WO2001063195A1 - Thin heat pipe and method of manufacturing the heat pipe - Google Patents

Thin heat pipe and method of manufacturing the heat pipe Download PDF

Info

Publication number
WO2001063195A1
WO2001063195A1 PCT/JP2000/001133 JP0001133W WO0163195A1 WO 2001063195 A1 WO2001063195 A1 WO 2001063195A1 JP 0001133 W JP0001133 W JP 0001133W WO 0163195 A1 WO0163195 A1 WO 0163195A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
section
pipe
plate
thin
Prior art date
Application number
PCT/JP2000/001133
Other languages
French (fr)
Japanese (ja)
Inventor
Norio Tanibe
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2001562121A priority Critical patent/JP4424883B2/en
Priority to PCT/JP2000/001133 priority patent/WO2001063195A1/en
Publication of WO2001063195A1 publication Critical patent/WO2001063195A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular

Definitions

  • the present invention relates to a thin heat pipe and a method for manufacturing the same, and more particularly to heat transport mainly involving high-speed movement of steam accompanying a large steam pressure difference generated by a temperature difference due to evaporation latent heat of a working fluid in a heat receiving portion, a latent heat of condensation in a heat radiating portion, and a temperature difference.
  • the present invention relates to a thin heat pipe and a method for manufacturing the same.
  • the thin tube heat pipe circulates the working fluid near the boiling point, that is, in the state of a bubble in which the working fluid is mixed with a liquid phase and a gaseous phase, and circulates through the loop-shaped pipe, and the vibration of the working fluid due to the generation and disappearance of the bubble and the heat receiving part
  • the working fluid is circulated from the density of the working fluid generated by the temperature difference between the heat radiating parts, thereby performing heat exchange.
  • Such a thin tube heat pump Since Eve has no wick, it can be structurally narrowed.
  • flattening is possible in principle by meandering the thin tube.
  • a heat pipe provided with a wick for circulating the hydraulic fluid inside the pipe.
  • a wick-type heat pipe has a mesh or sintered metal disposed on the inner wall of the heat pipe, or forms a dull slit.
  • the hydraulic fluid condensed in the heat radiating section is circulated to the heat receiving section by surface tension.
  • the arrangement of mesh or sintered metal requires a mechanism to hold them on the inner wall of the pipe, so it is structurally difficult to make the heat pipe smaller and thinner.
  • FIGS. 12A and 12B are diagrams showing the configuration concept of a conventional group wick type thin heat pipe, in which (A) is a partially broken plan view showing the general view, (B) is a cross-sectional view taken along the arrow X--X, ( C) is a sectional view taken along the line y_y.
  • This group wick type heat pipe 1 has a structure in which a steam transmission pipe section 2 is provided at the center and a groove pipe 3 composed of a plurality of slits is formed on the inner wall surface of the pipe. . Both ends of the pipe are sealed, and one end is provided with a working fluid inlet 4 for injecting a working fluid.
  • One end of the heat pipe 1 in the longitudinal direction constitutes a heat receiving portion, and the other end constitutes a heat radiating portion.
  • the heat pipe 1 having this structure is generally installed inside a large-diameter pipe.
  • a relatively narrow slit is formed by extruding an uneven slit component that is large enough to be extruded, and then thinning the pipe by swaging. Further, the pipe is flattened to reduce its thickness to have a cross section as shown in (B).
  • the slit components are not evenly arranged on the inner wall surface of the pipe, but should not be formed on the inner wall portions located at both ends in the width direction in consideration of processing the pipe flat. I have.
  • the wick 3 on which the narrow slit is formed acts to increase the surface tension of the working fluid sealed in the heat pipe 1 and circulates the working fluid condensed in the heat-dissipating section to the heat-receiving section due to the surface tension. Will be.
  • the heat pipe 1 having this configuration, since the wick 3 is disposed facing the inner wall surface in the thickness direction of the pipe, it is necessary to secure the steam transmission pipe section 2 and to limit the dimension of the extrusion process.
  • the height of the heat pipe 1 is limited to 2-3mm and the width is limited to 6-7mm.
  • a heat pipe having a desired width cannot be formed by a single pipe, so that a plurality of pipes are arranged in a panel.
  • FIG. 13 is a cross-sectional view showing a configuration example of a conventional wide thin heat pipe.
  • the three thin heat pipes 5a, 5b, and 5c are arranged side by side, and the upper and lower portions thereof are held and integrated by the plates 6a and 6b, thereby increasing the width of the heat pipe.
  • Each of the thin heat pipes 5a, 5b, 5c can be constituted by the thin heat pipe 1 shown in FIG.
  • the working fluid is injected into each of the thin heat pipes 5a, 5b, 5c via the working fluid injection D7a, 7b, 7c, respectively.
  • the present invention has been made in view of such problems and technical requirements of electronic equipment such as information equipment, mobile communication equipment, and broadcast equipment. Even if the heat pipe receiving and radiating unit has little dependence on the gravity position and attitude, and even if there are multiple connected heat pipe structures, it is possible to inject and seal the desired hydraulic fluid with one hydraulic fluid inlet It is an object of the present invention to provide a thin and wide heat pipe that utilizes the latent heat of a hydraulic fluid for the purpose.
  • FIG. 1 is a principle diagram of the present invention for achieving the above object.
  • the thin heat pipe 10 according to the present invention includes a heat receiving section 11, a heat insulating section 12, and a heat radiating section 13. Note that there is no functional difference between the heat receiving section 11 and the heat radiating section 13 because they have the same internal configuration. Have different configurations I won't stop.
  • the heat receiving section 11 has a working fluid evaporating section 14 therein.
  • the working liquid evaporator 14 constitutes an open slit 15 on the inner wall surface facing in the short direction.
  • the open type slit 15 is constituted by a slit having a predetermined depth and a minute width, and is a plurality of slots extending in the longitudinal direction.
  • the working liquid evaporator 14 is also connected to communicate with the steam transmission pipe 16 extending in the longitudinal direction from the center of the heat insulating section 12, and further sandwiches the steam transmission pipe 16. Are connected through connection holes 18 so as to communicate with a plurality of hydraulic fluid transmission pipelines 17 arranged on both sides.
  • connection hole 18 extends in the direction perpendicular to the plane of the drawing, that is, in the height direction of the thin heat pipe 10 near the bottom of the heat-insulating portion of each slit in the open-type slit 15, It is open to each slit of the open type slit 15 and each hydraulic fluid transmission pipeline 17.
  • the heat radiating section 13 has the same internal configuration as the heat receiving section 11. That is, the heat dissipating section 13 has a steam condensing section 19 communicating with the steam transmission pipe section 16, and an open type slit 20 is formed on the inner wall surface in contact with the steam transmission pipe section 16. ing. Each slit of the open type slit 20 is connected to each hydraulic fluid transmission pipe portion 17 via the connection hole 18.
  • the working fluid injection port 21 is provided on the end face of the heat receiving section 11 of the thin heat pipe 10.
  • the hydraulic fluid transmission pipe section 17 in the heat insulating section 12 has a closed capillary structure, and receives the hydraulic fluid condensed in the vapor condenser section 19 of the heat radiating section 13.
  • a wick that circulates to the hydraulic fluid evaporating section 14 of the section 11 is configured. Since this wick is isolated from the steam transmission pipe section 16, the possibility of contact with steam during circulation is sufficiently reduced as compared with the prior art, and the circulating capacity of the hydraulic fluid is greatly improved. For this reason, thin Eve 10 is hardly affected by the gravitational position and installation posture of heat receiving portion 11 and heat radiating portion 13.
  • FIG. 1 is a partially broken plan view showing a first embodiment of a thin heat pipe according to the present invention.
  • FIG. 2 is a cross-sectional view taken along the line aa of FIG.
  • FIG. 3 is a sectional view taken along the line bb in FIG.
  • FIG. 4 is a cross-sectional view taken along the line c_c in FIG.
  • FIG. 5 is an exploded perspective view of components of a single thin heat pipe.
  • FIG. 6 is a perspective view showing a laminated state of components of the thin heat pipe.
  • FIG. 7 is a partially broken plan view showing a second embodiment of the thin wide heat pipe according to the present invention.
  • FIG. 8 is a cross-sectional view taken along the line d--d in FIG.
  • FIG. 9 is a sectional view taken along the line e--e in FIG.
  • FIG. 10 is a diagram showing constituent members of a thin and wide heat pipe.
  • FIG. 11 is an exploded perspective view showing a third embodiment of a thin heat pipe according to the present invention.
  • Fig. 12 is a diagram showing the configuration concept of a conventional Dal-Bwick type thin heat pipe, where (A) is a partially broken plan view showing an overview thereof, and (B) is a cross-sectional view taken along the arrow X-X. (C) is a sectional view taken along the line y--y.
  • FIG. 13 is a cross-sectional view showing a configuration example of a conventional wide thin heat pipe.
  • FIG. 1 is a partially broken plan view showing a first embodiment of a thin heat pipe according to the present invention
  • FIG. 2 is a cross-sectional view taken along line a--a of FIG. 1
  • FIG. FIG. 4 is a cross-sectional view taken along the line c-c in FIG.
  • the thin heat pipe 10 includes a heat receiving section 11, a heat insulating section 12, and a heat radiating section 13. Since the heat receiving portion 11 and the heat radiating portion 13 have the same internal configuration, there is no functional difference, and either one of the heat receiving portion and the heat radiating portion may be used.
  • the heat receiving section 11 has a working fluid evaporating section 14 therein.
  • the working liquid evaporating section 14 has an open type slit 15 provided on the inner wall surface.
  • the open type slit 15 has a predetermined depth and a small width, and is constituted by a slit which is a plurality of slots extending in the longitudinal direction.
  • the working fluid evaporating section 14 communicates with a steam transmission pipe section 16 extending in the longitudinal direction at the center of the heat insulating section 12, and is further provided on both sides of the steam transmission pipe section 16. Multiple arranged hydraulic fluid transmission lines It communicates with the part 17 via the connection hole 18.
  • connection hole 18 extends in the direction perpendicular to the plane of the drawing, that is, in the height direction of the thin heat pipe 10 near the bottom of the heat insulating portion of each slit in the open type slit 15.
  • Each of the slits of the open-type slit 15 and each of the hydraulic fluid transmission pipes 17 are open.
  • the heat radiating section 13 has the same internal configuration as the heat receiving section 11. That is, the heat dissipating section 13 has a steam condensing section 19 communicating with the steam transmission pipe section 16, and an open type slit 20 is formed on the inner wall surface in contact with the steam transmission pipe section 16. ing. Each of the slits of the open type slit 20 is connected to each of the hydraulic fluid transmission pipes 17 via the connection hole 18.
  • the working fluid injection port 21 is provided on the end face of the heat receiving section 11 of the thin heat pipe 10.
  • the working fluid inlet 21 is sealed after injecting a required amount of working fluid.
  • water, ammonia, chlorofluorocarbon and the like are used as the working fluid to be injected.
  • the hydraulic fluid transmission pipe section 17 in the heat insulating section 12 has a closed capillary structure, and receives the hydraulic fluid condensed in the vapor condenser section 19 of the heat radiating section 13. It constitutes a wick (capillary tube) that circulates to the hydraulic fluid evaporator 14 of the unit 11. Since the hydraulic fluid transmission line 17 is isolated from the steam transmission line 16, evaporation of the hydraulic fluid in the heat insulating section 12 is prevented, and the hydraulic fluid circulation capacity is greatly improved. I have.
  • the heat receiving unit 11 receives heat generated from an electronic device or the like
  • the working fluid supplied to the open-type slit 15 of the working fluid evaporating unit 14 evaporates.
  • the steam is cooled, so that the steam is adsorbed and condensed on the open slit of the steam condensing section 19.
  • the generated steam is moved at high speed to the steam condensing section 19 via the steam transmission pipe section 16.
  • the condensed hydraulic fluid is moved from the vapor condensing unit 19 to the hydraulic fluid evaporating unit 14 by the surface tension of the capillary through a plurality of hydraulic fluid transmission conduits 17, and the open slit 15 Supplied to In this way, the working fluid circulates due to the capillary phenomenon, and heat is transferred from the heat receiving section 11 to the heat radiating section 13. Further, in the heat insulating portion 12 between the heat receiving portion 11 and the heat radiating portion 13, the thin heat pipe 10 has a thin heat pipe 10, because the hydraulic fluid circulation capacity of the hydraulic fluid transmission pipe portion 17 has been improved. It is less affected by the gravitational position and installation posture of the heat receiving part 11 and the heat radiating part 13.
  • FIG. 5 is an exploded perspective view of constituent members of a single thin heat pipe
  • FIG. 6 is a perspective view showing a stacked state of constituent members of a thin heat pipe.
  • the thin heat pipe 10 is formed by combining a plurality of component plate members having a plurality of processing patterns into a laminated state. Note that the stacked state indicates a state of a member formed by bonding a plurality of members.
  • the first component plate member 31 is a plate on which no holes are formed, is disposed at the top and bottom, and is used as a lid.
  • a steam transmission conduit component hole 32a was formed in the center in the longitudinal direction, and open slit component component holes 32b and 32c were formed at both ends. It has a pattern.
  • the third component plate member 33 is provided with a steam transmission conduit configuration hole 33a at the center in the longitudinal direction, and a hydraulic fluid transmission conduit configuration hole 33 parallel to both sides of the steam transmission conduit configuration hole 33a.
  • b, 3 3c have a machining pattern opened.
  • the open-type slit forming holes 3 2 b and 32 c of the second component plate member 32 and the hydraulic fluid transmission conduit forming holes 33 b and 33 c of the third component plate member 33 are as follows. When they are stacked, they are formed so as to partially overlap each other, and form a connection hole that connects the open type slit and the hydraulic fluid transmission line. By alternately laminating a plurality of the second component plate members 32 and the third component plate members 33 and covering the upper and lower parts with the first component plate members 31, as shown in FIG. One laminate is configured. It is to be noted that a working fluid injection hole for injecting the working fluid is required, which is provided on either the second component plate member 32 or the third component plate member 33. In the illustrated example, for example, a hydraulic fluid injection hole 34a is provided in a component plate member 34 having a processing pattern of the second component plate member 32.
  • the component plate members thus laminated form a thin heat pipe by being joined to each other.
  • diffusion bonding by pressure welding or joining by brazing is performed.
  • the thin heat pipe made by this joining can be further thinned by rolling.
  • the brazing material may inevitably leak into the slits and fill the slits.
  • the component plate members before joining are used. Can apply a plate thicker than the desired thickness of the component plate member that enhances the surface tension performance. For this reason, it is possible to select a component plate member having a sufficient thickness so that the slit is not crushed by the leakage of the brazing material.
  • the constituent plate members are made of an aluminum alloy, they can be thinned and lightened by joining them by brazing and then rolling.
  • the heat pipe can be made not only in the vertical lamination direction illustrated in the present embodiment but also in a horizontal direction or other lamination.
  • FIG. 7 shows a second embodiment of a thin wide heat pipe according to the present invention.
  • FIG. 8 is a sectional view taken along the line d--d of FIG. 7
  • FIG. 9 is a sectional view taken along the line e--e of FIG.
  • the thin wide heat pipe 40 shown in FIGS. 7 to 9 is configured by combining three single thin wide heat pipes.
  • the wick structure of this thin and wide heat pipe 40 in the heat radiating part and the heat receiving part, the side facing the steam transmission pipe part 41 is an open slit 42, and in the heat insulating part, the working fluid transmission pipe is used.
  • the passage section 43 has a closed wick structure that is isolated from the steam transmission pipe section 41, and the open slits 42 of the heat receiving and radiating sections and the closed hydraulic fluid transmission pipe section 4 of the heat insulating section. 3 has the same structure in which connection ports 44 are provided in the overlapping portions thereof.
  • the adjacent hydraulic fluid transmission pipe section 43a is shared by one.
  • the plurality of steam transmission pipelines 41 arranged side by side communicate with each other via the shared hydraulic fluid transmission pipeline 43a. Therefore, it is not necessary to provide the working fluid injection port for injecting the working fluid in each of the steam transmission pipe sections 41, and it is sufficient that the working fluid injection port is provided in one place.
  • the hydraulic fluid inlet 45 is provided only at one location of the steam transmission pipe section 41 arranged at the center. This facilitates the working fluid injection and sealing work.
  • FIG. 10 is a diagram showing constituent members of a thin and wide heat pipe.
  • the thin and wide heat pipe 40 is also formed by stacking and joining a plurality of perforated component plate members. Four types of component plate members are prepared.
  • a first component plate member (not shown) is a plate without holes, which is used as upper and lower lids.
  • the second component plate member 51 three steam transmission pipe forming holes 51a are drilled in the longitudinal direction, and both steam transmission pipe forming holes 51a are formed. It has a machining pattern with 5 lb and 51 c open slit configuration holes at the end.
  • the third component plate member 52 has a work pattern in which three steam transmission conduit component holes 52a and four hydraulic fluid transmission conduit component holes 52b are formed in the longitudinal direction. I have.
  • the fourth component plate member 53 has a working fluid injection port component hole 53 a in addition to the processing pattern of the second component plate member 51.
  • the thin wide heat pipe 40 has a fourth component plate member 53 having a hydraulic fluid inlet component hole 53a as a center, and a third component plate member 52 and a second component
  • the plate members 51 are alternately arranged, and finally, a first component plate member serving as a lid is arranged at both ends and joined.
  • the thin wide heat pipe 40 configured as described above can be further reduced in thickness by rolling.
  • FIG. 11 is an exploded perspective view showing a third embodiment of a thin heat pipe according to the present invention.
  • the two first component plate members 61, the second component plate member 62, the third component plate member 63, and the fourth component And a plate member 64 are provided.
  • the second component plate member 62 has a hole 62a for forming a steam transmission conduit formed in the center, a groove 62b for forming a hydraulic fluid transmission conduit formed on one surface, and an opening on the other surface.
  • a mold slit forming groove 62c is formed, and a connection hole 62d is formed in a portion where the working fluid transmission pipe forming groove 62b and the open type slit forming groove 62c overlap.
  • the third component plate member 63 has a steam transmission conduit component hole 63a at the center.
  • the fourth component plate member 64 has a steam transmission conduit component hole 64a in the center, an open slit component groove 64b formed on one surface, and a hydraulic fluid transmission tube on the other surface.
  • a connection hole 64d is formed in the overlapping portion of the open slit forming groove 64b and the hydraulic fluid transmission line forming groove 64c.
  • a working fluid injection pipe forming groove 64 e is formed in one of the slit forming grooves 64 b.
  • Sand The fourth component plate member 64 has a configuration in which the second component plate member 62 is formed with a hydraulic fluid injection conduit configuration groove 64 e and is turned upside down.
  • a thin heat pipe can be formed by laminating and joining the above-mentioned constituent plate members in the arrangement shown in the figure.
  • a heat pipe based on the principle of heat transfer based on latent heat of a hydraulic fluid
  • a steam transmission pipe section and open slits provided at both ends of the steam transmission pipe section
  • a hydraulic fluid transmission line formed in the cut-off portion and communicated with the open type slit via the connection hole and separated from the steam transmission line, and provided in one of the steam transmission lines. It was configured to have a working fluid inlet. Thereby, circulation of the working fluid from the heat radiating section to the heat receiving section via the working fluid transmission pipe section is performed without contact with the steam, and the heat transfer efficiency is improved.
  • due to the improved hydraulic fluid circulation capacity due to the improved hydraulic fluid circulation capacity,
  • the steam transmission pipeline, the open slit, the connection hole, the hydraulic fluid transmission pipeline, and the hydraulic fluid inlet are formed by laminating and joining thin plates with holes that constitute them. This makes it possible to reduce the thickness and width of the heat pipe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

A thin heat pipe capable of increasing the circulating capacity of working fluid and reducing the dependency on its gravity position and style, wherein a steam transfer pipe line part (16) is extended through a heat receiving part (11), a heat insulating part (12), and a heat radiating part (13) at their axial center part, a plurality of independent working fluid transfer pipe line parts (17) are installed on both side parts of the steam transfer pipe line part, pipe wall sides in contact with the steam transfer pipe line part (16) form open type slits (15, 20) comprising a plurality of slits, the working fluid transfer pipe line parts (17) are overlapped partly with the open type slits (15, 20), connected through connection holes (18), and communicating with the working fluid evaporating part (14) and steam condensing part (19) through the open type slits (15, 20), respectively, whereby, because the working fluid transfer pipe line parts (17) are independent of the steam transfer pipe line part (16) at the heat insulating part (12), the circulating capacity of the working fluid increases and the dependency of the heat receiving and radiating parts on the gravity position and style is improved.

Description

明 細 書 薄型ヒ一トパイプおよびその製造方法 技術分野  Description Thin heat pipe and method of manufacturing the same
本発明は薄型ヒ一トパイプおよびその製造方法に関し、 特に作動液の 受熱部における蒸発潜熱、 放熱部における凝縮潜熱、 温度差により生じ る大きな蒸気圧力差に伴なう蒸気の高速移動を主たる熱輸送原理とする 薄型ヒートパイプおよびその製造方法に関する。  The present invention relates to a thin heat pipe and a method for manufacturing the same, and more particularly to heat transport mainly involving high-speed movement of steam accompanying a large steam pressure difference generated by a temperature difference due to evaporation latent heat of a working fluid in a heat receiving portion, a latent heat of condensation in a heat radiating portion, and a temperature difference. The present invention relates to a thin heat pipe and a method for manufacturing the same.
近年、 情報機器、 移動体通信機器、 放送機器などの電子機器のデジ夕 ル化、 広帯域化、 大容量に伴ない、 電子回路のより高集積化、 信号増幅 器の低歪み要求に応えるために、 大電力信号分部にも多数の半導体素子 を集中して実装する要求が多くなつている。 また、 大電力が要求される 移動体通信衛星、 レーダーなどは、 フェーズドアレーアンテナが利用さ れるが、 このようなアンテナに実装される数多くの増幅器は、 信号周波 数により増幅器の実装間隔が制限されることから、 密集して実装される 。 このような密集部から効率良く排熱が可能な、 薄く、 幅広で姿勢依存 性が少なく、 排熱長さが確保でき、 かつ温度変動に対する反応速度の速 い薄型ヒートパイプが期待されている。 背景技術  In recent years, as electronic equipment such as information equipment, mobile communication equipment, and broadcasting equipment has become increasingly digital, broadband, and large-capacity, in order to respond to demands for higher integration of electronic circuits and lower distortion of signal amplifiers There is an increasing demand for a large number of semiconductor elements to be concentrated and mounted also in the high power signal distribution section. In addition, phased array antennas are used for mobile communication satellites and radars that require large power.However, many amplifiers mounted on such antennas have their amplifier mounting intervals limited by the signal frequency. Therefore, it is implemented densely. Thin heat pipes that can efficiently exhaust heat from such dense areas, are thin, wide, have little orientation dependency, can secure the exhaust heat length, and have a fast response speed to temperature fluctuations are expected. Background art
従来より、 細管ヒートパイプが知られている。 細管ヒートパイプは、 作動液を沸点近傍、 つまり作動液が液相、 気相が混在したバブルの状態 で、 ループ状の管内を循環させ、 バブルの生成、 消滅による作動液の振 動および受熱部、 放熱部の温度差により生じる作動液の密度から作動液 の循環を生じさせ、 これにより熱交換を行う。 このような細管ヒートパ イブは、 ウィックを持たないことから構造的に細管化が可能である。 ま た、 細管を蛇行させることにより平面化も原理的に可能である。 Conventionally, a thin tube heat pipe has been known. The thin tube heat pipe circulates the working fluid near the boiling point, that is, in the state of a bubble in which the working fluid is mixed with a liquid phase and a gaseous phase, and circulates through the loop-shaped pipe, and the vibration of the working fluid due to the generation and disappearance of the bubble and the heat receiving part The working fluid is circulated from the density of the working fluid generated by the temperature difference between the heat radiating parts, thereby performing heat exchange. Such a thin tube heat pump Since Eve has no wick, it can be structurally narrowed. In addition, flattening is possible in principle by meandering the thin tube.
しかし、 従来の細管ヒートパイプは、 蒸気の相変換で熱を伝達する通 常のヒートパイプょり大きなエネルギーが必要であため、 発熱の大きな 熱源にしか適用できず、 速度の速い温度変動には対応できないという問 題点がある。 また、 作動液の循環も受熱部および放熱部にある程度の温 度差 (約 1 0 °C以上) がないと作動液の活性が低下し、 熱伝達効率が悪 くなる傾向がある。  However, conventional thin-tube heat pipes require much more energy than ordinary heat pipes that transfer heat through steam phase conversion, and can only be applied to heat sources that generate large amounts of heat. There is a problem that it cannot be handled. In addition, when there is no temperature difference between the heat receiving part and the heat radiating part (about 10 ° C or more), the activity of the working fluid tends to decrease and the heat transfer efficiency tends to deteriorate.
また、 作動液を循環させるウイックをパイプ内部に備えたヒ一トパイ プも知られている。 このようなウィックタイプのヒートパイプは、 ヒー トパイプの管内壁に、 メッシュまたは焼結金属を配置し、 あるいはダル —ブスリッ トを形成している。 このようなウィックをパイプ内に設ける ことにより、 放熱部で凝縮した作動液を表面張力で、 受熱部に循環させ ている。 しかし、 メッシュまたは焼結金属を配置したものは、 それらを 管内壁に保持する機構が必要になるため、 構造的にヒートパイプの小型 化、 薄型化は困難である。  There is also known a heat pipe provided with a wick for circulating the hydraulic fluid inside the pipe. Such a wick-type heat pipe has a mesh or sintered metal disposed on the inner wall of the heat pipe, or forms a dull slit. By providing such a wick in the pipe, the hydraulic fluid condensed in the heat radiating section is circulated to the heat receiving section by surface tension. However, the arrangement of mesh or sintered metal requires a mechanism to hold them on the inner wall of the pipe, so it is structurally difficult to make the heat pipe smaller and thinner.
図 1 2は従来のグループウイックタイプの薄型ヒートパイプの構成概 念を示す図であって、 (A ) はその概観を示す部分破断平面図、 (B ) は X — X矢視断面図、 (C ) は y _ y矢視断面図である。  FIGS. 12A and 12B are diagrams showing the configuration concept of a conventional group wick type thin heat pipe, in which (A) is a partially broken plan view showing the general view, (B) is a cross-sectional view taken along the arrow X--X, ( C) is a sectional view taken along the line y_y.
このグループウィックタイプのヒートパイプ 1は、 中央に蒸気伝達管 路部 2を有し、 パイプの内壁面には複数のスリッ 卜からなるグルーブゥ イツク 3がー体に形成された構造を有している。 パイプの両端は封止さ れ、 その一端には、 作動液を注入するための作動液注入口 4が設けられ ている。 このヒートパイプ 1は、 その長手方向の一端が受熱部を構成し 、 他端が放熱部を構成している。  This group wick type heat pipe 1 has a structure in which a steam transmission pipe section 2 is provided at the center and a groove pipe 3 composed of a plurality of slits is formed on the inner wall surface of the pipe. . Both ends of the pipe are sealed, and one end is provided with a working fluid inlet 4 for injecting a working fluid. One end of the heat pipe 1 in the longitudinal direction constitutes a heat receiving portion, and the other end constitutes a heat radiating portion.
この構造を有するヒートパイプ 1は、 一般に、 大径のパイプの内側に 押し出し加工が可能な大きさを持つ凹凸状のスリッ ト構成部を押し出し 加工で構成し、 その後、 そのパイプをスエージング加工などで細く伸ば すことで、 相対的に幅の狭いスリッ トを構成し、 さらに、 パイプを偏平 につぶすことで薄型化し、 (B ) に示すような断面を有するようにして いる。 The heat pipe 1 having this structure is generally installed inside a large-diameter pipe. A relatively narrow slit is formed by extruding an uneven slit component that is large enough to be extruded, and then thinning the pipe by swaging. Further, the pipe is flattened to reduce its thickness to have a cross section as shown in (B).
なお、 スリッ ト構成部は、 パイプの内壁面に均等配置されるのではな く、 パイプを偏平に加工することを考慮して、 幅方向の両端に位置する 内壁部分には形成しないようにしている。  In addition, the slit components are not evenly arranged on the inner wall surface of the pipe, but should not be formed on the inner wall portions located at both ends in the width direction in consideration of processing the pipe flat. I have.
幅の狭いスリッ 卜が形成されたウイック 3は、 ヒートパイプ 1に封入 した作動液との表面張力を大きくする作用をし、 その表面張力により放 熱部で凝縮した作動液を受熱部に循環させることになる。  The wick 3 on which the narrow slit is formed acts to increase the surface tension of the working fluid sealed in the heat pipe 1 and circulates the working fluid condensed in the heat-dissipating section to the heat-receiving section due to the surface tension. Will be.
この構成のヒートパイプ 1によれば、 ウィック 3がパイプの厚み方向 内壁面に対向配置されていることから、 蒸気伝達管路部 2を確保する必 要性と押し出し加工の寸法的な制約とにより、 ヒートパイプ 1の高さは 2〜 3ミリメートル、 幅は 6〜 7ミリメートルが限界である。  According to the heat pipe 1 having this configuration, since the wick 3 is disposed facing the inner wall surface in the thickness direction of the pipe, it is necessary to secure the steam transmission pipe section 2 and to limit the dimension of the extrusion process. The height of the heat pipe 1 is limited to 2-3mm and the width is limited to 6-7mm.
また、 より幅の広いヒートパイプを必要とする場合、 所望の幅のヒ一 トパイプを単一のパイプで作ることはできないので、 複数のパイプを並 ベてパネル状にすることになる。  When a wider heat pipe is required, a heat pipe having a desired width cannot be formed by a single pipe, so that a plurality of pipes are arranged in a panel.
図 1 3は従来の幅広の薄型ヒ一トパイプの構成例を示す断面図である 。 この構成例によれば、 3つの薄型ヒートパイプ 5 a, 5 b , 5 cを横 に並べ、 これらの上下を板 6 a , 6 bで保持して一体化することにより 、 幅広化したヒートパイプを実現している。 各薄型ヒートパイプ 5 a, 5 b , 5 cは、 図 1 2の薄型化したヒートパイプ 1で構成することがで きる。 各薄型ヒートパイプ 5 a, 5 b, 5 cには、 それぞれ作動液注入 D 7 a, 7 b , 7 cを介して作動液が注入される。  FIG. 13 is a cross-sectional view showing a configuration example of a conventional wide thin heat pipe. According to this configuration example, the three thin heat pipes 5a, 5b, and 5c are arranged side by side, and the upper and lower portions thereof are held and integrated by the plates 6a and 6b, thereby increasing the width of the heat pipe. Has been realized. Each of the thin heat pipes 5a, 5b, 5c can be constituted by the thin heat pipe 1 shown in FIG. The working fluid is injected into each of the thin heat pipes 5a, 5b, 5c via the working fluid injection D7a, 7b, 7c, respectively.
しかしながら、 このような従来のグループウイックタイプのヒートパ イブは、 パイプの受熱部から放熱部にわたりスリッ 卜の開放面が蒸気伝 達管路部に面しているために、 受熱、 放熱部以外の部分で作動液の凝縮 、 蒸発が起こり、 受熱部から放熱部への熱伝達効率が悪くなるという問 題点がある。 また、 その作動液を循環させるウィックが片側が蒸気伝達 管路部に開放しているため、 表面張力による循環路の性能が十分に得ら れない。 そのため、 ヒートパイプの受放熱部の重力位置、 姿勢依存性が 大きく、 特に、 受熱部の重力位置が放熱部より高くなると、 熱伝達能力 が低下する影響が大きい。 However, such conventional group wick type heat In the Eve, since the open surface of the slit faces the steam transmission line from the heat receiving part to the heat radiating part of the pipe, the hydraulic fluid condenses and evaporates in parts other than the heat receiving and heat radiating parts, and the heat receiving part There is a problem that the efficiency of heat transfer from the air to the heat radiating part becomes poor. In addition, since the wick for circulating the hydraulic fluid is open on one side to the steam transmission pipe section, the performance of the circulation path due to surface tension cannot be sufficiently obtained. Therefore, the gravitational position and attitude of the heat receiving and radiating portion of the heat pipe greatly depend on the position. In particular, when the gravitational position of the heat receiving portion is higher than that of the heat radiating portion, the heat transfer capability is greatly reduced.
さらに、 複数の薄型ヒートパイプを並置して構成した幅広のヒートパ イブでは、 各薄型ヒートパイプにそれぞれ作動液を注入し、 注入後は作 動液注入口を封止するが、 薄型ヒートパイプ自体を小型化することによ り作動液注入口の間隔も狭くなるため、 作動液注入および封止の作業性 が悪くなるという問題点がある。 発明の開示  Furthermore, in a wide heat pipe composed of multiple thin heat pipes arranged side by side, hydraulic fluid is injected into each thin heat pipe, and the working fluid injection port is sealed after injection. As the size is reduced, the interval between the working fluid injection ports is also narrowed, so that there is a problem that workability of working fluid injection and sealing is deteriorated. Disclosure of the invention
本発明はこのような問題点および情報機器、 移動体通信機器、 放送機 器などの電子機器などにおける技術的要求に鑑みてなされたものであり 、 作動液の循環能力を向上させたウィック部を有すること、 ヒートパイ プ受放熱部の重力位置、 姿勢依存性が少ないこと、 連結した複数のヒー トパイプ構造であっても、 1ケ所の作動液注入口で所望の作動液注入、 封止が可能なことなどを目的とした作動液の潜熱を利用する薄型で幅広 のヒートパイプを提供することを目的とする。  The present invention has been made in view of such problems and technical requirements of electronic equipment such as information equipment, mobile communication equipment, and broadcast equipment. Even if the heat pipe receiving and radiating unit has little dependence on the gravity position and attitude, and even if there are multiple connected heat pipe structures, it is possible to inject and seal the desired hydraulic fluid with one hydraulic fluid inlet It is an object of the present invention to provide a thin and wide heat pipe that utilizes the latent heat of a hydraulic fluid for the purpose.
図 1は上記目的を達成する本発明の原理図である。 本発明による薄型 ヒートパイプ 1 0は、 受熱部 1 1、 断熱部 1 2および放熱部 1 3によつ て構成される。 なお、 受熱部 1 1および放熱部 1 3は、 それぞれ内部構 成が同じであるため、 機能的な差はない。 それぞれ別の構成とすること はさまたげない。 FIG. 1 is a principle diagram of the present invention for achieving the above object. The thin heat pipe 10 according to the present invention includes a heat receiving section 11, a heat insulating section 12, and a heat radiating section 13. Note that there is no functional difference between the heat receiving section 11 and the heat radiating section 13 because they have the same internal configuration. Have different configurations I won't stop.
受熱部 1 1は、 中に作動液蒸発部 1 4を有している。 その作動液蒸発 部 1 4は、 その短手方向の対向する内壁面に開放型スリッ ト 1 5を構成 している。 開放型スリッ ト 1 5は、 所定の深さおよび微小な幅を有し長 手方向に延びる複数の溝穴であるスリッ トから構成されている。 この作 動液蒸発部 1 4は、 また、 断熱部 1 2の中央部を長手方向に延びる蒸気 伝達管路部 1 6に連通するよう接続され、 さらに、 この蒸気伝達管路部 1 6を挟んで両側に配置された複数の作動液伝達管路部 1 7に連通する よう接続穴 1 8を介して接続されている。 この接続穴 1 8は、 開放型ス リッ ト 1 5における各スリッ トの断熱部側底部近傍に図面の面に対して 垂直な方向、 すなわち薄型ヒートパイプ 1 0の高さ方向に延びており、 開放型スリッ ト 1 5の各スリッ トおよび各作動液伝達管路部 1 7に開口 している。  The heat receiving section 11 has a working fluid evaporating section 14 therein. The working liquid evaporator 14 constitutes an open slit 15 on the inner wall surface facing in the short direction. The open type slit 15 is constituted by a slit having a predetermined depth and a minute width, and is a plurality of slots extending in the longitudinal direction. The working liquid evaporator 14 is also connected to communicate with the steam transmission pipe 16 extending in the longitudinal direction from the center of the heat insulating section 12, and further sandwiches the steam transmission pipe 16. Are connected through connection holes 18 so as to communicate with a plurality of hydraulic fluid transmission pipelines 17 arranged on both sides. The connection hole 18 extends in the direction perpendicular to the plane of the drawing, that is, in the height direction of the thin heat pipe 10 near the bottom of the heat-insulating portion of each slit in the open-type slit 15, It is open to each slit of the open type slit 15 and each hydraulic fluid transmission pipeline 17.
放熱部 1 3は、 受熱部 1 1 と同様の内部構成を有している。 すなわち 、 放熱部 1 3の中に、 蒸気伝達管路部 1 6と連通する蒸気凝縮部 1 9を 有し、 蒸気伝達管路部 1 6に接する内壁面に開放型スリッ ト 2 0が形成 されている。 そして、 開放型スリッ ト 2 0の各スリツ 卜が接続穴 1 8を 介して各作動液伝達管路部 1 7に連通されている。  The heat radiating section 13 has the same internal configuration as the heat receiving section 11. That is, the heat dissipating section 13 has a steam condensing section 19 communicating with the steam transmission pipe section 16, and an open type slit 20 is formed on the inner wall surface in contact with the steam transmission pipe section 16. ing. Each slit of the open type slit 20 is connected to each hydraulic fluid transmission pipe portion 17 via the connection hole 18.
また、 図示の例では、 薄型ヒートパイプ 1 0の受熱部 1 1の端面に作 動液注入口 2 1が設けられている。  Further, in the illustrated example, the working fluid injection port 21 is provided on the end face of the heat receiving section 11 of the thin heat pipe 10.
上記構成において、 断熱部 1 2における作動液伝達管路部 1 7は、 密 閉された毛細管の構造を有し、 放熱部 1 3の蒸気凝縮部 1 9にて凝縮さ れた作動液を受熱部 1 1 の作動液蒸発部 1 4へ循環させるウイックを構 成している。 このウィックは、 蒸気伝達管路部 1 6から隔離されている ため、 従来に比べて循環途中で蒸気と接触する可能性は十分に低減され 、 作動液の循環能力を大幅に向上させている。 このため、 薄型ヒ一トパ イブ 1 0は、 受熱部 1 1および放熱部 1 3の重力位置および設置姿勢に 影響されることが少ない。 しかも、 このような薄型ヒートパイプ 1 0を 複数横に連結してさらに幅広化した構造とした場合に、 隣接する作動液 蒸発部 1 4および蒸気凝縮部 1 9から接続穴を介して連通する作動液伝 達管路部 1 7を 1つの作動液伝達管路部 1 7で共用する構造とすること で、 隣接する薄型ヒートパイプ 1 0同士を連通することができる。 これ により、 作動液注入口は 1 ケ所に設置すればよく、 作動液注入および封 止作業が容易になる。 In the above configuration, the hydraulic fluid transmission pipe section 17 in the heat insulating section 12 has a closed capillary structure, and receives the hydraulic fluid condensed in the vapor condenser section 19 of the heat radiating section 13. A wick that circulates to the hydraulic fluid evaporating section 14 of the section 11 is configured. Since this wick is isolated from the steam transmission pipe section 16, the possibility of contact with steam during circulation is sufficiently reduced as compared with the prior art, and the circulating capacity of the hydraulic fluid is greatly improved. For this reason, thin Eve 10 is hardly affected by the gravitational position and installation posture of heat receiving portion 11 and heat radiating portion 13. Moreover, when a plurality of such thin heat pipes 10 are connected side by side to make the structure even wider, the operation in which the adjacent working fluid evaporator 14 and vapor condenser 19 communicate with each other through the connection hole is provided. By adopting a structure in which the liquid transmission pipeline 17 is shared by one hydraulic fluid transmission pipeline 17, adjacent thin heat pipes 10 can communicate with each other. This allows the hydraulic fluid inlet to be installed at one location, facilitating the hydraulic fluid injection and sealing work.
本発明の上記および他の目的、 特徴および利点は本発明の例として好 ましい実施の形態を表す添付の図面と関連した以下の説明により明らか になるであろう。 図面の簡単な説明  The above and other objects, features and advantages of the present invention will become apparent from the following description taken in conjunction with the accompanying drawings which illustrate preferred embodiments of the present invention. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明による薄型ヒ一トパイプの第 1の実施の形態を示す部 分破断平面図である。  FIG. 1 is a partially broken plan view showing a first embodiment of a thin heat pipe according to the present invention.
図 2は、 図 1の a— a矢視断面図である。  FIG. 2 is a cross-sectional view taken along the line aa of FIG.
図 3は、 図 1の b— b矢視断面図である。  FIG. 3 is a sectional view taken along the line bb in FIG.
図 4は、 図 1の c _ c矢視断面図である。  FIG. 4 is a cross-sectional view taken along the line c_c in FIG.
図 5は、 単体の薄型ヒートパイプの構成部材の分解斜視図である。 図 6は、 薄型ヒートパイプの構成部材の積層状態を示す斜視図である 図 7は、 本発明による薄型幅広ヒートパイプの第 2の実施の形態を示 す部分破断平面図である。  FIG. 5 is an exploded perspective view of components of a single thin heat pipe. FIG. 6 is a perspective view showing a laminated state of components of the thin heat pipe. FIG. 7 is a partially broken plan view showing a second embodiment of the thin wide heat pipe according to the present invention.
図 8は、 図 7の d— d矢視断面図である。  FIG. 8 is a cross-sectional view taken along the line d--d in FIG.
図 9は、 図 7の e— e矢視断面図である。  FIG. 9 is a sectional view taken along the line e--e in FIG.
図 1 0は、 薄型幅広ヒートパイプの構成部材を示す図である。 図 1 1は、 本発明による薄型ヒートパイプの第 3の実施の形態を示す 分解斜視図である。 FIG. 10 is a diagram showing constituent members of a thin and wide heat pipe. FIG. 11 is an exploded perspective view showing a third embodiment of a thin heat pipe according to the present invention.
図 1 2は、 従来のダル一ブウイックタイプの薄型ヒートパイプの構成 概念を示す図であって、 (A ) はその概観を示す部分破断平面図、 (B ) は X — X矢視断面図、 (C ) は y— y矢視断面図である。  Fig. 12 is a diagram showing the configuration concept of a conventional Dal-Bwick type thin heat pipe, where (A) is a partially broken plan view showing an overview thereof, and (B) is a cross-sectional view taken along the arrow X-X. (C) is a sectional view taken along the line y--y.
図 1 3は、 従来の幅広の薄型ヒートパイプの構成例を示す断面図であ る。 発明を実施するための最良の形態  FIG. 13 is a cross-sectional view showing a configuration example of a conventional wide thin heat pipe. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態を図面を参照して詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図 1は本発明による薄型ヒートパイプの第 1の実施の形態を示す部分 破断平面図、 図 2は図 1の a— a矢視断面図、 図 3は図 1の b— b矢視 断面図、 図 4は図 1の c 一 c矢視断面図である。 これらの図は、 単体の 薄型ヒートパイプ 1 0の概念的な構成を示したものであり、 説明のため に、 特にその厚さ方向の寸法は、 誇張して示してある。 この薄型ヒート パイプ 1 0は、 受熱部 1 1、 断熱部 1 2および放熱部 1 3によって構成 される。 なお、 受熱部 1 1および放熱部 1 3は、 それぞれ内部構成が同 じであるため、 機能的な差はなく、 いずれを受熱部にしても放熱部にし てもよい。  FIG. 1 is a partially broken plan view showing a first embodiment of a thin heat pipe according to the present invention, FIG. 2 is a cross-sectional view taken along line a--a of FIG. 1, and FIG. FIG. 4 is a cross-sectional view taken along the line c-c in FIG. These figures show the conceptual configuration of a single thin heat pipe 10, and its dimensions in the thickness direction are exaggerated for explanation. The thin heat pipe 10 includes a heat receiving section 11, a heat insulating section 12, and a heat radiating section 13. Since the heat receiving portion 11 and the heat radiating portion 13 have the same internal configuration, there is no functional difference, and either one of the heat receiving portion and the heat radiating portion may be used.
受熱部 1 1は、 中に作動液蒸発部 1 4を有している。 その作動液蒸発 部 1 4は、 図 2、 図 3および図 4の断面図から明らかなように、 内壁面 に開放型スリッ ト 1 5が設けられている。 開放型スリッ ト 1 5は、 所定 の深さおよび微小な幅を有し長手方向に延びる複数の溝穴であるスリッ 卜から構成されている。 この作動液蒸発部 1 4は、 また、 断熱部 1 2の 中央部を長手方向に延びる蒸気伝達管路部 1 6に連通され、 さらに、 そ の蒸気伝達管路部 1 6を挟んで両側に配置された複数の作動液伝達管路 部 1 7に接続穴 1 8を介して連通されている。 この接続穴 1 8は、 開放 型スリッ ト 1 5における各スリッ トの断熱部側底部近傍に図面の面に対 して垂直な方向、 すなわち薄型ヒートパイプ 1 0の高さ方向に延びてお り、 開放型スリッ ト 1 5の各スリッ トおよび各作動液伝達管路部 1 7に 開口している。 The heat receiving section 11 has a working fluid evaporating section 14 therein. As is clear from the sectional views of FIGS. 2, 3, and 4, the working liquid evaporating section 14 has an open type slit 15 provided on the inner wall surface. The open type slit 15 has a predetermined depth and a small width, and is constituted by a slit which is a plurality of slots extending in the longitudinal direction. The working fluid evaporating section 14 communicates with a steam transmission pipe section 16 extending in the longitudinal direction at the center of the heat insulating section 12, and is further provided on both sides of the steam transmission pipe section 16. Multiple arranged hydraulic fluid transmission lines It communicates with the part 17 via the connection hole 18. The connection hole 18 extends in the direction perpendicular to the plane of the drawing, that is, in the height direction of the thin heat pipe 10 near the bottom of the heat insulating portion of each slit in the open type slit 15. Each of the slits of the open-type slit 15 and each of the hydraulic fluid transmission pipes 17 are open.
放熱部 1 3は、 受熱部 1 1と同様の内部構成を有している。 すなわち 、 放熱部 1 3の中に、 蒸気伝達管路部 1 6と連通する蒸気凝縮部 1 9を 有し、 蒸気伝達管路部 1 6に接する内壁面に開放型スリッ ト 2 0が形成 されている。 そして、 開放型スリッ ト 2 0の各スリッ 卜が接続穴 1 8を 介して各作動液伝達管路部 1 7に連通されている。  The heat radiating section 13 has the same internal configuration as the heat receiving section 11. That is, the heat dissipating section 13 has a steam condensing section 19 communicating with the steam transmission pipe section 16, and an open type slit 20 is formed on the inner wall surface in contact with the steam transmission pipe section 16. ing. Each of the slits of the open type slit 20 is connected to each of the hydraulic fluid transmission pipes 17 via the connection hole 18.
また、 図示の例では、 薄型ヒートパイプ 1 0の受熱部 1 1の端面に作 動液注入口 2 1が設けられている。 この作動液注入口 2 1は、 必要量の 作動液を注入した後、 封止される。 注入される作動液としては、 水、 ァ ンモニァ、 フロンなどが用いられる。  Further, in the illustrated example, the working fluid injection port 21 is provided on the end face of the heat receiving section 11 of the thin heat pipe 10. The working fluid inlet 21 is sealed after injecting a required amount of working fluid. As the working fluid to be injected, water, ammonia, chlorofluorocarbon and the like are used.
上記構成において、 断熱部 1 2における作動液伝達管路部 1 7は、 密 閉された毛細管の構造を有し、 放熱部 1 3の蒸気凝縮部 1 9にて凝縮さ れた作動液を受熱部 1 1の作動液蒸発部 1 4へ循環させるウイック (毛 細管) を構成している。 作動液伝達管路部 1 7が蒸気伝達管路部 1 6か ら隔離されていることにより、 断熱部 1 2での作動液の蒸発が防止され 、 作動液の循環能力が大幅に向上されている。  In the above configuration, the hydraulic fluid transmission pipe section 17 in the heat insulating section 12 has a closed capillary structure, and receives the hydraulic fluid condensed in the vapor condenser section 19 of the heat radiating section 13. It constitutes a wick (capillary tube) that circulates to the hydraulic fluid evaporator 14 of the unit 11. Since the hydraulic fluid transmission line 17 is isolated from the steam transmission line 16, evaporation of the hydraulic fluid in the heat insulating section 12 is prevented, and the hydraulic fluid circulation capacity is greatly improved. I have.
ここで、 受熱部 1 1に電子機器などから発生した熱を受けると、 作動 液蒸発部 1 4の開放型スリッ ト 1 5に供給された作動液は蒸発する。 一 方、 放熱部 1 3では、 蒸気が冷却されることにより、 蒸気凝縮部 1 9の 開放型スリッ トに蒸気が吸着し凝縮する。 作動液の受熱部 1 1における 蒸発潜熱、 放熱部 1 3における凝縮潜熱、 作動液蒸発部 1 4と蒸気凝縮 部 1 9との温度差により生じる大きな蒸気圧力差が作動液蒸発部 1 4で 発生した蒸気を蒸気伝達管路部 1 6を介して蒸気凝縮部 1 9へ高速移動 させる。 また、 凝縮された作動液は、 複数の作動液伝達管路部 1 7を通 じてその毛細管表面張力により蒸気凝縮部 1 9から作動液蒸発部 1 4へ 移動され、 開放型スリッ ト 1 5に供給される。 このように毛細管現象に より作動液が循環し、 受熱部 1 1から放熱部 1 3へ熱が伝達される。 また、 受熱部 1 1と放熱部 1 3との間の断熱部 1 2では、 作動液伝達 管路部 1 7による作動液の循環能力が向上したことにより、 この薄型ヒ —トパイプ 1 0は、 受熱部 1 1および放熱部 1 3の重力位置および設置 姿勢に影響されることが少ない。 Here, when the heat receiving unit 11 receives heat generated from an electronic device or the like, the working fluid supplied to the open-type slit 15 of the working fluid evaporating unit 14 evaporates. On the other hand, in the heat radiating section 13, the steam is cooled, so that the steam is adsorbed and condensed on the open slit of the steam condensing section 19. The latent heat of vaporization in the heat receiving part 11 of the hydraulic fluid, the latent heat of condensation in the heat radiating part 13, and a large steam pressure difference caused by the temperature difference between the hydraulic fluid evaporating part 14 and the vapor condensing part 19 in the hydraulic fluid evaporating part 14 The generated steam is moved at high speed to the steam condensing section 19 via the steam transmission pipe section 16. Also, the condensed hydraulic fluid is moved from the vapor condensing unit 19 to the hydraulic fluid evaporating unit 14 by the surface tension of the capillary through a plurality of hydraulic fluid transmission conduits 17, and the open slit 15 Supplied to In this way, the working fluid circulates due to the capillary phenomenon, and heat is transferred from the heat receiving section 11 to the heat radiating section 13. Further, in the heat insulating portion 12 between the heat receiving portion 11 and the heat radiating portion 13, the thin heat pipe 10 has a thin heat pipe 10, because the hydraulic fluid circulation capacity of the hydraulic fluid transmission pipe portion 17 has been improved. It is less affected by the gravitational position and installation posture of the heat receiving part 11 and the heat radiating part 13.
次に、 このような薄型ヒートパイプ 1 0の作り方について説明する。 図 5は単体の薄型ヒートパイプの構成部材の分解斜視図、 図 6は薄型 ヒートパイプの構成部材の積層状態を示す斜視図である。 薄型ヒ一トパ イブ 1 0は、 複数の加工パターンを有する構成板部材を複数枚組み合わ せて積層状態にすることにより構成される。 なお、 積層状態とは、 複数 部材の貼り合わせにより形成されるものの状態を示す。  Next, how to make such a thin heat pipe 10 will be described. FIG. 5 is an exploded perspective view of constituent members of a single thin heat pipe, and FIG. 6 is a perspective view showing a stacked state of constituent members of a thin heat pipe. The thin heat pipe 10 is formed by combining a plurality of component plate members having a plurality of processing patterns into a laminated state. Note that the stacked state indicates a state of a member formed by bonding a plurality of members.
第 1の構成板部材 3 1は、 何も穴加工されていない板で、 最も上およ び最も下に配置され、 蓋として使用される。 第 2の構成板部材 3 2は、 長手方向中央に蒸気伝達管路構成穴 3 2 aがあけられ、 その両端側に開 放型スリッ ト構成穴 3 2 b, 3 2 cがあけられた加工パターンを有して いる。 第 3の構成板部材 3 3は、 長手方向中央に蒸気伝達管路構成穴 3 3 aがあけられ、 蒸気伝達管路構成穴 3 3 aの両側に平行に作動液伝達 管路構成穴 3 3 b, 3 3 cがあけられた加工パターンを有している。 第 2の構成板部材 3 2の開放型スリッ ト構成穴 3 2 b , 3 2 cと第 3の構 成板部材 3 3の作動液伝達管路構成穴 3 3 b , 3 3 c とは、 積層したと きに一部が重なり合うように形成され、 開放型スリッ トと作動液伝達管 路部との間を結ぶ接続穴を構成するようにしている。 この第 2の構成板部材 3 2および第 3の構成板部材 3 3を交互に複数 積層し、 上下を第 1の構成板部材 3 1で蓋をすることにより、 図 6に示 したように、 1つの積層体が構成される。 なお、 作動液を注入するため の作動液注入穴が必要であり、 これは第 2の構成板部材 3 2および第 3 の構成板部材 3 3のいずれかに設けられる。 図示の例では、 たとえば第 2の構成板部材 3 2の加工パターンを有する構成板部材 3 4に作動液注 入穴 3 4 aが設けられている。 The first component plate member 31 is a plate on which no holes are formed, is disposed at the top and bottom, and is used as a lid. In the second component plate member 32, a steam transmission conduit component hole 32a was formed in the center in the longitudinal direction, and open slit component component holes 32b and 32c were formed at both ends. It has a pattern. The third component plate member 33 is provided with a steam transmission conduit configuration hole 33a at the center in the longitudinal direction, and a hydraulic fluid transmission conduit configuration hole 33 parallel to both sides of the steam transmission conduit configuration hole 33a. b, 3 3c have a machining pattern opened. The open-type slit forming holes 3 2 b and 32 c of the second component plate member 32 and the hydraulic fluid transmission conduit forming holes 33 b and 33 c of the third component plate member 33 are as follows. When they are stacked, they are formed so as to partially overlap each other, and form a connection hole that connects the open type slit and the hydraulic fluid transmission line. By alternately laminating a plurality of the second component plate members 32 and the third component plate members 33 and covering the upper and lower parts with the first component plate members 31, as shown in FIG. One laminate is configured. It is to be noted that a working fluid injection hole for injecting the working fluid is required, which is provided on either the second component plate member 32 or the third component plate member 33. In the illustrated example, for example, a hydraulic fluid injection hole 34a is provided in a component plate member 34 having a processing pattern of the second component plate member 32.
このようにして積層された構成板部材は、 相互に接合することによつ て薄型ヒ一トパイプを構成する。 この構成板部材の材料を適宜選択する ことにより、 圧接による拡散接合またはろう付けによる接合が行われる The component plate members thus laminated form a thin heat pipe by being joined to each other. By appropriately selecting the material of the component plate member, diffusion bonding by pressure welding or joining by brazing is performed.
。 この接合により作られた薄型ヒートパイプは、 さらに、 圧延すること により、 より薄型化することができる。 . The thin heat pipe made by this joining can be further thinned by rolling.
なお、 ろう材を使って接合するときには、 どうしてもろう材がスリツ トに漏れ込んでスリッ トを埋めてしまうことがあるが、 圧延によりさら なる薄型化を図る製造方法では、 接合前の構成板部材は、 表面張力性能 を高める所望の構成板部材の厚さより厚い板の適用が可能である。 この ため、 ろう材の漏れ込みによるスリッ トの潰れが起きないような十分な 厚さを有する構成板部材を選択することができる。 たとえば、 構成板部 材をアルミ合金で構成すれば、 これらをろう付けにより接合した後、 圧 延することによって、 薄型化、 軽量化を図ることができる。 また、 本実 施の形態で例示した垂直方向の積層方向に限らず、 水平方向その他の貼 り合わせにより、 ヒートパイプを作ることができる。  When joining with brazing material, the brazing material may inevitably leak into the slits and fill the slits.However, in the manufacturing method for further thinning by rolling, the component plate members before joining are used. Can apply a plate thicker than the desired thickness of the component plate member that enhances the surface tension performance. For this reason, it is possible to select a component plate member having a sufficient thickness so that the slit is not crushed by the leakage of the brazing material. For example, if the constituent plate members are made of an aluminum alloy, they can be thinned and lightened by joining them by brazing and then rolling. In addition, the heat pipe can be made not only in the vertical lamination direction illustrated in the present embodiment but also in a horizontal direction or other lamination.
次に、 以上のような単体の薄型ヒートパイプ機能を複数組み合わせて 一体化することによりさらに幅広化した薄型幅広ヒー卜パイプについて 説明する。  Next, a description will be given of a thin and wide heat pipe which is further widened by combining and integrating a plurality of the single thin heat pipe functions as described above.
図 7は本発明による薄型幅広ヒ一トパイプの第 2の実施の形態を示す 部分破断平面図、 図 8は図 7の d— d矢視断面図、 図 9は図 7の e— e 矢視断面図である。 図 7〜図 9に示した薄型幅広ヒートパイプ 4 0は、 単体の薄型幅広ヒートパイプを 3つ組み合わせて構成したものである。 FIG. 7 shows a second embodiment of a thin wide heat pipe according to the present invention. FIG. 8 is a sectional view taken along the line d--d of FIG. 7, and FIG. 9 is a sectional view taken along the line e--e of FIG. The thin wide heat pipe 40 shown in FIGS. 7 to 9 is configured by combining three single thin wide heat pipes.
この薄型幅広ヒートパイプ 4 0のウィック構造に関し、 その放熱部お よび受熱部では、 蒸気伝達管路部 4 1に面した側が開放スリッ ト 4 2と なっており、 断熱部では、 作動液伝達管路部 4 3が蒸気伝達管路部 4 1 と隔離された密閉型ウイック構造となっていて、 受熱部および放熱部の 開放スリッ ト 4 2と断熱部の密閉された作動液伝達管路部 4 3とが、 そ れらの重ね合わせる部分に接続口 4 4が設けられている構造は同じであ る。  Regarding the wick structure of this thin and wide heat pipe 40, in the heat radiating part and the heat receiving part, the side facing the steam transmission pipe part 41 is an open slit 42, and in the heat insulating part, the working fluid transmission pipe is used. The passage section 43 has a closed wick structure that is isolated from the steam transmission pipe section 41, and the open slits 42 of the heat receiving and radiating sections and the closed hydraulic fluid transmission pipe section 4 of the heat insulating section. 3 has the same structure in which connection ports 44 are provided in the overlapping portions thereof.
ただし、 単体の薄型ヒ一トパイプを単に並列に並べて一体構造とする のではなく、 隣接する作動液伝達管路部 4 3 aは 1つにして共用化する ことにしている。 これにより、 並置された複数の蒸気伝達管路部 4 1が その共用化された作動液伝達管路部 4 3 aを介して連通することになる 。 したがって、 作動液を注入する作動液注入口は、 各蒸気伝達管路部 4 1にそれぞれ設ける必要がなく、 1ケ所にあればよい。 図示の例では、 中央に配置された蒸気伝達管路部 4 1の 1ケ所にのみ、 作動液注入口 4 5が設けられている。 これにより、 作動液注入および封止作業が容易に なる。  However, instead of simply arranging single thin heat pipes in parallel to form an integral structure, the adjacent hydraulic fluid transmission pipe section 43a is shared by one. As a result, the plurality of steam transmission pipelines 41 arranged side by side communicate with each other via the shared hydraulic fluid transmission pipeline 43a. Therefore, it is not necessary to provide the working fluid injection port for injecting the working fluid in each of the steam transmission pipe sections 41, and it is sufficient that the working fluid injection port is provided in one place. In the example shown in the figure, the hydraulic fluid inlet 45 is provided only at one location of the steam transmission pipe section 41 arranged at the center. This facilitates the working fluid injection and sealing work.
図 1 0は薄型幅広ヒートパイプの構成部材を示す図である。 薄型幅広 ヒートパイプ 4 0も、 第 1の実施の形態の場合と同様、 穴加工された複 数の構成板部材を積層して接合することにより構成される。 構成板部材 は、 4種類用意される。  FIG. 10 is a diagram showing constituent members of a thin and wide heat pipe. Similarly to the first embodiment, the thin and wide heat pipe 40 is also formed by stacking and joining a plurality of perforated component plate members. Four types of component plate members are prepared.
図示しない第 1の構成板部材は、 上下の蓋として使用される、 穴加工 されていない板である。 第 2の構成板部材 5 1は、 長手方向に 3条の蒸 気伝達管路構成穴 5 1 aがあけられ、 各蒸気伝達管路構成穴 5 1 aの両 端側に開放型スリッ ト構成穴 5 l b , 5 1 cがあけられた加工パターン を有している。 第 3の構成板部材 5 2は、 長手方向に 3条の蒸気伝達管 路構成穴 5 2 aと 4条の作動液伝達管路構成穴 5 2 bとがあけられた加 ェパターンを有している。 第 4の構成板部材 5 3は、 第 2の構成板部材 5 1の加工パターンに加え、 作動液注入口構成穴 5 3 aを有している。 薄型幅広ヒー卜パイプ 4 0は、 作動液注入口構成穴 5 3 aを有する第 4の構成板部材 5 3を中心にして、 その両面側に第 3の構成板部材 5 2 と第 2の構成板部材 5 1 とを交互に配置し、 最後に蓋となる第 1の構成 板部材を両端に配置して接合することにより、 構成される。 A first component plate member (not shown) is a plate without holes, which is used as upper and lower lids. In the second component plate member 51, three steam transmission pipe forming holes 51a are drilled in the longitudinal direction, and both steam transmission pipe forming holes 51a are formed. It has a machining pattern with 5 lb and 51 c open slit configuration holes at the end. The third component plate member 52 has a work pattern in which three steam transmission conduit component holes 52a and four hydraulic fluid transmission conduit component holes 52b are formed in the longitudinal direction. I have. The fourth component plate member 53 has a working fluid injection port component hole 53 a in addition to the processing pattern of the second component plate member 51. The thin wide heat pipe 40 has a fourth component plate member 53 having a hydraulic fluid inlet component hole 53a as a center, and a third component plate member 52 and a second component The plate members 51 are alternately arranged, and finally, a first component plate member serving as a lid is arranged at both ends and joined.
以上のようにして構成された薄型幅広ヒートパイプ 4 0は、 圧延する ことにより、 さらに、 薄型化を図ることができる。  The thin wide heat pipe 40 configured as described above can be further reduced in thickness by rolling.
図 1 1は本発明による薄型ヒートパイプの第 3の実施の形態を示す分 解斜視図である。 この実施の形態によれば、 上下の蓋を構成する 2つの 第 1の構成板部材 6 1 と、 第 2の構成板部材 6 2と、 第 3の構成板部材 6 3と、 第 4の構成板部材 6 4とから構成される。  FIG. 11 is an exploded perspective view showing a third embodiment of a thin heat pipe according to the present invention. According to this embodiment, the two first component plate members 61, the second component plate member 62, the third component plate member 63, and the fourth component And a plate member 64.
第 2の構成板部材 6 2は、 中央に蒸気伝達管路構成穴 6 2 aがあけら れ、 一方の面に作動液伝達管路構成溝 6 2 bが形成され、 他方の面に開 放型スリット構成溝 6 2 cが形成され、 さらに、 作動液伝達管路構成溝 6 2 bと開放型スリッ ト構成溝 6 2 cとの重なり合った部分に接続穴 6 2 dがあけられている。 第 3の構成板部材 6 3は、 中央に蒸気伝達管路 構成穴 6 3 aがあけられている。 第 4の構成板部材 6 4は、 中央に蒸気 伝達管路構成穴 6 4 aがあけられ、 一方の面に開放型スリッ ト構成溝 6 4 bが形成され、 他方の面に作動液伝達管路構成溝 6 4 cが形成され、 開放型スリッ ト構成溝 6 4 bと作動液伝達管路構成溝 6 4 cとの重なり 合った部分に接続穴 6 4 dがあけられ、 さらに、 開放型スリッ ト構成溝 6 4 bの 1つに作動液注入管路構成溝 6 4 eが形成されている。 すなわ ち、 この第 4の構成板部材 6 4は、 第 2の構成板部材 6 2に作動液注入 管路構成溝 6 4 eを形成し、 表裏を反転させた形になっている。 The second component plate member 62 has a hole 62a for forming a steam transmission conduit formed in the center, a groove 62b for forming a hydraulic fluid transmission conduit formed on one surface, and an opening on the other surface. A mold slit forming groove 62c is formed, and a connection hole 62d is formed in a portion where the working fluid transmission pipe forming groove 62b and the open type slit forming groove 62c overlap. The third component plate member 63 has a steam transmission conduit component hole 63a at the center. The fourth component plate member 64 has a steam transmission conduit component hole 64a in the center, an open slit component groove 64b formed on one surface, and a hydraulic fluid transmission tube on the other surface. A connection hole 64d is formed in the overlapping portion of the open slit forming groove 64b and the hydraulic fluid transmission line forming groove 64c. A working fluid injection pipe forming groove 64 e is formed in one of the slit forming grooves 64 b. Sand The fourth component plate member 64 has a configuration in which the second component plate member 62 is formed with a hydraulic fluid injection conduit configuration groove 64 e and is turned upside down.
以上の各構成板部材を図示の並びで積層し、 接合することにより薄型 ヒートパイプを構成することができる。  A thin heat pipe can be formed by laminating and joining the above-mentioned constituent plate members in the arrangement shown in the figure.
以上説明したように本発明では、 作動液の潜熱による熱伝達を主たる 熱輸送原理とするヒートパイプにおいて、 蒸気伝達管路部と、 この蒸気 伝達管路部の両端に設けられた開放型スリッ 卜と、 この開放型スリッ ト と接続穴を介して連通され蒸気伝達管路部とは隔離されて遮断部に形成 された作動液伝達管路部と、 蒸気伝達管路部の一方に設けられた作動液 注入口とを備える構成にした。 これにより、 放熱部から作動液伝達管路 部を介して受熱部への作動液の循環が蒸気と接触することなく行われ、 熱伝達効率が向上する。 また、 作動液の循環能力が向上したことにより As described above, according to the present invention, in a heat pipe based on the principle of heat transfer based on latent heat of a hydraulic fluid, a steam transmission pipe section, and open slits provided at both ends of the steam transmission pipe section And a hydraulic fluid transmission line formed in the cut-off portion and communicated with the open type slit via the connection hole and separated from the steam transmission line, and provided in one of the steam transmission lines. It was configured to have a working fluid inlet. Thereby, circulation of the working fluid from the heat radiating section to the heat receiving section via the working fluid transmission pipe section is performed without contact with the steam, and the heat transfer efficiency is improved. In addition, due to the improved hydraulic fluid circulation capacity,
、 受放熱部の重力位置および姿勢の依存性が改善される。 However, the dependence of the gravity position and posture of the heat receiving and radiating portion is improved.
さらに、 蒸気伝達管路部、 開放型スリッ ト、 接続穴、 作動液伝達管路 部、 および作動液注入口を、 薄板にそれらを構成する穴をあけた薄板を 積層 ·接合することで形成することにより、 ヒートパイプの薄型化およ び幅広化を実現することができる。  Furthermore, the steam transmission pipeline, the open slit, the connection hole, the hydraulic fluid transmission pipeline, and the hydraulic fluid inlet are formed by laminating and joining thin plates with holes that constitute them. This makes it possible to reduce the thickness and width of the heat pipe.
上記については単に本発明の原理を示すものである。 さらに、 多数の 変形、 変更が当業者にとって可能であり、 本発明は上記に示し、 説明し た正確な構成および応用例に限定されるものではなく、 対応するすべて の変形例および均等物は、 添付の請求項およびその均等物による本発明 の範囲とみなされる。  The above merely illustrates the principles of the invention. In addition, many modifications and changes are possible for those skilled in the art, and the present invention is not limited to the exact configuration and applications shown and described above, but all corresponding variations and equivalents may be made. It is considered the scope of the invention, which is defined by the appended claims and their equivalents.

Claims

請 求 の 範 囲 The scope of the claims
1 . 作動液の潜熱による熱伝達を主たる熱輸送原理とする薄型ヒートパ ィプにおいて、 1. Thin heat pipes that use heat transfer by the latent heat of the hydraulic fluid as the main heat transfer principle.
受熱部と放熱部との間に設けられた蒸気伝達管路部と、  A steam transmission pipe section provided between the heat receiving section and the heat radiating section,
前記受熱部および放熱部に設けられ前記蒸気伝達管路部に接する管壁 側が開放されていて作動液蒸発部および蒸気凝縮部をなす開放型スリッ 卜と、  An open-type slit provided in the heat receiving section and the heat radiating section and having an open pipe wall side in contact with the steam transmission pipe section to form a working fluid evaporating section and a steam condensing section;
前記受熱部と放熱部との間に設けられ、 前記蒸気伝達管路部と分離さ れた作動液伝達管路部と、  A hydraulic fluid transmission pipe section provided between the heat receiving section and the heat radiating section, and separated from the steam transmission pipe section;
前記作動液伝達管路部の両端部と前記受熱部および放熱部における前 記開放型スリッ 卜とを連通させる接続穴と、  Connection holes for communicating both ends of the hydraulic fluid transmission pipe section with the open slits in the heat receiving section and the heat radiating section,
を備えていることを特徴とする薄型ヒートパイプ。  A thin heat pipe comprising:
2 . 前記作動液伝達管路部は、 前記蒸気伝達管路部を挟んで両側に配置 されていることを特徴とする請求項 1記載の薄型ヒートパイプ。  2. The thin heat pipe according to claim 1, wherein the hydraulic fluid transmission line is disposed on both sides of the steam transmission line.
3 . 前記接続穴は、 前記作動液伝達管路部の両端部と前記開放型スリツ 卜の断熱部側における各スリッ トの底部とを接続していることを特徴と する請求項 1記載の薄型ヒートパイプ。  3. The thin type according to claim 1, wherein the connection holes connect both end portions of the hydraulic fluid transmission pipe portion and bottom portions of the slits on the heat insulating portion side of the open type slit. heat pipe.
4 . 作動液の潜熱による熱伝達を主たる熱輸送原理とする薄型ヒートパ ィプにおいて、  4. In thin heat pipes that use heat transfer by the latent heat of hydraulic fluid as the main heat transfer principle,
断熱部を介して受熱部と放熱部との間に設けられかつ幅方向に一列に 配置された複数の蒸気伝達管路部と、  A plurality of steam transfer pipe sections provided between the heat receiving section and the heat radiating section via the heat insulating section and arranged in a line in the width direction;
前記受熱部および放熱部に設けられ前記蒸気伝達管路部に接する管壁 側が開放されていて作動液蒸発部および蒸気凝縮部をなす開放型スリッ 卜と、  An open-type slit provided in the heat receiving section and the heat radiating section and having an open pipe wall side in contact with the steam transmission pipe section to form a working fluid evaporating section and a steam condensing section;
前記断熱部を介して受熱部と放熱部との間に設けられかつ前記蒸気伝 達管路部を挟んで両側に配置されていてそれぞれ毛細管の機能を有する 複数の作動液伝達管路部と、 The heat transfer section is provided between the heat receiving section and the heat radiating section via the heat insulating section, and A plurality of hydraulic fluid transmission pipelines arranged on both sides of the delivery pipeline and each having a capillary function,
前記作動液伝達管路部の両端部と前記作動液伝達管路部に隣接した前 記蒸気伝達管路部に接する前記受熱部および放熱部における前記開放型 スリッ トとを連通させる接続穴と、  A connection hole for communicating both ends of the hydraulic fluid transmission pipe portion and the open type slits in the heat receiving portion and the heat radiation portion that are in contact with the steam transmission pipeline portion adjacent to the hydraulic fluid transmission pipe portion,
を備えていることを特徴とする薄型ヒートパイプ。  A thin heat pipe comprising:
5 . 前記蒸気伝達管路部の 1つと連通した作動液蒸発部または蒸気凝縮 部に 1つの作動液注入口を備えていることを特徴とする請求項 4記載の 薄型ヒ一トパイプ。 5. The thin heat pipe according to claim 4, wherein one hydraulic fluid inlet is provided in a hydraulic fluid evaporating section or a vapor condensing section communicating with one of the steam transmission pipe sections.
6 . 作動液の潜熱による熱伝達を主たる熱輸送原理とする薄型ヒートパ ィプの製造方法において、 6. In the method of manufacturing thin heat pipes, which uses the principle of heat transfer based on the latent heat of hydraulic fluid,
蒸気伝達管路部構成穴およびその両端側に一体にあけられた開放型ス リット構成穴を有する第 1の板と、 前記第 1の板の前記蒸気伝達管路部 構成穴と同じ位置にあけられた蒸気伝達管路部構成穴および部分的に前 記第 1の板の前記開放型スリッ ト構成穴と重なり合うようにあけられた 作動液伝達管路構成穴を有する第 2の板と、 蓋を構成する第 3の板とを 用息し、  A first plate having a steam transmission conduit component hole and an open slit component hole integrally formed at both ends thereof; and a first plate being drilled at the same position as the steam transmission conduit component hole of the first plate. A second plate having a hydraulic-transmission-line configuration hole formed so as to partially overlap with the open-type slit configuration hole of the first plate; and a lid. Sigh with the third plate that constitutes
前記第 1の板および前記第 2の板を複数枚交互に貼り合わせ、 上下を前記第 3の板で蓋をする、  A plurality of the first plates and the second plates are alternately bonded to each other, and upper and lower sides are covered with the third plate,
ステップからなることを特徴とする薄型ヒ一トパイプの製造方法。 A method for manufacturing a thin heat pipe comprising steps.
7 . 前記蓋をするステップの後に、 圧延して薄型化するステップをさら に有することを特徴とする請求項 6記載の薄型ヒートパイプの製造方法 7. The method for manufacturing a thin heat pipe according to claim 6, further comprising a step of rolling and thinning after the step of closing the lid.
8 . 前記第 1ないし第 3の板は、 圧接による拡散接合で接合されること を特徴とする請求項 6記載の薄型ヒートパイプの製造方法。 8. The method for manufacturing a thin heat pipe according to claim 6, wherein the first to third plates are joined by diffusion joining by pressure welding.
9 . 前記第 1ないし第 3の板は、 ろう付けにより接合されることを特徴 とする請求項 6記載の薄型ヒートパイプの製造方法。 9. The first to third plates are joined by brazing. 7. The method for producing a thin heat pipe according to claim 6, wherein
1 0 . 作動液の潜熱による熱伝達を主たる熱輸送原理とする薄型ヒート パイプの製造方法において、  10. In a method of manufacturing a thin heat pipe that uses heat transfer by the latent heat of the working fluid as the main heat transfer principle,
蒸気伝達管路部構成穴およびその両端側に一体にあけられた複数の開 放型スリット構成穴を有する第 1の板と、 前記第 1の板の前記蒸気伝達 管路部構成穴と同じ位置にあけられた蒸気伝達管路部構成穴および部分 的に前記第 1の板の前記開放型スリッ ト構成穴と重なり合うようにあけ られた作動液伝達管路構成穴を有する第 2の板と、 蓋を構成する第 3の 板とを用意し、  A first plate having a steam transmission conduit component hole and a plurality of open-type slit component holes integrally formed at both ends thereof; and a same position as the steam transmission conduit component hole of the first plate. A second plate having a hydraulic fluid transmission line component hole drilled so as to partially overlap with the open slit component hole of the first plate; and Prepare a third plate that constitutes the lid,
前記第 1の板および前記第 2の板を複数枚交互に貼り合わせ、 上下を前記第 3の板で蓋をする、  A plurality of the first plates and the second plates are alternately bonded to each other, and upper and lower sides are covered with the third plate,
ステツプからなることを特徴とする薄型ヒ一トパイプの製造方法。 A method for manufacturing a thin heat pipe comprising steps.
1 1 . 貼り合わされた前記第 1の板および第 2の板の少なくとも 1つは 作動液を注入するための作動液注入口構成穴を有することを特徴とする 請求項 1 0記載の薄型ヒートパイプの製造方法。 11. The thin heat pipe according to claim 10, wherein at least one of the first plate and the second plate bonded to each other has a working fluid inlet hole for injecting a working fluid. Manufacturing method.
1 2 . 前記蓋をするステップの後に、 圧延して薄型化するステップをさ らに有することを特徴とする請求項 1 0記載の薄型ヒートパイプの製造 方法。  12. The method for manufacturing a thin heat pipe according to claim 10, further comprising a step of rolling and thinning after the step of closing the lid.
1 3 . 作動液の潜熱による熱伝達を主たる熱輸送原理とする薄型ヒート パイプの製造方法において、  13 3. In the method of manufacturing thin heat pipes, which uses heat transfer by the latent heat of the working fluid as the main heat transfer principle,
蒸気伝達管路部構成穴、 一方の面側にて前記蒸気伝達管路部構成穴の 両端側に設けられた開放型スリッ ト構成溝および他方の面側にて両端が 前記開放型スリット構成溝に接続穴で通じている作動液伝達管路構成溝 を有する第 1の板と、 前記第 1の板の前記蒸気伝達管路部構成穴と同じ 位置にあけられた蒸気伝達管路部構成穴を有する第 2の板と、 蓋を構成 する第 3の板とを用意し、 前記第 2の板の両側に前記作動液伝達管路構成溝のある面を外側にし て前記第 1 の板を配置し、 A steam transmission channel configuration hole, an open slit configuration groove provided on both ends of the steam transmission channel configuration hole on one side, and an open slit configuration groove on both sides on the other side. A first plate having a working fluid transmission channel configuration groove communicating with a connection hole through the connection hole, and a steam transmission channel configuration hole drilled at the same position as the steam transmission channel configuration hole of the first plate. A second plate having the following, and a third plate constituting the lid, Disposing the first plate on both sides of the second plate with the surface on which the working fluid transmission channel forming groove is located outside;
上下を前記第 3の板で蓋をする、  Top and bottom are covered with the third plate,
ステップからなることを特徴とする薄型ヒートパイプの製造方法。  A method for manufacturing a thin heat pipe comprising steps.
PCT/JP2000/001133 2000-02-25 2000-02-25 Thin heat pipe and method of manufacturing the heat pipe WO2001063195A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001562121A JP4424883B2 (en) 2000-02-25 2000-02-25 Thin heat pipe and manufacturing method thereof
PCT/JP2000/001133 WO2001063195A1 (en) 2000-02-25 2000-02-25 Thin heat pipe and method of manufacturing the heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/001133 WO2001063195A1 (en) 2000-02-25 2000-02-25 Thin heat pipe and method of manufacturing the heat pipe

Publications (1)

Publication Number Publication Date
WO2001063195A1 true WO2001063195A1 (en) 2001-08-30

Family

ID=11735728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001133 WO2001063195A1 (en) 2000-02-25 2000-02-25 Thin heat pipe and method of manufacturing the heat pipe

Country Status (2)

Country Link
JP (1) JP4424883B2 (en)
WO (1) WO2001063195A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026833A1 (en) * 2005-09-01 2007-03-08 Fuchigami Micro Co., Ltd. Heat pipe and method of manufacturing the same
JP2009024933A (en) * 2007-07-19 2009-02-05 Sony Corp Thermal diffusion device and manufacturing method for it
DE102011075990A1 (en) * 2011-05-17 2012-11-22 Schneider Electric Sachsenwerk Gmbh Switchgear for high or medium voltage
JP2012229909A (en) * 2011-04-25 2012-11-22 Google Inc Thermosyphon system for electronic device
TWI409425B (en) * 2005-12-05 2013-09-21 Fuchigami Micro Co Heat pipe
JP2014163615A (en) * 2013-02-26 2014-09-08 Welcon:Kk Heat pipe
WO2016086503A1 (en) * 2014-12-02 2016-06-09 北京空间飞行器总体设计部 Device and method for testing compatibility of gravity-driven two-phase fluid loop
WO2017195254A1 (en) * 2016-05-09 2017-11-16 富士通株式会社 Loop heat pipe, manufacturing method for same, and electronic equipment
JP2018179471A (en) * 2017-04-21 2018-11-15 新光電気工業株式会社 Heat pipe and manufacturing method thereof
JP2019196886A (en) * 2018-05-11 2019-11-14 富士通株式会社 Heat pipe and electronic device
WO2019230911A1 (en) * 2018-05-30 2019-12-05 大日本印刷株式会社 Vapor chamber and electronic device
JP2020067241A (en) * 2018-10-25 2020-04-30 セイコーエプソン株式会社 Cooling device and projector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425552A (en) * 1977-07-28 1979-02-26 Oki Electric Cable Flat plate heat pipe
JPS6383587A (en) * 1986-09-29 1988-04-14 Toshiba Corp Flat board type heat pipe
JPH0346767U (en) * 1989-09-11 1991-04-30
JPH0482560U (en) * 1990-11-26 1992-07-17
JPH0579260U (en) * 1992-03-12 1993-10-29 株式会社東芝 Flat plate heat pipe
JPH06213584A (en) * 1993-01-12 1994-08-02 Toshiba Corp Plate state heat pipe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425552A (en) * 1977-07-28 1979-02-26 Oki Electric Cable Flat plate heat pipe
JPS6383587A (en) * 1986-09-29 1988-04-14 Toshiba Corp Flat board type heat pipe
JPH0346767U (en) * 1989-09-11 1991-04-30
JPH0482560U (en) * 1990-11-26 1992-07-17
JPH0579260U (en) * 1992-03-12 1993-10-29 株式会社東芝 Flat plate heat pipe
JPH06213584A (en) * 1993-01-12 1994-08-02 Toshiba Corp Plate state heat pipe

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8534348B2 (en) 2005-09-01 2013-09-17 Molex Incorporated Heat pipe and method for manufacturing same
WO2007029359A1 (en) * 2005-09-01 2007-03-15 Fuchigami Micro Co., Ltd. Heat pipe and method for manufacturing same
WO2007026833A1 (en) * 2005-09-01 2007-03-08 Fuchigami Micro Co., Ltd. Heat pipe and method of manufacturing the same
TWI409425B (en) * 2005-12-05 2013-09-21 Fuchigami Micro Co Heat pipe
JP2009024933A (en) * 2007-07-19 2009-02-05 Sony Corp Thermal diffusion device and manufacturing method for it
EP2518585B1 (en) * 2011-04-25 2020-01-08 Google LLC Thermosiphon Systems for Electronic Devices
US9521786B2 (en) 2011-04-25 2016-12-13 Google Inc. Thermosiphon systems for electronic devices
US10225959B2 (en) 2011-04-25 2019-03-05 Google Llc Thermosiphon systems for electronic devices
JP2012229909A (en) * 2011-04-25 2012-11-22 Google Inc Thermosyphon system for electronic device
DE102011075990A1 (en) * 2011-05-17 2012-11-22 Schneider Electric Sachsenwerk Gmbh Switchgear for high or medium voltage
DE102011075990B4 (en) * 2011-05-17 2014-10-09 Schneider Electric Sachsenwerk Gmbh Switchgear for high or medium voltage
JP2014163615A (en) * 2013-02-26 2014-09-08 Welcon:Kk Heat pipe
WO2016086503A1 (en) * 2014-12-02 2016-06-09 北京空间飞行器总体设计部 Device and method for testing compatibility of gravity-driven two-phase fluid loop
EP3236186A4 (en) * 2014-12-02 2018-09-05 Beijing Institute of Spacecraft System Engineering Device and method for testing compatibility of gravity-driven two-phase fluid loop
WO2017195254A1 (en) * 2016-05-09 2017-11-16 富士通株式会社 Loop heat pipe, manufacturing method for same, and electronic equipment
US10420253B2 (en) 2016-05-09 2019-09-17 Fujitsu Limited Loop heat pipe, manufacturing method thereof, and electronic device
JP2018179471A (en) * 2017-04-21 2018-11-15 新光電気工業株式会社 Heat pipe and manufacturing method thereof
JP2019196886A (en) * 2018-05-11 2019-11-14 富士通株式会社 Heat pipe and electronic device
WO2019230911A1 (en) * 2018-05-30 2019-12-05 大日本印刷株式会社 Vapor chamber and electronic device
JP2021055992A (en) * 2018-05-30 2021-04-08 大日本印刷株式会社 Vapor chamber and electronic device
CN112902717A (en) * 2018-05-30 2021-06-04 大日本印刷株式会社 Sheet for evaporation chamber, and electronic apparatus
CN112902717B (en) * 2018-05-30 2022-03-11 大日本印刷株式会社 Sheet for evaporation chamber, and electronic apparatus
JP7318628B2 (en) 2018-05-30 2023-08-01 大日本印刷株式会社 Vapor chamber and electronics
TWI812723B (en) * 2018-05-30 2023-08-21 日商大日本印刷股份有限公司 Vapor chamber, electronic device and sheet for vapor chamber
US11903167B2 (en) 2018-05-30 2024-02-13 Dai Nippon Printing Co., Ltd. Vapor chamber with condensate flow paths disposed on wall parts
JP2020067241A (en) * 2018-10-25 2020-04-30 セイコーエプソン株式会社 Cooling device and projector

Also Published As

Publication number Publication date
JP4424883B2 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
US10420253B2 (en) Loop heat pipe, manufacturing method thereof, and electronic device
US7000686B2 (en) Heat transport device and electronic device
US9240365B2 (en) Cooling device and electronic device
US7841392B1 (en) Method and apparatus for controlling temperature gradients within a structure being cooled
US6152215A (en) High intensity cooler
WO2001063195A1 (en) Thin heat pipe and method of manufacturing the heat pipe
JP7161343B2 (en) Cooler
US20080185128A1 (en) Flat Plate-Type Heat Pipe
US20170299239A1 (en) Microchannel evaporators with reduced pressure drop
US20120033385A1 (en) Cooling device, electronic substrate and electronic device
US20080087406A1 (en) Cooling system and associated method for planar pulsating heat pipe
US20010050162A1 (en) Normal-flow heat exchanger
US20100117209A1 (en) Multiple chips on a semiconductor chip with cooling means
JPH05264182A (en) Integrated heat pipe, assembly for heat exchanger and clamping as well as obtaining method thereof
JP2002327993A (en) Thin heat pipe, thin heat sink and heat control system, and method for manufacturing thin heat pipe
CN106971990A (en) Cooling device and method for cooling down at least two power electric devices
JP2001035981A (en) Cooler for semiconductor element and power-converting device using it
CN109473409A (en) Coldplate and device with this coldplate
US11246239B2 (en) Heatsink
JP2022115950A (en) vapor chamber
KR102174500B1 (en) Pulsating heat pipe with multi loop and manufacturing method thereof
US20220049905A1 (en) Oscillating heat pipe channel architecture
WO2022183793A1 (en) Thin plate type loop heat pipe
CN111504111B (en) Evaporator and method of manufacture
JP7247475B2 (en) Vapor chamber and electronics

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 562121

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase