WO2001071073A1 - Composite yarn - Google Patents

Composite yarn Download PDF

Info

Publication number
WO2001071073A1
WO2001071073A1 PCT/US2001/008722 US0108722W WO0171073A1 WO 2001071073 A1 WO2001071073 A1 WO 2001071073A1 US 0108722 W US0108722 W US 0108722W WO 0171073 A1 WO0171073 A1 WO 0171073A1
Authority
WO
WIPO (PCT)
Prior art keywords
yam
latex
rabber
fibers
sliver
Prior art date
Application number
PCT/US2001/008722
Other languages
French (fr)
Inventor
Paul W. Baker, Jr.
Original Assignee
Baker Paul W Jr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Paul W Jr filed Critical Baker Paul W Jr
Priority to US10/239,378 priority Critical patent/US20030205041A1/en
Priority to AU2001247561A priority patent/AU2001247561A1/en
Publication of WO2001071073A1 publication Critical patent/WO2001071073A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/38Threads in which fibres, filaments, or yarns are wound with other yarns or filaments, e.g. wrap yarns, i.e. strands of filaments or staple fibres are wrapped by a helically wound binder yarn
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/40Yarns in which fibres are united by adhesives; Impregnated yarns or threads
    • D02G3/402Yarns in which fibres are united by adhesives; Impregnated yarns or threads the adhesive being one component of the yarn, i.e. thermoplastic yarn

Definitions

  • This invention relates to a composite construction made from drafted staple fiber, a suitable chemical and/or transformable fiber, and a filament component or components inserted into the approximate strand center by means of air jet and/or open-end spinning techniques.
  • the filament yam or yams form a core upon which a binder fomied of chemical compound and/or thermoplastic fiber is applied.
  • a staple cover is spun around the core and binder to form the composite yam.
  • the present invention relates to producing a commercially viable matrix yam with unique properties and a process to combine several components of mono- or multifilament core, treatment, and cover construction.
  • a chemical and/or thermoplastic binder may be applied to the core by means of an emulsion trough or pass-through chamber with metering pump, followed by a heat source if liquid to reduce and/or eliminate the moisture in the resulting yarn. If the binder is a thermoplastic material, a heat source may be deleted. This treated yarn is then fed into the spinning zone to be covered by staple fibers.
  • the binder is to be another fiber, it may be fed as a component of the sliver input. If the binder is to be a (thermoplastic) filament, or in tape/slit film form, it may be fed into the spinning zone parallel to the core material.
  • the present invention also provides a method of commercially combining core, adhesive enhancement, and cover by directing a sliver of staple fibers through a drafting zone to achieve the desired coverage; continuously applying an adhesive factor; to cover a continuous core by means of an air jet spinning process (or via DREF equipment).
  • Yams have been composed of natural fibers for centuries. They have typically been all staple fiber, cotton, wool, etc. Many synthetic fibers are produced in both continuous filament and staple fiber form. Each fiber form has been developed to exhibit specific, but distinctly different, properties for texture, strength , elongation, shrinkage, bulk and the like.
  • Composite spinning or core spinning was developed to enhance the tensile strength of a spun yam by inserting a filament core surrounded by staple fibers twisted concentrically around it. This has been and is actively done today on ring spinning equipment.
  • Core spun yams may also be made on DREF spinning equipment, which utilizes two oppositely rotating perforated drams to cause entering fibers to be twisted on themselves or onto a filament core.
  • the drums have a vacuum pressure to hold the fibers and to cause their rotating friction to insert the twist.
  • This method may also be referred to as an open end method as the fibers are airborne prior to its spinning action.
  • core spun yams may be produced by wrapping or spinning a fiber sheath around a continuous filament core.
  • the opposite construction of a continuous filament wrapped around a fiber or staple core may also be employed.
  • These yams may have their core and/or covering as staple fibers or as filaments interchangeably.
  • Ring spun core/wrapped yarns have been produced for many years, especially for sewing threads.
  • Such yams may be made on a roving frame or ring frame whereby one or more core strands is presented behind the last, or front, draft roll element and staple fibers are twisted about it.
  • Such yams may also be made on a DREF (TM Dr. Ernst Fehrer, Linz, Austria ), friction spinning, Bobtex, electrostatic spinning, "can back" ring spinning, and as in the present embodiments, by using an air jet spinning technique such as practiced on a Muratec MJS jet spinner.
  • sliver a process in which one or more ends of sliver are parallel and attenuated/drafted to achieve a high degree of uniformity in a resultant strand. This drawing process may be carried out in multiple passes to enhance the degree of parallelization in the fiber strand.
  • Sliver a rope-like strand of continuous, no twist fibers produced by carding and/or drawing. This sliver is the input for the staple component in DREF, air jet, friction spinning, Bobtex, electrostatic, and “can back”, and roving type(speeder spun) spinning.
  • Roving sliver converted by drafting and adding a small amount of twist to gently bind the fibers together. This process occurs just prior to ring spinning. Roving is normally the fiber input to ring spinning.
  • DREF Spinning Patented system by Dr. Ernst Fehrer of Linz, Austria which drafts one or more slivers via a carding cylinder, introduces them to a pair of rotating perforated insert drams which insert twist in an open end/friction spinning process.
  • This equipment will also operate with a core to result in core spun yam.
  • This equipment may also be used to accomplish the matrix yam of subject invention with the choice dependant on size, texture, and other properties of desired yam.
  • DREF II or DREF III may be used for this process.
  • Can Back Spinning Feeding a conventional ring spirming frame with sliver as compared to the normal roving input.
  • Roving Spun/"Speeder Spinning Using a roving frame to produce yam direct as compared to roving. Usually this is a very slow production method.
  • a composite matrix yarn comprising a cover yarn formed of a plurality of twisted fibers, a core strand positioned within the cover yam and around which the fibers of the cover yam are twisted to provide mechanical adhesion between the cover yam and the core strand, an adhesive binder carried on the core strand for providing enhanced adhesion between the core strand and the cover yam.
  • the core strand is chosen from the group consisting of wire, spun yarn, mono filament yarn and multifilament yarn.
  • the cover yarn comprises staple fibers chosen from the group consisting of natural fibers and synthetic fibers.
  • the adhesive binder is chosen from the group consisting of isocyanate, natural rubber latex, butadiene rabber latex, vinylpyridene, styrene butadiene rabber, terpolymer rabber latex, sbr copolymer rabber latex, chloroprene rabber latex, acrylonitrile butadiene copolymer rubber latex, rfl resorcinol formaldehyde latex, hot melt adhesive, pvc polyvinyl chloride, urethane, natural glue, synthetic glue, natural wax and synthetic waxes.
  • An embodiment of the method according to the invention comprises the steps of forming a sliver of staple fibers, drafting the sliver into a yam, introducing into the drafted sliver a core strand to form a composite yam, said core strand having thereon an adhesive binder for providing enhanced adhesion between the core strand and the cover yarn, and twisting the composite yam to impart mechanical adhesion thereto.
  • the step of drafting the sliver comprises the step of drafting the sliver on an open-end spinning machine to form the sliver into a yarn.
  • the method includes the step of plying the composite yarn.
  • the method includes the step of introducing the core strand into the drafted sliver comprises introducing a strand chosen from the group consisting of wire, fiberglass, aramid, polyethylene, polyester, rayon, polypropylene, polyolefin and nylon.
  • the adhesive binder is chosen from the group consisting of isocyanate, natural rabber latex, butadiene rabber latex, vinylpyridene, styrene butadiene rubber, terpolymer rabber latex, sbr copolymer rubber latex, chloroprene rabber latex, acrylonitrile butadiene copolymer rubber latex, rfl resorcinol formaldehyde latex, hot melt adhesive, pvc polyvinyl chloride, urethane, natural glue, synthetic glue, natural wax and synthetic wax.
  • Figure 1 is a schematic representation of a yarn spinning apparatus constructed according to the present invention
  • Figure 2 is a schematic representation of the portion of the yarn spinning apparatus which applies the filament core to the drafted cover yams;
  • Figure 3 is an enlarged side view of a matrix yarn according to an embodiment of the invention.
  • Figure 4 is an enlarged, schematic cross-sectional view of the completed matrix yam.
  • Machine 10 includes a drafting zone 20, a spinning zone 30 and a winding zone 40.
  • a drawn sliver "S” is supplied directly to sets of upper and lower drafting rolls 21, 22, where the sliver is drafted by moving the generally longitudinally-extending fibers past each other in a controlled manner and at controlled rate.
  • the drafted fibers pass through two compressed air nozzles 31 , 32 in the spinning zone 30.
  • Compressed air discharged by nozzle 31 whirls about the axis of the nozzle in a direction opposite that discharged by the nozzle 32, thus producing a yam.
  • the nozzle 32 gathers a group of fibers fed from the drafting rolls 21, 22 by false twisting.
  • the compressed air discharged by nozzle 31 rotates about the axis of nozzle 31 in the direction opposite to that in which the nozzle 32 gathered and twisted the fibers, creating a counter-whirling force opposite to that with which the core fibers were twisted by the nozzle 32.
  • some fibers are separated during this false twisting.
  • the counter-whirling force generated by the nozzle 31 coils the separated fibers around the previously-twisted fibers in the direction opposite to that with which the previously- twisted fibers were twisted by the nozzle 32.
  • the fibers that passed through the nozzle 32 are more tightly wrapped around the previously-twisted fibers by the untwisting force resulting from the false twisting.
  • the twisted yam then passes into the winding zone where the yam is wound onto a take-up package "P" in the form of a matrix yarn "Y".
  • the filament yam "F” is fed into the sliver downstream of the last drafting zone and is integrated into the sliver bundle before twisting begins in the spinning zone 30.
  • the filament yarn "F” is fed from a supply package 14 through a pigtail guide 15, a tension device 16, a feeler 17 and an air sucker 18.
  • the filament “F” is then passed through a core yarn delivery tube 19 and then into a sliver delivery tube 26, where the integration of the filament yam "F” and the sliver "S” occurs.
  • the filament yam "F” should be introduced into the center of the sliver "S".
  • the filament yam "F” becomes the core of the matrix yam "Y".
  • the system produces a new product which encompasses the properties of both filament and spun yarn, with the filaments having thereon a coating of suitable chemical adhesion product.
  • Yarns can be made in right hand “Z” or left hand “S” twist direction.
  • other spinning methods may be considered as described above, especially the DREF equipment, but the desired yam properties and economics of production speed are to be considered.
  • the chemical treatment may be in the form of transformable or thermoplastic filaments as all or part of the core; or it may be composed of transformable or thermoplastic staple fibers as all or part of the cover; or it may be a combination of all three methods.
  • the chemical treatment may also be in the form of a wax disc or block which marks off onto the core yarn.
  • the percentages of core and cover fiber may be varied over a wide range depending on the yam properties desired, especially for strength and "strike through" for adhesion to rabber and/or plastic compounds.
  • the present invention presents numerous advantages over current yams.
  • the new yam represents one product that may be used to perform the work of two current yams used individually—namely bare or treated filament yam or basic spun yam. This allows the user to carry one inventory with more flexibility and lower total cost.
  • the percentages of core, adhesive treatment, and cover may be varied over a wide range to design the resultant yam to performance requirements.
  • the adhesive material and/or interlacing of fibers in spinning allow the yam to process well without stripping or shedding fibers. These yarns may be used as single ends or they may be plied. A representational view of the yarn is shown in Figure 3.
  • the core material may be wire, a spun yam, monofilament, or multifilament in any fiber type.
  • the choice is a matter of yam design, cost, and performance needs.
  • the choice of adhesion method allows one to build a matrix yam with filament tenacities further enhanced by both mechanical and chemical adhesion.
  • Current treated filament yarns have chemical adhesion, but poor mechanical adhesion.
  • current spun yarns have good mechanical adhesion, but lack chemical grip.
  • these matrix yarns enhance the properties and/or cost of these products by enhancing cover factor to reduce cost, build wall or fabric thickness, improving tear resistance, increasing abrasion resistance, enhancing tensile strength, burst strength of the final product, improving bending radius, adding flexibility, and improving toughness, impact resistance, impulse cycles.
  • the matrix acts as an integral part of the end-use product.
  • proactive design of this matrix yarn cost is improved by allowing one inventory item to be used as opposed to both filament and spun yams as separate items. Cost is improved by permitting a wider choice of filament and/or fiber components. Color is added by utilizing colored components; e.g. solution dyed fibers . Use of the process creates fewer knots or splices per pound of yarn to cause defects in fabrics. Enhanced downstream processing by the customer results.
  • Air jet spinning is capable of speeds in excess of 350 meters per minute.
  • the principle of air jet spinning applies to effect the matrix yam of this claim. See U.S. Patent 4,497, 167 Nakahara et al. Single or dual nozzles may be used.
  • the present invention is a method for manufacturing a yam of staple fibers and mono or multifilament yam(s) .
  • the multifilament yam is first treated chemically or thermoplastic fiber and/or filaments are added before entering an air jet spinning zone where staple fibers are spun around the whole strand.
  • the tension on the core material is enough to allow continuous spinning, but loose enough to allow some random fiber migration of the staple cover into a multifilament bundle. No such migration takes place with wire or monofilament cores.
  • One aspect of the present invention is to provide a three component composite yam, including a filament core, adhesive binder (chemical, fiber, filament, or tape), and a staple fiber cover in natural or colored fiber.
  • It also provides a method of commercially combining core, adhesive enhancement, and cover by directing a sliver of staple fibers through a drafting zone to achieve the desired coverage; continuously applying an adhesive factor, to cover a continuous core by means of an air jet spinning process.
  • Adhesive material examples but not limited to:
  • Adhesives may be applied as a solid, liquid, or foam. Typical Applications for these matrix yarns include:
  • the core bundle is formed of a multifilament strand 70.
  • a chemical and/or thermoplastic treatment or binder 75 is applied to the strand 70 which is conducive to plastic or rabber chemical adhesion and to the staple cover to be added.
  • a staple cover of drafted staple fibers 80 is applied over the core strand 70 which also promote mechanical adhesion in plastics and/or rubber products and provide impact and abrasion protection to the core strand 70.
  • This cover may be applied in varying percentages based on the weight of the whole resultant yarn and taking into account the desired effect in the end product to be made from this yarn.
  • the multifilament yarn or wire may have twist, be producer's twist, or have no twist at all. If needed,
  • This core material may be wire, fiberglass, aramid, polyethylene, polyester, rayon, polypropylene, polyolefin, nylon , or any other commercial fibers, alone or in combination.
  • the staple cover 80 may be 1% to 99% of the total weight and may be composed of vegetable, organic, regenerated, new or virgin, and/or synthetic material or any combination thereof.
  • the binder may be thermoplastic or low melt fibers blended into the staple cover or fed parallel in sliver form.
  • Fabrics made from the matrix yarn may be knitted, flat woven, triaxially woven, braided, spiralled, or made by other means. These products exhibit high strength, excellent abrasion resistance, and special features to create chemical and/or mechanical adhesion to plastics and rabber goods.
  • a matrix composite yam is described above. Various details of the invention may be changed without departing from its scope. Furthermore, the foregoing description of the preferred embodiment of the invention and the best mode for practicing the invention are provided for the purpose of illustration only and not for the purpose of limitation ⁇ the invention being defined by the claims.

Abstract

A composite matrix yarn (Y) including a cover yarn (80) formed of a plurality of twisted fibers, a core strand (70) positioned within the cover yarn (80) and around which the fibers of the cover yarn (80) are twisted to provide mechanical adhesion between the cover yarn (80) and the core strand (70), and an adhesive binder (75) carried on the core strand (70) for providing enhanced adhesion between the core strand (70) and the cover yarn (80).

Description

COMPOSITE YARN
Technical Field and Background of the Invention
This application is based upon and claims the filing date of provisional patent application No. 60/190,674, filed on March 20, 2000.
This invention relates to a composite construction made from drafted staple fiber, a suitable chemical and/or transformable fiber, and a filament component or components inserted into the approximate strand center by means of air jet and/or open-end spinning techniques. The filament yam or yams form a core upon which a binder fomied of chemical compound and/or thermoplastic fiber is applied. A staple cover is spun around the core and binder to form the composite yam. The present invention relates to producing a commercially viable matrix yam with unique properties and a process to combine several components of mono- or multifilament core, treatment, and cover construction.
A chemical and/or thermoplastic binder may be applied to the core by means of an emulsion trough or pass-through chamber with metering pump, followed by a heat source if liquid to reduce and/or eliminate the moisture in the resulting yarn. If the binder is a thermoplastic material, a heat source may be deleted. This treated yarn is then fed into the spinning zone to be covered by staple fibers.
If the binder is to be another fiber, it may be fed as a component of the sliver input. If the binder is to be a (thermoplastic) filament, or in tape/slit film form, it may be fed into the spinning zone parallel to the core material.
The present invention also provides a method of commercially combining core, adhesive enhancement, and cover by directing a sliver of staple fibers through a drafting zone to achieve the desired coverage; continuously applying an adhesive factor; to cover a continuous core by means of an air jet spinning process (or via DREF equipment).
The process of spinning yam from fibers dates back to Egyptian times. Yams have been composed of natural fibers for centuries. They have typically been all staple fiber, cotton, wool, etc. Many synthetic fibers are produced in both continuous filament and staple fiber form. Each fiber form has been developed to exhibit specific, but distinctly different, properties for texture, strength , elongation, shrinkage, bulk and the like.
Composite spinning or core spinning was developed to enhance the tensile strength of a spun yam by inserting a filament core surrounded by staple fibers twisted concentrically around it. This has been and is actively done today on ring spinning equipment.
Core spun yams may also be made on DREF spinning equipment, which utilizes two oppositely rotating perforated drams to cause entering fibers to be twisted on themselves or onto a filament core. The drums have a vacuum pressure to hold the fibers and to cause their rotating friction to insert the twist. This method may also be referred to as an open end method as the fibers are airborne prior to its spinning action.
It is known that core spun yams may be produced by wrapping or spinning a fiber sheath around a continuous filament core. The opposite construction of a continuous filament wrapped around a fiber or staple core may also be employed. These yams may have their core and/or covering as staple fibers or as filaments interchangeably. Ring spun core/wrapped yarns have been produced for many years, especially for sewing threads. Such yams may be made on a roving frame or ring frame whereby one or more core strands is presented behind the last, or front, draft roll element and staple fibers are twisted about it.
Such yams may also be made on a DREF (TM Dr. Ernst Fehrer, Linz, Austria ), friction spinning, Bobtex, electrostatic spinning, "can back" ring spinning, and as in the present embodiments, by using an air jet spinning technique such as practiced on a Muratec MJS jet spinner.
The following terms are set out by way of definition. Use of the following terms in this application is consistent with the definitions provided unless specifically stated to the contrary.
Carding: the use of a carding machine to parallel, straighten, clean, and to remove short fibers or trash. The output is called "sliver." Drawing: a process in which one or more ends of sliver are parallel and attenuated/drafted to achieve a high degree of uniformity in a resultant strand. This drawing process may be carried out in multiple passes to enhance the degree of parallelization in the fiber strand. Sliver: a rope-like strand of continuous, no twist fibers produced by carding and/or drawing. This sliver is the input for the staple component in DREF, air jet, friction spinning, Bobtex, electrostatic, and "can back", and roving type(speeder spun) spinning.
Roving: sliver converted by drafting and adding a small amount of twist to gently bind the fibers together. This process occurs just prior to ring spinning. Roving is normally the fiber input to ring spinning.
DREF Spinning: Patented system by Dr. Ernst Fehrer of Linz, Austria which drafts one or more slivers via a carding cylinder, introduces them to a pair of rotating perforated insert drams which insert twist in an open end/friction spinning process. This equipment will also operate with a core to result in core spun yam. This equipment may also be used to accomplish the matrix yam of subject invention with the choice dependant on size, texture, and other properties of desired yam. DREF II or DREF III may be used for this process.
Bobtex and electrostatic spinning: These processes are essentially similar using an electrical field to insert twist into fibers.
"Can Back" Spinning: Feeding a conventional ring spirming frame with sliver as compared to the normal roving input.
Roving Spun/"Speeder Spinning": Using a roving frame to produce yam direct as compared to roving. Usually this is a very slow production method.
Summary of the Invention
Therefore, it is an object of the invention to provide a composite matrix yam which includes properties of both filament and spun yam.
It is another object of the invention to provide a composite matrix yarn has both excellent mechanical and chemical adhesion. It is another obj ect of the invention to provide a composite matrix yam which can be manufactured from a wide variety of cover fibers, core fibers and adhesives.
These and other objects of the present invention are achieved in the preferred embodiments disclosed below by providing a composite matrix yarn, comprising a cover yarn formed of a plurality of twisted fibers, a core strand positioned within the cover yam and around which the fibers of the cover yam are twisted to provide mechanical adhesion between the cover yam and the core strand, an adhesive binder carried on the core strand for providing enhanced adhesion between the core strand and the cover yam.
According to one preferred embodiment of the invention, the core strand is chosen from the group consisting of wire, spun yarn, mono filament yarn and multifilament yarn.
According to another preferred embodiment of the invention, the cover yarn comprises staple fibers chosen from the group consisting of natural fibers and synthetic fibers.
According to yet another preferred embodiment of the invention, the adhesive binder is chosen from the group consisting of isocyanate, natural rubber latex, butadiene rabber latex, vinylpyridene, styrene butadiene rabber, terpolymer rabber latex, sbr copolymer rabber latex, chloroprene rabber latex, acrylonitrile butadiene copolymer rubber latex, rfl resorcinol formaldehyde latex, hot melt adhesive, pvc polyvinyl chloride, urethane, natural glue, synthetic glue, natural wax and synthetic waxes.
An embodiment of the method according to the invention comprises the steps of forming a sliver of staple fibers, drafting the sliver into a yam, introducing into the drafted sliver a core strand to form a composite yam, said core strand having thereon an adhesive binder for providing enhanced adhesion between the core strand and the cover yarn, and twisting the composite yam to impart mechanical adhesion thereto.
According to yet another preferred embodiment of the invention, the step of drafting the sliver comprises the step of drafting the sliver on an open-end spinning machine to form the sliver into a yarn.
According to yet another preferred embodiment of the invention, the method includes the step of plying the composite yarn. According to yet another preferred embodiment of the invention, the method includes the step of introducing the core strand into the drafted sliver comprises introducing a strand chosen from the group consisting of wire, fiberglass, aramid, polyethylene, polyester, rayon, polypropylene, polyolefin and nylon. According to yet another preferred embodiment of the invention, the adhesive binder is chosen from the group consisting of isocyanate, natural rabber latex, butadiene rabber latex, vinylpyridene, styrene butadiene rubber, terpolymer rabber latex, sbr copolymer rubber latex, chloroprene rabber latex, acrylonitrile butadiene copolymer rubber latex, rfl resorcinol formaldehyde latex, hot melt adhesive, pvc polyvinyl chloride, urethane, natural glue, synthetic glue, natural wax and synthetic wax.
Brief Description of the Drawings
Some of the objects of the invention have been set forth above. Other objects and advantages of the invention will appear as the invention proceeds when taken in conjunction with the following drawings, in which: Figure 1 is a schematic representation of a yarn spinning apparatus constructed according to the present invention;
Figure 2 is a schematic representation of the portion of the yarn spinning apparatus which applies the filament core to the drafted cover yams;
Figure 3 is an enlarged side view of a matrix yarn according to an embodiment of the invention; and
Figure 4 is an enlarged, schematic cross-sectional view of the completed matrix yam.
Description of the Preferred Embodiment and Best Mode
Referring now specifically to the drawings, a schematic diagram of a Murata M JS Jet Spinner ("MJS") machine which can be configured to produce a yarn according to the present invention is illustrated in Figure 1 and shown generally at reference numeral 10. Machine 10 includes a drafting zone 20, a spinning zone 30 and a winding zone 40. In conventional jet spinning, a drawn sliver "S" is supplied directly to sets of upper and lower drafting rolls 21, 22, where the sliver is drafted by moving the generally longitudinally-extending fibers past each other in a controlled manner and at controlled rate. The drafted fibers pass through two compressed air nozzles 31 , 32 in the spinning zone 30. Compressed air discharged by nozzle 31 whirls about the axis of the nozzle in a direction opposite that discharged by the nozzle 32, thus producing a yam. The nozzle 32 gathers a group of fibers fed from the drafting rolls 21, 22 by false twisting. Between the front roller in the drafting zone 20 and nozzle 32 the compressed air discharged by nozzle 31 rotates about the axis of nozzle 31 in the direction opposite to that in which the nozzle 32 gathered and twisted the fibers, creating a counter-whirling force opposite to that with which the core fibers were twisted by the nozzle 32. Thus, some fibers are separated during this false twisting.
The counter-whirling force generated by the nozzle 31 coils the separated fibers around the previously-twisted fibers in the direction opposite to that with which the previously- twisted fibers were twisted by the nozzle 32. The fibers that passed through the nozzle 32 are more tightly wrapped around the previously-twisted fibers by the untwisting force resulting from the false twisting.
The twisted yam then passes into the winding zone where the yam is wound onto a take-up package "P" in the form of a matrix yarn "Y".
In the practice of the present invention, the filament yam "F" is fed into the sliver downstream of the last drafting zone and is integrated into the sliver bundle before twisting begins in the spinning zone 30. As is shown in Figure 2, the filament yarn "F" is fed from a supply package 14 through a pigtail guide 15, a tension device 16, a feeler 17 and an air sucker 18. The filament "F" is then passed through a core yarn delivery tube 19 and then into a sliver delivery tube 26, where the integration of the filament yam "F" and the sliver "S" occurs. The filament yam "F" should be introduced into the center of the sliver "S". Since drafting has already taken place, the filament yam "F" becomes the core of the matrix yam "Y". The system produces a new product which encompasses the properties of both filament and spun yarn, with the filaments having thereon a coating of suitable chemical adhesion product. Yarns can be made in right hand "Z" or left hand "S" twist direction. Alternatively, other spinning methods may be considered as described above, especially the DREF equipment, but the desired yam properties and economics of production speed are to be considered.
The chemical treatment may be in the form of transformable or thermoplastic filaments as all or part of the core; or it may be composed of transformable or thermoplastic staple fibers as all or part of the cover; or it may be a combination of all three methods. The chemical treatment may also be in the form of a wax disc or block which marks off onto the core yarn.
The percentages of core and cover fiber may be varied over a wide range depending on the yam properties desired, especially for strength and "strike through" for adhesion to rabber and/or plastic compounds. The present invention presents numerous advantages over current yams. The new yam represents one product that may be used to perform the work of two current yams used individually—namely bare or treated filament yam or basic spun yam. This allows the user to carry one inventory with more flexibility and lower total cost. The percentages of core, adhesive treatment, and cover may be varied over a wide range to design the resultant yam to performance requirements. The adhesive material and/or interlacing of fibers in spinning allow the yam to process well without stripping or shedding fibers. These yarns may be used as single ends or they may be plied. A representational view of the yarn is shown in Figure 3.
The core material may be wire, a spun yam, monofilament, or multifilament in any fiber type. The choice is a matter of yam design, cost, and performance needs. The choice of adhesion method allows one to build a matrix yam with filament tenacities further enhanced by both mechanical and chemical adhesion. Current treated filament yarns have chemical adhesion, but poor mechanical adhesion. Likewise, current spun yarns have good mechanical adhesion, but lack chemical grip. Once braided, spiraled, woven, knitted, or otherwise made into its end product, these matrix yarns enhance the properties and/or cost of these products by enhancing cover factor to reduce cost, build wall or fabric thickness, improving tear resistance, increasing abrasion resistance, enhancing tensile strength, burst strength of the final product, improving bending radius, adding flexibility, and improving toughness, impact resistance, impulse cycles. The matrix acts as an integral part of the end-use product. By proactive design of this matrix yarn cost is improved by allowing one inventory item to be used as opposed to both filament and spun yams as separate items. Cost is improved by permitting a wider choice of filament and/or fiber components. Color is added by utilizing colored components; e.g. solution dyed fibers . Use of the process creates fewer knots or splices per pound of yarn to cause defects in fabrics. Enhanced downstream processing by the customer results.
The benefits of a spun yam surface are provided together with the tensile factor of filament. Efficient use of exotic, expensive fibers is permitted, while shortened production times result from fewer processes.
Although the ring and DREF equipment will suffice to construct the yarn described in the present invention, air jet spinning has been chosen because of its speed of manufacture and the presence of automation. These factors greatly influence the cost of yarn production. Air jet was also chosen because it makes very uniform and even textured yam.
Air jet spinning is capable of speeds in excess of 350 meters per minute. The principle of air jet spinning applies to effect the matrix yam of this claim. See U.S. Patent 4,497, 167 Nakahara et al. Single or dual nozzles may be used.
The present invention is a method for manufacturing a yam of staple fibers and mono or multifilament yam(s) . The multifilament yam is first treated chemically or thermoplastic fiber and/or filaments are added before entering an air jet spinning zone where staple fibers are spun around the whole strand. The tension on the core material is enough to allow continuous spinning, but loose enough to allow some random fiber migration of the staple cover into a multifilament bundle. No such migration takes place with wire or monofilament cores.
The completed matrix yam "M" is immediately wound onto tubes or cones by the onboard winder. Yarn break repairs are made automatically by the machine's knotter/splicer. One aspect of the present invention is to provide a three component composite yam, including a filament core, adhesive binder (chemical, fiber, filament, or tape), and a staple fiber cover in natural or colored fiber.
It also provides a method of commercially combining core, adhesive enhancement, and cover by directing a sliver of staple fibers through a drafting zone to achieve the desired coverage; continuously applying an adhesive factor, to cover a continuous core by means of an air jet spinning process.
It provides a flexible method of producing yam by the above method. Each yam product may be engineered to achieve the necessary end use performance requirements. To a person skilled in the art of making yarns, these and other aspects of the present invention will become apparent after reading the attached drawings.
The following examples are illustrative of the range of products which can be made in accordance with the processes of the invention.
CORE ADHESIVE COVER
1. 320 den fil poly, 50 filament Lord Corp. HT Poly staple Dupont 68L, 8.3 gpd, 18.8% Chemlok 855 1.375 Den x 1.5" elongation 7.3% shrinkage @ 177C aqueous adhesive 6.5 gpd, 4.0% shrinkage
30 minutes w/producer's twist
2240 den core none applied same as above @ 4915 den
7/2.52
31.3% 68.69% Total denier 7155, single end tensile approx. 70 lbs. 2. 600 den fil poly Lord Corp. same
1000 den fil poly, 192 filament Lord Corp . same Dupont 68, 9.2gpd, 16.3% elongation U.6% shrinkage @ 177C 30 minutes w/producer's twist
4. 840 den nylon, 140 filament Lord Corp. same Dupont 728, 9.5gpd, 20.0% elongation 7.0% shrinkage @ 177C,
2 minutes w/producer's twist 5. 320 den poly Lord Corp. S o l D y e d C o l o r e d polyester
1.2 or 1.5 Den x 1.5"
6. 600 den poly pp or pvc fiber HT poly staple
7. 200 den Keviar (TM Dupont) Lord Corp. HT poly staple 134 filament
Dupont 964, 23.8gpd, 3.0% Chemlok 855 elongation
Less than 1.0% shrinkage @
177C w/producer's twist This equates to a 8/4 ply commonly used in hose braiding.
800 den core 2 % 1819 den cover 4/2.52
30% 68%
Total denier 2657, single end tensile approx. 68 lbs.
These matrix yams may be used by themselves as a single strand or they may be plied in multiple strands with a sufficient amount of ply twist to maximize strength and complement the end use. Adhesive material examples, but not limited to:
Isocyanate
Rubber latex
Butadiene rabber latex
Vinylpyridene Styrene butadiene rubber, terpolymer rabber latex
SBR copolymer rabber latex
Chloroprene rabber latex
Acrylonitrile butadiene copolymer rubber latex
RFL Resorcinol Formaldehyde Latex Hot melt adhesives
PVC Polyvinyl chloride
Urethanes
Various glue products, natural and synthetic
Waxes
Adhesives may be applied as a solid, liquid, or foam. Typical Applications for these matrix yarns include:
Broad or Narrow belting
Narrow fabrics Solid or hollow braids
Rubber or plastic hoses
Fire hose
Nonwovens
Needlepunch fabrics Packings, gaskets, seals
Friction products
Gloves
Rope
Specialty Threads Wire or cable reinforcement, insulation Reinforcement fabrics, including rabber calendered fabrics Medical casting material Impact resistant fabrics Non-electric panels
Tires - original manufacture
Tires - recapped, retreaded
Other woven, knitted, needlepunched, malimo, maliwat, malipole, triaxial woven, braided, or spiraled fabric constructions According to one preferred embodiment of the invention shown in Figure A, the core bundle is formed of a multifilament strand 70. A chemical and/or thermoplastic treatment or binder 75 is applied to the strand 70 which is conducive to plastic or rabber chemical adhesion and to the staple cover to be added. A staple cover of drafted staple fibers 80 is applied over the core strand 70 which also promote mechanical adhesion in plastics and/or rubber products and provide impact and abrasion protection to the core strand 70. This cover may be applied in varying percentages based on the weight of the whole resultant yarn and taking into account the desired effect in the end product to be made from this yarn. The multifilament yarn or wire may have twist, be producer's twist, or have no twist at all. If needed, This core material may be wire, fiberglass, aramid, polyethylene, polyester, rayon, polypropylene, polyolefin, nylon , or any other commercial fibers, alone or in combination.
The staple cover 80 may be 1% to 99% of the total weight and may be composed of vegetable, organic, regenerated, new or virgin, and/or synthetic material or any combination thereof.
The binder may be thermoplastic or low melt fibers blended into the staple cover or fed parallel in sliver form.
Fabrics made from the matrix yarn may be knitted, flat woven, triaxially woven, braided, spiralled, or made by other means. These products exhibit high strength, excellent abrasion resistance, and special features to create chemical and/or mechanical adhesion to plastics and rabber goods. A matrix composite yam is described above. Various details of the invention may be changed without departing from its scope. Furthermore, the foregoing description of the preferred embodiment of the invention and the best mode for practicing the invention are provided for the purpose of illustration only and not for the purpose of limitation~the invention being defined by the claims.

Claims

I claim: 1. A composite matrix yam, comprising: (a) a cover yarn formed of a plurality of twisted fibers; (b) a core strand positioned within the cover yam and around which the fibers of the cover yarn are twisted to provide mechanical adhesion between the cover yarn and the core strand; and (c) an adhesive binder carried on the core strand for providing enhanced adhesion between the core strand and the cover yam.
2. A composite matrix yam according to claim 1, wherein the core strand is chosen from the group consisting of wire, spun yam, monofilament yam and multifilament yam.
3. A composite matrix yam according to claim 1 , wherein the cover yarn comprises staple fibers chosen from the group consisting of natural fibers and synthetic fibers.
4. A composite matrix yam according to claim 1, wherein the adhesive binder is chosen from the group consisting of isocyanate, natural rabber latex, butadiene rubber latex, vinylpyridene, styrene butadiene rabber, terpolymer rabber latex, sbr copolymer rubber latex, chloroprene rabber latex, acrylonitrile butadiene copolymer rabber latex, rfl resorcinol formaldehyde latex, hot melt adhesive, pvc polyvinyl chloride, urethane, natural glue, synthetic glue, natural wax and synthetic waxes.
5. A method of constructing a composite matrix yam, comprising the steps of: (a) forming a sliver of staple fibers; (b) drafting the sliver into a yam; (c) introducing into the drafted sliver a core strand to form a composite yam, said core strand having thereon an adhesive binder for providing enlianced adhesion between the core strand and the cover yam; and (d) twisting the composite yam to impart mechanical adhesion thereto.
6. A method according to claim 5, wherein the step of drafting the sliver comprises the step of drafting the sliver on an open-end spinning machine to form the sliver into a yam.
7. A method according to claim 5, and including the step of plying the composite yam.
8. A method according to claim 6, wherein the step of introducing the core strand into the drafted sliver comprises introducing a strand chosen from the group consisting of wire, fiberglass, aramid, polyethylene, polyester, rayon, polypropylene, polyolefin and nylon.
9. A method according to claim 6, wherein the adhesive binder is chosen from the group consisting of isocyanate, natural rabber latex, butadiene rabber latex, vinylpyridene, styrene butadiene rabber, terpolymer rabber latex, sbr copolymer rabber latex, chloroprene rubber latex, acrylonitrile butadiene copolymer rabber latex, rfl resorcinol formaldehyde latex, hot melt adhesive, pvc polyvinyl chloride, urethane, natural glue, synthetic glue, natural wax and synthetic wax.
PCT/US2001/008722 2000-03-20 2001-03-20 Composite yarn WO2001071073A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/239,378 US20030205041A1 (en) 2001-03-20 2001-03-20 Composite yarn
AU2001247561A AU2001247561A1 (en) 2000-03-20 2001-03-20 Composite yarn

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US19067400P 2000-03-20 2000-03-20
US60/190,674 2000-03-20

Publications (1)

Publication Number Publication Date
WO2001071073A1 true WO2001071073A1 (en) 2001-09-27

Family

ID=22702312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/008722 WO2001071073A1 (en) 2000-03-20 2001-03-20 Composite yarn

Country Status (2)

Country Link
AU (1) AU2001247561A1 (en)
WO (1) WO2001071073A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2325853A1 (en) * 2008-03-19 2009-09-21 Hispanocatalana De Textiles S.L Composite yarn with an untwisted cotton sheath
CN104088054A (en) * 2014-07-04 2014-10-08 浙江理工大学 Preparation method for high-performance composite line for polypropylene-based composite material
EP3102723A4 (en) * 2014-01-28 2018-04-04 Inman, Mills Sheath and core yarn for thermoplastic composite

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3857229A (en) * 1967-08-29 1974-12-31 Owens Corning Fiberglass Corp Reinforcement for tires and method of making same
US3978648A (en) * 1973-04-10 1976-09-07 Toray Industries, Inc. Helically wrapped yarn
US4024895A (en) * 1976-03-24 1977-05-24 E. I. Du Pont De Nemours And Company Product reinforcing fabric and two-component weft yarn useful therein
US4095403A (en) * 1976-04-20 1978-06-20 Institut Textile De France Method of making fancy yarn and fancy yarn
US5613246A (en) * 1995-06-22 1997-03-25 Alexander; Billy Cap with a removable and reversible visor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3857229A (en) * 1967-08-29 1974-12-31 Owens Corning Fiberglass Corp Reinforcement for tires and method of making same
US3978648A (en) * 1973-04-10 1976-09-07 Toray Industries, Inc. Helically wrapped yarn
US4024895A (en) * 1976-03-24 1977-05-24 E. I. Du Pont De Nemours And Company Product reinforcing fabric and two-component weft yarn useful therein
US4095403A (en) * 1976-04-20 1978-06-20 Institut Textile De France Method of making fancy yarn and fancy yarn
US5613246A (en) * 1995-06-22 1997-03-25 Alexander; Billy Cap with a removable and reversible visor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2325853A1 (en) * 2008-03-19 2009-09-21 Hispanocatalana De Textiles S.L Composite yarn with an untwisted cotton sheath
WO2009115623A1 (en) * 2008-03-19 2009-09-24 Hispanocatalana De Textiles, S.L. Composite yarn with an untwisted cotton sheath
EP3102723A4 (en) * 2014-01-28 2018-04-04 Inman, Mills Sheath and core yarn for thermoplastic composite
US10053801B2 (en) 2014-01-28 2018-08-21 Inman Mills Sheath and core yarn for thermoplastic composite
US10815590B2 (en) 2014-01-28 2020-10-27 Inman Mills Sheath and core yarn for thermoplastic composite
CN104088054A (en) * 2014-07-04 2014-10-08 浙江理工大学 Preparation method for high-performance composite line for polypropylene-based composite material

Also Published As

Publication number Publication date
AU2001247561A1 (en) 2001-10-03

Similar Documents

Publication Publication Date Title
US20030205041A1 (en) Composite yarn
US3367095A (en) Process and apparatus for making wrapped yarns
US3365872A (en) Yarn wrapped with surface fibers locked in place by core elements
US5568719A (en) Composite yarn including a staple fiber covering a filament yarn component and confining the filament yarn component to a second thickness that is less than a first thickness of the filament in a relaxed state and a process for producing the same
KR200490226Y1 (en) Recycled fabric and knitted upper-shoe fabric
CN113994037B (en) Composite yarn, fabric comprising composite yarn, method for producing composite yarn and device for producing composite yarn
US4028874A (en) Roving and process for its manufacture
EP3599304A1 (en) Yarn comprising a core and a sheath of fibers
EP2816146B1 (en) Elastic composite twist yarn and process for producing same, and pile textile product obtained using said elastic composite twist yarn
Alagirusamy et al. Conversion of fibre to yarn: an overview
KR100876078B1 (en) Method and apparatus for manufacturing single-sided spun yarn in ring spinning machine
US6532724B2 (en) Cut-resistant yarn and method of manufacture
US7905081B2 (en) Sewing thread
Basu Progress in air-jet spinning
US3303640A (en) Method of producing composite elastic yarn
US7866137B2 (en) Recyclable chenille yarn
US4489542A (en) Spun like fiber yarn produced by interlacing
WO2001071073A1 (en) Composite yarn
JP4916781B2 (en) Method for producing double layer yarn
US3393505A (en) Composite elastic yarn
CN111254528B (en) Air spinning method for producing large yarns with count lower than Ne 20 and related yarns
CN114016177A (en) Production process of core-spun yarn with non-uniform elasticity
US4628682A (en) Spun fibre yarn and method for its manufacture
CN212505231U (en) Folded yarn production device capable of accurately controlling strand by one-step method
JPS58109648A (en) Composite yarn and method and apparatus for producing same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10239378

Country of ref document: US

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP