WO2001060588A1 - Procede de fabrication de tubes par soudure au laser - Google Patents

Procede de fabrication de tubes par soudure au laser Download PDF

Info

Publication number
WO2001060588A1
WO2001060588A1 PCT/FR2001/000387 FR0100387W WO0160588A1 WO 2001060588 A1 WO2001060588 A1 WO 2001060588A1 FR 0100387 W FR0100387 W FR 0100387W WO 0160588 A1 WO0160588 A1 WO 0160588A1
Authority
WO
WIPO (PCT)
Prior art keywords
strip
edges
typically
edge
laser beam
Prior art date
Application number
PCT/FR2001/000387
Other languages
English (en)
Inventor
Michel Bosshardt
Michel Duvaley
Didier Bauchiere
Original Assignee
Cebal S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cebal S.A. filed Critical Cebal S.A.
Priority to AU2001235644A priority Critical patent/AU2001235644A1/en
Publication of WO2001060588A1 publication Critical patent/WO2001060588A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • B29C65/1658Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined scanning once, e.g. contour laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/36Bending and joining, e.g. for making hollow articles
    • B29C53/38Bending and joining, e.g. for making hollow articles by bending sheets or strips at right angles to the longitudinal axis of the article being formed and joining the edges
    • B29C53/387Bending and joining, e.g. for making hollow articles by bending sheets or strips at right angles to the longitudinal axis of the article being formed and joining the edges the joining being done from the inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/36Bending and joining, e.g. for making hollow articles
    • B29C53/38Bending and joining, e.g. for making hollow articles by bending sheets or strips at right angles to the longitudinal axis of the article being formed and joining the edges
    • B29C53/48Bending and joining, e.g. for making hollow articles by bending sheets or strips at right angles to the longitudinal axis of the article being formed and joining the edges for articles of indefinite length, i.e. bending a strip progressively
    • B29C53/50Bending and joining, e.g. for making hollow articles by bending sheets or strips at right angles to the longitudinal axis of the article being formed and joining the edges for articles of indefinite length, i.e. bending a strip progressively using internal forming surfaces, e.g. mandrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/36Bending and joining, e.g. for making hollow articles
    • B29C53/38Bending and joining, e.g. for making hollow articles by bending sheets or strips at right angles to the longitudinal axis of the article being formed and joining the edges
    • B29C53/48Bending and joining, e.g. for making hollow articles by bending sheets or strips at right angles to the longitudinal axis of the article being formed and joining the edges for articles of indefinite length, i.e. bending a strip progressively
    • B29C53/54Guiding, aligning or shaping edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1632Laser beams characterised by the way of heating the interface direct heating the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1687Laser beams making use of light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/24Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools characterised by the means for heating the tool
    • B29C65/30Electrical means
    • B29C65/32Induction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/72Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by combined operations or combined techniques, e.g. welding and stitching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7802Positioning the parts to be joined, e.g. aligning, indexing or centring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/03After-treatments in the joint area
    • B29C66/034Thermal after-treatments
    • B29C66/0342Cooling, e.g. transporting through welding and cooling zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/344Stretching or tensioning the joint area during joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/432Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms
    • B29C66/4322Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms by joining a single sheet to itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/49Internally supporting the, e.g. tubular, article during joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/818General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps
    • B29C66/8181General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps characterised by the cooling constructional aspects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/834General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
    • B29C66/8341Roller, cylinder or drum types; Band or belt types; Ball types
    • B29C66/83421Roller, cylinder or drum types; Band or belt types; Ball types band or belt types
    • B29C66/83423Roller, cylinder or drum types; Band or belt types; Ball types band or belt types cooperating bands or belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2795/00Printing on articles made from plastics or substances in a plastic state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1619Mid infrared radiation [MIR], e.g. by CO or CO2 lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1664Laser beams characterised by the way of heating the interface making use of several radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/823Bend tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8253Testing the joint by the use of waves or particle radiation, e.g. visual examination, scanning electron microscopy, or X-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7232General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer
    • B29C66/72321General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer consisting of metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7232General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer
    • B29C66/72327General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer consisting of natural products or their composites, not provided for in B29C66/72321 - B29C66/72324
    • B29C66/72328Paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7234General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a barrier layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/735General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the extensive physical properties of the parts to be joined
    • B29C66/7352Thickness, e.g. very thin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • B29L2009/003Layered products comprising a metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/20Flexible squeeze tubes, e.g. for cosmetics

Definitions

  • the invention relates to the manufacture of tubes in the field of cosmetology, hygiene and pharmacy, tubes, typically made of plastic, formed by rolling a strip and by laser welding of the edges of the strip.
  • US Patent 4,540,392 discloses the formation of cardboard tubes typically coated with PE, rolling a strip and sending a laser beam between the flanges to be welded facing each other.
  • PROBLEMS POSED A first problem of the known conventional methods for manufacturing tubes concerns the speed of manufacture: the known methods offer a typical production speed which peaks at 30 m / min.
  • the production speed cannot be increased because, taking into account the nature of the materials involved and the thermal properties of these materials, in particular as regards heat transfer, it is not possible to heat / cool the edges to be welded faster.
  • a first object of the invention is a method making it possible to increase the production rate by at least 50%.
  • a strip is supplied with said plastic, b) the strip is guided and it is rolled in order to looking at the edges of said strip, c) laser welding said edges according to a generatrix of said tube of axis of revolution X, typically cylindrical, and compressing the welded edges, so as to form said tube, d) driving said tube and said strip at a speed V, and, typically, portions of tubes of a predetermined length are cut to length, process characterized in that: 1) a strip material is supplied with a flexural strength, measured according to the so-called support blade method, ranging from 5 to 10 N,
  • a laser beam (5) of a power adapted to the speed V is directed towards said space E, so as to bring, to the internal surface of said upper edge (2) constituting the upper face of said space and / or to the external surface of said lower edge (3) constituting the lower face of said space, at least half the amount of energy required to weld said upper (2) and lower (3) edges,
  • said upper and lower edges are compressed according to a longitudinal overlapping zone R, providing, typically by means of induction heating, any additional energy to obtain said quantity of energy, so as to weld and thus form said tube
  • the combination of means according to the invention comprises at least: - the selection of a starting material having a flexural strength between certain limits, insofar as, as observed by the applicant, the method according to the invention could not be applied to strip materials either too flexible (flexural strength less than 5 N), or too inflexible (flexural strength greater than 10 N) and, therefore, only concerns a range relatively narrow material, with a flexural strength of 5 to 10 N measured according to the method known as the support blade which will be explained in the examples and illustrated in FIG. 9.
  • a lateral guiding means so that the median of the strip is and remains in the central plane XZ of the tube to be formed and of the device for forming this tube, a device which notably comprises a central mandrel on which the tape is rolled up,
  • the laser beam provides only part of the energy necessary for welding.
  • the method of the invention unlike the methods of the prior art, in no way implies the use of reflectors, any more than it requires multiple reflections of the beam between the edges to be welded, and favors direct attack of the beam on the edges to be welded, so as to locally raise the temperature of the surfaces to be welded, without taking the risk of melting the material constituting the strip.
  • Figure 1 is a view, in longitudinal section in the XZ or Pxz plane, of the device or production line (6) for manufacturing the tubes (4) or tube portions (41) from a strip (1) on reel.
  • Figures la to ld are sectional views along the plane Pxz of the various moving bands of the device (6).
  • Figure le and lf relate to the transformation of the material into a strip (1) in said line (6): figure le is a section in the Pxz plane, while figure lf is a series of cross sections in the YZ plane or Pyz.
  • Figure 2 is a sectional view in the Pyz plane of a device (631) for guiding the edges or selvedges (2,3) of the strip (1).
  • Figure 3 is a schematic view of a device (61) for tensioning the strip (1).
  • Figures 4a and 4b are sections in the plane P ⁇ z which illustrate the rolling of the strip (1).
  • Figures 5a to 5c show the space or cavity E formed between the upper (2) and lower (3) edges facing each other, into which the laser beam will be directed.
  • Figures 5a and 5b are views in the Pyz plane.
  • Figure 5c is a perspective view.
  • Figures 6 to 6b relate to the irradiation of space E by the laser beam (5), the orientation of the beam being that of its bisector.
  • FIG. 6 is a sectional view of the space E along the plane P ⁇ Z
  • FIGS. 6a and 6b illustrate the orientation of the beam and the meaning of the angles ai and ⁇ 2 .
  • Figure 7 is a sectional view along the plane Pyz, of the device downstream of the abscissa point X E of Figure lf.
  • Figure 8 is a sectional view along the Pyz plane, of the weld (42) of the tube.
  • Figure 9 is a perspective view schematically the method of measuring the flexural strength according to the so-called support blade method.
  • said compression of the upper (2) and lower (3) edges which constitutes their union can close, at C, the downstream end of said space E, so that the open face of said space E typically has the shape of a triangle ABC, the vertex C of which is located at the downstream end of said space E, as clearly appears in FIG. 5c.
  • the vertical dimension Z of the end (20) of said upper edge (2) gradually decreases over said distance L, when 1 goes from 0 to L, thanks to a or several so-called “high” rollers (632) bearing on the upper edge (2) of said film or on a part (12), adjoining said edge (2), rollers which have a concave profile (6320) typically intended for cooperate with a convex profile of said central mandrel (62), and by virtue of the flexural strength of said strip (1).
  • said lateral guide means (60) can comprise means, typically provided with a photoelectric cell (600), for continuously determining the position of said strip on the through axis Y, and to correct any deviation so that the median plane (10) of said strip (1) contains said axis X.
  • This lateral guide means (60) typically comprises two spaced parallel rollers, oriented along the Y axis and which can be offset from the Y axis by slight rotation along an axis oriented parallel to the Z axis, to correct a deviation in the lateral positioning of the strip, this offset being controlled by the deviation of the lateral positioning of the strip , which can be identified by one or more photoelectric cells, as shown diagrammatically in FIG. 3.
  • step 2) of the method where the lateral positioning Y of the strip is regulated, and step 3) where said strip is rolled an intermediate curved shape is imposed on said strip, typically by the cooperation of a central caster (630) in vertical abutment on the center line (10) of said strip, and at least one set of two lateral grooved castors (6310), typically those of a selvedge guide (631), exerting an action contrary tending to raise the edges or selvedges (2,3) of said strip, the angle of the two edges or selvedges being typically between 120 and 60 ° at this stage of the rolling step.
  • the roller (630) is shown in Figure 1, while a selvedge guide (631) with two grooved rollers (6310) is shown in Figure 2.
  • the laser beam (5) used in the invention can be oriented in the horizontal plane YX in a direction Dj making an angle oci between - 30 ° and + 90 °, relative to the transverse axis Reference Y, as illustrated in Figure 6a.
  • This laser beam (5) can be oriented in the vertical plane ZDi, comprising said direction Di, in a direction D 2 making an angle ⁇ 2 between + 10 ° and -30 °, relative to the horizontal direction Dt, as illustrated in Figure 6b.
  • the laser beam (5) it is possible to choose for the laser beam (5) a focusing such that the focal point (50) is external to said cavity E, and so that the whole of the beam penetrates into said cavity E, the width (51) of the beam (5) at the entrance to said cavity E is typically between 0.9. AB and 0.3. AB.
  • the laser beam (5) can be oriented so as to provide energy in particular towards the apex S of said triangular section or towards said junction (16) located in the part (12) adjoining the upper edge (2), so that a protective rim (420) is formed and covers the inner edge (33) of said lower edge (3), typically by creep of the material of said upper edge (2).
  • the vertex S corresponds to the junction line (16) between the upper edge (2) and the end (30) of the lower edge (3) or its extension.
  • the laser beam (5) can be oriented so as to provide energy in particular towards the inner limit (31) of the lower edge, on said edge (3) or on said part (13) adjoining said edge, according to the position of the end (20) of the upper edge after rolling, so that a protective rim (420) is formed and covers the outer edge (23) of said upper edge (2), typically by creep of the material of said lower edge (3).
  • the laser beam (5) can be oriented in a predetermined direction Di and be oriented in a direction D 2 , variable either by the angle ⁇ 2 or by the dimension Z, direction regulated so as to that said beam is typically maintained in said space E.
  • said laser beam (5) can be maintained in space E either by modifying the focal distance of the beam, or by moving the laser.
  • the laser beam (5) can be oriented in a direction Di with an angle ⁇ of between + 75 ° and + 90 °.
  • said laser beam (5) may be advantageous to orient said laser beam (5) along the bisector of the angle ⁇ formed by said upper and lower edges, with the angle ai between -20 ° and + 20 °.
  • the beam which is almost perpendicular to the direction X of the strip or of the tube, is positioned near the base AB of the triangle ABC where the spacing between the edges (2) and (3) is maximum.
  • said laser beam (5) can be subjected to a scanning from front to back, in the direction X, over all or part of the distance L, at a scanning speed typically twice the speed. V, so that each portion of the upper (2) and lower (3) edges intended to receive said beam, receives it twice before compression of said edges, and so as to favor the absorption at the surface of the laser radiation.
  • the energy of the laser beam is chosen at a level allowing its absorption by the material constituting the strip when the beam enters the space or the cavity E.
  • This laser beam (5) can be introduced into said space through one or more optical fibers.
  • said strip (1) before welding, to be kept under tension, in the direction X of the strip or of the tube, between 0.2 and 0.8 times its elastic limit. In fact, as observed by the applicant, this contributes to stabilizing the position of space E, even at high speed V.
  • said upper (2) and lower (3) edges can be compressed with a thermal contribution, typically obtained with induction heating (641) which completes the prior heating of said edges (2,3) by the laser beam (5).
  • this energy supply is made on the one hand by a first supply by a laser beam on the edges to be welded themselves. same, and on the other hand by a additional contribution during the compression of the edges to be welded facing each other, this contribution being made by induction heating the "hot" movable strip (640) of steel coated with Teflon.
  • the Applicant has observed that the best performance is obtained by using this double energy supply, the first taking place inside the weld, the second outside the weld. In particular, it is thus possible to obtain the best performance both with regard to the production speed and the protection of the edges (23,33) of the edges (2,3) when such protection is necessary, which does not This is not always the case since only the most demanding applications use a strip comprising an inner layer of EVOH.
  • the longitudinal weld (42) formed between said upper (2) and lower (3) edges can be cooled, so as to be able to increase the speed V
  • a “cold” moving strip (650) can be used for this.
  • the ranges can be chosen for the parameters relating to the space E and to the weld (42): With regard to the space E:
  • the strip (1) can be made up or comprise the following materials for implementing the process of the invention: PE, PP, PA, PET, EVOH, or other plastics with barrier properties or not, plastic or metalloplastic multilayer materials externally coated with the above-mentioned thermoplastic layers, materials which may comprise deposits of SiO x , of carbon in thicknesses typically between 150 and 400 ⁇ m. These materials are typically printed on one side.
  • PE / EVOH / PE As an example of a multilayer material, mention may be made of a material having the following structure: PE / EVOH / PE.
  • PE / M / PE As an example of a metalloplastic material, mention may be made of PE / M / PE, where M denotes a metal sheet, typically Al, Fe, Cu, etc.
  • plastic multilayer materials comprising a layer of paper: PE / Paper / PE
  • these materials must have a flexural strength in the range 5N - 10 N. Indeed, it is thanks to these mechanical properties of the strip that it is possible to compare the edges to be welded without having to introduce positive guidance of these edges themselves, and thus that it is possible to send a laser beam into a strictly absorbent medium consisting of the material to be welded only.
  • Another object of the invention consists of the device (6) for implementing the method according to any one of claims 1 to 26 comprising:
  • a laser (5) for heating the interior surfaces of the edges (2, 3) to be welded by directing a laser beam into said cavity E,
  • a means (64) for compressing said overlap of the edges forming the weld typically by means of a metal strip (640), with a supply of energy complementary to that of the laser, typically by induction heating (641) of said metal strip,
  • a means (65) for cooling said covering typically by means of a metal strip (650),
  • means typically computer, for controlling the line comprising sensors measuring quantities, typically speed, position of the edges of the strip, temperature, and actuators for maintaining the set values of said quantities within a range of values predetermined.
  • the material used was a PE / Adh / EVOH / Adh / PE strip, where PE, Adh and EVOH respectively denote a layer of PE, adhesive and ENOH.
  • the respective thicknesses of the layers of the strip being: 150 ⁇ m, l O ⁇ m, 20 ⁇ m, lO ⁇ m and 90 ⁇ m.
  • This strip taking into account the choice of materials and their thickness, has a flexural strength of 6.6 ⁇ .
  • the measurement of the flexural strength is carried out according to the so-called support blade method, shown diagrammatically in FIG. 9: the head of a traction device (7), not shown, is provided with a blade (70 ) typically triangular, the base of which measures 13.3 mm in length.
  • the maximum bearing force is measured on a portion of cylindrical tube made of the material to be tested, force necessary to bend the top of the cylinder by 20 mm, as shown in dotted lines in FIG. 9, the portion of tube being placed in a square section plinth having the inside diameter of the outside diameter of the tube, chosen equal to one inch, or approximately 25.5 mm.
  • Figure 1 is a view, in longitudinal section in the XZ or P z plane, of the device or production line (6) for manufacturing the tubes (4) or tube portions (41) from a strip (1 ) on reel.
  • Figures la to ld are sectional views along the Pxz plane of the various moving bands of the device (6) closed on themselves, positioned relative to each other along the X axis, but offset along the Z axis of so as to present them separately
  • Figure le and lf relate to the strip material (1) in said line (6) and to its transformation by rolling: the figure shows this transformation in section in the plane Pxz, while FIG. lf illustrates, in the form of cross sections in the YZ or P ⁇ Z plane, the different stages of rolling the strip (1) at different stages of the process or, which comes to the same thing, different abscissas, denoted from X A to X H along the X axis.
  • FIG. 3 is a schematic view of a device (61) comprising two tension rollers (610) and (611), with either, the two rollers being of the same diameter as illustrated in Figure 3, the second roller (61 1 ) rotating at an angular speed ⁇ 2 greater than that of the first roller (610), ie, the angular speeds being close, the second roller (611) having a larger diameter than the first roller (610), so that that the linear speed of the strip (1) is higher at the outlet of the second roller than of the first roller, and that as a result, the strip (1) is subjected between these two rollers to a longitudinal tension which can reach the elastic limit of the material constituting the strip.
  • the strip (1) has been shown upstream of the roll (610) with irregularities or undulations of the edges, whereas, after tensioning of the strip, downstream of the roll (61 1), the strip has no edges irregular.
  • This tension typically between 0.3 and 0.8 times the elastic limit of the material forming the strip (1), is maintained during the formation of the tube (4).
  • FIG. 2 represents, in section in the P ⁇ Z plane.
  • top (632) and bottom (633) rollers (not shown in Figure 1) are applied laterally, as shown in Figures 4a and 4b, so as to fold the edges (2,3) of the strip and form the cavity or space E, of predetermined constant geometry, as illustrated in FIGS. 5a to 5c and in FIG. 6.
  • a laser beam (5) is introduced into the cavity E, as shown in FIG. 6, with an orientation according to the Figures 6a and 6b.
  • a CO 2 laser of the ROFIN SINAR (R) brand was used, either of the SC20 type and of a power of 250W making it possible to work in a speed range going from 20 to 30 m / min, or of the SC60 and a power of 600W allowing to work in a speed range up to 60 m / min.
  • FIGS. 4a and 4b are sections in the plane P ⁇ z which illustrate the rolling of the strip (1) using “low” (632) and “high” (633) rolling rollers, rollers which respectively have a concave surface (6320) and (6330) and an axis of rotation
  • the axes (6321) and (6331) are vertical in Figure 4a, and inclined in Figure 4b. 5a to 5c show the space or cavity E formed between the upper edges (2) and bottom (3) placed opposite, wherein the laser beam will be directed.
  • FIG. 5c represents, in perspective, the entire space or cavity of length L, the upstream end of which is represented in FIG. 5a and the downstream end in FIG. 5b.
  • Figures 6 to 6b relate to the irradiation of space E by the laser beam (5), the orientation of the beam being that of its bisector.
  • FIG. 6 is a sectional view of space E along the plane Pyz, while FIGS. 6a and 6b illustrate the orientation of the beam and the meaning of the angles ai and ⁇ 2 .
  • the longitudinal weld (42) begins, the edges (2,3) then being folded over one another, after the facing interior surfaces have been brought to the appropriate temperature by the laser beam , as shown in Figure 1 f.
  • the hot strip (640) compresses the longitudinal weld, as illustrated in FIG. 7. This strip was heated by induction, to a temperature between 130 ° C and 170 ° C according to speed V.
  • Figure 7 is a sectional view along the Pyz plane, of the device downstream of the abscissa point X E of Figure lf, the different elements being shown apart for clarity of the figure, with the central mandrel in the center (62 ) carrier of the strip (620) on which the tube (4) is rolled.
  • the weld (42) of the tube is compressed between an upper strip (641) and a lower strip (620), a heating means (640) - typically by induction - and compression (64) being shown above the strip upper (641).
  • the tube (4), formed is no longer held by an internal mandrel (62), but by lateral rollers (not shown) which guide the tube (4) towards a device cutting (67) to obtain tube portions (41) of predetermined length.
  • the line (6) comprises means (not shown) for controlling the computerized line comprising the necessary sensors relating in particular to the positioning of the strip before rolling, to the speed of the different parts of the line, to the temperature of the weld and of the heating means used, with the energy of the laser beam, and the corresponding actuators to maintain the set values within a predetermined interval.
  • the tests were carried out at a whole series of different speeds: 20 - 30 - 40 - 45 - 50 - 55 and 60 m / min.
  • FIG. 8 is a sectional view along the plane P ⁇ z , of the weld (42) of the tube.
  • the central layer (11), typically made of EVOH, is covered with external layers (12), typically made of polyolefin plastic, the formation of the weld according to the invention leading to the material of the external layers (12) flowing. and forms a protective rim (12) which isolates the central layer (11).
  • Tubes were obtained having the following values (determination on sections) for:
  • the covering R: 1, 5 mm * the width 1, over which the lower edge is covered by the upper edge with its creep zone forming the protective rim (420) is substantially equal to the corresponding width l s and is worth approximately 3 mm, so that the inner layer of EVOH is protected by the protective edges (420).
  • the method makes it possible to significantly increase the speed of manufacture of the tubes
  • this process can use a very wide variety of strip materials, provided that these strip materials satisfy the conditions defined in the present invention,
  • this process which typically uses a double energy supply, both by a laser, and by an additional heating means, typically by induction, has great flexibility in operating the line, in particular in the event of variations in speed, or during starts or stops,
  • the double energy input leads to good quality and constant quality welding, in particular as regards the covering of the wafers protecting the central layer of EVOH,

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Laser Beam Processing (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

Dans ce procédé: (a) on approvisionne une bande (1), (b) on la guide et on la roule pour mettre en regard ses bords (2, 3), (c) on soude au laser lesdits bords, et on comprime les bords soudés, de manière à former ledit tube, (d) on entraîne ledit tube à une vitesse V, et on découpe à longueur des portions de tubes, ce procédé étant caractérisé en ce que: (1) on approvisionne un matériau en bande (1) présentant une résistance à la flexion comprise entre 5 et 10 N mesurée selon une méthode dite de la lame d'appui, (2) on la guide d'abord selon l'axe travers Y grâce à un moyen de guidage latéral, (3) on roule ladite bande, autour d'un mandrin central (62) fixe à bande mobile de transport (620), en repoussant ses bords (2, 3), compte tenu de ladite résistance à la flexion de ladite bande, de manière à former une cavité E de scellage, (4) on dirige vers ledit espace E un faisceau laser (5) apportant au moins la moitié de la quantité d'énergie nécessaire pour souder les bords (2) et (3), (5) on comprime lesdits bords en apportant éventuellement le complément d'énergie nécessaire pour obtenir ladite quantité d'énergie, de manière à les souder et à former ainsi ledit tube.

Description

PROCEDE DE FABRICATION DE TUBES PAR SOUDURE AU LASER
DOMAINE DE L'INVENTION
L'invention concerne la fabrication de tubes dans le domaine de la cosmétologie, hygiène et pharmacie, tubes, typiquement en matière plastique, formés par roulage d'une bande et par soudure au laser des bords de la bande.
ETAT DE LA TECHNIQUE
On connaît déjà la fabrication classique, comme décrite typiquement dans le brevet FR 1 571 778, de tubes par roulage d'une bande et soudure thermique, par induction, des bords mis en regard.
On sait aussi former un tube et effectuer une soudure axiale des bords par un apport énergétique dû à un faisceau d'un rayonnement laser. Ainsi, le brevet US 4,540,392 divulgue le formation de tubes de carton revêtus typiquement de PE, en roulant une bande et envoyant un faisceau laser entre les rebords à souder mis en regard.
Dans la demande européenne n° 237 192, un dispositif, tel un prisme, est placé entre les surfaces à souder pour réfléchir le faisceau laser sur chacune des surfaces à souder. Dans la demande allemande n° 38 13 570, des réflecteurs sont utilisés ) l'extérieur des films à souder pour confiner le faisceau laser dans la matière à réchauffer en vue de la soudure.
PROBLEMES POSES Un premier problème des procédés conventionnels connus pour la fabrication des tubes concerne la vitesse de fabrication : les procédés connus offrent une vitesse de production typique qui plafonne à 30 m/min.
En effet, dans le procédé classique, on ne peut augmenter la vitesse de production car, compte tenu de la nature des matériaux en jeu et des propriétés thermiques de ces matériaux, notamment en ce qui concerne le transfert de chaleur, il n'est pas possible de réchauffer / refroidir plus vite les bords à souder.
Dans le procédé de soudure au laser, on ne peut augmenter les cadences de production sous peine d'obtenir des tubes présentant une soudure sinon défectueuse, du moins pas assez fiable pour constituer la base d'un procédé industriel.
Un premier objet de l'invention est un procédé permettant d'augmenter d'au moins 50% la cadence de production.
Un second problème se présente lorsqu'on utilise comme bande de départ, une bande comprenant une couche centrale d'EVOH comme matériau barrière. En effet, il importe dans ce cas de disposer d'un procédé permettant d'obtenir un tube dont les bords soudés masquent ou enrobent la couche centrale d'EVOH sensible à l'humidité.
DESCRIPTION DE L'INVENTION
Selon l'invention, dans le procédé de fabrication d'un tube, typiquement en matière plastique, sur une ligne de fabrication : a) on approvisionne une bande en ladite matière plastique, b) on guide ladite bande et on la roule pour mettre en regard les bords de ladite bande, c) on soude au laser lesdits bords selon une génératrice dudit tube d'axe de révolution X, typiquement cylindrique, et on comprime les bords soudés, de manière à former ledit tube, d) on entraîne ledit tube et ladite bande à une vitesse V, et, typiquement, on découpe à longueur des portions de tubes d'une longueur prédéterminée, procédé caractérisé en ce que : 1) on approvisionne un matériau en bande présentant une résistance à la flexion, mesurée selon la méthode dite de la lame d'appui, allant de 5 à 10 N,
2) avant roulage de ladite bande, on la guide d'abord selon l'axe travers Y grâce à un moyen de guidage latéral, de manière à garantir un positionnement latéral fixe de ladite bande par rapport à l'axe long X du tube,
3) on roule ladite bande, autour d'un mandrin central fixe à bande mobile de transport, en repoussant ses bords, compte tenu de ladite résistance à la flexion de ladite bande, à l'aide de moyens de roulage, et typiquement vers le haut, de manière à mettre en regard les bords de la bande en formant une cavité ou un espace E de scellage présentant, sur une longueur L et dans le plan Pyz perpendiculaire à l'axe X, une section, typiquement triangulaire, variable avec l'abscisse 1 allant de 0 à L, le sommet de ladite section triangulaire étant formée par la jonction d'un bord dit inférieur de la bande, de largeur lj entre son extrémité extérieure et sa limite intérieure, ou de son prolongement, avec un bord dit supérieur de la bande et de largeur ls délimitée par ladite jonction, et la base AB de ladite section étant délimitée par ladite extrémité A dudit bord supérieur et par ladite limite intérieure B dudit bord inférieur, la base AB étant maximale pour 1=0 et typiquement nulle, en C pour 1=L, de manière à former un espace E fixe quelle que soit la vitesse V,
4) on dirige vers ledit espace E un faisceau laser (5) d'une puissance adaptée à la vitesse V, de manière à apporter, à la surface interne dudit bord supérieur (2) constituant la face supérieure dudit espace et/ou à la surface externe dudit bord inférieur (3) constituant la face inférieure dudit espace, au moins la moitié de la quantité d'énergie nécessaire pour souder lesdits bords supérieur (2) et inférieur (3),
5) on comprime lesdits bords supérieur et inférieur selon une zone longitudinale de recouvrement R, en apportant, typiquement à l'aide d'un chauffage par induction, le complément éventuel d'énergie pour obtenir ladite quantité d'énergie, de manière à les souder et à former ainsi ledit tube
En effet, la demanderesse a analysé de manière précise les raisons pour lesquelles les procédés de soudure au laser ne permettaient pas d'obtenir des vitesses de production plus élevées. Suite aux études effectuées par la demanderesse, notamment par des analyses d'images avec une caméra à grande vitesse, elle a trouvé que la raison principale de cet échec réside dans l'instabilité relative dudit espace ou de ladite cavité E, en ce qui concerne sa position relative par rapport à un faisceau laser présumé fixe, instabilité qui n'apparaît pas nécessairement à l'oeil nu, de sorte qu'en mettant en oeuvre la combinaison de moyens selon l'invention, cette instabilité relative est sinon éliminée, du moins réduite à un niveau suffisamment faible pour ne pas avoir de conséquences dommageables sur la qualité de la soudure longitudinale. La combinaison de moyens comprend selon l'invention, au moins : - la sélection d'un matériau de départ présentant une résistance à la flexion comprise entre certaines limites, dans la mesure où, comme observé par la demanderesse, le procédé selon l'invention ne pourrait pas s'appliquer à des matériaux en bande soit trop flexibles (résistance à la flexion inférieure à 5 N), soit trop peu flexibles (résistance à la flexion supérieure à 10 N) et, de ce fait ne concerne qu'une plage relativement étroite de matériaux, avec une résistance à la flexion de 5 à 10 N mesurée selon la méthode dite à la lame d'appui qui sera explicitée dans les exemples et illustrée à la figure 9.
- en amont de l'étape de roulage, un moyen de guidage latéral pour que la médiane de la bande soit et reste dans le plan central XZ du tube à former et du dispositif pour former ce tube, dispositif qui comprend notamment un mandrin central sur lequel la bande est roulée,
- des moyens de roulage de la bande, sur un mandrin fixe, pour mettre en regard les bords à souder de la bande et former un espace E ouvert entre ces bords mis en regard, espace ayant la forme d'une pyramide triangulaire très allongée, et pour notamment assurer que cet espace E garde une position fixe quelle que soit la vitesse de la bande, - un apport d'énergie par faisceau laser pour souder les bords en regard, cet apport pouvant constituer seulement une fraction majoritaire de l'apport énergétique nécessaire à l'obtention d'une soudure correcte.
En effet, selon l'invention, il est préférable que le faisceau laser n'apporte qu'une partie seulement de l'énergie nécessaire à la soudure. En effet, le procédé de l'invention, contrairement aux procédés de l'état de la technique, n'implique nullement l'utilisation de réflecteurs, pas plus qu'il ne nécessite des réflexions multiples du faisceau entre les bords à souder, et privilégie l'attaque directe du faisceau sur les bords à souder, de manière à élever localement la température des surfaces à souder, sans prendre le risque de fondre le matériau constituant la bande.
Cette combinaison de moyens permet d'atteindre tous les objectifs de l'invention, comme cela apparaîtra dans la description détaillée et dans les figures selon l'invention.
DESCRIPTION DES FIGURES
Toutes les figures sont relatives à l'invention.
La figure 1 est une vue, en coupe longitudinale dans le plan XZ ou Pxz, du dispositif ou ligne de production (6) permettant de fabriquer les tubes (4) ou portions de tube (41) à partir d'une bande (1) en bobine.
Les figures la à ld sont des vues en coupe selon le plan Pxz des différentes bandes mobiles du dispositif (6).
La figure le et lf sont relatives à la transformation du matériau en bande (1) dans ladite ligne (6) : la figure le est une coupe dans le plan Pxz, alors que la figure lf est une série de coupes transversales dans le plan YZ ou Pyz.
La figure 2 est une vue en coupe dans le plan Pyz d'un dispositif (631) de guidage des bords ou lisières (2,3) de la bande (1).
La figure 3 est une vue schématique d'un dispositif (61) de mise en tension de la bande (1).
Les figures 4a et 4b sont des coupes dans le plan Pγz qui illustrent le roulage de la bande (1).
Les figures 5a à 5c représentent l'espace ou cavité E formé entre les bords supérieur (2) et inférieur (3) mis en regard, dans lequel sera dirigé le faisceau laser. Les figures 5a et 5b sont des vues dans le plan Pyz. alors que la figure 5c est une vue en perspective. Les figures 6 à 6b sont relatives à l'irradiation de l'espace E par le faisceau laser (5), l'orientation du faisceau étant celle de sa bissectrice. la figure 6 est une vue en coupe de l'espace E selon le plan PγZ, alors que les figures 6a et 6b illustrent l'orientation du faisceau et la signification des angles ai et α2.
La figure 7 est une vue en coupe selon le plan Pyz, du dispositif en aval du point d'abscisse XE de la figure lf.
La figure 8 est une vue en coupe selon le plan Pyz, de la soudure (42) du tube.
La figure 9 est une vue en perspective schématisant la méthode de mesure de la résistance à la flexion selon la méthode dite de la lame d'appui.
DESCRIPTION DETAILLEE DE L'INVENTION
Selon l'invention, ladite compression des bords supérieur (2) et inférieur (3) qui constitue leur réunion, peut clore, en C, l'extrémité aval dudit espace E, de sorte que la face ouverte dudit espace E a typiquement la forme d'un triangle ABC dont le sommet C se situe à l'extrémité aval dudit espace E, comme cela apparaît clairement sur le figure 5c.
Il peut être avantageux de maintenir, sur toute la longueur L de l'espace E, l'extrémité (30) dudit bord inférieur (3) à une cote verticale Z typiquement constante par rapport au mandrin central (62). Ainsi, il est plus facile de positionner le faisceau laser (5) et d'irradier au moins le bord inférieur (3).
Comme illustré sur les figures 4a et 4b, on peut maintenir, sur ladite distance L, ledit bord inférieur (3) à une cote verticale Z fixe, grâce à un ou plusieurs galets de roulage dits « bas » (633) en appui sur le bord inférieur (3) dudit film ou sur une partie (13), jouxtant ledit bord (3), galets qui présentent un profil concave (6330) typiquement destiné à coopérer avec un profil convexe dudit mandrin central (62), et grâce à la résistance à la flexion de ladite bande (1).
De préférence, et comme illustré sur les figures 4a, 4b et 5c, la cote verticale Z de l'extrémité (20) dudit bord supérieur (2) diminue progressivement sur ladite distance L, quand 1 passe de 0 à L, grâce à un ou plusieurs galets de roulage dits « hauts » (632) en appui sur le bord supérieur (2) dudit film ou sur une partie (12), jouxtant ledit bord (2), galets qui présentent un profil concave (6320) typiquement destiné à coopérer avec un profil convexe dudit mandrin central (62), et grâce à la résistance à la flexion de ladite bande (1).
Selon l'invention, à l'étape 2) du procédé, ledit moyen de guidage latéral (60) peut comprendre un moyen, typiquement doté d'une cellule photoélectrique (600), pour déterminer en continu la position de ladite bande sur l'axe travers Y, et pour corriger tout écart de manière à ce que le plan médian (10) de ladite bande (1) contienne ledit axe X. Ce moyen de guidage latéral (60) comprend typiquement deux rouleaux parallèles espacés, orientés selon l'axe Y et pouvant se décaler de l'axe Y par légère rotation selon un axe orienté parallèlement à l'axe Z, pour corriger un écart du positionnement latéral de la bande, ce décalage étant asservi à l'écart de positionnement latéral de la bande, écart qui peut être repéré par une ou plusieurs cellules photoélectrique, comme représenté schématiquement sur la figure 3.
On peut aussi, en substitution du moyen précédent ou en complément au moyen précédent, approvisionner ladite bande (1) avec une largeur supérieure de 1 à 5% à la largeur théorique de ladite bande compte tenu du diamètre du tube à fabriquer et d'un recouvrement des bords à souder, et, à l'étape 2) du procédé, découper, typiquement par une paire de couteaux circulaires (601) positionnés de manière symétrique par rapport à la médiane ou au plan médian (10) de la bande, la largeur excédentaire de ladite bande (602), de manière à fournir une bande dont la médiane ne s'écarte pas du plan P z centré contenant l'axe X. On a également représenté cette modalité sur la figure 3. Il est avantageux, notamment de manière à pouvoir soit élargir les possibilités d'approvisionnement en bandes, soit augmenter la vitesse V tout en garantissant la qualité de la soudure (42) du tube, de faire passer ledit film entre rouleaux de tension (61), typiquement juste en amont de l'étape 2) du procédé, pour exercer une tension dans le sens long de la bande, tension typiquement inférieure à la limite élastique de la bande, mais assez élevée pour que disparaissent d'éventuelles ondulations (15) des bordures ou rives de ladite bande, ondulations formées généralement dans un plan Pxz. On peut exercer ladite tension en utilisant deux rouleaux ou cylindres, avec un rouleau aval (611) imposant audit film une vitesse linéaire instantanée supérieure à celle imposée par un rouleau amont (610). La figure 3 représente le cas où cette tension est obtenue par une vitesse de rotation différente pour les rouleaux de tension (610,61 1) de même diamètre mais avec ω > coi. On peut obtenir le même effet avec des moyens analogues.
Une fois qu'un positionnement latéral correct de la bande est assuré, c'est-à-dire lorsque la médiane (10) de la bande est dans le plan centré Pxz plan passant par l'axe (40) du tube ou du mandrin central (62), on commence à rouler ladite bande. Ainsi, entre l'étape 2) du procédé où le positionnement latéral Y de la bande est régulé, et l'étape 3) où ladite bande est roulée, on impose à ladite bande une forme incurvée intermédiaire, typiquement par la coopération d'une roulette centrale (630) en appui vertical sur la ligne médiane (10) de ladite bande, et d'au moins un jeu de deux roulettes à gorges (6310) latérales, typiquement celles d'un guide lisière (631), exerçant une action contraire tendant à remonter les bords ou lisières (2,3) de ladite bande, l'angle des deux bords ou lisières étant typiquement compris entre 120 et 60° à ce stade de l'étape de roulage. La roulette (630) est représentée sur la figure 1, alors qu'un guide lisière (631 ) doté de deux roulettes à gorge (6310) est représenté à la figure 2.
En ce qui concerne le faisceau laser (5) utilisé dans l'invention, il peut être orienté dans le plan horizontal YX selon une direction Dj faisant un angle oci compris entre - 30° et + 90°, par rapport à l'axe transversal Y de référence, comme illustré sur la figure 6a. Ce faisceau laser (5) peut être orienté dans le plan vertical ZDi, comprenant ladite direction Di, selon une direction D2 faisant un angle α2 compris entre +10° et -30°, par rapport à la direction horizontale Dt, comme illustré sur la figure 6b. Comme illustré sur la figure 6, on peut choisir pour le faisceau laser (5) une focalisation telle que le point focal (50) soit extérieur à ladite cavité E, et de manière à ce que la totalité du faisceau pénètre dans ladite cavité E, la largeur (51) du faisceau (5) à l'entrée de ladite cavité E étant typiquement comprise entre 0,9. AB et 0,3. AB.
On peut orienter le faisceau laser (5) de manière à apporter de l'énergie notamment vers le sommet S de ladite section triangulaire ou vers ladite jonction (16) localisés dans la partie (12) jouxtant le bord supérieur (2), de manière à ce qu'un rebord protecteur (420) se forme et recouvre la tranche intérieure (33) dudit bord inférieur (3), typiquement par fluage de la matière dudit bord supérieur (2). Comme déjà mentionné et comme cela apparaît sur les figures 5a et 5c, le sommet S correspond à la ligne de jonction (16) entre le bord supérieur (2) et l'extrémité (30) du bord inférieur (3) ou son prolongement.
De même, on peut orienter le faisceau laser (5) de manière à apporter de l'énergie notamment vers la limite intérieure (31) du bord inférieur, sur ledit bord (3) ou sur ladite partie (13) jouxtant ledit bord, selon la position de l'extrémité (20) du bord supérieur après roulage, de manière à ce qu'un rebord protecteur (420) se forme et recouvre la tranche extérieure (23) dudit bord supérieur (2), typiquement par fluage de la matière dudit bord inférieur (3).
Ainsi, il est possible, comme illustré sur la figure 8, de former une soudure (42) des bords (2) et (3), dont les tranches, notées respectivement (32) et (33), sont protégées par de la matière venant des couches externes (14).
Selon une modalité de l'invention, le faisceau laser (5) peut être orienté selon une direction Di prédéterminée et être orienté selon une direction D2, variable soit par l'angle α2 soit par la cote Z, direction régulée de manière à ce que ledit faisceau soit typiquement maintenu dans ledit espace E. Ainsi, par exemple, ledit faisceau laser (5) peut être maintenu dans l'espace E soit en modifiant la distance focale du faisceau, soit en déplaçant le laser. Le faisceau laser (5) peut être est orienté selon une direction Di d'angle \ compris entre +75° et +90°.
Il peut être avantageux d'orienter ledit faisceau laser (5) selon la bissectrice de l'angle β formé par lesdits bords supérieur et inférieur, avec l'angle ai compris entre -20° et +20°. Dans ce cas, le faisceau, qui est presque perpendiculaire à la direction X de la bande ou du tube est positionné près de la base AB du triangle ABC où l'écartement entre les bords (2) et (3) est maximum.
Selon une modalité de l'invention, ledit faisceau laser (5) peut être soumis à un balayage d'avant en arrière, selon la direction X, sur tout ou partie de la distance L, à une vitesse de balayage typiquement double de la vitesse V, de manière à ce que chaque portion des bords supérieur (2) et inférieur (3) destiné à recevoir ledit faisceau, le reçoive deux fois avant compression desdits bords, et de manière à privilégier l'absorption en surface du rayonnement laser. Selon l'invention, l'énergie du faisceau laser est choisie à un niveau permettant son absorption par le matériau constituant la bande lorsque le faisceau pénètre dans l'espace ou la cavité E. Ce faisceau laser (5) peut être introduit dans ledit espace grâce à une ou plusieurs fibres optiques.
II est avantageux que ladite bande (1), avant soudure, soit maintenue sous une tension, dans la direction X de la bande ou du tube, comprise entre 0,2 et 0,8 fois sa limite élastique. En effet, comme observé par la demanderesse, cela contribue à stabiliser la position de l'espace E, même à grande vitesse V.
Selon une modalité avantageuse de l'invention, à l'étape 5) du procédé, on peut comprimer lesdits bords supérieur (2) et inférieur (3) avec un apport thermique, obtenu typiquement avec un chauffage par induction (641) qui complète le réchauffage préalable desdits bords (2,3) par le faisceau laser (5). En effet, bien que le faisceau laser puisse apporter aux bords à souder toute l'énergie nécessaire, il est préférable que cet apport d'énergie se fasse d'une part par un premier apport par un faisceau laser sur les bords à souder eux-mêmes, et d'autre part par un apport complémentaire lors de la compression des bords à souder mis en regard, cet apport se faisant en chauffant par induction la bande mobile « chaude » (640) en acier revêtu de téflon.
La demanderesse a observé que les meilleures performances étaient obtenues en utilisant ce double apport d'énergie, le premier ayant lieu à l'intérieur même de la soudure, le second à l'extérieur de la soudure. En particulier, il est ainsi possible d'obtenir les meilleures performances tant en ce qui concerne la vitesse de production que la protection des tranches (23,33) des bords (2,3) lorsqu'une telle protection est nécessaire, ce qui n'est pas toujours le cas dans la mesure où seulement les applications les plus exigeantes utilisent une bande comprenant une couche intérieure d'EVOH.
Dans le procédé selon l'invention, à l'issue de l'étape 5), on peut refroidir la soudure longitudinale (42) formée entre lesdits bords supérieur (2) et inférieur (3), de manière à pouvoir augmenter la vitesse V. On peut utiliser pour cela une bande mobile « froide » (650).
Il est possible également de réunir les deux bandes (640) et (650) en une seule, comme indiqué par des pointillés entre les figures lb et le, en particulier dans le cas où l'apport complémentaire d'énergie n'est pas très élevé.
Dans le procédé selon l'invention, on peut choisir les plages pour les paramètres relatifs à l'espace E et à la soudure (42) : En ce qui concerne l'espace E :
- L : typiquement compris entre 5 et 20 cm
- AB : typiquement compris entre 1 et 8 mm - Largeur ls et 1, des bordures : typiquement compris entre 1 et 8 mm En ce qui concerne le soudure (42) :
- Recouvrement R des bords à souder : typiquement compris entre 0,5 et 3 mm
- Largeur du rebord protecteur (420), le cas échéant : typiquement compris entre 0,5 et 2 mm. Selon l'invention, la bande (1) peut être constituée ou comprendre les matériaux suivants pour mettre en oeuvre le procédé de l'invention : PE, PP, PA, PET, EVOH, ou autres matières plastiques à propriétés de barrière ou non, matériaux multicouches plastiques ou métalloplastiques revêtus extérieurement des couches thermoplastiques citées précédemment, matériaux qui peuvent comprendre des dépôts de SiOx, de carbone dans des épaisseurs typiquement comprises entre 150 et 400 μm. Ces matériaux sont typiquement imprimés sur une face.
Comme exemple de matériau multicouche, on peut citer un matériau ayant la structure suivante : PE/EVOH/PE. Comme exemple de matériau métalloplastique, on peut citer PE/M/PE, où M désigne une feuille métallique, typiquement Al, Fe, Cu, etc..
On peut aussi avoir des matériaux multicouche plastiques comprenant une couche de papier : PE/Papier/PE
Comme déjà mentionné, ces matériaux doivent présenter une résistance à la flexion comprise dans la plage 5N - 10 N. En effet, c'est grâce à ces propriétés mécaniques de la bande qu'il est possible de mettre en regard les bords à souder sans avoir à introduire un guidage positif de ces bords eux-mêmes, et ainsi qu'il est possible d'envoyer un faisceau laser dans un milieu strictement absorbant constitué par le matériau à souder seulement.
Un autre objet de l'invention est constitué par le dispositif (6) pour mettre en oeuvre le procédé selon une quelconque des revendications 1 à 26 comprenant :
- des moyens de guidage latéral (60) de la bande (1),
- des moyens de roulage (63) de la bande autour d'un mandrin central fixe (62), de manière à mettre en regard les bords à souder (2,3) et à former une cavité ou un espace E fixe, fermée à son extrémité aval par le recouvrement R desdits bords formant le début de la soudure longitudinale (42),
- un laser (5) pour réchauffer les surfaces intérieures des bords (2,3) à souder en dirigeant un faisceau laser dans ladite cavité E,
- un moyen (64) pour comprimer ledit recouvrement des bords formant la soudure, typiquement grâce une bande métallique (640), avec un apport d'énergie complémentaire à celui du laser, typiquement par chauffage par induction (641 ) de ladite bande métallique,
- un moyen (65) pour refroidir ledit recouvrement, typiquement grâce à une bande métallique (650),
- un moyen de tronçonnage (67) pour découper le tube (4) en portions de tube (41),
- des moyens pour assurer le positionnement et le déplacement du tube (4),
- des moyens, typiquement informatiques, de pilotage de la ligne comprenant des capteurs mesurant des grandeurs, typiquement de vitesse, de position des bords de la bande, de température, et des actionneurs pour maintenir les valeurs de consigne desdites grandeurs dans une plage de valeurs prédéterminée.
EXEMPLES DE REALISATION
Comme matériau, on a utilisé une bande de PE/Adh/EVOH/Adh/PE, où PE, Adh et EVOH désignent respectivement une couche de PE, d'adhésif et d'ENOH. Les épaisseurs respectives des couches de la bande étant : 150 μm, l Oμm, 20 μm , lOμm et 90 μm. Cette bande, compte tenu du choix des matériaux et de leur épaisseur, présente une résistance à la flexion de 6,6 Ν.
La mesure de la résistance à la flexion est effectuée selon la méthode dite de la lame d'appui, schématisée sur la figure 9 : la tête d'un dispositif de traction (7), non représenté, est doté d'une lame (70) typiquement triangulaire dont la base mesure 13,3 mm de longueur. On mesure la force d'appui maximale sur une portion de tube cylindrique constitué du matériau à tester, force nécessaire pour faire plier le sommet du cylindre de 20 mm, comme illustré en pointillés sur la figure 9, la portion de tube étant placée dans un socle de section carrée ayant pour arête intérieure la diamètre extérieur du tube, choisi égal à un pouce (un « inch »), soit environ 25,5 mm.
Les figures constituent un exemple de réalisation. La figure 1 est une vue, en coupe longitudinale dans le plan XZ ou P z, du dispositif ou ligne de production (6) permettant de fabriquer les tubes (4) ou portions de tube (41) à partir d'une bande (1) en bobine.
On a repéré des différents moyens de la ligne (6) selon la direction longitudinale X par leur abscisse X=XA à XF sur la figure le.
Les figures la à ld sont des vues en coupe selon le plan Pxz des différentes bandes mobiles du dispositif (6) fermées sur elles-mêmes, positionnées les unes par rapport aux autres selon l'axe X, mais décalées selon l'axe Z de manière à les présenter séparément
- figure la : bande (620) solidaire du mandrin central (62), représentée en coupe sur les figures 4az, 4b et 7, située au-dessous de la soudure longitudinale (42), et s'étendant de X=XD à X=XG soit sur une longueur de 1,8 m environ.
- figure lb : bande de compression « chaude » (640), située au-dessus de la soudure longitudinale (42) de X=XE à X=XF, soit sur une longueur de 0,4 m environ - figure le : bande de compression « froide » (650), située au-dessus de la soudure longitudinale (42) de X=XF à X=XG, soit sur une longueur de 1 m environ la figure 1 c,
- figure ld : bande support (660), située au-dessous de la bande roulée et du tube, entraînant le tube sur une longueur de 2,5 m environ, entre X=XB à X=XH, La figure le et lf sont relatives au matériau en bande (1) dans ladite ligne (6) et à sa transformation par roulage : la figure le montre cette transformation en coupe dans le plan Pxz, alors que la figure lf illustre, sous forme de coupes transversales dans le plan YZ ou PγZ, les différentes étapes du roulage de la bande (1) à différentes étapes du procédé ou, ce qui revient au même, différentes abscisses, notées de XA à XH le long de l'axe X.
Dans ce qui suit, relativement à la figure 1, nous indiquerons, d'amont vers l'aval, les différents moyens présents sur la ligne (6), outre les différentes bandes des figures la à le, certains de ces moyens n'étant pas représentés en tant que tels sur la figure 1 pour ne pas l'alourdir : - en amont de X=XA, qui représente le point de la ligne (6) où la bande arrive plane et en position transversale correcte, c'est-à-dire avec son plan médian (100) comprenant l'axe longitudinal (40) fixe, se trouvent d'abord les moyens (10) d'approvisionnement en bande (1), typiquement un dévideur de bobine de matériau, puis un moyen de guidage latéral (60), puis, comme illustré de manière plus détaillée sur la figure 3, deux rouleaux de tension (61), avec un rouleau de tension amont (610) et un rouleau de tension aval (61 1), dont la différence de vitesse de rotation induit une tension dans la bande destinée à stabiliser ses bords ou rives en supprimant des ondulations latérales lorsqu'elles sont présentes. La figure 3 est une vue schématique d'un dispositif (61) comprenant deux rouleaux de tension (610) et (611), avec soit, les deux rouleaux étant de même diamètre comme illustré sur la figure 3, le second rouleau (61 1) tournant à une vitesse angulaire ω2 supérieure à celle coi du premier rouleau (610), soit, les vitesses angulaires étant voisines, le second rouleau (611) ayant un plus grand diamètre que le premier rouleau (610), de manière à ce que la vitesse linéaire de la bande (1) soit plus élevée en sortie du second rouleau que du premier rouleau, et que de ce fait, la bande (1) soit soumise entre ces deux rouleaux à une tension longitudinale pouvant atteindre la limite élastique du matériau constituant la bande.
On a représenté la bande (1) en amont du rouleau (610) avec des irrégularités ou ondulations des bords, alors que, après mise sous tension de la bande, en aval du rouleau (61 1), la bande ne présente pas de bords irréguliers. Cette tension, typiquement comprise entre 0,3 et 0,8 fois la limite élastique du matériau formant la bande (1), est maintenu durant la formation du tube (4).
- entre X=XA et X-XR, on trouve des moyens complémentaires de positionnement, comme ceux représenté sur la figure 3.
- au point X=XR, se trouve un roulette centrale (630) en appui sur la bande (1), de manière à commencer le roulage de cette bande selon un profil transversal représenté sur la figure 1 f .
- au point X=Xç, se trouvent les roulettes à gorge (6310), la bande présentant alors un profil transversal représenté sur la figure lf. La figure 2 représente, en coupe dans le plan PγZ. un dispositif (631) de guidage des bords ou lisières (2,3) de la bande (1), à l'aide de deux roulettes à gorge (6310), les bords étant maintenus dans les gorges, ce dispositif (631 ) comprenant un support circulaire (631 1) fixé lui-même au bâti de la ligne (6).
- entre X=X et X=Xn, se trouvent notamment des moyens (non représentés sur la figure 1) pour maintenir en position le mandrin central (62) et éventuellement pour poursuivre le roulage de la bande.
Figure imgf000018_0001
des galets de roulage haut (632) et bas (633) (non représentés sur la figure 1) sont appliqués latéralement, comme représenté sur les figures 4a et 4b, de manière à rabattre les bords (2,3) de la bande et former la cavité ou espace E, de géométrie constante prédéterminée, comme illustré sur les figures 5a à 5c et sur la figure 6. Un faisceau laser (5) est introduit dans la cavité E, comme représenté sur la figure 6, avec une orientation selon les figures 6a et 6b.
On a utilisé un laser CO2 de marque ROFIN SINAR (R), soit de type SC20 et d'une puissance de 250W permettant de travailler dans une plage de vitesse allant de 20 à 30 m/min, soit de type SC60 et d'une puissance de 600W permettant de travailler dans une plage de vitesse pouvant atteindre 60 m/min.
Les figures 4a et 4b sont des coupes dans le plan Pγz qui illustrent le roulage de la bande (1) à l'aide de galets de roulage « bas » (632) et « haut » (633), galets qui présentent respectivement une surface concave (6320) et (6330) et un axe de rotation
(6321) et (6331), de manière à mettre en regard les bords supérieur (2) et inférieur (3) en vue de leur soudure.
Les axes (6321) et (6331) sont verticaux sur le figure 4a, et inclinés sur la figure 4b. Les figures 5a à 5c représentent l'espace ou cavité E formé entre les bords supérieur (2) et inférieur (3) mis en regard, dans lequel sera dirigé le faisceau laser.
Les figures 5a et 5b sont des vues, dans le plan Pyz, des extrémités de la zone d'action du laser, zone de longueur L repérée par les abscisses, XD et XE, de ses extrémités, les bords (2,3) faisant un angle β typiquement compris entre 15 et 70° pour l'abscisse X=XD, à l'extrémité amont de cette zone, et un angle virtuellement nul pour l'abscisse
X=XE à l'extrémité aval de cette zone. La figure 5c représente, en perspective, la totalité de l'espace ou cavité de longueur L, dont l'extrémité amont est représentée à la figure 5a et l'extrémité aval à la figure 5b. Les figures 6 à 6b sont relatives à l'irradiation de l'espace E par le faisceau laser (5), l'orientation du faisceau étant celle de sa bissectrice. La figure 6 est une vue en coupe de l'espace E selon le plan Pyz, alors que les figures 6a et 6b illustrent l'orientation du faisceau et la signification des angles ai et α2. au point X=Xκ, débute la soudure longitudinale (42), les bords (2,3) étant alors rabattus l'un sur l'autre, après que les surfaces intérieures en regard aient été portées à la température adéquate par le faisceau laser, comme représenté sur la figure 1 f. - entre X=Xg et X=XF, la bande chaude (640) comprime la soudure longitudinale, comme illustré sur la figure 7. Cette bande a été chauffée par induction, à une température comprise entre 130°C et 170°C selon la vitesse V.
La figure 7 est une vue en coupe selon le plan Pyz, du dispositif en aval du point d'abscisse XE de la figure lf, les différents éléments étant présentés écartés pour la clarté de la figure, avec au centre le mandrin central (62) porteur de la bande (620) sur lequel est roulé le tube (4). La soudure (42) du tube est comprimée entre une bande supérieure (641) et une bande inférieure (620), un moyen de chauffage (640) - typiquement par induction- et de compression (64) étant représenté au-dessus de la bande supérieure (641).
- entre X=XF et X=Xr„ la bande froide (650) comprime et refroidit la soudure longitudinale.
- en aval du point X=XG, le tube (4), formé, n'est plus maintenu par un mandrin intérieur (62), mais par des roulettes latérales (non représentées) qui guident le tube (4) vers un dispositif de tronçonnage (67) permettant d'obtenir des portions de tube (41) de longueur prédéterminée.
La ligne (6) comprend des moyens (non représentés) de pilotage de la ligne informatisés comprenant les capteurs nécessaires relatifs notamment au positionnement de la bande avant roulage, à la vitesse des différentes parties de la ligne, à la température de la soudure et des moyens de chauffage utilisés, à l'énergie du faisceau laser, et les actionneurs correspondants pour maintenir les valeurs de consigne dans un intervalle prédéterminé.
Les essais ont été réalisés à toute une série de vitesses différentes : 20 - 30 - 40 - 45 - 50 - 55 et 60 m/min.
Dans les essais précédents, la part d'énergie apportée par le laser et celle apportée par le chauffage par induction a été considérée en première approximation (aux pertes près) comme étant proportionnelle à la puissance installée. Ainsi, les essais ont été réalisés avec un apport d'énergie voisin de 3/4 par le laser et 1/4 par induction. D'autres essais ont montré la possibilité de faire varier, autour de ces valeurs, la part du chauffage par le laser et celle du chauffage par induction.
A chaque essai, les tubes obtenus ont été examinés en coupe, comme illustré sur la figure 8 qui est une vue en coupe selon le plan Pγz, de la soudure (42) du tube. On a représenté la couche centrale (11), typiquement en EVOH, recouverte de couches externes (12), typiquement en matière plastique polyoléfinique, la formation de la soudure selon l'invention conduisant à ce que la matière des couches externes (12) flue et forme un rebord protecteur (12) qui isole la couche centrale (11).
On a obtenu des tubes ayant les valeurs suivantes (détermination sur des coupes) pour :
* le recouvrement R : 1 ,5 mm * la largeur 1, sur laquelle le bord inférieur est recouvert par le bord supérieur avec sa zone de fluage formant le rebord protecteur (420) est sensiblement égal à la largeur correspondante ls et vaut environ 3 mm, de sorte que la couche intérieure d'EVOH est protégée par les rebords protecteurs (420).
En fonction de la vitesse V, on a fait les observations suivantes en ce qui concerne la conduite de la ligne et la qualité du tube obtenu, principalement la qualité de la soudure
: au-delà d'une vitesse V égale à 50 m/min, l'intégrité de la soudure n'est plus obtenue, alors qu'en deçà d'une vitesse V égale à 50 m min, la soudure est parfaitement cohésive et ne se délamine pas.
AVANTAGES DE L'INVENTION L'invention divulgue un procédé présentant plusieurs avantages :
- d'une part, le procédé permet d'augmenter de manière très significative la vitesse de fabrication des tubes,
- d'autre part, ce procédé peut utiliser une très grande variété de matériaux en bande, pour peu que ces matériaux en bande satisfassent aux conditions définies dans la présente invention,
- en outre, ce procédé, qui utilise typiquement un apport énergétique double, à la fois par un laser, et par un moyen de chauffage complémentaire, typiquement par induction, présente une grande souplesse de fonctionnement de la ligne, notamment en cas de variations de vitesse, ou lors des démarrages ou des arrêts,
- de plus, le double apport énergétique conduit à une soudure de bonne qualité et de qualité constante, notamment en ce qui concerne le recouvrement des tranches protégeant la couche centrale d'EVOH,
- enfin, ce procédé peut être mis en oeuvre moyennant des transformations relativement peu coûteuses des lignes de production traditionnelles.
Liste des repères
Bande / matériau en bande 1
Bobine/alimentation en bande 10 Plan médian longitudinal / médiane... 100
Couche centrale EVOH 11
Partie jouxtant le bord supérieur 12
Partie jouxtant le bord inférieur 13
Couche externe 14 Ondulations sur les bords 15
Jonction de l'extrémité 30 et du bord 2... 16
Bord supérieur 2
Extrémité 20
Limite intérieure 21 Partiejouxtant le bord (2) 22
Tranche supérieure de la soudure 23 Bord inférieur 3
Extrémité 30
Limite intérieure 31
Partie jouxtant le bord (3) 32 Tranche supérieure de la soudure 33
Tube 4
Axe X du tube ou du mandrin central 62 40
Portions de tube 41
Soudure longitudinale 42 Rebord protecteur 420
Faisceau laser 5
Point focal 50
Dispositif/ ligne de fabrication 6
Moyen de guidage latéral 60 Cellule photo-électrique 600
Couteaux circulaires 601
Largeur excédentaire 602
Rouleaux de tension 61
Rouleau amont (coi) 610 Rouleau aval (ω2) 61 1
Mandrin central 62
Bande mobile de transport 620
Moyens de roulage 63
Roulette centrale 630 Guide lisière 631
Roulettes à gorge 6310
Support 631 1
Galets de roulage haut 632
Profil concave 6320 Axe de rotation 6321
Galets de roulage bas 633 Profil concave 6330
Axe de rotation 6331
Moyens de compression 64
Bande mobile « chaude » 640
Chauffage induction 641
Moyens de refroidissement 65
Bande mobile « froide » 650
Moyens de support 66
Bande support 660
Dispositif de tronçonnage du tube 67
Dispositif de traction 7
Lame d'appui 70
Socle 71

Claims

REVENDICATIONS
1. Procédé de fabrication d'un tube (4), typiquement en matière plastique, sur une ligne de fabrication (6), dans lequel : a) on approvisionne une bande (1) en ladite matière plastique, b) on guide ladite bande et on la roule pour mettre en regard les bords (2,3) de ladite bande, c) on soude au laser lesdits bords selon une génératrice dudit tube d'axe de révolution X, typiquement cylindrique, et on comprime les bords soudés, de manière à former ledit tube, d) on entraîne ledit tube et ladite bande à une vitesse V, et, typiquement, on découpe à longueur des portions de tubes (41) d'une longueur prédéterminée, procédé caractérisé en ce que :
1) on approvisionne un matériau en bande (1) présentant une résistance à la flexion, mesurée selon une méthode dite de la lame d'appui, allant de 5 N à IO N,
2) avant roulage de ladite bande, on la guide d'abord selon l'axe travers Y grâce à un moyen de guidage latéral (60), de manière à garantir un positionnement latéral fixe de ladite bande par rapport à l'axe long X (40) du tube,
3) on roule ladite bande, autour d'un mandrin central (62) fixe à bande mobile de transport (620), en repoussant ses bords (2,3), compte tenu de ladite résistance à la flexion de ladite bande, à l'aide de moyens de roulage (63), et typiquement vers le haut, de manière à mettre en regard les bords (2,3) de la bande en formant une cavité ou un espace E de scellage présentant, sur une longueur L et dans le plan Pyz perpendiculaire à l'axe X, une section, typiquement triangulaire, variable avec l'abscisse 1 allant de 0 à L, le sommet S de ladite section triangulaire étant formée par la jonction (16) d'un bord dit inférieur (3) de la bande, de largeur 1; entre son extrémité extérieure (30) et sa limite intérieure (31), ou de son prolongement, avec un bord dit supérieur (2) de la bande et de largeur ls entre son extrémité extérieure (20) et ladite jonction (43), et la base AB de ladite section étant délimitée par ladite extrémité A (21) dudit bord supérieur (2) et par ladite limite intérieure B (31) dudit bord inférieur (3), la base AB étant maximale pour 1=0 et typiquement nulle, en C pour 1=L, de manière à former un espace E fixe quelle que soit la vitesse V,
4) on dirige vers ledit espace E un faisceau laser (5) d'une puissance adaptée à la vitesse V, de manière à apporter, à la surface interne dudit bord supérieur (2) constituant la face supérieure dudit espace et/ou à la surface externe dudit bord inférieur (3) constituant la face inférieure dudit espace, au moins la moitié de la quantité d'énergie nécessaire pour souder lesdits bords supérieur (2) et inférieur (3),
5) on comprime lesdits bords supérieur et inférieur selon une zone longitudinale de recouvrement R, en apportant, typiquement à l'aide d'un chauffage par induction, le complément éventuel d'énergie pour obtenir ladite quantité d'énergie, de manière à les souder et à former ainsi ledit tube.
2. Procédé selon la revendication 1 dans lequel ladite compression des bords supérieur (2) et inférieur (3) qui constitue leur réunion, clôt en C l'extrémité aval dudit espace E, de sorte que la face ouverte dudit espace a typiquement la forme d'un triangle ABC dont le sommet C se situe à l'extrémité aval dudit espace E.
3. Procédé selon une quelconque des revendications 1 à 2 dans lequel, sur toute la longueur L de l'espace E, l'extrémité (30) dudit bord inférieur (3) est maintenue à une cote verticale Z typiquement constante par rapport au mandrin central (62).
4. Procédé selon la revendication 3 dans lequel, sur ladite distance L, on maintient ledit bord inférieur (3) à une cote verticale Z fixe, grâce à un ou plusieurs galets de roulage dits « bas » (633) en appui sur le bord inférieur (3) dudit film ou sur une partie (13), jouxtant ledit bord (3), galets qui présentent un profil concave (6330) typiquement destiné à coopérer avec un profil convexe dudit mandrin central (62), et grâce à la résistance à la flexion de ladite bande (1).
5. Procédé selon une quelconque des revendications 1 à 4 dans lequel, sur ladite distance L, la cote verticale Z de l'extrémité (20) dudit bord supérieur (2) diminue progressivement quand 1 passe de 0 à L, grâce à un ou plusieurs galets de roulage dits « hauts » (632) en appui sur le bord supérieur (2) dudit film ou sur une partie (12), jouxtant ledit bord (2), galets qui présentent un profil concave (6320) typiquement destiné à coopérer avec un profil convexe dudit mandrin central (62), et grâce à la résistance à la flexion de ladite bande (1 ).
6. Procédé selon une quelconque des revendications 1 à 5 dans lequel, à l'étape 2) du procédé, ledit moyen de guidage latéral (60) comprend un moyen, typiquement doté d'une cellule photoélectrique (600), pour déterminer en continu la position de ladite bande sur l'axe travers Y, et pour corriger tout écart de manière à ce que le plan médian (10) de ladite bande (1) contienne ledit axe X.
7. Procédé selon une quelconque des revendications 1 à 6 dans lequel, à l'étape 1) du procédé, on approvisionne ladite bande (1) avec une largeur supérieure de 1 à 5% à la largeur théorique de ladite bande compte tenu du diamètre du tube à fabriquer et d'un recouvrement des bords à souder, et dans lequel, à l'étape 2) du procédé, on découpe, typiquement par une paire de couteaux circulaires (601) positionnés de manière symétrique par rapport à la médiane ou au plan médian (10) de la bande, la largeur excédentaire de ladite bande (602), de manière à fournir une bande dont la médiane ne s'écarte pas du plan Pxz centré contenant l'axe X.
8. Procédé selon une quelconque des revendications 1 à 7 dans lequel, notamment de manière à pouvoir soit élargir les possibilités d'approvisionnement en bandes, soit augmenter la vitesse V tout en garantissant la qualité de la soudure (42) du tube, on fait passer ledit film entre rouleaux de tension (61), typiquement juste en amont de l'étape 2) du procédé, pour exercer une tension dans le sens long de la bande, tension typiquement inférieure à la limite élastique de la bande, mais assez élevée pour que disparaissent d'éventuelles ondulations (15) des bordures ou rives de ladite bande, ondulations formées généralement dans un plan Pxz.
9 Procède selon la revendication 8 dans lequel on exerce ladite tension en utilisant deux rouleaux ou cylindres, avec un rouleau aval (611) imposant audit film une vitesse linéaire instantanée supérieure à celle imposée par un rouleau amont (610)
10 Procède selon une quelconque des revendications 1 a 9 dans lequel entre l'étape 2) du procède où le positionnement latéral Y de la bande est régule, et l'étape 3) où ladite bande est roulée, on impose a ladite bande une forme incurvée intermédiaire, typiquement par la coopération d'une roulette centrale (630) en appui vertical sur la ligne médiane (10) de ladite bande, et d'au moins un jeu de deux roulettes à gorges (6310) latérales, typiquement celles d'un guide lisière (631), exerçant une action contraire tendant à remonter les bords ou lisières (2,3) de ladite bande, l'angle des deux bords ou lisières étant typiquement compris entre 120 et 60° a ce stade de l'étape de roulage
11 Procédé selon une quelconque des revendications 1 à 10 dans lequel le faisceau laser (5) est orienté dans le plan horizontal YX selon une direction Di faisant un angle ai compris entre - 30° et + 90°, par rapport à l'axe transversal Y de référence
12 Procédé selon la revendication 11 dans le faisceau laser (5) est orienté dans le plan vertical ZDj, comprenant ladite direction Dj, selon une direction D2 faisant un angle α2 compris entre +10° et -30°, par rapport a la direction horizontale Dj
13 Procédé selon une quelconque des revendications 1 à 12 dans lequel on choisit pour le faisceau laser (5) une focalisation telle que le point focal (50) soit extérieur a ladite cavité E, et de manière à ce que la totalité du faisceau pénètre dans ladite cavité E, la largeur (51) du faisceau (5) à l'entrée de ladite cavité E étant typiquement comprise entre 0,9 AB et 0,30 AB
14 Procède selon une quelconque des revendications 1 a 13 dans lequel on oriente le faisceau laser (5) de manière à apporter de l'énergie notamment vers le sommet S de ladite section triangulaire ou vers ladite jonction (16) localises dans la partie (12) jouxtant le bord supérieur (2), de manière à ce qu'un rebord protecteur (420) se forme et recouvre la tranche intérieure (33) dudit bord inférieur (3), typiquement par fluage de la matière dudit bord supérieur (2).
15. Procédé selon une quelconque des revendications 1 à 14 dans lequel on oriente le faisceau laser (5) de manière à apporter de l'énergie notamment vers la limite intérieure (31) du bord inférieur, sur ledit bord (3) ou sur ladite partie (13) jouxtant ledit bord, selon la position de l'extrémité (20) du bord supérieur après roulage, de manière à ce qu'un rebord protecteur (420) se forme et recouvre la tranche extérieure (23) dudit bord supérieur (2), typiquement par fluage de la matière dudit bord inférieur (3).
16. Procédé selon une quelconque des revendications 1 1 à 15 dans lequel le faisceau laser (5) est orienté selon une direction D] prédéterminée et est orienté selon une direction D , variable soit par l'angle soit par la cote Z, direction régulée de manière à ce que ledit faisceau soit typiquement maintenu dans ledit espace E.
17. Procédé selon la revendication 16 dans lequel ledit faisceau laser (5) est maintenu dans l'espace E soit en modifiant la distance focale du faisceau, soit en déplaçant le laser.
18. Procédé selon une quelconque des revendications 1 1 à 15 dans lequel le faisceau laser (5) est orienté selon une direction Dj d'angle oti compris entre +75° et +90°.
19. Procédé selon une quelconque des revendications 11 à 15 dans lequel ledit faisceau laser (5) est orienté selon la bissectrice de l'angle β formé par lesdits bords supérieur et inférieur, avec l'angle ai compris entre -20° et +20°.
20. Procédé selon une quelconque des revendications 1 1 à 15 dans lequel ledit faisceau laser (5) est soumis à un balayage d'avant en arrière, selon la direction X, sur tout ou partie de la distance L, à une vitesse de balayage typiquement double de la vitesse V, de manière à ce que chaque portion des bords supérieur (2) et inférieur (3) destiné à recevoir ledit faisceau, le reçoive deux fois avant compression desdits bords, et de manière à privilégier l'absorption en surface du rayonnement laser.
21. Procédé selon une quelconque des revendications 1 à 20 dans lequel ledit faisceau 5 laser (5) est introduit dans ledit espace grâce à une ou plusieurs fibres optiques.
22 . Procédé selon une quelconque des revendications 8 à 21 dans lequel ladite bande (1), avant soudure, est maintenue sous une tension comprise entre 0,2 et 0,8 fois sa limite élastique.
10
23. Procédé selon une quelconque des revendications 1 à 22 dans lequel, à l'étape 5) du procédé, on comprime lesdits bords supérieur (2) et inférieur (3) avec un apport thermique, obtenu typiquement avec un chauffage par induction (641) qui complète le réchauffage préalable desdits bords (2,3) par le faisceau laser (5).
15
24. Procédé selon une quelconque des revendications 1 à 22 dans lequel, à l'issue de l'étape 5), on refroidit la soudure longitudinale (42) formée entre lesdits bords supérieur (2) et inférieur (3), de manière à pouvoir augmenter la vitesse V.
20 25. Procédé selon une quelconque des revendications 1 à 24 dans lequel la longueur L de l'espace E est comprise entre 5 et 20 cm, la longueur de sa base AB est comprise entre 1 et 8 mm, la largeur ls et lj des bordures étant comprise entre 1 et 8 mm.
26. Procédé selon la revendication 25 dans lequel la soudure (42) présente un 25 recouvrement R de largeur comprise entre 0,5 et 3 mm, et un bord protecteur (420) de largeur comprise entre 0,5 et 2 mm.
27. Procédé selon une quelconque des revendications 1 à 26 dans lequel la bande (1) est constituée ou comprend les matériaux suivants pour mettre en oeuvre le procédé de
J 0 l'invention : PE, PP, PA, PET, EVOH, ou autres matières thermoplastiques à propriétés de barrière ou non, matériaux multicouches plastiques ou métalloplastiques revêtus extérieurement des couches thermoplastiques citées précédemment, matériaux qui peuvent comprendre des dépôts de SiOx, de carbone dans des épaisseurs typiquement comprises entre 150 et 400 μm.
28. Dispositif (6) pour mettre en oeuvre le procédé selon une quelconque des revendications 1 à 27 comprenant :
- des moyens de guidage latéral (60) de la bande (1),
- des moyens de roulage (63) de la bande autour d'un mandrin central fixe (62), de manière à mettre en regard les bords à souder (2,3) et à former une cavité ou un espace E fixe, fermée à son extrémité aval par le recouvrement R desdits bords formant le début de la soudure longitudinale (42),
- un laser (5) pour réchauffer les surfaces intérieures des bords (2,3) à souder en dirigeant un faisceau laser dans ladite cavité E,
- un moyen (64) pour comprimer ledit recouvrement des bords formant la soudure, typiquement grâce une bande métallique (640), avec un apport d'énergie complémentaire à celui du laser, typiquement par chauffage par induction (641) de ladite bande métallique,
- un moyen (65) pour refroidir ledit recouvrement, typiquement grâce à une bande métallique (650), - un moyen de tronçonnage (67) pour découper le tube (4) en portions de tube (41 ),
- des moyens pour assurer le positionnement et le déplacement du tube (4),
- des moyens, typiquement informatiques, de pilotage de la ligne comprenant des capteurs mesurant des grandeurs, typiquement de vitesse, de position des bords de la bande, de température, et des actionneurs pour maintenir les valeurs de consigne desdites grandeurs dans une plage de valeurs prédéterminée.
PCT/FR2001/000387 2000-02-17 2001-02-09 Procede de fabrication de tubes par soudure au laser WO2001060588A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001235644A AU2001235644A1 (en) 2000-02-17 2001-02-09 Method for making tubes by laser welding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0001966A FR2805198A1 (fr) 2000-02-17 2000-02-17 Procede de fabrication de tubes par soudure au laser
FR00/01966 2000-02-17

Publications (1)

Publication Number Publication Date
WO2001060588A1 true WO2001060588A1 (fr) 2001-08-23

Family

ID=8847094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/000387 WO2001060588A1 (fr) 2000-02-17 2001-02-09 Procede de fabrication de tubes par soudure au laser

Country Status (4)

Country Link
AR (1) AR027447A1 (fr)
AU (1) AU2001235644A1 (fr)
FR (1) FR2805198A1 (fr)
WO (1) WO2001060588A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2846275A1 (fr) * 2002-10-25 2004-04-30 Cebal Sas Perfectionnement d'un procede de fabrication de tubes souples plastiques ou metalloplastiques
DE102004000030A1 (de) * 2004-09-21 2006-04-06 Lpkf Laser & Electronics Ag Vorrichtung zum Spannen von Werkstücken beim Strahlungsschweißen
EP2561973A1 (fr) * 2011-08-23 2013-02-27 PackSys Global (Switzerland) Ltd. Dispositif et procédé de fabrication de corps tubulaires
CN111634005A (zh) * 2020-06-28 2020-09-08 江苏华源节水股份有限公司 一种适用于卷盘喷灌机的pe管安装***
CN111633999A (zh) * 2020-05-29 2020-09-08 江苏华源节水股份有限公司 一种卷盘喷灌机pe管安装***

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6455804B1 (en) * 2000-12-08 2002-09-24 Touchstone Research Laboratory, Ltd. Continuous metal matrix composite consolidation
FR2944989B1 (fr) * 2009-04-30 2015-08-28 Veriplast Decorative Procede de fabrication d'une gaine a partir d'un film en matiere plastique
CN114955498B (zh) * 2021-02-26 2023-06-16 大族激光科技产业集团股份有限公司 管材上料方法及***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1095050A (en) * 1963-12-18 1967-12-13 American Can Co Collapsible tube forming methods and devices
FR1571778A (fr) * 1968-03-27 1969-06-20
JPS58122819A (ja) * 1982-01-18 1983-07-21 Toppan Printing Co Ltd チユ−ブの製造方法およびその製造装置
US4540392A (en) * 1983-12-23 1985-09-10 International Paper Company Method and apparatus to seal coated paperboard materials
EP0237192A2 (fr) * 1986-02-20 1987-09-16 Elopak A/S Procédé et appareil pour le sondage de surfaces en matières synthétiques ou surfaces revêtues de ces matières
US5310443A (en) * 1991-02-05 1994-05-10 Kmk Karl Magerle Lizenz Ag Apparatus for the production of tubular bodies

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1095050A (en) * 1963-12-18 1967-12-13 American Can Co Collapsible tube forming methods and devices
FR1571778A (fr) * 1968-03-27 1969-06-20
JPS58122819A (ja) * 1982-01-18 1983-07-21 Toppan Printing Co Ltd チユ−ブの製造方法およびその製造装置
US4540392A (en) * 1983-12-23 1985-09-10 International Paper Company Method and apparatus to seal coated paperboard materials
EP0237192A2 (fr) * 1986-02-20 1987-09-16 Elopak A/S Procédé et appareil pour le sondage de surfaces en matières synthétiques ou surfaces revêtues de ces matières
US5310443A (en) * 1991-02-05 1994-05-10 Kmk Karl Magerle Lizenz Ag Apparatus for the production of tubular bodies

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 007, no. 230 (M - 249) 12 October 1983 (1983-10-12) *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2846275A1 (fr) * 2002-10-25 2004-04-30 Cebal Sas Perfectionnement d'un procede de fabrication de tubes souples plastiques ou metalloplastiques
WO2004039561A1 (fr) * 2002-10-25 2004-05-13 Cebal Sas Procede de fabrication de tubes souples plastiques ou metalloplastiques
CN100374281C (zh) * 2002-10-25 2008-03-12 塞巴尔两合公司 用于制造塑料软管或金属塑料复合软管的方法
DE102004000030A1 (de) * 2004-09-21 2006-04-06 Lpkf Laser & Electronics Ag Vorrichtung zum Spannen von Werkstücken beim Strahlungsschweißen
EP2561973A1 (fr) * 2011-08-23 2013-02-27 PackSys Global (Switzerland) Ltd. Dispositif et procédé de fabrication de corps tubulaires
WO2013026888A1 (fr) * 2011-08-23 2013-02-28 Packsys Global (Switzerland) Ltd. Dispositif et procédé pour produire des corps de tubes
CN103958160A (zh) * 2011-08-23 2014-07-30 帕克西斯全球(瑞士)有限公司 用于制造管体的设备和方法
CN103958160B (zh) * 2011-08-23 2016-10-12 帕克西斯全球(瑞士)有限公司 用于制造管体的设备和方法
CN111633999A (zh) * 2020-05-29 2020-09-08 江苏华源节水股份有限公司 一种卷盘喷灌机pe管安装***
CN111634005A (zh) * 2020-06-28 2020-09-08 江苏华源节水股份有限公司 一种适用于卷盘喷灌机的pe管安装***

Also Published As

Publication number Publication date
AR027447A1 (es) 2003-03-26
AU2001235644A1 (en) 2001-08-27
FR2805198A1 (fr) 2001-08-24

Similar Documents

Publication Publication Date Title
EP0938427B1 (fr) Machine de formation, remplissage et fermeture de sacs, a profiles de fermeture transversaux, et sachets obtenus
EP1123194B1 (fr) Procede de fabrication d'un corps de revolution creux, corps tel qu'obtenu par ledit procede, et dispositif de mise en oeuvre dudit procede
EP1375113A1 (fr) Procédé de fabrication d'emballage prédécoupé
EP2926977B1 (fr) Dispositif de soudure par ultrasons
EP1272332B1 (fr) Procedes de soudage par ultrasons et emballages associes
WO2001060588A1 (fr) Procede de fabrication de tubes par soudure au laser
EP2459360B1 (fr) Procédé et dispositif pour souder un emballage plastique tubulaire et emballage ainsi obtenu
EP2043844B1 (fr) Dispositif et procede de soudage ultrasons
EP1565303B1 (fr) Procede de fabrication de tubes souples plastiques ou metalloplastiques
FR2938782A1 (fr) Dispositif de soudage a double epaulement
EP1974894A1 (fr) Zone de déchirure pour film en plastique
WO2000027576A1 (fr) Traitement de materiaux au laser, notamment de decoupage ou de soudure
WO1997000361A1 (fr) Gaine de cable a structure multi-couche, son procede de fabrication et machine pour mettre en ×uvre ce procede
WO2016142602A1 (fr) Procédé de laminage perfectionne par ultrasons d'un article thermofusible, et dispositif de laminage pour la mise en œuvre dudit procédé
EP0978623B1 (fr) Joint d'étanchéité pour profilé en matière plastique, son procédé et son dispositif de pose
FR3134740A1 (fr) Procédé de fabrication d’une bande de matériau composite destinée à former une structure tubulaire et installation correspondante
EP0335784A1 (fr) Procédé et dispositif pour le revêtement des tubes soudés
FR2688738A1 (fr) Procede de fabrication d'un ou de plusieurs profiles en matiere flexible, en particulier en papier, en carton, en materiaux composites ou analogues et dispositif pour la mise en óoeuvre de ce procede.
BE560830A (fr)
FR2480652A1 (fr) Procede et machine pour le soudage ultrasonique de bandes metalliques
CH686169A5 (fr) Procede de fabrication d'une enveloppe tubulaire metallique et enveloppe obtenue selon ce procede.
BE556727A (fr)
FR2473418A1 (fr) Procede et machine pour la fabrication d'articles composites, notamment barquette de conditionnement de produits perissables et article obtenu
BE484073A (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP