WO2001031079A1 - Metal plated steel wire having excellent resistance to corrosion and workability and method for production thereof - Google Patents

Metal plated steel wire having excellent resistance to corrosion and workability and method for production thereof

Info

Publication number
WO2001031079A1
WO2001031079A1 PCT/JP2000/007470 JP0007470W WO0131079A1 WO 2001031079 A1 WO2001031079 A1 WO 2001031079A1 JP 0007470 W JP0007470 W JP 0007470W WO 0131079 A1 WO0131079 A1 WO 0131079A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
steel wire
alloy
corrosion resistance
less
Prior art date
Application number
PCT/JP2000/007470
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Sugimaru
Satoru Tanaka
Seiki Nishida
Akira Takahashi
Atsuhiko Yoshie
Kazumi Nishimura
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to US09/869,115 priority Critical patent/US6579615B1/en
Priority to CA002358442A priority patent/CA2358442C/en
Priority to EP00970071A priority patent/EP1158069B1/en
Priority to JP2001533211A priority patent/JP3704311B2/en
Priority to DE60029428T priority patent/DE60029428T2/en
Publication of WO2001031079A1 publication Critical patent/WO2001031079A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/38Wires; Tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/923Physical dimension
    • Y10S428/924Composite
    • Y10S428/926Thickness of individual layer specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/939Molten or fused coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2904Staple length fiber

Definitions

  • the present invention relates to a steel wire having improved corrosion resistance of a steel wire used by being exposed outdoors such as seawall construction and a fish net.
  • a zinc plating steel wire or a zinc-aluminum alloy plating steel wire having higher corrosion resistance is used as the plating steel wire.
  • This zinc-aluminum alloy machined steel wire is generally treated by cleaning the steel wire by cleaning, degreasing, etc., followed by flux treatment, and then zinc as the first stage. Then, as the second stage, Zn-containing A1 with an added amount of 10%, or the melting force in an A1 alloy bath, or directly with Zn-containing A1 with an added amount of 10% It is manufactured by plating in an A1 alloy bath, then pulling up vertically from the plating bath, cooling, and winding.
  • the zinc-aluminum alloy steel wire has good corrosion resistance, but there is a method of increasing the thickness of the plating to further increase the corrosion resistance.
  • One of the methods to secure the required plating thickness is to increase the moving speed (linear speed) of the steel wire, pull the steel wire from the plating bath at a high speed, and use the viscosity of the molten plating alloy. There is a method of increasing the amount of a metal alloy adhered to the steel wire.
  • this method has a limit in terms of plating equipment because the speed is increased and the plating thickness is likely to be non-uniform in a section perpendicular to the longitudinal direction of the plating steel wire. Therefore, the corrosion resistance is not sufficient for zinc plating using the current plating equipment and for molten plating using the Zn-A1 alloy. Nevertheless, there is a strong demand for a longer life of the plating steel wire, and there is a problem that the demand cannot be completely satisfied.
  • a Zn-Al-Mg alloy-based plating composition having high corrosion resistance in which Mg is added to a plating bath has been proposed in JP-A-10-226865.
  • the plating method based on the plating composition is based on the premise that the steel sheet is thinned. When this method is applied to a thick plating steel wire represented by a car mat, the plating of the plating steel wire is performed. At the time, there is a problem that cracks occur in the plating layer.
  • Japanese Patent Application Laid-Open No. 07-207421 discloses a method for thickening a Zn—Al—Mg alloy plating. However, when this method is directly applied to a steel wire plating, However, there is a problem that the Fe—Zn alloy layer becomes thick, and the alloy layer is cracked or peeled off when machining the plated steel wire. Disclosure of the invention
  • the present invention provides a steel wire coated with a hot-dip zinc alloy, which is excellent in corrosion resistance and has a metal layer and / or a metal alloy when processing the metal wire. It is an object of the present invention to provide a plated copper wire having excellent workability in which a layer is not cracked or peeled off, and a method for manufacturing the same.
  • the present inventors have conducted various studies on means for solving the above-mentioned problems, and as a result, have reached the present invention.
  • the gist of the present invention is as follows.
  • the average composition of the plating alloy is the weight. /. A 1: 4 to 20%, Mg: 0.8 to 5%, the balance is Zn, and the Fe-Zn alloy layer is less than 20 / xm at the interface between metal and base iron
  • the average composition of the metal alloy is: (2) The steel wire according to the above (1), which has a high corrosion resistance and excellent workability.
  • the microstructure of the metal alloy layer on the outside of the Fe—Zn alloy layer includes the following: A 1—Zn as the main component, a single phase of Zn, or a Mg—Zn alloy phase. (3) and Zn / Al / Zn-Mg ternary eutectic phase, respectively, which are present in any one of the above (1) to (5). Steel wire with high corrosion resistance and excellent workability.
  • the structure of the metal alloy layer outside the Fe—Zn alloy layer includes an ⁇ phase, Al single phase or a Mg—Zn alloy phase mainly containing Al_Zn. Consisting of three phases and ZnZA1ZZn-Mg ternary eutectic phase, and the volume fraction of i3 phase is 20% or less.
  • the structure of the metal alloy layer outside the Fe-Zn alloy layer is The steel wire according to any one of the above (1) to (5), which has a granular structure, and has high corrosion resistance and excellent workability.
  • composition of the steel wire in terms of weight% is: C: 0.02 to 0.25%, Si: 1% or less, Mn: 0.6% or less, P: 0 0.4% or less, S: 0.04% or less.
  • the molten zinc plating as the first stage is a molten zinc plating containing, by weight%, A1: 3% or less and Mg: 0.5% or less.
  • the plating steel wire is removed from the plating bath.
  • the portion to be lifted is purged with nitrogen gas to prevent oxidation of the bath surface and the plating steel wire, and has high corrosion resistance and workability as described in (11) or (12) above. Excellent method of manufacturing steel wire.
  • the molten zinc plating as the first stage is applied for a plating bath immersion time of 20 seconds or less, and then the molten zinc alloy plating as the second stage is immersed in the plating bath.
  • the plating steel wire is formed from the plating alloy.
  • composition of the steel wire in terms of% by weight is as follows: C: 0.02 to 0.25%, Si: 1% or less, Mn: 0.6% or less, P: 0 . 0
  • FIG. 1 is a diagram showing the relationship between the amount of Mg added and the index relating to the amount of dross generated on the plating bath surface when Mg is added to the Zn-10% A1 alloy.
  • A1- l g alloy main Tsu key is a diagram showing a relationship between cracks number during the test winding and the alloy layer thickness.
  • FIG. 3 is a diagram comparing the surface cracks (number) of the winding steel wire in the winding test depending on the presence or absence of airtightness with respect to the plating steel wire having the plating alloy composition of Zn-10% Al_3% Mg.
  • FIG. 4 is a diagram showing the relationship between the plating bath immersion time and the thickness of the Fe—Zn alloy layer.
  • the average composition of the plating alloy is 0 / weight.
  • A1 has the effect of improving corrosion resistance, but has no effect when added in less than 4%, and does not have the effect of preventing Mg from being oxidized in the plating bath. Also, if A 1 is added in excess of 20%, the resulting metal alloy becomes hard and brittle, and processing becomes impossible. Therefore, the range of the amount of A 1 in the alloy is 4 to 20%. In the case of steel wire plating, the thickness is desirably set to 9 to 14% for thickening. A stable plating layer can be obtained in the range of the amount of A 1.
  • Mg produces the corrosion product of the metal uniformly, and the corrosion product containing Mg has the effect of hindering the progress of corrosion.Therefore, the Mg improves the corrosion resistance of the metal alloy. Has the effect of doing However, if the addition is less than 0.8%, the effect of improving corrosion resistance cannot be obtained. On the other hand, if it is added in excess of 5%, an oxide is likely to be formed on the plating bath surface, and a large amount of dross is generated, making operation difficult.
  • Figure 1 shows the relationship between the amount of Mg added and the index related to the amount of dross generated on the plating bath surface when Mg was added to the Zn-10% A1 alloy.
  • the conditions other than the amount of Mg added are the same.
  • the range of Mg content is set to 0.8 to 5% to achieve both corrosion resistance and dross generation.
  • An alloy layer mainly composed of Fe-Zn is formed at the interface between the metal and the ground iron, but if the alloy layer is thick, the alloy layer may crack, or the interface between the alloy layer and the ground iron, or However, the interface between the alloy layer and the plating tends to crack.
  • Fig. 2 shows the relationship between the alloy layer thickness and the number of cracks during the winding test in the case of a Zn-10% A1 %% Mg alloy alloy. From this figure, it can be seen that when the thickness of the plating alloy layer exceeds 20 ⁇ , the cracks increase and the plating is not practical. As described above, since the upper limit of the thickness of the metal alloy layer that does not impair workability is 20 m, the thickness of the Fe—Zn alloy layer is 20 ix m or less. It is preferable that the thickness of the alloy layer is thinner because the corrosion resistance is originally lower than that of the plated layer.
  • the addition of a small amount of Na is effective in suppressing the formation of dross.
  • the suppression of the formation of the dross improves the surface of the plating and improves the yield of the plating alloy. Therefore, a small amount of Na is added to the plating alloy, but if it exceeds 0.1%, the oxidation of Na occurs. Therefore, the range of the Na amount is set to 0.001 to 0.1%.
  • the addition of Ti is also effective in suppressing dross generation, and the effective range of the Ti amount is 0.01 to 0.1%.
  • the range of the Mg content is 1% or more.
  • the grain structure of the plating alloy layer outside the Fe-Zn-based alloy layer existing at the plating-iron interface is changed to a granular structure. It can be.
  • a granular crystal structure is formed, each structure formed in the metal becomes granular, suppressing propagation of cracks and improving workability.
  • Fig. 3 shows a comparison of surface cracks (number) during a winding test with and without gas-tightness on a plating steel wire having a plating alloy composition of Zn-10% A1-3% Mg. If not cut off, cracks on the surface may occur beyond the permissible limit.
  • an inert gas such as argon or helium in addition to nitrogen, but from the viewpoint of cost, nitrogen is also superior.
  • a zinc-based molten plating is applied for a plating bath immersion time of 20 seconds or less, and then As a second step, a molten zinc alloy is applied with a plating bath immersion time of 20 seconds or less.
  • Figure 4 shows that the molten zinc wire (immersion time: 20 seconds) at the first stage formed the Fe—Zn alloy layer with a thickness of 15 ⁇ , and the bath composition Zn-10% Al
  • the figure shows the relationship between the plating bath immersion time and the Fe-Zn alloy layer thickness when a molten subcomplex alloy of -l% M (second stage) was applied. From this figure, it can be seen that in the second-stage molten zinc alloy metal, the thickness of the alloy layer is small when the metal alloy bath immersion time is 20 seconds or less, and the alloy layer thickness is 20 ⁇ or less. It turns out that
  • the cooling start temperature must be higher than the melting point of the plating alloy. Further, when cooling water is applied to a low-viscosity, high-temperature molten metal, the surface of the metal becomes rough. Therefore, the upper limit of the cooling start temperature is set to the melting point of the metal alloy + 20 ° C.
  • Mn has the effect of increasing the toughness of the steel as well as the effect of increasing the strength. If Mn exceeds 0.6%, the strength is too high, so the upper limit is set to 0.6%.
  • the surface of the hot-dip galvanized steel wire or hot-dip zinc alloy-coated steel wire obtained according to the present invention is formed of at least one high-pressure material selected from vinyl chloride, polyethylene, polyurethane, and fluororesin.
  • Table 1 shows the composition of the plating, the composition and thickness of the alloy layer, the thickness of the plating outer layer, the structure and the phase volume ratio, the corrosion resistance (loss of corrosion), the workability (evaluation of the winding test), and the dross generation of the plating bath. The relationship is shown below.
  • Table 2 shows the relationship between the corrosion immersion time, the cooling method and the cooling start temperature, and the corrosion resistance and workability of the second stage molten zinc alloy for Zn-10% Al-3% Mg. It is a thing. When the conditions relating to the plating are within the ranges specified in the present invention, good results are shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Abstract

A metal plated steel wire having excellent resistance to corrosion and excellent workability, wherein the alloy for plating the wire comprises on average, in wt %, 4 to 20 % of Al and 0.8 to 5 % of Mg, and optionally, one or more of 2 % or less of Si, 0.001 to 0.1 % of Na and 0.01 to 0.1 % of Ti, the balance of the alloy being Zn, and a Fe-Zn alloy layer is present in the interface between a plating layer and a base iron body in a thickness of 20 νm or less; a method for producing the metal plated steel wire which comprises the first step of subjecting a steel wire to a hot dip galvanizing using Zn as a main metal for plating and then the second step of subjecting the resultant wire to a hot dip galvanizing using the above alloy, wherein the time of dipping the wire in a plating bath is 20 sec or less and the portion of the wire which is being pulled up from the bath is purged by nitrogen.

Description

明 細 書 高耐食性を有し加工性に優れたメ ツキ鋼線とその製造方法 技術分野  Description Steel wire with high corrosion resistance and excellent workability and its manufacturing method
本発明は、 護岸工事、 魚網等の屋外に暴露して使用する鋼線の耐 食性を高めたメ ツキ鋼線に関するものである。 背景技術  TECHNICAL FIELD The present invention relates to a steel wire having improved corrosion resistance of a steel wire used by being exposed outdoors such as seawall construction and a fish net. Background art
メ ツキ鋼線と して、 亜鉛メ ツキ鋼線や、 これよ り も耐食性にすぐ れた亜鉛一アルミニウム合金メ ツキ鋼線が使用されている。 この亜 鉛一アルミニウム合金メ ッキ鋼線は、 一般に、 鋼線を洗浄、 脱脂等 によ り清浄化処理し、 次いで、 フラ ックス処理を行った後、 第 1段 と して亜鉛を主体とする溶融メ ツキを施し、 次いで、 第 2 段と して A 1添加量 1 0 %の Zn— A 1合金浴にて溶融メ ツキする力 、 または、 直 接 A 1添加量 10 %の Zn— A1合金浴でメ ツキし、 次いで、 メ ツキ浴から 垂直に引き上げて、 冷却後、 巻き取る こ とで製造されている。  As the plating steel wire, a zinc plating steel wire or a zinc-aluminum alloy plating steel wire having higher corrosion resistance is used. This zinc-aluminum alloy machined steel wire is generally treated by cleaning the steel wire by cleaning, degreasing, etc., followed by flux treatment, and then zinc as the first stage. Then, as the second stage, Zn-containing A1 with an added amount of 10%, or the melting force in an A1 alloy bath, or directly with Zn-containing A1 with an added amount of 10% It is manufactured by plating in an A1 alloy bath, then pulling up vertically from the plating bath, cooling, and winding.
この亜鉛—アルミニゥム合金メ ッキ鋼線は、 耐食性が良好なもの であるが、 その耐食性をよ り高くするために、 メ ツキ厚を厚くする という方法がある。 所要のメ ツキ厚を確保するための方法のひとつ に、 鋼線の移動速度 (線速) を上げて鋼線をメ ツキ浴から高速で引 き上げ、 溶融メ ッキ合金の粘性によ り該鋼線に付着するメ ッキ合金 量を増やすという方法がある。  The zinc-aluminum alloy steel wire has good corrosion resistance, but there is a method of increasing the thickness of the plating to further increase the corrosion resistance. One of the methods to secure the required plating thickness is to increase the moving speed (linear speed) of the steel wire, pull the steel wire from the plating bath at a high speed, and use the viscosity of the molten plating alloy. There is a method of increasing the amount of a metal alloy adhered to the steel wire.
しかし、 この方法では、 高速化によ り 、 メ ツキ鋼線の長手方向に 直角の断面においてメ ツキ厚みの不均一が生じやすく なるので、 メ ツキ設備上、 限界がある。 そのため、 現行のメ ツキ設備による亜鉛 メ ツキや、 Zn - A 1 合金による溶融メ ツキにおいては、 耐食性が十分 とはいえず、 メ ツキ鋼線の長寿命化の要望が強い今日、 該要望を完 全に満足させ得ないという問題がある。 However, this method has a limit in terms of plating equipment because the speed is increased and the plating thickness is likely to be non-uniform in a section perpendicular to the longitudinal direction of the plating steel wire. Therefore, the corrosion resistance is not sufficient for zinc plating using the current plating equipment and for molten plating using the Zn-A1 alloy. Nevertheless, there is a strong demand for a longer life of the plating steel wire, and there is a problem that the demand cannot be completely satisfied.
この問題に対処すベく 、 メ ッキ浴中に M g を添加した耐食性が高 い Zn-Al - Mg合金系メ ツキ組成が、 特開平 10- 226865 号公報に提案さ れているが、 このメ ツキ組成に基づく メ ツキ方法は、 鋼板用の薄目 付けを前提と しており 、 この方法を、 かごマッ トに代表される厚メ ツキ鋼線に適用した場合、 メ ツキ鋼線の加工時、 メ ツキ層に割れが 発生する という問題がある。  In order to address this problem, a Zn-Al-Mg alloy-based plating composition having high corrosion resistance in which Mg is added to a plating bath has been proposed in JP-A-10-226865. The plating method based on the plating composition is based on the premise that the steel sheet is thinned. When this method is applied to a thick plating steel wire represented by a car mat, the plating of the plating steel wire is performed. At the time, there is a problem that cracks occur in the plating layer.
また、 特開平 07- 207421 号公報には、 Z n— A l — M g合金メ ッ キを厚目付する方法が記載されているが、 この方法をそのまま鋼線 のメ ツキに適用した場合には、 F e — Z n合金層が厚く なり、 メ ッ キ鋼線の加工時に該合金層が割れたり、 剥離を起こすという問題が ある。 発明の開示  Japanese Patent Application Laid-Open No. 07-207421 discloses a method for thickening a Zn—Al—Mg alloy plating. However, when this method is directly applied to a steel wire plating, However, there is a problem that the Fe—Zn alloy layer becomes thick, and the alloy layer is cracked or peeled off when machining the plated steel wire. Disclosure of the invention
本発明は、 上記問題に鑑み、 溶融亜鉛合金メ ッキを施したメ ツキ 鋼線において、 耐食性に優れる と と もに、 該メ ツキ鋼線の加工時、 メ ツキ層および/またはメ ツキ合金層に、 割れや剥離が起きない加 ェ性に優れるメ ツキ銅線と、 その製造方法を提供するこ とを課題 ( 目的) とする。  In view of the above-mentioned problems, the present invention provides a steel wire coated with a hot-dip zinc alloy, which is excellent in corrosion resistance and has a metal layer and / or a metal alloy when processing the metal wire. It is an object of the present invention to provide a plated copper wire having excellent workability in which a layer is not cracked or peeled off, and a method for manufacturing the same.
本発明者らは、 上記課題を解決する手段につき、 種々検討した結 果、 本発明に至ったもので、 その要旨は、 以下のとお り である。  The present inventors have conducted various studies on means for solving the above-mentioned problems, and as a result, have reached the present invention. The gist of the present invention is as follows.
( 1 ) メ ツキ鋼線において、 メ ツキ合金の平均組成が、 重量。 /。で 、 A 1 : 4 〜 2 0 %、 M g : 0 . 8 〜 5 %、 残部 Z nからなり、 か つ、 メ ツキ—地鉄界面に F e — Z n合金層が 2 0 /x m以下存在する こ とを特徴とする高耐食性を有し加工性に優れたメ ツキ鋼線。  (1) In the plating steel wire, the average composition of the plating alloy is the weight. /. A 1: 4 to 20%, Mg: 0.8 to 5%, the balance is Zn, and the Fe-Zn alloy layer is less than 20 / xm at the interface between metal and base iron A special steel wire with high corrosion resistance and excellent workability characterized by its existence.
( 2 ) 前記メ ツキ合金の平均組成が、 さ らに、 重量%で、 S i : 2 %以下を含んでなるこ と を特徴とする前記 ( 1 ) に記載の高耐食 性を有し加工性に優れたメ ツキ鋼線。 (2) The average composition of the metal alloy is: (2) The steel wire according to the above (1), which has a high corrosion resistance and excellent workability.
( 3 ) 前記メ ツキ合金の平均組成が、 さ らに、 重量%で、 N a : 0. 0 0 1〜 0. 1 %を含んでなる こ とを特徴とする前記 ( 1 ) ま たは ( 2 ) に記載の高耐食性を有し加工性に優れたメ ツキ鋼線。  (3) The above (1) or (1), wherein the average composition of the metal alloy further comprises Na: 0.001 to 0.1% by weight. (2) A plating steel wire having high corrosion resistance and excellent workability as described in (2).
( 4 ) 前記メ ツキ合金の平均組成が、 さ らに、 重量%で、 T i : 0. 0 1〜 0. 1 %を含んでなるこ とを特徴とする前記 ( 1 ) 〜 ( 3 ) のいずれかに記載の高耐食性を有し加工性に優れたメ ツキ鋼線  (4) The above-mentioned (1) to (3), wherein the average composition of the metal alloy further includes Ti: 0.01 to 0.1% by weight. Metal steel wire with high corrosion resistance and excellent workability according to any of the above
( 5 ) 前記 F e — Z n合金層中に、 A 1 : 4 %以上、 M g : 1 % 以上が含まれているこ とを特徴とする前記 ( 1 ) 〜 ( 4 ) のいずれ かに記載の高耐食性を有し加工性に優れたメ ツキ鋼線。 (5) The method according to any one of (1) to (4), wherein the Fe—Zn alloy layer contains A1: 4% or more and Mg: 1% or more. A plated steel wire having the described high corrosion resistance and excellent workability.
( 6 ) 前記 F e — Z n合金層の外側にあるメ ッキ合金層の組織に 、 A 1 — Z nを主成分とする ひ相、 Z n単相または M g— Z n合金 相からなる 3相、 および、 Z n /A l / Z n— M g三元共晶相のそ れぞれが存在するこ とを特徴とする前記 ( 1 ) 〜 ( 5 ) のいずれか に記載の高耐食性を有し加工性に優れたメ ツキ鋼線。  (6) The microstructure of the metal alloy layer on the outside of the Fe—Zn alloy layer includes the following: A 1—Zn as the main component, a single phase of Zn, or a Mg—Zn alloy phase. (3) and Zn / Al / Zn-Mg ternary eutectic phase, respectively, which are present in any one of the above (1) to (5). Steel wire with high corrosion resistance and excellent workability.
( 7 ) 前記 F e — Z n合金層の外側にあるメ ツキ合金層の組織に 、 A l _ Z nを主成分とする α相、 Z n単相または M g— Z n合金 相カゝらなる ;3相、 および、 Z n Z A 1 Z Z n— M g三元共晶相のそ れぞれが存在し、 かつ、 i3相の体積率が 2 0 %以下である こ とを特 徴とする前記 ( 1 ) 〜 ( 6 ) のいずれかに記載の高耐食性を有し加 ェ性に優れたメ ッキ鋼線。  (7) The structure of the metal alloy layer outside the Fe—Zn alloy layer includes an α phase, Al single phase or a Mg—Zn alloy phase mainly containing Al_Zn. Consisting of three phases and ZnZA1ZZn-Mg ternary eutectic phase, and the volume fraction of i3 phase is 20% or less. The steel wire according to any one of the above (1) to (6), which has high corrosion resistance and excellent workability.
( 8 ) 前記 F e 一 Z n合金層の外側にあるメ ツキ合金層の組織が デン ドライ ト組織である こ と を特徴とする前記 ( 1 ) 〜 ( 5 ) のい ずれかに記載の高耐食性を有し加工性に優れたメ ッキ鋼線。  (8) The height according to any of (1) to (5), wherein the structure of the metal alloy layer outside the Fe-Zn alloy layer is a dendrite structure. MEC steel wire with excellent corrosion resistance and workability.
( 9 ) 前記 F e 一 Z n合金層の外側にあるメ ツキ合金層の組織が 粒状晶組織であるこ とを特徴とする前記 ( 1 ) 〜 ( 5 ) のいずれか に記載の高耐食性を有し加工性に優れたメ ツキ鋼線。 (9) The structure of the metal alloy layer outside the Fe-Zn alloy layer is The steel wire according to any one of the above (1) to (5), which has a granular structure, and has high corrosion resistance and excellent workability.
( 1 0 ) 前記メ ツキ鋼線の成分組成が、 重量%で、 C : 0. 0 2 〜 0. 2 5 %、 S i : 1 %以下、 M n : 0. 6 %以下、 P : 0. 0 4 %以下、 S : 0. 0 4 %以下を含んでなるこ と を特徴とする前記 (10) The composition of the steel wire in terms of weight% is: C: 0.02 to 0.25%, Si: 1% or less, Mn: 0.6% or less, P: 0 0.4% or less, S: 0.04% or less.
( 1 ) ~ ( 9 ) のいずれかに記載の高耐食性を有し加工性に優れた メ ツキ鋼線。 (1) The steel wire according to any one of the above (9), which has high corrosion resistance and excellent workability.
( 1 1 ) メ ツキ鋼線の製造方法において、 鋼線に、 第 1段と して 、 亜鉛を主体とする溶融亜鉛メ ツキを施し、 次いで、 第 2 段と して 、 前記 ( 1 ) 〜 ( 4 ) のいずれかに規定する平均組成を有する溶融 亜鉛合金メ ツキを施すこ とを特徴とする高耐食性を有し加工性に優 れたメ ツキ鋼線の製造方法。  (11) In the method for producing a plated steel wire, the steel wire is subjected to molten zinc plating mainly composed of zinc as a first step, and then to the second step, as described in the above (1) to (5). (4) A method for producing a steel wire having high corrosion resistance and excellent workability, characterized by applying a galvanized zinc alloy having an average composition specified in any of (4).
( 1 2 ) 前記第 1段と しての溶融亜鉛メ ツキが、 重量%で、 A 1 : 3 %以下、 M g : 0. 5 %以下を含む溶融亜鉛メ ッキであるこ と を特徴とする前記 ( 1 1 ) に記載の高耐食性を有し加工性に優れた メ ッキ鋼線の製造方法。  (12) The molten zinc plating as the first stage is a molten zinc plating containing, by weight%, A1: 3% or less and Mg: 0.5% or less. (11) The method for producing a MEC steel wire according to the above (11), which has high corrosion resistance and excellent workability.
( 1 3 ) 前記第 1段と しての溶融亜鉛メ ツキを施し、 次いで、 前 記第 2 段と しての溶融亜鉛合金メ ッキを施す工程において、 メ ツキ 鋼線をメ ツキ浴から引き上げる部分を窒素ガスによ りパージし、 浴 表面およびメ ツキ鋼線の酸化を防止するこ とを特徴とする前記 ( 1 1 ) または ( 1 2 ) に記載の高耐食性を有し加工性に優れたメ ツキ 鋼線の製造方法。  (13) In the step of applying the molten zinc plating as the first stage, and then applying the molten zinc alloy plating as the second stage, the plating steel wire is removed from the plating bath. The portion to be lifted is purged with nitrogen gas to prevent oxidation of the bath surface and the plating steel wire, and has high corrosion resistance and workability as described in (11) or (12) above. Excellent method of manufacturing steel wire.
( 1 4 ) 前記第 1段と しての溶融亜鉛メ ツキをメ ツキ浴浸漬時間 2 0秒以下で施し、 次いで、 前記第 2 段と しての溶融亜鉛合金メ ッ キをメ ツキ浴浸漬時間 2 0秒以下で施すこ とを特徴とする前記 ( 1 1 ) 〜 ( 1 3 ) のいずれかに記載の高耐食性を有し加工性に優れた メ ツキ鋼線の製造方法。 ( 1 5 ) 前記第 1段と しての溶融亜鉛メ ツキを施し、 次いで、 前 記第 2 段と しての溶融亜鉛合金メ ッキを施す工程において、 メ ツキ 鋼線をメ ツキ合金から引き上げた直後に、 水スプレー、 気水噴霧、 または、 水流による直接水冷によ り、 メ ツキ合金を凝固させるこ と を特徴とする前記 ( 1 1 ) 〜 ( 1 4 ) のいずれかに記載の高耐食性 を有し加工性に優れたメ ツキ鋼線の製造方法。 (14) The molten zinc plating as the first stage is applied for a plating bath immersion time of 20 seconds or less, and then the molten zinc alloy plating as the second stage is immersed in the plating bath. The method according to any one of the above (11) to (13), wherein the method is carried out for a time of not more than 20 seconds, and the method is for producing a steel wire having high corrosion resistance and excellent workability. (15) In the step of applying the molten zinc plating as the first stage, and then applying the molten zinc alloy plating as the second stage, the plating steel wire is formed from the plating alloy. The method according to any one of (11) to (14) above, wherein the metal alloy is solidified by water spray, air-water spray, or direct water cooling by a water stream immediately after the lifting. This is a method for producing a steel wire with high corrosion resistance and excellent workability.
( 1 6 ) 前記第 1段と しての溶融亜鉛メ ツキを施し、 次いで、 前 記第 2 段と しての溶融亜鉛合金メ ッキを施す工程において、 メ ツキ 鋼線を冷却する際の冷却開始温度を、 メ ッキ合金の融点から該融点 + 2 0 °Cの範囲とするこ とを特徴とする前記 ( 1 1 ) 〜 ( 1 5 ) の いずれかに記載の高耐食性を有し加工性に優れたメ ツキ鋼線の製造 方法。  (16) In the step of applying the molten zinc plating as the first step, and then applying the molten zinc alloy plating as the second step, cooling the molten steel wire is performed. The high corrosion resistance described in any one of (11) to (15) above, wherein the cooling start temperature is in a range from the melting point of the mec alloy to the melting point + 20 ° C. A method for manufacturing metal steel wire with excellent workability.
( 1 7 ) 前記メ ツキ鋼線の成分組成が、 重量%で、 C : 0. 0 2 〜 0. 2 5 %、 S i : 1 %以下、 M n : 0. 6 %以下、 P : 0. 0 (17) The composition of the steel wire in terms of% by weight is as follows: C: 0.02 to 0.25%, Si: 1% or less, Mn: 0.6% or less, P: 0 . 0
4 %以下、 S : 0. 0 4 %以下を含んでなるこ とを特徴とする前記 ( 1 1 ) 〜 ( 1 6 ) のいずれかに記載の高耐食性を有し加工性に優 れたメ ツキ鋼線の製造方法。 図面の簡単な説明 The method according to any one of the above (11) to (16), which is characterized by containing 4% or less and S: 0.04% or less. A method of manufacturing Tsuki steel wire. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 Zn- 10%A1合金に M g を添加した場合における、 M g添加 量と メ ツキ浴表面に発生した ドロス発生量に係る指標との関係を示 す図である。  FIG. 1 is a diagram showing the relationship between the amount of Mg added and the index relating to the amount of dross generated on the plating bath surface when Mg is added to the Zn-10% A1 alloy.
図 2は、 Zn- 10%A1- l g 合金メ ッキの場合における、 合金層厚み と巻き付け試験時の割れ本数の関係を示す図である。 2, in the case of Zn- 10% A1- l g alloy main Tsu key is a diagram showing a relationship between cracks number during the test winding and the alloy layer thickness.
図 3は、 Zn- 10%Al_3%Mg のメ ツキ合金組成のメ ツキ鋼線について 、 断気の有無で巻き付け試験時の表面割れ (個数) を比較する図で ある。 図 4は、 メ ツキ浴浸漬時間と F e — Z n合金層の厚みとの関係を 示す図である。 発明を実施するための最良の形態 FIG. 3 is a diagram comparing the surface cracks (number) of the winding steel wire in the winding test depending on the presence or absence of airtightness with respect to the plating steel wire having the plating alloy composition of Zn-10% Al_3% Mg. FIG. 4 is a diagram showing the relationship between the plating bath immersion time and the thickness of the Fe—Zn alloy layer. BEST MODE FOR CARRYING OUT THE INVENTION
まず、 本発明のメ ツキ鋼線について、 詳細に説明する。  First, the steel wire of the present invention will be described in detail.
本発明のメ ツキ鋼線において、 メ ツキ合金の平均組成は、 重量0 /。 で、 A 1 : 4 - 2 0 % , M g : 0. 8〜 5 %、 残部 Z n と している In the plating steel wire of the present invention, the average composition of the plating alloy is 0 / weight. A 1: 4-20%, Mg: 0.8-5%, and the rest Zn
A 1 は、 耐食性を高める効果があるが、 4 %未満の添加では効果 がなく 、 また、 メ ツキ浴中における M gの酸化防止効果が得られな い。 また、 A 1 を 2 0 %を越えて添加する と、 形成されるメ ツキ合 金が硬く脆く な り、 このため加工が行えなく なる。 そのため、 メ ッ キ合金中の A 1 量の範囲は 4 ~ 2 0 %とする。 鋼線のメ ツキの場合 、 厚目付を行う ため、 望ま しく は 9〜 1 4 %とする。 この A 1 量の 範囲で、 安定したメ ツキ層を得るこ とができる。 A1 has the effect of improving corrosion resistance, but has no effect when added in less than 4%, and does not have the effect of preventing Mg from being oxidized in the plating bath. Also, if A 1 is added in excess of 20%, the resulting metal alloy becomes hard and brittle, and processing becomes impossible. Therefore, the range of the amount of A 1 in the alloy is 4 to 20%. In the case of steel wire plating, the thickness is desirably set to 9 to 14% for thickening. A stable plating layer can be obtained in the range of the amount of A 1.
M gは、 メ ツキの腐食生成物を均一に生成し、 この M gを含有す る腐食生成物には腐食の進行を妨げる作用があるので、 M gには、 メ ツキ合金の耐食性を向上する効果がある。 しかし、 0. 8 %未満 の添加では耐食性向上の効果を得るこ とができない。 一方、 5 %を 越えて添加する と、 メ ツキ浴表面に酸化物が生成しやすく な り 、 ド ロ スを大量に発生して操業が困難になる。  Mg produces the corrosion product of the metal uniformly, and the corrosion product containing Mg has the effect of hindering the progress of corrosion.Therefore, the Mg improves the corrosion resistance of the metal alloy. Has the effect of doing However, if the addition is less than 0.8%, the effect of improving corrosion resistance cannot be obtained. On the other hand, if it is added in excess of 5%, an oxide is likely to be formed on the plating bath surface, and a large amount of dross is generated, making operation difficult.
図 1 は、 Zn- 10%A1合金に M g を添加した場合における、 M g添加 量と メ ツキ浴表面に発生した ドロス発生量に係る指標との関係を示 したものである。 M g添加量以外の条件は同じである。 M g添加量 が 5 %を越える と ドロス発生量が多く な り 、 ドロス除去の頻度が高 く な り 、 操業が困難になった。 この結果に基づき、 耐食性と ドロ ス 発生量の両立のため、 M g量の範囲は 0. 8〜 5 %とする。 メ ツキ一地鉄界面には、 F e 一 Z n を主体とする合金層が形成さ れるが、 この合金層が厚い場合には、 合金層が割れたり、 合金層と 地鉄の界面、 または、 合金層とメ ツキの界面が割れやすく なる。 Figure 1 shows the relationship between the amount of Mg added and the index related to the amount of dross generated on the plating bath surface when Mg was added to the Zn-10% A1 alloy. The conditions other than the amount of Mg added are the same. When the amount of Mg added exceeded 5%, the amount of dross increased, the frequency of dross removal increased, and operation became difficult. Based on these results, the range of Mg content is set to 0.8 to 5% to achieve both corrosion resistance and dross generation. An alloy layer mainly composed of Fe-Zn is formed at the interface between the metal and the ground iron, but if the alloy layer is thick, the alloy layer may crack, or the interface between the alloy layer and the ground iron, or However, the interface between the alloy layer and the plating tends to crack.
図 2は、 Zn- 10%A卜 l %Mg 合金メ ッキの場合における、 合金層厚み と巻き付け試験時の割れ本数の関係を示したものである。 この図か ら、 メ ツキ合金層の厚みが 2 0 μ πιを越える と割れが多く なり、 メ ツキと しては実用に耐えないこ とが解る。 このよ う に、 メ ツキ合金 層において加工性を損なわない厚さの上限が 2 0 mであるので、 F e — Z n合金層の厚みは 2 0 ix m以下とする。 なお、 この合金層 は本来めつき層よ り耐食性が劣るために厚みが薄い方が望ま しく 、 Fig. 2 shows the relationship between the alloy layer thickness and the number of cracks during the winding test in the case of a Zn-10% A1 %% Mg alloy alloy. From this figure, it can be seen that when the thickness of the plating alloy layer exceeds 20 μπι, the cracks increase and the plating is not practical. As described above, since the upper limit of the thickness of the metal alloy layer that does not impair workability is 20 m, the thickness of the Fe—Zn alloy layer is 20 ix m or less. It is preferable that the thickness of the alloy layer is thinner because the corrosion resistance is originally lower than that of the plated layer.
1 0 μ m以下が望ま しい。 10 μm or less is desirable.
また、 上記メ ツキ層には、 さ らに耐食性を上げるために S i を添 加するこ と も有効である。 S i の添加は、 A 1 添加量が多い程、 有 効である。 本発明のメ ツキ鋼線において、 A 1 添加量が最大値の 2 0 %の場合、 S i の効果が得られる最大量が 2 %であるので、 S i 量の範囲は 2 %以下と した。  It is also effective to add Si to the above-mentioned plating layer in order to further increase the corrosion resistance. The addition of Si is more effective as the amount of A 1 added is larger. In the plating steel wire of the present invention, when the amount of A1 added is 20% of the maximum value, the maximum amount at which the effect of Si can be obtained is 2%, so the range of the Si amount is set to 2% or less. .
さ らに、 メ ツキを施す際、 メ ツキ浴表面には ドロ スが生成するが 、 微量の N a添加が ド ロ ス生成抑制に有効である。 ド ロ ス生成の抑 制によ り 、 メ ツキ表面の改善が図られ、 メ ツキ合金の歩留ま り 向上 の効果も得られる。 それ故、 メ ツキ合金に微量の N a を添加するが 、 0 . 1 %を越える と N a の酸化が起きるので、 N a量の範囲を 0 . 0 0 1 〜 0 . 1 %とする。 また、 ドロ ス生成の抑制には、 T i の 添加も効果があ り 、 その有効な T i 量の範囲は 0 . 0 1 〜 0 . 1 % である。  Further, when plating is applied, dross is generated on the plating bath surface, but the addition of a small amount of Na is effective in suppressing the formation of dross. The suppression of the formation of the dross improves the surface of the plating and improves the yield of the plating alloy. Therefore, a small amount of Na is added to the plating alloy, but if it exceeds 0.1%, the oxidation of Na occurs. Therefore, the range of the Na amount is set to 0.001 to 0.1%. The addition of Ti is also effective in suppressing dross generation, and the effective range of the Ti amount is 0.01 to 0.1%.
上記の S i 、 N a 、 T i の他にもアンチモン、 ミ ッ シュ メ タノレな どを添加する と メ ッキの表面性状を改善する効果が得られる。  Addition of antimony, misc metal, etc., in addition to the above Si, Na and Ti, has the effect of improving the surface properties of the mech.
これまで述べてきたメ ッキ鋼線において、 メ ッキー地鉄界面に存 在する F e — Z n合金層中に、 A 1 : 4 %以上、 M g : 1 %以上が 含まれるこ とによ り耐食性が向上する。 上記合金層中において、 A 1 が 4 %未満では耐食性向上効果が得られないので、 A 1 量の範囲 は 4 %以上とする。 In the MEC steel wire described so far, Corrosion resistance is improved by including A 1: 4% or more and Mg: 1% or more in the existing Fe-Zn alloy layer. In the above alloy layer, if A 1 is less than 4%, the effect of improving corrosion resistance cannot be obtained, so the range of A 1 content is 4% or more.
また、 M gの存在によ り腐食生成物が均一に生成し、 耐食性が向 上する力 1 %未満ではこの効果が得られないので、 M g量の範囲 は 1 %以上とする。  In addition, since the presence of Mg causes uniform formation of corrosion products and the effect of improving corrosion resistance is not obtained with a force of less than 1%, the range of the Mg content is 1% or more.
本発明のメ ツキ鋼線においては、 A l 、 M gを成分とするので、 メ ッキ後の冷却によ り、 メ ッキー地鉄界面に存在する合金層の外側 のメ ツキ合金層中に、 A 1 — Z nを主成分とする ひ相と、 Z n単相 または M g— Z n合金相カゝらなる ] 3相、 および、 Z n /A l / Z n — M g三元共晶相を共存させるこ とができる。  In the plating steel wire of the present invention, since Al and Mg are components, the cooling after the plating causes the plating in the plating alloy layer outside the alloy layer existing at the interface of the plating metal. , A 1 —Zn as the main phase, and Zn single phase or Mg—Zn alloy phase) 3 phase, and Zn / Al / Zn—Mg ternary Eutectic phases can coexist.
このう ち、 Z n / A 1 / Z n—M g三元共晶相が存在するこ とに よ り 、 腐食生成物の均一生成と腐食生成物による腐食の進展防止効 果が得られる。 また、 相は、 他の相と比較して耐食性が劣るため 、 局所的な腐食を招きやすい。 そして、 3相の体積率が 2 0 %を越 える と耐食性の低下を招く ので、 その体積率は 2 0 %以下とする。  Of these, the presence of the Zn / A1 / Zn-Mg ternary eutectic phase has the effect of uniformly forming corrosion products and preventing the corrosion products from progressing. In addition, the phase is inferior in corrosion resistance to other phases, so that it is likely to cause local corrosion. If the volume ratio of the three phases exceeds 20%, the corrosion resistance is reduced, so the volume ratio is set to 20% or less.
メ ツキ後の鋼線を水冷によ り強冷却する と、 メ ツキ一地鉄界面に 存在する F e — Z n主体の合金層の外側のメ ッキ合金層の組織をデ ン ドライ ト組織とするこ とができる。 デン ドライ ト組織にした場合 、 メ ツキ中に生成する各組織が細かく な り 、 耐食性が向上する。  When the steel wire after the plating is strongly cooled by water cooling, the structure of the metallic alloy layer outside the Fe-Zn-based alloy layer existing at the metallic-iron interface is dendrited. It can be. When a dendrite structure is used, each structure formed in the plating becomes finer, and the corrosion resistance is improved.
また、 メ ツキ後の鋼線を水冷によ り緩冷却する と、 メ ツキ一地鉄 界面に存在する F e 一 Z n主体の合金層の外側のメ ツキ合金層の組 織を粒状晶組織とするこ とができる。 粒状晶組織にした場、 メ ツキ 中に生成する各組織が粒状にな り割れの伝播が抑制され加工性が向 上する。  When the steel wire after the plating is slowly cooled by water cooling, the grain structure of the plating alloy layer outside the Fe-Zn-based alloy layer existing at the plating-iron interface is changed to a granular structure. It can be. When a granular crystal structure is formed, each structure formed in the metal becomes granular, suppressing propagation of cracks and improving workability.
本発明のメ ツキ鋼線の製造方法と して、 2段メ ツキ法を採用する 。 第 1 段と して、 亜鉛を主体とする溶融亜鉛メ ツキを施し F e — Z n合金層を形成し、 次いで、 第 2段と して、 本発明で規定する平均 組成を有する溶融亜鉛合金メ ツキを施すこ とによ り 、 本発明のメ ッ キ鋼線を効率的に得るこ とができる。 第 1段の溶融亜鉛メ ツキで用 いる溶融亜鉛と しては、 重量%で、 A 1 : 3 %以下、 M g : 0 . 5 %以下を含む溶融亜鉛合金も使用可能である。 第 1段の溶融亜鉛メ ツキで F e 一 Z n合金層を得る場合、 該 F e 一 Z n合金層中に A 1 、 M gが含まれる と、 メ ツキ合金層中に A 1 、 M gが入りやすく な る とレ、う効果がある。 A two-step plating method is used as the method for producing the plating steel wire of the present invention. . As a first step, a molten zinc plating mainly comprising zinc is applied to form a Fe—Zn alloy layer, and then, as a second step, a molten zinc alloy having an average composition defined by the present invention. By applying the plating, the plating steel wire of the present invention can be efficiently obtained. As the molten zinc used in the first stage molten zinc plating, a molten zinc alloy containing A1: 3% or less and Mg: 0.5% or less by weight can be used. When the Fe-Zn alloy layer is obtained by the first-stage molten zinc plating, if A1 and Mg are contained in the Fe-Zn alloy layer, A1 and Mg are contained in the plating alloy layer. When g becomes easy to enter, it has an effect.
本発明のメ ツキ鋼線の製造方法においては、 メ ツキ鋼線をメ ツキ 浴から引き上げる部分を窒素ガスによ りパージし、 浴表面およびメ ツキ鋼線の酸化を防止するこ とで、 加工性の向上を図る こ とができ る。 メ ツキ直後にメ ツキ表面に酸化物が生成したり 、 あるいは、 浴 表面に生成した酸化物が付着した場合、 メ ツキ鋼線の加工時に、 酸 化物を核と してメ ツキが割れるこ とがある。 そのため、 取り 出し部 の酸化防止は重要である。  In the method for producing a metal wire according to the present invention, the portion of the metal wire pulled up from the metal bath is purged with nitrogen gas to prevent the bath surface and the metal wire from being oxidized. Can be improved. If an oxide is formed on the plating surface immediately after plating, or if the generated oxide adheres to the bath surface, the plating will break with the oxide as a nucleus during the processing of the plating steel wire. There is. Therefore, it is important to prevent oxidation at the outlet.
図 3 は、 Zn- 10%A1 - 3%Mg のメ ツキ合金組成のメ ツキ鋼線について 、 断気の有無で巻き付け試験時の表面割れ (本数) を比較したもの である。 断気しない場合、 表面に割れを生ずるものが許容限界本数 を超えて発生する。 酸化防止には、 窒素のほかにアルゴン、 へリ ウ ムなどの不活性ガスを用いるこ と も可能であるが、 コス 卜の面から は窒素がもつ と も優れている。  Fig. 3 shows a comparison of surface cracks (number) during a winding test with and without gas-tightness on a plating steel wire having a plating alloy composition of Zn-10% A1-3% Mg. If not cut off, cracks on the surface may occur beyond the permissible limit. In order to prevent oxidation, it is possible to use an inert gas such as argon or helium in addition to nitrogen, but from the viewpoint of cost, nitrogen is also superior.
本発明のメ ツキ鋼線を 2段メ ツキ法で得る場合において、 メ ツキ 合金の成長を適切なものにするには、 第 1段と して亜鉛を主体とす る溶融亜鉛メ ツキを、 メ ツキ浴浸漬時間 2 0秒以下で施し、 次いで 、 第 2段と して溶融亜鉛合金メ ツキを、 メ ツキ浴浸漬時間 2 0秒以 下で施すこ とが必要である。 これよ り長い時間でメ ツキを施すと、 合金層の厚みが厚く な り 、 2 0 μ πιを越えてしま うので、 第 1段と して亜鉛を主体とする溶融メ ツキを、 メ ッキ浴浸漬時間 2 0秒以下 で施し、 次いで、 第 2段と して溶融亜鉛合金メ ッキを、 メ ツキ浴浸 漬時間 2 0秒以下で施す。 In the case where the plating steel wire of the present invention is obtained by the two-step plating method, in order to make the growth of the plating alloy appropriate, a molten zinc plating mainly containing zinc is used as the first step. It is necessary to apply the plating bath with a plating bath immersion time of 20 seconds or less, and then, as a second stage, apply a molten zinc alloy plating with a plating bath immersion time of 20 seconds or less. If you apply the plating for a longer time, As the thickness of the alloy layer increases and exceeds 20 μπι, as the first step, a zinc-based molten plating is applied for a plating bath immersion time of 20 seconds or less, and then As a second step, a molten zinc alloy is applied with a plating bath immersion time of 20 seconds or less.
図 4は、 第 1段の溶融亜鉛メ ツキ (浸漬時間 2 0秒) によって、 F e — Z n合金層の厚みを 1 5 μ πιに形成したメ ツキ線に、 浴組成 Zn-10%Al -l%M の溶融亜錯合金メ ッキ (第 2段) を施した場合にお ける、 メ ツキ浴浸漬時間と F e — Z n合金層厚みとの関係を示した ものである。 この図から第 2段の溶融亜鉛合金メ ッキにおいて、 合 金層の厚みはメ ッキ合金浴浸漬時間が 2 0秒以下であれば成長が少 なく 、 合金層厚みが 2 0 μ πι以下となるこ とが解る。  Figure 4 shows that the molten zinc wire (immersion time: 20 seconds) at the first stage formed the Fe—Zn alloy layer with a thickness of 15 μπι, and the bath composition Zn-10% Al The figure shows the relationship between the plating bath immersion time and the Fe-Zn alloy layer thickness when a molten subcomplex alloy of -l% M (second stage) was applied. From this figure, it can be seen that in the second-stage molten zinc alloy metal, the thickness of the alloy layer is small when the metal alloy bath immersion time is 20 seconds or less, and the alloy layer thickness is 20 μππι or less. It turns out that
メ ツキ後、 メ ツキ鋼線のメ ツキ合金が溶融している状態から早く 冷却する と、 各相が成長するこ となく凝固するので、 メ ツキ組織が 微細化する。 さ らに冷却を強くする と、 メ ツキ合金の凝固組織と し てデン ドライ トが形成される。 その方法と しては、 メ ツキ鋼線をメ ツキ浴から引き上げた直後に、 水スプレー、 気水噴霧、 または、 水 流による直接水冷によ り 、 メ ツキ合金を凝固させる。  After the plating, if the plating alloy of the plating steel wire is cooled quickly from a molten state, each phase solidifies without growing, and the plating structure is refined. When cooling is further increased, dendrites are formed as a solidified structure of the metal alloy. As the method, immediately after the plating steel wire is pulled out of the plating bath, the plating alloy is solidified by water spray, air-water spray or direct water cooling by a water stream.
上記メ ツキ鋼線を冷却する際に、 メ ツキが溶融状態にある う ちか ら冷却を開始する こ とが必要である。 空冷などによ り凝固してしま う と、 各相が凝固中に成長し粗大な組織となる。 そのため、 冷却開 始温度は、 メ ツキ合金の融点以上である こ とが必要である。 さ らに 、 粘性の低い高温の溶融メ ツキに冷却水が当たる と、 メ ツキ表面が 粗く なるので、 冷却開始温度の上限を、 メ ツキ合金の融点 + 2 0 °C とする。  When cooling the above-mentioned plating steel wire, it is necessary to start cooling from the state where the plating is in a molten state. When solidified by air cooling or the like, each phase grows during solidification and becomes a coarse structure. Therefore, the cooling start temperature must be higher than the melting point of the plating alloy. Further, when cooling water is applied to a low-viscosity, high-temperature molten metal, the surface of the metal becomes rough. Therefore, the upper limit of the cooling start temperature is set to the melting point of the metal alloy + 20 ° C.
メ ツキ鋼線の成分組成と しては、 重量%で、 C : 0 . 0 2〜 0 . 2 5 %、 S i : 1 %以下、 M n : 0 . 6 %以下、 P : 0 . 0 4 %以 下、 S : 0 . 0 4 %以下を含むものとする。 Cは、 鋼の強度を決定する元素であり 、 通常のメ ツキ鋼線の強度 を実現するためには、 0 . 0 2 %以上添加する こ とが必要である。 一方、 0 . 2 5 %を越えて添加する と、 強度が高く なりすぎて、 か ごマッ トなどに使用する際、 施工時に人間の力で曲げるこ とができ なく なるので、 上限を 0 . 2 5 %とする。 The composition of the plating steel wire is as follows: C: 0.02 to 0.25%, Si: 1% or less, Mn: 0.6% or less, P: 0.0% by weight. 4% or less and S: 0.04% or less. C is an element that determines the strength of steel, and it is necessary to add 0.02% or more in order to realize the strength of a normal plating steel wire. On the other hand, if it is added in excess of 0.25%, the strength becomes too high, and when used in a car mat or the like, it cannot be bent by human power during construction. 25%.
S i は、 メ ツキ付着性を向上させる効果がある と同時に強度を上 げる効果がある。 S i が 1 %を越えて存在する と強度が上がりすぎ るので、 上限を 1 %とする。  Si has the effect of improving the adhesion of the plating and the effect of increasing the strength. If Si exceeds 1%, the strength is too high, so the upper limit is set to 1%.
M nは、 鋼の靭性を上げる効果がある と同時に強度を上げる効果 がある。 M nが 0 . 6 %を越えて存在する と強度が上がりすぎるの で、 上限を 0 . 6 %とする。  Mn has the effect of increasing the toughness of the steel as well as the effect of increasing the strength. If Mn exceeds 0.6%, the strength is too high, so the upper limit is set to 0.6%.
P、 Sは鋼の脆化等を引き起こすので、 どちらも上限を 0 . 0 4 %とする。  P and S cause embrittlement of steel, etc., so the upper limit of both is set to 0.04%.
本発明によ り得られた溶融亜鉛めつき鋼線または溶融亜鉛合金め つき鋼線の表面に塩化ビニール、 ポリ エチレン、 ポリ ウ レタン、 フ ッ素樹脂から選ばれた少なく と も 1 種の高分子化合物を被覆と して 施すこ とによ り 、 耐食性を更に向上させるこ とができる。 実施例  The surface of the hot-dip galvanized steel wire or hot-dip zinc alloy-coated steel wire obtained according to the present invention is formed of at least one high-pressure material selected from vinyl chloride, polyethylene, polyurethane, and fluororesin. By applying the molecular compound as a coating, the corrosion resistance can be further improved. Example
鋼線材 J I S G 3505 SWRM6の表面に純 Z n メ ツキ施した 4 mm径の鋼 線に、 表 1 に示す条件にて Zn— Al— Mg系亜鉛合金メ ッキを施し評価 した。 比較例と してメ ツキ組成、 F e — Z n合金層組織およびメ ッ キ組織を変えたものを同様に評価した。  A 4 mm diameter steel wire with pure Zn on the surface of steel wire JISG 3505 SWRM6 was coated with a Zn-Al-Mg zinc alloy under the conditions shown in Table 1 and evaluated. As comparative examples, samples having different plating compositions, Fe—Zn alloy layer structures and plating structures were similarly evaluated.
メ ツキ組織は、 メ ツキ鋼線の C断面を研磨後、 E P M Aにて観察 した。 合金層の組成分析は、 ビーム径を 2 μ mと して定量分析を行 つた。  The plating structure was observed by EPMA after polishing the C section of the plating steel wire. For the composition analysis of the alloy layer, quantitative analysis was performed with a beam diameter of 2 μm.
耐食性は、 2 5 0時間の連続塩水噴霧にて試験前後の重量差から 、 単位面積あたり メ ツキが腐食された量を腐食減量と して評価した 。 本試験では 2 0 g/m2以下を合格と判定した。 Corrosion resistance is calculated from the weight difference before and after the test with 250 hours of continuous salt spray. The amount by which the metal was corroded per unit area was evaluated as corrosion loss. In this test, 20 g / m 2 or less was judged to be acceptable.
加工性の評価は、 作製したメ ッキ鋼線を 6 mm径の鋼線に 6回卷き 付け、 その表面を目視観察し、 割れの有無で判定した。 また、 割れ 判定後のサンプルにセロハンテープを張り付け、 その後はがした際 にメ ツキの剥離の有無を観察して評価した。 この時、 割れが 1本以 下、 剥離がないこ とを合格の条件と した。  The workability was evaluated by winding the produced steel wire around a 6 mm diameter steel wire six times, visually observing the surface, and judging the presence or absence of cracks. In addition, a cellophane tape was stuck to the sample after the determination of cracking, and thereafter, when peeled off, the presence or absence of peeling of the plating was observed and evaluated. At this time, the condition for acceptance was that there was no crack or more and there was no peeling.
表 1 にメ ツキ組成、 合金層の組成および厚み、 メ ツキ外層の厚み 、 組織および 相体積率と、 耐食性 (腐食減量) 、 加工性 (巻き付 け試験評価) 、 メ ツキ浴の ドロ ス生成との関係を示す。  Table 1 shows the composition of the plating, the composition and thickness of the alloy layer, the thickness of the plating outer layer, the structure and the phase volume ratio, the corrosion resistance (loss of corrosion), the workability (evaluation of the winding test), and the dross generation of the plating bath. The relationship is shown below.
発明例は、 いずれも良好な耐食性、 加工性を示し、 ドロ ス生成も 少なかった。 比較例の 1 〜 5 は、 メ ツキ合金の成分組成が本発明で 規定する成分組成の範囲外のものである。 比較例 1 、 2 は、 M g ま たは A 1 量が本発明で規定する下限よ り低く 、 耐食性が劣る もので ある。 比較例 3〜5 は、 M g または A 1 量が本発明で規定する上限 よ り高く 、 加工性が劣り 、 メ ツキ浴の ド ロ スの生成が多く操業に支 障を来すものである。 比較例の 6 、 7 は、 メ ツキ合金層の厚みが本 発明で規定する範囲外の場合であり 、 加工性が劣る結果となってい る ものである。 比較例の 8 〜 1 0 は、 メ ツキ組織中の;3相が、 本発 明で規定する範囲外であ り、 耐食性が劣るものである。  Inventive examples all showed good corrosion resistance and workability, and generated little dross. In Comparative Examples 1 to 5, the composition of the metal alloy is out of the range defined by the present invention. In Comparative Examples 1 and 2, the amount of Mg or A 1 is lower than the lower limit specified in the present invention, and the corrosion resistance is inferior. In Comparative Examples 3 to 5, the amount of Mg or A 1 was higher than the upper limit specified in the present invention, the workability was poor, and the generation of the dressing bath dross hindered the operation. . Comparative Examples 6 and 7 are cases where the thickness of the plating alloy layer is out of the range specified in the present invention, resulting in poor workability. In Comparative Examples 8 to 10, three phases in the metallographic structure were out of the range specified in the present invention, and the corrosion resistance was poor.
表 2 は、 メ ツキ浸漬時間、 および、 第 2段の溶融亜鉛合金メ ッキ における冷却方法と冷却開始温度と、 耐食性および加工性の関係を 、 Zn- 10%A l -3%Mg について示したものである。 メ ツキに係る諸条件 が本発明で規定する範囲内にあるものは良好な結果を示している。 メツキ組成 会全属 メツキ外層 Table 2 shows the relationship between the corrosion immersion time, the cooling method and the cooling start temperature, and the corrosion resistance and workability of the second stage molten zinc alloy for Zn-10% Al-3% Mg. It is a thing. When the conditions relating to the plating are within the ranges specified in the present invention, good results are shown. The whole composition of the Japanese omelette
A1 Mg Si Na Ti Al g 厚み 厚み 組織 )3相体積率 A1 Mg Si Na Ti Al g Thickness Thickness Microstructure) Three-phase volume fraction
% % % % °/o °/o °/o Id m U m %%%%% ° / o ° / o ° / o Id m U m%
1 4 3.0 20 3.7 18 30 a/ |3/三元共晶 91 4 3.0 20 3.7 18 30 a / | 3 / Ternary eutectic 9
2 19 1.2 27 1.6 3 41 a/ 三元共晶 182 19 1.2 27 1.6 3 41 a / Ternary eutectic 18
3 10 0.8 22 1.2 11 62 a/ /3/三元共晶 163 10 0.8 22 1.2 11 62 a / / 3 / Ternary eutectic 16
4 11 4.9 22 4.7 16 59 a/ 三元共晶 174 11 4.9 22 4.7 16 59 a / Ternary eutectic 17
5 10 1.0 23 1.3 12 75 a/ ι8/三元共晶 13 発 6 in 9 q ?1 I Q. R υ I 1fi o 4 O a/ /3/三元共晶 1 5 10 1.0 23 1.3 12 75 a / ι8 / Ternary eutectic 13 rounds 6 in 9 q? 1 I Q.R υ I 1fi o 4 Oa / / 3 / Ternary eutectic 1
7 11 1.1 24 1.4 13 53 a/ /3/三元共晶 11 明 8 11 3.1 26 3.5 17 22 a/ iS/三元共晶 12 7 11 1.1 24 1.4 13 53 a / / 3 / ternary eutectic 11 light 8 11 3.1 26 3.5 17 22 a / iS / ternary eutectic 12
9 10 2.9 22 3.4 15 21 デン卜 フィ 卜 ― O 例 10 11 1.2 24 1.8 2 11 デンドライ 卜 ― 9 10 2.9 22 3.4 15 21 Dent fitting ― O Example 10 11 1.2 24 1.8 2 11 Dent fitting ―
11 10 1.2 1.3 23 1.6 15 59 a/ /三元共晶 12 11 10 1.2 1.3 23 1.6 15 59 a / / Ternary eutectic 12
12 10 3.1 0.8 21 3.8 16 31 デンドライ 卜 ―12 10 3.1 0.8 21 3.8 16 31 Dental light ―
13 8 4.5 0.008 21 5.6 13 48 / )5/三元共晶 1313 8 4.5 0.008 21 5.6 13 48 /) 5 / Ternary eutectic 13
]Λ 14 4.4 0.099 26 4.8 18 28 デントフィ 卜 ―] Λ 14 4.4 0.099 26 4.8 18 28 Dent fit ―
15 16 2.3 0.012 28 2.6 16 31 デンドライ 卜 ―
Figure imgf000015_0001
16 19 1.0 0.040 30 1.1 20 15 a/ 3/三元共晶 19
15 16 2.3 0.012 28 2.6 16 31 Dental light ―
Figure imgf000015_0001
16 19 1.0 0.040 30 1.1 20 15 a / 3 / Ternary eutectic 19
1 5 0.3 18 0.5 15 20 a/ /三元共晶 19 1 5 0.3 18 0.5 15 20 a / / Ternary eutectic 19
2 2 1.1 16 1.6 18 10 a/ /三元共晶 18 比 3 7 6.0 24 5.3 13 11 a/ /三元共晶 192 2 1.1 16 1.6 18 10 a / / ternary eutectic 18 ratio 3 7 6.0 24 5.3 13 11 a / / ternary eutectic 19
4 25 3.0 23 3.4 12 30 a/ )3/三元共晶 16 較 5 18 6.0 21 5.6 18 10 デン卜 フィ 卜 4 25 3.0 23 3.4 12 30 a /) 3 / Ternary eutectic 16 Comparison 5 18 6.0 21 5.6 18 10 Dent filter
6 11 0.9 21 1.2 x31 15 a/ /3/三元共晶 17 例 7 10 2.3 26 3.1 X25 60 デンドライ 卜  6 11 0.9 21 1.2 x31 15 a / / 3 / Ternary eutectic 17 Example 7 10 2.3 26 3.1 X25 60 Dendrites
8 8 0.9 12 1.1 18 8 a/ )8/三元共晶 X23 8 8 0.9 12 1.1 18 8 a /) 8 / Ternary eutectic X23
9 13 2.1 13 2.8 17 10 a/ iS/三元共晶 X269 13 2.1 13 2.8 17 10 a / iS / Ternary eutectic X26
10 10 3.2 15 3.4 23 20 a/ iS/三元共晶 X35 10 10 3.2 15 3.4 23 20 a / iS / Ternary eutectic X35
l/Zl l / Zl
Figure imgf000016_0001
Figure imgf000016_0001
OLPLO/QOdr/lDd 6ム Οϊε/ΙΟ O . 01/31079 OLPLO / QOdr / lDd 6 Οϊε / ΙΟ O. 01/31079
表 2 Table 2
Figure imgf000017_0001
Figure imgf000017_0001
14  14

Claims

産業上の利用可能性 以上説明したよ う に、 本発明によれば、 高耐食性を有する加工性 に優れた亜鉛合金メ ッキ鋼線を得るこ とができる。 尚、 本発明は、 特に線材に係るものであるが、 鋼管や鋼構造物な どにも、 十分適用が可能な技術であり 、 産業技術に寄与する と ころ が大きいものである。 15 求 の 範 囲 INDUSTRIAL APPLICABILITY As described above, according to the present invention, it is possible to obtain a zinc alloy black steel wire having high corrosion resistance and excellent workability. Although the present invention particularly relates to a wire rod, the present invention is a technique that can be sufficiently applied to steel pipes and steel structures, and greatly contributes to industrial technology. 15 Range of request
1 . メ ツキ鋼線において、 メ ツキ合金の平均組成が、 重量%で、 A 1 : 4〜 2 0 %、 M g : 0. 8〜 5 %、 残部 Z nからなり、 かつ 、 メ ツキ一地鉄界面に F e 一 Z n合金層が 2 0 μ πι以下存在するこ とを特徴とする高耐食性一 ρを有し加工性に優れたメ ツキ鋼線。 1. In the plating steel wire, the average composition of the plating alloy is, by weight%, A1: 4 to 20%, Mg: 0.8 to 5%, and the balance Zn. A steel wire with high corrosion resistance and excellent workability, characterized in that an Fe-Zn alloy layer exists at the interface of the base iron at 20 µππ or less.
2. 前記メ ッキ合金の平均組成が、 さ らに、 重量%で、 S i : 2 %以下を含んでなるこ とを特徴とする請求項 1 に記載の高耐食性を 有し加工性に優れたメ ツキ鋼線。  2. The high corrosion resistance and workability according to claim 1, wherein the average composition of the mace alloy further comprises Si: 2% or less by weight. Excellent plating steel wire.
3. 前記メ ッキ合金の平均組成が、 さ らに、 重量%で、 N a : 0 . 0 0 1〜 0. 1 %を含んでなるこ とを特徴とする請求項 1 または 2に記載の高耐食性を有し加工性に優れたメ ッキ鋼線。  3. The method according to claim 1, wherein the average composition of the mac alloy further comprises Na: 0.001 to 0.1% by weight. High corrosion resistance and excellent workability.
4. 前記メ ツキ合金の平均組成が、 さ らに、 重量%で、 T i : 0 . 0 1〜 0. 1 %を含んでなるこ とを特徴とする請求項 1〜 3のい ずれか 1項に記載の高耐食性を有し加工性に優れたメ ッキ鋼線。  4. The method according to claim 1, wherein the average composition of the metal alloy further comprises Ti: 0.01 to 0.1% by weight. 2. A steel wire having high corrosion resistance and excellent workability according to item 1.
5. 前記 F e — Z n合金層中に、 A 1 : 4 %以上、 M g : 1 %以 上が含まれているこ と を特徴とする請求項 1〜 4のいずれか 1項に 記載の高耐食性を有し加工性に優れたメ ッキ鋼線。  5. The Fe—Zn alloy layer contains A 1: 4% or more and Mg: 1% or more, according to any one of claims 1 to 4, wherein: High corrosion resistance and excellent workability.
6. 前記 F e — Z n合金層の外側にあるメ ッキ合金層の組織に、 A 1 一 Z nを主成分とする α相、 Ζ η単相または M g— Ζ η合金相 からなる /3相、 および、 Z n /A l / Z n—M g三元共晶相のそれ ぞれが存在するこ とを特徴とする請求項 1 〜 5のいずれか 1項に記 載の高耐食性を有し加工性に優れたメ ツキ鋼線。  6. The structure of the Mek alloy layer outside the Fe-Zn alloy layer is composed of an α-phase, Ζ η single phase or Mg- Ζ η alloy phase mainly composed of A 1 -Zn. The phase according to any one of claims 1 to 5, wherein each of a / 3 phase and a Zn / Al / Zn-Mg ternary eutectic phase exists. Steel wire with corrosion resistance and excellent workability.
7 . 前記 F e — Ζ η合金層の外側にあるメ ツキ合金層の組織に、 A 1 一 Z nを主成分とする α相、 Ζ η単相または M g — Ζ η合金相 からなる ]3相、 および、 Z n ZA l Z Z n— M g三元共晶相のそれ ぞれが存在し、 かつ、 /3相の体積率が 2 0 %以下である こ とを特徴  7. The structure of the metal alloy layer on the outside of the Fe—ηη alloy layer is composed of an α phase mainly composed of A 1 -Zn, a Ζη single phase, or an Mg—Ζη alloy phase. It is characterized by the presence of each of the three phases and the ZnZAlZZn-Mg ternary eutectic phase, and the volume fraction of the / 3 phase is 20% or less.
16 とする請求項 1 ~ 6のいずれか 1項に記載の高耐食性を有し加工性 に優れたメ ッキ鋼線。 16 7. A steel wire having high corrosion resistance and excellent workability according to any one of claims 1 to 6.
8 . 前記 F e 一 Z n合金層の外側にあるメ ツキ合金層の組織がデ ン ドライ ト組織であるこ とを特徴とする請求項 1 〜 5のいずれか 1 項に記載の高耐食性を有し加工性に優れたメ ツキ鋼線。  8. The high corrosion resistance according to any one of claims 1 to 5, wherein the structure of the metal alloy layer outside the Fe-Zn alloy layer is a dendrite structure. Steel wire with excellent workability.
9 . 前記 F e — Z n合金層の外側にあるメ ッキ合金層の組織が粒 状晶組織であるこ とを特徴とする前記 ( 1 ) 〜 ( 5 ) のいずれかに 記載の高耐食性を有し加工性に優れたメ ツキ鋼線。  9. The high corrosion resistance according to any one of the above (1) to (5), wherein the structure of the metal alloy layer outside the Fe—Zn alloy layer is a granular crystal structure. Steel wire with excellent workability.
10. 前記メ ツキ鋼線の成分組成が、 重量%で、 C : 0 . 0 2〜 0 . 2 5 %、 S i : 1 %以下、 M n : 0 . 6 %以下、 P : 0 . 0 4 % 以下、 S : 0 . 0 4 %以下を含んでなるこ とを特徴とする請求項 1 〜 9のいずれか 1項に記載の高耐食性を有し加工性に優れたメ ツキ 鋼線。  10. The composition of the plating steel wire is as follows: C: 0.02 to 0.25%, Si: 1% or less, Mn: 0.6% or less, P: 0.0% by weight. The steel wire according to any one of claims 1 to 9, having a high corrosion resistance and excellent workability, wherein the steel wire contains 4% or less and S: 0.04% or less.
11. メ ツキ鋼線の製造方法において、 鋼線に、 第 1段と して、 亜 鉛を主体とする溶融亜鉛メ ツキを施し、 次いで、 第 2 段と して、 請 求項 1 〜 4のいずれか 1 項に規定する平均組成を有する溶融亜鉛合 金メ ッキを施すこ とを特徴とする高耐食性を有し加工性に優れたメ ッキ鋼線の製造方法。  11. In the method of manufacturing the plating steel wire, the steel wire is subjected to molten zinc plating mainly composed of zinc as a first step, and then to the claim 1 to 4 as a second step. A method for producing a steel wire having high corrosion resistance and excellent workability, characterized by applying a molten zinc alloy metal having an average composition specified in any one of the above items.
12. 前記第 1段と しての溶融亜鉛メ ツキが、 重量%で、 A 1 : 3 %以下、 M g : 0 . 5 %以下を含む溶融亜鉛メ ツキであるこ とを特 徴とする請求項 1 1 に記載の高耐食性を有し加工性に優れたメ ツキ 鋼線の製造方法。  12. A claim characterized in that the molten zinc plating as the first stage is a molten zinc plating containing, by weight%, A1: 3% or less and Mg: 0.5% or less. Item 11. A method for producing a steel wire having high corrosion resistance and excellent workability according to Item 11.
13. 前記第 1段と しての溶融亜鉛メ ツキを施し、 次いで、 前記第 2 段と しての溶融亜鉛合金メ ツキを施す工程において、 メ ツキ鋼線 をメ ツキ浴から引き上げる部分を窒素ガスによ りパージし、 浴表面 およびメ ツキ鋼線の酸化を防止するこ と を特徴とする請求項 1 1 ま たは 1 2 に記載の高耐食性を有し加工性に優れたメ ツキ鋼線の製造  13. In the step of applying the molten zinc plating as the first stage, and then, in the step of applying the molten zinc alloy plating as the second stage, a portion of the molten steel wire pulled up from the plating bath is subjected to nitrogen. 13. The plating steel having high corrosion resistance and excellent workability according to claim 11 or 12, characterized by purging with a gas to prevent oxidation of the bath surface and the plating steel wire. Wire manufacturing
17 方法。 17 Method.
14. 前記第 1段と しての溶融亜鈴メ ツキをメ ツキ浴浸漬時間 2 0 秒以下で施し、 次いで、 前記第 2 段と しての溶融亜鉛合金メ ッキを メ ツキ浴浸漬時間 2 0秒以下で施すこ とを特徴とする請求項 1 1 〜 1 3のいずれか 1 項に記載の高耐食性を有し加工性に優れたメ ツキ 鋼線の製造方法。  14. The molten dumbbell plating as the first stage is applied for a plating bath immersion time of 20 seconds or less, and then the molten zinc alloy plating as the second stage is plated in the plating bath 2 The method for producing a steel wire having high corrosion resistance and excellent workability according to any one of claims 11 to 13, wherein the method is performed in 0 seconds or less.
15. 前記第 1段と しての溶融亜鉛メ ツキを施し、 次いで、 前記第 2 段と しての溶融亜鈴合金メ ッキを施す工程において、 メ ッキ鋼線 をメ ツキ合金から引き上げた直後に、 水スプレー、 気水噴霧、 また は、 水流による直接水冷によ り 、 メ ツキ合金を凝固させるこ と を特 徴とする請求項 1 1 〜 1 4のいずれか 1項に記載の高耐食性を有し 加工性に優れたメ ツキ鋼線の製造方法。  15. The step of applying the molten zinc plating as the first stage, and then, in the step of applying the molten dumbbell alloy plating as the second stage, lifts the plating steel wire from the plating alloy. The method according to any one of claims 11 to 14, characterized in that the metal alloy is solidified by water spray, air-water spray or direct water cooling by a water stream immediately thereafter. This is a method for producing steel wire with corrosion resistance and excellent workability.
16. 前記第 1段と しての溶融亜鉛メ ツキを施し、 次いで、 前記第 2 段と しての溶融亜鉛合金メ ツキを施す工程において、 メ ツキ鋼線 を冷却する際の冷却開始温度を、 メ ツキ合金の融点から該融点 + 2 0 °Cの範囲とする こ と を特徴とする請求項 1 1 〜 1 5 のいずれか 1 項に記載の高耐食性を有し加工性に優れたメ ッキ鋼線の製造方法。  16. In the step of applying the molten zinc plating as the first stage, and then in the step of applying the molten zinc alloy plating as the second stage, the cooling start temperature for cooling the plating steel wire is set. The high corrosion resistance and excellent workability according to any one of claims 11 to 15, wherein the melting point is in the range from the melting point of the metal alloy to the melting point + 20 ° C. Manufacturing method of Gack steel wire.
17. 前記メ ツキ鋼線の成分組成が、 重量%で、 C : 0 . 0 2 〜 0 . 2 5 %、 S i : 1 %以下、 M n : 0 . 6 %以下、 P : 0 . 0 4 % 以下、 S : 0 . 0 4 %以下を含んでなるこ と を特徴とする請求項 1 1 〜 1 6 のいずれか 1 項に記載の高耐食性を有し加工性に優れたメ ッキ鋼線の製造方法。  17. The composition composition of the plating steel wire is C: 0.02 to 0.25%, Si: 1% or less, Mn: 0.6% or less, P: 0.0% by weight. The metal with high corrosion resistance and excellent workability according to any one of claims 11 to 16, characterized by containing 4% or less and S: 0.04% or less. Steel wire manufacturing method.
18 18
PCT/JP2000/007470 1999-10-25 2000-10-25 Metal plated steel wire having excellent resistance to corrosion and workability and method for production thereof WO2001031079A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09/869,115 US6579615B1 (en) 1999-10-25 2000-10-25 Plated steel wire with corrosion resistance and excellent workability, and process for its manufacture
CA002358442A CA2358442C (en) 1999-10-25 2000-10-25 Plated steel wire with high corrosion resistance and excellent workability, and process for its manufacture
EP00970071A EP1158069B1 (en) 1999-10-25 2000-10-25 Metal plated steel wire having excellent resistance to corrosion and workability and method for production thereof
JP2001533211A JP3704311B2 (en) 1999-10-25 2000-10-25 Plated steel wire with high corrosion resistance and excellent workability and manufacturing method thereof
DE60029428T DE60029428T2 (en) 1999-10-25 2000-10-25 METAL-COATED STEEL WIRE WITH EXCELLENT CORROSION RESISTANCE AND PROCESSABILITY AND MANUFACTURING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP30268599 1999-10-25
JP11/302685 1999-10-25

Publications (1)

Publication Number Publication Date
WO2001031079A1 true WO2001031079A1 (en) 2001-05-03

Family

ID=17911969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007470 WO2001031079A1 (en) 1999-10-25 2000-10-25 Metal plated steel wire having excellent resistance to corrosion and workability and method for production thereof

Country Status (9)

Country Link
US (1) US6579615B1 (en)
EP (1) EP1158069B1 (en)
JP (1) JP3704311B2 (en)
KR (1) KR100515398B1 (en)
CN (1) CN1258613C (en)
CA (1) CA2358442C (en)
DE (1) DE60029428T2 (en)
TW (1) TWI251032B (en)
WO (1) WO2001031079A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332555A (en) * 2001-05-14 2002-11-22 Nisshin Steel Co Ltd HOT DIP Zn-Al-Mg BASED ALLOY PLATED STEEL HAVING EXCELLENT CORROSION RESISTANCE
JP2003049254A (en) * 2001-08-07 2003-02-21 Kowa Industry Co Ltd Hot dip plating method with zinc-aluminum alloy
JP2003129205A (en) * 2001-10-16 2003-05-08 Nippon Steel Corp Plated steel with high corrosion resistance and excellent workability and production method therefor
JP2003293109A (en) * 2002-04-05 2003-10-15 Sakuratech Co Ltd Highly corrosion resistant hot dip plated steel wire and production method therefor
JP2003328101A (en) * 2002-05-16 2003-11-19 Nippon Steel Corp Hot dip coated steel wire and production method thereof
JP2009024210A (en) * 2007-07-18 2009-02-05 Tokyo Seiko Co Ltd Hot-dip zinc alloy plated steel wire
JP2017066523A (en) * 2015-09-29 2017-04-06 新日鐵住金株式会社 Al-Mg BASED HOT-DIP METAL COATED STEEL MATERIAL

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030054469A (en) * 2001-12-26 2003-07-02 주식회사 포스코 Zn-Al-Mg Alloy Coating Steel Sheet Having Superior Corrosion Resistance And Plating Workability
CN100336932C (en) * 2004-12-14 2007-09-12 河北工业大学 Technological method of steel wire overlay galfan alloy and its equipment
JP5007424B2 (en) * 2005-05-23 2012-08-22 Dowaエレクトロニクス株式会社 Projection material for mechanical plating and highly corrosion-resistant coating
DK1837097T3 (en) * 2006-03-13 2009-03-23 Wolfgang Schmauser Welded wire mesh for gabions
DE102006012916B4 (en) * 2006-03-13 2009-10-01 Wolfgang Schmauser Welded wire mesh for gabions and use of coated steel wire for their manufacture
WO2007108496A1 (en) 2006-03-20 2007-09-27 Nippon Steel Corporation Highly corrosion-resistant hot dip galvanized steel stock
JP5101249B2 (en) * 2006-11-10 2012-12-19 Jfe鋼板株式会社 Hot-dip Zn-Al alloy-plated steel sheet and method for producing the same
DE202007006168U1 (en) 2007-04-19 2007-07-19 Rothfuss, Thomas Wire grid for wire baskets, has steel core provided with coating that is made from alloy of zinc and aluminum, where coating has specific thickness and alloy is applied on steel core
CN201100522Y (en) * 2007-11-23 2008-08-13 潘惠亮 Soft tube weaving silk and its connection hose
DK2456903T3 (en) * 2009-07-20 2014-07-21 Arcelormittal Bissen & Bettembourg METHOD OF COATING WITH METAL OF A LONG STEEL PRODUCT FOR MELT DIPPING, AND A LONG PRODUCT OBTAINED THEREOF
KR20110060680A (en) * 2009-11-30 2011-06-08 동부제철 주식회사 Coating composition, and method for coating of steel using the same, and coating steel coated coating composition
JP5341270B1 (en) * 2012-04-25 2013-11-13 日新製鋼株式会社 Method for producing black-plated steel sheet and method for producing molded body of black-plated steel sheet
US9863029B2 (en) * 2012-08-01 2018-01-09 Dongkuk Steel Mill Co., Ltd. Apparatus for forming nitrogen cloud to produce hot dip coated steel sheet
AU2013209303B2 (en) * 2012-08-01 2015-05-07 Dongkuk Coated Metal Co., Ltd. Method and apparatus for producing zinc-aluminum alloy-coated steel sheet with superior workability and corrosion resistance
GB2507309A (en) 2012-10-25 2014-04-30 Fontaine Holdings Nv Continuous single dip galvanisation process
KR101500043B1 (en) * 2012-12-21 2015-03-06 주식회사 포스코 Hot dip zinc alloy plated steel sheet having superior formability and processed part corrosion resistance, and method for manufacturing the same
KR20150073531A (en) 2013-12-23 2015-07-01 주식회사 포스코 Steel sheet for hot press forming with excellent corrosion resistance and weldability, forming part and method for manufacturing thereof
CN109944104A (en) * 2019-04-25 2019-06-28 无锡市华锋车业部件有限公司 A kind of manipulation wirerope and preparation method thereof
KR102297298B1 (en) * 2019-12-06 2021-09-03 주식회사 포스코 Galvanizing steel sheet having excelent bendability and corrosion resistance, and manufacturing method thereof
DE102020105375A1 (en) * 2020-02-28 2021-09-02 Thyssenkrupp Steel Europe Ag Hot-dip coated steel product with zinc-aluminum-magnesium coating as well as manufacturing process and use of a device for hot-dip coating of steel strip
CN113025935B (en) * 2020-07-06 2022-10-21 宝钢集团南通线材制品有限公司 Hot-dip galvanized aluminum-magnesium alloy coated steel wire for bridge cable and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173253A (en) * 1983-03-22 1984-10-01 Sumitomo Electric Ind Ltd Preparation of highly corrosion resistant zinc plated material
JPS63262451A (en) * 1987-04-21 1988-10-28 Nippon Telegr & Teleph Corp <Ntt> Highly corrosion resistant zinc-aluminum alloy-plated wire and stranded body using same
JPS648702B2 (en) * 1982-04-09 1989-02-15 Nisshin Steel Co Ltd
WO1998026103A1 (en) * 1996-12-13 1998-06-18 Nisshin Steel Co., Ltd. HOT-DIP Zn-Al-Mg COATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE AND SURFACE APPEARANCE AND PROCESS FOR THE PRODUCTION THEREOF
JPH10265926A (en) * 1997-03-25 1998-10-06 Nisshin Steel Co Ltd Production of hot dip zn-al-mg coated steel strip excellent in corrosion resistance and appearance

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166961A (en) * 1985-01-17 1986-07-28 Nippon Kokan Kk <Nkk> Highly corrosion resistant hot-dipped steel sheet
JPS61195960A (en) * 1985-02-26 1986-08-30 Nippon Steel Corp Manufacture of vibration suppressing steel sheet having high workability
JPS63277733A (en) * 1987-05-07 1988-11-15 Nisso Kinzoku Kagaku Kk Zinc alloy for two bath galvanizing
JPS648702A (en) 1987-07-01 1989-01-12 Fujitsu Ltd Corrugated horn
CA2142096C (en) 1993-06-25 2000-10-03 Makoto Isobe Method of hot-dip-zinc-plating high-tension steel plate reduced in unplated portions
JPH07207421A (en) 1994-01-13 1995-08-08 Mitsui Mining & Smelting Co Ltd Galvanizing method
JP3179401B2 (en) 1996-12-13 2001-06-25 日新製鋼株式会社 Hot-dip Zn-Al-Mg plated steel sheet with good corrosion resistance and surface appearance and method for producing the same
JP4115572B2 (en) * 1998-01-12 2008-07-09 日新製鋼株式会社 Zn-Al-Mg alloy for hot dipping with excellent corrosion resistance
JP2000239818A (en) * 1999-02-22 2000-09-05 Nisshin Steel Co Ltd HOT DIP Zn-Mg-Al BASED ALLOY PLATED STEEL TUBE EXCELLENT IN WELD ZONE CORROSION RESISTANCE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648702B2 (en) * 1982-04-09 1989-02-15 Nisshin Steel Co Ltd
JPS59173253A (en) * 1983-03-22 1984-10-01 Sumitomo Electric Ind Ltd Preparation of highly corrosion resistant zinc plated material
JPS63262451A (en) * 1987-04-21 1988-10-28 Nippon Telegr & Teleph Corp <Ntt> Highly corrosion resistant zinc-aluminum alloy-plated wire and stranded body using same
WO1998026103A1 (en) * 1996-12-13 1998-06-18 Nisshin Steel Co., Ltd. HOT-DIP Zn-Al-Mg COATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE AND SURFACE APPEARANCE AND PROCESS FOR THE PRODUCTION THEREOF
JPH10265926A (en) * 1997-03-25 1998-10-06 Nisshin Steel Co Ltd Production of hot dip zn-al-mg coated steel strip excellent in corrosion resistance and appearance

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332555A (en) * 2001-05-14 2002-11-22 Nisshin Steel Co Ltd HOT DIP Zn-Al-Mg BASED ALLOY PLATED STEEL HAVING EXCELLENT CORROSION RESISTANCE
JP4683764B2 (en) * 2001-05-14 2011-05-18 日新製鋼株式会社 Hot-dip Zn-Al-Mg alloy-plated steel with excellent corrosion resistance
JP2003049254A (en) * 2001-08-07 2003-02-21 Kowa Industry Co Ltd Hot dip plating method with zinc-aluminum alloy
JP2003129205A (en) * 2001-10-16 2003-05-08 Nippon Steel Corp Plated steel with high corrosion resistance and excellent workability and production method therefor
JP2003293109A (en) * 2002-04-05 2003-10-15 Sakuratech Co Ltd Highly corrosion resistant hot dip plated steel wire and production method therefor
JP2003328101A (en) * 2002-05-16 2003-11-19 Nippon Steel Corp Hot dip coated steel wire and production method thereof
JP2009024210A (en) * 2007-07-18 2009-02-05 Tokyo Seiko Co Ltd Hot-dip zinc alloy plated steel wire
JP2017066523A (en) * 2015-09-29 2017-04-06 新日鐵住金株式会社 Al-Mg BASED HOT-DIP METAL COATED STEEL MATERIAL

Also Published As

Publication number Publication date
US6579615B1 (en) 2003-06-17
EP1158069A1 (en) 2001-11-28
DE60029428T2 (en) 2007-04-19
EP1158069B1 (en) 2006-07-19
CN1258613C (en) 2006-06-07
CA2358442C (en) 2009-12-15
DE60029428D1 (en) 2006-08-31
JP3704311B2 (en) 2005-10-12
CA2358442A1 (en) 2001-05-03
KR100515398B1 (en) 2005-09-16
EP1158069A4 (en) 2002-06-19
CN1327484A (en) 2001-12-19
KR20010099943A (en) 2001-11-09
TWI251032B (en) 2006-03-11

Similar Documents

Publication Publication Date Title
WO2001031079A1 (en) Metal plated steel wire having excellent resistance to corrosion and workability and method for production thereof
KR101504863B1 (en) High-corrosion-resistance hot-dip galvanized steel plate having highly uniform appearance and manufacturing method therefor
KR100446789B1 (en) Plated steel product having high corrosion resistance and excellent formability and method for production thereof
CN114787411B (en) Hot dip galvanized steel sheet excellent in bending workability and corrosion resistance and method for producing same
JP3598087B2 (en) High-strength galvannealed steel sheet with excellent workability and method for producing the same
JP3769199B2 (en) High corrosion resistance plated steel material and method for producing the same
KR102453011B1 (en) Plated steel sheet having excellent sealer adhesion and method for manufacturing the same
JP3769197B2 (en) High corrosion resistance plated steel material and method for producing the same
JP3737987B2 (en) Hot-dip galvanized steel wire with high corrosion resistance and excellent workability
JP3854468B2 (en) Plated steel material having high corrosion resistance and excellent workability, and manufacturing method thereof
WO2020213680A1 (en) Plated steel material
JP3399895B2 (en) Hot-dip galvanized steel wire having high corrosion resistance and method for producing the same
JP3854469B2 (en) Plated steel material having high corrosion resistance and excellent workability, and manufacturing method thereof
JP3769198B2 (en) High corrosion resistance plated steel material and method for producing the same
JP2003155549A (en) Zinc-alloy plated steel with high corrosion resistance and excellent workability, and its manufacturing method
JP2003328101A (en) Hot dip coated steel wire and production method thereof
JP3857882B2 (en) Plated steel material having high corrosion resistance and excellent workability, and manufacturing method thereof
JP7360082B2 (en) plated steel plate
JPH0860329A (en) Production of galvannealed steel sheet
WO2004033745A1 (en) HOT-DIPPED Sn-Zn PLATING PROVIDED STEEL PLATE OR SHEET EXCELLING IN CORROSION RESISTANCE AND WORKABILITY
WO2023037396A1 (en) Hot-dip galvanized steel material
JP2003129205A (en) Plated steel with high corrosion resistance and excellent workability and production method therefor
JPS6362835A (en) Zinc alloy for hot dip galvanizing and method for using same
JP2022067841A (en) Plated steel material and method for manufacturing the same
CN117529573A (en) Method for producing plated steel having excellent workability and corrosion resistance

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1200100589

Country of ref document: VN

Ref document number: 00802395.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 2001 533211

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2000970071

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2358442

Country of ref document: CA

Ref document number: 2358442

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020017008103

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09869115

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000970071

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000970071

Country of ref document: EP