WO2001067020A1 - Heat exchanger, air conditioner, outdoor device, and indoor device - Google Patents

Heat exchanger, air conditioner, outdoor device, and indoor device Download PDF

Info

Publication number
WO2001067020A1
WO2001067020A1 PCT/JP2000/001331 JP0001331W WO0167020A1 WO 2001067020 A1 WO2001067020 A1 WO 2001067020A1 JP 0001331 W JP0001331 W JP 0001331W WO 0167020 A1 WO0167020 A1 WO 0167020A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
heat transfer
heat
transfer tubes
zigzag
Prior art date
Application number
PCT/JP2000/001331
Other languages
French (fr)
Japanese (ja)
Inventor
Atsushi Kubota
Naoki Shikazono
Kazuya Matsuo
Kensaku Oguni
Takashi Sano
Kazuo Okuyama
Naoji Anjiki
Original Assignee
Hitachi, Ltd.
Hitachi Air Conditioning Systems Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd., Hitachi Air Conditioning Systems Co., Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP2000/001331 priority Critical patent/WO2001067020A1/en
Publication of WO2001067020A1 publication Critical patent/WO2001067020A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/16Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D2001/0253Particular components
    • F28D2001/026Cores
    • F28D2001/0273Cores having special shape, e.g. curved, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/02Streamline-shaped elements

Definitions

  • Heat exchangers Air conditioners, outdoor units and indoor units
  • the present invention relates to a heat exchanger used for a refrigeration system or an air conditioner, etc., and particularly has a low airflow resistance while being connected and connected. It has a large heat exchange capacity and is suitable for air conditioners and heat exchangers that save energy and refrigerant.
  • the heat transfer tube is configured to surround a thin wire in order to achieve a high heat transfer coefficient and secure a heat transfer surface. For example, this is described in JP-A-8-320192.
  • the ripening surface is increased by one.
  • the cross-sectional shape of the thin wire is circular, so that the air contraction, the speed and the bending force are reduced. Therefore, it was hard to say that the repetition of the drift was sufficiently considered, and it was necessary to further reduce the ventilation resistance.
  • An object of the present invention is to solve the above-mentioned problems of the prior art, suppress the increase in ventilation resistance, and increase the heat exchange capacity and the ventilation resistance without impairing the compactness of the heat exchanger. It is to be.
  • Another object of the present invention is to reduce the power consumption of the air conditioner by increasing the amount of heat exchanged by the heat exchanger and by further adapting the relationship with the blower. Even with a new refrigerant that improves the cycle C 0 ⁇ and does not destroy the ozone layer, the target standard value of the so-called “energy saving method” can be sufficiently achieved. To get the heat exchanger and air conditioner to achieve It is in
  • an object of the present invention is to reduce the use of refrigerants from the viewpoint of global environmental protection. Furthermore, the present invention aims to reduce the cost by simplifying the structure, facilitating the production, and reducing the cost.
  • the present invention provides a heat exchanger having heat transfer tubes arranged in a plurality of rows, wherein the outer diameter of the heat transfer tubes is 1 to 5 mm, Each row of the multi-row fermentation tube is arranged in a zigzag pattern, and each row corresponds to each straight line of the zigzag broken line.
  • a number of ripening tubes are provided.
  • the heat transfer tubes are reduced in diameter to 1 to 5 mm, and each line is provided with at least twice as many heat transfer tubes at each straight line of the zigzag broken line.
  • the heat transfer area around the front surface of the heat exchanger can be increased, and the air flow can be smoothed, decelerated, sharply bent, and generate a drift. Therefore, delamination loss and the like due to this are suppressed.
  • the number of heat transfer tubes in each straight section is less than five times the number of rows, the size and height of the flow direction can also be reduced. it can .
  • the heat exchange capacity without impairing the heat exchange performance of the heat exchanger Z The force to increase the ventilation resistance? It has the advantage of improving C0P, reducing the amount of refrigerant used, and using non-azeotropic refrigerants. 'it can .
  • the present invention has a predetermined width in a heat exchanger having heat transfer tubes arranged in a plurality of rows and a flat fin in contact with the heat transfer tubes.
  • a flat fin shaped like a zigzag and a flat fin A heat transfer tube is provided at the bending force 5 'portion of the fin, and the arrangement interval of the heat transfer tubes is set to be not less than twice and not more than 5 times the width of the flat fin.
  • the heat transfer tube has a zigzag shape at the bent portion of the flat fin. Since they are arranged and the space between them is at least twice the width of the flat fins, the air flow can be made smooth and the ventilation resistance can be reduced.
  • the angle formed by the zigzag line segments is not less than 30 ° and not more than 100 °.
  • the present invention relates to an air conditioner having an indoor unit provided with an indoor heat exchanger, an expansion valve, and an indoor blower, and a compressor, an outdoor heat exchanger, and an outdoor unit provided with an outdoor blower.
  • Either the indoor heat exchanger or the outdoor heat exchanger is composed of a plurality of rows, each of which is arranged in a zigzag pattern, and the outer diameter dimension force is increased. 5 'e Bei a heat transfer tube which is a 1 ⁇ 5 mm, the working fluid of the heat transfer tube is Ru Oh than was also a non-azeotropic mixed refrigerant.
  • the present invention relates to an air conditioner having a heat exchanger, an expansion valve, a blower, and a compressor. 1 to 5 mm, and the interval between them is 2 to 5 times the outer diameter, and the mature heat exchanger with the heat transfer tubes arranged in a zigzag shape and the cylindrical outer shape It is equipped with a once-through type blower with wings on the outer periphery.
  • the efficiency of the air conditioner can be increased by reducing the blowing power without reducing the efficiency even with the use of a small and light once-through type blower.
  • the present invention relates to an outdoor unit having a compressor, an outdoor heat exchanger, and an outdoor blower in an enclosure, having an outer diameter dimensional force of 1 to 5 mm, and viewing the enclosure from above.
  • the present invention provides an indoor unit having a motor, a centrifugal blower, and a heat exchanger outlet in the body.
  • the distance between the outer diameter and the outer diameter of the heat exchanger is more than twice the outer diameter and less than 5 mm, and the heat exchanger has a fermentation tube arranged in a zigzag shape. It is provided with an outlet that is shaped to conform to the shape of the wing.
  • the outlet is shaped to follow the zigzag, so that the cross section of the air path is enlarged and the flow is reduced and the loss is reduced by reducing the flow at the outlet. it can .
  • the present invention provides a heat exchanger provided with a heat transfer tube, in which a plurality of heat transfer tubes having a flow path cross section having a diameter of 1 to 5 mm are combined and formed in a zigzag shape. It is equipped with a flat tube arranged at the center.
  • the heat transfer area can be increased and the ventilation resistance can be reduced, and the shape of the heat exchanger can be reduced. You can do more and more things.
  • FIG. 1 is a horizontal sectional view of a heat exchanger according to one embodiment of the present invention
  • FIG. 2 is a perspective view of the same
  • FIG. 3 is a heat exchanger according to another embodiment of the present invention.
  • FIG. 4 is a horizontal sectional view of a heat exchanger according to still another embodiment of the present invention
  • FIG. 5 is a horizontal sectional view of still another embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a flat tube according to still another embodiment of the present invention
  • FIG. 6 is a cross-sectional view of a flat tube according to still another embodiment of the present invention.
  • FIG. 8 is a horizontal sectional view of the heat exchanger according to the embodiment
  • FIG. 8 is a horizontal sectional view of the heat exchanger according to the embodiment
  • FIG. 9 is a horizontal sectional view of the heat exchanger according to the embodiment.
  • FIG. 9 is a perspective view of a heat exchanger according to still another embodiment.
  • FIG. 10 is a perspective view of the heat exchanger according to the embodiment.
  • FIG. 11 is a cross-sectional view of a heat transfer tube according to another embodiment.
  • FIG. 11 is a cross-sectional view of a heat transfer tube according to another embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of still another embodiment of the present invention.
  • 13 is a horizontal cross-sectional view of a heat exchanger according to another embodiment of the present invention.
  • FIG. 14 is a cross-sectional heat exchange amount zm wind of the present invention.
  • FIG. 15 shows a configuration diagram of an air conditioner according to still another embodiment of the present invention
  • FIG. 16 shows a configuration diagram of an air conditioner according to still another embodiment of the present invention
  • FIG. 17 is a horizontal sectional view of an outdoor unit according to still another embodiment of the present invention.
  • FIG. 18 is a horizontal sectional view of another outdoor unit according to still another embodiment of the present invention.
  • Fig. 19 is a D-D sectional view of an indoor unit according to still another embodiment of the present invention
  • Fig. 20 is a sectional view of another embodiment of the present invention.
  • FIG. 21 is a horizontal sectional view of an indoor unit according to another embodiment of the present invention.
  • a heat exchanger is composed of a header into which the working fluid flows in and a header outflowing from it, and a number of heat transfer tubes that communicate the two.
  • the working fluid is formed inside the heat transfer tubes.
  • the air flows through the inner flow path, and the air flows outside the ripening tube.
  • the heat transfer tubes are arranged in a plurality of rows at a certain interval Pt larger than the tube outer diameter do, and the heat transfer tubes are arranged so that the working fluid and the air flow are perpendicular to each other.
  • the maturation exchanger is installed in the air duct formed by the duct and the air conditioner wall, and the air is driven by a blower and the like, and heat is exchanged by the heat exchanger through the air duct. After that, it is discharged downstream of the heat exchanger.
  • the spacing Pt of the heat transfer tubes should be reduced or the number of heat transfer tube rows should be increased. It is necessary to increase the number of heat transfer tubes.
  • the air contracts and increases in speed as the distribution interval Pt decreases.
  • Pt / do ⁇ 2 the maximum wind speed in the heat exchanger is more than twice the wind speed in the wind path.
  • sharp bending and drifting occur repeatedly. Therefore, both the friction loss and the separation loss are increased, and the ventilation resistance is greatly increased.
  • the number of rows of emulsion tubes is reduced to increase the heat exchange heat quantity, the depth of the heat exchanger in the direction of air flow becomes large.
  • FIG. 2 is a perspective view of a heat exchanger 1A according to a first embodiment of the present invention
  • FIG. 1 is a cross-sectional view of the heat exchanger 1A taken along a horizontal direction in FIG. It is installed in the air passage 10 formed by the housing wall 9 of the air conditioner.
  • Heat exchanger 1A is composed of a number of headers 3A and a number of heat exchangers arranged in four rows.
  • the refrigerant which is a working fluid, flows through the header 31 A, the internal flow path 201 of the heat transfer tube 2 and the header 32 A, and the wall surface of the heat transfer tube 2. Heat is exchanged with the air through the air.
  • the heat transfer tube 2 is formed by drawing out a metal member such as copper or aluminum.
  • the header 3A is made of the same material as the heat transfer tube 2 and is made of a material. It has been molded.
  • the heat transfer tube 2 and the header 3A are manufactured using a resin-made mold that can be soldered or melted by heat.
  • the material of the heat transfer tube 2 and the header 3A is Alternatively, a resin having a lower melting point may be used according to the melting temperature of the mold.
  • the heat transfer tubes 2 are arranged so that the flow direction of the working fluid and the air flow direction are orthogonal to each other, and some of the heat transfer tubes 2 in each row are arranged along the zigzag broken line 11. Will be placed.
  • the polygonal line 11 is composed of a plurality of line segments (straight lines) 1 1 2 and the vertices 1 1 1 1, and the bend angle, which is the angle between the straight lines 1 1 2, is an acute angle of 30 ° to 100 °. It is.
  • a straight line 112 of each row is provided with, for example, eight ripening tubes 2 having a number of at least twice and no more than five times the number of rows.
  • the heat transfer tubes 2 are arranged so as not to be along the polygonal line 11 near the vertex 11 1, but to have a bending force 5 ′.
  • the header 3 A has a wavy shape according to the arrangement of the heat transfer tubes 2.
  • the heat transfer tubes 2 in each row are arranged in a broken line, the number of heat transfer tubes per row can be increased. Therefore, if the number of rows is the same and the cross-sectional area of the air path is the same, the number of heat transfer tubes 2, that is, the heat transfer area can be increased.
  • the heat exchange capacity is improved, and the heat transfer area and the heat exchange capacity are increased particularly when the bend angle ⁇ is made an acute angle.
  • the size L of the heat exchanger 1A in the air flow direction is such that the heat transfer tube 2 is arranged along the zigzag polygonal line 11 but is bent at the vertex 1 1 1 of the polygonal line 11 and this is Nozomi or teeth rather that be placed Ni Let 's Ru force s, to Re its Thus, the increase in L is suppressed. Therefore, the heat exchanger 1A can increase the amount of heat exchanged without increasing in size as compared with the conventional one.
  • the front area is defined as the area where the air starts to flow, and the front area of the heat exchanger 1A is larger than the cross section of the air path in the air path 10.
  • the heat transfer area and the heat exchange capacity can be increased.
  • the zigzag arrangement of the heat transfer tubes 2 and the number corresponding to each straight line of the zigzag broken line in each row are twice or more and 5 times or less the number of rows, for example.
  • the air smoothly turns and decelerates at a scale scale of do X rows larger than the outer diameter do of the heat transfer tubes. .
  • sharp bends and separation loss due to drift are suppressed, and the ventilation resistance is further reduced.
  • the heat exchanger 1A can significantly improve the heat exchange capacity Z without significantly increasing the depth of the air flow direction in the same cross-sectional area of the air passage. it can .
  • FIG. 3 shows a horizontal cross section of a heat exchanger 1B according to a second embodiment of the present invention, and the heat exchanger 1B is obtained by bending the heat transfer tube 2 itself in a zigzag manner. It is By bending the heat transfer tube 2, the heat transfer area can be increased for the same cross-sectional area of the air passage and the same number of heat transfer tubes, and the front surface area is also increased. The wind speed in exchanger 1B is further reduced. It is. Therefore, the ventilation heat resistance of the exchanged heat can be further improved.
  • Fig. 4 shows a horizontal cross section of the ripening exchanger 1C according to the third embodiment. The number of rows of the heat exchanger 1C is 2, and a large number of heat exchangers 1C are arranged vertically. It is equipped with a flat plate fin 13. Refrigerant distributors may be connected to both ends of the ripening tube 2 instead of the header 3A. An air gap 8 is provided between the front and rear rows of the heat exchanger 1C.
  • the flat plate fin 13 is formed by pressing an aluminum member, and the heat transfer 2 and the flat plate fin 13 expand the heat transfer tube 2, or may be used. They are joined together.
  • the front 13 1 and the rear 13 2 of the plate fin 13 are parallel, and if the width W is the shortest distance between the two, the spacing Pt of the heat transfer tubes is 2 More than twice and less than 5 times, for example, Pt / W is set to 2.
  • the leading edge 13 1 and the trailing edge 13 2 are parallel to the polygonal line 11.
  • the front 1 3 1 and the back 1 3 2 have a zigzag shape in the vicinity of the vertex 1 1 1, not in line with the polygonal line 1 1, but in a zigzag shape.
  • the flat plate fin 13 has a shape in which a tip is slightly cut off at a bent portion from a zigzag-shaped outer shape.
  • the plate fins 13 also have a zigzag shape, so that the air flow can be smooth, the ventilation resistance can be reduced, and the plate fins can be further reduced.
  • Pt / do is large. Wear .
  • the number of heat transfer tubes 2 can be reduced, the number of joints between the heat transfer tubes 2 and the header 3A is also reduced, thereby reducing the processing cost. be able to .
  • the number of columns of the heat transfer tube 2 than that have at least name rather, can in be reduced can the depth of the air flow Re direction, good Ri co-down Roh, "c is found that can in this and force ⁇ you to click door
  • the shape of the flat fins 13 is more than twice the width of the flat fins and the space between the heat transfer tubes 2 is Pt / W ⁇ 2, the air is larger than W. Turning and decelerating smoothly at a large Pt dimension scale, the wind speed distribution on the flat fins 13 is small, and the maximum wind speed is small.
  • the friction loss generated on the plate fins 13 can be reduced, and the number of the heat transfer tubes 2 in the heat exchanger 1C is small, so that the heat transfer tubes 2
  • the friction loss in the flat plate 13 is stronger than the separation loss in the above, the reduction in the friction loss described above leads to a reduction in the ventilation resistance as it is.
  • Fig. 5 shows the horizontal cross section of the heat exchanger 1D of the fourth embodiment, and the heat exchanger 1D has a slit 14 attached to the flat fin 13 of the heat exchanger 1C. It has been set up. A plurality of slits 14 are provided between the mature pipes of the flat fins 13 and are formed in the same temple as the flat fins 13 by pressing.
  • the slit 14 is cut off at its leading edge 141 and at its trailing edge 142 from the flat plate fin 13, and the side portion 1 is continuous with the flat plate fin 13. 4 3 is cut and raised so as to rise.
  • the leading edge 14 1 and the trailing edge 14 2 are parallel to the polygonal line 11.
  • the slit 14 may be cut and raised, and the slit may be cut into a runo shape.
  • FIG. 7 shows a horizontal cross section of a heat exchanger 1E which is a fifth embodiment of the present invention capable of improving ventilation resistance
  • FIG. 7 shows a horizontal cross section of a flat tube 2A of the heat exchanger 1E.
  • Fig. 6 shows the results.
  • the heat exchanger 1E uses a flat tube 2A in which a heat transfer tube is combined in place of the heat transfer tube 2 in the first embodiment.
  • the flat tube 2A is made of flat fins between the flat tubes 2A like a colgate fin and tube type heat exchanger for power aircon. It is also good to attach them.
  • the flat tube 2A is formed by extruding an aluminum member, and the flat tube 2A and the header 3A are brazed and joined.
  • the flat “If 2 A” is composed of a major axis 202 and a minor axis 203, and has 10 internal channels 201.
  • the ratio of the length of the major axis 202 to the minor axis 203 is preferably 3 or more, and the cross-sectional shape of the flat tube 2A or the inner channel 201 is elliptical. Power 5 'I want it.
  • the flat tube 2A is arranged along the zigzag polygonal line 11, and the polygonal line 11 is composed of a plurality of line segments 1 1 2 and a vertex 11 1.
  • the angle between the zigzag line segments that is, the bending angle, which is the angle between the straight lines 112, should be as acute as 30 ° or more and 100 ° or less. No.
  • the direction in which the flat tube 2A is arranged is such that the angle between the major axis 202 and the polygonal line 11 is the right angle, and each line segment 112 has 12
  • Two flat tubes 2A are arranged.
  • the outer surface fineness of the flat tube 2A is about 10 times that of the mature tube 2.
  • the heat exchanger 1E has a smaller number of flat tubes 2A than the heat exchanger tubes of the heat exchanger 1A described above, and can obtain the same heat exchange capacity as the mature exchanger 1A. I can do it.
  • the number of flat tubes 2A is small, the number of flat pipes 2A and the header 3A are significantly reduced in the number of machining steps and the processing cost is reduced. Lower.
  • the wall surface of the flat tube 2A can give a sufficient turning force to the air flow like K in the plan.
  • the air flow is deflected and decelerated without causing separation. Accordingly, the turning and deceleration of the air flow are promoted, and the short axis is short, so that the air flow is unlikely to contract and increase in speed, and the friction loss is suppressed.
  • the heat exchanger 1E can reduce both the friction loss and the separation loss, and can further increase the exchange heat Z and the ventilation resistance.
  • the heat exchanger 1E can surely decelerate the air flow, even if the heat exchanger 1E is used in a place where air turbulence is significant such as downstream of the blower, a stable effect can be obtained. but I Ri processing co-be sampled to a reduction of the filter jar with the point where the c of al flat tube 2 a and f header 3 a in that you to be ⁇ You can at a reduced.
  • FIG. 8 shows a horizontal cross section of a heat exchanger 1F according to the sixth embodiment.
  • the heat exchanger 1F changes the arrangement of the flat tubes 2A with respect to the heat exchanger 1E, and the flat tubes 2A are arranged along the polygonal line 11 near the vertex 11 1. What is it? The angle between the polygonal line 11 and the major axis 20 2 is smaller at the vertex 11 1, and the angle between the vertex 11 1 At the vertex 1 1 1 1 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ . ⁇ .
  • the air flowing near the apex 1 1 1 1 can be effectively exchanged heat because it cannot be bent sharply in that direction. Therefore, the heat exchange capacity increases, and the heat exchange capacity Z ventilation resistance can be further increased.
  • the conventional example is a force—a colgate fin for an air conditioner. It is also possible to form the heat exchanger 1F simply by bending the tube type heat exchanger. Since the existing equipment can be applied to the heat exchanger 1F, the power 5 ′ can be obtained by suppressing the power ⁇ in the heat exchanger 1F.
  • FIG. 9 shows a perspective view of a heat exchanger 1G according to another embodiment of the present invention, and a number of projections 12 are provided on the outer surface in place of the heat exchanger 1E flat tube 2 ⁇ .
  • the flat tube 2 ⁇ ⁇ which is linearly arranged using the flat tube 2 ⁇ is formed by pressing and molding the projection 12 and the internal flow path 201, and bending the member. It is bent and joined at the joint 204.
  • two flat tubes may be integrally formed by a ⁇ type.
  • the protuberances 12 are arranged in a sequence of numbers, each row being formed along a zigzag broken line 11.
  • the heat exchanger 1G in which the gap 1 21 is provided has a flat tube 2 ⁇ arranged linearly, so that the depth in the air flow direction is reduced. it can .
  • the heat transfer area is enlarged by the projections 12, and the arrangement thereof can reduce the ventilation resistance in the same manner as described above.
  • the flat tube 2 2 is installed so that its longitudinal direction and the direction of gravity are parallel, when used as an evaporator, the flat tube 2 ⁇ will condense on the surface of the flat tube 2 ⁇ . The water vapor adheres, but the adhered water is drained through the gap 122 without stopping on the surface of the flat tube 2 ⁇ .
  • the heat exchanger 1G is It can also suppress the additional increase in draft resistance due to the airflow.
  • the exchange heat Z and the ventilation resistance can be further improved.
  • FIG. 13 A horizontal cross section of a heat exchanger 1H according to still another embodiment of the present invention is shown in FIG. 13 and is provided with a flat fin 206 along the longitudinal direction thereof. Re.
  • the thickness of the fins 206 may be varied to form a 3-ft shape as shown in FIG. 10 or may be constant as shown in FIG. It is good.
  • a plurality of fins 206 may be provided as shown in FIG.
  • the ripening tube 2C is extruded and formed with an aluminum member, and each row is arranged along a zigzag broken line 11.
  • the polygonal line 11 is composed of a plurality of line segments 1 1 2 and vertices 1 1 1 1, and the bend angle formed by the straight lines 1 1 2 is an acute angle.
  • the heat transfer tubes 2C in the first and second rows are not arranged along the polygonal line 11 near the deposit point 111, and the angle between the polygonal line 11 and the axis of symmetry 205 is However, it is the smallest at the vicinity of the vertex 1 1 1, and increases in power as it moves away from the vertex 1 1 1, and a point sufficiently far from the vertex 1 1 1, that is, the line segment 1 Near the midpoint of 1 2, the force should be n? I want it.
  • the heat transfer area of the heat exchanger 1H is increased by the fin 206, and the velocity boundary layer along the surface of the heat transfer tube 2C is controlled by the shape of the fin 206. And the separation loss is reduced. Also, depending on the direction and arrangement of the heat transfer tubes 2C, the air smoothly turns and decelerates. Thus, the ventilation resistance of the heat exchanger 1H is reduced. Further, the direction and arrangement of the heat transfer tubes 2C, the rear fins 206 are not located in the dead water area of the front heat transfer tubes 2C, and the rear fins are not located. The heat exchange performance can be increased by suppressing the deterioration of the heat transfer performance of the heat transfer tube 2C. Therefore, heat exchanger 1 H reduces both the friction loss and the separation loss, effectively uses the rear-side heat transfer tube 2C, and further increases the exchange heat flow resistance. Wear .
  • FIG. 14 shows the results of an experiment and analysis of the heat transfer performance of the heat exchanger of the above embodiment.
  • the heat exchanger 1D the bending angle of the polygonal line 11 is obtained. It shows the ventilation resistance against the heat exchange.
  • the air condition upstream of the heat exchanger is wind speed 1 m / s and temperature 27 V, which is the range of use of the air conditioner.
  • 180 ° corresponds to the same type of conventional heat sink type heat exchanger.
  • the heat exchange resistance and the ventilation resistance increase as the value decreases, and decrease rapidly if the force is too small.
  • is too small, the heat transfer surface increases and the wind speed decreases, resulting in an increase in the exchange heat / ventilation resistance, leading to a sharp turn of the air flow, and the occurrence of peeling.
  • the additional ventilation resistance is accelerated, and the amount of exchanged heat Z The ventilation resistance is reduced.
  • the air conditioner is provided with an indoor unit 41 and an outdoor unit 42, and a refrigerant pipe 7 for connecting the both.
  • the indoor unit 41 has an expansion valve 23 for expanding the refrigerant, a heat exchanger 1 and a blower 6 for driving the air
  • the outdoor unit 42 has a compressor 5 and a heat exchanger for driving the refrigerant. It has 1 and blower 6.
  • the refrigerant in a gaseous state is driven by the compressor 5, and condensed by heat exchange with air in the heat exchanger 1 of the outdoor unit 42.
  • the air is expanded by the expansion valve 23 of the indoor unit 41, evaporated by heat exchange with the air in the heat exchanger 1 of the indoor unit 41, and returned to the compressor 5 in a gaseous state again.
  • the refrigerant circulation paths are the compressor 5, the heat exchanger 1 of the indoor unit 41, the expansion valve 23, the heat exchanger 1 of the outdoor unit 42, and the compressor 5. .
  • the heat exchanger of each embodiment As the heat exchanger 1, an increase in the amount of heat exchanged and a reduction in ventilation resistance can be obtained. Therefore, the driving force of the compressor 5 can be reduced by using the increase in the amount of heat exchanged, and the driving force of the blower 6 can be reduced by using the reduction of the ventilation resistance. Therefore, according to this air conditioner, energy saving can be realized by reducing the power of the compressor and the blower.
  • the horizontal cross section of the air conditioner outdoor unit 42 A is shown in Fig. 16 and the outdoor unit 42 A has a heat exchanger 1 H and two flow-throughs inside the housing 15.
  • a blower is provided. Air flows in from the heat exchanger 1H, passes through the air passage 10 formed by the housing 15 and the partition plate 16, and is given dynamic pressure by the once-through blower 601. , Flowing out of bell mouse 17 and cone 18.
  • the once-through blower 601 has a cylindrical outer shape and many wings on the outermost periphery. Generally, the efficiency of a once-through blower is low at low pressure and high wind speed. It is more efficient to operate it. However, when operating at high pressure with large ventilation resistance, the efficiency becomes extremely poor.
  • the outdoor unit 42A has a compact, compact outer shape, and can achieve energy-saving by the high efficiency of the blower.
  • FIG. 17 shows a horizontal cross section of an air conditioner outdoor unit 42B according to another embodiment
  • FIG. 18 shows a side cross section thereof.
  • the outdoor unit 42B is provided with a motor 18 and a flow fan 602, a heat exchanger 1C, and a partition plate 16 forming an air passage 10 inside the body 15. .
  • the air passes through the heat exchanger 1C, is given a dynamic pressure by the axial blower 602, and flows out from the bell mouse 17 force.
  • the heat transfer tube 2 of the ripening exchanger 1C is bent in the L-shape in accordance with the body 15 and has a straight portion 200 and a bent portion 206. In a part of the bent portion 206, the heat transfer tube 2 is linearly arranged as shown in a side sectional view (D-D cross section in FIG. 17) of FIG.
  • the flat plate fin 13 is provided only in the straight portion 207.
  • the outdoor unit 42B is installed so that the flat plate fin 13 and the installation surface 24 are perpendicular to each other.
  • the blower may be a once-through blower or a centrifugal blower instead of the axial blower 602.
  • the heat exchanger 1C can be formed in the L-shape only by bending. Since the heat exchanger 1C is L-shaped, the heat transfer area in the same housing can be increased, and the heat exchange amount increases. Added because only bending is required There is no need to process and join a proper ripening tube, and the cost can be reduced. Therefore, the outdoor unit 42B of the air conditioner of the present embodiment can improve the heat exchange capacity Z and the ventilation resistance by securing a low cost and a heat transfer surface ⁇ , thereby reducing the fan power and reducing the fan power. In addition to saving energy by reducing compressor power, Fig.
  • FIG. 21 shows the horizontal cross section of the air conditioner indoor unit 41A according to another embodiment, and Fig. 21 shows the side cross section.
  • Figure 20 shows it.
  • the indoor unit 41 A has a motor 18 and a centrifugal blower 60 3 inside the body 15, a heat exchanger 1 A of Example 1 downstream therefrom, and an outlet 19 downstream therefrom.
  • the water receiver 20 is located at the bottom of the heat exchanger 1A;
  • the air flowing from the suction port 21 provided in the panel 22 passes through the bell mouse 17, and is given dynamic pressure by the centrifugal blower 60 3, and After passing through an air passage 10 formed by 15 and a partition plate 16 and performing heat exchange in a heat exchanger 1A, the heat flows out from an outlet 19.
  • There are four heat exchangers 1 A each of which is connected by a refrigerant pipe 7.
  • outlets 19 are provided on four sides in the housing, and the cross section of the air passage of the outlet 19 is rectangular, and one side 1991 on the mature exchanger side is aligned with the header 3A. It has a zigzag shape.
  • the heat exchanger 1A Since the heat exchanger 1A has a small ventilation resistance, the power of the blower can be reduced. Furthermore, by forming the side 19 1 of the cross-sectional shape of the air outlet 19 into a zigzag shape, the diametral volume of the air flow is expanded, and the flow contraction at the air outlet 19 is reduced. The extension loss can be reduced. Therefore, the indoor unit 41A according to the present embodiment is further improved by the effect of reducing the ventilation resistance in the heat exchanger 1A and the effect of reducing the flow of the outlet 19 and the expansion loss. Blower power can be greatly reduced, contributing to energy savings.
  • the heat exchanger of this invention can suppress the increase of ventilation resistance, and can increase the exchange heat quantity Z ventilation resistance without impairing the connection and the cut-off property of a heat exchanger. 19

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A heat exchanger (1A) having heat transfer tubes (2) disposed in multiple rows, wherein an exchanging heat quantity/air ventilating resistance are increased by suppressing an increase in air ventilating resistance without impairing the compactness of the heat exchanger, and a power consumption of an air conditioner is reduced to increase a cycle COP by increasing the exchanging heat quantity of the heat exchanger and bringing a relation between the heat exchanger and a blower in a good condition, heat transfer tubes (2) disposed in multiple rows have an outside diameter of 1 to 5 mm, each row of the heat transfer tubes (2) disposed in multiple rows is arranged in a staggered pattern, and two or more and five or less times as many heat transfer tubes (2) as the number of the rows are disposed in each row at a portion corresponding to each straight line of staggered broken lines.

Description

明 細 害  Harm
熱交換器、 空気調和機、 室外機及 び室内機 技術分野  Heat exchangers, air conditioners, outdoor units and indoor units
本発明 は 、 冷凍 シ ス テ ム ま た は 空気調和機 な ど に 用 レゝ ら れ る 熱交換器 に 閲 し 、 特 に コ ン ノ、 ' ク ト であ り な が ら 通風抵抗が小 さ く 交換熱量が大 き く 、 省エ ネ 及 び省冷媒 を 図 っ た 空気調和機及 び熱交換器に好適であ る 。  The present invention relates to a heat exchanger used for a refrigeration system or an air conditioner, etc., and particularly has a low airflow resistance while being connected and connected. It has a large heat exchange capacity and is suitable for air conditioners and heat exchangers that save energy and refrigerant.
背景技術 Background art
一般 に 、 熱交換器の交換熱量 を 増大す る に は 、 伝熱管の κ 問隔 を 小 さ く す る か、 伝熱管の列数 を 增加 し て伝熱管の本数 を 増やす こ と が必要 と さ れ る 。 そ し て 、 高 い熱伝達率 を 達成す る と 共 に 、 伝熱面嵇 を 確保す る た め 、 伝熱管 に細線 を 取 り 巻 く よ う に構成す る こ と が知 ら れ 、 例 え ば特開平 8 — 3 2 0 1 9 2 号 公報 に 記載 さ れて レ、 る 。  Generally, in order to increase the heat exchange capacity of the heat exchanger, it is necessary to reduce the κ interval of the heat transfer tubes or increase the number of heat transfer tubes by increasing the number of heat transfer tube rows. It is done. In addition, it is known that the heat transfer tube is configured to surround a thin wire in order to achieve a high heat transfer coefficient and secure a heat transfer surface. For example, this is described in JP-A-8-320192.
上記従来技術の も の は 、 同 一の前面而 ίで あ れ ば伝熟面嵇 は 1¾加す る が、 細線の 断面形状が円形であ り 、 空気の縮流、 增速 と 曲 力? り 、 偏流の繰 り 返 し 等が充分考慮 さ れて い る と は 言 い難 く 、 よ り 通風抵抗 を 小 さ く す る 必要があ っ た。  In the case of the above prior art, if the same front surface is used, the ripening surface is increased by one. However, the cross-sectional shape of the thin wire is circular, so that the air contraction, the speed and the bending force are reduced. Therefore, it was hard to say that the repetition of the drift was sufficiently considered, and it was necessary to further reduce the ventilation resistance.
本発明 の 目 的 は 、 上記従来技術の課題 を 解決 し 通風抵抗の増 加 を 抑制 し て熱交換器の コ ン パ ク ト 性 を 損ね る こ と な く 交換熱 量 Ζ通風抵抗 を 増大す る こ と に あ る 。  SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, suppress the increase in ventilation resistance, and increase the heat exchange capacity and the ventilation resistance without impairing the compactness of the heat exchanger. It is to be.
ま た 、 本発明 の 目 的 は 、 熱交換器の交換熱量 を 増大 し 、 さ ら に 送風機 と の 関係 を 適合 し た も の と す る こ と に よ り 、 空気調和 機の 消費 電力 を 低減 さ せ、 サ イ ク ル C 0 Ρ を 向上 さ せ、 オ ゾ ン 層 を 破壊 し な い新冷媒であ っ て も 、 い わ ゆ る 「省エ ネ 法」 の 目 標基準値 を 充分 に 達成す る 熱交換器及 び空気調和機 を 得 る こ と に あ る Another object of the present invention is to reduce the power consumption of the air conditioner by increasing the amount of heat exchanged by the heat exchanger and by further adapting the relationship with the blower. Even with a new refrigerant that improves the cycle C 0 、 and does not destroy the ozone layer, the target standard value of the so-called “energy saving method” can be sufficiently achieved. To get the heat exchanger and air conditioner to achieve It is in
さ ら に 、 本発明 の 目 的 は 、 地球環境保全の 観点か ら 冷媒の使 用 そ の も の を 少 な く す る こ と に あ る 。 さ ら に 、 本発明 は構成 を 節単 に 、 製造 を 容易 に し て コ ス ト を 下 げる こ と に あ る 。  Furthermore, an object of the present invention is to reduce the use of refrigerants from the viewpoint of global environmental protection. Furthermore, the present invention aims to reduce the cost by simplifying the structure, facilitating the production, and reducing the cost.
な お 、 本発明 は 上記 目 的 の少 な く と も 一 つ を 達成す る こ と に あ る 。  It is to be noted that the present invention achieves at least one of the above objects.
発明の開示 Disclosure of the invention
上 記課題 を 解決す る た め 本発明 は 、 複数列 に配置 さ れ た伝熱 管 を 備 え た 熱交換器 に お い て 、 伝熱管の外径寸法 は 1 〜 5 m m であ り 、 複数列 の伝熟管の 各列 は ジ グザ グ状 に配置 さ れ、 各列 に は ジ グザ ク 状折れ線の 各直線に相 当 す る 部分に 列数の 2 倍以 上 5 倍以下 の数の伝熟管が設け ら れて レ、 る も の であ る 。  In order to solve the above-mentioned problem, the present invention provides a heat exchanger having heat transfer tubes arranged in a plurality of rows, wherein the outer diameter of the heat transfer tubes is 1 to 5 mm, Each row of the multi-row fermentation tube is arranged in a zigzag pattern, and each row corresponds to each straight line of the zigzag broken line. A number of ripening tubes are provided.
こ れ に よ り 、 伝熱管 を 1 〜 5 m m と 細径 に し 、 各列 に は ジ グ ザ ク 状折れ線の 各直線部分 に 列数の 2 倍以上 の数の伝熱管 を 設 け て い る の で、 熟交換器の 前面面秸 当 た り の伝熱面秸 を 大 き く で き 、 空気の流れが滑 ら か に $云向 、 減速 し 急激な 曲 が り 、 偏流 を 生 じ る こ と 力 Ϊな く 、 そ れ に よ る 剥 離損失 な どが抑制 さ れ る 。 さ ら に 、 各直線部分の伝熱管の本数 を 列数の 5 倍以下 と し て い る の で、 流れ方向 の大 き さ 及 び高 さ も コ ン ノヽ ' ク ト に す る こ と が で き る 。 よ つ — 、 熱交換器の コ ン ノヽ° ク ト 性 を 損ね る こ と な く 交 換熱量 Z通風抵抗 を 増大す る こ と 力?で き 、 C 0 P の 向上、 冷媒 の使用 量 そ の も の を 少 な く す る 、 非共沸混合冷媒 を 用 い る な ど に お い て も 有利 な も の と す る こ と 力'で き る 。  As a result, the heat transfer tubes are reduced in diameter to 1 to 5 mm, and each line is provided with at least twice as many heat transfer tubes at each straight line of the zigzag broken line. As a result, the heat transfer area around the front surface of the heat exchanger can be increased, and the air flow can be smoothed, decelerated, sharply bent, and generate a drift. Therefore, delamination loss and the like due to this are suppressed. Furthermore, since the number of heat transfer tubes in each straight section is less than five times the number of rows, the size and height of the flow direction can also be reduced. it can . Second, the heat exchange capacity without impairing the heat exchange performance of the heat exchanger Z The force to increase the ventilation resistance? It has the advantage of improving C0P, reducing the amount of refrigerant used, and using non-azeotropic refrigerants. 'it can .
ま た 、 本発明 は 、 複数列 に 配置 さ れた伝熱管 と 該伝熱管 と 接 触 さ れ た 平板状 フ イ ン を 有す る 熱交換器 に お い て 、 所定の幅 を 有す る ジ グザ グ状の形状 と さ れた 平板状 フ ィ ン と 、 平板状フ ィ ン の折 曲 力5' り 部 に 配置 さ れ伝熱管 と を 備 え 、 伝熱管の 配置間隔 は 平板状 フ ィ ン の 幅の 2 倍以上 5 倍以下 と さ れ た も の で あ る 。 Further, the present invention has a predetermined width in a heat exchanger having heat transfer tubes arranged in a plurality of rows and a flat fin in contact with the heat transfer tubes. A flat fin shaped like a zigzag and a flat fin A heat transfer tube is provided at the bending force 5 'portion of the fin, and the arrangement interval of the heat transfer tubes is set to be not less than twice and not more than 5 times the width of the flat fin.
こ れ に よ り 、 平板状 フ ィ ン を 用 い る の で伝熱面積 を 確保で き 伝熱管 は ジ グザ グ状の形状 と さ れた 平板状 フ ィ ン の折 曲 が り 部 に 配置 し 、 そ の 配置問隔 を 平板状 フ ィ ン の幅の 2 倍以上 と す る の で、 空気の流れ を 滑 ら か に し 、 通風抵抗を 小 さ く で き る 。  As a result, since a flat fin is used, a heat transfer area can be secured, and the heat transfer tube has a zigzag shape at the bent portion of the flat fin. Since they are arranged and the space between them is at least twice the width of the flat fins, the air flow can be made smooth and the ventilation resistance can be reduced.
さ ら に 、 上記の も の に お い て 、 ジ グザ グ状の線分相互の な す 角 度 は 3 0 ° 以上 1 0 0 ° 以下 と す る こ と が望 ま し い。  Further, in the above, it is desirable that the angle formed by the zigzag line segments is not less than 30 ° and not more than 100 °.
さ ら に 、 本発明 は 、 室内熱交換器、 膨張弁 、 室内 送風機 を 備 え た室内 機、 圧縮機、 室外熱交換器、 室外送風機 を 備 え た室外 機 と を 有す る 空気調和機 に お い て 、 室内熱交換器あ る い は室外 熱交換器の いずれか一方 は 、 複数列 と さ れそ の そ れぞれの列が ジ グザ グ状 に 配置 さ れ、 外径寸法力 5' 1 〜 5 m m と さ れ た伝熱管 を 備 え 、 伝熱管内 の作動流体は非共沸混合冷媒 と さ れ た も の で あ る 。 Further, the present invention relates to an air conditioner having an indoor unit provided with an indoor heat exchanger, an expansion valve, and an indoor blower, and a compressor, an outdoor heat exchanger, and an outdoor unit provided with an outdoor blower. Either the indoor heat exchanger or the outdoor heat exchanger is composed of a plurality of rows, each of which is arranged in a zigzag pattern, and the outer diameter dimension force is increased. 5 'e Bei a heat transfer tube which is a 1 ~ 5 mm, the working fluid of the heat transfer tube is Ru Oh than was also a non-azeotropic mixed refrigerant.
こ れ に よ り 、 ォ ゾ ン 層 を 破壊す る 恐れの少 な い新冷媒であ る 非共沸混合冷媒、 例 え ば R 4 0 7 C であ っ て も 空気調和機の 消 费電力 を 低減 し 、 さ ら に は 冷媒の使用 量そ の も の を 少 な く で き る こ と 力ゝ ら 、 よ り 一層 、 地球環境保全 に適 し た も の と す る こ と で き る 。  As a result, even if it is a non-azeotropic mixed refrigerant, for example, R407C, which is a new refrigerant that is less likely to destroy the ozone layer, the power consumption of the air conditioner can be reduced. And reduce the amount of refrigerant used, and also make it more suitable for global environment conservation. .
さ ら に 、 本発明 は 、 熱交換器、 膨張弁、 送風機及 び圧縮機 と を 有す る 空気調和機 に お い て 、 外径寸法力? 1 〜 5 m m で、 そ の 配置間隔が外径の 2 倍以上 5 倍以下 と さ れ、 ジ グザ グ状に 配置 さ れ た伝熱管 を 有す る 熟交換器 と 、 円筒状の外形で外周 に翼 を 有す る 貫流式の送風機 と を 備 え た も の であ る 。  Further, the present invention relates to an air conditioner having a heat exchanger, an expansion valve, a blower, and a compressor. 1 to 5 mm, and the interval between them is 2 to 5 times the outer diameter, and the mature heat exchanger with the heat transfer tubes arranged in a zigzag shape and the cylindrical outer shape It is equipped with a once-through type blower with wings on the outer periphery.
熱交換器の 通風抵抗 を 小 さ く で き る の で、 低圧、 高風速 に 適 し 、 小型軽量で あ る 貫流式の送風機 を 用 い て も 効率が低下せず 送風動力 を 低減 し て 空気調和機の効率 を 高め る こ と がで き る 。 Suitable for low pressure and high wind speeds because the ventilation resistance of the heat exchanger can be reduced. However, the efficiency of the air conditioner can be increased by reducing the blowing power without reducing the efficiency even with the use of a small and light once-through type blower.
さ ら に 、 本発明 は 、 筐体内 に圧縮機、 室外熱交換器、 室外送 風機 を 備 え た室外機 に お い て 、 外径寸法力 1 〜 5 m m で、 上面 か ら 見 て 筐体の 2 辺 に渡 っ て L 字状 に 曲 げ ら れ、 側面か ら 見て ジ グザ グ状 に 配置 さ れ た伝熱管 を 有す る 熱交換器 と 、 空気が熱 交換器 を 迎 る よ う に 回転 さ れる 室外送風機 を 備 え た も の であ る さ ら に 、 本発明 は 、 度体内 に モ ー タ 、 遠心送風機、 熱交換器 吹出 口 を 有す る 室 内機 に お い て 、 そ の 問隔が外径の 2 倍以上 5 ίί以下 と さ れ 、 ジ グザ グ状 に配 S さ れ た伝熟管 を 有す る 熱交換 器 と 、 そ の 一辺が ジ グザ グ に沿 う よ う な 形状 と さ れた吹出 口 と を 備 え た も の であ る 。  Further, the present invention relates to an outdoor unit having a compressor, an outdoor heat exchanger, and an outdoor blower in an enclosure, having an outer diameter dimensional force of 1 to 5 mm, and viewing the enclosure from above. Heat exchanger with heat transfer tubes bent in an L-shape across the two sides and arranged in a zigzag shape when viewed from the side, and air receives the heat exchanger In addition to the provision of the outdoor blower which is rotated as described above, the present invention provides an indoor unit having a motor, a centrifugal blower, and a heat exchanger outlet in the body. The distance between the outer diameter and the outer diameter of the heat exchanger is more than twice the outer diameter and less than 5 mm, and the heat exchanger has a fermentation tube arranged in a zigzag shape. It is provided with an outlet that is shaped to conform to the shape of the wing.
吹出 口 を ジ グザ グ に 沿 う よ う な 形状 と し た こ と に よ り 、 風路 断面秸 を 拡大す る と 共 に 、 吹出 口 で の縮流、 拡大 を な く し損失 を 低減で き る 。  The outlet is shaped to follow the zigzag, so that the cross section of the air path is enlarged and the flow is reduced and the loss is reduced by reducing the flow at the outlet. it can .
さ ら に 、 本発明 は 、 伝熟管 を 備 え た熱交換器に お い て 、 流路 断面 の 直径が 1 〜 5 m m と さ れ た伝熱管が複数複合 さ れ、 ジ グ ザ グ状 に 配置 さ れ た偏平管 を備 え た も の であ る 。  Further, the present invention provides a heat exchanger provided with a heat transfer tube, in which a plurality of heat transfer tubes having a flow path cross section having a diameter of 1 to 5 mm are combined and formed in a zigzag shape. It is equipped with a flat tube arranged at the center.
伝熱管が複数複合 さ れた偏平管 を ジ グザ グ状 に 配置す る の で 伝熟面積 を 大 き く し て 通風抵抗 を 小 さ く で き る と 共 に 、 熱交換 器の形状 を よ り コ ン ノ、' ク ト な も の と す る こ と 力 ίで き る 。  Since the flat tubes with multiple heat transfer tubes are arranged in a zigzag pattern, the heat transfer area can be increased and the ventilation resistance can be reduced, and the shape of the heat exchanger can be reduced. You can do more and more things.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1 図 は 、 本発明 の 一 実施例 に 係 る 熱交換器の水平 断面 図 、 第 2 図 は 、 同 じ く 斜視図 、 第 3 図 は 、 本発明の他の実施例 に係 る 熱交換器の側 断面図、 第 4 図 は 、 本発明の さ ら に他の実施例 に係 る 熱交換器の水平断面図 、 第 5 図 は 、 本発明の さ ら に他の実施例 に係 る 熱交換器の水平断面図 、 第 6 図 は 、 本発明の さ ら に他の実 施例 に 係 る 偏平管の 断面図 、 第 7 図 は 、 本発明の さ ら に他の 突施 例 に係 る 熱交換器の水平断面図、 第 8 図 は 、 本発明 の さ ら に 他のFIG. 1 is a horizontal sectional view of a heat exchanger according to one embodiment of the present invention, FIG. 2 is a perspective view of the same, and FIG. 3 is a heat exchanger according to another embodiment of the present invention. FIG. 4 is a horizontal sectional view of a heat exchanger according to still another embodiment of the present invention, and FIG. 5 is a horizontal sectional view of still another embodiment of the present invention. FIG. 6 is a cross-sectional view of a flat tube according to still another embodiment of the present invention, and FIG. 6 is a cross-sectional view of a flat tube according to still another embodiment of the present invention. FIG. 8 is a horizontal sectional view of the heat exchanger according to the embodiment, and FIG.
%施例 に係 る 熱交換器の水平断面図 第 9 図 は 、 本発明 の さ ら に 他の ' 施例 に係 る 熱交換器の斜視図 第 1 0 図 は 、 本発明 の さ ら に他の実施例 に係 る 伝熱管の断面図 第 1 1 図 は 本発明 の さ ら に他の実施例 に係 る 伝熱管の 断面図 第 1 2 図 は 本発明 の さ ら に他の ¾施例 に係 る 伝熱管の 断面図 第 1 3 図 は 本発明 の他の 施例 に係 る 熱交換器の水平断面図 第 1 4 図 は 本発明 の 曲 げ 角 に 衬す る 交換熱量 z m風抵抗の 変化示す特性図 第 1 5 図 は 、 本発明の さ ら に他の突施例 に係 る 空気調和機の構成図 、 第 1 6 図 は 、 本発明の さ ら に他の実施例 に係 る 室外機の水平断面図 、 第 1 7 図 は 、 本発明の さ ら に他の実施例 に係 る 室外機の水平断面図 、 1 8 図 は 、 本発明の さ ら に他の実施例 に係る 室外機の側断面図 ·λ% 1 9 図 は 、 本発明の さ ら に 他の実施例 に係 る 室内 機の D — D 断 面図 、 第 2 0 図 は 、 本発明 の さ ら に他の実施例 に係 る 室内 機の側 断面図 、 第 2 1 図 は 、 本発明 の他の実施例 に係 る 室内 機の水平断 面図 であ る 。 9 is a horizontal sectional view of the heat exchanger according to the embodiment. FIG. 9 is a perspective view of a heat exchanger according to still another embodiment. FIG. 10 is a perspective view of the heat exchanger according to the embodiment. FIG. 11 is a cross-sectional view of a heat transfer tube according to another embodiment. FIG. 11 is a cross-sectional view of a heat transfer tube according to another embodiment of the present invention. FIG. 12 is a cross-sectional view of still another embodiment of the present invention. 13 is a horizontal cross-sectional view of a heat exchanger according to another embodiment of the present invention. FIG. 14 is a cross-sectional heat exchange amount zm wind of the present invention. FIG. 15 shows a configuration diagram of an air conditioner according to still another embodiment of the present invention, and FIG. 16 shows a configuration diagram of an air conditioner according to still another embodiment of the present invention. FIG. 17 is a horizontal sectional view of an outdoor unit according to still another embodiment of the present invention. FIG. 18 is a horizontal sectional view of another outdoor unit according to still another embodiment of the present invention. Outdoor unit pertaining to Side sectional view · λ% 19 Fig. 19 is a D-D sectional view of an indoor unit according to still another embodiment of the present invention, and Fig. 20 is a sectional view of another embodiment of the present invention. FIG. 21 is a horizontal sectional view of an indoor unit according to another embodiment of the present invention.
発明を実施する ための最良の形 «I BEST MODE FOR CARRYING OUT THE INVENTION «I
以下、 本発明 の実施の形態 を 図面 を 参照 し て 説明す る 。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
一般に 熱交換器は 、 作動流体が流入す る へ ッ ダ及 び流出 す る ヘ ッ ダ、 そ の両者 を 連通す る 多数個 の伝熱管で構成 さ れ、 作動 流体は伝熱管の 内側 に形成 さ れ た 内部流路 を 流れ、 空気は伝熟 管の外側 を 流れ る 。 伝熱管 は 、 管外径 d oよ り も 大 き な あ る 間隔 P tで複数列 に 配列 さ れ、 伝熱管 は 、 作動流体 と 空気流れが垂直 と な る よ う 配置 さ れ る 。 熟交換器は 、 ダ ク ト ゃ空気調和機の壁で形成 さ れ た風路の 中 に 設置 さ れ、 空気 は 送風機等で駆動 さ れ、 風路 を 通 り 熱交換器 で熱交換 さ れ た後、 熱交換器の 下流側 に 流出 さ れ る 。 In general, a heat exchanger is composed of a header into which the working fluid flows in and a header outflowing from it, and a number of heat transfer tubes that communicate the two.The working fluid is formed inside the heat transfer tubes. The air flows through the inner flow path, and the air flows outside the ripening tube. The heat transfer tubes are arranged in a plurality of rows at a certain interval Pt larger than the tube outer diameter do, and the heat transfer tubes are arranged so that the working fluid and the air flow are perpendicular to each other. The maturation exchanger is installed in the air duct formed by the duct and the air conditioner wall, and the air is driven by a blower and the like, and heat is exchanged by the heat exchanger through the air duct. After that, it is discharged downstream of the heat exchanger.
熱交換器の 高性能化 を 図 る に は 、 交換熱量 の増大 と 通風抵抗 の低減、 す な わ ち 交換熱量 /通風抵抗の増加が必要であ る 。 風 路の風路断面嵇が一定の場合、 熟交換器の交換熱量 を 増大す る に は 、 伝熟管の 配置の 間隔 P tを 減少す る か、 伝熱管の列数 を 増 加 し て 伝熱管の本数 を 増やす こ と が必要 と な る 。  In order to improve the performance of the heat exchanger, it is necessary to increase the heat exchange capacity and reduce the ventilation resistance, that is, to increase the heat exchange capacity / airflow resistance. In order to increase the heat exchange capacity of the ripening exchanger when the cross section の of the air path is constant, the spacing Pt of the heat transfer tubes should be reduced or the number of heat transfer tube rows should be increased. It is necessary to increase the number of heat transfer tubes.
し か し 、 空気 は 配 E問隔 P tの減少 に伴 い縮流、 増速す る 。 特 に P t / d o≤ 2 で は 熱交換器内 の 最大風速 は 、 風路 内 の風速の 2 倍以上 と な る 。 さ ら に 列数の増加 に伴い、 急激な 曲 力 り 、 偏流 が繰 り 返 さ れ る 。 し たがっ て摩擦損失 と 剥離損失の両者が增加 し 、 通風抵抗が大幅 に増加す る 。 ま た 、 熱交換熱量増加の た め に電熟管 の列数 を 增やせ ば、 熱交換器の空気の流れ方向 の奥行 き も 大 き く 。  However, the air contracts and increases in speed as the distribution interval Pt decreases. In particular, when Pt / do≤2, the maximum wind speed in the heat exchanger is more than twice the wind speed in the wind path. In addition, as the number of rows increases, sharp bending and drifting occur repeatedly. Therefore, both the friction loss and the separation loss are increased, and the ventilation resistance is greatly increased. In addition, if the number of rows of emulsion tubes is reduced to increase the heat exchange heat quantity, the depth of the heat exchanger in the direction of air flow becomes large.
さ ら に 、 空気調和機 を 高風量で使用 す れ ば、 作動流体の駆勅 力 を 低減す る こ と で省エ ネ ィ匕 を 図 る こ と 力 で き る 力?、 熱交換器 での通風抵抗が大 き い と 、 送風機の風量の増加 に と も な い、 空 気の駆動力 が増 え る た め 、 空気調和機の省ェ ネ化が困 難であ つ た 。 特 に 、 送風機の 下流 に 熱交換器 を 配置す る 吹 き 出 し 型空気 調和機で は 、 風路 の形状が複雑 と な る た め空気の流れの増速 に よ る 悪影響 は大 き い。  In addition, if the air conditioner is used at a high air volume, the power that can save energy by reducing the driving force of the working fluid? However, if the ventilation resistance of the heat exchanger is large, the driving force of the air increases with the increase in the air volume of the blower, making it difficult to reduce the energy consumption of the air conditioner. I got it. In particular, in a blow-out type air conditioner in which a heat exchanger is arranged downstream of a blower, the air flow speed is so complicated that the adverse effect of increasing the air flow is large. .
本発明の 第 1 の実施例 であ る 熱交換器 1 A の斜視図 を 第 2 図 に 、 第 2 図 の水平方向 よ り の 断面 を 第 1 図 に 示 し 、 熱交換器 1 A は 、 空気調和機の 筐体壁 9 で形成 さ れ た風路 1 0 内 に 設置 さ ォ L る 。 熱交換器 1 A は 、 ヘ ッ ダ 3 A と 4 列 に 配置 さ れ た 多数個 の伝熱管 2 で構成 さ れ、 作動流体で あ る 冷媒 は 、 へ ッ ダ 3 1 A と 伝熱管 2 の 内 部流路 2 0 1 と ヘ ッ ダ 3 2 A を 流れ、 伝熱管 2 の壁面 を 通 じ て 空気 と の 間 で熱交換 さ れ る 。 FIG. 2 is a perspective view of a heat exchanger 1A according to a first embodiment of the present invention, and FIG. 1 is a cross-sectional view of the heat exchanger 1A taken along a horizontal direction in FIG. It is installed in the air passage 10 formed by the housing wall 9 of the air conditioner. Heat exchanger 1A is composed of a number of headers 3A and a number of heat exchangers arranged in four rows. The refrigerant, which is a working fluid, flows through the header 31 A, the internal flow path 201 of the heat transfer tube 2 and the header 32 A, and the wall surface of the heat transfer tube 2. Heat is exchanged with the air through the air.
伝熱管 2 は 、 銅や ア ル ミ の 金属部材 を 引 き 抜 き 加工 さ れて 成 形 さ れ た も の で、 ヘ ッ ダ 3 A は伝熟管 2 と 同 じ 材質の 部材で プ レ ス 成形 さ れ た も の であ る 。 伝熱管 2 と ヘ ッ ダ 3 A は 、 ろ う 付 け接合あ る い は熱で溶解す る 樹脂性の銪型 を 用 い て 製作 さ れ る 伝熱管 2 と ヘ ッ ダ 3 A の材質 は 、 銥型の溶解す る 温度 に 合わせ て 金厲 ょ り 融点の低い樹脂で も よ い。  The heat transfer tube 2 is formed by drawing out a metal member such as copper or aluminum. The header 3A is made of the same material as the heat transfer tube 2 and is made of a material. It has been molded. The heat transfer tube 2 and the header 3A are manufactured using a resin-made mold that can be soldered or melted by heat. The material of the heat transfer tube 2 and the header 3A is Alternatively, a resin having a lower melting point may be used according to the melting temperature of the mold.
伝熱管 2 は 、 作動流体の流れ方向 と 空気の流れ方向が直交す る よ う に 配置 さ れ、 各列の 一部の伝熱管 2 は 、 ジ グザ グの折れ 線 1 1 に 沿 つ て配置 さ れ る 。 折れ線 1 1 は複数の線分 (直線) 1 1 2 と 頂点 1 1 1 力、 ら な り 、 直線 1 1 2 同士の な す角 であ る 曲 げ角 は 3 0 〜 1 0 0 ° の鋭角 と な っ て い る 。 各列 の 直線 1 1 2 に は 、 列数の 2 倍以上 5 倍以下 と さ れた 、 例 え ば 8 本の 伝 熟管 2 が配 さ れて い る 。 伝熱管 2 は 、 頂点 1 1 1 付近 で は折 れ線 1 1 に 沿つ て な く 、 折れ 曲力5'る よ う に配列 さ ォ L る 。 へ ッ ダ 3 A は 、 伝熱管 2 の配列 に 合わせて波状の 形状 と し て レ、 る 。 熱交換器 1 A は 、 各列 の伝熱管 2 を 折れ線状 に配 E し た た め 一列 当 り の伝熱管本数 を 多 く で き る 。 よ っ て 、 同一列数、 同 一 風路断面積 な ら ば伝熱管 2 の本数す な わ ち 伝熱面積 を 増大す る こ と がで き る 。 熱交換器 1 A は 、 交換熱量が向上 し 、 特 に 曲 げ 角 Θ を 鋭角 と す れば, 伝熱面積 と 交換熱量が増加す る 。 The heat transfer tubes 2 are arranged so that the flow direction of the working fluid and the air flow direction are orthogonal to each other, and some of the heat transfer tubes 2 in each row are arranged along the zigzag broken line 11. Will be placed. The polygonal line 11 is composed of a plurality of line segments (straight lines) 1 1 2 and the vertices 1 1 1 1, and the bend angle, which is the angle between the straight lines 1 1 2, is an acute angle of 30 ° to 100 °. It is. A straight line 112 of each row is provided with, for example, eight ripening tubes 2 having a number of at least twice and no more than five times the number of rows. The heat transfer tubes 2 are arranged so as not to be along the polygonal line 11 near the vertex 11 1, but to have a bending force 5 ′. The header 3 A has a wavy shape according to the arrangement of the heat transfer tubes 2. In the heat exchanger 1A, since the heat transfer tubes 2 in each row are arranged in a broken line, the number of heat transfer tubes per row can be increased. Therefore, if the number of rows is the same and the cross-sectional area of the air path is the same, the number of heat transfer tubes 2, that is, the heat transfer area can be increased. In the heat exchanger 1A, the heat exchange capacity is improved, and the heat transfer area and the heat exchange capacity are increased particularly when the bend angle Θ is made an acute angle.
熱交換器 1 A の空気の流れ方向 の 大 き さ L は、 伝熱管 2 を ジ グザ ク 状の折れ線 1 1 に 沿 つ て配置す る が、 折れ線 1 1 の頂点 1 1 1 で折れ 曲力 sる よ う に 配置す る こ と が望 ま し く 、 そ れ に よ つ て L の増加が抑制 さ れ る 。 よ っ て 、 熱交換器 1 A は 、 従来の も の と 比べて 大 き く な る こ と な く 、 交換熱量 を 大 き く す る こ と がで き る 。 The size L of the heat exchanger 1A in the air flow direction is such that the heat transfer tube 2 is arranged along the zigzag polygonal line 11 but is bent at the vertex 1 1 1 of the polygonal line 11 and this is Nozomi or teeth rather that be placed Ni Let 's Ru force s, to Re its Thus, the increase in L is suppressed. Therefore, the heat exchanger 1A can increase the amount of heat exchanged without increasing in size as compared with the conventional one.
上記の 伝熱管 2 の 配 E に よ り 、 伝熱面積だ け で な く 前面面積 も 增加す る 。 前面面積 は 、 空気が流入 し は じ め る 位置 の 面積で 定義 し 、 熱交換器 1 A の前面面積 は 、 風路 1 0 に お け る 風路断 面稍 よ り も 大 き い た め 、 熱交換器 1 A を 流れ る 空気 も 減速す る こ と と な る 。 す な わ ち 空気の流れ は 、 第 1 図 の 矢印 B の よ う に 転向 、 減速 し 、 通風抵抗が大幅 に 低減 さ れ る 。 そ こ で 、 P t Z d o ≤ 2 , 例 え ば P t / d o = 1 . 3程度 と し て伝熟管 2 を 密 に 配 Ξ し て も . 通風抵抗 を 低減 し て 同一風路 当 り の伝熱面積 と 交換熱量 も 高 く で き る 。  Due to the arrangement E of the heat transfer tube 2 described above, not only the heat transfer area but also the front area is increased. The front area is defined as the area where the air starts to flow, and the front area of the heat exchanger 1A is larger than the cross section of the air path in the air path 10. However, the air flowing through the heat exchanger 1A also slows down. That is, the flow of the air is turned and decelerated as indicated by the arrow B in FIG. 1, and the ventilation resistance is greatly reduced. Therefore, even if the pipes 2 are densely arranged with Pt Z do ≤ 2, for example, Pt / do = about 1.3, the airflow resistance is reduced and the same airflow is applied. The heat transfer area and the heat exchange capacity can be increased.
ま た 、 伝熱管 2 の ジ グザ ク 状の配置、 及 び各列 に は ジ グザ ク 状折れ線の 各直線 に相 当 す る 部分 に 列数の 2 倍以上 5 倍以下の 数、 例 え ば 8 本の伝熱管 2 を 配置 し た の で、 空気 は伝熱管の外 径 d oよ り も 大 き な d o X列 数の寸法ス ケ ー ル で滑 ら か に 転向 、 減 速す る 。 こ れ に よ り 、 急激な 曲 り 、 偏流 に伴 う 剥離损失が抑 制 さ れ通風抵抗は よ り 減少す る 。  In addition, the zigzag arrangement of the heat transfer tubes 2 and the number corresponding to each straight line of the zigzag broken line in each row are twice or more and 5 times or less the number of rows, for example. For example, since eight heat transfer tubes 2 are arranged, the air smoothly turns and decelerates at a scale scale of do X rows larger than the outer diameter do of the heat transfer tubes. . As a result, sharp bends and separation loss due to drift are suppressed, and the ventilation resistance is further reduced.
し たがっ て 、 熱交換器 1 A は 同 一風路断面積 に お い て 、 空気 の流れ方向 の奥行 き を 增加す る こ と な く 交換熱量 Z通風抵抗 を 大幅 に 向上す る こ と がで き る 。  Therefore, the heat exchanger 1A can significantly improve the heat exchange capacity Z without significantly increasing the depth of the air flow direction in the same cross-sectional area of the air passage. it can .
本発明 の 第 2 の 実施例 で あ る 熱交換器 1 Bの水平断面 を 第 3 図 に 示 し 、 熱交換器 1 Bは 伝熱管 2 自 体 を ジ グザ グ状 に折 り 曲 げた も の であ る 。 伝熱管 2 を 折 り 曲 げる こ と に よ り 、 同一風路 断面積、 同一伝熱管本数 に お い て 伝熱面積 を 増加す る こ と がで き 、 前面面積 も 増 大 し 、 熱交換器 1 B内 の風速 は さ ら に 低減 さ れ る 。 し た がっ て 交換熱量ノ通風抵抗 を さ ら に 向上で き る 。 第 3 の実施例 で あ る 熟交換器 1 Cの水平断面 を 第 4 図 に示 し 、 熱交換器 1 Cの 列 数 は 2 で あ り 、 伝熱管 2 と 垂直 に 配置 さ れ た 多数の平板 フ ィ ン 1 3 を 備 え て レ、 る 。 伝熟管 2 の 両端 に は 、 へ ッ ダ 3 A の 変わ り に冷媒分配器 を 接続 し て も よ い 。 熱交換器 1 Cの前列 と 後列 の 間 に は空問 8 が設 け ら れ る 。 FIG. 3 shows a horizontal cross section of a heat exchanger 1B according to a second embodiment of the present invention, and the heat exchanger 1B is obtained by bending the heat transfer tube 2 itself in a zigzag manner. It is By bending the heat transfer tube 2, the heat transfer area can be increased for the same cross-sectional area of the air passage and the same number of heat transfer tubes, and the front surface area is also increased. The wind speed in exchanger 1B is further reduced. It is. Therefore, the ventilation heat resistance of the exchanged heat can be further improved. Fig. 4 shows a horizontal cross section of the ripening exchanger 1C according to the third embodiment. The number of rows of the heat exchanger 1C is 2, and a large number of heat exchangers 1C are arranged vertically. It is equipped with a flat plate fin 13. Refrigerant distributors may be connected to both ends of the ripening tube 2 instead of the header 3A. An air gap 8 is provided between the front and rear rows of the heat exchanger 1C.
平板 フ ィ ン 1 3 は 、 ア ル ミ 部材 を プ レ ス し て 成形 さ れ、 伝熱 2 と 平板 フ ィ ン 1 3 は 、 伝熱管 2 を 拡 ^す る こ と 、 あ る い は ろ う 付 け で接合 さ れ る 。 伝熟管 2 の 配 E問 隔 P tは外径 d oの 2 倍 以上 5 倍以下 と さ れ、 例 え ば P t / d o = 2 と さ れ る 。  The flat plate fin 13 is formed by pressing an aluminum member, and the heat transfer 2 and the flat plate fin 13 expand the heat transfer tube 2, or may be used. They are joined together. The E interval Pt of the ripening tube 2 is set to be not less than twice and not more than 5 times the outer diameter do, for example, Pt / do = 2.
平板 フ ィ ン 1 3 の前緣 1 3 1 と 後緣 1 3 2 は 平行で あ り 、 両 者の 最短距離 と な る 幅 Wと す る と 、 伝熱管の配置間隔 P tは Wの 2 倍以上 5 倍以下、 例 え ば P t /Wは 2 と す る こ と 力 良い。 前縁 1 3 1 と 後縁 1 3 2 は 、 折れ線 1 1 と 平行 に な っ て レ、 る 。 た だ し 前 緣 1 3 1 と 後緣 1 3 2 は 、 頂点 1 1 1 付近 で は折れ線 1 1 と 一 致 し て レゝ る 分け で は な く 、 ジ グザ ク 状の形状 と さ れ た 平板 フ ィ ン 1 3 は 、 ジ グザ グ状の外形か ら 折 り 曲 げ部で先端 を わずか に 切 り 落 と し た形状 と な っ て い る 。  The front 13 1 and the rear 13 2 of the plate fin 13 are parallel, and if the width W is the shortest distance between the two, the spacing Pt of the heat transfer tubes is 2 More than twice and less than 5 times, for example, Pt / W is set to 2. The leading edge 13 1 and the trailing edge 13 2 are parallel to the polygonal line 11. However, the front 1 3 1 and the back 1 3 2 have a zigzag shape in the vicinity of the vertex 1 1 1, not in line with the polygonal line 1 1, but in a zigzag shape. The flat plate fin 13 has a shape in which a tip is slightly cut off at a bent portion from a zigzag-shaped outer shape.
前列 の平板 フ ィ ン 1 3 の前縁 1 3 1 と 後列 の後緣 1 3 2 と の 距離 L 2 は L 2 /W = 1 . 5と す る こ と が望 ま し い。  It is desirable that the distance L2 between the leading edge 131 of the flat plate fin 13 of the front row and the rear edge 132 of the back row be L2 / W = 1.5.
熱交換器 1 Cで は 、 平板 フ ィ ン 1 3 も ジ グザ グ形状で あ る た め 、 空気の流れ を 滑 ら か に し 、 通風抵抗 を 小 さ く で き 、 さ ら に 平板 フ ィ ン 1 3 を 備 え て レ る た め P t / d oを 大 き く 、 す な わ ち 伝 熱管 2 の本数、 列数等 を 少 な く し て も 伝熱面積 を 大 き く 確保で き る 。 ま た 、 伝熱管 2 の本数 を 少 な く で き る た め 、 伝熱管 2 と ヘ ッ ダ 3 Aと の接 合個所 も 少 な く な り 、 加工 コ ス ト を 低減す る こ と がで き る 。 伝熱管 2 の 列数 を 少 な く で き る の で 、 空気流 れ 方向 の 奥行 き も 低減で き 、 よ り コ ン ノ、" ク ト にす る こ と 力 Ϊで き る c さ ら に 、 平板 フ ィ ン 1 3 の形状 を 伝熱管 2 の配置問 隔 を 平板 状 フ ィ ン の 幅 の 2 倍以上 、 P t /W≥ 2 と す る の で 、 空気 は Wよ り も 大 き な P tの寸法ス ケ ー ル で滑 ら か に転向 、 減速す る 。 し た が つ て 平板 フ ィ ン 1 3 上で は 、 風速分布 の偏 り が少 な く 最大風速 が小 さ く な り 、 平板 フ ィ ン 1 3 上で生 じ る 摩擦損失 を 低減で き る 。 そ し て 、 熟交換 器 1 Cで は 伝熟管 2 の 本数が少 な い た め 、 伝熱管 2 で の剥 離拟失 よ り も 平板フ ィ ン 1 3 で の 摩擦損失が強 いが、 上記の摩擦掼失の低減がそ の ま ま 通風抵抗の低減に つ な が、る 。 In the heat exchanger 1C, the plate fins 13 also have a zigzag shape, so that the air flow can be smooth, the ventilation resistance can be reduced, and the plate fins can be further reduced. In order to provide a large heat transfer area even if the number of heat transfer tubes 2 and the number of rows are reduced, Pt / do is large. Wear . Further, since the number of heat transfer tubes 2 can be reduced, the number of joints between the heat transfer tubes 2 and the header 3A is also reduced, thereby reducing the processing cost. be able to . The number of columns of the heat transfer tube 2 than that have at least name rather, can in be reduced can the depth of the air flow Re direction, good Ri co-down Roh, "c is found that can in this and force Ϊ you to click door In addition, since the shape of the flat fins 13 is more than twice the width of the flat fins and the space between the heat transfer tubes 2 is Pt / W≥2, the air is larger than W. Turning and decelerating smoothly at a large Pt dimension scale, the wind speed distribution on the flat fins 13 is small, and the maximum wind speed is small. As a result, the friction loss generated on the plate fins 13 can be reduced, and the number of the heat transfer tubes 2 in the heat exchanger 1C is small, so that the heat transfer tubes 2 Although the friction loss in the flat plate 13 is stronger than the separation loss in the above, the reduction in the friction loss described above leads to a reduction in the ventilation resistance as it is.
さ ら に 、 L 2 /W = 2 で あ る 空間 8 を 設 け た た め 、 熱交換器 1 C の前列下流の風速分布 は均一化 さ れ 、 後列 の摩擦損失 を さ ら に 低減す る こ と 力?で き る 。  Furthermore, since the space 8 where L 2 / W = 2 is provided, the wind speed distribution downstream of the front row of the heat exchanger 1C is made uniform, and the friction loss of the rear row is further reduced. That power? it can .
第 4 の実施例 であ る 熱交換器 1 D の水平断面 を 第 5 図 に 示 し , 熱交換器 1 D は熱交換器 1 C の平板 フ ィ ン 1 3 に ス リ ッ ト 1 4 を 設 け た も の で あ る 。 ス リ ッ ト 1 4 は 、 平板フ ィ ン 1 3 の伝熟 管相互間 に 複数個設け ら れ、 プ レ ス 加工で平板 フ ィ ン 1 3 と 同 日寺 に 成形 さ れ る 。  Fig. 5 shows the horizontal cross section of the heat exchanger 1D of the fourth embodiment, and the heat exchanger 1D has a slit 14 attached to the flat fin 13 of the heat exchanger 1C. It has been set up. A plurality of slits 14 are provided between the mature pipes of the flat fins 13 and are formed in the same temple as the flat fins 13 by pressing.
ス リ ツ ト 1 4 は 、 そ の 前縁 1 4 1 と 後緣 1 4 2 に お いて 平板 フ ィ ン 1 3 と 切 断 さ れ、 平板 フ ィ ン 1 3 と 連続であ る 側部 1 4 3 を 立 ち 上 げる よ う に切 り 起 こ さ れ て成形 さ れ る 。 前縁 1 4 1 と 後縁 1 4 2 は 、 折れ線 1 1 に平行 と な っ て レ る 。 本実施例 で は 、 ス リ ッ ト 1 4 を 切 り 起 こ し ス リ ッ ト と し て レ、 る 力 、 ル ー ノ 状 にカ卩ェ し て も よ レ、 。  The slit 14 is cut off at its leading edge 141 and at its trailing edge 142 from the flat plate fin 13, and the side portion 1 is continuous with the flat plate fin 13. 4 3 is cut and raised so as to rise. The leading edge 14 1 and the trailing edge 14 2 are parallel to the polygonal line 11. In this embodiment, the slit 14 may be cut and raised, and the slit may be cut into a runo shape.
ス リ ツ ト 1 4 を 設 け た こ と に よ り 、 ス リ ツ ト 1 4 上 で生 じ る \νθ θ1/67020 PCT/JPOO/01331 Occurs on the slit 14 due to the installation of the slit 14 \ νθ θ1 / 67020 PCT / JPOO / 01331
11 11
温度境界層 が薄 く な り 熱伝達率 と 交換熱量が向上す る 。 前縁 1 4 1 と 後縁 1 4 2 を ジ グザ ク 状の折れ線 1 1 と 平行 と し て い る の で、 空気流れ の $云向 、 減速の際 に 付加的 な 抵抗 に な ら な い 。 さ ら に側部 1 4 3 が案内翼 の よ う に 空気流れ の 転向 、 減速 を 促 進す る 。 よ っ て 、 空気の流れは 速やか に 減速 し 、 通風抵抗 を 減少す る こ と がで き 、 熱伝達率 を 向 上 し 、 空気流れの 減速 を 促 進す る こ と か ら 、 交換熱量 Z通風抵抗 を 向上す る こ と がで き る 本発明 の 第 5 の実施例 であ る 熱交換器 1 E の水平断面 を 第 7 図 に 、 熱交換器 1 E の偏平管 2 A の水平断面 を 第 6 図 に 示す 。 熱交換器 1 E は 、 第 1 の実施例 に 対 し て伝熱管 2 の変 わ り に 伝 熱管 を 複合 し た偏平管 2 A を 用 い た も の であ る 。  The temperature boundary layer becomes thinner, and the heat transfer coefficient and heat exchange capacity are improved. Since the leading edge 14 1 and the trailing edge 14 2 are parallel to the zigzag broken line 11, there is no additional resistance during air flow and deceleration of the air flow. No. In addition, the side portions 144 promote air flow turning and deceleration like guide vanes. Therefore, the air flow can be quickly decelerated, the ventilation resistance can be reduced, the heat transfer coefficient can be improved, and the deceleration of the air flow can be promoted. FIG. 7 shows a horizontal cross section of a heat exchanger 1E which is a fifth embodiment of the present invention capable of improving ventilation resistance, and FIG. 7 shows a horizontal cross section of a flat tube 2A of the heat exchanger 1E. Fig. 6 shows the results. The heat exchanger 1E uses a flat tube 2A in which a heat transfer tube is combined in place of the heat transfer tube 2 in the first embodiment.
偏平管 2 A は 、 力 一 エ ア コ ン 用 の コ ル ゲー ト フ ィ ン ア ン ド チ ユ ー ブ型熱交換器の よ う に偏平管 2 A の相互間 に 平板状 フ ィ ン を ろ う 付 けす る こ と で も 良い。  The flat tube 2A is made of flat fins between the flat tubes 2A like a colgate fin and tube type heat exchanger for power aircon. It is also good to attach them.
偏平管 2 A は 、 ア ル ミ 部材 を押 し 出 し 成形 さ れ、 偏平管 2 A と へ ッ ダ 3 A は ろ う 付け接合 さ れ る 。 偏平 ' If 2 A は 、 長軸 2 0 2 と 短軸 2 0 3 カゝ ら 成 り 、 1 0 個 の 内部流路 2 0 1 を 備 え て い る 。 長軸 2 0 2 と 短軸 2 0 3 の 長 さ の比 は 3 以上 と す る こ と が 良 く 、 偏平管 2 Aあ る い は 内 部流路 2 0 1 の 断面形状 は 楕 円 と す る こ と 力5'望 ま し い。 The flat tube 2A is formed by extruding an aluminum member, and the flat tube 2A and the header 3A are brazed and joined. The flat “If 2 A” is composed of a major axis 202 and a minor axis 203, and has 10 internal channels 201. The ratio of the length of the major axis 202 to the minor axis 203 is preferably 3 or more, and the cross-sectional shape of the flat tube 2A or the inner channel 201 is elliptical. Power 5 'I want it.
偏平管 2 Aは 、 ジ グザ グ の折 れ線 1 1 に 沿 つ て 配置 さ れ、 折 れ線 1 1 は複数の 線分 1 1 2 と 頂点 1 1 1 カゝ ら な り 、 ジ グザ ク 状の線分相互の な す角度、 つ ま り 直線 1 1 2 同士の な す角 で あ る 曲 げ角 は 、 3 0 ° 以上 1 0 0 ° 以下 と 鋭角 に す る こ と が良 い 。 さ ら に 、 偏平管 2 Aの 配置す る 向 き は 、 長軸 2 0 2 と 折 れ 線 1 1 と の な す角 が該直角 と な る よ う に し 、 各線分 1 1 2 に は 1 2 個の偏平管 2 A が配置 さ れ る 。 The flat tube 2A is arranged along the zigzag polygonal line 11, and the polygonal line 11 is composed of a plurality of line segments 1 1 2 and a vertex 11 1. The angle between the zigzag line segments, that is, the bending angle, which is the angle between the straight lines 112, should be as acute as 30 ° or more and 100 ° or less. No. In addition, the direction in which the flat tube 2A is arranged is such that the angle between the major axis 202 and the polygonal line 11 is the right angle, and each line segment 112 has 12 Two flat tubes 2A are arranged.
偏平管 2 A の 内部流路 2 0 1 が伝熱管 2 の そ れ と 同 じ径 な ら ば、 偏平管 2 A の 管外表面精 は伝熟管 2 の約 1 0 倍 と な る 。 熱 交換器 1 E は 、 既述 し た 熱交換器 1 Aの伝熱管 よ り も 少 な い 本 数の偏平管 2 A で 、 熟交換器 1 Aと 同 等 の 交換熱量 を 得 る こ と がで き る 。 ま た 、 偏平管 2 A の本数が少 な い た め偏平管 2 A と ヘ ッ ダ 3 A の ろ う 付 け加ェの際、 加工工程が大幅 に 低減 さ れ力□ ェ コ ス ト が低 く な る 。  If the internal flow path 201 of the flat tube 2A has the same diameter as that of the heat transfer tube 2, the outer surface fineness of the flat tube 2A is about 10 times that of the mature tube 2. The heat exchanger 1E has a smaller number of flat tubes 2A than the heat exchanger tubes of the heat exchanger 1A described above, and can obtain the same heat exchange capacity as the mature exchanger 1A. I can do it. In addition, since the number of flat tubes 2A is small, the number of flat pipes 2A and the header 3A are significantly reduced in the number of machining steps and the processing cost is reduced. Lower.
偏平管 2 A の 断而形状 と 偏平管 2 A の 向 き と 配置 に よ り 、 偏 平管 2 Aの壁面が案 内 K の よ う に 空気流れ に 十 分 な 転向 力 を 与 え る の で、 空気流れ は剥離 を 起 こ す こ と な く 転向 、 減速す る 。 よ っ て 、 空気流れ の転向 、 減速は促進 さ れ、 短軸が短い た め 空 気流れの縮流や増速が起 こ り 難 く 、 摩擦損失が抑制 さ れ る 。 さ ら に 、 偏平管 2 Aの 配 が一列 で あ る か ら 空気流 れの 曲 が り 、 偏流の橾 り 返 し がな く 、 通風抵抗の '加 を 抑制 で き る 。 よ っ て 、 熱交換器 1 E は 摩擦損失 と 剥離損失 を 共 に 減少 し 、 交換熱量 Z 通風抵抗 を 更 に 高 め る こ と がで き る 。 ま た熱交換器 1 E は 、 空 気流れの 減速 を 確実 に で き る た め 、 送風機下流等の空気の乱れ が著 し い個所で使用 さ れ て も 安定 し た効果 を 得 る こ と がで き る c さ ら に偏平管 2 A と ヘ ッ ダ 3 A と の ろ う 付け個所の削減に よ り 加工 コ ス ト も 低減で き る 。 Due to the metamorphic shape of the flat tube 2A and the orientation and arrangement of the flat tube 2A, the wall surface of the flat tube 2A can give a sufficient turning force to the air flow like K in the plan. The air flow is deflected and decelerated without causing separation. Accordingly, the turning and deceleration of the air flow are promoted, and the short axis is short, so that the air flow is unlikely to contract and increase in speed, and the friction loss is suppressed. Furthermore, since the flat tubes 2A are arranged in a single row, the air flow is bent, the drift does not return, and the increase in ventilation resistance can be suppressed. Therefore, the heat exchanger 1E can reduce both the friction loss and the separation loss, and can further increase the exchange heat Z and the ventilation resistance. Further, since the heat exchanger 1E can surely decelerate the air flow, even if the heat exchanger 1E is used in a place where air turbulence is significant such as downstream of the blower, a stable effect can be obtained. but I Ri processing co-be sampled to a reduction of the filter jar with the point where the c of al flat tube 2 a and f header 3 a in that you to be ∎ You can at a reduced.
さ ら に 、 第 6 の実施例 であ る 熱交換器 1 F の水平断面 を 第 8 図 に 示す 。 熱交換器 1 F は 、 熱交換器 1 E に 対 し て偏平管 2 A の 配置 を 変 え 、 偏平管 2 Aは頂点 1 1 1 付近 で は折れ線 1 1 に 沿 つ て 配列 さ れて い な レゝ 。 折れ線 1 1 と 長軸 2 0 2 の な す角 は 頂点 1 1 1 で も つ と も 小 さ く 、 頂点 1 1 1 力ゝ ら 遠 ざカゝ る に つ れ て増力 [] し 、 頂点 1 1 1 カゝ ら も つ と も 遠い地点す な わ ち 線分 1 1 2 の 中 点付近で は 該直角 で あ る 。 こ の配置 に よ り 、 頂点 1 1 1 付近 を 流 れ る 空気 は そ の 向 き を 急激に 曲 げ ら れ る こ と がな い の で、 有効 に熱交換 さ れ る 。 よ っ て 、 交換熱量 は増加 し 、 交換熱 量 Z通風抵抗 を 更 に 高 め る こ と がで き る 。 さ ら に折れ線 1 1 と 長軸 2 0 2 の な す 角 を 徐 々 に 変化 さ せ る た め 、 従来の例 え ば 力 — エ ア コ ン 用 の コ ル ゲー ト フ ィ ン ア ン ドチ ュ ー ブ型熱交換器 を 折 り 曲 げ る だ け で熱交換器 1 F を 形成す る こ と も 可能で あ る 。 し た 力 つ て 、 熱交換器 1 F は 、 既存の設備 を 適用 で き る の で 、 力 αェ コ ス ト の增カ π を 抑え る こ と 力5'出 来 る 。 Further, FIG. 8 shows a horizontal cross section of a heat exchanger 1F according to the sixth embodiment. The heat exchanger 1F changes the arrangement of the flat tubes 2A with respect to the heat exchanger 1E, and the flat tubes 2A are arranged along the polygonal line 11 near the vertex 11 1. What is it? The angle between the polygonal line 11 and the major axis 20 2 is smaller at the vertex 11 1, and the angle between the vertex 11 1 At the vertex 1 1 1 1 ゝ ゝ い 地点 地点 地点 地点 地点 地点 地点 地点 地点 地点 地点 地点 線 線 線 線 線 線 線 ち. With this arrangement, the air flowing near the apex 1 1 1 1 can be effectively exchanged heat because it cannot be bent sharply in that direction. Therefore, the heat exchange capacity increases, and the heat exchange capacity Z ventilation resistance can be further increased. In addition, since the angle between the polygonal line 11 and the long axis 202 is gradually changed, the conventional example is a force—a colgate fin for an air conditioner. It is also possible to form the heat exchanger 1F simply by bending the tube type heat exchanger. Since the existing equipment can be applied to the heat exchanger 1F, the power 5 ′ can be obtained by suppressing the power π in the heat exchanger 1F.
本発明 の他の実施例 であ る 熱交換器 1 G の斜視図 を 第 9 図 に 示 し 、 熱交換器 1 E 偏平管 2 Αの 変 わ り に外表面 に 突起 1 2 を 多数個設け た偏平管 2 Β を 用 い 、 直線状 に配置 し た も の であ る 偏 平管 2 Β は 、 突起 1 2 と 内部流路 2 0 1 を押 し 型成形 し 、 そ の 部材 を 折 り 曲 げ、 接合部 2 0 4 を接合 し た も の で あ る 。 あ る い は偏平管 2 Β を 铋型 に よ つ て 一体成形で製作 し て も 良い 。 突起 1 2 は祓数列 に 配置 さ れ、 各列 は ジ グザ グの折れ線 1 1 に 沿つ て 形成 さ れ る 。 列 と 列 の 問 に は 、 隙問 1 2 1 が設け ら れ る 熱交換器 1 G は 、 偏平管 2 Β を 直線状に 配置 し た た め 、 空気 の流れ方向 の奥行 き を 小 さ く で き る 。 熱交換器 1 G は 、 突起 1 2 に よ り 伝熱面積が拡大 さ れ、 そ の 配列 の た め上記の も の と 同 様 に 通風抵抗 を 減少 で き る 。 ま た 、 偏平管 2 Βを そ の 長手方 向 と 重力 方 向が平行 と な る よ う に設置す れば、 蒸発器 と し て使用 す る 場合、 偏平管 2 Βの表面 に は凝縮 し た水蒸気が付着す る が、 付着 し た水 は偏平管 2 Βの 表面 に 止 ま る こ と な く 隙間 1 2 1 を 通 し て排水 さ れ る 。 こ れ に よ り 、 熱交換器 1 G は 、 水分の付着 に よ る 付加的 な 通風抵抗の増カ卩 も 抑制す る こ と が出 来 る 。 も ち ろ ん、 偏平管 2 B を ジ グザ グ状に 配置す れ ば、 よ り 交換熱量 Z 通風抵抗 を 向上す る こ と も で き る 。 FIG. 9 shows a perspective view of a heat exchanger 1G according to another embodiment of the present invention, and a number of projections 12 are provided on the outer surface in place of the heat exchanger 1E flat tube 2Α. The flat tube 2 で あ which is linearly arranged using the flat tube 2 た is formed by pressing and molding the projection 12 and the internal flow path 201, and bending the member. It is bent and joined at the joint 204. Alternatively, two flat tubes may be integrally formed by a 铋 type. The protuberances 12 are arranged in a sequence of numbers, each row being formed along a zigzag broken line 11. In the row-to-row question, the heat exchanger 1G in which the gap 1 21 is provided has a flat tube 2 直線 arranged linearly, so that the depth in the air flow direction is reduced. it can . In the heat exchanger 1G, the heat transfer area is enlarged by the projections 12, and the arrangement thereof can reduce the ventilation resistance in the same manner as described above. Also, if the flat tube 2 2 is installed so that its longitudinal direction and the direction of gravity are parallel, when used as an evaporator, the flat tube 2Β will condense on the surface of the flat tube 2Β. The water vapor adheres, but the adhered water is drained through the gap 122 without stopping on the surface of the flat tube 2 Β. As a result, the heat exchanger 1G is It can also suppress the additional increase in draft resistance due to the airflow. Of course, by arranging the flat tubes 2B in a zigzag shape, the exchange heat Z and the ventilation resistance can be further improved.
本発明の さ ら に他の実施例 であ る 熱交換器 1 H の水平断面 を 第 1 3 図 に 示 し 、 そ の長手方向 に 沿 っ て 平板状 フ ィ ン 2 0 6 を 備 え て レ る 。 フ ィ ン 2 0 6 の厚み は 、 第 1 0 図 に 示す よ う に 三 ft 形状 と な る よ う に 変ィヒ を つ け て も い い し 、 第 1 1 図 に 示す よ う に 一定で も 良い 。 ま た フ ィ ン 2 0 6 は第 1 2 図 に 示す よ う に 複数設け る こ と も 良い。  A horizontal cross section of a heat exchanger 1H according to still another embodiment of the present invention is shown in FIG. 13 and is provided with a flat fin 206 along the longitudinal direction thereof. Re. The thickness of the fins 206 may be varied to form a 3-ft shape as shown in FIG. 10 or may be constant as shown in FIG. It is good. A plurality of fins 206 may be provided as shown in FIG.
伝熟管 2 Cは 、 ア ル ミ 部材 で押 し 出 し 成形 さ れ 、 各列 は ジ グ ザ グ状の折れ線 1 1 に 沿つ て 配置 さ れ る 。 折れ線 1 1 は複数の 線分 1 1 2 と 頂点 1 1 1 力、 ら な り 、 直線 1 1 2 同士の な す角 で あ る 曲 げ角 は鋭角 と な っ て い る 。 一列 目 と 二列 目 の伝熱管 2 Cは 、 預点 1 1 1 付近 で は折 れ線 1 1 に 沿 つ て 配列せず、 折 れ 線 1 1 と 対称軸 2 0 5 の な す角 は 、 頂点 1 1 1 付近で も っ と も 小 さ く 、 頂点 1 1 1 カゝ ら 遠 ざか る に つ れて増力 Π し 、 頂点 1 1 1 か ら 充分離れ た 地点す な わ ち 線分 1 1 2 の 中 点付近 で は 該直 n と す る こ と 力?望 ま し い。  The ripening tube 2C is extruded and formed with an aluminum member, and each row is arranged along a zigzag broken line 11. The polygonal line 11 is composed of a plurality of line segments 1 1 2 and vertices 1 1 1 1, and the bend angle formed by the straight lines 1 1 2 is an acute angle. The heat transfer tubes 2C in the first and second rows are not arranged along the polygonal line 11 near the deposit point 111, and the angle between the polygonal line 11 and the axis of symmetry 205 is However, it is the smallest at the vicinity of the vertex 1 1 1, and increases in power as it moves away from the vertex 1 1 1, and a point sufficiently far from the vertex 1 1 1, that is, the line segment 1 Near the midpoint of 1 2, the force should be n? I want it.
フ ィ ン 2 0 6 に よ り 、 熱交換器 1 H の伝熱面積 は増加 し 、 フ ィ ン 2 0 6 の 形状 に よ り 伝熱管 2 Cの 表面 に 沿 つ た速度境界層 が制御 さ れ、 剥 離損失が減少す る 。 ま た 、 伝熱管 2 Cの 向 き と 配置 に よ り 、 空気 は滑 ら か に転向 、 減速す る 。 よ っ て 、 熱交換 器 1 H は 通風抵抗が低減 さ れ る 。 さ ら に 、 伝熱管 2 Cの 向 き と 配置 カゝ ら 後列側 の フ ィ ン 2 0 6 は 、 前列 側 の伝熱管 2 Cの 死水 域に 位置 し な い こ と に な り 、 後列 側伝熱管 2 Cの 熱伝達性能の 劣化 を 抑制 し て 交換熱量 を 増大で き る 。 し た がっ て熱交換器 1 H は 、 摩擦損失 と 剥 離損失 を 共 に 減少 し 、 後列側 の伝熱管 2 C を 有効 に使用す る こ と に な り 、 交換熱量ノ通風抵抗 を 更 に 高 め る こ と 力《で き る 。 The heat transfer area of the heat exchanger 1H is increased by the fin 206, and the velocity boundary layer along the surface of the heat transfer tube 2C is controlled by the shape of the fin 206. And the separation loss is reduced. Also, depending on the direction and arrangement of the heat transfer tubes 2C, the air smoothly turns and decelerates. Thus, the ventilation resistance of the heat exchanger 1H is reduced. Further, the direction and arrangement of the heat transfer tubes 2C, the rear fins 206 are not located in the dead water area of the front heat transfer tubes 2C, and the rear fins are not located. The heat exchange performance can be increased by suppressing the deterioration of the heat transfer performance of the heat transfer tube 2C. Therefore, heat exchanger 1 H reduces both the friction loss and the separation loss, effectively uses the rear-side heat transfer tube 2C, and further increases the exchange heat flow resistance. Wear .
上 記実施例 の熱交換器の伝熱性能 に 関 し て 、 実験及 び解析 し た結果が第 1 4 図 で あ り 、 熱交換器 1 D に お いて 、 折れ線 1 1 の 曲 げ角 Θ に 対す る 交換熱量ノ通風抵抗 を 示 し た も の であ る 。 こ こ で熱交換器 1 D は 、 伝熱管 2 の外径 do = 7.5mm、 Pt/do= 2 、 Pt/W= 2 , フ ィ ン ピ ッ チ 1.5mmと し て レ、 る 。 熱交換器上流の空気 条件 は 、 空気調和 機 の使用 範四 で あ る 風速 1 m/s、 温度 2 7 V で あ る 。 第 1 4 図 中 で、 = 1 8 0 ° は従来の 同様の フ イ ン チ ユ ー ブ型熱交換器 に相 当 す る 。  FIG. 14 shows the results of an experiment and analysis of the heat transfer performance of the heat exchanger of the above embodiment. In the heat exchanger 1D, the bending angle of the polygonal line 11 is obtained. It shows the ventilation resistance against the heat exchange. Here, the heat exchanger 1D has an outer diameter of the heat transfer tube 2 of do = 7.5 mm, Pt / do = 2, Pt / W = 2, and a pitch of 1.5 mm. The air condition upstream of the heat exchanger is wind speed 1 m / s and temperature 27 V, which is the range of use of the air conditioner. In FIG. 14, = 180 ° corresponds to the same type of conventional heat sink type heat exchanger.
第 1 4 図 よ り 交換熱量 通風抵抗 は が小 さ い ほ ど増加 し て レ く 力'、 Θ if 小 さ す ぎ る と 急激に 減少す る 。 つ ま り 、 Θ が小 さ す ぎ る と 、 伝熱面 の増加 と 風速の低下の た め交換熱量 /通風抵 抗が ½加 し 、 空気流れの転向が急峻 と な り 、 剥離等 に よ る 付加 的 な 通風抵抗が急增 し 交換熱量 Z通風抵抗が減少す る 。 Θ が 4 0 ° 〜 1 0 0 ° の場合 は 、 熟交換器 1 D の 交換熱量 /通風抵抗 は従来の フ ィ ン チ ュ ー ブ型熱交換器 ( = 1 8 0 ° )の 1 . 6 倍 に増加す る 。  According to Fig. 14, the heat exchange resistance and the ventilation resistance increase as the value decreases, and decrease rapidly if the force is too small. In other words, if Θ is too small, the heat transfer surface increases and the wind speed decreases, resulting in an increase in the exchange heat / ventilation resistance, leading to a sharp turn of the air flow, and the occurrence of peeling. The additional ventilation resistance is accelerated, and the amount of exchanged heat Z The ventilation resistance is reduced. When the temperature is between 40 ° and 100 °, the heat exchange capacity / ventilation resistance of the heat exchanger 1D is 1.6 times that of the conventional fin-tube heat exchanger (= 180 °). Increase by a factor of two.
図示 は し て レ な レ 力?フ ィ ン ピ ッ チ ( 0 . 5 mm以上, 2 . 5 mm 以下)、 Pt /do (1.5以上 , 4 以下)、 Pt/W ( 2 以上 , 3 以下) を 変 え て も 、 第 1 4 図 と 同様の伝熱特性であ っ た 。 ま た他の実施 例 に っ レ、 て も 第 1 4 図 と 同様の特性 を 示 し て い る 。 し た力 ίつ て 、 各実施例 で は 、 曲 げ角 を 3 0 ° 以上 1 0 0 ° 以下 と す れ ば、 交換熱量 Ζ通風抵抗 を 大幅 に 向上で き る こ と と な る 。  What is the power shown? Even if the fine pitch (0.5 mm or more, 2.5 mm or less), Pt / do (1.5 or more, 4 or less), or Pt / W (2 or more, 3 or less) are changed, the 14th The heat transfer characteristics were the same as in the figure. Further, in other embodiments, the same characteristics as those in FIG. 14 are shown. In each of the embodiments, if the bending angle is set to 30 ° or more and 100 ° or less, the exchange heat and the ventilation resistance can be significantly improved.
次に 上記実施例 の熱交換器 を 用 い た空気調和機の構成 を 第 1 5 図 に 示 し 、 空気調和機は 室内機 4 1 と 室外機 4 2 、 両者 を 接 続す る 冷媒配管 7 を 備 え て い る 。 室 内機 4 1 は 、 冷媒 を 膨張す る 膨張弁 2 3 と 熱交換器 1 と 空気 を 駆動す る 送風機 6 を 備 え 、 室外機 4 2 は冷媒 を 駆動す る 圧縮機 5 と 熱交換器 1 と 送風機 6 を 有 し て レ、 る 。 Next, the configuration of an air conditioner using the heat exchanger of the above embodiment is described in the first section. As shown in Fig. 5, the air conditioner is provided with an indoor unit 41 and an outdoor unit 42, and a refrigerant pipe 7 for connecting the both. The indoor unit 41 has an expansion valve 23 for expanding the refrigerant, a heat exchanger 1 and a blower 6 for driving the air, and the outdoor unit 42 has a compressor 5 and a heat exchanger for driving the refrigerant. It has 1 and blower 6.
室内機 4 1 を 冷房機 と し て使用 す る 場合、 ガス 状態 の冷媒は 圧縮機 5 で駆動 さ れ、 室外機 4 2 の熱交換器 1 で空気 と の熱交 換 に よ り 凝縮 し 、 室內機 4 1 の 膨張弁 2 3 で膨張 し 、 室内機 4 1 の熱交換器 1 で空気 と の 熱交換 に よ り 蒸発 し て 再 びガ ス 状態 で圧縮機 5 に戻 る 。 暖房サ イ ク ルの場合は 、 冷媒の循環路 は圧 縮機 5 、 室内機 4 1 の熱交換器 1 、 膨張弁 2 3 、 室外機 4 2 の 熱交換器 1 、 圧縮機 5 と な る 。  When the indoor unit 41 is used as a cooling unit, the refrigerant in a gaseous state is driven by the compressor 5, and condensed by heat exchange with air in the heat exchanger 1 of the outdoor unit 42. The air is expanded by the expansion valve 23 of the indoor unit 41, evaporated by heat exchange with the air in the heat exchanger 1 of the indoor unit 41, and returned to the compressor 5 in a gaseous state again. In the case of a heating cycle, the refrigerant circulation paths are the compressor 5, the heat exchanger 1 of the indoor unit 41, the expansion valve 23, the heat exchanger 1 of the outdoor unit 42, and the compressor 5. .
熱交換器 1 と し て 各実施例 の熱交換器 を 用 い る こ と に よ り 、 交換熱量の増加 と 通風抵抗の低減 を 得 る 。 し た がっ て 交換熱量 の增加 を 利用 し て 圧縮機 5 の駆動力 を 低減で き 、 通風抵抗の低 減 を 利用 し て 送風機 6 の駆勁力 を 低減で き る 。 し た がっ て 、 本 空気調和機 に よ れ ば、 圧縮機 と 送風機の動力 を 低減す る こ と で 省エ ネ 化 を 実現で き る 。  By using the heat exchanger of each embodiment as the heat exchanger 1, an increase in the amount of heat exchanged and a reduction in ventilation resistance can be obtained. Therefore, the driving force of the compressor 5 can be reduced by using the increase in the amount of heat exchanged, and the driving force of the blower 6 can be reduced by using the reduction of the ventilation resistance. Therefore, according to this air conditioner, energy saving can be realized by reducing the power of the compressor and the blower.
他の実施例 に よ る 空気調和機室外機 4 2 A の水平断面 を 第 1 6 図 に 示 し 、 室外機 4 2 A は筐体 1 5 の 内側 に熱交換器 1 H と 2 個 の貫流送風機 6 0 1 と を 備 え て い る 。 空気は 、 熱交換器 1 H カゝ ら 流入 し 、 筐体 1 5 と 仕切 り 板 1 6 で形成 さ れた風路 1 0 を 通 り 、 貫流送風機 6 0 1 で動圧 を 与 え ら れ、 ベ ル マ ウ ス 1 7 と コ ー ン 1 8 か ら 流出 す る 。 本構成 は室内機 に適用 し て も 良い 貫流送風機 6 0 1 は 、 円筒状の外形で最外周 に 多数の翼 を 備 え て い る 。 一般 に 貫流送風機 6 0 1 の効率は 、 低圧、 高風速で 作動 さ せ る 方が高効率 と な る 。 し か し 、 通風抵抗が大 き く 高圧 で動作す る 場合は 、 効率が極端 に 悪 く な る 。 そ こ で、 ジ グザ ク 状の熱交換器 1 G と 貫流送風機 6 0 1 を 用 い る こ と に よ り 、 空 気 を 低圧 、 高風速の作動点 で使用 す る こ と がで き 、 空気調和機 の効率 を 向上す る こ と がで き る 。 さ ら に 、 貫流送風機 6 0 1 は 小型蛏量 であ る か ら 、 筐体 1 5 も コ ン ノ、 ' ク ト と な る 。 し たがつ て 、 室外機 4 2 A は コ ン ノ、' ク 卜 な 外形でかつ 、 送風機の高効率 ィ匕に よ り 省 エ ネ ィ匕 を 实現す る こ と がで き る 。 The horizontal cross section of the air conditioner outdoor unit 42 A according to another embodiment is shown in Fig. 16 and the outdoor unit 42 A has a heat exchanger 1 H and two flow-throughs inside the housing 15. A blower is provided. Air flows in from the heat exchanger 1H, passes through the air passage 10 formed by the housing 15 and the partition plate 16, and is given dynamic pressure by the once-through blower 601. , Flowing out of bell mouse 17 and cone 18. This configuration may be applied to indoor units. The once-through blower 601 has a cylindrical outer shape and many wings on the outermost periphery. Generally, the efficiency of a once-through blower is low at low pressure and high wind speed. It is more efficient to operate it. However, when operating at high pressure with large ventilation resistance, the efficiency becomes extremely poor. Therefore, by using the zigzag heat exchanger 1G and the once-through blower 601, air can be used at the operating point of low pressure and high wind speed. Therefore, the efficiency of the air conditioner can be improved. Furthermore, since the once-through blower 601 is small in size and small, the housing 15 is also connected. Accordingly, the outdoor unit 42A has a compact, compact outer shape, and can achieve energy-saving by the high efficiency of the blower.
さ ら に 、 他の 実施例 に よ る 空気調和機室外機 4 2 B の水平断 面 を 第 1 7 図 に 、 側 断面 を 第 1 8 図 に示す。 室外機 4 2 B は 、 箧体 1 5 の 内部 に モ ー タ 1 8 と 蚰流送風機 6 0 2 、 熱交換器 1 C 、 風路 1 0 を 形成す る 仕切板 1 6 を 備 え て い る 。 空気は熱交 換器 1 C を 通 り 、 軸流送風機 6 0 2 に よ り 動圧 を 与 え ら れベ ル マ ウ ス 1 7 力 ら 流出 す る 。  Further, FIG. 17 shows a horizontal cross section of an air conditioner outdoor unit 42B according to another embodiment, and FIG. 18 shows a side cross section thereof. The outdoor unit 42B is provided with a motor 18 and a flow fan 602, a heat exchanger 1C, and a partition plate 16 forming an air passage 10 inside the body 15. . The air passes through the heat exchanger 1C, is given a dynamic pressure by the axial blower 602, and flows out from the bell mouse 17 force.
熟交換器 1 C の伝熱管 2 は 、 笸体 1 5 に 合わせて該 L 字状に 曲 げ ら れて お り 、 直線部 2 0 7 と 曲 げ部 2 0 6 を 持つ 。 曲 げ部 2 0 6 の 一部 で は 、 第 1 9 図 の側 断面 図 (第 1 7 図 の D — D 断 面) に 示す よ う に伝熱管 2 を 直線状 に 配置 し て い る 。 平板 フ ィ ン 1 3 は 、 直線部 2 0 7 の み に設け ら れて レ、 る 。 室外機 4 2 B は 、 平板 フ ィ ン 1 3 と 設置面 2 4 が該垂直 と 成 る よ う に設置 さ れる 。 送風機 は 、 軸流送風機 6 0 2 に か え て 貫流送風機や遠心 送風機 と す る こ と で も 良い。  The heat transfer tube 2 of the ripening exchanger 1C is bent in the L-shape in accordance with the body 15 and has a straight portion 200 and a bent portion 206. In a part of the bent portion 206, the heat transfer tube 2 is linearly arranged as shown in a side sectional view (D-D cross section in FIG. 17) of FIG. The flat plate fin 13 is provided only in the straight portion 207. The outdoor unit 42B is installed so that the flat plate fin 13 and the installation surface 24 are perpendicular to each other. The blower may be a once-through blower or a centrifugal blower instead of the axial blower 602.
曲 げ部 2 0 6 で各伝熱管 2 を 直線状に配置す る こ と で 曲 げ加 ェの み で熱交換器 1 C を 該 L 字状 に 成形で き る 。 熱交換器 1 C が該 L 字状であ る た め 、 同一筐体内 にお け る 伝熱面積 を 拡大で き 、 交換熱量が増加す る 。 さ ら に 曲 げ加工の み で済 む か ら 付加 的 な 伝熟管の加工、 接合の必要がな く 、 低 コ ス ト に で き る 。 よ つ て 、 本実施例 の空気調和 機室外機 4 2 B は 、 低 コ ス ト かつ伝 熱面 ¾ を 確保す る こ と で交換熱量 Z通風抵抗 を 向上 で き 、 送風 機動力 の 低減や圧縮機動力 の低減 に よ り 省エ ネ化 を 実現で き る さ ら に 、 他の実施例 に よ る 空気調和機室内機 4 1 A の水平断 面 を 第 2 1 図 に 、 側断面 を 第 2 0 図 に示す。 室内機 4 1 A は 、 笸体 1 5 の 内部 に モ ー タ 1 8 と 遠心送風機 6 0 3 、 そ の下流 に 実施例 1 の熱交換器 1 A 、 そ の 下流 に 吹出 口 1 9 を 備 え て い る 水受 け 2 0 は 、 熱交換器 1 A の 下部 に 配置 さ ; K る 。 パ ネ ル 2 2 に 設け ら れ た吸い込み 口 2 1 か ら 流入す る 空気はベ ル マ ウ ス 1 7 を 通 り 、 遠心送風機 6 0 3 に よ り 動圧 を 与 え ら れ、 筐体 1 5 と 仕切 り 板 1 6 で形成 さ れ た風路 1 0 を 通 り 、 熱交換器 1 A で 熱交換 を 行 っ た後、 吹出 口 1 9 か ら 流出 す る 。 熱交換器 1 A は 4 個 あ り 、 そ れぞれ冷媒配管 7 で接続 さ れて い る 。 By arranging the heat transfer tubes 2 in a straight line at the bent portion 206, the heat exchanger 1C can be formed in the L-shape only by bending. Since the heat exchanger 1C is L-shaped, the heat transfer area in the same housing can be increased, and the heat exchange amount increases. Added because only bending is required There is no need to process and join a proper ripening tube, and the cost can be reduced. Therefore, the outdoor unit 42B of the air conditioner of the present embodiment can improve the heat exchange capacity Z and the ventilation resistance by securing a low cost and a heat transfer surface 、, thereby reducing the fan power and reducing the fan power. In addition to saving energy by reducing compressor power, Fig. 21 shows the horizontal cross section of the air conditioner indoor unit 41A according to another embodiment, and Fig. 21 shows the side cross section. Figure 20 shows it. The indoor unit 41 A has a motor 18 and a centrifugal blower 60 3 inside the body 15, a heat exchanger 1 A of Example 1 downstream therefrom, and an outlet 19 downstream therefrom. The water receiver 20 is located at the bottom of the heat exchanger 1A; The air flowing from the suction port 21 provided in the panel 22 passes through the bell mouse 17, and is given dynamic pressure by the centrifugal blower 60 3, and After passing through an air passage 10 formed by 15 and a partition plate 16 and performing heat exchange in a heat exchanger 1A, the heat flows out from an outlet 19. There are four heat exchangers 1 A, each of which is connected by a refrigerant pipe 7.
吹出 口 1 9 は筐体内 の 4 辺 に 4 個設け ら れ、 吹出 口 1 9 の風 路断面 は 該長方形 と し 、 熟交換器側 の 一辺 1 9 1 を ヘ ッ ダ 3 A に 合わせて ジ グザ グ状 と さ れて レ、 る 。  Four outlets 19 are provided on four sides in the housing, and the cross section of the air passage of the outlet 19 is rectangular, and one side 1991 on the mature exchanger side is aligned with the header 3A. It has a zigzag shape.
熱交換器 1 A は 通風抵抗が小 さ い の で 、 送風機動力 を 低減で き る 。 さ ら に 、 吹出 口 1 9 の風路断面形状の 一辺 1 9 1 を ジ グ ザ グ状 と し た こ と で、 風路断而積が拡大 さ れ、 吹出 口 1 9 で の 縮流、 拡大損失 を 低減す る こ と がで き る 。 よ っ て 、 本実施例 に よ る 室 内 機 4 1 A は 、 熱交換器 1 A で の通風抵抗低減効果 と 吹 出 口 1 9 の縮流、 拡大損失低減効果 に よ り 、 よ り 一層 送風機動 力 を 大 き く 削減で き 、 省エ ネ化 に 貢献で き る 。  Since the heat exchanger 1A has a small ventilation resistance, the power of the blower can be reduced. Furthermore, by forming the side 19 1 of the cross-sectional shape of the air outlet 19 into a zigzag shape, the diametral volume of the air flow is expanded, and the flow contraction at the air outlet 19 is reduced. The extension loss can be reduced. Therefore, the indoor unit 41A according to the present embodiment is further improved by the effect of reducing the ventilation resistance in the heat exchanger 1A and the effect of reducing the flow of the outlet 19 and the expansion loss. Blower power can be greatly reduced, contributing to energy savings.
本発明 の 熱交換器 は 、 通風抵抗の増加 を 抑制 し 、 熱交換器の コ ン ノ、' ク ト 性 を 損 ね る こ と な く 交換熱量 Z通風抵抗 を 増大で き 19 ADVANTAGE OF THE INVENTION The heat exchanger of this invention can suppress the increase of ventilation resistance, and can increase the exchange heat quantity Z ventilation resistance without impairing the connection and the cut-off property of a heat exchanger. 19
る 。 さ ら に 、 熱交換器の交換熱量 を 増大 し 、 さ ら に 送風機 と の 関係 を 適合 し た も の と す る こ と に よ り 、 空気調和機の消費電力 を 低減 さ せ、 サ イ ク ル C 0 P を 向上 さ せ、 オ ゾ ン 層 を 破壊 し な い新冷媒であ っ て も 省ェ ネ 化 さ れ た 空気調和機、 室外機及 び室 内機 を 得 る こ と 力?で き る 。 . In addition, by increasing the heat exchange capacity of the heat exchanger and adapting the relationship with the blower, the power consumption of the air conditioner is reduced and the cycle time is reduced. To improve energy efficiency and obtain energy-saving air conditioners, outdoor units, and indoor units even with new refrigerants that do not destroy the ozone layer? it can .

Claims

騎 求 の 範 囲 Range of request
1 . 複数列 に配置 さ れ た伝熱管 を 備 え た熱交換器 に お い て 、 前記伝熱管の外径寸法 は 1 〜 5 m m であ り 、 前記複数列の伝 熱管の 各列 は ジ グザ グ状に 配置 さ れ、 該各列 に は ジ グザ ク 状折 れ線の 各直線に相 当 す る 部分 に 列数の 2 倍以上 5 倍以下の数の 前記伝熟管が設け ら れて い る こ と を 特徴 と す る 熱交換器。  1. In a heat exchanger having a plurality of rows of heat transfer tubes, the outer diameter of the heat transfer tubes is 1 to 5 mm, and each row of the plurality of rows of heat transfer tubes is They are arranged in a zigzag pattern, and each row is provided with two to five times the number of rows of the fermentation tubes at the part corresponding to each straight line of the zigzag broken line. A heat exchanger characterized by being removed.
2 . 複数列 に 配置 さ れた伝熱管 と 該伝熱管 と 接触 さ れ た 平板状 フ ィ ン を 有す る 熱交換器 に お い て 、  2. In a heat exchanger having heat transfer tubes arranged in a plurality of rows and flat fins in contact with the heat transfer tubes,
所定の幅 を 有す る ジ グザ グ状の形状 と さ れ た前記平板状 フ ィ ン と 、 前記平板状 フ ィ ン の折 曲 力? り 部 に 配置 さ れ前記伝熱管 と を 備 え 、 前記伝熱管の配置 間隔 は前記平板状 フ ィ ン の 幅の 2 倍 以上 5 倍以下 と さ れ た こ と を 特徴 と す る 熱交換器。  The flat fin having a zigzag shape having a predetermined width, and the bending force of the flat fin? A heat exchanger provided with the heat transfer tubes, wherein an interval between the heat transfer tubes is at least twice and at most five times the width of the flat fins. .
3 . 請求項 1 又 は 2 の いずれか に 記載の も の にお い て 、 前記 ジ グザ グ状の 線分相互の な す 角度 は 3 0 ° 以上 1 0 0 ° 以下 と さ れ た こ と を 特徴 と す る 熱交換器。  3. The method according to claim 1, wherein an angle between the zigzag line segments is set to be 30 ° or more and 100 ° or less. A heat exchanger characterized by:
4 . 室 内熱交換器、 膨張弁 、 室内 送風機 を 備 え た 室内機、 圧縮 機、 室外熱交換器、 室外送風機 を 備 え た室外機 と を 有す る 空気 調和機 に お い て 、  4. In an air conditioner that has an indoor unit equipped with an indoor heat exchanger, an expansion valve, and an indoor fan, and an outdoor unit equipped with a compressor, an outdoor heat exchanger, and an outdoor fan,
前記室内熱交換器あ る い は 前記室外熱交換器の いずれか一方 は 、 複数列 と さ れそ の そ れぞれの 列がジ グザ グ状 に 配置 さ れ、 外径寸法が 1 〜 5 m m と さ れ た伝熱管 を 備 え 、 前記伝熱管内 の 作動流体は非共沸混合冷媒 と さ れた こ と を 特徴 と す る 空気調和 機。  Either the indoor heat exchanger or the outdoor heat exchanger has a plurality of rows, each of which is arranged in a zigzag pattern, and has an outer diameter of 1 to An air conditioner comprising a heat transfer tube of 5 mm, wherein a working fluid in the heat transfer tube is a non-azeotropic mixed refrigerant.
5 . 熱交換器、 膨張弁、 送風機及 び圧縮機 と を 有す る 空気調和 機 に お い て 、  5. In an air conditioner having a heat exchanger, expansion valve, blower and compressor,
外径寸法が 1 〜 5 m m で、 そ の 配置間隔が外径の 2 倍以上 5 倍以下 と さ れ、 ジ グザ グ状 に 配置 さ れ た伝熱管 を 有す る 前記熱 交換器 と 、 円筒状の外形で外周 に翼 を 有す る 貫流式の前記送風 機 と を 備 え た こ と を 特徴 と す る 空気調和機。 The outer diameter is 1 to 5 mm, and the spacing is more than twice the outer diameter.5 The heat exchanger having heat transfer tubes arranged in a zigzag shape, and the once-through type blower having a cylindrical outer shape and having blades on its outer periphery. An air conditioner characterized by this.
6 . a体内 に 圧縮機、 室外熱交換器、 室外送風機 を 備 え た室外 機 に お い て 、  6.a In an outdoor unit equipped with a compressor, outdoor heat exchanger, and outdoor blower inside the body,
外径寸法が 1 〜 5 m m で、 上面か ら 見 て前記筐体の 2 辺 に 渡 つ て L 字状 に 曲 げ ら れ、 側面か ら 見て ジ グザ グ状 に 配置 さ れ た 伝熱管 を 有す る 前記熟交換器 と 、 空気が前記熱交換器 を 通 る よ う に 回転 さ れ る 前記室外送風機 を 備 え た こ と を 特徴 と す る 室外 機。  A transmission having an outer diameter of 1 to 5 mm, which is bent in an L-shape across two sides of the housing when viewed from the top and arranged in a zigzag when viewed from the side. An outdoor unit comprising: the ripening exchanger having a heat tube; and the outdoor blower that rotates air so as to pass through the heat exchanger.
7 . 筐体内 に モ ー タ 、 遠心送風機、 熱交換器、 吹出 口 を 有す る 室内 機 に お い て 、  7. In indoor units that have motors, centrifugal blowers, heat exchangers, and outlets inside the housing,
そ の 間隔が外径の 2 倍以上 5 倍以下 と さ れ、 ジ グザ グ状 に 配 置 さ れた 伝熟管 を 有す る 前記熱交換器 と 、 そ の一辺が前記 ジ グ ザ グ に 沿 う よ う な 形状 と さ れ た 前記吹出 口 と を 備 え た室内機。 The heat exchanger has an interval of not less than twice and not more than five times the outer diameter, and has a heat transfer tube arranged in a zigzag shape, and one side of the heat exchanger has the zigzag shape. An indoor unit provided with the outlet which is shaped to conform to the above.
8 . 請求項 2 に 記載の も の に お い て 、 前記平板状 フ ィ ン に前記 ジ グザ グ と 略平行 と な る よ う に切 り 起 こ さ れ た ス リ ッ ト が設 け ら れ た こ と を 特徴 と す る 熱交換器。 8. The flat fin according to claim 2, wherein a slit is formed in the flat fin so as to be substantially parallel to the zigzag. A heat exchanger characterized by these characteristics.
9 . 伝熱管 を 備 え た熱交換器 に お いて 、 流路断面 の直径が 1 〜 5 m m と さ れ た 前記伝熟管が複数複合 さ れ、 ジ グザ グ状に 配置 さ れ た偏平管 を 備 え た こ と を 特徴 と す る 熱交換器。  9. In a heat exchanger equipped with heat transfer tubes, a plurality of the heat transfer tubes having a flow path cross section of 1 to 5 mm in diameter are combined and arranged in a zigzag pattern. A heat exchanger characterized by having tubes.
1 0 . 請 求項 9 に 記載の も の に お い て 、 前記偏平管の外表面上 に ジ グザ グ状 に 配列 し た突起 を 設け た こ と を 特徴 と す る 熱交換 器。  10. The heat exchanger according to claim 9, wherein zigzag-shaped projections are provided on an outer surface of the flat tube.
PCT/JP2000/001331 2000-03-06 2000-03-06 Heat exchanger, air conditioner, outdoor device, and indoor device WO2001067020A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/001331 WO2001067020A1 (en) 2000-03-06 2000-03-06 Heat exchanger, air conditioner, outdoor device, and indoor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/001331 WO2001067020A1 (en) 2000-03-06 2000-03-06 Heat exchanger, air conditioner, outdoor device, and indoor device

Publications (1)

Publication Number Publication Date
WO2001067020A1 true WO2001067020A1 (en) 2001-09-13

Family

ID=11735756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001331 WO2001067020A1 (en) 2000-03-06 2000-03-06 Heat exchanger, air conditioner, outdoor device, and indoor device

Country Status (1)

Country Link
WO (1) WO2001067020A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125525A1 (en) * 2014-02-24 2015-08-27 三菱電機株式会社 Heat exchanger and refrigerating cycle device
US10006662B2 (en) 2013-01-21 2018-06-26 Carrier Corporation Condensing heat exchanger fins with enhanced airflow
US20230068512A1 (en) * 2021-08-31 2023-03-02 Hamilton Sundstrand Corporation Fractal optimized core shape (addmfg)
EP4215863A1 (en) * 2022-01-25 2023-07-26 Kimura Kohki Co., Ltd. Heat exchanger
WO2023233725A1 (en) * 2022-05-31 2023-12-07 三菱重工業株式会社 Heat exchanger

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5155459U (en) * 1974-10-28 1976-04-28
JPS5618871Y2 (en) * 1976-10-12 1981-05-02
WO1981001608A1 (en) * 1979-12-03 1981-06-11 Caterpillar Tractor Co Heat exchanger core with end covers
JPS6317975U (en) * 1986-07-21 1988-02-05
JPS63199840A (en) * 1987-02-12 1988-08-18 Mitsubishi Alum Co Ltd Aluminum core for heat exchanger
JPS63254334A (en) * 1987-04-13 1988-10-21 Matsushita Refrig Co Ceiling embedded type air conditioner
JPH0112106Y2 (en) * 1983-12-28 1989-04-10
EP0469563A2 (en) * 1990-07-31 1992-02-05 Daikin Industries, Limited Air conditioner
US5482115A (en) * 1994-02-25 1996-01-09 Kabushiki Kaisha Toshiba Heat exchanger and plate fin therefor
JPH08320192A (en) * 1994-07-22 1996-12-03 Mitsubishi Electric Corp Heat exchanger, manufacture thereof, refrigerating system, air conditioner, manufacture of the exchanger and its jig
JPH1054683A (en) * 1996-08-08 1998-02-24 Hitachi Ltd Heat exchanger
JPH11311446A (en) * 1998-02-27 1999-11-09 Daikin Ind Ltd Indoor machine of air conditioner and installation structure of indoor machine

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5155459U (en) * 1974-10-28 1976-04-28
JPS5618871Y2 (en) * 1976-10-12 1981-05-02
WO1981001608A1 (en) * 1979-12-03 1981-06-11 Caterpillar Tractor Co Heat exchanger core with end covers
JPH0112106Y2 (en) * 1983-12-28 1989-04-10
JPS6317975U (en) * 1986-07-21 1988-02-05
JPS63199840A (en) * 1987-02-12 1988-08-18 Mitsubishi Alum Co Ltd Aluminum core for heat exchanger
JPS63254334A (en) * 1987-04-13 1988-10-21 Matsushita Refrig Co Ceiling embedded type air conditioner
EP0469563A2 (en) * 1990-07-31 1992-02-05 Daikin Industries, Limited Air conditioner
US5482115A (en) * 1994-02-25 1996-01-09 Kabushiki Kaisha Toshiba Heat exchanger and plate fin therefor
JPH08320192A (en) * 1994-07-22 1996-12-03 Mitsubishi Electric Corp Heat exchanger, manufacture thereof, refrigerating system, air conditioner, manufacture of the exchanger and its jig
JPH1054683A (en) * 1996-08-08 1998-02-24 Hitachi Ltd Heat exchanger
JPH11311446A (en) * 1998-02-27 1999-11-09 Daikin Ind Ltd Indoor machine of air conditioner and installation structure of indoor machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10006662B2 (en) 2013-01-21 2018-06-26 Carrier Corporation Condensing heat exchanger fins with enhanced airflow
WO2015125525A1 (en) * 2014-02-24 2015-08-27 三菱電機株式会社 Heat exchanger and refrigerating cycle device
US20230068512A1 (en) * 2021-08-31 2023-03-02 Hamilton Sundstrand Corporation Fractal optimized core shape (addmfg)
EP4215863A1 (en) * 2022-01-25 2023-07-26 Kimura Kohki Co., Ltd. Heat exchanger
WO2023233725A1 (en) * 2022-05-31 2023-12-07 三菱重工業株式会社 Heat exchanger

Similar Documents

Publication Publication Date Title
JP4679542B2 (en) Finned tube heat exchanger, heat exchanger unit using the same, and air conditioner
JP4845943B2 (en) Finned tube heat exchanger and refrigeration cycle air conditioner
EP2236972B1 (en) Fin for heat exchanger and heat exchanger using the fin
JP2002139282A (en) Heat exchanger, refrigerating air conditioner and manufacturing method of heat exchanger
US10514046B2 (en) Air management system for the outdoor unit of a residential air conditioner or heat pump
EP1659344B1 (en) Indoor unit of air conditioner
JP2003262485A (en) Fin tube type heat exchanger, its manufacturing method, and refrigeration air conditioner
JP2002115866A (en) Turbo fan housing for window-type air conditioner
JP2017166757A (en) Heat exchanger and air conditioner
JP2016200338A (en) Air conditioner
JP5270732B2 (en) Parallel flow type heat exchanger and air conditioner equipped with the same
WO2018235215A1 (en) Heat exchanger, refrigeration cycle device, and air conditioner
WO2001067020A1 (en) Heat exchanger, air conditioner, outdoor device, and indoor device
JPH10196989A (en) Air conditioner
JP5081881B2 (en) Air conditioner
JP2007255812A (en) Finned heat exchanger, and air conditioner
JPH1054683A (en) Heat exchanger
JPH11183076A (en) Heat exchanger
JP2003090691A (en) Fin tube heat exchanger and refrigerating cycle employing the same
JP2003161588A (en) Heat exchanger and air conditioner having the same
JP2002243383A (en) Heat exchanger and air conditioner using the same
JP6316458B2 (en) Air conditioner
JP3170545B2 (en) Air conditioner
CN1991284A (en) Highly effective air-cooled tube wing-type heat exchanger
JPH06147532A (en) Air conditioner

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 565947

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase