WO2001040391A1 - Vibration-damping coating material - Google Patents

Vibration-damping coating material Download PDF

Info

Publication number
WO2001040391A1
WO2001040391A1 PCT/JP1999/006786 JP9906786W WO0140391A1 WO 2001040391 A1 WO2001040391 A1 WO 2001040391A1 JP 9906786 W JP9906786 W JP 9906786W WO 0140391 A1 WO0140391 A1 WO 0140391A1
Authority
WO
WIPO (PCT)
Prior art keywords
damping
vibration
coating film
film component
paint
Prior art date
Application number
PCT/JP1999/006786
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuyuki Ohira
Mitsuo Hori
Original Assignee
Shishiai-Kabushikigaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shishiai-Kabushikigaisha filed Critical Shishiai-Kabushikigaisha
Priority to PCT/JP1999/006786 priority Critical patent/WO2001040391A1/en
Publication of WO2001040391A1 publication Critical patent/WO2001040391A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters

Definitions

  • the present invention relates to a vibration-damping paint that can be applied to places where vibrations occur, such as automobiles, interior materials, building materials, and home electric appliances, and can form a vibration-damping coating film having excellent vibration energy absorption performance.
  • vibration-damping sheets have been generally used as parts for absorbing vibration energy in places where vibrations occur, such as automobiles, interior materials, building materials, and home appliances.
  • a force-damping sheet it must first be cut into a size and shape corresponding to the application area.
  • the vibration damping sheet is attached to the application site using an adhesive or a pressure-sensitive adhesive, most of the attaching work has to be done manually, and there is a problem that the working efficiency is poor.
  • the damping sheet cannot be pasted at the application places such as curved surfaces and narrow gaps, or even if it can be pasted, it easily peels off. Was required.
  • vibration damping paints have been proposed in which a my scale is added to a coating component mainly composed of a viscoelastic polymer such as rubber, plastic, or asphalt.
  • This damping paint can easily form a damping coating simply by spraying the damping paint on the application area, and does not require the work of cutting and pasting as in the case of the damping sheet. It has the advantage that a vibration damping coating can be easily formed even on curved surfaces and narrow gaps. Furthermore, since the damping paint is simply sprayed on the applicable portion, the work can be performed using a robot or the like, and there is an advantage that work efficiency can be greatly improved.
  • this damping paint has the advantages described above, but the thickness of the damping paint film formed by the damping paint is limited to 2 mm, and high performance is required. could not be applied to any part.
  • W097Z428444 a novel composition containing an active ingredient that increases the amount of dipole moment in the coating film component.
  • a damping paint was proposed.
  • the amount of dipole moment inside the damping coating formed by the coating film components is extremely large, so that when vibration energy is applied to the damping coating, As a result, the energy consumption due to the displacement of the dipole and the restoring action of the dipole becomes extremely large, and as a result, superior vibration energy absorption performance that has never been achieved before is derived.
  • the present invention provides a vibration damping material having an excellent vibration energy absorbing performance, even when the coating film component and the active component are sufficiently mixed before the formation of the vibration damping coating film, without heating after the formation of the vibration damping coating film. It is an object of the present invention to provide a damping paint capable of forming a coating film.
  • the present invention relates to a vibration damping paint containing an active ingredient which increases the amount of dipole moment in the paint film component in the paint film component, wherein an acryl-based polymer substituted with a carboxyl group is used as the paint film component. It is characterized by the following. First, the relationship between the amount of dipole moment of the coating film component in the damping paint and the vibration energy absorbing performance will be described.
  • Figure 1 shows the arrangement of the dipoles 12 inside the damping coating 11 formed by the coating components before the vibration energy was transmitted. It can be said that the arrangement state of the dipoles 12 is in a stable state. However, the transfer of the vibration energy causes a displacement in the dipoles 12 existing inside the damping coating 11, and as shown in FIG. 2, each dipole inside the damping coating 11 1 1 2 will be placed in an unstable state, and each dipole 1 2 will try to return to a stable state as shown in FIG. At this time, energy is consumed. It is considered that vibration energy is absorbed through the displacement of the dipole inside the damping coating 11 and the energy consumption due to the dipole restoring action.
  • the active ingredient has the function of dramatically increasing the amount of dipole moment inside the damping coating.
  • the active ingredient when the active ingredient itself has a large dipole moment amount, or the active ingredient itself has a small dipole moment amount, but when dissolved with the coating film component, the amount of the dipole moment inside the coating film component is reduced.
  • a component that can be dramatically increased For example, under a predetermined temperature condition, a predetermined amount of vibration energy is applied to the damping coating. As shown in Fig.
  • the amount of dipole moment generated inside the damping coating film formed by sufficiently melting the coating film component and the active component under the same conditions is as shown in Fig. 3.
  • active ingredients that induce such effects include N, N-dicyclohexylbenzothiazyl-12-sulfenamide (DCHBSA), 2-mercaptobenzothiazole (MBT), and dibenzothiazylsulfide (MBTS).
  • CBS N-cyclohexylbenzothiazyl-1-sulfenamide
  • BBS N-tert-butylbenzothiazyl-2-sulfenamide
  • OBS N-oxyzetj Lembenozhiaziryl 2-sulfenamide
  • DPBS N-diisopropyl benzothiazyl-1-benzosulfonamide
  • DPBS N-diisopropyl benzothiazyl-1-benzosulfonamide
  • DPBS N-diisopropyl benzothiazyl-1-benzosulfonamide
  • DPBS N-diisopropyl benzothiazyl-1-benzosulfonamide
  • benzothiazyl group-containing compounds containing one or more compounds selected from the group consisting of benzotriazo compounds with an azole group bonded to the benzene ring.
  • the content of the active ingredient is less than 10 parts by weight, the effect of increasing the amount of dipole moment cannot be obtained, and if the content of the active ingredient exceeds 100 parts by weight, sufficient May not be compatible with each other or may not have sufficient film strength.
  • the active component contained in the coating film component it is preferable to select a material having a similar value in consideration of the compatibility between the active component and the coating film component, that is, the SP value.
  • the amount of the dipole moment varies depending on the types of the above-mentioned coating film components and active components. And even if the same components are used, the amount of the dipole moment changes depending on the temperature when the vibration energy is transmitted.
  • the coating film component and active component are selected and used so that the largest amount of dipole moment is obtained. It is desirable.
  • the above-mentioned active ingredients are not limited to one kind, and two or more kinds can be mixed. In this case, at least two or more active components having different glass transition points can be contained in the coating film component to extend the temperature range in which the vibration damping property is exhibited. For example, a combination of DCHP and DCHBSA, and a combination of DCHP, DCHBSA and ECDPA can be mentioned.
  • a filler such as barium can also be filled.
  • the filling amount of the filter is preferably 10 to 90% by weight. For example, when the filling amount of the filler is less than 10% by weight, the absorption performance is not sufficiently improved even if the filling of the filler is performed, and conversely, the filling amount of the filler is 90%.
  • the vibration damping paint of the present invention is obtained by dispersing the above-mentioned coating film component, active ingredient, and filler in water or alcohol and using it as an emulsion. In that case, a dispersant, a wetting agent, and a thickener are used. Other components such as an agent, an antifoaming agent or a coloring agent are added as needed.
  • a conventionally known application means such as an air spray gun, an air spray gun, or a brush can be used.
  • the coating film component and the active component dissolve each other, so that an unprecedented superior vibration energy absorbing performance is generated.
  • the inventor of the present invention has been able to form a vibration damping coating having excellent vibration energy absorption performance even when the coating component and the active component are sufficiently melted and not heated after the formation of the vibration damping coating.
  • a vibration damping coating having excellent vibration energy absorption performance even when the coating component and the active component are sufficiently melted and not heated after the formation of the vibration damping coating.
  • the acryl-based polymer examples include a homopolymer of acrylate or methacrylate, a mixture of these homopolymers, a copolymer thereof, or a homopolymer of acrylate or methacrylate.
  • a mixture of Tylene with a homopolymer or acrylstyrene copolymerized with styrene A len copolymer may be used.
  • the acryl-based polymer used as a coating film component in the vibration damping paint of the present invention has an oxidation number of 1 or more, that is, by replacing the molecule of the acryl-based polymer with one or more carboxyl groups (one COOH). Medium force It has two or more ruboxyl groups (one COOH).
  • Figure 1 is a schematic diagram showing the dipole inside the damping coating.
  • Figure 2 is a schematic diagram showing the state of the dipole inside the damping coating when energy is applied.
  • FIG. 3 is a schematic diagram showing a state of a dipole inside a vibration damping coating film when an active ingredient is blended.
  • Fig. 4 is a graph showing the dynamic viscoelasticity (E ") measured for the damping coating films formed using the damping paints of Examples 1 to 3 and Comparative Examples 1 to 4.
  • DCHBSA as an active ingredient was added to an acrylyl polymer not substituted with a carboxyl group, by weight ratio, 90 10 (Comparative Example 2), 80/20 (Comparative Example 3), 70/30 (Comparative Example 4) , Respectively, and these were dispersed in water emulsion to obtain a damping paint.
  • Damping coatings were formed from the respective damping coatings of Examples 1 to 3 and Comparative Examples 1 to 4, and the dynamic viscoelasticity (E ") of each damping coating was measured. The results are shown in Fig. 4.
  • the dynamic viscoelasticity (E ") was measured using an electromagnetic excitation detector (MT-1, A202) manufactured by Denshi Sokki Co., Ltd.
  • the vibration damping coating film was formed by natural drying without forced drying after coating. From FIG. 4, all of the vibration damping coatings according to Examples 1 to 3 showed higher levels than the dynamic viscoelasticity (E ") of the vibration damping coatings according to Comparative Examples 1 to 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

A vibration-damping coating material wherein the coating film component thereof contains an active component which increases the level of dipole moment of the coating film component, characterized in that an acrylic polymer substituted with a carboxyl group is used as said coating film component. The vibration-damping coating material can be used for providing a vibration-damping coating film which exhibits excellent absorptivity for vibration energy when applied to places where vibration occurs, such as an automobile, an interior material, a constructional material and a domestic electrical appliance.

Description

糸田 » 制振塗料 技術分野  Itoda »Damping paint technical field
本発明は、 自動車、 内装材、 建材、 家電機器などの振動の発生する箇所に適用 されて、 優れた振動エネルギー吸収性能を有する制振塗膜を形成できる制振塗料 に関する。 背景技術  The present invention relates to a vibration-damping paint that can be applied to places where vibrations occur, such as automobiles, interior materials, building materials, and home electric appliances, and can form a vibration-damping coating film having excellent vibration energy absorption performance. Background art
従来より自動車、 内装材、 建材、 家電機器などの振動の発生する箇所には、 そ の振動エネルギーを吸収する部材としてシ一ト状に成形された制振シー卜が一般 に用いられていた。 ところ力 制振シートの場合、 まず、 適用箇所に対応する大きさや形状に裁断 しなければならない。 また制振シ一トは、 適用箇所に接着剤や粘着剤を用いて貼 り付けるため、 その貼り付け作業の多くは手作業となり、 作業効率が悪いといつ た問題があった。 特に曲面部分や狭い隙間部分といった適用箇所にあっては、 制 振シートを貼り付けることができなかったり、 貼ることはできても容易に剥がれ てしまったり、 あるいは貼り付け作業に多くの手間と時間とを要するといった不 具合があった。 このような不具合に鑑み、 近年では、 ゴム系、 プラスチック系、 アスファルト 系といった粘弾性高分子を主成分とする塗膜成分にマイ力鱗片などを添加した所 謂制振塗料が提案されるに至っている。 この制振塗料は、 適用箇所に当該制振塗 料を吹き付けるだけで容易に制振塗膜を形成でき、 制振シートの場合のような裁 断、 貼り付けといった作業が不要であり、 しかも例えば曲面部分や狭い隙間部分 であっても、 簡単に制振塗膜を形成することができるといったメリットを有して いる。 さらに制振塗料は、 当該制振塗料を適用部分に吹き付けるだけなので、 ロボッ トなどを用いてその作業を行うことができ、 作業効率を大幅に向上させることが できるというメリットがある。 しかしながらこの制振塗料にあっては、 上述のようなメリツトを有している反 面、 制振塗料により形成される制振塗膜の膜厚は 2 mmが限度であり、 高性能が 要求される部分には適用できなかった。 出願人は、 このような技術的課題の解決を目的として、 W0 9 7 Z 4 2 8 4 4 において、 塗膜成分における双極子モーメント量を増加させる活性成分を塗膜成 分中に含む新規な制振塗料を提案した。 この制振塗料にあっては、 塗膜成分により形成される制振塗膜内部における双 極子モーメント量が非常に大きいので、 前記制振塗膜に振動エネルギーが加わつ た時、 制振塗膜に生じる双極子の変位、 双極子の復元作用によるエネルギーの消 費量もきわめて大きくなり、 この結果、 従来にない優れた振動エネルギー吸収性 能が導き出されるようになつている。 ところがこの制振塗料にあっては、 制振塗膜を形成した後の加熱処理 (強制乾 燥) 時の熱で、 上記塗膜成分と活性成分とが溶け合って、 はじめて上述の優れた 振動エネルギー吸収性能が生じるようになつているため、 加熱処理 (強制乾燥) が不十分な場合には、 優れた振動エネルギー吸収性能を得ることができなかった。 発明の開示 Conventionally, sheet-shaped vibration-damping sheets have been generally used as parts for absorbing vibration energy in places where vibrations occur, such as automobiles, interior materials, building materials, and home appliances. However, in the case of a force-damping sheet, it must first be cut into a size and shape corresponding to the application area. In addition, since the vibration damping sheet is attached to the application site using an adhesive or a pressure-sensitive adhesive, most of the attaching work has to be done manually, and there is a problem that the working efficiency is poor. In particular, the damping sheet cannot be pasted at the application places such as curved surfaces and narrow gaps, or even if it can be pasted, it easily peels off. Was required. In view of such disadvantages, in recent years, so-called vibration damping paints have been proposed in which a my scale is added to a coating component mainly composed of a viscoelastic polymer such as rubber, plastic, or asphalt. I have. This damping paint can easily form a damping coating simply by spraying the damping paint on the application area, and does not require the work of cutting and pasting as in the case of the damping sheet. It has the advantage that a vibration damping coating can be easily formed even on curved surfaces and narrow gaps. Furthermore, since the damping paint is simply sprayed on the applicable portion, the work can be performed using a robot or the like, and there is an advantage that work efficiency can be greatly improved. However, this damping paint has the advantages described above, but the thickness of the damping paint film formed by the damping paint is limited to 2 mm, and high performance is required. Could not be applied to any part. For the purpose of solving such a technical problem, the applicant has proposed in W097Z428444 a novel composition containing an active ingredient that increases the amount of dipole moment in the coating film component. A damping paint was proposed. In this damping coating, the amount of dipole moment inside the damping coating formed by the coating film components is extremely large, so that when vibration energy is applied to the damping coating, As a result, the energy consumption due to the displacement of the dipole and the restoring action of the dipole becomes extremely large, and as a result, superior vibration energy absorption performance that has never been achieved before is derived. However, in this damping paint, the heat of the heat treatment (forced drying) after the formation of the damping coating, the coating film component and the active component melt together, and the above-mentioned excellent vibration energy Due to the absorption performance, if the heat treatment (forced drying) was insufficient, it was not possible to obtain excellent vibration energy absorption performance. Disclosure of the invention
本発明は、 制振塗膜の形成前から塗膜成分と活性成分とが十分に溶け合つてい て、 制振塗膜の形成後に加熱しないでも、 常に優れた振動エネルギー吸収性能を 有する制振塗膜を形成することができる制振塗料を提供することを目的とするも のである。 本発明は、 塗膜成分中に同塗膜成分における双極子モ一メント量を増加させる 活性成分を含む制振塗料において、 前記塗膜成分としてカルボキシル基で置換し たァクリル系ポリマ一を用いたことを特徴とするものである。 まず、 この制振塗料における塗膜成分の双極子モ一メント量と振動エネルギー 吸収性能との関係について説明する。 図 1には振動エネルギーが伝達される前の 塗膜成分により形成された制振塗膜 1 1内部における双極子 1 2の配置状態を示 した。 この双極子 1 2の配置状態は安定な状態にあると言える。 ところが、 振動 エネルギーが伝達されることで、 制振塗膜 1 1内部の存在する双極子 1 2には変 位が生じ、 図 2に示すように、 制振塗膜 1 1内部における各双極子 1 2は不安定 な状態に置かれることになり、 各双極子 1 2は、 図 1に示すような安定な状態に 戻ろうとする。 このとき、 エネルギーの消費が生じることになる。 こうした、 制振塗膜 1 1内 部における双極子の変位、 双極子の復元作用によるエネルギー消費を通じて、 振 動エネルギーの吸収が生じるものと考えられる。 このような振動吸収のメカニズムから、 図 1及び図 2に示すような塗膜成分に より形成された制振塗膜 1 1内部における双極子モーメントの量が大きくなれば なる程、 その制振塗膜 1 1の持つエネルギー吸収性能も高くなると考えられる。 この制振塗膜内部における双極子モーメント量を飛躍的に増加させる機能を有 するものが活性成分なのである。 活性成分は、 当該活性成分そのものが双極子モ ーメント量が大きいもの、 あるいは活性成分そのものの双極子モーメント量は小 さいが、 塗膜成分と溶け合ったとき、 塗膜成分内部における双極子モーメント量 を飛躍的に増加させることができる成分をいう。 例えば所定の温度条件で、 所定の大きさの振動エネルギーが制振塗膜に加わつ たとき、 塗膜成分と活性成分とが十分に溶け合つて形成された制振塗膜内部に生 じる双極子モーメント量は、 図 3に示すように、 同じ条件の下で、 活性成分未含 有の制振塗膜内部に生じる双極子モ一メント量の 3倍とか、 1 0倍とかいった量 に増加することになるのである。 これに伴って、 前述のエネルギーが加わったと きの双極子の復元作用によるエネルギー消費量も飛躍的に増大することになり、 予測を遥かに超えた振動エネルギー吸収性能が生じることになると考えられる。 このような作用効果を導く活性成分としては、 例えば N、 N—ジシクロへキシ ルベンゾチアジル一 2—スルフェンアミ ド (DCHB SA) 、 2—メルカプトべ ンゾチアゾ一ル (MBT) 、 ジベンゾチアジルスルフイ ド (MBTS) 、 N—シ クロへキシルベンゾチアジル一 2—スルフェンアミ ド (CB S) 、 N- t e r t —ブチルベンゾチアジルー 2—スルフェンアミ ド (BB S) 、 N—ォキシジェチ レンべンゾチアジルー 2—スルフェンアミ ド (OB S) 、 N、 N—ジイソプロピ ルベンゾチアジル一 2—スルフェンアミ ド (DPB S) などのベンゾチアジル基 を含む化合物の中から選ばれた 1種若しくは 2種以上、 ベンゼン環にァゾ一ル基が結合したベンゾトリアゾ一ルを母核とし、 これにフ ェニル基が結合した 2— { 2' 一ハイ ド口キシ— 3' - (3", 4" , 5" , 6 " テトラハイ ドロフタリ ミデメチル) 一 5' —メチルフエ二ル} —ベンゾトリア ゾ一ル (2HPMMB) 、 2— { 2' 一ハイ ド口キシ一 5' —メチルフエ二ル} —ベンゾトリアゾール (2HMPB) 、 2— {2' —ハイ ドロキシ一 3' - t - ブチノレ一 5' —メチルフエ二ノレ) 一 5—クロ口べンゾトリアゾール ( 2 HBMP CB) 、 2 - {2' —ハイ ド口キシ一 3' , 5' ージー t—ブチルフエ二ル} - 5—クロ口べンゾトリアゾーノレ (2HDB PCB) などのべンゾトリアゾ一ル基 を持つ化合物の中から選ばれた 1種若しくは 2種以上、 ェチル一 2ーシァノー 3, 3ージーフエ二ルァクリレ一トなどのジフエ二ルァ タリレ一ト基を持つ化合物の中から選ばれた 1種若しくは 2種以上、 あるいは 2—ハイ ド口キシ一 4—メ トキシベンゾフエノン (HMBP) 、 2 - ハイ ドロキシ一 4—メ トキシベンゾフエノン一 5—スルフォニックァシド (HM BP S) などのベンゾフエノン基を持つ化合物の中から選ばれた 1種若しくは 2 種以上を挙げることができる。 この活性成分の含有量としては、 塗膜成分 100重量部に対して 10〜 100 重量部の割合が好ましい。 例えば活性成分の含有量が 10重量部を下回る場合、 双極子モ一メントの量を増大させるという十分な効果が得られず、 活性成分の含 有量が 100重量部を上回る場合には、 十分に相溶しなかったり、 十分な膜強度 が得られなかったりすることがある。 尚、 前記塗膜成分に含まれる活性成分を決定するに当たり、 活性成分と塗膜成 分との相溶し易さ、 すなわち S P値を考慮し、 その値の近いものを選択すると良 い。 尚、 双極子モーメントの量は、 前述の塗膜成分や活性成分の種類により様々に 異なっている。 また、 同じ成分を用いたとしても、 振動エネルギーが伝達された ときの温度により、 その双極子モーメントの量は変わる。 また、 伝達される振動 エネルギーの大小によっても、 双極子モーメントの量は変わる。 このため、 制振 塗料として適用するときの温度や振動エネルギーの大きさなどを考慮して、 その とき最も大きな双極子モ一メント量となるように、 塗膜成分や活性成分を選択し て用いるのが望ましい。 また上記活性成分は 1種に限らず、 2種以上配合することもできる。 またこの 場合、 ガラス転移点の異なる少なくとも 2種以上の活性成分を前記塗膜成分中に 含ませて、 制振性の発揮される温度領域を拡張することも可能である。 例えば D CHPと DCHBSAの組み合わせや、 DCHPと DCHBSAと ECDPAの 組み合わせを挙げることができる。 また、 上記塗膜成分中には活性成分の他に、 吸収性能をさらに向上させる目的 で、 マイ力鱗片、 ガラス片、 グラスファイバ一、 力一ボンファイバ一、 炭酸カル シゥム、 バライ ト、 沈降硫酸バリウム等のフイラ一を充填することもできる。 フ イラ一の充填量としては、 1 0〜9 0重量%が好ましい。 例えばフイラ一の充填 量が 1 0重量%を下回る場合には、 ブイラ一を充填しても十分な吸収性能の向上 がみられず、 反対にフイラ一の充填量を 9 0重量。 /0を上回る量としても、 現実に 充填できなかったり、 塗膜成分により形成される制振塗膜の機械的強度が低下し たりするといつた弊害を招くことになる。 本発明の制振塗料は、 上記塗膜成分及び活性成分、 並びにフイラ一を配合した ものを、 水またはアルコールに分散させてェマルジヨンの形態として用いるが、 その場合、 分散剤、 湿潤剤、 増粘剤、 消泡剤あるいは着色剤といった他の成分も 必要に応じて適宜添加される。 またこの制振塗料を塗布する場合には、 従来公知のエアスプレーガン、 エアレ ススプレーガン、 刷毛塗りなどの塗布手段を用いることができる。 前述の如くこの制振塗料は、 塗膜成分と活性成分とが溶け合って、 はじめて従 来にない優れた振動エネルギー吸収性能が生じるようになつている。 本発明者は、 塗膜成分と活性成分とが十分に溶け合つていて、 制振塗膜の形成後に加熱しない でも、 常に優れた振動エネルギー吸収性能を有する制振塗膜を形成することがで きる制振塗料について研究を重ねた結果、 カルボキシル基 (― C O O H) で置換 したアクリル系ポリマ一を塗膜成分として用いることで、 この塗膜成分と活性成 分とが十分に溶け合うことを見い出した。 ァクリル系ポリマーとしては、 ァクリル酸エステルまたはメタァクリル酸エス テルの単独重合体、 これら単独重合体の混合物、 あるいはこれらの共重合体、 ま たはこれらァクリル酸エステルまたはメタァクリル酸エステルの単独重合体とス チレンの単独重合体との混合物、 あるいはスチレンと共重合したァクリル一スチ レン共重合体などを挙げることができる。 本発明の制振塗料に塗膜成分として用 いるァクリル系ポリマーは、 上記ァクリル系ポリマ一の分子を 1以上のカルボキ シル基 (一COOH) で置換することで、 酸化数が 1以上、 すなわち分子中の力 ルボキシル基 (一 COOH) を 2個以上としたものである。 このようなァクリル系ポリマーを塗膜成分として用いたとき、 このアクリル系 ポリマーが前述の活性成分と良く溶け合うので、 加熱などしなくても、 ェマルジ ョン中で既に両者が溶け合つていて、 当該制振塗料を適用部分に塗布するだけで、 優れた振動エネルギー吸収性能を有する制振塗膜を形成することができる。 尚、 本発明の範囲は、 「請求の範囲」 に定義されており、 その範囲に含まれる 全ての変更、 形態を採ることができる。 図面の簡単な説明 The present invention provides a vibration damping material having an excellent vibration energy absorbing performance, even when the coating film component and the active component are sufficiently mixed before the formation of the vibration damping coating film, without heating after the formation of the vibration damping coating film. It is an object of the present invention to provide a damping paint capable of forming a coating film. The present invention relates to a vibration damping paint containing an active ingredient which increases the amount of dipole moment in the paint film component in the paint film component, wherein an acryl-based polymer substituted with a carboxyl group is used as the paint film component. It is characterized by the following. First, the relationship between the amount of dipole moment of the coating film component in the damping paint and the vibration energy absorbing performance will be described. Figure 1 shows the arrangement of the dipoles 12 inside the damping coating 11 formed by the coating components before the vibration energy was transmitted. It can be said that the arrangement state of the dipoles 12 is in a stable state. However, the transfer of the vibration energy causes a displacement in the dipoles 12 existing inside the damping coating 11, and as shown in FIG. 2, each dipole inside the damping coating 11 1 1 2 will be placed in an unstable state, and each dipole 1 2 will try to return to a stable state as shown in FIG. At this time, energy is consumed. It is considered that vibration energy is absorbed through the displacement of the dipole inside the damping coating 11 and the energy consumption due to the dipole restoring action. Due to such a mechanism of vibration absorption, as the amount of the dipole moment inside the damping coating 11 formed by the coating components as shown in FIGS. 1 and 2 increases, the damping coating increases. It is considered that the energy absorption performance of the membrane 11 also increases. The active ingredient has the function of dramatically increasing the amount of dipole moment inside the damping coating. The active ingredient, when the active ingredient itself has a large dipole moment amount, or the active ingredient itself has a small dipole moment amount, but when dissolved with the coating film component, the amount of the dipole moment inside the coating film component is reduced. A component that can be dramatically increased. For example, under a predetermined temperature condition, a predetermined amount of vibration energy is applied to the damping coating. As shown in Fig. 3, the amount of dipole moment generated inside the damping coating film formed by sufficiently melting the coating film component and the active component under the same conditions is as shown in Fig. 3. This means that the amount of dipole moment generated inside the included damping coating increases to 3 times or 10 times. Along with this, the energy consumption due to the dipole restoring action when the above-mentioned energy is added will also increase dramatically, and it is thought that the vibrational energy absorption performance far exceeds the prediction. Examples of active ingredients that induce such effects include N, N-dicyclohexylbenzothiazyl-12-sulfenamide (DCHBSA), 2-mercaptobenzothiazole (MBT), and dibenzothiazylsulfide (MBTS). N-cyclohexylbenzothiazyl-1-sulfenamide (CBS), N-tert-butylbenzothiazyl-2-sulfenamide (BBS), N-oxyzetj Lembenozhiaziryl 2-sulfenamide (OBS) ), N, N-diisopropyl benzothiazyl-1-benzosulfonamide (DPBS) or other benzothiazyl group-containing compounds containing one or more compounds selected from the group consisting of benzotriazo compounds with an azole group bonded to the benzene ring. 2- (2'-hydridoxy) 3 '-(3 ", 4", 5 ", 6" tetrahydroxide 5'-Methylphenyl} -Benzotriazole (2HPMMB), 2- {2'Hydroxoxy 1-5'-Methylphenyl} -Benzotriazole (2HMPB), 2— {2 '—Hydroxy-1'-t-butynole-5'—Methylpheninole-1-5-Chlorobenzoic triazole (2HBMP CB), 2- {2' —Hydoxy1-3 ', 5'-G t-butylphenyl} -5-chloro benzotriazolone (2HDB PCB) and other compounds having a benzotriazoyl group, or one or more compounds selected from ethyl-2-cyano3, One or more selected from compounds having a diphenylate group, such as 3-phenylacrylate, Or a compound having a benzophenone group, such as 2-hydroxy methoxy 4-phenoxyphenone (HMBP) or 2-hydroxyl 4-methoxybenzophenone-15-sulfonic acid (HMBPS) And at least one selected from the group consisting of: The content of the active ingredient is preferably 10 to 100 parts by weight based on 100 parts by weight of the coating film component. For example, if the content of the active ingredient is less than 10 parts by weight, the effect of increasing the amount of dipole moment cannot be obtained, and if the content of the active ingredient exceeds 100 parts by weight, sufficient May not be compatible with each other or may not have sufficient film strength. In determining the active component contained in the coating film component, it is preferable to select a material having a similar value in consideration of the compatibility between the active component and the coating film component, that is, the SP value. The amount of the dipole moment varies depending on the types of the above-mentioned coating film components and active components. And even if the same components are used, the amount of the dipole moment changes depending on the temperature when the vibration energy is transmitted. Also, the magnitude of the dipole moment changes depending on the magnitude of the transmitted vibrational energy. For this reason, considering the temperature and vibration energy when applied as a damping paint, the coating film component and active component are selected and used so that the largest amount of dipole moment is obtained. It is desirable. The above-mentioned active ingredients are not limited to one kind, and two or more kinds can be mixed. In this case, at least two or more active components having different glass transition points can be contained in the coating film component to extend the temperature range in which the vibration damping property is exhibited. For example, a combination of DCHP and DCHBSA, and a combination of DCHP, DCHBSA and ECDPA can be mentioned. In addition to the active ingredients in the above-mentioned coating film components, for the purpose of further improving the absorption performance, my flakes, glass pieces, glass fiber, glass fiber, carbon fiber, calcium carbonate, barite, precipitated sulfuric acid, etc. A filler such as barium can also be filled. The filling amount of the filter is preferably 10 to 90% by weight. For example, when the filling amount of the filler is less than 10% by weight, the absorption performance is not sufficiently improved even if the filling of the filler is performed, and conversely, the filling amount of the filler is 90%. Even if the amount is more than / 0 , it will cause adverse effects if it cannot be actually filled or if the mechanical strength of the vibration-damping coating film formed by the coating film components decreases. The vibration damping paint of the present invention is obtained by dispersing the above-mentioned coating film component, active ingredient, and filler in water or alcohol and using it as an emulsion. In that case, a dispersant, a wetting agent, and a thickener are used. Other components such as an agent, an antifoaming agent or a coloring agent are added as needed. When applying the vibration damping paint, a conventionally known application means such as an air spray gun, an air spray gun, or a brush can be used. As described above, in the vibration damping paint, the coating film component and the active component dissolve each other, so that an unprecedented superior vibration energy absorbing performance is generated. The inventor of the present invention has been able to form a vibration damping coating having excellent vibration energy absorption performance even when the coating component and the active component are sufficiently melted and not heated after the formation of the vibration damping coating. As a result of repeated research on damping paints that can be used, it was found that by using an acrylic polymer substituted with a carboxyl group (-COOH) as a coating film component, this coating film component and the active component were sufficiently soluble. Was. Examples of the acryl-based polymer include a homopolymer of acrylate or methacrylate, a mixture of these homopolymers, a copolymer thereof, or a homopolymer of acrylate or methacrylate. A mixture of Tylene with a homopolymer or acrylstyrene copolymerized with styrene A len copolymer may be used. The acryl-based polymer used as a coating film component in the vibration damping paint of the present invention has an oxidation number of 1 or more, that is, by replacing the molecule of the acryl-based polymer with one or more carboxyl groups (one COOH). Medium force It has two or more ruboxyl groups (one COOH). When such an acryl-based polymer is used as a coating film component, the acrylic polymer dissolves well with the above-mentioned active ingredient, so that the two are already melted together in the emulsion without heating or the like. By simply applying the damping paint to the application part, a damping coating film having excellent vibration energy absorbing performance can be formed. The scope of the present invention is defined in "Claims", and all modifications and forms included in the scope can be adopted. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 制振塗膜内部における双極子を示した模式図。  Figure 1 is a schematic diagram showing the dipole inside the damping coating.
図 2は、 エネルギーが加わったときの制振塗膜内部における双極子の状態を示 した模式図。  Figure 2 is a schematic diagram showing the state of the dipole inside the damping coating when energy is applied.
図 3は、 活性成分が配合されたときの制振塗膜内部における双極子の状態を示 した模式図。  FIG. 3 is a schematic diagram showing a state of a dipole inside a vibration damping coating film when an active ingredient is blended.
図 4は、 実施例 1〜 3、 並びに比較例 1〜 4の各制振塗料によつて形成された 制振塗膜について測定した動的粘弾性 (E" ) を示したグラフ。 実施例  Fig. 4 is a graph showing the dynamic viscoelasticity (E ") measured for the damping coating films formed using the damping paints of Examples 1 to 3 and Comparative Examples 1 to 4.
実施例  Example
カルボキシル基で置換したアクリル系ポリマ一 (酸化数 6) に、 活性成分とし て DCHB SAを、 重量比で 90 1 0 (実施例 1 ) 、 80 20 (実施例 2 ) 、 70ノ 30 (実施例 3) 、 1 00/0 (比較例 1 ) の割合でそれぞれ配合し、 こ れを水ェマルジヨン中に分散させて制振塗料とした。 比較例 To the acrylic polymer (oxygen number 6) substituted with a carboxyl group, as an active ingredient, DCHBSA was added at a weight ratio of 90 10 (Example 1), 80 20 (Example 2), 70 to 30 (Example 30). 3) and 100/0 (Comparative Example 1) were blended, respectively, and these were dispersed in water emulsion to obtain a damping paint. Comparative example
カルボキシル基で置換していないァクリル系ポリマーに、 活性成分として DC HB SAを、 重量比で 90 1 0 (比較例 2) 、 80/20 (比較例 3 ) 、 70 /3 0 (比較例 4) の割合でそれぞれ配合し、 これを水ェマルジヨン中に分散さ せて制振塗料とした。 上記実施例 1〜 3、 並びに比較例 1〜 4の各制振塗料によつて制振塗膜を形成 し、 各制振塗膜について動的粘弾性 (E" ) を測定した。 その結果を図 4に示し た。 尚、 動的粘弾性 (E" ) の測定は、 電子測器株式会社製の電磁加振検出装置 (MT— 1、 A202) を用いて行った。 尚、 制振塗膜は、 塗布後に強制乾燥せ ず、 いずれも自然乾燥により形成した。 図 4から、 比較例 1〜4に係る制振塗膜の動的粘弾性 (E" ) に比べて、 実施 例 1〜3に係る制振塗膜は、 いずれも高いレベルを示した。  DCHBSA as an active ingredient was added to an acrylyl polymer not substituted with a carboxyl group, by weight ratio, 90 10 (Comparative Example 2), 80/20 (Comparative Example 3), 70/30 (Comparative Example 4) , Respectively, and these were dispersed in water emulsion to obtain a damping paint. Damping coatings were formed from the respective damping coatings of Examples 1 to 3 and Comparative Examples 1 to 4, and the dynamic viscoelasticity (E ") of each damping coating was measured. The results are shown in Fig. 4. The dynamic viscoelasticity (E ") was measured using an electromagnetic excitation detector (MT-1, A202) manufactured by Denshi Sokki Co., Ltd. In addition, the vibration damping coating film was formed by natural drying without forced drying after coating. From FIG. 4, all of the vibration damping coatings according to Examples 1 to 3 showed higher levels than the dynamic viscoelasticity (E ") of the vibration damping coatings according to Comparative Examples 1 to 4.

Claims

言青求の範囲 Scope of word blue
1 . 塗膜成分中に、 同塗膜成分における双極子モーメント量を増加させる活性 成分を含む制振塗料において、 前記塗膜成分としてカルボキシル基で置換したァ クリル系ポリマーを用いたことを特徴とする制振塗料。 1. A vibration damping paint containing an active ingredient that increases the amount of dipole moment in the paint film component, wherein an acrylic polymer substituted with a carboxyl group is used as the paint film component. Damping paint.
2 . アクリル系ポリマ一が、 カルボキシル基で置換したアクリル酸エステルま たはメタアク リル酸エステルの単独重合体、 これら単独重合体の混合物、 あるい はこれらの共重合体、 またはこれらァクリル酸エステルまたはメタアクリル酸ェ ステルの単独重合体とスチレンの単独重合体との混合物、 あるいはスチレンと共 重合したアクリルースチレン共重合体であることを特徴とする請求項 1記載の制 振塗料。 2. Acrylic ester or methacrylic ester homopolymer in which the acrylic polymer is substituted with a carboxyl group, a mixture of these homopolymers, a copolymer thereof, or an acrylate or 2. The vibration damping paint according to claim 1, wherein the damping paint is a mixture of a methacrylic acid ester homopolymer and a styrene homopolymer, or an acryl-styrene copolymer copolymerized with styrene.
3 . 活性成分が、 ベンゾチアジル基を持つ化合物、 ベンゾトリアゾール基を持 つ化合物、 ジフエ二ルァクリレート基を持つ化合物、 あるいはベンゾフヱノン基 を持つ化合物の中から選ばれた 1種若しくは 2種以上であることを特徴とする請 求項 1記載の制振塗料。 3. The active ingredient is one or more compounds selected from a compound having a benzothiazyl group, a compound having a benzotriazole group, a compound having a diphenylacrylate group, and a compound having a benzophenone group. The vibration damping paint according to claim 1 which is a feature.
4 . 活性成分が塗膜成分 1 0 0重量部に対して 1 0〜 1 0 0重量部の割合で含 まれていることを特徴とする請求項 1または 3記載の制振塗料。 4. The vibration damping paint according to claim 1, wherein the active ingredient is contained in a proportion of 100 to 100 parts by weight based on 100 parts by weight of the coating film component.
PCT/JP1999/006786 1999-12-02 1999-12-02 Vibration-damping coating material WO2001040391A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/006786 WO2001040391A1 (en) 1999-12-02 1999-12-02 Vibration-damping coating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/006786 WO2001040391A1 (en) 1999-12-02 1999-12-02 Vibration-damping coating material

Publications (1)

Publication Number Publication Date
WO2001040391A1 true WO2001040391A1 (en) 2001-06-07

Family

ID=14237468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006786 WO2001040391A1 (en) 1999-12-02 1999-12-02 Vibration-damping coating material

Country Status (1)

Country Link
WO (1) WO2001040391A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007110989A1 (en) * 2006-03-27 2007-10-04 Cci Corporation Attenuating coating
JP2008184555A (en) * 2007-01-30 2008-08-14 Cci Corp Damping coating
JP2015143322A (en) * 2013-12-27 2015-08-06 北川工業株式会社 vibration damping material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136529A (en) * 1984-12-07 1986-06-24 Mitsui Petrochem Ind Ltd Curable resin composition for coating
JPH0673309A (en) * 1991-10-03 1994-03-15 Calp Corp Vibration-damping coating composition
JPH10195339A (en) * 1996-11-14 1998-07-28 Cci Corp Vibration-damping coating material
WO1999028394A1 (en) * 1997-12-01 1999-06-10 Shishiai-Kabushikigaisha Vibration-damping paint
WO1999038922A1 (en) * 1998-02-02 1999-08-05 Shishiai-Kabushikigaisha Vibration-damping coating material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136529A (en) * 1984-12-07 1986-06-24 Mitsui Petrochem Ind Ltd Curable resin composition for coating
JPH0673309A (en) * 1991-10-03 1994-03-15 Calp Corp Vibration-damping coating composition
JPH10195339A (en) * 1996-11-14 1998-07-28 Cci Corp Vibration-damping coating material
WO1999028394A1 (en) * 1997-12-01 1999-06-10 Shishiai-Kabushikigaisha Vibration-damping paint
WO1999038922A1 (en) * 1998-02-02 1999-08-05 Shishiai-Kabushikigaisha Vibration-damping coating material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007110989A1 (en) * 2006-03-27 2007-10-04 Cci Corporation Attenuating coating
JP2008184555A (en) * 2007-01-30 2008-08-14 Cci Corp Damping coating
JP2015143322A (en) * 2013-12-27 2015-08-06 北川工業株式会社 vibration damping material

Similar Documents

Publication Publication Date Title
WO2006057428A1 (en) Highly adhesive polyester film and film for protecting back side of solar cell using same
CA1268278A (en) Moisture actuated hot melt adhesive
CN101981149B (en) Composition for structural adhesive
CA1121082A (en) Pressure sensitive adhesive compositions
KR19980081608A (en) Antistatic Agent and Coatings and Adhesives Using the Antistatic Agent
WO1999028394A1 (en) Vibration-damping paint
JPH0299530A (en) Primer composition and method of using it
AU2001257110B2 (en) Adhesive sheet and adhesion structure
WO2001040391A1 (en) Vibration-damping coating material
Millet Cyanoacrylate adhesives
KR970705168A (en) NOVOLAC POLYMER PLANARIZATION FILMS FOR MICROELECTRONIC STRUCTURES FOR USE IN MICROELECTRONIC STRUCTURES
AU2001257110A1 (en) Adhesive sheet and adhesion structure
WO1999038922A1 (en) Vibration-damping coating material
JP3613778B2 (en) Architectural board
JP4204835B2 (en) Adhesive tape and method of using adhesive tape
JPS60166366A (en) One-pack type aqueous emulsion adhesive composition
JPH10195339A (en) Vibration-damping coating material
JPH0834962A (en) Tacky agent composition and tacky processed article
JPH111656A (en) Aqueous primer composition
JP3591640B2 (en) Recyclable water-based adhesive
JP2003001653A (en) Water absorbable foam having self-adhesiveness
JP2002127290A (en) Re-peelable laminate and re-peeling method therefor
JP3579450B2 (en) Floor adhesive composition
JPH0625629A (en) Noncorrosive flame-retardant acrylic pressure-sensitive adhesive and pressure-sensitive adhesive tape prepared therefrom
WO1999064535A1 (en) Damping self-adhesive

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 541135

Kind code of ref document: A

Format of ref document f/p: F