 含硫ェビスルフ ィ.ド樹脂は耐候性を高めるために 少な く とも注型及び加熱重合条件と可視光の短波長側領域の光線透過率 の低減を必要と しているが、 完全な無色透明性を有しているわけではな いので、 透明感を付与するために色調を調整して製品の価値を高めるこ とが出来る。 レンズと して色調を調整するためには、 レンズ生材の樹脂 及び/又はその後に加工されるハ一 ドコー ト材に着色剤を添加するほ か、 反射防止層に於ける反射光を調整して色調を調整することも可能で ある。 図面の簡単な説明  As described above, sulfur-containing ebisulfide resin requires at least the conditions of casting and heat polymerization and reduction of light transmittance in the short wavelength side region of visible light in order to enhance weather resistance. However, since it does not have complete colorless transparency, it is possible to enhance the value of the product by adjusting the color tone to give a transparent feeling. In order to adjust the color tone of the lens, a colorant is added to the resin of the lens raw material and / or the hard coat material to be subsequently processed, and the reflected light in the antireflection layer is adjusted. It is also possible to adjust the color tone. BRIEF DESCRIPTION OF THE FIGURES
図 1 ( a ) は生材番号 1 の光線透過率の全体を示すグラ フであ り、 ( b ) はその一部を拡大したグラフである。  Fig. 1 (a) is a graph showing the entire light transmittance of raw material No. 1, and (b) is a graph enlarging a part of it.
図 2 ( a ) は生材番号 7の光線透過率の全体を示すグラ フであ り、, 、( b ) はその一部を拡大したグラフである。  Figure 2 (a) is a graph showing the entire light transmittance of raw material No. 7, and (b) is a graph in which a part of it is enlarged.
図 3 ( a ) は生材番号 2 の光線透過率の全体を示すグラ フであ り、 ( b ) はその一部を拡大したグラフである。  Fig. 3 (a) is a graph showing the entire light transmittance of raw material No. 2, and (b) is a graph enlarging a part of it.
図 4 ( a ) は生材番号 4の光線透過率の全体を示すグラ フであ り、 ( b ) はその一部を拡大したグラフである。  Fig. 4 (a) is a graph showing the entire light transmittance of raw material No. 4, and (b) is a graph enlarging a part thereof.
図 5 ( a ) は生材番号 8 の光線透過率の全体を示すグラ フであ り、 ( b ) はその一部を拡大したグラフである。 発明を実施するための最良の形態 本発明の実施の形態を表と図を用いて説明する。 本発明に使用する含 硫ェビスルフィ ド樹脂の加熱重合条件と紫外線吸収剤との関係を調べた 結果を表 1 に示す。 なお、 レンズとして完成される以前の榭脂成形体を 生材と称した。 表 1 赤変テスト Fig. 5 (a) is a graph showing the entire light transmittance of raw material No. 8, and (b) is a graph enlarging a part of it. BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to tables and drawings. Table 1 shows the results of examining the relationship between the heat polymerization conditions of the sulfur-containing ebisulfide resin used in the present invention and the ultraviolet absorber. The resin molded body before being completed as a lens was referred to as a raw material. Table 1 Redness test
( 間:4日間  (Between: 4 days
Figure imgf000009_0001
Figure imgf000009_0001
表 1は暴露テス トの結果を示すものであり、 レンズ生材の注型重合温 度はその長時間に亘る重合時間の中で最高温度とその加熱時間のみを記 載し、 内部応力による光学的な歪みを除去するために離型後に行うァニ —リ ングの有無とその加熱温度、 赤色変化防止のために紫外線吸収剤と してチヌビン 3 2 0を 1 %添加した結果を示している。 この結果は、 変 色の度合いが紫外線吸収剤を添加した場合に注型及び加熱重合条件と密 接な関係があることを示している。 表の中で番号 1 , 3 , 5 , 7はレン ズの生材番号を示し、 後述する光線透過率を調査したときの生材番号に 符合している。 また変色 (赤) は赤味が強いこ とを示し、 単に変色と記 載したものは、 注型及び加熱重合条件によ り樹脂自体が僅か黄変し、 黄 変と赤変の度合いが混じ りあっている ものを示している。 Table 1 shows the results of the exposure test.The casting polymerization temperature of the lens raw material shows only the highest temperature and the heating time among the long polymerization times. Shows whether or not annealing is performed after demolding to remove mechanical distortion, the heating temperature, and the result of adding 1% of tinuvin 320 as an ultraviolet absorber to prevent red color change. . This result indicates that the degree of discoloration is closely related to casting and heat polymerization conditions when an ultraviolet absorber is added. In the table, numbers 1, 3, 5, and 7 indicate the raw material numbers of the lenses. It matches. In addition, discoloration (red) indicates that the resin has a strong reddish tint. If the discoloration is simply described, the resin itself slightly yellows due to casting and heat polymerization conditions, and the degree of yellowing and redness are mixed. It shows what they are meeting.
表 1 では紫外線吸収剤の添加量が不十分であると判断し、 増量添加し た結果を表 2 に示す。 表 2  In Table 1, it was judged that the amount of the UV absorber added was insufficient, and the results of the increased addition are shown in Table 2. Table 2
赤変テス卜 Redness test
(暴露期間:4日間)  (Exposure period: 4 days)
Figure imgf000010_0001
Figure imgf000010_0001
表 2 は紫外線吸収剤の添加量を 3重量%に変更して外観的に着色の極 めて少ないレンズを得た例を示すもので、 重合条件と紫外線吸収剤の添 加量が密接な関係にあ り、 例えば、 表 1 に示す生材番号 3 と 5 に対する 表 2 に示す生材番号 4 と 6のよう に変色の改善が見られるこ と、 また、 特に好ま しい重合条件の範囲は限られるこ とが理解できる。 本実施例で は、 紫外線吸収剤は一例と してペンゾ ト リアゾ一ル系のチヌ ビン 3 2 0 を 3重量%使用した結果を示して,いる。 表 2はまた本発明の重合条件を 決定する根拠を示している。 即ち、 生材番号 2 は実質的に 8 0 °Cで加熱 重合されたもので、 先に述べたよう に熱変形に対して下限の加熱条件で 行われたものであ り、 その後の 1 1 0 °Cのアニーリ ングで重合度が更に 完全なものとな り、 紫外線吸収剤の作用によ り着色のない生材を得てい る。 生材番号 8は実質的に 1 4 0 °Cで加熱重合されたものであ り、 更な る 1 時間のァニーリ ングを施した生材 8 は変色したが、 ァニ一リ ングを 施さなかった生材は少し変色したものの、 プル一ィ ングなどの色調調整 によ り着色の少ないものが得られている。 このこ とから本発明の重合条 件の高い方の温度領域で 1 4 0 °Cの加熱が 2時間以上に及ぶと黄変が始 まる と判断し、 これが重合温度の上限を 1 4 0 °Cと した所以であ り、 1 4 0 °Cの加熱温度は形態安定性には好ま しい条件である。 また紫外線吸 収剤を添加しなかつた生材は表 1 に示したよう に重合条件には適合した ものであつたが、 暴露試験で赤色の方へ変色している。 一般的には光線 による樹脂劣化を防止するために紫外線吸収剤を添加するのであるが、 本発明が目的一とする ところは、 4 2 0 n m近傍よ り短波長側領域の光線 を削減する こ とによ り、 樹脂レンズの色バランスを変化させ、 赤味を消 すところにある。 Table 2 shows an example in which the addition amount of the UV absorber was changed to 3% by weight to obtain a lens with extremely little coloration in appearance. The relationship between the polymerization conditions and the addition amount of the UV absorber was closely related. For example, improvement in discoloration is seen as shown in Table 2 for raw material numbers 4 and 6 for raw material numbers 3 and 5 in Table 1. It can be understood that the range of particularly preferable polymerization conditions is limited. In this example, as an example, the result of using 3% by weight of benzotriazole-based tinuvin 320 as an ultraviolet absorber is shown. Table 2 also shows the basis for determining the polymerization conditions of the present invention. That is, raw material No. 2 was substantially heated and polymerized at 80 ° C., and as described above, was performed under the minimum heating conditions for thermal deformation. Annealing at 0 ° C makes the degree of polymerization more complete, and a raw material without coloring is obtained by the action of the ultraviolet absorber. Raw material No. 8 was substantially heat-polymerized at 140 ° C, and raw material 8 that had been annealed for an additional hour had discolored, but had not been annealed. Although the raw wood slightly discolored, a less colored one was obtained by adjusting the color tone such as pulling. Based on this, it was judged that yellowing would start if heating at 140 ° C was performed for 2 hours or more in the higher temperature range of the polymerization conditions of the present invention, and this would set the upper limit of the polymerization temperature at 140 ° C. The heating temperature of 140 ° C is a favorable condition for morphological stability. As shown in Table 1, the raw material without addition of the UV absorber was suitable for the polymerization conditions, but it turned red in the exposure test. Generally, an ultraviolet absorber is added to prevent resin deterioration due to light rays. However, an object of the present invention is to reduce light rays in a shorter wavelength region than near 420 nm. In this way, the color balance of the resin lens is changed to eliminate the redness.
ところで、 含硫ェビスルフ ィ ド樹脂を用いたレンズが屋外暴露で着色 した状態が数値的にどのよう に現れるかを検証するために分光光度計に よ り光線透過率を測定し、 表 3及び表 4にその光線透過率を示した。 レ ンズ生材番号 1 〜 8は、 表 1及び 2 に記載のレンズ生材番号と一致させ ている。 表 3 By the way, in order to verify numerically how a lens using sulfur-containing ebisulfide resin becomes colored when exposed outdoors, the light transmittance was measured using a spectrophotometer, and Table 3 and Table 3 were used. Fig. 4 shows the light transmittance. Lens raw material numbers 1 to 8 match the lens raw material numbers described in Tables 1 and 2. Table 3
暴露テスト (赤変テスト〉前のレンズ光線透過率  Lens light transmittance before exposure test (red discoloration test)
Figure imgf000012_0002
Figure imgf000012_0002
表 4  Table 4
暴露テスト (赤変テスト)後のレンズ光線透過率  Lens light transmittance after exposure test (red discoloration test)
Figure imgf000012_0001
表 3及び表 4のうち、 紫外線吸収剤を 3 %添加した方は 4 2 0 n mを 境に光線透過率が顕著に降下している。 生材番号 1及び 7について光線 透過率を測定した結果を図 1及び図 2 にグラフで示した。 それぞれの
Figure imgf000012_0001
In Tables 3 and 4, when 3% of the ultraviolet absorber was added, the light transmittance was remarkably reduced around 420 nm. The results of measuring the light transmittance of raw material numbers 1 and 7 are shown in the graphs of FIGS. 1 and 2. each
( a ) 図は光線透過率 0 ~ 1 0 0 %全体に亘 り示 したものであ り、(a) The figure shows the entire light transmittance of 0 to 100%.
( b ) 図は 7 0 %以上の光線透過率について拡大して示したものであ る。 生材番号 1 は注型重合温度が 3 0 〜 8 0 °Cの範囲で行われ、 ァニ一 リ ングを 1 1 0 °Cで 3時間行ったものであり、 紫外線吸収剤を添加して いないものである。 (b) The figure is an enlarged view for a light transmittance of 70% or more. For raw material No. 1, the casting polymerization temperature was in the range of 30 to 80 ° C, the annealing was performed at 110 ° C for 3 hours, and the UV absorber was added. Not something.
図 1 ( a ) に示す暴露前の生材番号 1は、 本発明に用いた含硫ェビス ルフ ィ ド樹脂をレンズとして成形した際の本質的な光線透過率を示して いる。 4 2 0 〜 7 0 0 n mの間はほぼ一定で 8 3 %以上の透過率を有し ている。 アニーリ ングの結果、 僅かながら黄変し、 4 0 0 〜 4 2 0 n m の間で透過率の減少がみられるが、 なお 7 6 %以上の透過率を有してい る。 目視ではほぼ透明である。 しかし 4 日間の屋外暴露テス トで強く赤 黄色に着色し、 実用化できないものである。 この現象は拡大示した図 1 Raw material number 1 before exposure shown in FIG. 1 (a) shows the essential light transmittance when the sulfur-containing ebisulfide resin used in the present invention is molded as a lens. It is almost constant between 420 and 700 nm and has a transmittance of 83% or more. As a result of the annealing, the color slightly yellowed and the transmittance decreased between 400 and 420 nm, but the transmittance still exceeded 76%. It is almost transparent visually. However, it was strongly red-yellow-colored in a four-day outdoor exposure test, making it impractical. Figure 1 shows this phenomenon enlarged
( b ) で明瞭に見ることが出来る。 可視光における青系の光線の減少が みられ、 樹脂の劣化による黄変も加担したものと思われる。 It can be clearly seen in (b). A decrease in the bluish rays in visible light is observed, and it is considered that yellowing due to deterioration of the resin was also involved.
図 2 ( a ) は成形時の注型重合が 1 4 0 °Cと、 樹脂成形としては高い 温度で行われ、 ァニ一リ ングも 1 4 0 で 1時間行われた生材の光線透 過率を示している。 この重合条件は樹脂の完全な硬化を目標にしたもの であるが、 加熱炉から取りだしたときに既に黄変していたので、 図 2 Figure 2 (a) shows that the casting polymerization at molding was performed at a high temperature of 140 ° C, and the resin molding was performed at a high temperature. Indicates an excess rate. These polymerization conditions were aimed at complete curing of the resin, but since it had already turned yellow when removed from the heating furnace,
( b ) に示すように屋外暴露後では青系の光線の減少が明瞭である。 上 記の結果から、 注型重合温度ゃァニーリ ング時に於ける加熱温度の範囲 が極めて重要な要素であることが理解できる。 As shown in (b), the decrease in bluish light is clear after outdoor exposure. From the above results, it can be understood that the range of the heating temperature during the casting polymerization temperature annealing is a very important factor.
上述したように、 表 1で 1 %の紫外線吸収剤を添加した生材が重合条 件と密接な関係があることが判明しているので、 これの添加量を種々検 討し、 好ま ^しい条件と して紫外線吸収剤を 3 %添加 した例を、 図 3 , 4 , 5 にそれそれの光線透過率をグラ フで示した。 図中、 2 , 4 , 8の 数字は生材番号を示す。 図 3及び図 4は屋外暴露後の変色が殆どみられ ない生材の光線透過率であり、 図 5は.生材番号 8の光線透過率であ り、 上限温度の加熱が長すぎて赤黄色の着色が視認される例を示すものであ る。 図 3, 4 , 5のそれそれの ( a ) 図は紫外線吸収剤の影響が明暸に 理解できるよう に光線透過率を 0〜 1 0 0 %の全体に亘り示してお り、 ( b ) 図はそれらの光線透過率の一部を拡大し.て示した。 生材番号 2及 び 4は紫外線吸収剤の影響を受けて光線透過率が顕著に降下している位 置が 4 2 O n mに^定されており、 その結果、 屋外暴露後 6 O O n m近 傍の波長域では透過率は減少傾向にあ り、 生材番号 8では 6 0 0 n m近 傍の波長域で透過率が増加する傾向を示している。 生材番号 8が着色し たのは注型重合が 1 4 0 °Cなる高温域で長時間行われたからに他ならな い。 紫外線吸収剤の影響を受ける波長が 4 2 0 n m〜4 3 0 n mの範囲 に設定される と生材は僅かながら黄色味を帯びて く るが、 ブル一イ ング 剤などによ り'生材の色調を調整する こ とで実用可能な生材を提供でき る。 この場合は僅かながら光線透過率が低下するが、 不足する波長域の 光線を補う こ とで色相のバランスを 0るこ とができる。 As described above, it is known from Table 1 that the raw material to which 1% of the ultraviolet absorber is added has a close relationship with the polymerization conditions. As an example, Figs. 3, 4, and 5 show examples of the addition of 3% of an ultraviolet absorber as a preferable condition. In the figure, the numbers 2, 4, and 8 indicate the raw material numbers. Figures 3 and 4 show the light transmittance of the raw material with almost no discoloration after outdoor exposure, and Figure 5 shows the light transmittance of raw material No. 8, which was heated too long at the upper limit temperature and was red. This is an example in which yellow coloring is visually recognized. The figures (a) in Figs. 3, 4 and 5 show the light transmittance over the entire range of 0 to 100% so that the effect of the UV absorber can be clearly understood. Shows an enlarged part of their light transmittance. For Raw Material Nos. 2 and 4, the position where the light transmittance was significantly reduced due to the effect of the ultraviolet absorber was determined to be 42 O nm, and as a result, it was found that the position was close to 6 OO nm after outdoor exposure. The transmittance tends to decrease in the near wavelength region, and in the case of raw material No. 8, the transmittance tends to increase in the wavelength region near 600 nm. Raw material No. 8 was colored only because casting polymerization was performed for a long time in a high temperature range of 140 ° C. If the wavelength affected by the UV absorber is set in the range of 420 nm to 43 nm, the raw material will take on a slight yellow tint, but the raw material will be slightly green due to the use of a blueing agent. By adjusting the color tone of the material, a practically usable raw material can be provided. In this case, although the light transmittance slightly decreases, the hue balance can be reduced to zero by supplementing the light in the insufficient wavelength range.
以下、 本発明のレンズの製造方法をよ り具体的に説明するが、 本発明 はこれによって限定されるものではない。  Hereinafter, the method for producing a lens of the present invention will be described more specifically, but the present invention is not limited thereto.
[実施例 1 ] ' 、  [Example 1] '
レンズ成形の化学物質の組成と重合条件を.次に示す。  The composition of the chemicals for lens molding and the polymerization conditions are shown below.
モノマ チォェビスルフ ィ ド (三井化学製) 9 0部  Monomer Choebisulfide (Mitsui Chemicals) 90 parts
チオール 1 0部 重合触媒 N , N —ジメチルシク ロへキシルァミ ン 0 . 0 4部  Thiol 10 parts Polymerization catalyst N, N-dimethylcyclohexylamine 0.0 4 parts
N , N —ジシクロへキシルメチルァミ ン 0 . 1部 無水'酢酸 0 . 0 8部 紫外線吸収剤 チヌ ビン 3 2 0 , 3部 上記材料を反応フラスコに仕込み、 内温 1 0 〜 2 5 °Cに保ちながら混 合、 撹拌、 溶解させた後、 減圧して脱泡した。 この液をガラスモール ド に注入し、 3 0〜 1 0 0 °Cまで徐々に昇温し、 1 5時間で重合を終了し た。 冷却後、 離型して得られた樹脂レンズにつき 4 日間の屋外暴露試験 を行った。 その結果、 表 2 に示すよう にレンズは少し変色した。 N, N-dicyclohexylmethylamine 0.1 part Acetic anhydride 0.08 parts UV absorber Tinuvin 320, 3 parts Charge the above materials into a reaction flask, mix, stir and dissolve while maintaining the internal temperature at 10 to 25 ° C, and then decompress. And degassed. This solution was poured into a glass mold, and the temperature was gradually raised to 30 to 100 ° C., and the polymerization was completed in 15 hours. After cooling, the resin lens obtained by releasing the mold was subjected to a 4-day outdoor exposure test. As a result, the lens slightly discolored as shown in Table 2.
[実施例 2 ]  [Example 2]
実施例 1 にて調合した液をガラスモール ドに注入し、 3 0 ~ 1 2 0 °C まで徐々に昇温し、 1 5時間で重合を終了した。 冷却後離型して得られ た樹脂レンズにつき 4 日間屋外暴露試験を行った。 その結果、 表 2 に示 すよう に、 レンズはほとんど変色しなかった。  The liquid prepared in Example 1 was poured into a glass mold, the temperature was gradually raised to 30 to 120 ° C., and the polymerization was completed in 15 hours. The resin lens obtained by releasing the mold after cooling was subjected to an outdoor exposure test for 4 days. As a result, as shown in Table 2, the lens hardly discolored.
[実施例 3 ]  [Example 3]
実施例 1 にて得られた樹脂レンズに 1 1 0 °Cで 3時間のァニ一ルを行 い 4 日間の屋外暴露試験を行った。 このレンズは表 2の生材番号 4 に相 当するものであ り、 表 2 に示すよう にほとんど変色しなかった。  The resin lens obtained in Example 1 was annealed at 110 ° C. for 3 hours and subjected to a 4-day outdoor exposure test. This lens corresponds to raw material No. 4 in Table 2, and as shown in Table 2, hardly discolored.
[比較例 1 ]  [Comparative Example 1]
実施例 1 の調合した液から紫外線吸収剤のみを除き、 その他はすべて 実施例 1 と同様にして得られたプラスチック レンズにつき 4 日間の屋外 暴露試験を行った。 その結果、 表 1 に示すよう に、 レンズは赤褐色に強 く 変色した。 .  A plastic lens obtained in the same manner as in Example 1 was subjected to a 4-day outdoor exposure test on the plastic lens obtained in the same manner as in Example 1 except for the ultraviolet absorbent only from the liquid prepared in Example 1. As a result, as shown in Table 1, the lens turned strongly reddish brown. .
[比較例 2 ]  [Comparative Example 2]
比較例 1 にて得られたプラスチヅク レンズに 1 1 0 °Cで 3時間のァニ —ルを行い、 同様の屋外暴露試験を行った。 このレンズは表 1 の生材番 号 3 に相当する ものであ り、 表 1 に示すよう に、 レンズは赤褐色に強く 変色した。 [実施例 4 ] The plastic lens obtained in Comparative Example 1 was annealed at 110 ° C. for 3 hours, and the same outdoor exposure test was performed. This lens corresponds to the raw material number 3 in Table 1, and as shown in Table 1, the lens turned strongly reddish brown. [Example 4]
次に、 レ ンズとして色調を調整する例を説明する。 実施例 1 の配合に プル一イ ング剤としてアン トラキノ ン系青色色素を 0 . 0 0 0 1部添加 し、 十分撹拌した後減圧して脱泡し、 3 0 ~ 1 0 0 °Cまで徐々に昇温 し、 1 5時間で重合を終了した。 冷却後、 離型して得られた樹脂レンズ は僅かな青色を呈し、 透明感が助長された。 4 日間の屋外暴露試験の糸 i 果、 実施例 1では少し変色したが、 その変色がほとんど確認できない良 好な結果を得た。 . 産業上の利用可能性  Next, an example of adjusting the color tone as a lens will be described. 0.01 part of an anthraquinone-based blue dye was added as a pulling agent to the composition of Example 1, and the mixture was sufficiently stirred, depressurized and defoamed, and gradually heated to 30 to 100 ° C. The polymerization was completed in 15 hours. After cooling, the resin lens obtained by releasing the mold exhibited a slight blue color, and the transparency was promoted. As a result of the four-day outdoor exposure test, the discoloration was slightly changed in Example 1, but a favorable result was obtained in which the discoloration was hardly confirmed. . Industrial Applicability
' 以上述べたよう に、 特定の重合のための加熱条件と紫外線吸収剤を適 度に添加するこ とで、 高屈折率の含硫ェビスルフ ィ ド辯脂から極めて着 色の少ない耐候性のよい樹脂レンズを得るこ とができる。 得られたレン ズは屈折率 1 . 7 4であるため、 薄いレンズを提供できる。 従って、 本 発明によ り得られる レンズは眼鏡レンズと して好適に用いられる。  '' As mentioned above, by adding heating conditions for specific polymerization and appropriately adding an ultraviolet absorber, it is possible to obtain extremely low coloration and high weather resistance with extremely low coloration from sulfur-containing ebisulfide resin with high refractive index. A resin lens can be obtained. Since the obtained lens has a refractive index of 1.74, a thin lens can be provided. Therefore, the lens obtained by the present invention is suitably used as a spectacle lens.

Claims

請求の範囲 The scope of the claims
1 . 含硫ェビスルフ ィ ド樹脂製の極めて屈折率が高いレ ンズの成形にお いて、 最高重合温度が 8 0 〜 : L 4 0 °Cの範囲であ り、 成形後の光線透過 率が可視光領域 4 2 0 n m近傍からその短波長側領域に顕著に降下する 量の紫外線吸収剤を添加した着色の極めて少ない含硫ェピスルフイ ド樹 脂レンズの製造方法。 1. In the molding of extremely high refractive index lenses made of sulfur-containing ebisulfide resin, the maximum polymerization temperature is 80 to: L40 ° C, and the light transmittance after molding is visible. A process for producing a sulfur-containing episulfide resin lens with extremely low coloring, to which an ultraviolet absorber is added in an amount that remarkably falls from the vicinity of 420 nm to the shorter wavelength side of the light region.
2 . 請求項 1 の方法によ り得られた含硫ェピスルフ イ ド樹脂からなる樹 脂レ ンズ。 .  2. A resin lens comprising a sulfur-containing episulfide resin obtained by the method of claim 1. .
3 . 色調調整を施した、 請求項 2 に記載の含硫ェビスルフ ィ ド樹脂から なる樹脂レンズ。  3. A resin lens comprising the sulfur-containing ebisulfide resin according to claim 2, which has been subjected to color tone adjustment.
PCT/JP2001/002909 2000-04-05 2001-04-04 Process for producing sulfurized episulfide resin lens and the lens WO2001077717A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000103970 2000-04-05
JP2000-103970 2000-04-05
JP2001-102863 2001-04-02
JP2001102863 2001-04-02

Publications (1)

Publication Number Publication Date
WO2001077717A1 true WO2001077717A1 (en) 2001-10-18

Family

ID=26589535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002909 WO2001077717A1 (en) 2000-04-05 2001-04-04 Process for producing sulfurized episulfide resin lens and the lens

Country Status (1)

Country Link
WO (1) WO2001077717A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9995950B2 (en) 2016-01-29 2018-06-12 Carl Zeiss Vision International Gmbh Spectacle lens for car drivers
JP2019066827A (en) * 2017-09-28 2019-04-25 三井化学株式会社 Photochromic lens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0761665A2 (en) * 1995-08-16 1997-03-12 Mitsubishi Gas Chemical Company, Inc. Episulfide group containing alkyl sulfide compounds
JPH11100435A (en) * 1997-09-26 1999-04-13 Kureha Chem Ind Co Ltd Composition for optical material and plastic lens
JPH11258402A (en) * 1998-03-13 1999-09-24 Mitsui Chem Inc Composition for resin of high refraction factor, plastic lens manufacturing by hardening composition, and its manufacture
JP2000147201A (en) * 1998-11-06 2000-05-26 Ito Kogaku Kogyo Kk Plastic lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0761665A2 (en) * 1995-08-16 1997-03-12 Mitsubishi Gas Chemical Company, Inc. Episulfide group containing alkyl sulfide compounds
JPH11100435A (en) * 1997-09-26 1999-04-13 Kureha Chem Ind Co Ltd Composition for optical material and plastic lens
JPH11258402A (en) * 1998-03-13 1999-09-24 Mitsui Chem Inc Composition for resin of high refraction factor, plastic lens manufacturing by hardening composition, and its manufacture
JP2000147201A (en) * 1998-11-06 2000-05-26 Ito Kogaku Kogyo Kk Plastic lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9995950B2 (en) 2016-01-29 2018-06-12 Carl Zeiss Vision International Gmbh Spectacle lens for car drivers
JP2019066827A (en) * 2017-09-28 2019-04-25 三井化学株式会社 Photochromic lens

Similar Documents

Publication Publication Date Title
CA2182720C (en) Method and apparatus for manufacturing composite lenses
US20090114889A1 (en) Compositions for the preparation of composite photochromic polycarbonate lenses
JP5893609B2 (en) Photochromic lens for glasses
KR100506300B1 (en) High refractive lens for excellent polyester resin, optical uniformity and / or colorability
US4528351A (en) Plastic lens
US5498686A (en) Optically transparent photochromic plastic material
US20040041287A1 (en) Methods for preparing composite photochromic ophthalmic lenses
EP1996972A1 (en) Tinted lenses that correct for high order aberrations
JP6570452B2 (en) Polarizing lens for glasses
CN101838369A (en) Monomer composition for manufacturing chameleon glass blocks and method for preparing chameleon glass blocks
CN107082838A (en) The 1.499 refractive index resin eyeglasses with protection royal purple optical property
US8541526B2 (en) Tinted lenses that correct for high order aberrations
US6863844B2 (en) Photochromic matrix compositions for use in ophthalmic lenses
JP5918595B2 (en) Manufacturing method of plastic lens for spectacles
WO2001077717A1 (en) Process for producing sulfurized episulfide resin lens and the lens
JP2794308B2 (en) Lens material for aphakic eyes
JP4329281B2 (en) Plastic lens manufacturing method and plastic lens manufactured by the manufacturing method
CN106699983A (en) Ultraviolet photocuring resin lens with refractive index of 1.60 and manufacturing method thereof
JPS6281601A (en) High refractive index plastic lens and its production
JP2013213936A (en) Method for manufacturing plastic lens for spectacles
JPS6183212A (en) High-refractive index resin
JPH0257281B2 (en)
JPH0312281B2 (en)
JPH11248901A (en) Production of colored high refractive index plastic lens
CN112099123A (en) Vector substrate absorption type blue light-proof high-transmittance lens and preparation method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 574515

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase