WO2001038788A1 - Stack structure - Google Patents

Stack structure Download PDF

Info

Publication number
WO2001038788A1
WO2001038788A1 PCT/JP2000/008146 JP0008146W WO0138788A1 WO 2001038788 A1 WO2001038788 A1 WO 2001038788A1 JP 0008146 W JP0008146 W JP 0008146W WO 0138788 A1 WO0138788 A1 WO 0138788A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
carbon dioxide
structure according
stack
chimney structure
Prior art date
Application number
PCT/JP2000/008146
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshikazu Kitano
Original Assignee
Kabushiki Kaisha Maruki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Maruki filed Critical Kabushiki Kaisha Maruki
Publication of WO2001038788A1 publication Critical patent/WO2001038788A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/08Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases using flares, e.g. in stacks
    • F23G7/085Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases using flares, e.g. in stacks in stacks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J13/00Fittings for chimneys or flues 
    • F23J13/02Linings; Jackets; Casings
    • F23J13/025Linings; Jackets; Casings composed of concentric elements, e.g. double walled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation

Definitions

  • the present invention relates to a chimney structure capable of halving the height of a chimney and removing harmful carbon dioxide from combustion gas.
  • Carbon dioxide itself is also a major component of the atmosphere, and has not been a problem since it did not have a direct adverse effect on the human body as did Daidai Toxin and other harmful substances. Carbon dioxide is rapidly increasing and is facing a very serious problem of global warming.
  • a porous stack is provided in a pipe having a base end communicating with a combustion chamber and an exhaust gas port provided at a front end to form a combustion gas flow path. It was arranged. Therefore, with such a stack, a dream pipe effect accompanied by heat transport is produced, the temperature of the chimney outlet can be significantly reduced, and secondary generation of dioxin can be prevented. Therefore, it can be used for small incinerators and the like, and even for large incinerators, the height of the chimney to be constructed can be reduced and the construction cost can be reduced.
  • the pipe is bent in an inverted U-shape, and a porous stack is disposed in a combustion gas flow path formed in the pipe. Therefore, the height of the chimney can be made lower, and even if the exhaust gas outlet is close to the surface of the ground, the stack also has a dream pipe effect with heat transport due to the arrangement of the stack. Can be significantly reduced, and there is no danger of the adverse effects of smoke and high-gas.
  • the base end of the inner cylindrical body having an open upper end is communicated with the combustion chamber, and the upper end is closed so as to include the inner cylindrical body, and the exhaust gas port is formed in the middle of the cylindrical body.
  • the formed outer cylinder is disposed, and a combustion gas flow path is formed by communicating a tubular flow path inside the inner cylinder with an annular flow path formed between the inner cylinder and the outer cylinder.
  • a porous stack was installed in the combustion gas channel. Therefore, the chimney to be constructed has a double structure that can reduce the height by half while securing the required length of the exhaust gas flow path, and can reduce the height and the construction cost.
  • the arrangement of the stack produces a dream pipe effect accompanied by heat transport, which can significantly reduce the temperature of the smoke outlet. There is no risk of adverse effects due to gas.
  • a double pipe structure consisting of a tubular flow path and an annular flow path is used. The frequency of the generated sound can be canceled out, and silence can be achieved.
  • a filter is provided in the combustion gas flow path. Therefore, soot and dust can be adsorbed, and clean exhaust gas can be obtained.
  • the exhaust gas device is connected to the exhaust gas processing means. Therefore, there is no need to worry about environmental pollution because the exhaust gas is clean.
  • a blower is provided in the exhaust gas port. Therefore, the exhaust gas from the combustion chamber can be efficiently guided to the exhaust gas treatment means.
  • the sock is formed of a porous ceramic. Therefore, the existing material can be used as the stack, and the stack can be easily obtained, and the dream pipe effect can be further enhanced.
  • the exhaust gas treating means is a gas generating unit that generates a methane gas by causing a reduction reaction of carbon dioxide with water using a photocatalyst. Therefore, by replacing this with methane gas without emitting carbon dioxide into the atmosphere, it can be effectively used as an external energy source such as a power source or a heat source.
  • the gas generating unit includes: a combustion gas storage chamber; a water tank connected to the combustion gas storage chamber; and a methane gas purification chamber connected to the water tank.
  • a photocatalyst in which palladium was supported on the surface of titanium oxide was dispersed in the part.
  • a solid-state semiconductor photocatalyst that can utilize water as a reducing agent and that can accumulate multiple electrons, carbon dioxide can be efficiently reduced, and the efficiency of producing menthane gas can be improved.
  • the exhaust gas treatment means is a carbon dioxide recovery tank containing a processing solution in which calcium hydroxide is dissolved, and the carbon dioxide contained in the combustion gas can be recovered as calcium carbonate. did. Therefore, carbon dioxide generated by combustion can be recovered in a stable state.
  • the inside of the carbon dioxide recovery tank is maintained at a negative pressure. Therefore, the combustion gas can be effectively drawn into the carbon dioxide capture tank.
  • the exhaust gas treatment means separates the exhausted gas into nitrogen and carbon dioxide via a NOx decomposition catalyst, and generates the separated carbon dioxide and a hydrogen generator. By reacting with hydrogen, methanol could be produced. Therefore, by replacing methanol with methanol without emitting carbon dioxide to the atmosphere, it can be effectively used as an external energy source such as a power source or a heat source.
  • the exhaust gas treatment means separates the exhausted gas into nitrogen and carbon dioxide via a NOx decomposition catalyst, and generates the separated carbon dioxide and the hydrogen from the hydrogen generator. By reacting with hydrogen, carbon could be generated. Therefore, it can be replaced with pure carbon as a resource without emitting carbon dioxide into the atmosphere.
  • a cooling circuit for cooling the surface of the stack is provided. Therefore, the exhaust gas temperature can be efficiently reduced.
  • FIG. 2 is a schematic explanatory view of a chimney structure according to the first embodiment.
  • FIG. 8 is a schematic explanatory view of a chimney structure according to a second embodiment.
  • FIG. 9 is a schematic explanatory view of a chimney structure according to a third embodiment.
  • FIG. 9 is a schematic explanatory view of a chimney structure according to a fourth embodiment.
  • FIG. 8 is an explanatory view showing a modified example of the exhaust gas processing means in the embodiment c.
  • FIG. 14 is a schematic explanatory view of a chimney structure according to a fifth embodiment.
  • FIG. 4 is an explanatory diagram of a stack cooling unit. BEST MODE FOR CARRYING OUT THE INVENTION
  • a porous stack is disposed in a pipe in which a base end communicates with a combustion chamber, an exhaust gas port is provided at a tip end, and a combustion gas flow path is formed.
  • the tube may have an upright structure or a slightly inclined structure.
  • the high-grade exhaust gas can be cooled down to about room temperature near the smoke outlet by the dream pipe effect, and the secondary daisy toxin is generated. That is to prevent that.
  • soot and dust can be captured by the stack.
  • the chimney can be made relatively low, and the construction cost can be greatly reduced.
  • Such a structure can be adopted for a small incinerator or the like, and can be easily installed in a school or other facilities.
  • tubular body may be bent in an inverted U-shape, and the porous stack described above may be disposed in a combustion gas flow passage formed in the tubular body.
  • the above-mentioned stack can be formed of porous ceramics.
  • existing materials such as a catalyst disposed in an exhaust pipe of an automobile can be used as a sock, so that the material can be easily obtained and the dream pipe effect can be further enhanced.
  • the above-mentioned tubular body may be bent in an inverted U-shape, and the porous stack described above may be provided in a combustion gas flow path formed in the tubular body. If this chimney structure is bent in a U-shape, the height of the chimney can be further reduced.In addition, since the tip, which is the exhaust gas outlet, is also located near the ground, construction costs can be reduced. It can be greatly reduced.
  • a configuration having a cooling circuit for cooling the surface of the stack may be employed.
  • Such a rejection circuit allows the exhaust gas temperature to be reduced more efficiently.Furthermore, the exhaust gas can be communicated with the exhaust gas treatment means, and the harmful substances contained in the exhaust gas are removed and then discharged to the atmosphere. You can also. At this time, if the temperature of the exhaust gas at the inlet of the exhaust gas treatment means is as high as about 300 ° C, it is reported that a large amount of dioxin is generated in the treatment means. According to Ming, it will also be effective in controlling daisies.
  • a special filter for soot and dust as well as a stack can be provided in the pipe.
  • the placement location may be located at either the top or bottom of the stack or at both locations as required.
  • the combustion chamber is configured to be capable of high-temperature combustion at 1000 to 1500 ° C, it is possible to remove dioxin, which has recently become a problem, in the combustion chamber.
  • a blower can be provided in the exhaust gas port. That is, the exhaust gas from the combustion chamber is forcibly sucked by the blower and can be efficiently guided to the exhaust gas treatment means.
  • the present invention particularly provides carbon dioxide, which causes global warming, to the atmosphere. Since it also has the purpose of preventing discharge, the exhaust gas treatment means can have the following configuration.
  • the exhaust gas processing means is a gas generating unit that generates a methane gas by causing a reduction reaction of carbon dioxide with water using a photocatalyst.
  • the gas generating section includes a combustion gas storage chamber, a water tank communicating with the combustion gas storage chamber, and a methane gas purification chamber communicating with the water tank.
  • a photocatalyst carrying palladium on the surface is dispersed, water can be used as a reducing agent and a solid-state photocatalyst capable of accumulating multiple electrons can be used to efficiently reduce carbon dioxide. It can be reduced and the efficiency of menthol gas generation can be improved.
  • carbon dioxide can be effectively used as an external energy source such as a power source or a heat source by replacing it with methane gas without discharging carbon dioxide into the atmosphere.
  • the chimney to be constructed is short, which can reduce construction costs and eliminate the concern of environmental pollution. Also, since the temperature of the smoke outlet can be greatly reduced, there is no danger of soot or high-grade gas even if the exhaust gas outlet is close to the ground.
  • the above-mentioned dream pipe effect has been analyzed by thermoacoustic theory, which has been studied in recent years.
  • the exhaust gas treatment means is a carbon dioxide recovery tank containing a treatment solution in which calcium hydroxide is dissolved, and carbon dioxide contained in the combustion gas can be recovered as carbon dioxide.
  • Carbon dioxide is known to react with calcium hydroxide to form calcium carbonate and water.
  • Calcium carbonate acts as a reservoir for carbon dioxide and exists naturally in a stable form as calcite.
  • the carbon dioxide generated by combustion can be recovered in a stable state without being released to the atmosphere.
  • calcium carbonate which can be used as an absorbent for use in the desulfurization apparatus, in this case, it is reacted with SO x in the exhaust gas Plaster can also be obtained as a by-product.
  • the inside of the carbon dioxide recovery tank is maintained at a negative pressure, and the combustion gas from the combustion chamber passing through the inverted U-shaped pipe is effectively drawn in even if the above-mentioned blower device or the like is not particularly provided. be able to.
  • the exhausted gas is separated into nitrogen and carbon dioxide through the decomposition catalyst of ⁇ , and the separated carbon dioxide and hydrogen generated from the hydrogen generator are separated. It can be reacted to produce a methyl alcohol.
  • the exhaust gas is separated into nitrogen and carbon dioxide via the decomposition catalyst of ⁇ , and the separated carbon dioxide reacts with the hydrogen generated from the hydrogen generator to produce carbon. Can be generated.
  • a base end of an inner cylindrical body having an open upper end is communicated with the combustion chamber, and the upper end is closed so as to include the inner cylindrical body.
  • An outer cylinder having an exhaust slot formed in the middle thereof is provided, and a tubular channel inside the inner cylinder communicates with an annular channel formed between the inner cylinder and the outer cylinder.
  • a combustion gas flow path may be formed to form a porous stack in the combustion gas flow path.
  • the stack described above can be provided, and by providing such a stack, a dream pipe effect accompanied by heat transport is exhibited, and the temperature at the chimney outlet is significantly reduced. Even if the exhaust gas outlet is located as low as possible near the surface of the ground, there is no risk of adverse effects from soot and high-gas.
  • the chimney structure of the present embodiment has a characteristic double structure of the inner cylinder and the outer cylinder, so that the noise generated due to the above-described dream pipe effect is reduced by the tubular flow path of the inner cylinder, The noise generated from the annular flow path formed between the inner cylinder and the outer cylinder interferes with each other, and the frequencies are offset, so that noise can be greatly reduced and the surrounding environment can be disturbed. Absent.
  • FIG. 1 is a schematic explanatory view showing a chimney structure according to the first embodiment.
  • reference numeral 1 denotes a combustion chamber of a refuse incinerator, which includes a first combustion chamber 11 as an incinerator for directly charging a substance to be burned, a second combustion chamber 12, which performs the most combustion in two stages, and a third combustion chamber.
  • the combustion chamber is divided into chambers 13, and the combustion temperature is controlled in each of the combustion chambers 11, 12, 13, so that generation of harmful substances is suppressed as much as possible.
  • reference numeral 14 denotes a burner device provided in each of the combustion chambers 11, 12, and 13, and reference numeral 15 denotes a communication path connecting the first combustion chamber 11 and the second combustion chamber 12.
  • Reference numeral 3 denotes a chimney which is a main part of the present invention.
  • the stack 30 has a base 30a communicating with the combustion chamber 1 and a discharge gas slot 30b provided at the end to form a combustion gas flow path R, and a porous stack is provided therein.
  • the feature is that 4 are arranged.
  • the base end 30a of the pipe 30 is connected to the third combustion chamber 13 so as to extend directly upward, and the outlet 30b is positioned at a height h from the parner device 14 of the third combustion chamber 13. .
  • a plurality of porous stacks 4 are arranged inside the pipe 30 at appropriate intervals, and the combustion gas discharged from the combustion chamber 1 is passed through the pipe 30 through the stack 4. I have.
  • the stack 4 is made of porous ceramics used as an exhaust gas treatment catalyst in an exhaust pipe of an automobile and molded into a shape that can be disposed inside the chimney 3.
  • the number and position of the stacks 4 may be determined by experimentally finding the optimum number and the optimum position.In the present embodiment, three stacks 4 are connected to the third combustion chamber 13. It is arranged at a distance of h / 4 from the banner device 14.
  • the above-mentioned chimney structure can be used for both large refuse incinerators and small incinerators that can be used in schools and homes.
  • a chimney suitable for reduced environmental protection can be provided.
  • FIG. 2 is a schematic explanatory view showing a chimney structure according to the second embodiment.
  • 1 is a combustion chamber of a refuse incinerator, to which a desulfurization unit 2 is attached.
  • the combustion chamber 1 according to the present embodiment is configured to be capable of burning at a high temperature of about 125 ° C. to about 150 ° C. in order to suppress the generation of dyes.
  • a sub-combustion chamber may be provided to suppress combustion at around 800 ° C in combustion chamber 1 and burn at high temperature in the sub-combustion chamber to convert incinerated ash and fly ash into molten slag. .
  • the feature of the present embodiment is that the pipe 30 of the chimney 3 is extended upward and is bent in the middle in a substantially inverted U-shape to form a substantially inverted U-shaped pipe. That is, the porous stack 4 described above is disposed in the middle of the first vertical portion 31 and the second vertical portion 32 of the device 30, respectively.
  • the exhaust gas port 30b which is located at a height close to the ground, is connected to an exhaust gas treatment It communicates with the steps.
  • 31 is a first vertical portion
  • 32 is a second vertical portion
  • .33 is a bent portion.
  • the height of the inverted U-shaped portion of the chimney 3 is about 15 m.
  • the arrangement position of each stack 4 may be determined by experimentally finding the optimum position.
  • the height position H of the stack 4 arranged in the first vertical portion 31 is determined based on the height position H.
  • Position 3 to 8 m from the position of end 3 Oa, Arrangement position D of stack 4 to be arranged in second vertical portion 32 is set to 3 to 8 m from the upper end of bent portion 33 .
  • a filter 5 for removing dust and ash is provided on the lower side of the stack 4.
  • the location of the filter 5 and the number of the filters 5 may be determined as appropriate, and are not particularly limited to the present embodiment.
  • the combustion gas discharged from the combustion chamber 1 passes through the inverted U-shaped pipe 30 while passing through the stack 4 and the filter 5, and the dream pipe formed by the stack 4 Due to the effect, the temperature is reduced to nearly the normal temperature.
  • the exhaust gas concentration at the entrance of the exhaust gas treatment means is lowered, it is possible to prevent the secondary production of daisy toxin and the like in the exhaust gas treatment means.
  • the stack 4 and the filter 5 allow the exhaust gas subjected to the primary treatment from which soot and dust has been removed to flow into the exhaust gas processing means, thereby reducing the processing load of the exhaust gas processing means.
  • the primary treatment effect of the exhaust gas can be further enhanced.
  • Exhaust gas treatment means other removal of harmful substances die old Xing, in particular, for the purpose of carbon dioxide that causes global warming (C 0 2) is prevented from being discharged into the atmosphere
  • the gas generating unit 6 functions as a gas generating unit 6 that generates a methane gas by inducing a reduction reaction of carbon dioxide with water using a photocatalyst.
  • a photocatalyst 63 in which palladium is supported on the surface of titanium oxide is dispersed in the water tank 61.
  • 62a is a methane gas outlet.
  • the photocatalyst 63 is a solid-state photocatalyst capable of accumulating multiple electrons
  • water can be used as a reducing agent as shown in the following formula, and carbon dioxide can be efficiently reduced to improve the menthol gas generation efficiency. Can be done.
  • the following shows the reaction formula for producing methane gas by reduction of carbon dioxide.
  • the generated methane gas can be effectively used as power generation and heating energy.
  • a large amount of carbon dioxide is not emitted into the atmosphere, which can greatly contribute to the prevention of global warming, and the carbon dioxide generated by combustion is converted into methane gas.
  • energy can be effectively used as an external energy source such as a power source or a heat source, and energy can be saved.
  • FIG. 3 shows a modified example of the exhaust gas treatment means for obtaining methane gas from the generated carbon dioxide.
  • V1 is a drain drain.
  • reaction tank T2 Fe, Ru, Ni -Al 2 0 3, Si and the like as a catalyst, methane gas is generated by the following reaction.
  • the temperature and pressure in the reaction tank T2 are appropriately set depending on the catalyst used.
  • Reference numeral 66 denotes a reducing agent tank that accommodates urea water as a reducing agent and allows the urea water to be sprayed into the exhaust gas treatment flow path S via a relevance 66v, and is disposed on the upstream side of the catalyst chamber 65.
  • Reference numeral 67 denotes a nitrogen separation tank connected to and connected to the liquefaction tank T1.
  • 67V is a liquid nitrogen discharge valve
  • 68 is a hydrogen generation unit which is connected to the reaction tank T2 via a valve V2.
  • water is electrolyzed or hydrogen is obtained by a reaction between water and a metal.
  • the flow path on the lower side of the catalyst chamber 65 and the liquefaction tank T1 maintain the temperature at 31 ° C. or less and the pressure at 72.8 atm.
  • a blower for forcibly drawing the exhaust gas from the chimney 3 into the exhaust gas treatment channel S is provided at a connection portion between the chimney 3 and the exhaust gas treatment channel S.
  • the exhaust gas treatment unit is obtained by enabling recovery of carbon dioxide contained in the exhaust gas as calcium carbonate (C a C 0 3) .
  • the exhaust gas treatment means in the present embodiment is a carbon dioxide recovery tank 7 containing a treatment liquid 70 in which hydroxylic acid (slaked lime) is dissolved, and the carbon dioxide contained in the exhaust gas.
  • hydroxylic acid soda lime
  • Calcium carbonate plays a role as a store of carbon dioxide on the earth, and naturally exists as calcite in a stable form.
  • the carbon dioxide generated by the combustion can be recovered in a stable state without being discharged to the atmosphere.
  • the inside of the carbon dioxide recovery tank 7 is maintained at a negative pressure, so that the exhaust gas from the combustion chamber 1 passing through the inverted U-shaped pipe 30 can be effectively drawn in without a blower device or the like. it can.
  • P is a vacuum pump provided to make the inside of the carbon dioxide capture tank 7 a negative pressure, and is provided in the middle of an exhaust pipe 71 extending from the ceiling wall of the carbon dioxide capture tank 7.
  • Reference numeral 72 denotes a calcium carbonate outlet formed on the bottom wall of the carbon dioxide recovery tank 7, and reference numeral 73 denotes an open / close valve connected to the outlet 72.
  • a plurality of such carbon dioxide collecting tanks 7 can be provided in series according to the amount of treatment. In this case, the end of the exhaust pipe 71 may be extended, and inserted deep into the second tank 7 'for connection.
  • a die-cut xin treatment chamber 8 using supercritical water there may be provided a die-cut xin treatment chamber 8 using supercritical water.
  • Supercritical water is obtained by applying a certain pressure to water and applying a certain temperature to the boundary between the liquid and the gas. It is known to decompose and detoxify.
  • the chimney structure according to the third embodiment is as described above.
  • a large amount of carbon dioxide is not emitted into the atmosphere, which is great for preventing global warming.
  • FIG. 5 shows a modification of the exhaust gas treatment means in the third embodiment.
  • the pipe 30 is made upright as a single body, and in the second and third embodiments, the inverted U-shaped pipe 30 is formed into an upright shape having a double cylindrical structure. It is composed.
  • the configuration of the exhaust gas treatment means connected to the chimney 3 may be any of those shown in the second and third embodiments described above, and may be the configuration described later. Others may be adopted.
  • the combustion chamber 1 in the present embodiment includes a first combustion chamber 11 as an incinerator for directly injecting a substance to be burned, and a second combustion chamber for performing the most combustion in two stages thereafter. 12 and the third combustion chamber 13.
  • the chimney 3 in this embodiment connected to the combustion chamber 1 described above communicates with the combustion chamber 1 through a base end 35b of an inner cylindrical body 35 having an open upper end 35a, and includes the inner cylindrical body 35.
  • An outer cylinder 36 having an upper end closed and an exhaust gas port 36a formed in the middle of the cylinder is disposed, and the inner cylinder 35 and the outer cylinder 36 are formed from the tubular flow path R1 inside the inner cylinder 35.
  • the combustion gas flow path R is formed by communicating with the annular flow path R2 formed therebetween, and the porous stack 4 is disposed in the combustion gas flow path R.
  • an exhaust gas port 36a formed in the outer cylindrical body 36 is connected to the exhaust gas processing means as described in the first and second embodiments.
  • 36b is the closed upper end of the outer cylinder 36.
  • Reference numeral 5 denotes a filter disposed on the lower side of the stack 4.
  • the shape of the stack 4 and the filter 5 is formed into a cylindrical shape or a donut shape, respectively, according to the shape of the tubular flow path R1 or the annular shape R2.
  • the arrangement of the stack 4 in the combustion gas flow path R produces a dream pipe effect accompanied by heat transport, and the smoke outlet temperature, that is, the outer cylindrical body
  • the smoke outlet temperature that is, the outer cylindrical body
  • the temperature downstream from the 36 exhaust gas ports 36a can be greatly reduced, and even if the exhaust gas ports 36a are located as low as possible near the surface of the earth, there is no danger of adverse effects due to soot and high-temperature gas.
  • the stack 4 is disposed as a double-structured upright type comprising the inner cylinder 35 and the outer cylinder 36 without bending the chimney 3 as in the first and second embodiments, and combustion is performed.
  • the height of the chimney 3 can be reduced by almost half with respect to the length of the flow path R while securing the length of the combustion gas flow path R necessary for lowering the temperature of the gas.
  • the chimney 3 has a characteristic double pipe structure of the inner cylinder 35 and the outer cylinder 36, thereby providing a calming effect.
  • the double pipe structure causes the sounds generated from the tubular flow path and the annular flow path to interfere with each other, canceling out the frequencies, and greatly reducing the noise. That can be reduced. Therefore, with the chimney structure according to the present embodiment, there is no risk of disturbing the environment around the installation.
  • the number of the stacks 4 to be arranged and their intervals and arrangement positions can be appropriately set from the length of the combustion gas flow path R.
  • the height position of the exhaust gas port 36a communicating with the exhaust gas treatment means can be set freely. Therefore, even when constructing equipment that will be used as an exhaust gas treatment device after installing the chimney 3, it is necessary to provide the exhaust gas port 36a at the optimum position in consideration of the installation conditions of the equipment and the installation conditions of the combustion chamber 1. It becomes possible.
  • the chimney structure in this embodiment can reduce the height of the chimney 3 and can be installed in a small space, thereby reducing construction costs and quieting expected noise.
  • the exhaust gas treatment means shown in FIGS. 7 and 8 can generate methanol from carbon dioxide in exhaust gas.
  • the one shown in FIG. 7 basically has the configuration shown in FIG. During, V 2 0 with 6 -Ti 0 2 provided catalyst chamber 65 where the cracking catalyst accommodated in the NOx such as, downstream thereof, to vaporize the liquefied tank ⁇ for liquefying separation of carbon dioxide and nitrogen, carbon dioxide A reaction tank T2 for reacting hydrogen with hydrogen and a methanol tank T4 for containing methanol generated by the reaction between carbon dioxide and hydrogen are arranged in series. V3 is a methanol extraction valve.
  • methane gas is generated in the reaction tank T2 by the following reaction.
  • the one shown in FIG. 8 further separates carbon dioxide generated by the configuration shown in FIG. 7 into carbon monoxide and water, and reacts the obtained carbon monoxide with hydrogen to produce methanol. I'm trying to get.
  • T5 is a carbon monoxide tank, which is connected to the hydrogen generator 68 via a valve V2 '.
  • FIG. 9 shows a configuration in which pure exhaust gas is obtained by means of an exhaust gas treatment means, and is basically configured as shown in FIG. B is a blower that forcibly draws exhaust gas from chimney 3 into exhaust gas treatment channel S.
  • the exhaust gas treatment flow path S which communicatively connected to the chimney 3, V 2 0 5 - together with Ti 0 2 provided catalyst chamber 65 where the cracking catalyst accommodated in the NOx such as, downstream thereof, carbon dioxide and nitrogen
  • a liquefaction tank T1 for liquefaction and separation of carbon dioxide, a reaction tank T2 for vaporizing carbon dioxide and reacting with hydrogen, and a carbon tank T6 for containing carbon generated by the reaction between carbon dioxide and hydrogen are arranged in series. ing.
  • the chimney 3 has a double pipe structure composed of an inner cylindrical body 35 and an outer cylindrical body 36 as in the fourth embodiment, and the stack 4 is used as a stack cooling means for forcing; ; Rejection circuit F is provided.
  • the cooling circuit F includes a cooling tank F1 having a pump for storing cooling water and being capable of forcibly circulating, and a piping portion F2 forming a circulation flow path.
  • a member having a high thermal conductivity In this embodiment, a copper pipe is used.
  • a high heat conductivity material such as a copper plate can be interposed between the contact portion F2 'and the stack 4.
  • the cooling tank F1 is provided outside the chimney 3, but in order to improve the external appearance, the cooling tank F1 is configured to be sufficiently insulated, and the inner cylinder 35 and the outer cylinder It may be arranged between the body 36, that is, inside the chimney 3.
  • exhaust gas treatment means and the like do not necessarily need to be installed, and the configuration is not necessarily limited to the above embodiments. Absent.
  • cooling circuit F that forcibly rejects the stack 4 described above can also be applied to the above-described first to fourth embodiments.
  • the present invention is implemented in the form as described above, and has the following effects.
  • the porous stack is disposed in a pipe in which the base end communicates with the combustion chamber, the exhaust gas port is provided at the front end, and the combustion gas flow path is formed.
  • a dream pipe effect accompanied by heat transport can be achieved, the chimney exit angle can be greatly reduced, and secondary production of daisy toxin can be prevented. But Therefore, it can be suitably used for small incinerators, etc., and even for large incinerators, the height of the chimney to be constructed can be reduced and the construction cost can be reduced.o
  • the pipe body is bent in an inverted U-shape, and a porous stack is disposed in a combustion gas flow path formed in the pipe body, so that the stack
  • the construction cost can be reduced by lowering the construction cost, and even if the exhaust gas outlet is close to the surface of the ground, the stack arrangement also produces a dream pipe effect that involves heat transport. Can be significantly reduced, and there is no risk of adverse effects due to smoke and hot gases.
  • the base end of the inner cylindrical body having an open upper end is communicated with the combustion chamber, and the upper end is closed so that the inner cylindrical body is included.
  • An outer cylinder forming an exhaust gas port is provided, and a combustion gas flow is formed by communicating a tubular channel inside the inner cylinder with an annular channel formed between the inner cylinder and the outer cylinder.
  • the exhaust gas from the combustion chamber can be more efficiently guided to the exhaust gas treatment means.
  • the exhaust gas treatment means is a gas generating unit that generates a methane gas by causing a reduction reaction of carbon dioxide with water using a photocatalyst, thereby reducing By replacing this with methane gas without emitting carbon dioxide to the outside, it can be effectively used as an external energy source such as a power source or heat source.
  • the gas generating unit includes a combustion gas storage chamber, a water tank communicating with the combustion gas storage chamber, and a methane gas purification chamber communicating with the water tank.
  • the exhaust gas treatment means is a carbon dioxide recovery tank containing a treatment liquid in which calcium hydroxide is dissolved, and the carbon dioxide contained in the combustion gas is calcium carbonate.
  • the exhaust gas treatment means separates the exhausted gas into nitrogen and carbon dioxide via a NOx decomposition catalyst, and separates the separated carbon dioxide and hydrogen
  • the hydrogen generated from the device instead of emitting carbon dioxide to the atmosphere, it can be replaced with methanol to provide energy to external sources such as power sources and heat sources. Can be used effectively as a source
  • the exhaust gas treatment means separates the exhausted gas into nitrogen and carbon dioxide via a NOx decomposition catalyst, and separates the separated carbon dioxide and water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chimneys And Flues (AREA)

Abstract

A stack structure capable of preventing carbon dioxide causing global warming from being exhausted into the atmosphere, wherein: a porous stack is disposed in a pipe body having a base end communicating with a combustion chamber, a tip end with an exhaust gas port provided thereto, and a combustion gas flow path formed therein; or the pipe body is formed by bending it in an inverted U-shape, and a porous stack is disposed in the combustion gas flow path.

Description

明 細 書 煙突構造 技術分野  Description Chimney structure Technical field
この発明は、 煙突の高さを半減し、 かつ、 燃焼ガスから有害な二酸化炭素を除 去可能とした煙突構造に関するものである。 背景技術  TECHNICAL FIELD The present invention relates to a chimney structure capable of halving the height of a chimney and removing harmful carbon dioxide from combustion gas. Background art
従来、 ごみ焼却場などには、 数十メートルもあるような高い煙突が設置されて いることが多い。  Conventionally, refuse incineration plants and the like often have tall chimneys of several tens of meters.
これは、 煙突から飛散する塵灰などやその他の有害物質の影響を近隣に及ぼさ ないように、 上空から広〈拡散させることを目的としているもので、 莫大な建設 コス卜を費やしている。  This is intended to spread over the sky so that dust and other harmful substances scattered from the chimney and other harmful substances do not affect nearby areas, and it consumes enormous construction costs.
しかし、 近年、 煙突などからの排気ガスによる環境汚染は地球規模で問題とな つており、 様々な研究が進んでいる。  However, in recent years, environmental pollution due to exhaust gas from chimneys and the like has become a problem on a global scale, and various studies are being advanced.
その中でも、 ゴミ焼却などにより発生するダイ才キシンの対策は比較的に研究 開発が進み、 ダイ才キシンの発生を大幅に減少させることのできる焼却炉などが 開発されてきた。  Above all, research and development on countermeasures against daisy toxins generated by garbage incineration have progressed relatively, and incinerators that can greatly reduce the occurrence of daisy toxins have been developed.
ところが、 煙突からの排気ガスに含まれる二酸化炭素 (c o2) については、 ぼ とんど考慮されないままとなっている現状がある。 However, carbon dioxide (co 2 ) contained in the exhaust gas from the chimney is almost completely ignored.
二酸化炭素自体は大気の主成分でもあり、 ダイ才キシンやその他の有害物質の ように人体への直接的な悪影響がなかったことから、 問題にされていなかつたの であるが、 近年、 大気中の二酸化炭素が急激に増加してきて、 地球温暖化という きわめて深刻な問題に直面している。  Carbon dioxide itself is also a major component of the atmosphere, and has not been a problem since it did not have a direct adverse effect on the human body as did Daidai Toxin and other harmful substances. Carbon dioxide is rapidly increasing and is facing a very serious problem of global warming.
しかし、 人間の生活様式、 生産体系を大きく変えることは難しく、 また、 二酸 化炭素を発生させないでゴミを焼却したり、 あるいは全てのエネルギーをまかな うことは不可能である。 したがって、 大気中の二酸化炭素を削減するためにあらゆる手段を講じる必要 が生じてきた。 発明の開示 However, it is difficult to change human lifestyles and production systems significantly, and it is impossible to incinerate garbage or provide all energy without generating carbon dioxide. Therefore, all means must be taken to reduce atmospheric carbon dioxide. Disclosure of the invention
そこで、上記課題を解決するために、請求項 1記載の本発明では、基端を燃焼室 に連通し、先端に排ガス口を設けて燃焼ガス流路を形成した管体内に、ポーラスな スタックを配設した。 したがって、 かかるスタックによって、 熱輸送を伴なう ド リームパイプ効果を奏し、 煙突出口温度を大幅に低下させることができ、 ダイォ キシンが二次生成されることを防止することができる。 したがって、 小型焼却炉 などに採用することができ、 また、 大型焼却炉であっても、 建設される煙突の背 を低〈 し、 かつ、 建設コストを抑えることができる。  Therefore, in order to solve the above problem, in the present invention according to claim 1, a porous stack is provided in a pipe having a base end communicating with a combustion chamber and an exhaust gas port provided at a front end to form a combustion gas flow path. It was arranged. Therefore, with such a stack, a dream pipe effect accompanied by heat transport is produced, the temperature of the chimney outlet can be significantly reduced, and secondary generation of dioxin can be prevented. Therefore, it can be used for small incinerators and the like, and even for large incinerators, the height of the chimney to be constructed can be reduced and the construction cost can be reduced.
請求項 2記載の本発明では、 上記管体を逆 U字状に屈曲形成し、 同管体内に形 成した燃焼ガス流路内にポーラスなスタックを配設した。 したがって、 煙突の背 をより低〈することができるとともに、 排ガス出口が地表に近くても、 やはりス タックを配設したことで熱輸送を伴なう ドリームパイプ効果を奏することから、 煙突出口溫度を大幅に低下させることができ、 煤煙ゃ高溫ガスによる悪影響のお それがない。  According to the second aspect of the present invention, the pipe is bent in an inverted U-shape, and a porous stack is disposed in a combustion gas flow path formed in the pipe. Therefore, the height of the chimney can be made lower, and even if the exhaust gas outlet is close to the surface of the ground, the stack also has a dream pipe effect with heat transport due to the arrangement of the stack. Can be significantly reduced, and there is no danger of the adverse effects of smoke and high-gas.
請求項 3記載の本発明では、 燃焼室に、 上端を開口した内側筒体の基端を連通 し、 同内側筒体を内包するように、 上端を閉塞して筒体中途部に排ガス口を形成 した外側筒体を配設し、 前記内側筒体内部の管状流路から同内側筒体と外側筒体 との間に形成された環状流路とを連通して燃焼ガス流路を形成し、 同燃焼ガス流 路内にポーラスなスタックを配設した。 したがって、 建設される煙突は、 排ガス 流路は必要長さ確保しつつ、 その高さを半減できる二重構造となり、 背が低〈な るとともに、 建設コス卜を抑えることができる。 また、 スタックを配設したこと で熱輸送を伴なう ドリームパイプ効果を奏し、 煙突出口温度を大幅に低下させる ことができるので、 排ガス出口が地表に近くまで低い位置にあっても煤煙や高温 ガスによる悪影響のおそれがない。 しかも、 ドリームパイプ効果で派生する音に 関しても、 管状流路と環状流路とからなる二重管構造としているので、 各流路で 発生する音の周波数を相殺することができ、 静粛化が可能となる。 According to the third aspect of the present invention, the base end of the inner cylindrical body having an open upper end is communicated with the combustion chamber, and the upper end is closed so as to include the inner cylindrical body, and the exhaust gas port is formed in the middle of the cylindrical body. The formed outer cylinder is disposed, and a combustion gas flow path is formed by communicating a tubular flow path inside the inner cylinder with an annular flow path formed between the inner cylinder and the outer cylinder. A porous stack was installed in the combustion gas channel. Therefore, the chimney to be constructed has a double structure that can reduce the height by half while securing the required length of the exhaust gas flow path, and can reduce the height and the construction cost. In addition, the arrangement of the stack produces a dream pipe effect accompanied by heat transport, which can significantly reduce the temperature of the smoke outlet. There is no risk of adverse effects due to gas. In addition, regarding the sound derived from the dream pipe effect, a double pipe structure consisting of a tubular flow path and an annular flow path is used. The frequency of the generated sound can be canceled out, and silence can be achieved.
請求項 4記載の本発明では、 上記燃焼ガス流路内にフィルタを配設した。 した がって、 煤や塵灰などを吸着でき、 クリーンな排ガスが可能となる。  According to the fourth aspect of the present invention, a filter is provided in the combustion gas flow path. Therefore, soot and dust can be adsorbed, and clean exhaust gas can be obtained.
請求項 5記載の本発明では、 上記排ガスロを排ガス処理手段に連通連結した。 したがって、 クリーンな排気となるので環境汚染の心配がない。  According to the fifth aspect of the present invention, the exhaust gas device is connected to the exhaust gas processing means. Therefore, there is no need to worry about environmental pollution because the exhaust gas is clean.
請求項 6記載の本発明では、 上記排ガス口にブロワを設けた。 したがって、 燃 焼室からの排ガスを効率的に排ガス処理手段に導〈ことができる。  In the present invention according to claim 6, a blower is provided in the exhaust gas port. Therefore, the exhaust gas from the combustion chamber can be efficiently guided to the exhaust gas treatment means.
請求項 7記載の本発明では、 上記ス夕ックを多孔セラミックにより形成した。 したがって、 既存の材料をスタックとして用いることができ、 入手が容易になる とともに、 ドリームパイプ効果をより高めることができる。  According to the present invention, the sock is formed of a porous ceramic. Therefore, the existing material can be used as the stack, and the stack can be easily obtained, and the dream pipe effect can be further enhanced.
請求項 8記載の本発明では、 上記排ガス処理手段を、 光触媒を用いた水による 二酸化炭素の還元反応を生起させてメタンガスを生成するガス生成部とした。 し たがって、 大気中に二酸化炭素を排出することなく、 これをメタンガスに代える ことで、 電力源、 熱源などの外部へのエネルギー源として有効利用することがで きる。  In the present invention according to claim 8, the exhaust gas treating means is a gas generating unit that generates a methane gas by causing a reduction reaction of carbon dioxide with water using a photocatalyst. Therefore, by replacing this with methane gas without emitting carbon dioxide into the atmosphere, it can be effectively used as an external energy source such as a power source or a heat source.
請求項 9記載の本発明では、 上記ガス生成部は、 燃焼ガス収容室と、 同燃焼ガ ス収容室に連通した水槽部と、 同水槽部に連通したメタンガス精製室とを具備し 、 前記水槽部内に、 酸化チタンの表面にパラジウムを坦持させた光触媒を分散さ せた。 すなわち、 水を還元剤として利用でき、 かつ多電子の蓄積が可能な固体で ある半導体光触媒を用いることで、 二酸化炭素を効率よく還元し、 メンタンガス の生成効率を向上させることができる。  In the present invention according to claim 9, the gas generating unit includes: a combustion gas storage chamber; a water tank connected to the combustion gas storage chamber; and a methane gas purification chamber connected to the water tank. A photocatalyst in which palladium was supported on the surface of titanium oxide was dispersed in the part. In other words, by using a solid-state semiconductor photocatalyst that can utilize water as a reducing agent and that can accumulate multiple electrons, carbon dioxide can be efficiently reduced, and the efficiency of producing menthane gas can be improved.
請求項 1 0記載の本発明では、 排ガス処理手段を、 水酸化カルシウムを溶解さ せた処理液を収容した二酸化炭素回収夕ンクとし、 燃焼ガスに含まれる二酸化炭 素を炭酸カルシウムとして回収可能とした。 したがって、 燃焼により発生した二 酸化炭素を安定した状態で回収することができる。  According to the tenth aspect of the present invention, the exhaust gas treatment means is a carbon dioxide recovery tank containing a processing solution in which calcium hydroxide is dissolved, and the carbon dioxide contained in the combustion gas can be recovered as calcium carbonate. did. Therefore, carbon dioxide generated by combustion can be recovered in a stable state.
請求項 1 1記載の本発明では、 上記二酸化炭素回収タンク内を負圧に保持した 。 したがって、 燃焼ガスを効果的に二酸化炭素回収タンク内に引き込むことがで きる。 請求項 1 2記載の本発明では、 上記排ガス処理手段は、 排気されたガスを NOx の分解触媒を介して窒素と二酸化炭素とに分離し、 分離した二酸化炭素と、 水素 発生装置から発生させた水素とを反応させてメタノールを生成可能とした。 した がって、 大気中に二酸化炭素を排出することなく、 これをメタノールに代えるこ とで、 電力源、 熱源などの外部へのエネルギー源として有効利用することができ る o According to the present invention, the inside of the carbon dioxide recovery tank is maintained at a negative pressure. Therefore, the combustion gas can be effectively drawn into the carbon dioxide capture tank. In the present invention according to claim 12, the exhaust gas treatment means separates the exhausted gas into nitrogen and carbon dioxide via a NOx decomposition catalyst, and generates the separated carbon dioxide and a hydrogen generator. By reacting with hydrogen, methanol could be produced. Therefore, by replacing methanol with methanol without emitting carbon dioxide to the atmosphere, it can be effectively used as an external energy source such as a power source or a heat source.o
請求項 1 3記載の本発明では、 上記排ガス処理手段は、 排気されたガスを NOx の分解触媒を介して窒素と二酸化炭素とに分離し、 分離した二酸化炭素と、 水素 発生装置から発生させた水素とを反応させて炭素を生成可能とした。 したがって 、 大気中に二酸化炭素を排出することなく、 これを、 純粋な資源としての炭素に 代えることができる。  In the present invention according to claim 13, the exhaust gas treatment means separates the exhausted gas into nitrogen and carbon dioxide via a NOx decomposition catalyst, and generates the separated carbon dioxide and the hydrogen from the hydrogen generator. By reacting with hydrogen, carbon could be generated. Therefore, it can be replaced with pure carbon as a resource without emitting carbon dioxide into the atmosphere.
請求項 1 4記載の本発明では、 上記スタックの表面を冷却する冷却回路を具備 することとした。 したがって、排ガス温度を効率的に低下させることができる。 図面の簡単な説明  According to the present invention, a cooling circuit for cooling the surface of the stack is provided. Therefore, the exhaust gas temperature can be efficiently reduced. BRIEF DESCRIPTION OF THE FIGURES
【図 1】  【Figure 1】
第 1実施例に係る煙突構造の模式的説明図である。  FIG. 2 is a schematic explanatory view of a chimney structure according to the first embodiment.
【図 2】  【Figure 2】
第 2実施例における煙突構造の模式的説明図である。  FIG. 8 is a schematic explanatory view of a chimney structure according to a second embodiment.
【図 3】  [Figure 3]
同実施例における排ガス処理手段の変形例を示す説明図である。  It is explanatory drawing which shows the modification of the exhaust gas processing means in the embodiment.
【図 4】  [Fig. 4]
第 3実施例に係る煙突構造の模式的説明図である。  FIG. 9 is a schematic explanatory view of a chimney structure according to a third embodiment.
【図 5】  [Figure 5]
同実施例における排ガス処理手段の変形例を示す説明図である。  It is explanatory drawing which shows the modification of the exhaust gas processing means in the embodiment.
【図 6】  [Fig. 6]
第 4実施例に係る煙突構造の模式的説明図である。  FIG. 9 is a schematic explanatory view of a chimney structure according to a fourth embodiment.
【図 7】 同実施例における排ガス処理手段の変形例を示す説明図である c 【図 8】 [Fig. 7] FIG. 8 is an explanatory view showing a modified example of the exhaust gas processing means in the embodiment c.
同実施例における排ガス処理手段の変形例を示す説明図である。  It is explanatory drawing which shows the modification of the exhaust gas processing means in the embodiment.
【図 9】  [Fig. 9]
第 5実施例に係る煙突構造の模式的説明図である。  FIG. 14 is a schematic explanatory view of a chimney structure according to a fifth embodiment.
【図 1 0】  [Fig. 10]
スタック冷却手段の説明図である。 発明を実施するための最良の形態  FIG. 4 is an explanatory diagram of a stack cooling unit. BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係る煙突構造の一形態として、 基端を燃焼室に連通し、 先端に排ガス 口を設けて燃焼ガス流路を形成した管体内に、ポーラスなスタックを配設した構 成とすることができる。 管体は、 直立させた構造、 あるいは若干傾斜させた構造 であってもよい。  As one mode of the chimney structure according to the present invention, a porous stack is disposed in a pipe in which a base end communicates with a combustion chamber, an exhaust gas port is provided at a tip end, and a combustion gas flow path is formed. Can be. The tube may have an upright structure or a slightly inclined structure.
すなわち、 管体内にポーラスなスタックを配設することで、 ドリームパイプ効 果によって、 高溫の排ガスを煙突出口近傍では常温程度まで冷却することができ るようにして、 ダイ才キシンが二次生成されることを防止するようにしたもので ある。 また、 スタックにて煤や塵灰などを捕捉することも可能となる。  In other words, by arranging a porous stack inside the pipe, the high-grade exhaust gas can be cooled down to about room temperature near the smoke outlet by the dream pipe effect, and the secondary daisy toxin is generated. That is to prevent that. In addition, soot and dust can be captured by the stack.
したがって、 比較的に低い煙突とすることができ、 建設コストを大幅に低減さ せることができる。  Therefore, the chimney can be made relatively low, and the construction cost can be greatly reduced.
さらに、 かかる構造であれば、 小型焼却炉などにも採用することができ、 学校 やその他の施設内に容易に設置することができる。  Further, such a structure can be adopted for a small incinerator or the like, and can be easily installed in a school or other facilities.
また、 上記管体を逆 U字状に屈曲形成し、 同管体内に形成した燃焼ガス流路内 に前記したポ一ラスなスタックを配設することもできる。  Further, the above-mentioned tubular body may be bent in an inverted U-shape, and the porous stack described above may be disposed in a combustion gas flow passage formed in the tubular body.
すなわち、 上方高く立設していた従来の煙突の概念を崩し、 煙突となる管体を 中途で下方に屈曲させて逆 U字形状としたもので、 管体内部に配設したポーラス なスタックによる ドリームパイプ効果によって、 高溫の排ガスを常温程度まで冷 却可能とするとともに、 スタックにて煤や塵灰などを捕捉可能とすることができ る。したがって、より背丈の低い煙突とすることができ、排ガス出口となる先端部 も地上近傍に位置することになつて、 例えばゴミ焼却場などにあっては建設コス トを大幅に低減可能となる。 In other words, the concept of the chimney, which was standing upright, was broken, and the chimney pipe was bent downward in the middle to form an inverted U-shape, and a porous stack placed inside the pipe was used. The dream pipe effect enables high-temperature exhaust gas to be cooled down to about room temperature, and enables soot and dust to be captured by the stack. Therefore, a chimney with a shorter height can be provided, and the tip portion serving as an exhaust gas outlet Will also be located near the ground, which will significantly reduce construction costs, for example, in garbage incineration plants.
ところで、 上記スタックは、 多孔セラミックにより形成することができる。 す なわち、 自動車の排気管に配設される触媒などの既存の材料をス夕ックとして用 いることができるので、 入手が容易になり、 しかも、 ドリームパイプ効果をより 高めることができる。  By the way, the above-mentioned stack can be formed of porous ceramics. In other words, existing materials such as a catalyst disposed in an exhaust pipe of an automobile can be used as a sock, so that the material can be easily obtained and the dream pipe effect can be further enhanced.
また、 上記管体を逆 U字状に屈曲形成し、 同管体内に形成した燃焼ガス流路内 に前記したポーラスなスタックを配設することもできる。 かかる U字状に屈曲形 成した煙突構造とすれば、 煙突高さをより低〈することができ、 しかも、 排ガス 出口となる先端部も地上近傍に位置していることから、 建設コス卜も大幅に低減 可能となる。  Further, the above-mentioned tubular body may be bent in an inverted U-shape, and the porous stack described above may be provided in a combustion gas flow path formed in the tubular body. If this chimney structure is bent in a U-shape, the height of the chimney can be further reduced.In addition, since the tip, which is the exhaust gas outlet, is also located near the ground, construction costs can be reduced. It can be greatly reduced.
ところで、 上記スタックの表面を冷却する冷却回路を具備する構成としてもよ し、。かかる;令却回路によって、排ガス温度をより効率的に低下させることができる さらに、 排ガスロを排ガス処理手段に連通することができ、 排ガス中に含まれ る有害物質を除去した後に大気へと排出することもできる。 このとき、 排ガス処 理手段入口における排ガス温度が 3 0 0 °C程度と高い場合は、 処理手段内におい てダイ才キシンが発生するという報告もあることから、 排ガスが;令却可能な本発 明によれば、 ダイ才キシン対策にも有効となる。  By the way, a configuration having a cooling circuit for cooling the surface of the stack may be employed. Such a rejection circuit allows the exhaust gas temperature to be reduced more efficiently.Furthermore, the exhaust gas can be communicated with the exhaust gas treatment means, and the harmful substances contained in the exhaust gas are removed and then discharged to the atmosphere. You can also. At this time, if the temperature of the exhaust gas at the inlet of the exhaust gas treatment means is as high as about 300 ° C, it is reported that a large amount of dioxin is generated in the treatment means. According to Ming, it will also be effective in controlling daisies.
なお、 管体内には、 スタックの他、 煤■塵灰用の専用フィルタを設けることも できる。 配設個所としては、 必要に応じてスタックの上手 ·下手いずれか一方、 あるいは両所に設けてもよい。  In addition, a special filter for soot and dust as well as a stack can be provided in the pipe. The placement location may be located at either the top or bottom of the stack or at both locations as required.
また、 燃焼室を 1 0 0 0〜1 5 0 0 °Cでの高温燃焼が可能な構成とすれば、 近 年問題となっているダイ才キシンは燃焼室において除去することが可能である。 さらに、 上記排ガス口にブロワを設けることができる。 すなわち、 ブロワによ つて燃焼室からの排ガスを強制的に吸引して、 効率的に排ガス処理手段に導くこ とができるものである。  In addition, if the combustion chamber is configured to be capable of high-temperature combustion at 1000 to 1500 ° C, it is possible to remove dioxin, which has recently become a problem, in the combustion chamber. Further, a blower can be provided in the exhaust gas port. That is, the exhaust gas from the combustion chamber is forcibly sucked by the blower and can be efficiently guided to the exhaust gas treatment means.
また、 本発明は、 特に、 地球温暖化の原因となっている二酸化炭素を大気中に 排出することを防止する目的をも有するので、 前記排ガス処理手段を、 下記の構 成とすることができる。 In addition, the present invention particularly provides carbon dioxide, which causes global warming, to the atmosphere. Since it also has the purpose of preventing discharge, the exhaust gas treatment means can have the following configuration.
すなわち、 排ガス処理手段を、 光触媒を用いた水による二酸化炭素の還元反応 を生起させてメタンガスを生成するガス生成部とするものである。  That is, the exhaust gas processing means is a gas generating unit that generates a methane gas by causing a reduction reaction of carbon dioxide with water using a photocatalyst.
特に、 上記ガス生成部を、 燃焼ガス収容室と、 同燃焼ガス収容室に連通した水 槽部と、 同水槽部に連通したメタンガス精製室とを具備するとともに、 前記水槽 部内に、 酸化チタンの表面にパラジウムを坦持させた光触媒が分散したものとす れば、 水を還元剤として利用でき、 なおかつ多電子の蓄積が可能な固体である半 導体光触媒を用いることで、 二酸化炭素を効率よく還元し、 メンタンガスの生成 効率を向上させることができる。  In particular, the gas generating section includes a combustion gas storage chamber, a water tank communicating with the combustion gas storage chamber, and a methane gas purification chamber communicating with the water tank. If a photocatalyst carrying palladium on the surface is dispersed, water can be used as a reducing agent and a solid-state photocatalyst capable of accumulating multiple electrons can be used to efficiently reduce carbon dioxide. It can be reduced and the efficiency of menthol gas generation can be improved.
このように、 本発明によれば、 大気中に二酸化炭素を排出することなく、 これ をメタンガスに代えることで、 電力源、 熱源などの外部へのエネルギー源として 有効利用することができる。  As described above, according to the present invention, carbon dioxide can be effectively used as an external energy source such as a power source or a heat source by replacing it with methane gas without discharging carbon dioxide into the atmosphere.
以上説明してきたように、 建設される煙突は背が低く、 建設コストを抑えるこ とができるとともに、 環境汚染の心配がなくなる。 また、 煙突出口温度を大幅に 低下させることができるので、 排ガス出口が地表に近くても煤煙ゃ高溫ガスによ る悪影響のおそれもない。 なお、 上記してきたドリームパイプ効果は、 近年研究 が進められている熱音響理論によつて解析が行われている。  As explained above, the chimney to be constructed is short, which can reduce construction costs and eliminate the concern of environmental pollution. Also, since the temperature of the smoke outlet can be greatly reduced, there is no danger of soot or high-grade gas even if the exhaust gas outlet is close to the ground. The above-mentioned dream pipe effect has been analyzed by thermoacoustic theory, which has been studied in recent years.
さらに、 排ガス処理手段の好ましい他の実施形態として、 以下の構成のものと することができる。  Further, as another preferred embodiment of the exhaust gas treatment means, the following constitution can be adopted.
すなわち、 排ガス処理手段を、 水酸化カルシウムを溶解させた処理液を収容し た二酸化炭素回収タンクとし、 燃焼ガスに含まれる二酸化炭素を炭酸力ルシゥム として回収可能とするものである。  That is, the exhaust gas treatment means is a carbon dioxide recovery tank containing a treatment solution in which calcium hydroxide is dissolved, and carbon dioxide contained in the combustion gas can be recovered as carbon dioxide.
二酸化炭素は、 水酸化カルシウムと反応して、 炭酸カルシウムと水とになるこ とが知られている。 そして、 炭酸カルシウムは、 二酸化炭素の貯蔵庫的な役割を 担って、 方解石として天然に安定した形で存在するものである。  Carbon dioxide is known to react with calcium hydroxide to form calcium carbonate and water. Calcium carbonate acts as a reservoir for carbon dioxide and exists naturally in a stable form as calcite.
したがって、 燃焼により発生した二酸化炭素を、 大気に排出することなく、 安 定した状態で回収することができる。 また、 一般に、 燃焼室には脱硫装置を付設することが多いが、 炭酸カルシウム は、 この脱硫装置に用いる吸収剤として利用することができるものであり、 この 場合、 排ガス中の S O xと反応させて石膏を副産物として得ることもできる。 Therefore, the carbon dioxide generated by combustion can be recovered in a stable state without being released to the atmosphere. In general, it is often attached desulfurization apparatus in the combustion chamber, calcium carbonate, which can be used as an absorbent for use in the desulfurization apparatus, in this case, it is reacted with SO x in the exhaust gas Plaster can also be obtained as a by-product.
また、 水酸化カルシウム (消石灰) を水に溶解する場合、 低温の方が好ましい ことが分かっているが、 前述したように、 ドリームパイプ効果によって排ガス温 度が大幅に低温化されているので、 処理液中の水酸化カルシゥムの溶解量を必要 量確保することが可能である。  When calcium hydroxide (slaked lime) is dissolved in water, it is known that a lower temperature is preferable. However, as described above, the exhaust gas temperature is greatly reduced by the dream pipe effect. It is possible to ensure the required amount of calcium hydroxide dissolved in the liquid.
また、 かかる二酸化炭素回収タンクは、 必要に応じて複数個直列的に設けるこ とができる。  Further, a plurality of such carbon dioxide recovery tanks can be provided in series as needed.
さらに、 二酸化炭素回収タンク内は負圧に保持することが好ましく、 逆 U字状 の管体を通る燃焼室からの燃焼ガスを、 前記したブロワ装置などを特に備えてい なくても効果的に引き込むことができる。  Further, it is preferable that the inside of the carbon dioxide recovery tank is maintained at a negative pressure, and the combustion gas from the combustion chamber passing through the inverted U-shaped pipe is effectively drawn in even if the above-mentioned blower device or the like is not particularly provided. be able to.
また、排ガス処理手段の他の形態として、排気されたガスを ΝΟχの分解触媒を介 して窒素と二酸化炭素とに分離し、 分離した二酸化炭素と、 水素発生装置から発 生させた水素とを反応させてメ夕ノ一ルを生成可能とすることができる。  Further, as another form of the exhaust gas treatment means, the exhausted gas is separated into nitrogen and carbon dioxide through the decomposition catalyst of ΝΟχ, and the separated carbon dioxide and hydrogen generated from the hydrogen generator are separated. It can be reacted to produce a methyl alcohol.
さらには、排ガス処理手段として、排気されたガスを ΝΟχの分解触媒を介して窒 素と二酸化炭素とに分離し、 分離した二酸化炭素と、 水素発生装置から発生させ た水素とを反応させて炭素を生成可能とすることもできる。  Furthermore, as an exhaust gas treatment means, the exhaust gas is separated into nitrogen and carbon dioxide via the decomposition catalyst of ΝΟχ, and the separated carbon dioxide reacts with the hydrogen generated from the hydrogen generator to produce carbon. Can be generated.
かかる構成によれば、 大気中に二酸化炭素を排出することなく、 これを、 純粋 な資源としての炭素に代えて回収することができ、 有効利用することができる。 また、 本発明に係る煙突構造のさらなる実施形態として、 燃焼室に、 上端を開 口した内側筒体の基端を連通し、 同内側筒体を内包するように、 上端を閉塞して 筒体中途部に排カ'スロを形成した外側筒体を配設し、 前記内側筒体内部の管状流 路から同内側筒体と外側筒体との間に形成された環状流路とを連通して燃焼ガス 流路を形成し、 同燃焼ガス流路内にポーラスなスタックを配設する構成とするこ ともできる。  According to such a configuration, it is possible to recover carbon dioxide as a pure resource instead of carbon as a pure resource without emitting carbon dioxide to the atmosphere, and to utilize the carbon dioxide effectively. Further, as a further embodiment of the chimney structure according to the present invention, a base end of an inner cylindrical body having an open upper end is communicated with the combustion chamber, and the upper end is closed so as to include the inner cylindrical body. An outer cylinder having an exhaust slot formed in the middle thereof is provided, and a tubular channel inside the inner cylinder communicates with an annular channel formed between the inner cylinder and the outer cylinder. Alternatively, a combustion gas flow path may be formed to form a porous stack in the combustion gas flow path.
かかる構造によっても、 排ガス流路は必要長さを確保しつつ、 その高さを略半 減できることになり、 建設される煙突は背が低くなり、 かつ、 建設コストを抑え ることができる。 しかも、 この場合は直立タイプの煙突構造となすことができる ので、 大型煙突であっても省スペースで設置可能となる。 Even with this structure, the height of the exhaust gas passage can be reduced by almost half while securing the required length, and the chimney to be constructed is shorter and the construction cost is reduced. Can be In addition, in this case, a vertical chimney structure can be used, so that even a large chimney can be installed in a small space.
そして、 この場合においても、 前述したスタックを配設することができ、 かか るスタックを配設したことで、 熱輸送を伴なう ドリームパイプ効果を奏し、 煙突 出口温度を大幅に低下させることができ、 排ガス出口が地表に近くまで低い位置 にあっても煤煙ゃ高溫ガスによる悪影響のおそれがない。  Also in this case, the stack described above can be provided, and by providing such a stack, a dream pipe effect accompanied by heat transport is exhibited, and the temperature at the chimney outlet is significantly reduced. Even if the exhaust gas outlet is located as low as possible near the surface of the ground, there is no risk of adverse effects from soot and high-gas.
さらに、 前述したように、 煙突の排ガス口と排ガス処理手段と連通連結するこ とによって、 地球温暖化の原因となっている二酸化炭素を大気中に排出すること を防止することが可能となる。  Further, as described above, by connecting the exhaust gas outlet of the chimney to the exhaust gas treatment means, it is possible to prevent the emission of carbon dioxide, which causes global warming, into the atmosphere.
しかも、 本実施形態における煙突構造では、 内側筒体と外側筒体とによる特徴 的な二重構造としているので、 前記したドリームパイプ効果に伴い発生する騒音 を、 内側筒体の管状流路と、 内側筒体及び外側筒体間に形成される環状流路とか らそれぞれ発生する音が干渉し、 周波数が相殺されることで騒音を大幅に減少さ せることができ、 設置周辺環境を乱すことがない。  In addition, the chimney structure of the present embodiment has a characteristic double structure of the inner cylinder and the outer cylinder, so that the noise generated due to the above-described dream pipe effect is reduced by the tubular flow path of the inner cylinder, The noise generated from the annular flow path formed between the inner cylinder and the outer cylinder interferes with each other, and the frequencies are offset, so that noise can be greatly reduced and the surrounding environment can be disturbed. Absent.
以下、 本発明のより具体的な実施例を図面を参照しながら説明する。  Hereinafter, more specific embodiments of the present invention will be described with reference to the drawings.
(第 1実施例)  (First embodiment)
図 1は第 1実施例に係る煙突構造を示す模式的説明図である。  FIG. 1 is a schematic explanatory view showing a chimney structure according to the first embodiment.
図中、 1はごみ焼却炉の燃焼室であって、 直接被燃焼物を投入する焼却炉とし ての第 1燃焼室 11と、 その後二段階で最燃焼させる第 2燃焼室 12、 第 3燃焼室 13 とに区画形成しており、 各燃焼室 11 , 12, 13において燃焼溫度を制御し、 有害物質 の発生を可及的の抑制するようにしている。 図中、 14は各燃焼室 11 , 12, 13に設け たバ―ナ装置、 15は第 1燃焼室 11と第 2燃焼室 12とを連絡する連絡路である。  In the figure, reference numeral 1 denotes a combustion chamber of a refuse incinerator, which includes a first combustion chamber 11 as an incinerator for directly charging a substance to be burned, a second combustion chamber 12, which performs the most combustion in two stages, and a third combustion chamber. The combustion chamber is divided into chambers 13, and the combustion temperature is controlled in each of the combustion chambers 11, 12, 13, so that generation of harmful substances is suppressed as much as possible. In the figure, reference numeral 14 denotes a burner device provided in each of the combustion chambers 11, 12, and 13, and reference numeral 15 denotes a communication path connecting the first combustion chamber 11 and the second combustion chamber 12.
3は本発明の要部となる煙突であり、基端 30aを燃焼室 1 に連通し、先端に排ガ スロ 30bを設けて燃焼ガス流路 Rを形成した管体 30内に、ポーラスなスタックを 4 配設したことに特徴がある。  Reference numeral 3 denotes a chimney which is a main part of the present invention.The stack 30 has a base 30a communicating with the combustion chamber 1 and a discharge gas slot 30b provided at the end to form a combustion gas flow path R, and a porous stack is provided therein. The feature is that 4 are arranged.
すなわち、前記第 3燃焼室 13に管体 30の基端 30aを連通連結させて直上方へ伸延 させるとともに、排出口 30bを第 3燃焼室 13のパーナ装置 14から高さ hの位置とし ている。 管体 30の内部には、 ポーラスなスタック 4を適宜間隔をあけて複数個配設して おり、 燃焼室 1 から排出された燃焼ガスを、 スタック 4を通して管体 30内を通過 させるようにしている。 That is, the base end 30a of the pipe 30 is connected to the third combustion chamber 13 so as to extend directly upward, and the outlet 30b is positioned at a height h from the parner device 14 of the third combustion chamber 13. . A plurality of porous stacks 4 are arranged inside the pipe 30 at appropriate intervals, and the combustion gas discharged from the combustion chamber 1 is passed through the pipe 30 through the stack 4. I have.
したがって、 スタック 4によるドリ一厶パイプ効果により、 管体 30の下部から 高溫で上昇する排ガスが排出口 30b近傍では略常溫近くまで大きく低温化される ことになり、 ダイ才キシンなどが二次生成されることを防止することができる。 スタック 4は、 自動車のェキゾース卜パイプに排ガス処理用触媒として用いら れる多孔セラミックを、 煙突 3の内方に配設可能な形状に成形して用いている。 各スタツク 4の配設個数及び配設位置は、 実験的に最適個数及び最適位置を求 めて決定すればよいが、 本実施例では、 3個のスタック 4を、 第 3燃焼室 1 3のバ ーナ装置 14から h / 4の距離の間隔をあけて配設している。  Therefore, due to the dream pipe effect of the stack 4, the exhaust gas rising from the lower part of the pipe 30 at a high temperature is greatly cooled to near normal temperature in the vicinity of the discharge port 30 b, and secondary generation of dioxin is generated. Can be prevented. The stack 4 is made of porous ceramics used as an exhaust gas treatment catalyst in an exhaust pipe of an automobile and molded into a shape that can be disposed inside the chimney 3. The number and position of the stacks 4 may be determined by experimentally finding the optimum number and the optimum position.In the present embodiment, three stacks 4 are connected to the third combustion chamber 13. It is arranged at a distance of h / 4 from the banner device 14.
なお、 上記した煙突構造は、 大型のごみ焼却炉用としても、 学校や家庭で使用 可能な小型の焼却炉用としても適用可能であり、 小型のものに採用すれば、 ダイ 才キシンの発生を抑制した環境保護に適する煙突とすることができる。  The above-mentioned chimney structure can be used for both large refuse incinerators and small incinerators that can be used in schools and homes. A chimney suitable for reduced environmental protection can be provided.
なお、 上記管体 30は直立したものとしたが、 特に小型の煙突などであれば、 若 干傾斜させたりしても構わない。  Although the above-mentioned pipe 30 is made upright, it may be slightly inclined, especially in the case of a small chimney.
(第 2実施例)  (Second embodiment)
図 2は第 2実施例に係る煙突構造を示す模式的説明図である。 図中、 1はごみ 焼却炉の燃焼室であり、 脱硫装置 2を付設している。 本実施例における燃焼室 1 は、 ダイ才キシン類の発生を抑制するために、 1 2 5 0 - 1 4 5 0 °C程度の高温 燃焼が可能な構成としている。 なお、 図示しないが、 副燃焼室を設けて、 燃焼室 1では 8 0 0 °C程度の燃焼に抑え、 副燃焼室で高温燃焼させて焼却灰や飛灰を溶 融スラグ化することもできる。  FIG. 2 is a schematic explanatory view showing a chimney structure according to the second embodiment. In the figure, 1 is a combustion chamber of a refuse incinerator, to which a desulfurization unit 2 is attached. The combustion chamber 1 according to the present embodiment is configured to be capable of burning at a high temperature of about 125 ° C. to about 150 ° C. in order to suppress the generation of dyes. Although not shown, a sub-combustion chamber may be provided to suppress combustion at around 800 ° C in combustion chamber 1 and burn at high temperature in the sub-combustion chamber to convert incinerated ash and fly ash into molten slag. .
上記構成において、 本実施例で特徴となるのは、 煙突 3の管体 30を上方へ伸延 させるとともに、 中途で下方へ屈曲させた略逆 U字形状とし、 略逆 U字状をなす 管体 30の第 1垂直部 31及び第 2垂直部 32の中途内部に、 前述したポーラスなスタ ック 4をそれぞれ配設したことにある。  In the above configuration, the feature of the present embodiment is that the pipe 30 of the chimney 3 is extended upward and is bent in the middle in a substantially inverted U-shape to form a substantially inverted U-shaped pipe. That is, the porous stack 4 described above is disposed in the middle of the first vertical portion 31 and the second vertical portion 32 of the device 30, respectively.
そして、地上に近接した高さ位置となる排ガス口 30bを、後述する排ガス処理手 段に連通させている。 図中、 31は第 1垂直部、 32は第 2垂直部、 .33は屈曲部であ る。 なお、 本実施例では、 煙突 3の逆 U字形状部分の高さを約 1 5 m程度として いる。 The exhaust gas port 30b, which is located at a height close to the ground, is connected to an exhaust gas treatment It communicates with the steps. In the figure, 31 is a first vertical portion, 32 is a second vertical portion, and .33 is a bent portion. In the present embodiment, the height of the inverted U-shaped portion of the chimney 3 is about 15 m.
なお、 各スタック 4の配設位置は、 実験的に最適位置を求めて決定すればよい が、本実施例では、第 1垂直部 31内に配設するスタック 4の高さ位置 Hを、基端 3 Oaの位置から 3〜 8 mの間で定め、 第 2垂直部 32内に配設するスタツク 4の配設 位置 Dは、 屈曲部 33の上端から 3〜8 mの間で定めている。  In addition, the arrangement position of each stack 4 may be determined by experimentally finding the optimum position. In this embodiment, the height position H of the stack 4 arranged in the first vertical portion 31 is determined based on the height position H. Position 3 to 8 m from the position of end 3 Oa, Arrangement position D of stack 4 to be arranged in second vertical portion 32 is set to 3 to 8 m from the upper end of bent portion 33 .
また、 第 2垂直部 32内には、 スタック 4の下手側に、 塵灰除去用のフィルタ 5 を配設している。 なお、 このフィルタ 5の配設個所ゃ配設個数は、 適宜定めれば よく、 特に本実施例に限定されるものではない。  Further, in the second vertical portion 32, a filter 5 for removing dust and ash is provided on the lower side of the stack 4. The location of the filter 5 and the number of the filters 5 may be determined as appropriate, and are not particularly limited to the present embodiment.
煙突構造を上記構成とすることで、 燃焼室 1 から排出された燃焼ガスは、 スタ ック 4及びフィルタ 5を通りながら逆 U字状の管体 30内を通過し、 スタック 4に よる ドリームパイプ効果によって、 略常温近くまで大き〈低温化される。 このよ うに、 排ガス処理手段の入り口における排ガス溫度が、 低温化されているために 、 排ガス処理手段内でダイ才キシンなどが二次生成されることを防止することが できる。  With the above-described configuration of the chimney structure, the combustion gas discharged from the combustion chamber 1 passes through the inverted U-shaped pipe 30 while passing through the stack 4 and the filter 5, and the dream pipe formed by the stack 4 Due to the effect, the temperature is reduced to nearly the normal temperature. As described above, since the exhaust gas concentration at the entrance of the exhaust gas treatment means is lowered, it is possible to prevent the secondary production of daisy toxin and the like in the exhaust gas treatment means.
また、 スタック 4及びフィルタ 5により、 煤や塵灰が除去された一次処理が行 われた排ガスが排ガス処理手段内に流入することになり、 排ガス処理手段の処理 負荷の軽減が図れる。 特に、 スタック 4に銀や銀酸化物を坦持させると、 さらに 排ガスの一次処理効果を高めることができる。  In addition, the stack 4 and the filter 5 allow the exhaust gas subjected to the primary treatment from which soot and dust has been removed to flow into the exhaust gas processing means, thereby reducing the processing load of the exhaust gas processing means. In particular, when silver or silver oxide is carried on the stack 4, the primary treatment effect of the exhaust gas can be further enhanced.
ここで、 本実施例における排ガス処理手段の構成について説明する。  Here, the configuration of the exhaust gas processing means in the present embodiment will be described.
排ガス処理手段は、 ダイ才キシン類の有害物質の除去の他、 特に、 地球温暖化 の原因となっている二酸化炭素(C 02) が大気中に排出されるのを防止すること を目的としており、そのために、光触媒を用いた水による二酸化炭素の還元反応を 生起させてメタンガスを生成するようにしたガス生成部 6として機能させている 本実施例では、 ガス生成部 6を、 燃焼ガス収容室 60と、 同燃焼ガス収容室 60に 連通した水槽部 61と、 同水槽部 61に連通したメタンガス精製室 62とを具備する構 成とするとともに、 前記水槽部 61内に、 酸化チタンの表面にパラジウムを坦持さ せた光触媒 63を分散させたものとしている。 62aはメタンガス導出部である。 Exhaust gas treatment means, other removal of harmful substances die old Xing, in particular, for the purpose of carbon dioxide that causes global warming (C 0 2) is prevented from being discharged into the atmosphere For this purpose, the gas generating unit 6 functions as a gas generating unit 6 that generates a methane gas by inducing a reduction reaction of carbon dioxide with water using a photocatalyst. A chamber 60, a water tank 61 communicating with the combustion gas storage chamber 60, and a methane gas purification chamber 62 communicating with the water tank 61. A photocatalyst 63 in which palladium is supported on the surface of titanium oxide is dispersed in the water tank 61. 62a is a methane gas outlet.
かかる光触媒 63は、 多電子の蓄積が可能な固体である半導体光触媒なので、 次 式のように水を還元剤として利用することができ、 二酸化炭素を効率よく還元し て、 メンタンガスの生成効率を向上させることができる。 下記に、 二酸化炭素の 還元によりメタンガスを生成する反応式を示す。  Since the photocatalyst 63 is a solid-state photocatalyst capable of accumulating multiple electrons, water can be used as a reducing agent as shown in the following formula, and carbon dioxide can be efficiently reduced to improve the menthol gas generation efficiency. Can be done. The following shows the reaction formula for producing methane gas by reduction of carbon dioxide.
C 02 + 8 e— + 2 H + → C H 4 + 2 H 20 C 0 2 + 8 e— + 2 H + → CH 4 + 2 H 20
生成したメタンガスは、 発電用、 加熱用のエネルギーとして有効利用すること ができる。  The generated methane gas can be effectively used as power generation and heating energy.
このように、 本実施例によれば、 大気中に二酸化炭素を大量に排出することが なく、 地球溫暖化防止に大き〈貢献することができ、 しかも、 燃焼により発生し た二酸化炭素をメタンガスに代えることで、 電力源、 熱源などの外部へのェネル ギ一源として有効利用することができるので、 省エネルギー化が図れる。  As described above, according to the present embodiment, a large amount of carbon dioxide is not emitted into the atmosphere, which can greatly contribute to the prevention of global warming, and the carbon dioxide generated by combustion is converted into methane gas. By replacing it, energy can be effectively used as an external energy source such as a power source or a heat source, and energy can be saved.
図 3に示したものは、 発生した二酸化炭素からメタンガスを得るための排ガス 処理手段の変形例である。  FIG. 3 shows a modified example of the exhaust gas treatment means for obtaining methane gas from the generated carbon dioxide.
すなわち、 煙突 3に連通連結した排ガス処理流路 S中に、 V205- Ti 02などの NOx の分解触媒を収納した触媒室 65を設けるとともに、 その下流に、 二酸化炭素と窒 素とを液化分離する液化タンク T1と、 二酸化炭素を気化して水素と反応させる反 応夕ンク T2と、 二酸化炭素と水素との反応で発生したメタンガスを収容するガス タンク T3とを直列的に配設している。 V1は水抜きドレンである。 That is, the exhaust gas treatment flow path S which communicatively connected to the chimney 3, V 2 0 5 - together with Ti 0 2 provided catalyst chamber 65 where the cracking catalyst accommodated in the NOx such as, downstream thereof, carbon dioxide and nitrogen Liquefaction tank T1 that liquefies and separates gas, reaction tank T2 that vaporizes carbon dioxide and reacts with hydrogen, and gas tank T3 that stores methane gas generated by the reaction between carbon dioxide and hydrogen are arranged in series are doing. V1 is a drain drain.
反応タンク T2では、 Fe, Ru,Ni -Al203,Siなどを触媒として、 下記の反応によりメ タンガスが発生する。 In reaction tank T2, Fe, Ru, Ni -Al 2 0 3, Si and the like as a catalyst, methane gas is generated by the following reaction.
C〇2 + 4 H 2 → C H 4 + 2 H 20 C〇 2 + 4 H 2 → CH 4 + 2 H 2 0
また、 反応夕ンク T2内の温度や圧力は使用する触媒によって適宜設定するもの とする。  In addition, the temperature and pressure in the reaction tank T2 are appropriately set depending on the catalyst used.
66は還元剤としての尿素水を収容するとともに リレブ 66vを介して排ガス処理 流路 S中に前記尿素水を噴霧可能とした還元剤タンクであり、 前記触媒室 65の上 手側に配設している。 また、 67は前記液化タンク T1に連通連結した窒素分離タン ク、 67Vは液体窒素排出用バルブ、 68は前記反応タンク T2にバルブ V2を介して連通 させた水素発生部である。 なお、 同水素発生部 68では、 水を電気分解したり、 水 と金属との反応により水素を得るようにしている。 Reference numeral 66 denotes a reducing agent tank that accommodates urea water as a reducing agent and allows the urea water to be sprayed into the exhaust gas treatment flow path S via a relevance 66v, and is disposed on the upstream side of the catalyst chamber 65. ing. Reference numeral 67 denotes a nitrogen separation tank connected to and connected to the liquefaction tank T1. , 67V is a liquid nitrogen discharge valve, and 68 is a hydrogen generation unit which is connected to the reaction tank T2 via a valve V2. In the hydrogen generating section 68, water is electrolyzed or hydrogen is obtained by a reaction between water and a metal.
また、触媒室 65の下手側の流路及び液化タンク T1は溫度を 31 °C以下に、圧力を 7 2.8atmに保持している。  In addition, the flow path on the lower side of the catalyst chamber 65 and the liquefaction tank T1 maintain the temperature at 31 ° C. or less and the pressure at 72.8 atm.
なお、 上記構成において、 図示しないが、 煙突 3と排ガス処理流路 Sとの接続 部には、 強制的に煙突 3からの排ガスを排ガス処理流路 S内に引き込むブロワを 設けている。  In the above configuration, although not shown, a blower for forcibly drawing the exhaust gas from the chimney 3 into the exhaust gas treatment channel S is provided at a connection portion between the chimney 3 and the exhaust gas treatment channel S.
(第 3実施例)  (Third embodiment)
次に、 図 4を参照しながら本発明の第 3実施例について説明する。 これは、 煙 突 3の構成については第 2実施例と共通であるが、 排ガス処理手段によって、 排 ガスに含まれる二酸化炭素を炭酸カルシウム (C a C 03 ) として回収可能とした ものである。 Next, a third embodiment of the present invention will be described with reference to FIG. This is the configuration of the smoke collision 3 is common to the second embodiment, the exhaust gas treatment unit is obtained by enabling recovery of carbon dioxide contained in the exhaust gas as calcium carbonate (C a C 0 3) .
すなわち、 図 4に示すように、 本実施例における排ガス処理手段は、 水酸化力 ルシゥ厶 (消石灰) を溶解させた処理液 70を収容した二酸化炭素回収タンク 7と し、排ガスに含まれる二酸化炭素を炭酸カルシウム (C a C〇3 ) として回収可能 としている。 That is, as shown in FIG. 4, the exhaust gas treatment means in the present embodiment is a carbon dioxide recovery tank 7 containing a treatment liquid 70 in which hydroxylic acid (slaked lime) is dissolved, and the carbon dioxide contained in the exhaust gas. Can be recovered as calcium carbonate (C a C〇 3 ).
二酸化炭素は、 次式で示すように、 水酸化カルシウムと反応して、 炭酸カルシ ゥムと水とになることが知られている。  It is known that carbon dioxide reacts with calcium hydroxide to form calcium carbonate and water as shown by the following formula.
C〇2 + C a ( O H ) 2 → C a C 03 + H 2C〇 2 + C a (OH) 2 → C a C 0 3 + H 2
そして、 炭酸カルシウムは、 地球上で二酸化炭素の貯蔵庫的な役割を担ってお り、 方解石として天然に安定した形で存在するものである。  Calcium carbonate plays a role as a store of carbon dioxide on the earth, and naturally exists as calcite in a stable form.
したがって、 本実施例によれば、 燃焼により発生した二酸化炭素を、 大気に排 出することな〈、 安定した状態で回収することができる。  Therefore, according to this embodiment, the carbon dioxide generated by the combustion can be recovered in a stable state without being discharged to the atmosphere.
特に、 燃焼室 1 には脱硫装置 2を付設しているので、 炭酸カルシウムをこの脱 硫装置 2に用いる吸収剤として再利用することができる。 炭酸力ルシゥムを使用 した場合、排ガス中の S Oxと反応することで、副産物として石膏を得ることもで きる。 また、 水酸化カルシウムを水に溶解する場合、 低温の方が好ましいことが知ら れているが、 本実施例においても、 煙突 3はドリームパイプ効果によって排ガス 溫度が大幅に低温化されているので、 二酸化炭素回収タンク 7内の処理液 70の温 度が上昇することもなく、 処理液 70中の水酸化カルシウムの溶解量を必要量確保 することが可能である。 In particular, since the combustion chamber 1 is provided with the desulfurization device 2, calcium carbonate can be reused as an absorbent used in the desulfurization device 2. When carbonated calcium is used, gypsum can be obtained as a by-product by reacting with SO x in the exhaust gas. Also, it is known that when calcium hydroxide is dissolved in water, a lower temperature is preferable.In this embodiment, too, the chimney 3 has a significantly lower exhaust gas temperature due to the dream pipe effect. The required amount of calcium hydroxide dissolved in the treatment liquid 70 can be secured without increasing the temperature of the treatment liquid 70 in the carbon dioxide recovery tank 7.
また、 二酸化炭素回収タンク 7内は負圧に保持することが好ましく、 逆 U字状 の管体 30を通る燃焼室 1 からの排ガスを、 特にブロワ装置などがなくても効果的 に引き込むことができる。 図中、 Pは二酸化炭素回収タンク 7内を負圧にするた めに設けたバキュームポンプであり、 二酸化炭素回収タンク 7の天井壁から伸延 させた排気管 71の中途に設けている。 72は二酸化炭素回収タンク 7の底壁に形成 した炭酸カルシウム取出口、 73は同取出口 72に連通連結した開閉バルブである。 また、 図 4において一点鎖線 aで示すように、 処理量に応じて、 かかる二酸化 炭素回収夕ンク 7を複数個直列的に設けることができる。この場合、前記排気管 7 1の先端を伸延させて、 第 2のタンク 7'内に深く挿通して連結すればよい。  Further, it is preferable that the inside of the carbon dioxide recovery tank 7 is maintained at a negative pressure, so that the exhaust gas from the combustion chamber 1 passing through the inverted U-shaped pipe 30 can be effectively drawn in without a blower device or the like. it can. In the figure, P is a vacuum pump provided to make the inside of the carbon dioxide capture tank 7 a negative pressure, and is provided in the middle of an exhaust pipe 71 extending from the ceiling wall of the carbon dioxide capture tank 7. Reference numeral 72 denotes a calcium carbonate outlet formed on the bottom wall of the carbon dioxide recovery tank 7, and reference numeral 73 denotes an open / close valve connected to the outlet 72. Further, as shown by the alternate long and short dash line a in FIG. 4, a plurality of such carbon dioxide collecting tanks 7 can be provided in series according to the amount of treatment. In this case, the end of the exhaust pipe 71 may be extended, and inserted deep into the second tank 7 'for connection.
また、 図 4に示すように、 燃焼室 1の下手側に、 超臨界水を用いたダイ才キシ ン処理室 8を設けることもできる。  Further, as shown in FIG. 4, on the lower side of the combustion chamber 1, there may be provided a die-cut xin treatment chamber 8 using supercritical water.
なお、 超臨界水は、 水に一定の圧力を加えるとともに、 一定温度を加えたもの で、 液体と気体との境の状態にしたもので、 かかる状態下にダイ才キシンを含む 気体などを入れると分解して無毒化されることが知られている。  Supercritical water is obtained by applying a certain pressure to water and applying a certain temperature to the boundary between the liquid and the gas. It is known to decompose and detoxify.
第 3実施例に係る煙突構造は上記の通りであり、 本実施例においても、 第 1、 第 2実施例同様、 大気中に二酸化炭素を大量に排出することがなく、 地球温暖化 防止に大き〈貢献することができる。  The chimney structure according to the third embodiment is as described above. In this embodiment, as in the first and second embodiments, a large amount of carbon dioxide is not emitted into the atmosphere, which is great for preventing global warming. <Can contribute.
図 5に示すものは、 第 3実施例における排ガス処理手段の変形例である。  FIG. 5 shows a modification of the exhaust gas treatment means in the third embodiment.
すなわち、 煙突 3と二酸化炭素回収タンク 7との間に、 図 3で示した構成を適 用したもので、 排ガス中から二酸化炭素を分離して取出し、 これを処理液 70中に 導入して安定した炭酸カルシウムとして回収するようにしている。 したがって、 排ガス中の窒素成分などは二酸化炭素回収タンク 7内に導入されることがなく、 二酸化炭素を効率的に炭酸カルシウムへと変化させることができる。 (第 4実施例) That is, the configuration shown in Fig. 3 is applied between the chimney 3 and the carbon dioxide recovery tank 7, and carbon dioxide is separated and extracted from the exhaust gas, and is introduced into the treatment liquid 70 to be stable. Calcium carbonate is recovered. Therefore, the nitrogen component in the exhaust gas is not introduced into the carbon dioxide recovery tank 7, and the carbon dioxide can be efficiently converted into calcium carbonate. (Fourth embodiment)
次に、 図 6を参照しながら本発明の第 4実施例について説明する。 これは、 煙 突 3の構成に特徴があり、 第 1実施例では一重として直立させ、 第 2、 第 3実施 例においては逆 U字状とした管体 30を、 二重筒構造の直立状に構成している。 な お、 同煙突 3に連通連結する排ガス処理手段の構成は、 前述した第 2、 第 3実施 例で示したいずれのものを採用しても構わないし、 さらには、 後述する構成のも のやその他のものを採用してもよい。  Next, a fourth embodiment of the present invention will be described with reference to FIG. This is characterized by the structure of the chimney 3. In the first embodiment, the pipe 30 is made upright as a single body, and in the second and third embodiments, the inverted U-shaped pipe 30 is formed into an upright shape having a double cylindrical structure. It is composed. The configuration of the exhaust gas treatment means connected to the chimney 3 may be any of those shown in the second and third embodiments described above, and may be the configuration described later. Others may be adopted.
また、 本実施例における燃焼室 1は、 第 1実施例と同様に、 直接被燃焼物を投 入する焼却炉としての第 1燃焼室 1 1と、その後二段階で最燃焼させる第 2燃焼室 1 2、 第 3燃焼室 13とに区画形成している。  Further, as in the first embodiment, the combustion chamber 1 in the present embodiment includes a first combustion chamber 11 as an incinerator for directly injecting a substance to be burned, and a second combustion chamber for performing the most combustion in two stages thereafter. 12 and the third combustion chamber 13.
上記した燃焼室 1に連設した本実施例における煙突 3は、 前記燃焼室 1 に、 上 端 35aを開口した内側筒体 35の基端 35bを連通し、 同内側筒体 35を内包するように 、上端を閉塞して筒体中途部に排ガス口 36aを形成した外側筒体 36を配設し、前記 内側筒体 35内部の管状流路 R1から同内側筒体 35と外側筒体 36との間に形成された 環状流路 R2とを連通して燃焼ガス流路 Rを形成し、 同燃焼ガス流路 R内にポーラ スなスタック 4を配設している。  The chimney 3 in this embodiment connected to the combustion chamber 1 described above communicates with the combustion chamber 1 through a base end 35b of an inner cylindrical body 35 having an open upper end 35a, and includes the inner cylindrical body 35. An outer cylinder 36 having an upper end closed and an exhaust gas port 36a formed in the middle of the cylinder is disposed, and the inner cylinder 35 and the outer cylinder 36 are formed from the tubular flow path R1 inside the inner cylinder 35. The combustion gas flow path R is formed by communicating with the annular flow path R2 formed therebetween, and the porous stack 4 is disposed in the combustion gas flow path R.
そして、外側筒体 36に形成した排ガス口 36aを、第 1 、第 2実施例で説明したよ うな排ガス処理処理手段と連通連結している。 36bは外側筒体 36の閉塞された上端 部である。 なお、 5はスタック 4の下手側に配設したフィルタである。  Further, an exhaust gas port 36a formed in the outer cylindrical body 36 is connected to the exhaust gas processing means as described in the first and second embodiments. 36b is the closed upper end of the outer cylinder 36. Reference numeral 5 denotes a filter disposed on the lower side of the stack 4.
また、 スタック 4やフィルタ 5の形状は、 管状流路 R1や環状 R2の形状に合わせ 、 円柱型やドーナッツ型にそれぞれ成形している。  Further, the shape of the stack 4 and the filter 5 is formed into a cylindrical shape or a donut shape, respectively, according to the shape of the tubular flow path R1 or the annular shape R2.
上記した構成により、 本実施例においても、 燃焼ガス流路 R中にスタック 4を 配設したことで熱輸送を伴なう ドリームパイプ効果を奏し、 煙突出口温度、 すな わち、 外側筒体 36の排ガス口 36aから下流の温度を大幅に低下させることができ、 排ガス口 36aが地表に近くまで低い位置にあっても煤煙や高温ガスによる悪影響 のおそれをな〈すことができる。  With the above-described configuration, also in this embodiment, the arrangement of the stack 4 in the combustion gas flow path R produces a dream pipe effect accompanied by heat transport, and the smoke outlet temperature, that is, the outer cylindrical body The temperature downstream from the 36 exhaust gas ports 36a can be greatly reduced, and even if the exhaust gas ports 36a are located as low as possible near the surface of the earth, there is no danger of adverse effects due to soot and high-temperature gas.
しかも、 煙突 3を、 第 1 、 第 2実施例のように屈曲させることなく、 内側筒体 3 5と外側筒体 36とによる二重構造の直立タイプとして、スタック 4を配設して燃焼 ガスを低温化するために必要な燃焼ガス流路 Rの長さを確保しつつ、 この流路 R の長さに対して煙突 3の高さを略半減可能としている。 Moreover, the stack 4 is disposed as a double-structured upright type comprising the inner cylinder 35 and the outer cylinder 36 without bending the chimney 3 as in the first and second embodiments, and combustion is performed. The height of the chimney 3 can be reduced by almost half with respect to the length of the flow path R while securing the length of the combustion gas flow path R necessary for lowering the temperature of the gas.
また、 直立タイプとすることができるので、 設置スペースをいたずらに広くと る必要がない。  Also, since it can be an upright type, there is no need to unnecessarily increase the installation space.
さらに、 煙突 3を内側筒体 35と外側筒体 36とによる特徴的な二重管構造とした ことによって静穏効果を奏するものとなっている。  Further, the chimney 3 has a characteristic double pipe structure of the inner cylinder 35 and the outer cylinder 36, thereby providing a calming effect.
すなわち、 ドリームパイプ効果に伴い発生する騒音について、 二重管構造とし たことによって、 前記管状流路と環状流路とからそれぞれ発生する音が互いに干 渉し、 周波数が相殺されて騒音を大幅に減少させることができるのものである。 したがって、 本実施例に係る煙突構造であれば、 設置周辺環境を乱すおそれがな い。  That is, with respect to the noise generated due to the dream pipe effect, the double pipe structure causes the sounds generated from the tubular flow path and the annular flow path to interfere with each other, canceling out the frequencies, and greatly reducing the noise. That can be reduced. Therefore, with the chimney structure according to the present embodiment, there is no risk of disturbing the environment around the installation.
ところで、 スタック 4の配設数及びその間隔や配設位置は、 燃焼ガス流路 Rの 長さから適宜設定することができる。 そして、 スタック 4の数や配置を決定する ことによって、排ガス処理手段へ連通する排ガス口 36aの高さ位置を自由に設定で きる。 したがって、 煙突 3の設置後に排ガス処理手段となる設備を構築する場合 であっても、 同設備の設置条件や燃焼室 1の設置条件とを勘案し、 最適な位置に 排ガス口 36aを設けることが可能となる。  By the way, the number of the stacks 4 to be arranged and their intervals and arrangement positions can be appropriately set from the length of the combustion gas flow path R. By determining the number and arrangement of the stacks 4, the height position of the exhaust gas port 36a communicating with the exhaust gas treatment means can be set freely. Therefore, even when constructing equipment that will be used as an exhaust gas treatment device after installing the chimney 3, it is necessary to provide the exhaust gas port 36a at the optimum position in consideration of the installation conditions of the equipment and the installation conditions of the combustion chamber 1. It becomes possible.
このように、 本実施例における煙突構造は、 煙突 3の背を低くできるとともに 、 省スペースで設置可能となって、 建設コス卜を抑えることができるとともに、 予想される騒音などについても未然に静穏化することができる。  As described above, the chimney structure in this embodiment can reduce the height of the chimney 3 and can be installed in a small space, thereby reducing construction costs and quieting expected noise. Can be
また、 本実施例においても、 第 1 、 第 2実施例同様に、 排ガス処理手段と連通 連結することによって、 地球温暖化の原因となっている二酸化炭素を大気中に排 出することを防止することが可能である。  Also, in this embodiment, as in the first and second embodiments, by communicating and connecting with the exhaust gas treatment means, it is possible to prevent carbon dioxide, which causes global warming, from being discharged into the atmosphere. It is possible.
ところで、 排ガス処理手段としては、 上述してきたものの他、 図 7及び図 8に 示す構成のものも採用することができる。  By the way, as the exhaust gas treatment means, in addition to those described above, those having the configurations shown in FIGS. 7 and 8 can be adopted.
すなわち、図 7及び図 8に示した排ガス処理手段は、排ガス中の二酸化炭素から メタノールを生成可能としたものである。  That is, the exhaust gas treatment means shown in FIGS. 7 and 8 can generate methanol from carbon dioxide in exhaust gas.
図 7に示したものは、 基本的に図 3で示した構成からなり、 排ガス処理流路 S 中に、 V206-Ti 02などの NOxの分解触媒を収納した触媒室 65を設けるとともに、その 下流に、 二酸化炭素と窒素とを液化分離する液化タンク Ήと、 二酸化炭素を気化 して水素と反応させる反応タンク T2と、 二酸化炭素と水素との反応で発生したメ タノ一ルを収容するメタノールタンク T4とを直列的に配設している。 V3はメタノ 一ル取出バルブである。 The one shown in FIG. 7 basically has the configuration shown in FIG. During, V 2 0 with 6 -Ti 0 2 provided catalyst chamber 65 where the cracking catalyst accommodated in the NOx such as, downstream thereof, to vaporize the liquefied tank Ή for liquefying separation of carbon dioxide and nitrogen, carbon dioxide A reaction tank T2 for reacting hydrogen with hydrogen and a methanol tank T4 for containing methanol generated by the reaction between carbon dioxide and hydrogen are arranged in series. V3 is a methanol extraction valve.
上記構成により、 反応タンク T2では、 下記に示す反応によってメタンガスが発 生する。  With the above configuration, methane gas is generated in the reaction tank T2 by the following reaction.
C 02 + 3 H 2 → C H 4 + C H 30 H + H 20 C 0 2 + 3 H 2 → CH 4 + CH 3 0 H + H 20
当然ながら、 適当な触媒を用いるとともに、 反応タンク T2内の温度や圧力は使 用する触媒によって適宜設定する。  As a matter of course, an appropriate catalyst is used, and the temperature and pressure in the reaction tank T2 are appropriately set according to the catalyst used.
また、 図 8に示したものは、 図 7に示した構成によって生成した二酸化炭素を さらに一酸化炭素と水に分離し、 得られた一酸化炭素と水素とを反応させてメタ ノ一ルを得るようにしている。  In addition, the one shown in FIG. 8 further separates carbon dioxide generated by the configuration shown in FIG. 7 into carbon monoxide and water, and reacts the obtained carbon monoxide with hydrogen to produce methanol. I'm trying to get.
すなわち、 C O + 2 H 2 → C H 3 O H の反応によりメタノールを得る ものである。 この場合も、 適宜触媒を選択するとともに、 溫度ゃ圧力条件を適宜 設定しておくものとする。 図中、 T5は一酸化炭素タンクであり、 水素発生部 68に バルブ V2'を介して連通連結している。 That is, to obtain a methanol by reaction of CO + 2 H 2 → CH 3 OH. Also in this case, the catalyst should be selected appropriately, and the temperature and pressure conditions should be set appropriately. In the figure, T5 is a carbon monoxide tank, which is connected to the hydrogen generator 68 via a valve V2 '.
(第 5実施例)  (Fifth embodiment)
図 9に示したものは、 排ガス処理手段により純粋の力一ボンを得るようにした もので、 基本的には図 3で示した構成としている。 Bは煙突 3からの排ガスを排 ガス処理流路 S内に強制的に引き込むブロワである。  FIG. 9 shows a configuration in which pure exhaust gas is obtained by means of an exhaust gas treatment means, and is basically configured as shown in FIG. B is a blower that forcibly draws exhaust gas from chimney 3 into exhaust gas treatment channel S.
すなわち、 煙突 3に連通連結した排ガス処理流路 S中に、 V205- Ti 02などの NOx の分解触媒を収納した触媒室 65を設けるとともに、 その下流に、 二酸化炭素と窒 素とを液化分離する液化タンク T1と、 二酸化炭素を気化して水素と反応させる反 応タンク T2と、 二酸化炭素と水素との反応で発生したカーボンを収容するカーボ ンタンク T6とを直列的に配設している。 That is, the exhaust gas treatment flow path S which communicatively connected to the chimney 3, V 2 0 5 - together with Ti 0 2 provided catalyst chamber 65 where the cracking catalyst accommodated in the NOx such as, downstream thereof, carbon dioxide and nitrogen A liquefaction tank T1 for liquefaction and separation of carbon dioxide, a reaction tank T2 for vaporizing carbon dioxide and reacting with hydrogen, and a carbon tank T6 for containing carbon generated by the reaction between carbon dioxide and hydrogen are arranged in series. ing.
そして、 C 02 + 2 H 2 → C + 2 H 2 0 の反応により力一ボンを得 るようにしている。 なお、 この場合についても、 適宜触媒を選択するとともに、 溫度ゃ圧力条件を適宜設定しておく。 Then, a reaction of C 0 2 +2 H 2 → C + 2 H 2 0 is performed to obtain a force. In this case, too, the catalyst is appropriately selected, The temperature and pressure conditions are set appropriately.
また、 本実施例では、 煙突 3を第 4実施例同様に内側筒体 35と外側筒体 36とに よる二重管構造とし、 さらに、 スタック 4を強制的に;令却するスタック冷却手段 として;令却回路 Fを設けている。  Further, in this embodiment, the chimney 3 has a double pipe structure composed of an inner cylindrical body 35 and an outer cylindrical body 36 as in the fourth embodiment, and the stack 4 is used as a stack cooling means for forcing; ; Rejection circuit F is provided.
冷却回路 Fは、 図 1 0に示すように、 冷却水を貯溜するとともに強制循環可能 なポンプなどを具備する冷却タンク F1と循環流路を構成する配管部 F2とからなり 、 同配管部 F2に使用するパイプとしては、 熱伝導率の高い部材を用いることが好 ましく、 本実施例では銅管を採用している。  As shown in FIG. 10, the cooling circuit F includes a cooling tank F1 having a pump for storing cooling water and being capable of forcibly circulating, and a piping portion F2 forming a circulation flow path. As the pipe to be used, it is preferable to use a member having a high thermal conductivity. In this embodiment, a copper pipe is used.
そして、 配管部 F2の中途を、 スタック 4の表面に渦巻き状に接するように成形 している。 F2'は接触部である。  Then, the middle of the pipe portion F2 is formed so as to spirally contact the surface of the stack 4. F2 'is a contact part.
また、同接触部 F2'とスタック 4との間には、銅板などの熱伝導率の高いを介設 することができる。  Further, a high heat conductivity material such as a copper plate can be interposed between the contact portion F2 'and the stack 4.
なお、 本実施例では、 冷却タンク F1を煙突 3の外部に設けているが、 外観上の 見栄えを向上させるために、 冷却タンク F1を充分に断熱可能な構成として、 内側 筒体 35と外側筒体 36との間、 すなわち煙突 3の内部に配設してもよい。  In the present embodiment, the cooling tank F1 is provided outside the chimney 3, but in order to improve the external appearance, the cooling tank F1 is configured to be sufficiently insulated, and the inner cylinder 35 and the outer cylinder It may be arranged between the body 36, that is, inside the chimney 3.
以上、 本発明を上記各実施例を通して説明したが、 例えば、 排ガス処理手段な どは必ず設置しなければならないものではなく、 また、 その構成は、 必ずしも上 記各実施例に限定されるものではない。  As described above, the present invention has been described through the above embodiments.For example, exhaust gas treatment means and the like do not necessarily need to be installed, and the configuration is not necessarily limited to the above embodiments. Absent.
また、 上記したスタック 4を強制;令却する冷却回路 Fは、 前述した第 1〜第 4 実施例に適用することもできる。 産業上の利用可能性  Further, the cooling circuit F that forcibly rejects the stack 4 described above can also be applied to the above-described first to fourth embodiments. Industrial applicability
本発明は、 以上説明したような形態で実施され、 以下に記載されるような効果 を奏する。  The present invention is implemented in the form as described above, and has the following effects.
( 1 )請求項 1記載の本発明では、基端を燃焼室に連通し、先端に排ガス口を設け て燃焼ガス流路を形成した管体内に、ポ一ラスなスタックを配設したことにより、 熱輸送を伴なう ドリームパイプ効果を奏し、 煙突出口溫度を大幅に低下させるこ とができ、 ダイ才キシンが二次生成されることを防止することができる。 したが つて、 小型焼却炉などにも好適に採用することができるとともに、 大型焼却炉で あっても、 建設される煙突の背を低く し、 かつ、 建設コス 卜を抑えることができ o (1) In the present invention according to claim 1, the porous stack is disposed in a pipe in which the base end communicates with the combustion chamber, the exhaust gas port is provided at the front end, and the combustion gas flow path is formed. In addition, a dream pipe effect accompanied by heat transport can be achieved, the chimney exit angle can be greatly reduced, and secondary production of daisy toxin can be prevented. But Therefore, it can be suitably used for small incinerators, etc., and even for large incinerators, the height of the chimney to be constructed can be reduced and the construction cost can be reduced.o
( 2)請求項 2記載の本発明では、上記管体を逆 U字状に屈曲形成し、同管体内に 形成した燃焼ガス流路内にポーラスなスタックを配設したことにより、 煙突の背 をより低く して建設コス卜を抑えることができるとともに、 排ガス出口が地表に 近くなつても、 やはりスタックを配設したことで熱輸送を伴なう ドリームパイプ 効果を奏することから、 煙突出口温度を大幅に低下させることができ、 煤煙や高 温ガスによる悪影響のおそれがない。  (2) In the present invention described in claim 2, the pipe body is bent in an inverted U-shape, and a porous stack is disposed in a combustion gas flow path formed in the pipe body, so that the stack The construction cost can be reduced by lowering the construction cost, and even if the exhaust gas outlet is close to the surface of the ground, the stack arrangement also produces a dream pipe effect that involves heat transport. Can be significantly reduced, and there is no risk of adverse effects due to smoke and hot gases.
(3)請求項 3記載の本発明では、燃焼室に、上端を開口した内側筒体の基端を連 通し、 同内側筒体を内包するように、 上端を閉塞して筒体中途部に排ガス口を形 成した外側筒体を配設し、 前記内側筒体内部の管状流路から同内側筒体と外側筒 体との間に形成された環状流路とを連通して燃焼ガス流路を形成し、 同燃焼ガス 流路内にポ一ラスなスタックを配設したことにより、 建設される煙突は、 排ガス 流路は必要長さを確保しつつ、 その高さを半減できる二重管構造となり、 背が低 くなるとともに、 省スペースで建設可能なので、 建設コストを抑えることができ る。 また、 スタックを配設したことで熱輸送を伴なう ドリームパイプ効果を奏し 、 煙突出口温度を大幅に低下させることができるので、 排ガス出口が低い位置に あっても煤煙や高温ガスによる悪影響のおそれがな〈なる。 しかも、 ドリームパ イブ効果によって派生する騒音も二重管構造としたことから解消できる。  (3) According to the present invention as set forth in claim 3, the base end of the inner cylindrical body having an open upper end is communicated with the combustion chamber, and the upper end is closed so that the inner cylindrical body is included. An outer cylinder forming an exhaust gas port is provided, and a combustion gas flow is formed by communicating a tubular channel inside the inner cylinder with an annular channel formed between the inner cylinder and the outer cylinder. By forming a channel and arranging a porous stack in the combustion gas flow path, the chimney to be constructed has a double length that can reduce the height by half while ensuring the required length of the exhaust gas flow path Since it has a tube structure, it is short and can be constructed in a small space, construction costs can be reduced. In addition, the arrangement of the stack produces a dream pipe effect accompanied by heat transport, so that the temperature of the smoke outlet can be greatly reduced. There is no fear. In addition, the noise generated by the dream pipe effect can be eliminated because of the double pipe structure.
(4)請求項 4記載の本発明では、上記燃焼ガス流路内にフィルタを配設したこと により、 煤や塵灰などを吸着でき、 クリーンな排ガスが可能となる。  (4) According to the present invention, since a filter is provided in the combustion gas flow path, soot, dust and the like can be adsorbed, and clean exhaust gas can be obtained.
( 5)請求項 5記載の本発明では、上記排ガス口を排ガス処理手段に連通連結した ことにより、 クリーンな排気となるので環境汚染の心配がな〈なる。  (5) In the present invention described in claim 5, since the exhaust gas port is connected to the exhaust gas processing means, the exhaust gas is clean, so that there is no concern about environmental pollution.
( 6)請求項 6記載の本発明では、上記排ガス口にブロワを設けたことにより、燃 焼室からの排ガスをより効率的に排ガス処理手段に導〈ことができる。  (6) According to the present invention, by providing a blower at the exhaust gas port, the exhaust gas from the combustion chamber can be more efficiently guided to the exhaust gas treatment means.
( 7)請求項 7記載の本発明では、上記スタックを多孔セラミックにより形成した ことにより、 既存の材料をスタックとして用いることができ、 入手が容易になつ てコストダウンを図ることができるとともに、 ドリームパイプ効果をより高める ことができる。 (7) In the present invention described in claim 7, since the above-mentioned stack is formed of porous ceramic, existing materials can be used as the stack, which facilitates the acquisition. Cost can be reduced, and the dream pipe effect can be further enhanced.
(8)請求項 8記載の本発明では、上記排ガス処理手段を、光触媒を用いた水によ る二酸化炭素の還元反応を生起させてメタンガスを生成するガス生成部としたこ とにより、 大気中に二酸化炭素を排出することなく、 これをメタンガスに代える ことで、 電力源、 熱源などの外部へのエネルギー源として有効利用することがで きる。  (8) According to the present invention as set forth in claim 8, the exhaust gas treatment means is a gas generating unit that generates a methane gas by causing a reduction reaction of carbon dioxide with water using a photocatalyst, thereby reducing By replacing this with methane gas without emitting carbon dioxide to the outside, it can be effectively used as an external energy source such as a power source or heat source.
( 9)請求項 9記載の本発明では、上記ガス生成部は、燃焼ガス収容室と、同燃焼 ガス収容室に連通した水槽部と、 同水槽部に連通したメタンガス精製室とを具備 し、 前記水槽部内に、 酸化チタンの表面にパラジウムを坦持させた光触媒を分散 させたことにより、 水を還元剤として利用でき、 かつ多電子の蓄積が可能な固体 である半導体光触媒を用いることで、 二酸化炭素を効率よく還元し、 メンタンガ スの生成効率を向上させることができる。  (9) In the present invention according to claim 9, the gas generating unit includes a combustion gas storage chamber, a water tank communicating with the combustion gas storage chamber, and a methane gas purification chamber communicating with the water tank. By dispersing a photocatalyst in which palladium is supported on the surface of titanium oxide in the water tank, water can be used as a reducing agent, and by using a solid-state semiconductor photocatalyst capable of accumulating multiple electrons, Carbon dioxide can be efficiently reduced, and the efficiency of menthol gas generation can be improved.
( 10)請求項 1 0記載の本発明では、 排ガス処理手段を、 水酸化カルシウムを溶 解させた処理液を収容した二酸化炭素回収タンクとし、 燃焼ガスに含まれる二酸 化炭素を炭酸カルシウムとして回収可能としたことにより、 燃焼により発生した 二酸化炭素を安定した状態で回収することができる。  (10) In the present invention as set forth in claim 10, the exhaust gas treatment means is a carbon dioxide recovery tank containing a treatment liquid in which calcium hydroxide is dissolved, and the carbon dioxide contained in the combustion gas is calcium carbonate. By making it possible to recover, carbon dioxide generated by combustion can be recovered in a stable state.
( 11 )請求項 1 1記載の本発明では、 上記二酸化炭素回収タンク内を負圧に保持 したことにより、 燃焼ガスを効果的に二酸化炭素回収タンク内に引き込むことが でき、 処理能力を高めることができる。  (11) In the present invention described in claim 11, by maintaining the inside of the carbon dioxide recovery tank at a negative pressure, the combustion gas can be effectively drawn into the carbon dioxide capture tank, and the processing capacity can be increased. Can be.
( 12)請求項 1 2記載の本発明では、上記排ガス処理手段は、排気されたガスを N Oxの分解触媒を介して窒素と二酸化炭素とに分離し、 分離した二酸化炭素と、 水 素発生装置から発生させた水素とを反応させてメタノールを生成可能としたこと により、 大気中に二酸化炭素を排出することなく、 これをメタノールに代えるこ とで、 電力源、 熱源などの外部へのエネルギー源として有効利用することができ る  (12) In the present invention as set forth in claim 12, the exhaust gas treatment means separates the exhausted gas into nitrogen and carbon dioxide via a NOx decomposition catalyst, and separates the separated carbon dioxide and hydrogen By reacting with the hydrogen generated from the device to produce methanol, instead of emitting carbon dioxide to the atmosphere, it can be replaced with methanol to provide energy to external sources such as power sources and heat sources. Can be used effectively as a source
( 13 )請求項 1 3記載の本発明では、上記排ガス処理手段は、排気されたガスを N Oxの分解触媒を介して窒素と二酸化炭素とに分離し、 分離した二酸化炭素と、 水 素発生装置から発生させた水素とを反応させて炭素を生成可能としたことにより 、 大気中に二酸化炭素を排出することなく、 これを、 純粋な資源としての炭素に 代えることができる。 (13) In the present invention according to claim 13, the exhaust gas treatment means separates the exhausted gas into nitrogen and carbon dioxide via a NOx decomposition catalyst, and separates the separated carbon dioxide and water. By making it possible to generate carbon by reacting with hydrogen generated from the element generator, it is possible to substitute carbon as a pure resource without discharging carbon dioxide into the atmosphere.
( 14 )請求項 1 4記載の本発明では、 上記スタックの表面を冷却する;令却回路を 具備することとしたので、排ガス溫度を効率的に低下させることができる。  (14) In the present invention described in claim 14, the surface of the stack is cooled; since a rejection circuit is provided, the exhaust gas concentration can be reduced efficiently.

Claims

請 求 の 範 囲 The scope of the claims
基端を燃焼室に連通し、 先端に排ガス口を設けて燃焼ガス流路を形成した 管体内に、ポ一ラスなスタックを配設したことを特徴とする煙突構造。 管体を逆 U字状に屈曲形成し、 同管体内に形成した燃焼ガス流路内にポー ラスなスタックを配設したことを特徴とする請求項 1記載の煙突構造。 燃焼室に、 上端を開口した内側筒体の基端を連通し、 同内側筒体を内包す るように、 上端を閉塞して筒体中途部に排ガス口を形成した外側筒体を配設 し、 前記内側筒体内部の管状流路から同内側筒体と外側筒体との間に形成さ れた環状流路とを連通して燃焼ガス流路を形成し、 同燃焼ガス流路内にポー ラスなスタックを配設したことを特徴とする煙突構造。 燃焼ガス流路内にフィル夕を配設したことを特徴とする請求項 1〜 3のい ずれか 1項に記載の煙突構造。  A chimney structure in which a porous stack is disposed inside a tube having a base end communicating with a combustion chamber and an exhaust gas port provided at a front end to form a combustion gas flow path. 2. The chimney structure according to claim 1, wherein the pipe is bent in an inverted U-shape, and a porous stack is disposed in a combustion gas flow path formed in the pipe. An outer cylinder with an upper end closed and an exhaust gas port formed in the middle of the cylinder is provided so that the base end of the inner cylinder with an open upper end communicates with the combustion chamber and the inner cylinder is included. And forming a combustion gas flow path by communicating from the tubular flow path inside the inner cylindrical body with an annular flow path formed between the inner cylindrical body and the outer cylindrical body. A chimney structure characterized by a porous stack. 4. The chimney structure according to claim 1, wherein a filter is provided in the combustion gas flow path.
排ガスロを排ガス処理手段に連通連結したことを特徴とする請求項 1〜4 のいずれか 1項に記載の煙突構造。 排ガス口にブロワを設けたことを特徴とする請求項 1〜5のいずれか 1項 に記載の煙突構造。 スタックを多孔セラミックにより形成したことを特徴とする請求項 1〜6 のいずれか 1項に記載の煙突構造。 排ガス処理手段を、 光触媒を用いた水による二酸化炭素の還元反応を生起 させてメタンガスを生成するガス生成部としたことを特徴とする請求項 5〜 7のいずれか 1項に記載の煙突構造。 ガス生成部は、 燃焼ガス収容室と、 同燃焼ガス収容室に連通した水槽部と 、 同水槽部に連通したメタンガス精製室とを具備し、 前記水槽部内に、 酸化 チタンの表面にパラジウムを坦持させた光触媒を分散させたことを特徴とす る請求項 8記載の煙突構造。 排ガス処理手段を、 水酸化カルシウムを溶解させた処理液を収容した二酸 化炭素回収タンクとし、 燃焼ガスに含まれる二酸化炭素を炭酸力ルシゥムと して回収可能としたことを特徴とする請求項 5〜7のいずれか 1項に記載の 煙突構造。 二酸化炭素回収タンク内を負圧に保持したことを特徴とする請求項 1 0記 載の煙突構造。 排ガス処理手段は、排気されたガスを NOxの分解触媒を介して窒素と二酸化 炭素とに分離し、 分離した二酸化炭素と、 水素発生装置から発生させた水素 とを反応させてメタノールを生成可能としたことを特徴とする請求項 5 ~ 7 のいずれか 1項に記載の煙突構造。 排ガス処理手段は、排気されたガスを NOxの分解触媒を介して窒素と二酸化 炭素とに分離し、 分離した二酸化炭素と、 水素発生装置から発生させた水素 とを反応させて炭素を生成可能としたことを特徴とする請求項 5〜7のいず れか 1項に記載の煙突構造。 スタックの表面を冷却する冷却回路を具備することを特徴とする請求項 1 〜 1 3のいずれか 1項に記載の煙突構造。 The chimney structure according to any one of claims 1 to 4, wherein the exhaust gas is connected to the exhaust gas processing means. The chimney structure according to any one of claims 1 to 5, wherein a blower is provided in the exhaust gas port. The chimney structure according to any one of claims 1 to 6, wherein the stack is formed of a porous ceramic. The chimney structure according to any one of claims 5 to 7, wherein the exhaust gas treatment means is a gas generation unit that generates a methane gas by causing a reduction reaction of carbon dioxide with water using a photocatalyst. The gas generating unit includes a combustion gas storage chamber, a water tank communicating with the combustion gas storage chamber, and a methane gas purification chamber communicating with the water tank. In the water tank, palladium is supported on the surface of titanium oxide. 9. The chimney structure according to claim 8, wherein the carried photocatalyst is dispersed. The exhaust gas treatment means is a carbon dioxide recovery tank containing a treatment solution in which calcium hydroxide is dissolved, and carbon dioxide contained in the combustion gas can be recovered as carbon dioxide. The chimney structure according to any one of items 5 to 7. The chimney structure according to claim 10, wherein the inside of the carbon dioxide recovery tank is maintained at a negative pressure. The exhaust gas treatment means separates the exhausted gas into nitrogen and carbon dioxide via a NOx decomposition catalyst, and reacts the separated carbon dioxide with the hydrogen generated from the hydrogen generator to produce methanol. The chimney structure according to any one of claims 5 to 7, wherein: The exhaust gas treatment means separates the exhausted gas into nitrogen and carbon dioxide via a NOx decomposition catalyst, and reacts the separated carbon dioxide with the hydrogen generated from the hydrogen generator to produce carbon. The chimney structure according to any one of claims 5 to 7, characterized in that: The chimney structure according to any one of claims 1 to 13, further comprising a cooling circuit for cooling a surface of the stack.
PCT/JP2000/008146 1999-11-19 2000-11-17 Stack structure WO2001038788A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP11/330600 1999-11-19
JP33060099 1999-11-19
JP2000079042 2000-03-21
JP2000-79042 2000-03-21
JP2000-203546 2000-07-05
JP2000203546 2000-07-05

Publications (1)

Publication Number Publication Date
WO2001038788A1 true WO2001038788A1 (en) 2001-05-31

Family

ID=27340428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008146 WO2001038788A1 (en) 1999-11-19 2000-11-17 Stack structure

Country Status (2)

Country Link
CN (1) CN1391642A (en)
WO (1) WO2001038788A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021171731A1 (en) * 2020-02-28 2021-09-02 荏原環境プラント株式会社 Device and method for treating feed material

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9266051B2 (en) 2005-07-28 2016-02-23 Carbon Sink, Inc. Removal of carbon dioxide from air
CN102441319A (en) 2006-03-08 2012-05-09 环球研究技术有限公司 Air collector with functionalized ion exchange membrane for capturing ambient CO2
US7708806B2 (en) 2006-10-02 2010-05-04 Global Research Technologies, Llc Method and apparatus for extracting carbon dioxide from air
WO2008131132A1 (en) 2007-04-17 2008-10-30 Global Research Technologies, Llc Capture of carbon dioxide (co2) from air
CA2715874C (en) 2008-02-19 2019-06-25 Global Research Technologies, Llc Extraction and sequestration of carbon dioxide
CN102233233A (en) * 2010-09-12 2011-11-09 任安煜 Core technology for environmentally-friendly device of conversion system of chimney top cap recycled waste gas discharged under waste gas directional locking
CA3091524A1 (en) 2018-02-16 2019-08-22 Carbon Sink, Inc. Fluidized bed extractors for capture of co2 from ambient air
CN108295574A (en) * 2018-03-13 2018-07-20 刘仲明 Capture CO2Power generation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463115A (en) * 1990-06-28 1992-02-28 Hitachi Ltd Photoreducing electrode and reducing apparatus for gaseous co2
JPH04346816A (en) * 1991-05-21 1992-12-02 Mitsubishi Heavy Ind Ltd Treatment of exhaust gas
JPH1137449A (en) * 1997-07-14 1999-02-12 Kubota Corp Waste gas temperature reduction tower
JPH11193918A (en) * 1997-12-29 1999-07-21 Tokyo Gas Co Ltd Combustor having means for adsorbing/oxidizing unburnt components

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463115A (en) * 1990-06-28 1992-02-28 Hitachi Ltd Photoreducing electrode and reducing apparatus for gaseous co2
JPH04346816A (en) * 1991-05-21 1992-12-02 Mitsubishi Heavy Ind Ltd Treatment of exhaust gas
JPH1137449A (en) * 1997-07-14 1999-02-12 Kubota Corp Waste gas temperature reduction tower
JPH11193918A (en) * 1997-12-29 1999-07-21 Tokyo Gas Co Ltd Combustor having means for adsorbing/oxidizing unburnt components

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021171731A1 (en) * 2020-02-28 2021-09-02 荏原環境プラント株式会社 Device and method for treating feed material

Also Published As

Publication number Publication date
CN1391642A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
US7498009B2 (en) Controlled spectrum ultraviolet radiation pollution control process
CN206045771U (en) Organic exhaust gas total system
KR100947067B1 (en) Complex dry reactor for collecting exhaust gas of incinerator and combustor
JP5961514B2 (en) Fly ash circulation type exhaust gas treatment method
JP2010048456A (en) Exhaust gas treatment apparatus and exhaust gas treatment method
CN206398724U (en) A kind of refuse pyrolysis carbide furnace and gas cleaning integrated apparatus
KR20090077777A (en) System for generating brown gas and uses thereof
WO2001038788A1 (en) Stack structure
CN109631052A (en) A kind of steady and continuous pyrolytic incineration method of clinical waste
JP2005028216A (en) Gas cleaning apparatus and flue gas desulfurization system
CN110030570A (en) Based on the integrated refuse burning system of the selective catalytic denitrification process plasma and method
CN109827176A (en) A kind of rubbish integrated equipment for wastewater treatment
CN211358340U (en) Novel integrated form flue gas processing system
JP3980226B2 (en) Exhaust gas treatment method and apparatus
KR100418810B1 (en) Super Performance Cremator by Oxygen Enriched Gas
CN213599378U (en) Domestic refuse incineration treatment equipment
CN210004402U (en) integrated treatment equipment for kinds of garbage
CN202061547U (en) UV (ultraviolet) photolysis purifying equipment for high-concentration foul waste gas in oilfields
KR100921977B1 (en) A purification apparatus of cremator combustion gas
RU91409U1 (en) INSTALLATION FOR THERMAL PROCESSING OF SOLID DOMESTIC WASTE
CN204275786U (en) A kind of flue gas desulfurization and denitrification device
CN208660803U (en) A kind of garbage incinerating power plant exhaust treatment system
JPH11128741A (en) Catalyst, method of using catalyst, waste gas treatment facility and method of treating waste gas
KR100763975B1 (en) Device for purifying exhausted gas
JPH10253040A (en) Melting facility of waste disposal residue

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN IN JP KR MX US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2001 540304

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 10130440

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 008158193

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/00521/DE

Country of ref document: IN