WO2001064331A1 - Verfahren zur herstellung von mikro- und/oder nanokapseln - Google Patents

Verfahren zur herstellung von mikro- und/oder nanokapseln Download PDF

Info

Publication number
WO2001064331A1
WO2001064331A1 PCT/EP2001/002240 EP0102240W WO0164331A1 WO 2001064331 A1 WO2001064331 A1 WO 2001064331A1 EP 0102240 W EP0102240 W EP 0102240W WO 0164331 A1 WO0164331 A1 WO 0164331A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerization
waxes
capsules
suspension
wax
Prior art date
Application number
PCT/EP2001/002240
Other languages
English (en)
French (fr)
Inventor
Ilona Lange
Christian N. Kirsten
Marcel Roth
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Publication of WO2001064331A1 publication Critical patent/WO2001064331A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C403/00Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone
    • C07C403/24Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone having side-chains substituted by six-membered non-aromatic rings, e.g. beta-carotene
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/70Fixation, conservation, or encapsulation of flavouring agents
    • A23L27/72Encapsulation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/40Colouring or decolouring of foods
    • A23L5/42Addition of dyes or pigments, e.g. in combination with optical brighteners
    • A23L5/43Addition of dyes or pigments, e.g. in combination with optical brighteners using naturally occurring organic dyes or pigments, their artificial duplicates or their derivatives
    • A23L5/44Addition of dyes or pigments, e.g. in combination with optical brighteners using naturally occurring organic dyes or pigments, their artificial duplicates or their derivatives using carotenoids or xanthophylls
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • A61K9/1694Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5089Processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/917Laminar or parallel flow, i.e. every point of the flow moves in layers which do not intermix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00824Ceramic
    • B01J2219/00828Silicon wafers or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00858Aspects relating to the size of the reactor
    • B01J2219/0086Dimensions of the flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing

Definitions

  • the present invention relates to a method for producing microcapsules, which is characterized in that the starting materials for the capsules are laminarly mixed with one another and are subjected to an encapsulation process in a manner known per se under laminar mixing conditions.
  • Microcapsules are powders or particles with a diameter of approximately 1 to approximately 5000 ⁇ m, in which a solid, liquid or gaseous substance is enclosed by a solid material (wall material). Polymers or substances based on wax or lipids are generally suitable as solid materials. Microcapsules are used particularly in pharmaceuticals, e.g. for converting liquid, in particular also volatile compounds, into solid, free-flowing powders, for increasing the stability of the active substances, for retarding active substances, for organ-specific transport of the active substances, for covering the taste and also for avoiding incompatibilities with other active substances and auxiliary substances.
  • So-called solid lipid nanoparticles, small-particle wax and lipid particles with enclosed active ingredients, manufactured using high-pressure homogenization processes, are the subject of current basic research in the medical / pharmaceutical field.
  • Another area of application for microcapsules is the production of carbonless reactive carbonless papers.
  • the wall can be made dense, permeable or semi-permeable. This results in a wealth of possibilities for the controlled release of the encapsulated substance, e.g. by destroying the shell or by permeation or also by chemical reactions that can take place inside the microcapsules.
  • microcapsules are produced, for example, by mixing the starting materials, ie the wall materials and the substances to be encapsulated, and then carrying out the encapsulation reaction, for example by drying, ie by means of solvent removal, chemical reactions or cooling.
  • the microencapsulation processes can be carried out batchwise or continuously.
  • the continuous processes known from the prior art have the disadvantage that the size distribution of the capsules obtained is relatively wide and capsule sizes smaller than 50 ⁇ m cannot be achieved.
  • the object of the present invention was to provide a process for producing microcapsules and / or nanocapsules which can be produced in a continuous process and which have a particle size distribution which is as narrow as possible, a lower particle size preferably being achieved below 100 m should.
  • the present invention accordingly relates to a method for producing microcapsules and / or nanocapsules, which is characterized in that the starting materials for the capsules are mixed with one another under laminar conditions and are subjected to an encapsulation process in a manner known per se under these conditions.
  • homogeneous particles which consist of a carrier material based on polymer, wax or lipid and substances contained therein in the deficit, are also to be considered as capsules.
  • homogeneous means that the capsule is not made up of a spherical wall with a core, but is made entirely of carrier material.
  • the encapsulated substance is contained in the carrier material in the form of a solidified melt or enclosed particles.
  • micromixers In order to achieve the laminar flow conditions according to the invention during mixing, it has proven to be particularly advantageous to use so-called micromixers as mixing devices.
  • Such micromixers or microreactors allow rapid and laminar mixing of liquids and liquid reaction mixtures within a short period of time, usually within milliseconds.
  • Such micromixers usually consist of a lamellar structured chamber, the channels of which can have diameters in the range from 20 to 100 ⁇ m.
  • reactant mixtures can be converted in the reactor in a targeted manner.
  • the liquids or reactants to be mixed are initially compartmentalized in the channels down to an order of magnitude of ⁇ 100 ⁇ m. Only then is the phase interface formed, for example liquid / liquid.
  • Silicon-based mixers (TU Ilmenau) can also be used to carry out the process according to the invention.
  • Mixers of this type have channels etched in silicon in the micrometer range which, in conjunction with a geometry suitable for mixing, enable the emulsifier-free or low-emulsifier mixing of two or more non-soluble liquids. These systems are also suitable for the methods described.
  • the micromixer technique described has the advantage that it is possible to work with small amounts of emulsifier or without an emulsifier.
  • the disadvantage of emulsifiers is that they can interfere with the formation of a closed shell when capsules are formed. Furthermore, they can release active ingredients from the capsule material prematurely and have an allergenic effect or influence the action of substances contained in the capsules.
  • the laminar mixture ensures gentle treatment of the active ingredients to be included. Active substances that are destroyed by the entry of mechanical energy, e.g. DNA are loaded with a minimum of mechanical energy.
  • the capsules can be produced in a manner known per se, such as by phase separation processes, mechanical-physical processes or polymerization processes, such as suspension and emulsion polymerization, inverse suspension polymerization, micelle polymerization, interfacial polymerization processes, interfacial deposition, in-situ Polymerization, evaporation of solvents from emulsions, suspension crosslinking, formation of hydrogels, crosslinking in solution / suspension, systems of liposomes and on a molecular scale, the phase separation process, also called coacervation, being particularly preferred.
  • phase separation process also called coacervation
  • Another possibility is the incorporation of active ingredients into melted lipids or waxes. The latter are then emulsified.
  • the molten droplets can solidify, for example by high-pressure homogenization and introducing the melt into water and cooling, and the active substance-containing lipid or wax particles form.
  • Coacervation means that a dissolved polymer in a polymer-rich, still solvent-containing phase by means of desolvation, for. B. by pH change, temperature change, salting out, changing the ionic strength, addition of complexing agents (complex coacervation), addition of non-solvent is transferred.
  • the coacervate attaches to the interface of the material to be encapsulated to form a coherent capsule wall and is solidified by drying or polymerization.
  • Physical processes for the production of micro and / or nanoparticles are spray drying, fluidized bed processes and extrusion processes.
  • the wall is formed by polycondensation or polyaddition from monomeric or oligomeric starting materials at the interface of a water / oil emulsion or oil / water emulsion.
  • the wall material of the capsules according to the invention can be any material suitable for the production of capsules, such as, for example, natural or synthetic polymers.
  • polymers are polysaccharides, such as agarose or cellulose, chitin, chitosan, proteins, such as gelatin, gum arabic, albumin or fibrinogen, ethyl cellulose, methyl cellulose, carboxymethylethyl cellulose, cellulose acetates, polyacrylates and - methacrylates, polyanillin, polypyrrole, polyvinylpyrrolidone , Polyethylene, polypropylene, copolymer of polystyrene and maleic anhydride, epoxy resins, polyethyleneimines, copolymers of styrene and methyl methacrylate, polyacrylates and polymethacrylates, polycarbonates, polyesters, silicones, methyl cellulose, mixtures of gelatin and water glass, gelatin and polyphosphate, cellulose acetate and copolymer and phthal
  • the wall material can optionally be cross-linked.
  • Common crosslinkers are glutaraldehyde, urea / formaldehyde resins, tannin compounds, such as tannic acid, and mixtures thereof.
  • Waxes can also be used to manufacture the capsules.
  • "Waxing” is understood to mean a number of natural or artificially obtained substances, which are usually above 35 ° C melt without decomposition and are relatively low-viscosity and not stringy just above the melting point. They have a strongly temperature-dependent consistency and solubility.
  • the waxes are divided into three groups according to their origin, natural waxes, chemically modified waxes and synthetic waxes.
  • Natural waxes include, for example, vegetable waxes such as candelilla wax, carnauba wax, japan wax, esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugar cane wax, ouricury wax, or montan wax, animal waxes such as beeswax, shellac wax, walnut, lanolin (wool wax), or broom wax, mineral wax or ozokerite (earth wax), or petrochemical waxes such as petrolatum, paraffin waxes or micro waxes.
  • vegetable waxes such as candelilla wax, carnauba wax, japan wax, esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugar cane wax, ouricury wax, or montan wax
  • animal waxes such as beeswax, shellac wax, walnut, lanolin (wool wax), or broom wax, mineral wax or ozokerite (earth wax), or
  • the chemically modified waxes include hard waxes such as montan ester waxes, Sassol waxes or hydrogenated jojoba waxes.
  • Synthetic waxes are generally understood to mean polyalkylene waxes or polyalkylene glycol waxes. It is also possible to use compounds from other classes of material that meet the requirements regarding the softening point. As suitable synthetic compounds have, for example, higher esters of phthalic acid, in particular dicyclohexyl, which is commercially available under the name Unimoll 66 ® (Bayer AG), proved. Are also suitable Synthetic waxes of lower carboxylic acids and fatty alcohols, such as dimyristyl tartrate, sold under the name Cosmacol ® ETLP (Condea). Conversely, synthetic or partially synthetic esters from lower alcohols with fatty acids from native sources can also be used.
  • Tegin ® 90 (Goldschmidt), a glycerol monostearate palmitate, falls into this class of substances.
  • Shellac for example Shellac-KPS-Dreiring-SP (Kalkhoff GmbH), can also be used as a further substance.
  • Wax alcohols are higher molecular weight, water-insoluble fatty alcohols with usually about 22 to 40 carbon atoms.
  • the wax alcohols occur, for example, in the form of wax esters of higher molecular fatty acids (wax acids) as the main component of many natural waxes.
  • wax alcohols are lignoceryl alcohol (1-tetracosanol), cetyl alcohol, myristyl alcohol or melissyl alcohol.
  • wool wax alcohols which are understood to be triterpenoid and steroid alcohols, for example lanolin understands, for example, under the trade name Argowax ® (Pamentier & Co) is available as well as fatty acid glycerol esters, fatty acid alkanolamides and water-insoluble or only slightly water-soluble polyalkylene glycol compounds.
  • Suitable waxes are saturated aliphatic hydrocarbons (paraffins).
  • the components to be encapsulated can consist of any solid, liquid or gaseous materials which are to be produced in encapsulated form.
  • examples of this are pharmaceutical and cosmetic active ingredients, food additives, adhesives or adhesive components, additives for detergents and cleaning agents.
  • fragrances, enzymes, catalysts in the form of solutions, dispersions or particles, antibiotics and antibacterial substances on an inorganic and organic basis, fungicides, pesticides, biological units such as cells, DNA, RNA, vitamins etc. can be mentioned. It is also possible to produce so-called hollow capsules.
  • the material to be encapsulated would then be a gas, e.g. B. air.
  • Example 1 Encapsulation of ⁇ -carotene in paraffin
  • ⁇ -carotene 0.5 g are dissolved in 50.0 g of paraffin with a melting point of 44-46 ° C. at 60 ° C. This solution is mixed in a micromixer thermostated at 50 ° C with deionized water at a temperature of 50 ° C in a ratio of 1: 5.
  • the HPLC pumps were preheated with water at 90 ° C.
  • the paraffin in water dispersion thus formed is pumped directly into a stirred receiver from 1 liter of ice water.
  • the paraffin droplets solidify with the carotene embedded therein, forming a sediment.
  • a particle size distribution of 30 - 140 ⁇ m is determined by means of dynamic light scattering.
  • Example 3 Encapsulation of an aqueous ethylenediamine solution in polyamide
  • a mixture of 6.0 g of ethylenediamine and 24.0 g of water is mixed in a micromixer with cyclohexane in a ratio of 1: 9.
  • the water / amine thus formed in cyclohexane dispersion is pumped into a stirred receiver from 100 ml of cyclohexane and 15.0 g of sebacic acid dichloride.
  • the polymerization reaction of the acid dichloride with the amine begins at the phase interface of the water droplets with the surrounding cyclohexane to form a polyamide capsule shell.
  • the excess of amine ensures encapsulation of an aqueous amine solution.
  • the particle sizes determined are in the range of 25-100 m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

Es wird ein Verfahren zur Herstellung von Mikro- und/oder Nanokapseln beansprucht, das dadurch gekennzeichnet ist, dass die Ausgangsstoffe für die Kapseln unter laminaren Bedingungen miteinander vermischt und unter diesen Bedingungen in an sich bekannter Weise einem Verkapselungsprozess unterworfen wird. Das Verfahren kann kontinuierlich und unter Einsatz von nur geringen Mengen Emulgator oder ohne Emulgator durchgeführt werden. Es werden einheitliche Teilchen mit einer engen Grössenverteilung erhalten.

Description

Verfahren zur Herstellung von Mikro- und/oder Nanokapseln
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Mikrokapseln, das dadurch gekennzeichnet ist, dass die Ausgangsstoffe für die Kapseln laminar miteinander vermischt und unter laminaren Mischungsbedingungen in an sich bekannter Weise einem Ver- kapselungsprozess unterworfen werden.
Mikrokapseln sind Pulver beziehungsweise Teilchen mit einem Durchmesser von etwa 1 bis etwa 5000 μm, worin ein fester, flüssiger oder gasförmiger Stoff von einem festen Material (Wandmaterial) umschlossen ist. Als feste Materialien kommen in der Regel Polymere, oder Substanzen auf Wachs- oder Lipidbasis in Betracht. Mikrokapseln werden insbesondere bei Arzneimitteln eingesetzt, z.B. zur Überführung von flüssigen, insbesondere auch von flüchtigen Verbindungen, in feste, freifließende Pulver, zur Stabilitätserhöhung der Wirkstoffe, zur Retardierung von Wirkstoffen, zum organspezifischen Transport der Wirkstoffe, zur Geschmacksüberdeckung und auch zur Vermeidung von Unverträglichkeiten mit anderen Wirk-und Hilfsstoffen. Sogenannte Solid Lipid Nanoparticles, kleinstteilige Wachs- und Lipidpartikel mit eingeschlossenen Wirkstoffen, hergestellt über Hochdruckhomogenisationsverfahren, sind Thema aktueller Grundlagenforschung im medizinischen/pharmazeutischen Bereich. Ein weiteres Einsatzgebiet von Mikrokapseln ist die Herstellung von kohlefreien Reaktivdurchschreibpapieren.
Durch die Auswahl der Wandmaterialien, wie natürlichen oder synthetischen Polymeren, kann die Wandung dicht, permeabel oder semipermeabel gestaltet werden. Somit ergibt sich eine Fülle von Möglichkeiten, die eingekapselte Substanz gesteuert freizusetzen, z.B. durch Zerstören der Hülle oder durch Permeation oder auch durch chemische Reaktionen, die im Inneren der Mikrokapseln ablaufen können.
Die Herstellung dieser Mikrokapseln erfolgt beispielsweise durch Vermischen der Ausgangsstoffe d.h. der Wandmaterialien und der zu verkapselnden Substanzen und anschließenden Durchführung der Verkapselungsreaktion, z.B. durch Trocknung, d.h. durch Lösungsmittelentzug, chemische Reaktionen oder Kühlung. Die Mikroverkapselungsverfahren können batch-weise oder kontinuierlich durchgeführt werden. Die aus dem Stand der Technik bekannten kontinuierlichen Verfahren haben jedoch den Nachteil, dass die Größenverteilung der erhaltenen Kapseln relativ breit ist und Kapselgrößen kleiner als 50 μm nicht erreicht werden können.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, ein Verfahren zur Herstellung von Mikro- und/oder Nanokapseln zur Verfügung zu stellen, die in einem kontinuierlichen Verfahren hergestellt werden können und die eine möglichst enge Teilchengrößenverteilung aufweisen, wobei eine untere Teilchengröße vorzugsweise unter 100 m erreicht werden sollte.
Überraschenderweise wurde festgestellt, dass, wenn man die Ausgangsstoffe, die der Verkapselung unterworfen werden sollen, unter laminaren Bedingungen vermischt und die Verkapselung unter diesen Bedingungen durchführt, Teilchen mit einer engen Größenverteilung erhalten werden können. Ein weiterer Vorteil ist, dass das Verfahren kontinuierlich durchgeführt werden kann.
Gegenstand der vorliegenden Erfindung ist demgemäß ein Verfahren zur Herstellung von Mikro- und/oder Nanokapseln, das dadurch gekennzeichnet ist, dass die Ausgangsstoffe für die Kapseln unter laminaren Bedingungen miteinander vermischt und unter diesen Bedingungen in an sich bekannter Weise einem Verkapselungsprozess unterworfen werden.
Als Kapseln sollen im folgenden auch homogene Partikel, welche aus einem Trägermaterial auf Polymer-, Wachs- oder Lipidbasis und darin im Unterschuß enthaltenden Stoffen bestehen, betrachtet werden. Homogen bedeutet in diesem Zusammenhang, daß die Kapsel nicht aus einer sphärischen Wand mit Kern, sondern durchgängig aus Trägermaterial aufgebaut ist. Der verkapselte Stoff ist in Form einer erstarrten Schmelze oder eingeschlossener Partikel in dem Trägermaterial enthalten.
Um die erfindungsgemäßen laminaren Strömungsbedingungen beim Mischen zu erreichen hat es sich als besonders vorteilhaft erwiesen, sogenannte Mikromischer als Mischgeräte einzusetzen. Derartige Mikromischer beziehungsweise Mikroreaktoren erlauben eine schnelle und laminare Durchmischung von Flüssigkeiten und flüssigen Reaktionsgemischen innerhalb von kurzen Zeiträumen, in der Regel innerhalb von Millisekunden. Derartige Mikromischer bestehen üblicherweise aus einer lamellar strukturierten Kammer, deren Kanäle Durchmesser im Bereich von 20 bis 100 μm aufweisen können. Mittels entsprechenden Zu- und Ableitungen können Eduktgemische gezielt im Reaktor umgesetzt werden. In diesen Mischern werden die zu vermischenden Flüssigkeiten oder Reaktanden zunächst bis in eine Größenordnung von < 100 μm in den Kanälen kompartimentiert. Erst anschließend erfolgt eine Ausbildung der Phasengrenzfläche, beispielsweise flüssig/flüssig. Konzentrationsgra- dienten über größere Distanzen hinweg werden so vermieden. Diese gute Durchmischung hat den weiteren Vorteil, dass bei einer Kompartimentierung der Flüssigkeiten bis hin zu Teilchengrößen von 25 μm es möglich ist, die nicht mischbaren Flüssigkeiten auch ohne Emulgator kurzzeitig zu dispergieren. Es ist beispielsweise möglich, in diesem Zustand den Verkapselungsprozess einzuleiten, so dass Kapseln hergestellt werden können, die keinen Emulgator aufweisen, was zu einer größeren Stabilität der hergestellten Kapsel führt. Ferner wurde festgestellt, dass diese Kapseln eine höhere Stabilität gegenüber Agglomeration aufweisen, so dass der Einsatz von Oberflächenmodifikationsmitteln verringert werden kann.
Zur Durchführung des erfindungsgemäßen Verfahrens können auch Mischer auf Siliciumba- sis (TU Ilmenau) verwendet werden. Derartige Mischer weisen in Silicium geätzte Kanäle im Mikrometerbereich auf, die in Verbindung mit einer zur Durchmischung geeigneten Geometrie die emulgatorfreie oder emulgatorarme Durchmischung zweier oder mehrerer nicht ineinander lösbarer Flüssigkeiten ermöglichen. Auch diese Systeme sind für die beschriebenen Verfahren geeignet.
Die beschriebene Mikromischertechnik hat den Vorteil, daß mit geringen Mengen an Emulgator oder ohne Emulgator gearbeitet werden kann. Emulgatoren haben den Nachteil, dass sie den Aufbau einer geschlossenen Hülle bei der Kapselbildung stören können. Ferner können sie Wirkstoffe vorzeitig aus dem Kapselmaterial herauslösen und allergen wirken bzw. die Wirkung in den Kapseln enthaltener Stoffe beeinflussen. Die laminare Mischung gewährleistet eine schonende Behandlung der einzuschließenden Wirkstoffe. Wirkstoffe, welche durch Eintrag mechanischer Energie zerstört werden wie z.B. DNA, werden mit einem Minimum an mechanischer Energie belastet.
Die Herstellung der Kapseln kann in an sich bekannter Weise erfolgen, wie durch Phasen- trennverfahren, mechanisch-physikalische Verfahren oder Polymerisationsverfahren, wie Suspensions- und Emulsionspolymerisation, inverse Suspensionspolymerisation, Micellen- polymerisation, Grenzflächen-Polymerisationsverfahren, Grenzflächen-Ablagerung, in-situ- Polymerisation, Verdampfung von Lösungsmitteln aus Emulsionen, Suspensionsvernetzung, Bildung von Hydrogelen, Vernetzung in Lösung/Suspension, Systeme von Liposomen und in molekularen Maßstab, wobei das Phasentrennverfahren, auch Koazervation genannt, besonders bevorzugt ist. Eine weitere Möglichkeit bietet die Einbringung von Wirkstoffen in geschmolzene Lipide oder Wachse. Letztere werden anschließend emulgiert. Nach dem Einstellen der gewünschten Tröpfchengröße können z.B. durch Hochdruckhomogenisation und Einbringen der Schmelze in Wasser und Abkühlung die geschmolzenen Tröpfchen erstarren und es bilden sich die wirkstoffhaltigen Lipid- oder Wachspartikel aus. Koazervation bedeutet, daß ein gelöstes Polymer in eine polymerreiche, noch lösungsmittel- haltige Phase mittels Desolvatation, z. B. durch pH-Änderung, Temperaturänderung, Aussalzen, Änderung der lonenstärke, Zusatz von Komplexbildnern (Komplexkoazervation), Zusatz von Nichtlösungsmittein, überführt wird. Das Koazervat lagert sich an der Grenzfläche des zu verkapselnden Materials unter Ausbildung einer zusammenhängenden Kapselwand an und wird durch Trocknung oder Polymerisation verfestigt.
Physikalische Verfahren zur Herstellung von Mikro- und/oder Nanopartikeln sind Sprühtrocknung, Wirbelschichtverfahren und Extrusionsverfahren.
Zum Umhüllen fester Kernmaterialien eignen sich auch mechanisch-physikalische Verfahren, worin das Umhüllen in der Wirbelschicht, durch Sprühtrocknung, Schmelzvertropfung bzw. Verprillung (Brace-Verfahren), Sprühgefriertrocknung, Coextrusion usw. erfolgt.
In den genannten Grenzflächen-Polymerisationsverfahren erfolgt die Wandbildung durch Polykondensation oder Polyaddition aus monomeren oder oligomeren Ausgangsstoffen an der Grenzfläche einer Wasser/Öl-Emulsion oder Öl Wasser-Emulsion.
Das Wandmaterial der erfindungsgemäßen Kapseln kann ein beliebiges, zur Herstellung von Kapseln geeignetes Material sein, wie beispielsweise natürliche oder synthetische Polymere. Beispiele für derartige Polymere sind Polysaccharide, wie Agarose oder Cellulose, Chitin, Chitosan, Proteine, wie Gelatine, Gummi arabicum, Albumin oder Fibrinogen, Ethylcellulose, Methylcellulose, Carboxymethylethylcellulose, Celluloseacetate, Polyacrylate und - methacrylate, Polyanillin, Polypyrrol, Polyvinylpyrrolidon, Polystyrol, Polyvinylchlorid, Polyethylen, Polypropylen, Copolymer aus Polystyrol und Maleinsäureanhydrid, Epoxidharze, Polyethylenimine, Copolymere aus Styrol und Methylmethacrylat, Polyacrylate und Polymethacrylate, Polycarbonate, Polyester, Silikone, Methylcellulose, Gemische aus Gelatine und Wasserglas, Gelatine und Polyphosphat, Celluloseacetat und Phthalat, Gelatine und Copolymeren aus Maleinsäureanhydrid und Methylvinylether, Celluloseacetatbutyrat sowie beliebige Gemische der voranstehenden Stoffe.
Das Wandmaterial kann gegebenenfalls vernetzt sein. Übliche Vernetzer sind Glutaraldeyd, Harnstoff/Formaldehyharze, Tanninverbindungen, wie Tanninsäure, und deren Gemische.
Zur Herstellung der Kapseln können auch Wachse eingesetzt werden. Unter "Wachsen" wird eine Reihe natürlicher oder künstlich gewonnener Stoffe verstanden, die in der Regel über 35°C ohne Zersetzung schmelzen und schon wenig oberhalb des Schmelzpunktes verhältnismäßig niedrigviskos und nicht fadenziehend sind. Sie weisen eine stark temperaturabhängige Konsistenz und Löslichkeit auf. Nach ihrer Herkunft teilt man die Wachse in drei Gruppen ein, die natürlichen Wachse, chemisch modifizierten Wachse und die synthetischen Wachse.
Zu den natürlichen Wachsen zählen beispielsweise pflanzliche Wachse wie Candelillawachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Ouricurywachs, oder Montanwachs, tierische Wachse wie Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), oder Bürzelfett, Mineralwachse wie Ceresin oder Ozokerit (Erdwachs), oder petrochemische Wachse wie Petrolatum, Paraffinwachse oder Mikrowachse.
Zu den chemisch modifizierten Wachsen zählen beispielsweise Hartwachse wie Montanesterwachse, Sassolwachse oder hydrierte Jojobawachse.
Unter synthetischen Wachsen werden in der Regel Polyalkylenwachse oder Polyalkylenglycolwachse verstanden. Ebenfalls einsetzbar sind Verbindungen aus anderen Stoffklassen, die die genannten Erfordernisse hinsichtlich des Erweichungspunkts erfüllen. Als geeignete synthetische Verbindungen haben sich beispielsweise höhere Ester der Phthalsäure, insbesondere Dicyclohexylphthalat, das kommerziell unter dem Namen Unimoll® 66 (Bayer AG) erhältlich ist, erwiesen. Geeignet sind auch synthetisch hergestellte Wachse aus niederen Carbonsäuren und Fettalkoholen, beispielsweise Dimyristyl Tartrat, das unter dem Namen Cosmacol® ETLP (Condea) erhältlich ist. Umgekehrt sind auch synthetische oder teilsynthetische Ester aus niederen Alkoholen mit Fettsäuren aus nativen Quellen einsetzbar. In diese Stoffklasse fällt beispielsweise das Tegin® 90 (Goldschmidt), ein Glycerinmonostearat- palmitat. Auch Schellack, beispielsweise Schellack-KPS-Dreiring-SP (Kalkhoff GmbH) ist als weitere Substanz einsetzbar.
Ebenfalls zu den Wachsen werden beispielsweise die sogenannten Wachsalkohole gerechnet. Wachsalkohole sind höhermolekulare, wasserunlösliche Fettalkohole mit in der Regel etwa 22 bis 40 Kohlenstoffatomen. Die Wachsalkohole kommen beispielsweise in Form von Wachsestern höhermolekularer Fettsäuren (Wachssäuren) als Hauptbestandteil vieler natürlicher Wachse vor. Beispiele für Wachsalkohole sind Lignocerylalkohol (1-Tetracosanol), Cetylalkohol, Myristylalkohol oder Melissylalkohol. Desgleichen als Wachse geeignet sind Wollwachsalkohole, worunter man Triterpenoid- und Steroidalkohole, beispielsweise Lanolin, versteht, das beispielsweise unter der Handelsbezeichnung Argowax® (Pamentier & Co) erhältlich ist sowie Fettsäureglycerinester, Fettsäurealkanolamide und wasserunlösliche oder nur wenig wasserlösliche Polyalkylenglycolverbindungen.
Weitere geeignete Wachse sind gesättigte aliphatische Kohlenwasserstoffe (Paraffine).
Die zu verkapselnden Komponenten können aus beliebigen, festen, flüssigen oder gasförmigen Materialien bestehen, die in verkapselter Form hergestellt werden sollen. Beispiele hierfür sind pharmazeutische und kosmetische Wirkstoffe, Nahrungsmittelzusatzstoffe, Klebstoffe beziehungsweise Klebstoffkomponenten, Additive für Wasch- und Reinigungsmittel. Insbesondere können Duftstoffe, Enzyme, Katalysatoren in Form von Lösungen, Dispersionen oder Partikeln, Antibiotika und antibakteriell wirkende Substanzen auf anorganischer und organischer Basis, Fungizide, Pestizide, biologische Einheiten wie Zellen, DNA, RNA, Vitamine etc. genannt werden. Es ist auch möglich sog. Hohlkapseln herzustellen, das zu verkapselnde Material wäre dann ein Gas, z. B. Luft.
Beispiele
Bei den nachstehend aufgeführten Beispielen wurde ein Einzelmischer des Instituts für Mi- krosystemtechnik in Mainz (IMM) mit einem Edelstahlgehäuse und Nickel auf Kupfer als Innenmaterial verwendet. Der Kanaldurchmesser der verwendeten Kammer lag bei 25 μm. Mittels zweier HPLC-Pumpen wurde eine Durchflußgeschwindigkeit von 10 ml/Minute realisiert.
Beispiel 1 : Verkapselung von ß-Carotin in Paraffin
0,5 g ß-Carotin werden in 50,0 g Paraffin des Schmelzpunktes 44 - 46°C bei 60°C gelöst. Diese Lösung wird im bei 50°C thermostatisierten Mikromischer mit entionisiertem Wasser der Temperatur 50°C im Verhältnis 1 :5 gemischt. Vor Beginn des Versuches wurden die HPLC-Pumen mit 90°C heißem Wasser vorgeheizt. Die so gebildete Paraffin in Wasser-Dispersion wird direkt in eine gerührte Vorlage aus 1 Liter Eiswasser gepumpt. Hierbei verfestigen sich die Paraffintröpfchen mit dem darin eingebetteten Carotin unter Ausbildung eines Bodensatzes. Mittels dynamischer Lichtstreuung wird eine Teilchengrößenverteilung von 30 - 140 μm ermittelt.
Beispiel 2: Verkapselung von Wasser in Polymethylmethacrylat
9,4 g Methylmethacrylat und 1 ,0 g Ethylenglycoldimetacrylat werden in 250 ml n-Heptan vorgelegt. Die Mischung wird anschließend auf 70°C erwärmt und gerührt. Mittels Mikromischer wird eine Lösung von 50 mg K2S2O8 und 60 mg NaHSO3 in 50 ml entionisiertem Wasser mit n-Heptan im Verhältnis 1 :5 bei einer Temperatur von 70°C gemischt. Diese Mischung wird in die Methacrylatlösung gepumpt. Zwecks Vervollständigung der Polymerisation wird 5h bei 50°C nachgerührt. Mittels TEMikroskopie und dynamischer Lichtstreuung konnten Kapseln im Größenbereich von 5 - 30 μm nachgewiesen werden.
Beispiel 3: Verkapselung einer wäßrigen Ethylendiaminlösung in Polyamid Eine Mischung aus 6,0 g Ethylendiamin und 24,0 g Wasser wird im Mikromischer mit Cyclo- hexan im Verhältnis 1 :9 gemischt. Die so gebildete Wasser/Amin in Cyclohexan-Dispersion wird in eine gerührte Vorlage aus 100 ml Cyclohexan und 15,0 g Sebacinsäuredichlorid gepumpt. Beim Einleiten beginnt an der Phasengrenzfläche der Wassertröpfchen zum umgebenden Cyclohexan die Polymerisationsreaktion des Säuredichlorids mit dem Amin unter Ausbildung einer Polyamidkapselhülle. Der Überschuss an Amin gewährleistet eine Verkapselung einer wässerigen Aminlösung. Die ermittelten Teilchengrößen liegen im Bereich von 25 - 100 m.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Mikro- und/oder Nanokapseln, das dadurch gekennzeichnet ist, dass die Ausgangsstoffe für die Kapseln unter laminaren Bedingungen miteinander vermischt und unter diesen Bedingungen in an sich bekannter Weise einem Verkapselungsprozess unterworfen werden.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Verfahren in einem Mikromischer beziehungsweise -reaktor erfolgt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Verfahren kontinuierlich durchgeführt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass eine Kapselgrößenverteilung von 10 bis 1500 m erhalten wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Verkapselung erfolgt mittels Phasentrennverfahren, mechanisch-physikalischen Verfahren oder Polymerisationsverfahren, wie Suspensions- und Emulsionspolymerisation, inverser Suspensionspolymerisation, Micellenpolymerisation, Grenzflächen-Polymerisationsverfahren, Grenzflächen- Ablagerung, in-situ-Polymerisation, Verdampfung von Lösungsmitteln aus Emulsionen, Suspensionsvernetzung, Bildung von Hydrogelen, Vernetzung in Lösung/Suspension, Systemen von Liposomen und in molekularen Maßstab oder die Einbringung von Wirkstoffen in geschmolzene Lipide oder Wachse.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Wandmaterial der Kapseln aus natürlichen und synthetischen Polymeren sowie Wachsen ausgewählt ist.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das zu verkapselnde Material ausgewählt ist aus pharmazeutischen und kosmetischen Wirkstoffen, Duftstoffen, Enzymen, Nahrungsmittelzusatzstoffen, Klebstoffen und Klebstoffkomponenten, Duftstoffen, Enzymen, Katalysatoren in Form von Lösungen, Dispersionen oder Partikeln, Antibiotika und antibakteriell wirkenden Substanzen auf anorganischer und organischer Basis, Fungiziden, Pestiziden, biologischen Einheiten wie Zellen, DNA, RNA, Vitaminen.
PCT/EP2001/002240 2000-03-02 2001-02-28 Verfahren zur herstellung von mikro- und/oder nanokapseln WO2001064331A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10010194.1 2000-03-02
DE10010194A DE10010194A1 (de) 2000-03-02 2000-03-02 Verfahren zur Herstellung von Mikrokapseln

Publications (1)

Publication Number Publication Date
WO2001064331A1 true WO2001064331A1 (de) 2001-09-07

Family

ID=7633252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/002240 WO2001064331A1 (de) 2000-03-02 2001-02-28 Verfahren zur herstellung von mikro- und/oder nanokapseln

Country Status (2)

Country Link
DE (1) DE10010194A1 (de)
WO (1) WO2001064331A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1358931A3 (de) * 2002-04-25 2004-03-03 Tosoh Corporation Vorrichtung mit feinen Kanälen, Verfahren zur Herstellung von feinteiligen Partikeln und Verfahren zur Solventextraktion
CN111387178A (zh) * 2020-03-17 2020-07-10 南京启佑生物科技有限公司 一种采用微反应器制备金属有机骨架-农药纳米复合制剂的方法
US20200390107A1 (en) * 2018-03-01 2020-12-17 Terramera Exco Holdings Ltd. Composite particles
CN115216310A (zh) * 2022-08-31 2022-10-21 华南理工大学 一种基于虫胶纳米颗粒和壳聚糖的Pickering乳化剂及其制备与应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10358969A1 (de) 2003-12-16 2005-07-21 BSH Bosch und Siemens Hausgeräte GmbH Geschirrspülmaschine mit einer Dosiervorrichtung für Zuschlagmittel und zugehöriges Verfahren

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH563807A5 (en) * 1973-02-14 1975-07-15 Battelle Memorial Institute Fine granules and microcapsules mfrd. from liquid droplets - partic. of high viscosity requiring forced sepn. of droplets
GB1446123A (en) * 1973-05-18 1976-08-18 Interfuel Bv Method of preparing gel particles containing actimides
WO2000072955A1 (de) * 1999-05-26 2000-12-07 Schering Aktiengesellschaft Verfahren zur herstellung von morphologisch einheitlichen mikro- und nanopartikeln mittels eines mikromischers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH563807A5 (en) * 1973-02-14 1975-07-15 Battelle Memorial Institute Fine granules and microcapsules mfrd. from liquid droplets - partic. of high viscosity requiring forced sepn. of droplets
GB1446123A (en) * 1973-05-18 1976-08-18 Interfuel Bv Method of preparing gel particles containing actimides
WO2000072955A1 (de) * 1999-05-26 2000-12-07 Schering Aktiengesellschaft Verfahren zur herstellung von morphologisch einheitlichen mikro- und nanopartikeln mittels eines mikromischers

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1358931A3 (de) * 2002-04-25 2004-03-03 Tosoh Corporation Vorrichtung mit feinen Kanälen, Verfahren zur Herstellung von feinteiligen Partikeln und Verfahren zur Solventextraktion
US7553434B2 (en) 2002-04-25 2009-06-30 Tosoh Corporation Fine channel device, fine particle producing method and solvent extraction method
US7718099B2 (en) 2002-04-25 2010-05-18 Tosoh Corporation Fine channel device, fine particle producing method and solvent extraction method
US20200390107A1 (en) * 2018-03-01 2020-12-17 Terramera Exco Holdings Ltd. Composite particles
CN111387178A (zh) * 2020-03-17 2020-07-10 南京启佑生物科技有限公司 一种采用微反应器制备金属有机骨架-农药纳米复合制剂的方法
CN115216310A (zh) * 2022-08-31 2022-10-21 华南理工大学 一种基于虫胶纳米颗粒和壳聚糖的Pickering乳化剂及其制备与应用
CN115216310B (zh) * 2022-08-31 2023-11-17 华南理工大学 一种基于虫胶纳米颗粒和壳聚糖的Pickering乳化剂及其制备与应用

Also Published As

Publication number Publication date
DE10010194A1 (de) 2001-09-13

Similar Documents

Publication Publication Date Title
CA2050911C (en) Encapsulation process and products therefrom
RU2286845C2 (ru) Частицы в форме сердцевины в оболочке и способ их приготовления
CA2389688C (en) A method of microencapsulation
US20040247664A1 (en) Gel capsules containing active ingredients and use thereof
AU2002220649A1 (en) Core-shell particles and process for their preparation
Goto et al. Eudragit RS and RL (acrylic resins) microcapsules as pH insensitive and sustained release preparations of ketoprofen
DE10104841A1 (de) Kapseln-in-Kapsel-System und Verfahren zu seiner Herstellung
RU2561586C1 (ru) Способ получения микрокапсул биопага-д в пектине
DE60308519T2 (de) Einschluss eines schaums aus zwei flüssigkeiten
US20030059473A1 (en) Method for preparing colloidal particles in the form of nanocapsules
WO2001064331A1 (de) Verfahren zur herstellung von mikro- und/oder nanokapseln
CN108659956A (zh) 一种以聚甲基丙烯酸正丁酯为囊壁的香精微胶囊及其制备方法
RU2634256C2 (ru) Способ получения нанокапсул сухого экстракта топинамбура
RU2555472C2 (ru) Способ получения микрокапсул антиоксидантов в пектине
Jesus et al. PREPARATION OF POLYMER PARTICLES WITH COTTONSEED OIL AND HERCYNITE BY PRECIPITATION USING AN ATOMIZATION APPARATUS
JPH04290539A (ja) マイクロカプセル複合体およびその製造方法
JP3489033B2 (ja) マイクロカプセルおよびその製造法
RU2563118C1 (ru) Способ получения нанокапсул аминогликозидных антибиотиков в альгинате натрия
RU2509559C2 (ru) Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в диоксане
IL149637A (en) Method of microencapsulation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP