WO2001065661A1 - Stromerzeugereinheit aus generator und hubkolbenverbrennungsmotor als antrieb - Google Patents

Stromerzeugereinheit aus generator und hubkolbenverbrennungsmotor als antrieb Download PDF

Info

Publication number
WO2001065661A1
WO2001065661A1 PCT/EP2001/002367 EP0102367W WO0165661A1 WO 2001065661 A1 WO2001065661 A1 WO 2001065661A1 EP 0102367 W EP0102367 W EP 0102367W WO 0165661 A1 WO0165661 A1 WO 0165661A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generator
generator unit
unit according
magnetic elements
rotor
Prior art date
Application number
PCT/EP2001/002367
Other languages
English (en)
French (fr)
Inventor
Ernst Hatz
Franz Moser
Original Assignee
Motorenfabrik Hatz Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorenfabrik Hatz Gmbh & Co. Kg filed Critical Motorenfabrik Hatz Gmbh & Co. Kg
Priority to DE50109853T priority Critical patent/DE50109853D1/de
Priority to US09/937,535 priority patent/US6710494B2/en
Priority to AU42444/01A priority patent/AU779625B2/en
Priority to JP2001564438A priority patent/JP2003526310A/ja
Priority to EP01915313A priority patent/EP1173917B1/de
Publication of WO2001065661A1 publication Critical patent/WO2001065661A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1815Rotary generators structurally associated with reciprocating piston engines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • H02K21/222Flywheel magnetos

Definitions

  • Power generator unit consisting of generator and reciprocating piston engine as drive
  • the invention relates to a power generator unit comprising a generator and a reciprocating piston internal combustion engine as a drive, in particular a synchronous generator and diesel engine, with permanent magnets arranged in the rotor of the generator to excite it in the region of the poles and an armature winding in the stator.
  • Permanently excited electrical machines usually have permanent magnets that are made of one piece each pole.
  • each permanent magnet is in the form of a cylinder jacket segment, which adjoins the air gap formed with the stator in the region of the poles.
  • Permanent magnetic shells of this type can hardly be produced economically, if need be no longer in a size that is suitable for generators with an output of more than five kVA.
  • the assembly of such one-piece permanent magnets is only possible in the unmagnetized state, because of the high magnetic forces that preclude normal handling. The magnetization must then be carried out laboriously on the completely assembled rotor. When transporting large permanent magnets, there is also a risk of breakage due to their brittle material properties.
  • the present invention is based on the object of finding an economical solution for the loading to create the rotor of the generator in a generator unit mentioned at the beginning with permanent magnets for the purpose of magnetic excitation of the generator, in particular to avoid the aforementioned disadvantages.
  • the permanent magnets are formed by a plurality of relatively small magnetic elements, on the one hand their economical manufacture is made possible. These are not only easy to transport and to assemble in a magnetized form, but are also easy to assemble. For this purpose, they are individually arranged next to one another in the circumferential direction in suitable receiving pockets of the rotor with the same polar orientation. The latter are, seen in the axial direction, open on one or both sides, so that they can be equipped with magnetic elements from one or both end faces of the rotor.
  • receiving pockets that are continuously open in the axial direction enable the magnetic elements in the receiving pockets to be arranged in the axial direction in at least two rows.
  • CD d * - ⁇ . ⁇ ⁇ - f-1 ⁇ d CD ⁇ > • tr 1 ⁇ N n * SU X h- ⁇ ⁇ ( ) ⁇ SU ⁇ d Di Q rt rr LQ 3 LQ SD H LQ ⁇ ⁇ d SD: h- 1 X d IQ ⁇ ⁇ - et rt & ⁇ CD ⁇ - ⁇ ⁇ -
  • the magnetic elements are held in their respective mounting positions by the high magnetic forces.
  • the magnetic elements are arranged in the rotor of the generator.
  • the rotor can be designed as an external rotor.
  • the rotor with the magnetic elements can also be designed as an inner rotor, the armature winding then being located in the stator arranged on the outside.
  • a deflection of the magnetic flux is provided according to the invention in such a way that the receiving pockets are extended in the circumferential direction on both sides beyond the last magnetic element in each case.
  • the permanent magnets are not demagnetized.
  • the receiving pockets for the magnetic elements provided according to the invention result in the possibility of simple mounting of the magnetic elements, which can be positioned almost without force as a result of the magnetic yoke.
  • a magnetic field influencing can be expedient during assembly;
  • a stator is positioned in the interior of the rotor during assembly, which is energized for assembly purposes in such a way that the positioning of the magnetic elements is largely possible without force. This avoids assembly difficulties due to strong repulsive forces between the magnetic elements.
  • Fig. 2 is a view of the stator and the rotor of the
  • Motor-generator unit according to section II-II of Fig. 1, Fig. 3 to Fig. 2 is a partial axial view of the
  • Fig. 4 shows a three-dimensional section of the rotor with permanent magnets
  • Fig. 5 is a view of the voltage regulator
  • the electrical machine forming a power generator shown in FIGS. 1 to 3 relates to a unit consisting of a drive motor and a synchronous generator.
  • the preferred drive motor is a diesel engine, of which only the connection-side end of its crankshaft 1 is shown in broken lines.
  • the air wheel 2 has a blading 4 for generating an air flow according to arrow SI for engine cooling, the air flowing in according to arrow S2 corresponding to the cooling air flowing out of the generator housing 8 after the generator cooling.
  • the generator housing cover (provided on the flow side) has suction openings for the cooling air flowing in according to arrows L. So that this cow air flow in the generator housing 8 achieves its full cooling effect, the protective hood 14 has one or more (not shown) appropriately dimensioned inlet openings for the cow air.
  • a motor-side connection housing 5 encloses the space, in which the air wheel 2 is housed, radially outwards; it is open on both sides and has on its side opposite the motor an annular flange 6 with threaded bores for screwing in fastening screws 7 for connecting the cylindrical generator housing 8, which is expediently made of sheet metal, with which it is flat on both ends. is stretched.
  • the fastening screws 7 are arranged on the inside of the generator housing 8, distributed over its circumference, and span the entire length of the housing.
  • a generator housing cover 9 is provided which has a cover inner ring 10 on radially inwardly projecting spokes, to which the stator 11 of the generator is fastened.
  • stator screws 17 are sufficient for fastening the stator to the inner cover ring 10, which are passed through bores in the laminated core of an outer stator part 19 and via spacer sleeves 20 between the inner cover ring 10 and the facing side of the stator outer part 19 are screwed to the cover ring 10.
  • the stator outer part 19 is fixed in this way to the housing, the laminated core forming the stator outer part 19 being clamped together by the stator screws 17.
  • the laminated core forming an inner stator part 21 is arranged on a hollow shaft 24 in a rotationally fixed manner.
  • the hollow shaft 24 is connected via its end cap 60 to a torsion bar 46 arranged in the shaft axis and inserted with prestress. It is rotatably mounted on bearing bushes 47 in bearing flanges 26 of cladding sheets 22, which are arranged on opposite end faces of the sheet stack.
  • the end of the torsion bar 46 opposite the end cap 60 is fixed to the housing via a bar-fixed support 44.
  • the fastening eye 61 is seated on a screw 62, which clamps the laminated core of the yoke 42 together.
  • the cladding sheets 22 cover a control air gap 23 between the stator inner part 21 and the stator outer part 19.
  • stator inner part 21 Since the laminated core forming the stator inner part 21 is thus seated in a rotationally fixed manner on the hollow shaft 24, it rotates with it for the purpose of the desired constant control of the generator voltage.
  • the adjustment of the inner stator part 21 relative to the outer stator part 19 for the purpose of regulating the voltage of the generator is described in detail below.
  • the view according to FIG. 2 shows - without the insulating plate 25 shown in FIG. 1, which is omitted to improve the view - not only the contour of the laminated core forming the rotor 29, but also that of the laminated core forming the stator, which is in the region of the stator outer part 19 have cutouts 38 for receiving the winding phases of the three-phase winding 28 of the generator.
  • the outer stator part 19 is fastened to the inner cover ring 10 shown in FIG. 1 by means of stator screws 17 guided through bores 39 of its laminated core. According to the chosen cut one also recognizes the spacer sleeves 20, which support the sheet metal packs of the stator outer part 19 against the inner cover ring 10.
  • Three retaining screws 27 serve to center the inner stator part 21 within the outer stator part 19 by means of lateral cladding plates 22, in the bearing flanges 26 of which the hollow shaft 24 with the laminated core of the inner stator part 21 is mounted.
  • the cladding sheets 22 are covered on the outside in the area of the control air gap 23 by an insulating plate 25, which serves for the electrical insulation of the three-phase winding 28 of the generator and three retaining screws 27 distributed around the circumference relative to the cladding sheet 22.
  • the retaining screws 27 run through bores in the laminated core forming the outer stator part 19. They are insulated against the laminated core by means of insulating sleeves and center the inner stator part 21 with respect to the outer stator part 19 via the cladding plates 22.
  • the stator 11 is surrounded by the rotor 29, which is likewise constructed from a laminated core which is clamped together by means of clamping screws 30 which are screwed into corresponding threaded bores in the fan wheel 2 with a threaded end 31 on the motor side. Support sleeves 32 pushed onto the tensioning screws 30 are clamped between the fan wheel and the associated side of the rotor 29.
  • the rotor 29 is thus connected in a rotationally fixed manner to the fan wheel 2. On its inner circumference, it forms a narrow, approximately 2 mm wide air gap 33 with respect to the stator 11.
  • the rotor 29 has approximately Bags 34 running in a linden shape within two pole segments, into which magnetic elements 35 in the form of narrow bar-shaped bars are inserted from both sides, specifically in the present example, as can be seen from FIG. 2, two rows of ten magnetic elements 35 arranged next to each other per pole, which are responsible for the magnetic excitation of the generator.
  • the inner contour line 36 of the circumferential wall 50 of the rotor 29 delimiting the pockets 34 radially inwards, together with the outer contour line 37 of the stator 11, delimits the narrow air gap 33.
  • Bores 40 in the rotor plates serve for the installation of a (not shown) ) Starter.
  • the magnetic elements 35 are inserted axially into the pockets 34, so that they form the two poles in a polygonal distribution, lying closely next to one another.
  • the subdivision of the permanent magnets for the poles into small magnetic elements 35 enables their cost-effective production; their assembly is greatly facilitated by a suitable magnetic yoke 49 because this practically eliminates the mutual repulsion of adjacent magnetic elements 35.
  • the individual magnetic elements 35 can be inserted into the pockets 34 almost without force. A special fastening of the magnetic elements 35 is unnecessary, since these are held in operation by their magnetic forces in the axial direction and are supported in the pockets seen in the radial direction, so that they easily withstand the centrifugal forces that occur during operation.
  • control air gap 23 narrows if, starting from the position shown in dashed lines, the inner stator part 21 is rotated in the clockwise direction according to arrow U (FIG. 2) relative to the outer stator part 19, the end position being reached approximately with a twist path according to the angle w.
  • the control air gap 23 is smallest in this end position.
  • the geometry of the control air gap 23 and thus the magnetic resistance in the stator 11 are changed by rotating the inner stator part 21 with respect to the outer stator part 19.
  • This fact is used in the present permanently excited synchronous machine for voltage regulation.
  • the described change in the magnetic flux makes it possible to regulate the induced voltage, with a direct proportionality between the latter and the magnetic flux.
  • the inner part of the stator 21 is seated on a hollow shaft 24 with a prestressed torsion bar 46, torsional forces counteracting the force of the magnetic field on the inner part of the stator 21 are mobilized, so that the rotation of the inner part of the stator 21 with respect to the outer part 19 of the stator used for the purpose of voltage regulation by means of a rotary magnet 41 takes place almost without power.
  • this presupposes that the torsional preload is adapted to the magnetic restoring force.
  • the rotary magnet 41 shown in FIGS. 1 and 5 is arranged inside a yoke 42 which carries a winding 43 controlled by the generator terminal voltage. Voltage fluctuations in the gen- rator winding to a rotation of the rotary magnet 41 and thus effect the desired constant control of the voltage by a relative rotation between the two stator parts. 1, the rotary magnet 41 is overhung on the associated end of the hollow shaft 24, which in turn is non-rotatably connected to the stator inner part 21. The rotary magnet 41 sits centrally on a bearing section 45 at the end of the hollow shaft 24 and is pressed there against a shoulder of the hollow shaft 24.
  • the rotary magnet 41 with the associated yoke 42 are preferably each made of sheet metal.
  • the electrical circuit for actuating the rotary magnet 41 is still drawn.
  • the winding 43 attached to one of the poles of the yoke 42 is connected to the terminal voltage UI, U2 of the generator winding 28.
  • the magnetic flux is directly proportional to the indicated voltage and controls the rotation of the rotary magnet 41 and, via the hollow shaft 24, also of the stator inner part 21, as a result of which the geometry of the control air gap 23 and thus the magnetic resistance in the stator 11 is changed.
  • the result is a simple regulation of the terminal voltage of the generator independent of the power factor cos ⁇ .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Control Of Eletrric Generators (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Multiple Motors (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

Bei einer Stromerzeugereinheit aus Generator und Hubkolbenverbrennungsmotor als Antrieb, insbesondere Synchrongenerator und Dieselmotor, mit im Rotor des Generators zu dessen Erregung im Bereich der Pole angeordneten Dauermagneten und einer Ankerwicklung (28) im Stator sind in den Polbereichen des Rotors (29) in axialer Richtung wenigstens einseitig offene Aufnahmetaschen (34) ausgebildet, welche mit einer zylindrischen Umfangswand (50) an den mit dem Stator (11) gebildeten Luftspalt (33) angrenzen; die Dauermagnete der Polbereiche sind jeweils durch eine Mehrzahl von Magnetelementen (35) gebildet, die in Umfangsrichtung innerhalb der Aufnahmetaschen (34) nebeneinander angeordnet sind.

Description

Stromerzeugereinheit aus Generator und Hubkolbenverbrennungsmotor als Antrieb
Die Erfindung betrifft eine Stromerzeugereinheit aus Generator- und Hubkolbenverbrennungsmotor als Antrieb, insbesondere aus Synchron-Generator- und Dieselmotor, mit im Rotor des Generators zu dessen Erregung im Bereich der Pole angeordneten Dauermagneten und einer Ankerwicklung im Stator.
Eine derartige mit einem Pumpenaggregat kombinierte Stromerzeugereinheit ist m DE 19721527 beschrieben.
Permanent erregte elektrische Maschinen besitzen üblicherweise Dauermagnete, die j e Pol aus einem Stuck bestehen. Bei dem bekannten Generator besitzt jeder Dauermagnet die Form eines Zylindermantelsegments, welches im Bereich der Pole an dem mit dem Stator gebildeten Luftspalt angrenzt.
Derartige Dauermagnetschalen sind kaum wirtschaftlich herstellbar, edenfalls nicht mehr m einer Große, die für Generatoren mit einer Leistung über fünf kVA geeignet ist. Die Montage derartiger einstuckiger Dauermagnete ist nur m unmagnetisiertem Zustand möglich, wegen der jede normale Handhabung ausschließenden hohen Magnetkräfte. Die Magnetisierung muß dann umständlich am komplett montierten Rotor vorgenommen werden. Beim Transport großer Dauermagnete besteht wegen ihrer spröden Werkstoffeigenschaf en außerdem Bruchgefahr.
Demgegenüber liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine wirtschaftliche Losung für die Be- stückung des Rotors des Generators bei einer eingangs genannten Stromerzeugereinheit mit Dauermagneten zum Zwecke der magnetischen Erregung des Generators zu schaffen, insbesondere die vorgenannten Nachteile zu vermeiden .
Diese Aufgabe wird sowohl hinsichtlich der Herstellung der Dauermagnete, als auch in Bezug auf ihre Montage im Rotor einer eingangs genannten Stromerzeugereinheit gemäß dem Kennzeichen von Anspruch 1 gelöst .
Dadurch, daß nach dem Erfindungsvorschlag die Dauermagnete durch eine Mehrzahl relativ kleiner Magnetelemente gebildet sind, wird einerseits deren wirtschaftliche Herstellung ermöglicht. Diese sind nicht nur leicht zu transportieren und in aufmagnetisierter Form herzurichten, sondern lassen sich auch auf einfache Weise montieren. Zu diesem Zweck werden sie einzeln in Umfangsrichtung nebeneinander in geeigneten Aufnahmetaschen des Rotors mit gleichpoliger Ausrichtung angeordnet. Letztere sind, in axialer Richtung gesehen, ein- oder beidseitig offen ausgebildet, so daß deren Bestückung mit Magnetelementen von einer oder beiden Stirnseiten des Rotors her möglich ist. In axialer Richtung durchgehend offen ausgebildete Aufnahmetaschen ermöglichen als vorteilhafte Ausführungsform, daß die Magnetelemente in den Aufnahmetaschen in axialer Richtung wenigstens in zwei Reihen angeordnet werden können. Dabei besteht die Möglichkeit, durch die Magnetelemente bei geeigneter Dimensionierung, Anzahl und Anordnung an jede gewünschte Auslegung des zu erzielenden magnetischen Flusses anzupassen. Zu diesem Zweck können die Magnetelemente mehr oder weniger dicht nebeneinander angeordnet werden; sie können in einer SD Φ N O Q d μ- LQ ω ffi LQ Di D N 53 s; t N < Di CD rt to 3 rt Ml C Di μ- to 0 c H- d X d J d Φ d μ- Φ Φ Φ ξ SD Φ 0= £ φ μ- Ό SD 0 Φ φ d= φ μ- D μ- Di ι- d n φ SD X tr Φ d CD CD Φ CD >-i d μ- 3 SU ω LQ d n ^ ^ φ rt Ω Φ
Φ n Di g μ- rt CQ Φ Ω i d CD μ- * Φ d Ω Φ rt φ Φ rr H
< Mi Φ Φ d Φ μ- μ- to to X Di Φ Φ Ω φ d d d- d Φ l Di d D μ- rt
Φ Φ h- ' rr T3 Di -χ o d 0 0 3 μ- d d rr LQ CD d Φ μ* Φ d= μ- d d μ- -. 0 j i-J = l-ti SD &) φ Φ X φ rr rr SD= Φ ~ Φ r μ- d d SD= < rr d tr Ω CD d d
H er O 0= CQ CD rr 3 et CD 0 0 O LQ d 0 LQ d μ- SD= Φ rr tr CQ
CL rt Φ rr O CD Φ h-x H μ- f* € LQ ≤ d SD IQ φ d 3 t-i rt φ N
Φ Φ LQ Φ 3 X d CD d μ- 2 CD CD iQ 0 Φ Mi tr μ- μ- d tr φ h-x LQ SU Φ CD SD ≤
^ H- ω d μ- Φ d Φ rt n U ^ 1— ' Φ H Φ 0 3 rt LQ CD 0 d φ -x Φ IQ d LQ μ- Φ rr LQ Di N CD 3 Ω d α H Ω α φ d μ- i d LQ μ-
X H SD Φ d d Φ d φ X 3 SU ~ rt rr > Φ rr d φ d Φ i Φ
3 SU d d d Ό Di N μ- Φ i μ- Di Φ μ- Ω Φ d H| Φ rt CD Φ 0 0
Ml l- d Mi 0 SD • rr rr σ d Φ rt rr D d tΛ σ μ- H &
&l rr LQ 2 t Hi Φ 3 Φ ~ f-i D. tr 0 (U Φ 3 d Φ CD Di 2 Φ Di Φ
3 Φ & SD *- SD 3 • φ Φ CD μ- M SU S n μ- 0 d Ω μ- > d Q Φ IQ LQ d SU ^ Φ X rt S φ H Di SU d Di rt Ω rr Φ IQ α Φ ω > Φ d d 0 H -x 3 μ- Φ ΪU CD et SU CQ 1*1 φ rr Φ d μ- rt CQ
=> d Φ d α Φ CD O Φ Mi 3 IQ Ό SU Φ d Ω 3 S φ d tr1 Φ φ 0 J CD T) rr SD μ- π* d d SD 3 φ d 1— ' rt d Φ r SU < n SU: et ≤ LQ d UQ s 0 Φ H φ N td Φ rt Ω Φ d Φ SD N 3 rt 1— ' LQ 0 s d Ml χ-i Φ SD a Φ 0 1— ' rt rr μ- H CD rr d rt r ω s Φ Φ i— su= d d μ- cQ SD M fi
CD d *-<. Φ μ- f-1 Φ d CD φ >• tr1 Φ N n* SU X h-χ Φ ( ) Φ SU Φ d Di Q rt rr LQ 3 LQ SD H LQ Ω Φ d SD: h-1 X d= IQ Φ μ- et rt & φ CD μ- Φ μ-
Φ ÖJ SD 0 Φ Φ CD rr d - N d Φ tu Ω d 3 Ω Φ Φ μ- >-t d CD SD d d Q i— (Q d d SD μ- d φ d rt LQ 3 - ' ?r φ 0 φ rr D -x f-i SD Ul d Φ 1— *
Φ et Φ Mi rr d £D LQ μ- CD N CÜ φ Φ rt Φ r Di d r μ- Φ Φ h-χ et i CD φ 3
0 d Φ ω μ- • >τ| 3 rt Ό • d Φ d Φ Φ rt Ω 3 d φ SD td φ
X d D. SD= IQ Φ PJ Φ rt ^ w d rt > hi Φ < rr Φ d d co > α φ rr
X U Φ Ω Φ d μ- d LQ μ- μ- SU Φ SD Φ d Φ d l-i Φ μ- μ- i φ H; rr φ tr 1— ' rr Φ Ω d Ω 0 d 3 ≤ t. i rt d Φ CD Ω Φ t-i & φ £ μ- Φ CD rr Φ rr X h-χ CD Φ Φ Φ D: μ- Φ N tr Φ μ- Φ X μ- M
1— ' SU 2 d φ d μ- r rt rt Φ Φ h-x d d μ- d φ d J 3 X rt d Φ rr Φ
H- Hj SD μ- Di d CQ 0 SD £ 3 i et Φ t*. rt μ- d Di !T φ Φ Φ rt d φ μ- IQ SD Φ Φ rr Di -x SU φ f d Φ LQ Φ φ n. tr 1— ' CD H -x N φ
LQ d d d w rr d Φ et Di hi μ- d= d d Φ h 0= Φ - CD SX μ- d i to
Φ Φ Ml Mi < d i μ- Ml σ CD hi LQ d rr CD d d Φ Ω Φ
2 rr 3 ω 0 d Φ φ SD Ml Φ rt Φ Φ - Φ rt D d d ι-i X tr ü μ-
Φ μ- μ- μ- SD = M LQ H X rt 1*1 CD d LQ d= • LQ tv Φ μ- rr
Φ Oi 1— ' Φ π* d n rt Φ SU μ- - d rt rt H μ- Di Ω rr S X SD 3 φ d tΛ Φ LQ r Φ O X & X SD Φ 0 D 0 d SD Φ SO- μ- SD Φ Ω Φ d
3 Φ μ- - Φ μ- X 0= 0 μ- h-χ CD rr Ml rt LQ tΛ H rr Φ rt CQ CD rr d
H s: Φ d rr d I—1 rt d t) SU Φ 0 3 Mi Φ Φ Φ Φ <. μ- d rt rt CD μ- d Φ d n CQ rr Φ d Ό h-χ d Φ rr ^ < td d 0 ω Φ μ- Φ μ- d d d rr Φ 0 U n Φ Φ φ d LQ φ tr1 Φ 0 d 2 Ω rt 3 d 0
Φ μ- Φ d Φ Ml tv d 1— * > SD Φ d d= d H* > SD rr Φ 3 » d SD
3 LQ Di ι-i rr μ- rt ω tr d Ml Ω > Φ d LQ • h-x rt μ- X
Mi CD X LQ SD - LQ Di Φ H| 3 d = ?r d LQ IQ Ml Φ d Φ ≤. φ μ-
1— ' rr Φ n tΛ > μ- d φ φ h- ö Φ N h- ' Φ d n Φ tr1 3 Φ ^ SD
Φ CQ 0 d ≤ SD Φ μ- CD Φ h- μ- d SU Φ ^ SD rt φ Φ α "- d
O d π* i Mi Φ d tr1 r CD CD et Φ X μ- rr Φ rt d φ Ω d φ
JT ω Φ Φ μ- d CD 2 SD: φ d ω h-x Ω 3 μ* N rt 3 rr LQ > φ X d Φ d d d φ rr φ Φ Φ et LQ 1
der Aufnahmetaschen die Abstände zwischen benachbarten Magnetelementen definierende axial verlaufende Rippen vorgesehen sind.
Die Magnetelemente werden in ihrer jeweiligen Montage- position durch die hohen Magnetkräfte festgehalten. Es kann aber auch zweckmäßig sein, die Magnetelemente auf der Innenfläche der Aufnahmetaschen zusätzlich noch durch Kleben zu befestigen oder die Aufnahmetaschen an ihren axial gegenüberliegenden Stirnseiten durch entsprechende Deckel aus Metall oder Kunststoff zu verschließen.
Ebenfalls zur Vereinfachung der Montage oder aus statischen Überlegungen kann es zweckmäßig sein, die Aufnahmetaschen durch axial verlaufende Trennwände in einzelne, jeweils etwa dem Querschnitt eines Magnetelements entsprechende Schubfächer zu unterteilen.
Die Magnetelemente sind im Rotor des Generators angeordnet. Der Rotor kann dabei erfindungsgemäß als Außenläufer ausgebildet sein. Umgekehrt kann der Rotor mit den Magnetelementen aber auch als Innenläufer ausgebildet sein, wobei sich die Ankerwicklung dann in dem außen angeordneten Stator befindet .
Um zu vermeiden, daß die randseitigen Magnetelemente im Falle eines sogenannten Stoßkurzschlusses durch Umma- gnetisierung unbrauchbar werden, ist erfindungsgemäß eine Umlenkung des Magnetflusses in der Weise vorgesehen, daß die Aufnahmetaschen in Umfangsrichtung auf beiden Seiten über das jeweils letzte Magnetelement hinaus verlängert sind. Dadurch werden die Dauermagnete nicht entmagnetisiert. Durch die erfindungsgemäß vorgesehenen Aufnahmetaschen für die Magnetelemente ergibt sich die Möglichkeit einer einfachen Montage der Magnetelemente, die infolge des magnetischen Rückschlusses nahezu kraftlos positioniert werden können. Zusätzlich kann eine Magnetfeldbe- emflusssung bei der Montage zweckmäßig sein; hierzu kann nach einem weiteren erfindungsgemäßen Vorschlag vorgesehen sein, daß im Rotorinneren bei der Montage ein Stator positioniert wird, welcher zu Montagezwecken derart bestromt wird, daß das Positionieren der Magnetelemente weitgehend kraftlos möglich ist. Dadurch vermeidet man Montageschwierigkeiten infolge starker Abstoßungskräfte zwischen den Magnetelementen. Durch dieses Zusammenwirken der Ausbildung der Aufnahmetaschen einerseits und deren Bestückung mit Dauermagneten in Form kleiner Magnetelemente andererseits wurde ein wirtschaf licher Weg zur Verwirklichung derartiger Stromerzeugereinheiten mit permanent erregtem Synchrongenerator aufgefunden.
Im folgenden wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnung erläutert. Es zeigt
Fig. 1 einen Axialschnitt durch eine Motor-
Generator-Emheit gemäß Schnitt I-I der Fig.
2, Fig. 2 eine Ansicht auf den Stator und den Rotor der
Motor-Generator-Einheit gemäß Schnitt II-II der Fig. 1, Fig. 3 zu Fig. 2 eine teilweise axiale Ansicht des
Stators m vergrößerter Darstellung, Fig. 4 einen dreidimensionalen Ausschnitt des Rotors mit Dauermagneten und Fig. 5 eine Ansicht des Spannungsreglers gemäß
Schnitt V-V der Fig. 1.
Die in den Fig. 1 bis 3 dargestellte einen Stromerzeuger bildende elektrische Maschine betrifft eine Einheit aus einem Antriebsmotor und einem Synchrongenerator. Als Antriebsmotor kommt bevorzugt ein Dieselmotor m Frage, von dem lediglich das anschluß- seitige Ende seiner Kurbelwelle 1 strichliert gezeichnet ist. Stirnseitig an der Kurbelwelle 1 ist ein Luf- terrad 2 mittels Schrauben 3 angebaut. Das Lufterrad 2 besitzt eine Beschaufelung 4 zur Erzeugung eines Luftstroms gemäß Pfeil SI zur Motorkuhlung, wobei die gemäß Pfeil S2 zustromende Luft der aus dem Generatorgehause 8 abströmenden Kuhlluft nach der Generatorkuhlung entspricht. Wie in Fig. 1 dargestellt, besitzt der (strom- ) abflußseitig vorgesehene Generatorgehausedeckel 9 Ansaugoffnungen für die gemäß Pfeilen L zuströmende Kuhl- luft . Damit dieser Kuhlluftstrom im Generatorgehause 8 seine volle Kuhlwirkung erzielt, besitzt die Schutzhaube 14 eine oder mehrere (nicht gezeichnete) entsprechend dimensionierte Eintrittsoff ungen für die Kuhlluft.
Ein motorseitiges Anschlußgehause 5 umschließt den Raum, m dem das Lufterrad 2 untergebracht ist, radial nach außen; es ist beidseitig offen und besitzt auf seiner dem Motor gegenüberliegenden Seite einen Ringflansch 6 mit Gewindebohrungen zum Eindrehen von Befestigungsschrauben 7 für den Anschluß des zweckmäßig aus Blech gefertigten zylindrischen Generatorgehauses 8, m dem dieses auf beiden Stirnseiten planflach g emge- spannt wird. Die Befestigungsschrauben 7 sind an der Innenseite des Generatorgehäuses 8 anliegend über dessen Umfang verteilt angeordnet und durchspannen die gesamte Gehäuselänge. Am abflußseitigen, in der Zeichnung linken Ende des Generatorhäuses 8 ist ein Generatorgehäusedeckel 9 vorgesehen, welcher an radial nach innen ragenden Speichen einen Deckelinnenring 10 aufweist, an dem der Stator 11 des Generators befestigt ist. Mit ihren abflußseitigen Enden ragen die Schäfte der Befestigungsschrauben 7 durch Bohrungen in dem Generatorgehäusedeckel 9 hindurch; an ihren freien Gewindeenden 12 sind Schraubbolzen 13 aufgeschraubt, die der Befestigung des Generatorgehäuses 8 am Generatorgehäusedeckel 9 sowie der Schutzhaube 14 mittels kurzer Schrauben 15 dienen; diese werden von außen durch entsprechende Bohrungen in der Schutzhaube 14 in Gewindebohrungen der zugewandten Enden der Schraubbolzen 13 eingeschraubt. Die Schutzhaube 14 übergreift mit ihrem das offene Ende bildenden Randabschnitt 16 das zugeordnete freie Ende des Generatorgehäusedeckels 9 von außen .
Während über den Umfang verteilt gemäß dem vorliegenden Ausführungsbeispiel acht Befestigungsschrauben 7 vorgesehen sind, genügen zur Befestigung des Stators an dem Deckelinnenring 10 sechs Statorschrauben 17, welche durch Bohrungen des Blechpakets eines Statoraußenteils 19 hindurchgeführt sind und über Distanzhülsen 20 zwischen dem Deckelinnenring 10 und der zugewandten Seite des Statoraußenteils 19 mit dem Deckelring 10 verschraubt sind. Der Statoraußenteil 19 wird auf diese Weise gehäusefest fixiert, wobei das den Statoraußenteil 19 bildende Blechpaket durch die Statorschrauben 17 zusammengespannt wird. Das einen Statorinnenteil 21 bildende Blechpaket ist auf einer Hohlwelle 24 drehfest angeordnet. Die Hohlwelle 24 ist über ihre Endkappe 60 mit einem in der Wellenachse angeordneten, mit Vorspannung eingesetzten Torsionsstab 46 verbunden. Sie ist auf Lagerbuchsen 47 in Lagerflanschen 26 von Hüllblechen 22 verdrehbar gelagert, welche an gegenüberliegenden Stirnseiten des Blechpakets angeordnet sind. Das der Endkappe 60 gegenüberliegende Ende des Torsionsstabs 46 ist über eine stabfeste Stütze 44 gehäusefest fixiert. Deren Befestigungsauge 61 sitzt auf einer Schraube 62, welche das Blechpaket des Jocheisens 42 zusammenspannt. Die Hüllbleche 22 überdecken einen Steuerluftspalt 23 zwischen dem Statorinnenteil 21 und dem Statoraußenteil 19. Da somit das den Statorinnenteil 21 bildende Blechpaket drehfest auf der Hohlwelle 24 sitzt, macht es deren Verdrehung zum Zwecke der erwünschten Konstantregelung der Generatorspannung mit. Die Verstellung des Statorinnenteils 21 gegenüber dem Statoraußenteil 19 zum Zwecke der Spannungsregelung des Generators wird weiter unten noch im Detail beschrieben.
Die Ansicht gemäß Fig. 2 zeigt - ohne die in Fig. 1 dargestellte Isolierplatte 25, die zur Verbesserung der Ansicht weggelassen ist - , nicht nur die Kontur des den Rotor 29 bildenden Blechpakets, sondern auch diejenige der den Stator bildenden Blechpakete, welche im Bereich des Statoraußenteils 19 Ausschnitte 38 zur Aufnahme der Wicklungsstränge der Drehstromwicklung 28 des Generators aufweisen. Der Statoraußenteil 19 ist mittels durch Bohrungen 39 seines Blechpakets geführten Statorschrauben 17 an dem in Fig. 1 gezeigten Deckelinnenring 10 befestigt. Entsprechend der gewählten Schnittführung erkennt man auch die Distanzhülsen 20, welche das Blechpakte des Statoraußenteils 19 gegen den Deckelinnenring 10 abstützen.
Drei Halteschrauben 27 dienen der Zentrierung des Statorinnenteils 21 innerhalb des Statoraußenteils 19 mittels seitlicher Hüllbleche 22, in deren Lagerflanschen 26 die Hohlwelle 24 mit dem Blechpaket des Statorinnenteils 21 gelagert ist.
Die Hüllbleche 22 werden nach außen hin im Bereich des Steuerluftspalts 23 jeweils noch von einer Isolierplatte 25 überdeckt, welche der elektrischen Isolierung der Drehstromwicklung 28 des Generators sowie dreier am Umfang verteilt angeordneter Halteschrauben 27 gegenüber dem Hüllblech 22 dient. Die Halteschrauben 27 verlaufen durch Bohrungen in dem den Statoraußenteil 19 bildenden Blechpaket. Sie sind mittels Isolationshülsen gegen das Blechpaket isoliert und zentrieren über die Hüllbleche 22 den Statorinnenteil 21 gegenüber dem Statoraußenteil 19.
Der Stator 11 ist umgeben vom Rotor 29, welcher ebenfalls aus einem Blechpaket aufgebaut ist, welches mittels Spannschrauben 30 zusammengespannt wird, die mit einem motorseitigen Gewindeende 31 in entsprechende Gewindebohrungen des Lüfterrads 2 eingeschraubt sind. Zwischen Lüfterrad und der zugeordneten Seite des Rotors 29 sind auf die Spannschrauben 30 aufgeschobene Stützhülsen 32 eingespannt. Damit ist der Rotor 29 drehfest mit dem Lüfterrad 2 verbunden. An seinem Innenumfang bildet er einen schmalen ca. 2 mm breiten Luftspalt 33 gegenüber dem Stator 11. Außerdem besitzt der Rotor 29 in axialer Richtung durchgehende etwa zy- linderförmig innerhalb zweier Polsegmente verlaufende Taschen 34, in welche von beiden Seiten Magnetelemente 35 in Form schmaler barrenförmiger Stäbe eingeschoben sind, und zwar im vorliegenden Beispiel, wie man aus Fig. 2 erkennt, je Pol zwei Reihen von jeweils zehn nebeneinander angeordneten Magnetelementen 35, welche für die magnetische Erregung des Generators verantwortlich sind. Im Bereich der Taschen 34 begrenzt die innere Konturlinie 36 der die Taschen 34 radial nach innen begrenzenden Umfangswand 50 des Rotors 29 zusammen mit der äußeren Konturlinie 37 des Stators 11 den schmalen Luftspalt 33. Bohrungen 40 in den Rotorblechen dienen für den Einbau eines (nicht gezeigten) Anlassers.
Gemäß Fig. 2 und 4 werden die Magnetelemente 35 axial in die Taschen 34 eingeschoben, so daß sie polygonartig verteilt dicht nebeneinander liegend die beiden Pole bilden. Durch die Unterteilung der Dauermagnete für die Pole in kleine Magnetelemente 35 wird deren kostengünstige Herstellung ermöglicht; deren Montage wird durch einen geeigneten magnetischen Rückschluß 49 sehr erleichtert, weil dadurch die gegenseitige Abstoßung benachbarter Magnetelemente 35 praktisch entfällt. Die einzelnen Magnetelemente 35 können in die Taschen 34 nahezu kraftlos eingeschoben werden. Dabei erübrigt sich eine besondere Befestigung der Magnetelemente 35, denn diese werden im Betrieb durch ihre Magnetkräfte in axialer Richtung gehalten und in den Taschen in radialer Richtung gesehen abgestützt, so daß sie den im Betrieb auftretenden Fliehkräften ohne weiteres standhalten.
In der räumlichen Darstellung der Magnetanordnung gemäß Fig. 4 ist am Ende des Ausschnitts, in dem die Magnet- N
Φ
I-*
Figure imgf000013_0001
d
Φ d to φ Q
3
Φ d rt
Φ
Φ rt s:
SU
CD
Ω rr t-i
P* d tr
Φ d
SD rt μ- Q
<*.
Φ
M J d
Φ d
Φ
-
<!
0 d
Figure imgf000013_0002
der Kreisform abweichende vorspringende Umfangsab- schnitte aufweisen. Beispielsweise verkleinert sich der Steuerluftspalt 23, wenn man ausgehend von der strichliert eingezeichneten Position den Statorinnenteil 21 gegenüber dem Statoraußenteil 19 in Richtung des Uhrzeigersinns gemäß Pfeil U (Fig. 2) verdreht, wobei die Endposition etwa bei einem Verdrehweg gemäß dem Winkel w erreicht ist. In dieser Endposition ist der Steuerluftspalt 23 am kleinsten.
Durch Verdrehen des Statorinnenteils 21 gegenüber dem Statoraußenteil 19 wird wie beschrieben die Geometrie des Steuerluftspalts 23 und damit der magnetische Widerstand im Stator 11 geändert. Dieser Umstand wird bei der vorliegenden permanent erregten Synchronmaschine zur Spannungsregelung verwendet . Durch die beschriebene Veränderung des magnetischen Flusses ist es möglich, die induzierte Spannung zu regeln, wobei eine direkte Proportionalität zwischen letzterer und dem magnetischen Fluß besteht. Dadurch, daß der Statorinnenteil 21 auf einer Hohlwelle 24 mit vorgespanntem Torsionsstab 46 sitzt, werden der Kraftwirkung des magnetischen Feldes auf den Statorinnenteil 21 entgegenwirkende Tor- sionskräfte mobilisiert, so daß die zum Zwecke der Spannungsregelung angewandte Verdrehung des Statorin- nenteils 21 gegenüber dem Statoraußenteil 19 mittels eines Drehmagneten 41 nahezu kraftlos vonstatten geht. Dies setzt allerdings voraus, daß die Torsionsvorspannung der magnetischen Rückstellkraft angepaßt wird.
Der in den Fig. 1 und 5 dargestellte Drehmagnet 41 ist im Inneren eines Jocheisens 42 angeordnet, welches eine von der Generatorklemmenspannung gesteuerte Wicklung 43 trägt. Dabei führen Spannungsschwankungen an der Gene- ratorwicklung zu einer Verdrehung des Drehmagneten 41 und bewirken somit durch eine Relativdrehung zwischen den beiden Statorteilen die gewünschte Konstantregelung der Spannung. Gemäß Fig. 1 ist der Drehmagnet 41 auf dem zugeordneten Ende der Hohlwelle 24 fliegend gelagert, welche wiederum drehfest mit dem Statorinnenteil 21 verbunden ist. Der Drehmagnet 41 sitzt zentrisch auf einem Lagerabschnitt 45 am Ende der Hohlwelle 24 und ist dort gegen eine Schulter der Hohlwelle 24 aufgepreßt. Bevorzugt sind der Drehmagnet 41 mit zugehörigem Joch 42 jeweils geblecht ausgebildet.
Gemäß Fig. 5 ist noch die elektrische Schaltung zur Betätigung des Drehmagneten 41 gezeichnet. Die an einem der Pole des Jocheisens 42 angebrachte Wicklung 43 liegt an der Klemmenspannung UI , U2 der Generatorwicklung 28 an. Dabei verhält sich der magnetische Fluß direkt proportional zur indizierten Spannung und steuert die Drehung des Drehmagneten 41 und über die Hohlwelle 24 auch des Statorinnenteils 21, wodurch die Geometrie des Steuerluftspalts 23 und damit der magnetische Widerstand im Stator 11 verändert wird. Das Ergebnis ist eine einfache, vom Leistungsfaktor cos φ unabhängige Regelung der Klemmenspannung des Generators .

Claims

Ansprüche
Stromerzeugereinheit aus Generator und Hubkolbenverbrennungsmotor als Antrieb, insbesondere Synchrongenerator und Dieselmotor, mit im Rotor des Generators zu dessen Erregung im Bereich der Pole angeordneten Dauermagneten und einer Ankerwicklung (28) im Stator, dadurch gekennzeichnet, daß in den Polbereichen des Rotors (29) in axialer Richtung wenigstens einseitig offene Aufnahmetaschen (34) ausgebildet sind, welche mit einer zylindrischen Umfangswand (50) an den mit dem Stator (11) gebildeten Luftspalt (33) angrenzen und daß die Dauermagnete der Polbereiche jeweils durch eine Mehrzahl von Magnetelementen (35) gebildet sind, die in Umfangsrichtung innerhalb der Aufnahmetaschen (34) nebeneinander angeordnet sind.
Stromerzeugereinheit nach Anspruch 1, dadurch gekennzeichnet, daß die Magnetelemente (35) in den Aufnahmetaschen (34) in axialer Richtung wenigstens in zwei Reihen hintereinander angeordnet sind.
Stromerzeugereinheit nach Anspruch 1, dadurch gekennzeichnet, daß der Rotor (29) als Außenläufer ausgebildet ist.
Stromerzeugereinheit nach Anspruch 1, dadurch gekennzeichnet, daß die Aufnahmetaschen (34) in axialer Richtung durchgehend offen ausgebildet sind und die Dicke der Umfangswand (50) etwa der halben radialen Dicke der Magnetelmente (35) entspricht. Stromerzeugereinheit nach Anspruch 4, dadurch gekennzeichnet, daß die Aufnahmetaschen (34) in Umfangsrichtung auf beiden Seiten über das jeweils letzte Magnetelement (35) hinaus unter Ausbildung eines Hohlraumes (48) verlängert sind.
Stromerzeugereinheit nach Anspruch 5, dadurch gekennzeichnet, daß sich im Bereich des Hohlraums (48) die Umfangswand (50) fortsetzt, wobei deren Stärke unter Berücksichtigung der Dimensionierung des Hohlraums (48) derart bemessen wird, daß keine Entmagnetisie- rung der randnahen Magnetelemente (35) als Folge eines Stoßkurzschlusses eintritt .
Stromerzeugereinheit nach Anspruch 5, dadurch gekennzeichnet, daß die Aufnahmetaschen (34) mit einem radialen
Brückensteg (51) an das Zwischenpolsegment (52) des
Rotors (29) angrenzen.
Stromerzeugereinheit nach Anspruch 1, dadurch gekennzeichnet, daß die radialen Innenflächen der Aufnahmetaschen
(34) entsprechend der Form der Magnetelemente (35) polygonartig ausgebildet sind.
Stromerzeugereinheit nach Anspruch 1, dadurch gekennzeichnet, daß wenigstens auf der der Umfangswand (50) gegenüberliegenden Innenfläche der Aufnahmetaschen (34) die Abstände zwischen benachbarten Magnetelementen
(35) definierende, axial verlaufende Rippen (53) vorgesehen sind.
10. Stromerzeugereinheit nach Anspruch 1, dadurch gekennzeichnet, daß die axiale Breite des Rotors (29) etwa der doppelten Länge eines Magnetelements (35) entspricht.
11. Stromerzeugereinheit nach Anspruch 1, dadurch gekennzeichnet, daß die Magnetelemente (35) auf der Innenfläche der Aufnahmetaschen (34) durch Kleben befestigt sind.
12. Stromerzeugereinheit nach Anspruch 1, dadurch gekennzeichnet, daß die Aufnahmetaschen (34) an ihren axial gegenüberliegenden Stirnseiten durch Deckel verschlossen sind.
13. Stromerzeugereinheit nach Anspruch 1, dadurch gekennzeichnet, daß die Aufnahmetaschen (34) durch axial verlaufende Trennwände in einzelne, jeweils etwa dem Querschnitt eines Magnetelements (35) entsprechende Schubfächer unterteilt sind.
14. Stromerzeugereinheit nach Anspruch 1, dadurch gekennzeichnet, daß die Magnetelemente (35) im Querschnitt rechteckig sind.
15. Stromerzeugereinheit nach Anspruch 1, dadurch gekennzeichnet, daß die Magnetelemente (35) im Querschnitt als Ringsegmente ausgebildet sind.
16. Verfahren zum Bestücken des Rotors bei einer Stromerzeugereinheit gemäß Anspruch 1 mit Magnetelmenten (35) , dadurch gekennzeichnet, daß bereits aufmagnetisierte Magnetelemente (35) verwendet werden und daß der Stator (11) oder eine magnetisch gleichwertige Hilfsvorrichtung zur Montage innerhalb des Rotors lose positioniert wird, derart, daß das Positionieren der Magnetelemente (35) weitgehend kraftlos möglich ist, und daß die Magnetelemente (35) nach dem Positionieren in ihrer Lage befestigt werden.
17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, daß der Stator (11) oder die Hilfsvorrichtung zum Positionieren der Magnetelemente (35) bestromt wird.
PCT/EP2001/002367 2000-03-02 2001-03-02 Stromerzeugereinheit aus generator und hubkolbenverbrennungsmotor als antrieb WO2001065661A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE50109853T DE50109853D1 (de) 2000-03-02 2001-03-02 Stromerzeugereinheit aus generator und hubkolbenverbrennungsmotor als antrieb
US09/937,535 US6710494B2 (en) 2000-03-02 2001-03-02 Power generating installation that comprises a generator and a reciprocating internal combustion engine as drive
AU42444/01A AU779625B2 (en) 2000-03-02 2001-03-02 Power generating installation that comprises a generator and a reciprocating internal combustion engine as drive
JP2001564438A JP2003526310A (ja) 2000-03-02 2001-03-02 電機ならびに駆動機構としての往復ピストン内燃エンジンからなる発電ユニット
EP01915313A EP1173917B1 (de) 2000-03-02 2001-03-02 Stromerzeugereinheit aus generator und hubkolbenverbrennungsmotor als antrieb

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10010248.4 2000-03-02
DE10010248A DE10010248A1 (de) 2000-03-02 2000-03-02 Stromerzeuger als Einheit aus Antriebsmotor und Generator

Publications (1)

Publication Number Publication Date
WO2001065661A1 true WO2001065661A1 (de) 2001-09-07

Family

ID=7633286

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/EP2001/002369 WO2001065670A1 (de) 2000-03-02 2001-03-02 Stromerzeugereinheit aus antriebsmotor und generator
PCT/EP2001/002368 WO2001065669A1 (de) 2000-03-02 2001-03-02 Stromerzeugereinheit aus generator und hubkolbenverbrennungsmotor als antrieb
PCT/EP2001/002367 WO2001065661A1 (de) 2000-03-02 2001-03-02 Stromerzeugereinheit aus generator und hubkolbenverbrennungsmotor als antrieb

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/EP2001/002369 WO2001065670A1 (de) 2000-03-02 2001-03-02 Stromerzeugereinheit aus antriebsmotor und generator
PCT/EP2001/002368 WO2001065669A1 (de) 2000-03-02 2001-03-02 Stromerzeugereinheit aus generator und hubkolbenverbrennungsmotor als antrieb

Country Status (11)

Country Link
US (3) US6737775B2 (de)
EP (3) EP1175723A1 (de)
JP (3) JP2003526311A (de)
KR (3) KR100655668B1 (de)
CN (3) CN1174540C (de)
AT (2) ATE308154T1 (de)
AU (3) AU779625B2 (de)
DE (3) DE10010248A1 (de)
ES (2) ES2265421T3 (de)
RU (3) RU2001126051A (de)
WO (3) WO2001065670A1 (de)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10010248A1 (de) * 2000-03-02 2001-09-13 Hatz Motoren Stromerzeuger als Einheit aus Antriebsmotor und Generator
DE10036419A1 (de) * 2000-07-26 2002-03-14 Generator Technik Schwaebisch Verfahren zur Konstantstromerzeugung sowie Vorrichtung zu seiner Durchführung
DE10228224B3 (de) * 2002-06-25 2004-02-19 Motorenfabrik Hatz Gmbh & Co Kg Vorrichtung zur Kühlung einer Stromerzeugereinheit
US20050104461A1 (en) * 2002-06-25 2005-05-19 Ernst Hatz Method and system for assembling an electricity generating unit
DE10228225B4 (de) * 2002-06-25 2004-05-19 Motorenfabrik Hatz Gmbh & Co Kg Verfahren und Anordnung zur Montage einer Stromerzeugereinheit
US20050035678A1 (en) * 2003-08-11 2005-02-17 Ward Terence G. Axial flux motor mass reduction with improved cooling
US7332837B2 (en) * 2003-08-11 2008-02-19 General Motors Corporation Cooling and handling of reaction torque for an axial flux motor
US7262536B2 (en) * 2003-08-11 2007-08-28 General Motors Corporation Gearless wheel motor drive system
DE10356078A1 (de) * 2003-12-01 2005-06-23 Siemens Ag Motor für eine Kraftstoffpumpe
DE102004024976B4 (de) * 2004-05-21 2008-01-24 Motorenfabrik Hatz Gmbh & Co. Kg Startvorrichtung für Stromerzeuger als Einheit aus Verbrennungsmotor und Generator
US7385328B2 (en) * 2006-05-23 2008-06-10 Reliance Electric Technologies, Llc Cogging reduction in permanent magnet machines
US20080061525A1 (en) * 2006-09-08 2008-03-13 Gm Global Technology Operations, Inc. Vehicular wheel assembly
DE102006042945B4 (de) * 2006-09-13 2011-07-21 Siemens AG, 80333 Verfahren zur Effizienzsteigerung von dieselelektrisch getriebenen Fahrzeugen und Fahrzeug zur Durchführung des Verfahrens
JP4898537B2 (ja) * 2007-04-18 2012-03-14 アイシン・エィ・ダブリュ株式会社 ステータ位置調整方法
US8129880B2 (en) * 2007-11-15 2012-03-06 GM Global Technology Operations LLC Concentrated winding machine with magnetic slot wedges
EA010775B1 (ru) * 2008-01-24 2008-10-30 Открытое Акционерное Общество "Инжиниринговая Нефтегазовая Компания - Всероссийский Научно-Исследовательский Институт По Строительству И Эксплуатации Трубопроводов, Объектов Тэк" Многофазная электрическая машина с постоянными магнитами
DE102008037045A1 (de) * 2008-08-08 2010-03-04 Motorenfabrik Hatz Gmbh & Co. Kg Elektrofahrzeug
US8935995B1 (en) 2009-01-30 2015-01-20 Bobby L. Hawkins Wheeled, manually moveable electric generator
DE102009011477A1 (de) * 2009-03-06 2010-09-09 Lichtblick - Die Zukunft Der Energie Gmbh & Co. Kg Blockheizkraftwerk-Aggregat mit einem Verbrennungskolbenmotor und einer elektrischen Maschine
DE102009031371B4 (de) * 2009-07-01 2011-05-26 Siemens Aktiengesellschaft Läufer und Verfahren zur Herstellung eines Läufers einer elektrischen Maschine
WO2011088460A2 (en) * 2010-01-18 2011-07-21 Generac Power Systems, Inc. Electrical generator with improved cooling and exhaust flows
US20110254398A1 (en) * 2010-04-20 2011-10-20 Dana Allen Hansen Self-contained & propelled magnetic alternator & flywheel directdrive generator aka:MAW-directdrives flywheel generator
US9154024B2 (en) 2010-06-02 2015-10-06 Boulder Wind Power, Inc. Systems and methods for improved direct drive generators
CN102107356B (zh) * 2011-01-21 2012-08-15 株洲高新技术产业开发区壹星科技有限公司 一种永磁半直驱风力发电机转子磁极盒装配方法及工装
EA019231B1 (ru) * 2011-04-08 2014-02-28 Игорь Валерьевич Иванов Синхронный явнополюсный генератор (варианты)
EP2697893B1 (de) 2011-04-12 2016-01-13 Boulder Wind Power, Inc. Luftspaltkontrollsysteme und -verfahren
US8823331B2 (en) 2011-09-15 2014-09-02 Lovejoy Controls Corporation Permanent magnet generator
JP5422019B2 (ja) * 2012-05-16 2014-02-19 三菱電機株式会社 磁石式発電機
KR101358747B1 (ko) * 2013-12-23 2014-02-10 (주) 대진유압기계 알터네이터를 갖는 엔진유압펌프
RU2548662C1 (ru) * 2014-06-05 2015-04-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Синхронный генератор с возбуждением от постоянных магнитов
US10787303B2 (en) 2016-05-29 2020-09-29 Cellulose Material Solutions, LLC Packaging insulation products and methods of making and using same
US11078007B2 (en) 2016-06-27 2021-08-03 Cellulose Material Solutions, LLC Thermoplastic packaging insulation products and methods of making and using same
JP6296115B2 (ja) * 2016-08-10 2018-03-20 マツダ株式会社 モータのステータ支持構造
EP3731375B1 (de) 2019-04-24 2023-09-06 Black & Decker Inc. Bürstenloser aussenläufermotor mit axiallüfter
JP6830996B1 (ja) * 2019-12-26 2021-02-17 山洋電気株式会社 同期電動機のフレーム構造並びにフレーム及び電機子の製造方法
CN211981596U (zh) * 2020-04-07 2020-11-20 精进电动科技股份有限公司 一种旋变定子定位压片和定位结构
KR20220040265A (ko) * 2020-09-23 2022-03-30 현대모비스 주식회사 모터
CN112653308A (zh) * 2020-12-10 2021-04-13 江苏中奕和创智能科技有限公司 一种不等距同心叠绕组永磁电机
CN112953065B (zh) * 2021-02-09 2022-05-27 珠海格力节能环保制冷技术研究中心有限公司 转子与曲轴的连接结构及具有其的电机
CN117013598B (zh) * 2023-07-10 2024-06-28 中节能(象山)环保能源有限公司 一种出口电压恒压控制方法、***、存储介质及智能终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137884A (en) * 1975-07-25 1979-02-06 Hitachi, Ltd. Magneto for motor vehicle
US4742258A (en) * 1986-08-26 1988-05-03 Midwest Dynamometer & Engineering Co. Driven rotary shaft system using permanent magnets
DE4418454A1 (de) * 1994-05-26 1995-11-30 Siemens Ag Außenläufer einer Synchronmaschine
JPH09121485A (ja) * 1995-10-24 1997-05-06 Hitachi Metals Ltd 回転電機用磁石回転子

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US263134A (en) * 1882-08-22 Thomas a
US996253A (en) * 1911-01-09 1911-06-27 Frederic Ayres Johnson Dynamo-electric machine.
GB228316A (en) * 1923-12-31 1925-02-05 Villiers Engineering Co Ltd Improvements in dynamo-electrical machines
US2892109A (en) * 1955-10-11 1959-06-23 Wipac Dev Ltd Permanent magnet alternators
DE1093000B (de) * 1956-03-23 1960-11-17 Wipac Dev Ltd Schwungradlaeufer fuer elektrische Stromerzeuger mit mehreren Dauermagneten
US2874309A (en) * 1957-09-12 1959-02-17 Gen Electric Combination starter motor and magneto for internal combustion engines
FR88608E (fr) * 1965-05-12 1967-03-03 Renault Alternateur à aimant tournant et à tension réglable, notamment applicable à la commande de transmission de puissance sur automobiles
DE2106057A1 (de) * 1971-02-09 1972-09-14 Bosch Gmbh Robert Wechselstromgenerator
US3828212A (en) * 1971-09-16 1974-08-06 Briggs & Stratton Corp Assembly of alternator magnet blocks with engine flywheel
US4146806A (en) * 1974-08-26 1979-03-27 Kokusan Denki Co., Ltd. Flywheel magneto generator
US4027229A (en) * 1975-12-15 1977-05-31 Simmonds Precision, Engine Systems, Inc. Regulatable permanent magnet alternator
US4095922A (en) * 1976-10-20 1978-06-20 Tecumseh Products Company Electro-mechanical device
DE2823256C2 (de) * 1978-05-27 1985-05-23 Robert Bosch Gmbh, 7000 Stuttgart Elektrischer Generator
US4371801A (en) * 1978-10-11 1983-02-01 General Electric Company Method and apparatus for output regulation of multiple disk permanent magnet machines
US4305031A (en) * 1979-05-15 1981-12-08 Lucas Industries Limited Rotary electrical machine
DE3009279A1 (de) * 1980-03-11 1981-10-01 Robert Bosch Gmbh, 7000 Stuttgart Elektrischer generator
US4578609A (en) * 1982-09-29 1986-03-25 The Garrett Corporation Permanent magnet dynamoelectric machine
GB8429974D0 (en) * 1984-11-28 1985-01-09 Lucas Ind Plc Rotary electrical machines
US4882513A (en) * 1985-12-23 1989-11-21 Sundstrand Corporation Dual permanent magnet generator
US4795936A (en) * 1986-08-26 1989-01-03 Midwest Dynamometer & Engineering Co. Driven rotary shaft system using permanent magnets
US4766362A (en) * 1986-11-24 1988-08-23 Simmonds Precision Products, Inc. Regulatable permanent magnet alternator
US4885493A (en) * 1988-07-25 1989-12-05 General Motors Corporation Output voltage control apparatus of a permanent magnet alternator
US4959605A (en) * 1988-11-22 1990-09-25 Sundstrand Corporation Hybrid permanent magnet and variable reluctance generator
WO1991000639A1 (de) * 1989-06-27 1991-01-10 Ficht Gmbh Stromaggregat
SI8912097B (sl) * 1989-10-30 1999-04-30 Iskra-Elektromotorji, P.O., Enofazni enosmerni motor brez krtačk z veliko hitrostjo in veliko močjo
US5260642A (en) * 1991-04-30 1993-11-09 Sundstrand Corporation Torque driven dual PMG actuator
DE4237343A1 (de) * 1992-11-05 1994-05-11 Kugelfischer G Schaefer & Co Permanenterregter ein- oder mehrphasiger elektrischer Generator
JP3176765B2 (ja) * 1993-06-17 2001-06-18 本田技研工業株式会社 電動走行車両のハイブリッド電源装置
US5705917A (en) * 1994-09-14 1998-01-06 Coleman Powermate, Inc. Light weight machine with rotor employing permanent magnets and consequence poles
EP0729216A3 (de) * 1995-02-21 1998-03-11 Siemens Aktiengesellschaft Hybriderregte Synchronmaschine
US5796190A (en) * 1995-05-29 1998-08-18 Denyo Kabushiki Kaisha Engine-driven permanent magnetic type welding generator
JP3363682B2 (ja) * 1995-12-19 2003-01-08 株式会社ミツバ 磁石発電機
JP3162285B2 (ja) * 1996-03-01 2001-04-25 本田技研工業株式会社 電動機
EP0854558A3 (de) * 1997-01-21 2000-07-12 Isuzu Ceramics Research Institute Co., Ltd. Läuferaufbau für Generatoren und Herstellungsverfahren des Läufers
US5955807A (en) * 1997-04-25 1999-09-21 Denso Corporation Synchronous electric machine having auxiliary permanent magnet
DE19721527C1 (de) * 1997-05-22 1998-11-05 Still Gmbh Baueinheit aus Verbrennungsmotor, Generator und Pumpenaggregat
JP3690067B2 (ja) * 1997-06-11 2005-08-31 株式会社日立製作所 永久磁石回転電機
GB9717556D0 (en) * 1997-08-20 1997-10-22 Decorule Ltd Reciprocation engine
DE19933009A1 (de) * 1998-07-24 2000-02-10 Matsushita Electric Ind Co Ltd Motor mit interne Permanentmagneten enthaltendem Rotor und einen solchen Motor verwendende Antriebseinheit
JP3496595B2 (ja) * 1999-10-27 2004-02-16 日産自動車株式会社 回転電機
US6249069B1 (en) * 1999-11-22 2001-06-19 Bomardier Motor Corporation Of America Output regulation of internal combustion engine alternator by mechanical means
US6455975B1 (en) * 1999-12-03 2002-09-24 Pacific Scientific Electro Kinetics Division Regulated permanent magnet generator
DE10010248A1 (de) * 2000-03-02 2001-09-13 Hatz Motoren Stromerzeuger als Einheit aus Antriebsmotor und Generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137884A (en) * 1975-07-25 1979-02-06 Hitachi, Ltd. Magneto for motor vehicle
US4742258A (en) * 1986-08-26 1988-05-03 Midwest Dynamometer & Engineering Co. Driven rotary shaft system using permanent magnets
DE4418454A1 (de) * 1994-05-26 1995-11-30 Siemens Ag Außenläufer einer Synchronmaschine
JPH09121485A (ja) * 1995-10-24 1997-05-06 Hitachi Metals Ltd 回転電機用磁石回転子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 09 30 September 1997 (1997-09-30) *

Also Published As

Publication number Publication date
JP2003526311A (ja) 2003-09-02
ES2265421T3 (es) 2007-02-16
CN1174540C (zh) 2004-11-03
RU2266605C2 (ru) 2005-12-20
EP1173917B1 (de) 2006-05-24
US20020153798A1 (en) 2002-10-24
JP2003526310A (ja) 2003-09-02
CN1363132A (zh) 2002-08-07
ES2250381T3 (es) 2006-04-16
WO2001065669A1 (de) 2001-09-07
CN1232014C (zh) 2005-12-14
US6566783B2 (en) 2003-05-20
AU777148B2 (en) 2004-10-07
DE10010248A1 (de) 2001-09-13
EP1173917A1 (de) 2002-01-23
RU2252477C2 (ru) 2005-05-20
AU4066801A (en) 2001-09-12
US20020153793A1 (en) 2002-10-24
EP1183769A1 (de) 2002-03-06
DE50107804D1 (de) 2005-12-01
RU2001126051A (ru) 2003-07-20
WO2001065670A1 (de) 2001-09-07
EP1183769B1 (de) 2005-10-26
CN1363133A (zh) 2002-08-07
US6710494B2 (en) 2004-03-23
DE50109853D1 (de) 2006-06-29
AU779625B2 (en) 2005-02-03
US6737775B2 (en) 2004-05-18
ATE308154T1 (de) 2005-11-15
JP2003526312A (ja) 2003-09-02
AU4244401A (en) 2001-09-12
US20020153791A1 (en) 2002-10-24
KR20010113817A (ko) 2001-12-28
AU5215201A (en) 2001-09-12
EP1175723A1 (de) 2002-01-30
KR100655668B1 (ko) 2006-12-08
KR20010113816A (ko) 2001-12-28
KR20010113818A (ko) 2001-12-28
CN1187879C (zh) 2005-02-02
ATE327588T1 (de) 2006-06-15
AU771717B2 (en) 2004-04-01
CN1363129A (zh) 2002-08-07
KR100641617B1 (ko) 2006-11-02

Similar Documents

Publication Publication Date Title
WO2001065661A1 (de) Stromerzeugereinheit aus generator und hubkolbenverbrennungsmotor als antrieb
DE60212406T2 (de) Läufer mit eingebetteten Dauermagneten
EP1759447B1 (de) Drehfeldmaschine mit glockenläufer
DE19780317B4 (de) Elektrische Maschine
DD262310A5 (de) Elektrische maschine
EP0286905A1 (de) Elektronisch kommutierter, kollektorloser Gleichstrommotor
DE20303580U1 (de) Innenläufermotor
EP0574960B1 (de) Elektrischer Rotationsmotor
DE102004017507A1 (de) Rotoranordnung für eine elektrische Maschine
EP2928047A1 (de) Reluktanzrotor mit mechanischer Stabilisierung
DE102017223824A1 (de) Elektrodrehmaschinenrotor
DE102008019734A1 (de) Elektrische Maschine und Rotor für dieselbe
DE19752884A1 (de) Förderaggregat für Kraftstoff
DE10140362A1 (de) Motor/Generator des Seitenrotationstyps
DE102015001520A1 (de) Statorkern und Permanentmagnetmotor
DE68916689T2 (de) Elektrischer Motor.
DE4423840A1 (de) Radialmagnetmotor
DE102004013098A1 (de) Stator für einen Elektromotor
DE10013375A1 (de) Elektrische Maschine
DE102004046160B4 (de) Kraftstoffpumpe
EP2834909A2 (de) Elektromotor
EP2104976B1 (de) Elektrische maschine
EP1796249A2 (de) Elektrische Maschine
DE102008062025A1 (de) Schrittmotorvorrichtung
EP1516109B1 (de) Vorrichtung zur kühlung einer stromerzeugereinheit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 01800388.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AU BA BB BG BR BZ CA CH CN CO CR CU CZ DM DZ EE GD GE HR HU ID IL IN IS JP KP KR LC LK LR LT LV MA MG MK MN MX NO NZ PL RO RU SG SI SK TT UA US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2001915313

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2001/1096/KOL

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020017013350

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 42444/01

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2001 564438

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09937535

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001915313

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001915313

Country of ref document: EP