WO2001049221A1 - Ensemble pied/cheville a axe polycentrique - Google Patents

Ensemble pied/cheville a axe polycentrique Download PDF

Info

Publication number
WO2001049221A1
WO2001049221A1 PCT/US2000/034521 US0034521W WO0149221A1 WO 2001049221 A1 WO2001049221 A1 WO 2001049221A1 US 0034521 W US0034521 W US 0034521W WO 0149221 A1 WO0149221 A1 WO 0149221A1
Authority
WO
WIPO (PCT)
Prior art keywords
ofthe
bracket
pair
shaft
foot
Prior art date
Application number
PCT/US2000/034521
Other languages
English (en)
Inventor
Jack Mark
Original Assignee
United States Manufacturing Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United States Manufacturing Company filed Critical United States Manufacturing Company
Priority to AU22795/01A priority Critical patent/AU2279501A/en
Publication of WO2001049221A1 publication Critical patent/WO2001049221A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • A61F2/6607Ankle joints

Definitions

  • This invention relates generally to prosthetic device, and more particularly to a polycentric axis foot and ankle assembly which provides multiple axes of rotation for the ankle.
  • the anatomical foot and ankle are capable of dorsiflexion, plantarflexion, inversion, eversion. and transverse rotation.
  • Dorsiflexion and plantarflexion comprise the movement up and down ofthe ball ofthe foot with respect to the heel that occurs during a normal forward step.
  • Inversion and eversion are the twisting ofthe foot around its longitudinal axis, resulting in outward and inward tilting ofthe ankles, respectively.
  • Transverse rotation occurs when the foot rotates with respect to the longitudinal axis ofthe leg, such as occurs during left and right turns ofthe body.
  • Prior prosthetic devices provided a lower leg component having an integral foot component without provision for an ankle joint.
  • This type of prosthesis made it difficult for the amputee to maneuver on relatively even ground, much less on uneven ground.
  • prosthetic foot components were developed which provided a single axis of rotation.
  • These prosthetic feet typically included adjustable anterior and posterior deflection bumpers for transition from plantarflexion to dorsiflexion.
  • the single axis of rotation ankle joint is integral with the foot component.
  • the disadvantage of this design is that, although being an improvement over designs with no axis of rotation, it does not provide stability on uneven ground.
  • Multiflex a prosthetic foot and ankle combination manufactured by Blatchford Endolite under the trade name "Multiflex " was developed to provide a full range of natural action.
  • This design includes a ball and socket ankle joint integrally connected to the foot component through a serrated connection.
  • a disadvantage with this type of design is that it is not universally adaptable for use between any manufacturer's lower leg and foot component.
  • Other disadvantages of this design are that the ankle component is quite large, requires a special serrated adapter for attachment to the foot, and is expensive to manufacture.
  • a polycentric axis foot and ankle assembly of the present invention includes an upper bracket, a lower bracket, a front link movably attaching a front portion of the upper bracket to a front portion ofthe lower bracket and a rear link movably attaching a rear portion ofthe upper bracket to a rear portion ofthe lower bracket.
  • the front portion ofthe upper bracket provides a pair of flanges for supporting an upper front shaft
  • the rear portion of the upper bracket provides a pair of flanges for supporting an upper rear shaft.
  • Each of the upper front shaft and upper rear shaft carries a spherical bearing for movable engagement with the front and rear link, respectively.
  • the front portion of the lower bracket includes a pair of flanges for supporting a lower front shaft and the rear portion ofthe lower bracket includes a pair of flanges for supporting a lower rear shaft.
  • the lower front shaft and lower rear shaft are preferably movably connected to the lower bracket flanges with flanged bearings.
  • the flanged bearings used to connect the lower shafts, in conjunction with the spherical bearings carried on the upper shafts provide multiple axes of movement for the foot and ankle assembly.
  • FIG. 1 is a perspective view of the polycentric foot and ankle assembly of the present invention
  • FIG. 2 is an exploded view ofthe polycentric foot and ankle assembly of FIG. 1;
  • FIG. 3 is a side cross-sectional view of one embodiment ofthe polycentric foot and ankle assembly.
  • foot and ankle assembly 10 of the present invention includes a bottom portion 12 and a top portion 14. Located at one end ofthe bottom portion 12, is a keel 16. Keel 16 is preferably foot-shaped and can provide the structural support for a prosthetic foot component 18 (shown in phantom in FIG. 3).
  • a lower bracket 20 is used in conjunction with an upper bracket 30 to provide multiple axes of rotation and allowing a full range of motion for the foot and ankle assembly.
  • the lower bracket 20 is attached to the top surface ofthe keel 16 using known adhesives or fasteners.
  • the lower bracket 20 can be integrally attached to keel 16.
  • Lower bracket 20 is preferably composed of a metallic or composite material. In the preferred embodiment, lower bracket 20 is formed of composite graphite.
  • Top portion 14 includes a prosthetic link 22 which includes a male connector 23 having a spherically convex base 24.
  • the male connector includes a central boss 26 of frustopyramidal configuration which projects upwardly away from the spherically convex base 24.
  • the frustopyramidal configuration formed by the main portion ofthe boss is of square cross-section and has four uniform sides facing angularly upwardly and outwardly in four directions spaced apart by 90°.
  • the spherically convex base 24 of the male connector 22 is located the top surface of an upper bracket 30 of top portion 14.
  • Link 22 is used to connect lower leg components (not shown).
  • the upper bracket 30 includes a front portion 32 and a rear portion 34.
  • a right rear flange 36 and left rear flange 38 extend downward from the bottom surface 40 of the upper bracket 30 at the rear portion 34 of the bracket 30.
  • the right and left rear flanges 36, 38 are preferably arranged in a facing relationship to each other and carry alignment holes 42 and 44, respectively, for passage of a shaft therethrough.
  • a right front flange 46 and left front flange 48 extend downward from the bottom surface 40 of the upper bracket 30 at the front portion 32 of the bracket 30.
  • the right and left front flanges 46, 48 are preferably arranged in a facing relationship to each other and carry alignment holes 50 and 52, respectively, for passage of a shaft therethrough.
  • lower bracket 20 has a rear portion 54 and a front portion 56.
  • the rear portion 54 of the lower bracket 20 carries a first rear flange 58 and a second rear flange 60.
  • the first and second rear flanges 58, 60 are preferably arranged in a facing relationship to each other and carry alignment holes 62 and 64, respectively, for passage of a shaft therethrough.
  • the front portion 56 ofthe lower bracket 20 carries a first front flange 66 and a second front flange 68.
  • the first and second front flanges 66, 68 are preferably arranged in a facing relationship to each other and carry alignment holes 70 and 72, respectively, for passage of a shaft therethrough.
  • Two polyurethane dampeners are positioned between the upper portion and the lower portion of the foot and ankle assembly 10 and comprise a front bumper 74 and a rear bumper 76.
  • an elastomer 78 is positioned between the front and rear bumpers 74, 76 and the upper bracket 30.
  • the front bumper 74 preferably has a higher durometer hardness than the rear bumper 76 such that the front bumper 74 can act as a stop in the mid-stance position.
  • the exact durometer hardness for both the front and rear bumpers can be varied depending upon the weight and activity level ofthe amputee. It is contemplated that the front and rear bumpers would be removable to allow the prosthesis to change the resistance of the bumpers to correspond to the amputee's anticipated activity level.
  • the front bumper 74 has a shore A 80 hardness
  • the rear bumper 76 has a shore A 70 hardness
  • the elastomer 78 has a shore A 50 hardness.
  • the ankle and foot assembly 10 is constructed by positioning the front and rear bumpers
  • the lower bracket 20 comprises a dividing barrier 80 positioned between the front and rear bumpers 74, 76.
  • the elastomer 78 if used, is preferably positioned on top of the bumpers 74, 76,
  • the elastomer 78 is dimensioned such that the lower surface 82 of the elastomer 78 corresponds to the shape of the bumpers 74, 76 after the bumpers are positioned on the lower bracket 20.
  • the elastomer 78 is preferably dimensioned to correspond to the shape ofthe lower surface 40 of the upper bracket 30.
  • each flanged bearing 94 has a first end 96 that is positioned in an alignment hole 62, 64, 70 or 72 and a second end
  • the first end 96 ofthe flanged bearing 94 is positioned in alignment hole 70 and the second end 98 ofthe flanged bearing 94 carries the lower front shaft 90.
  • the first end 96 of the second flanged bearing 94 is positioned in alignment hole 72, the second end 98 of which carries the opposite end ofthe lower front shaft 90.
  • the two flanged bearings allow lower front shaft 90 to bridge between alignment holes
  • the flanged bearings 94 enable the lower front shaft to have a certain degree of freedom to rotate and move axially.
  • a lower rear shaft 92 is bridged between the first rear flange 58 and second rear flange 60 in the same manner as the lower front shaft 90.
  • the first end 96 of a flanged bearing 94 is positioned in alignment hole 62 and the second end 98 ofthe flanged bearing 94 carries the lower rear shaft 92.
  • the first end 96 of a second flanged bearing 94 is positioned in alignment hole 64, the second end 98 of which carries the opposite end ofthe lower rear shaft 92.
  • the two flanged bearings allow lower rear shaft 92 to bridge between alignment holes 62 and 64. While the ends of lower rear shaft 92 are securely held in place and prevented from slipping out, the flanged bearings 94 enable the lower rear shaft to have a certain degree of freedom to rotate and move axially.
  • an upper front shaft 100 is provided between flanges 46 and 48.
  • the ends of upper front shaft 100 are fixedly attached in alignment holes 50 and 52.
  • a spherical bearing 104 is carried on the upper front shaft 100.
  • spherical bearing 104 is carried on the upper front shaft 100.
  • an upper rear shaft 102 is provided between flanges 36 and 38.
  • upper rear shaft 102 The ends of upper rear shaft 102 are fixedly attached in alignment holes 42 and 44.
  • a spherical bearing 104 is carried on the upper rear shaft 102 in a manner similar to that carried on the upper front shaft 100.
  • the spherical bearing 194 can be integrally attached to the upper rear shaft 102.
  • each link is connected to each other via a front link 106 and a rear link 108.
  • each link is connected to each other via a front link 106 and a rear link 108.
  • each link is connected to each other via a front link 106 and a rear link 108.
  • each link 106, 108 has an upper aperture 110 dimensioned to receive the spherical bearing 104 on the upper shafts 100 and 102. Additionally, each link preferably has a lower aperture 1 12 dimensioned to receive one ofthe lower shafts 90, 92. In the assembled state ofthe preferred embodiment of the present invention, the upper front shaft 100 is directed through aperture
  • the polycentric axis foot and ankle assembly ofthe present invention provides dynamic foot motion allowing the foot to articulate in multiple axes providing dorsiflexion, plantarflexion, inversion, eversion, and transverse rotation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Transplantation (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

L'invention concerne un ensemble (10) pied/cheville à axe polycentrique comprenant un support supérieur (30), un support inférieur (20), une liaison avant fixant, de façon mobile, la partie avant (32) du support supérieur à la partie avant du support inférieur, et une liaison arrière fixant, de façon mobile, la partie arrière (34) du support supérieur (30) à la partie arrière (34) du support inférieur. Dans un mode de réalisation préféré, la partie avant du support supérieur comporte une paire de brides (58, 60) destinées au support d'un axe supérieur avant (100), et la partie arrière du support supérieur comporte une paire de brides destinées au support d'un axe supérieur arrière (102). Chacun des axes supérieurs avant et arrière comporte un roulement à rotule destiné à venir respectivement au contact mobile des liaisons avant et arrière. La partie avant du support inférieur comporte une paire de brides destinées au support d'un axe inférieur avant (90) et la partie arrière du support inférieur comporte une paire de brides destinées au support d'un axe inférieur arrière (92).
PCT/US2000/034521 2000-01-05 2000-12-19 Ensemble pied/cheville a axe polycentrique WO2001049221A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU22795/01A AU2279501A (en) 2000-01-05 2000-12-19 Polycentric axis foot and ankle assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US47764200A 2000-01-05 2000-01-05
US09/477,642 2000-01-05

Publications (1)

Publication Number Publication Date
WO2001049221A1 true WO2001049221A1 (fr) 2001-07-12

Family

ID=23896759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/034521 WO2001049221A1 (fr) 2000-01-05 2000-12-19 Ensemble pied/cheville a axe polycentrique

Country Status (2)

Country Link
AU (1) AU2279501A (fr)
WO (1) WO2001049221A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8821589B2 (en) 2008-05-13 2014-09-02 Jerome R. Rifkin Joints for prosthetic, orthotic and/or robotic devices
CN109677502A (zh) * 2019-01-25 2019-04-26 山东省科学院自动化研究所 一种机器人仿生足部机构及双足机器人
US10772742B2 (en) 2016-04-07 2020-09-15 Rehabilitation Institute Of Chicago Polycentric powered ankle prosthesis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4446580A (en) * 1981-06-09 1984-05-08 Keiai Orthopedic Appliance Co., Ltd. Prosthetic foot structure
US5139525A (en) * 1989-07-31 1992-08-18 Kristinsson Oessur Prosthetic foot
US6007582A (en) * 1996-03-29 1999-12-28 Ortho Europe Limited Prosthetic foot with means for energy storage and release

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4446580A (en) * 1981-06-09 1984-05-08 Keiai Orthopedic Appliance Co., Ltd. Prosthetic foot structure
US5139525A (en) * 1989-07-31 1992-08-18 Kristinsson Oessur Prosthetic foot
US6007582A (en) * 1996-03-29 1999-12-28 Ortho Europe Limited Prosthetic foot with means for energy storage and release

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8821589B2 (en) 2008-05-13 2014-09-02 Jerome R. Rifkin Joints for prosthetic, orthotic and/or robotic devices
US10772742B2 (en) 2016-04-07 2020-09-15 Rehabilitation Institute Of Chicago Polycentric powered ankle prosthesis
CN109677502A (zh) * 2019-01-25 2019-04-26 山东省科学院自动化研究所 一种机器人仿生足部机构及双足机器人
CN109677502B (zh) * 2019-01-25 2024-03-26 山东省科学院自动化研究所 一种机器人仿生足部机构及双足机器人

Also Published As

Publication number Publication date
AU2279501A (en) 2001-07-16

Similar Documents

Publication Publication Date Title
US5545234A (en) Lower extremity prosthetic device
US5766264A (en) Multi-axis prosthetic ankle joint
US10342680B2 (en) Prosthetic ankle module
US5314499A (en) Artificial limb including a shin, ankle and foot
US4911709A (en) Artificial knee with improved stable link-type knee joint
US5800570A (en) Lower extremity prosthetic device
US6764521B2 (en) Multi-axial ankle joint
KR100362736B1 (ko) 에너지 저장형 의족용골
US4005496A (en) Prosthetic knee joint
US4718913A (en) Dual, ankle, springs prosthetic foot and ankle system
CA2166739A1 (fr) Prothese d'articulation de cheville pour relier par un pivot le reste d'un membre a une prothese de pied
JPH0833663A (ja) 整形外科的器官の部分の相互回動連結のための器具
JPH05505745A (ja) 人工トグルジョイント
WO2002002034A1 (fr) Pied prothetique
US5158570A (en) Prosthetic foot with improved ankle and elastomeric heel pad
CA2905267C (fr) Appareil de rehabilitation comportant un lien mecanique
KR100328303B1 (ko) 인공발용 다축 관절장치
WO2001049221A1 (fr) Ensemble pied/cheville a axe polycentrique
KR101944671B1 (ko) 지면적응 족관절장치
US2594752A (en) Joint construction for artificial limbs
US20210106440A1 (en) Passive prosthetic knee
EP0095872A1 (fr) Articulations de genou pour jambes artificielles
KR102661949B1 (ko) 인공무릎관절
KR102483561B1 (ko) 의족
US20090299491A1 (en) Modular shock absorbers for prosthetic limbs

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP