WO2001029386A1 - Method for detecting operating variables of an internal combustion engine - Google Patents

Method for detecting operating variables of an internal combustion engine Download PDF

Info

Publication number
WO2001029386A1
WO2001029386A1 PCT/DE2000/002673 DE0002673W WO0129386A1 WO 2001029386 A1 WO2001029386 A1 WO 2001029386A1 DE 0002673 W DE0002673 W DE 0002673W WO 0129386 A1 WO0129386 A1 WO 0129386A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
air pressure
pressure
ambient air
derived
Prior art date
Application number
PCT/DE2000/002673
Other languages
German (de)
French (fr)
Inventor
Michael BÄUERLE
Klaus Ries-Müller
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2001029386A1 publication Critical patent/WO2001029386A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1402Adaptive control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/703Atmospheric pressure
    • F02D2200/704Estimation of atmospheric pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a method for determining operating variables of an internal combustion engine with a turbocharger.
  • a large number of operating variables are required to control an internal combustion engine.
  • all of these company variables are used to record
  • DE 42 14 648 AI shows a system for controlling an internal combustion engine with a turbocharger, the air mass in the intake manifold being determined via the engine speed, the amount of fuel to be injected, a recirculated exhaust gas amount and from the power of the compressor and the turbine of the turbocharger.
  • the invention is based on the object of determining further operating variables of an internal combustion engine without the use of special sensors. Advantages of the invention
  • the ambient air pressure can be determined from the compressor map by specifying the turbine speed, the charge air pressure and the air mass flow supplied to the compressor. Or it can be determined from the compressor map, the turbine speed given the ambient pressure, the charge air pressure and the air mass flow supplied to the compressor.
  • variable derived from the compressor map can advantageously be used to diagnose a sensor for the same variable by determining the deviation between the derived variable and the variable detected by the sensor.
  • FIG. 1 shows a schematic illustration of an internal combustion engine with a turbocharger
  • FIG. 2 shows a compressor map of the turbocharger
  • Figure 3 is a functional diagram for determining the
  • Figure 4 is a functional diagram for determining the turbine speed of the turbocharger
  • Figure 5 is a functional diagram for diagnosing
  • FIG. 1 shows an internal combustion engine 1 with an intake manifold 2 and an exhaust gas duct 3.
  • a turbine 4 of an exhaust gas turbocharger is located in the exhaust gas duct 3 and is mechanically coupled to a compressor 5 arranged in the intake manifold 2.
  • the turbine 4 in the exhaust gas duct 3 is bridged by a bypass 6, in which a controllable valve 7 is located.
  • a number of sensors are provided for detecting various operating variables of the internal combustion engine.
  • a temperature sensor 9 in the intake pipe 2 which measures the ambient air temperature tu
  • a sensor 10 for example HFM sensor
  • an air pressure sensor 11 is arranged in the intake manifold 2 and measures the ambient air pressure ud. The ambient air pressure ud is measured by means of the sensor 11 in the air flow direction in front of an air filter 12, whereas the air mass sensor 10 and the temperature sensor 9 are arranged in the air flow direction behind the air filter 12.
  • Speed sensor 13 is provided, which detects the turbine speed nt. All the sensor signals ld, tu, Im, ud and nt mentioned are fed to a control unit 14 via signal lines (shown in dashed lines).
  • the ambient air pressure is a parameter that is used, for example, to calculate the height-dependent response speed of the exhaust gas turbocharger to release the adaptation of the boost pressure regulator or to limit the compressor pressure ratio to protect against compressor pumps and against overspeed in height or to switch off ON-Board diagnostic functions above one certain height or to correct the load detection parameters (e.g. residual gas pressure in the cylinder).
  • the function diagram shown in FIG. 3 illustrates how an ambient air pressure ud * is determined by the control unit 14 instead of the measured ambient air pressure ud.
  • the data of a compressor map KF are stored in the control unit 14.
  • FIG. 2 shows an exemplary compressor map - is usually provided by the manufacturer of the exhaust gas turbocharger. It provides a clear relationship between the air mass Im fed to the compressor, the compressor pressure ratio - this is the quotient of the air pressure on the pressure side and the air pressure on the suction side of the compressor - and the turbine speed nt.
  • the compressor map in FIG. 2 makes it clear that with increasing turbine speed nt (e.g. starting at a speed of 60,000 and ending at a speed of 180,000) the ratio between the air pressure ld on the pressure side and the air pressure sd on the suction side of the compressor 5 increases ,
  • the dashed line in the map indicates the surge limit of the turbocharger.
  • block KF in which the compressor map of the turbocharger is stored, is supplied with the air mass Im measured by sensor 10 and the turbine speed nt detected by sensor 13. From these two values, the block KF derives the third map size from the compressor map, namely the ratio of the air pressure ld (boost pressure) on the pressure side of the compressor and the air pressure sd on the suction side of the compressor 5. This air pressure ratio ld / sd divided by the charge pressure ld measured by the sensor 8, so that after a subsequent reciprocal formation in block KW, the air pressure sd is available on the suction side of the compressor. Actually, the air pressure sd on the suction side of the compressor would correspond to the ambient air pressure ud * to be determined.
  • a first correction value kl is additively superimposed on the air pressure sd derived from the compressor map KF in a first connection point VI.
  • This first correction value kl is taken from a characteristic curve KL1, which shows the relationship between the
  • a second correction value k2 is additively superimposed on this air pressure sd derived from the map KF in a second connection point V2.
  • This second correction value k2 is taken from a characteristic curve KL2, which influences the influence of the ambient air temperature tu, which is measured by the sensor 9 in the intake manifold 2
  • the actual ambient air pressure ud * is obtained from the air pressure sd derived from the compressor map KF. This can now be used in the control process for the internal combustion engine.
  • FIG. 4 shows a functional diagram according to which the turbine speed nt can be determined if the sensor 13 is to be dispensed with.
  • the block KF in which the compressor map is stored, the air mass Im measured by the sensor 10 and the ratio of the boost pressure ld, which is detected on the pressure side of the compressor 5 by the sensor 8, and the air pressure sd on the suction side of the compressor 5 supplied.
  • the compressor map KF can then be used Derive turbine speed nt *.
  • the ratio of the boost pressure ld and the air pressure sd on the suction side of the compressor 5 can, for. B. be formed by means of a multiplier MP, which multiples the boost pressure ld measured by the sensor 8 with the reciprocal value of the air pressure sd formed by the block KW on the suction side of the compressor 5.
  • the air pressure sd on the suction side of the compressor 5 actually corresponds to the ambient air pressure ud, which is detected by the sensor 11.
  • the correction values kl and k2 already described above are formed here, which compensate for the two influences by subtractively superimposing the ambient air pressure ud measured by the sensor 11 in the connection points V3 and V4, in which case then the air pressure sd actually prevailing on the suction side of the compressor 5 results.
  • the variables derived from the compressor map KF, as described with reference to FIGS. 3 and 4, namely the ambient air pressure ud * and the turbine speed nt * can also be used to diagnose the fault of an existing sensor 11, which measures the ambient air pressure ud, or a sensor 13, which the turbine speed nt detected, are used. Such a fault diagnosis can run according to the functional diagram shown in FIG. 5.
  • the subtractor DF is used to determine the offset between the measured ambient pressure ud and the ambient pressure ud * derived from the compressor map or between the measured turbine speed nt and the turbine speed derived from the compressor map nt *.
  • the storage is fed to a threshold value decision SE, which compares it with a threshold value S, which is supplied to the threshold value decision SE as a variable. If the storage exceeds the predefined threshold value S, the threshold value decision SE outputs an error signal fe at its output, which indicates that the sensor 11 or 8 in question is defective.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

The invention relates to a compressor mapping which is detected for the turbocharger and indicates the relation between the speed of the turbine (nt), the ratio of the air pressures (1d, sd) on the pressure side and the suction side of the compressor and the air mass flow (lm) in the suction pipe on the suction side of the compressor, said flow being supplied to the compressor. According to the inventive method, one of said variables is derived by means of the compressor mapping when the other variables are given. Corresponding sensors for said derived variables can be saved. Furthermore, the derived variables can be used for the diagnosis of the sensors which measure said variables.

Description

Verfahren zur Bestimmung von Betriebsgrößen einer BrennkraftmaschineMethod for determining operating parameters of an internal combustion engine
Stand der TechnikState of the art
Die vorliegende Erfindung betrifft ein Verfahren zur Bestimmung von Betriebsgrößen einer Brennkraftmaschine mit Turbolader. Für die Steuerung einer Brennkraftmaschine wird eine Vielzahl von Betriebsgrößen benötigt. Üblicherweise werden für die Erfassung all dieser BetriebsgrößenThe present invention relates to a method for determining operating variables of an internal combustion engine with a turbocharger. A large number of operating variables are required to control an internal combustion engine. Usually, all of these company variables are used to record
Drucksensoren, Luftmassensensoren, Temperatursensoren, Drehzahlsensoren etc. vorgesehen. Es ist erstrebenswert, mit möglichst wenig Sensoren auszukommen und einige der Betriebsgrößen ohne Messungen aus anderen Betriebsgrößen herzuleiten. Beispielsweise geht aus der DE 42 14 648 AI ein System zur Steuerung einer Brennkraftmaschine mit einem Turbolader hervor, wobei die Luftmasse im Saugrohr über die Motordrehzahl, die einzuspritzende Kraftstoffmenge, eine rückgeführte Abgasmenge und aus der Leistung des Verdichters und der Turbine des Turboladers ermittelt wird.Pressure sensors, air mass sensors, temperature sensors, speed sensors etc. provided. It is desirable to get by with as few sensors as possible and to derive some of the operating parameters from other operating parameters without measurements. For example, DE 42 14 648 AI shows a system for controlling an internal combustion engine with a turbocharger, the air mass in the intake manifold being determined via the engine speed, the amount of fuel to be injected, a recirculated exhaust gas amount and from the power of the compressor and the turbine of the turbocharger.
Der Erfindung liegt nun die Aufgabe zugrunde, weitere Betriebsgrößen einer Brennkraftmaschine ohne den Einsatz von speziellen Sensoren zu bestimmen. Vorteile der ErfindungThe invention is based on the object of determining further operating variables of an internal combustion engine without the use of special sensors. Advantages of the invention
Die genannte Aufgabe wird mit den Merkmalen des Anspruchs 1 dadurch gelöst, daß mit Hilfe eines für den Turbolader erfaßten Verdichterkennfeldes, welches den Zusammenhang zwischen der Turbinendrehzahl, dem Verhältnis der Luftdrücke auf der Druck- und der Saugseite des Verdichters und dem dem Verdichter zugeführten Luftmassenstrom angibt, eine dieser Größen bei Vorgabe der anderen Größen hergeleitet wird.The stated object is achieved with the features of claim 1 in that with the aid of a compressor map recorded for the turbocharger, which indicates the relationship between the turbine speed, the ratio of the air pressures on the pressure and suction sides of the compressor and the air mass flow supplied to the compressor , one of these sizes is derived when the other sizes are specified.
Wie den Unteransprüchen zu entnehmen ist, kann aus dem Verdichterkennfeld der Umgebungsluftdruck bei Vorgabe der Turbinendrehzahl, des Ladeluftdrucks und des dem Verdichter zugeführten Luftmassenstroms ermittelt werden. Oder es kann aus dem Verdichterkennfeld die Turbinendrehzahl bei Vorgabe des Umgebungsdrucks, des Ladeluftdrucks und des dem Verdichter zugeführten Luftmassenstroms bestimmt werden.As can be seen from the subclaims, the ambient air pressure can be determined from the compressor map by specifying the turbine speed, the charge air pressure and the air mass flow supplied to the compressor. Or it can be determined from the compressor map, the turbine speed given the ambient pressure, the charge air pressure and the air mass flow supplied to the compressor.
Es ist zweckmäßig, entweder dem aus dem Verdichterkennfeld abgeleiteten oder dem gemessenen Umgebungsluftdruck einen Korrekturwert zu überlagern, der einer Kennlinie entnommen wird, die den Zusammenhang zwischen dem Druckabfall an einem im Saugrohr vor dem Verdichter angeordneten Luftfilter und dem nach dem Luftfilter erfaßten Luftmassenstrom angibt.It is expedient to superimpose a correction value either on the ambient air pressure derived from the compressor map or on the measured ambient air pressure, which is taken from a characteristic curve which indicates the relationship between the pressure drop across an air filter arranged in the intake manifold in front of the compressor and the air mass flow detected after the air filter.
Weiterhin ist es zweckmäßig, dem aus dem Verdichterkennfeld abgeleiteten oder dem gemessenen Umgebungsluftdruck einen Korrekturwert zu überlagern, der einer Kennlinie entnommen wird, die den Einfluß der Umgebungslufttemperatur auf den Umgebungsluftdruck wiedergibt .Furthermore, it is expedient to superimpose a correction value on the ambient air pressure derived from the compressor map or on the measured, which is taken from a characteristic curve which reflects the influence of the ambient air temperature on the ambient air pressure.
Mit dem erfindungsgemäßen Verfahren ist es möglich, einen Sensor für die Erfassung der Turbinendrehzahl oder einen Sensor zur Erfassung des Umgebungsluftdrucks einzusparen. Gemäß einem weiteren Unteranspruch kann vorteilhafterweise die aus dem Verdichterkennfeld hergeleitete Größe zur Diagnose eines Sensors für die gleiche Größe verwendet werden, indem die Abweichung zwischen der hergeleiteten und der vom Sensor erfaßten Größe bestimmt wird.With the method according to the invention, it is possible to save one sensor for the detection of the turbine speed or one sensor for the detection of the ambient air pressure. According to a further subclaim, the variable derived from the compressor map can advantageously be used to diagnose a sensor for the same variable by determining the deviation between the derived variable and the variable detected by the sensor.
Zeichnungdrawing
Anhand von in der Zeichnung dargestelltenUsing the shown in the drawing
Ausführungsbeispielen wird nachfolgend die Erfindung näher erläutert. Es zeigen:The invention is explained in more detail in the following. Show it:
Figur 1 eine schematische Darstellung einer Brennkraftmaschine mit Turbolader,FIG. 1 shows a schematic illustration of an internal combustion engine with a turbocharger,
Figur 2 ein Verdichterkennfeld des Turboladers,FIG. 2 shows a compressor map of the turbocharger,
Figur 3 ein Funktionsdiagramm zur Bestimmung desFigure 3 is a functional diagram for determining the
Umgebungluftdrucks ,Ambient air pressure,
Figur 4 ein Funktionsdiagramm zur Bestimmung der Turbinendrehzahl des Turboladers undFigure 4 is a functional diagram for determining the turbine speed of the turbocharger and
Figur 5 ein Funktionsdiagramm zur Diagnose vonFigure 5 is a functional diagram for diagnosing
Sensorsignalen.Sensor signals.
Beschreibung von AusführungsbeispielenDescription of exemplary embodiments
In der Figur 1 ist eine Brennkraftmaschine 1 mit einem Saugrohr 2 und einem Abgaskanal 3 dargestellt. Im Abgaskanal 3 befindet sich eine Turbine 4 eines Abgasturboladers, die mit einem im Saugrohr 2 angeordneten Verdichter 5 mechanisch gekoppelt ist . Zur Regelung des Ladedrucks im Saugrohr wird z.B. die Turbine 4 im Abgaskanal 3 von einem Bypass 6 überbrückt, in dem sich ein steuerbares Ventil 7 befindet. Zur Erfassung verschiedener Betriebsgrößen der Brennkraftmaschine ist eine Reihe von Sensoren vorgesehen. Auf der Druckseite des Verdichters 5 befindet sich im Saugrohr 2 ein Sensor 8, der den der Brennkraf maschine 1 zugeführten Ladedruck ld mißt. Auf der Saugseite des Verdichters 5 befinden sich im Saugrohr 2 ein Temperatursensor 9, der die Umgebungslufttemperatur tu mißt, und ein Sensor 10 (z.B. HFM-Sensor) , der die angesaugte Luftmasse Im erfaßt. Desweiteren ist im Saugrohr 2 ein Luftdrucksensor 11 angeordnet, der den Umgebungsluftdruck ud mißt. Der Umgebungsluftdruck ud wird mittels des Sensors 11 in Luftströmungsrichtung gesehen vor einem Luftfilter 12 gemessen, wogegen der Luftmassensensor 10 und der Temperatursensor 9 in Luftströmungsrichtung hinter dem Luftfilter 12 angeordnet sind. Schließlich ist noch ein1 shows an internal combustion engine 1 with an intake manifold 2 and an exhaust gas duct 3. A turbine 4 of an exhaust gas turbocharger is located in the exhaust gas duct 3 and is mechanically coupled to a compressor 5 arranged in the intake manifold 2. To regulate the boost pressure in the intake manifold, for example, the turbine 4 in the exhaust gas duct 3 is bridged by a bypass 6, in which a controllable valve 7 is located. A number of sensors are provided for detecting various operating variables of the internal combustion engine. On the pressure side of the compressor 5 there is a sensor 8 in the intake manifold 2, which measures the boost pressure supplied to the internal combustion engine 1 ld. On the suction side of the compressor 5, there is a temperature sensor 9 in the intake pipe 2, which measures the ambient air temperature tu, and a sensor 10 (for example HFM sensor), which detects the air mass Im taken in. Furthermore, an air pressure sensor 11 is arranged in the intake manifold 2 and measures the ambient air pressure ud. The ambient air pressure ud is measured by means of the sensor 11 in the air flow direction in front of an air filter 12, whereas the air mass sensor 10 and the temperature sensor 9 are arranged in the air flow direction behind the air filter 12. Finally there is one
Drehzahlsensor 13 vorgesehen, der die Turbinendrehzahl nt erfaßt. All die genannten Sensorsignale ld, tu, Im, ud und nt werden über Signalleitungen (stricheliert gezeichnet) einem Steuergerät 14 zugeführt.Speed sensor 13 is provided, which detects the turbine speed nt. All the sensor signals ld, tu, Im, ud and nt mentioned are fed to a control unit 14 via signal lines (shown in dashed lines).
Es wird nun davon ausgegangen, daß auf den Sensor 11 zur Bestimmung des Umgebungsluftdrucks ud verzichtet werden soll, und diese Betriebsgröße auf andere Art und Weise aus anderen gemessenen Betriebsgrößen ermittelt werden soll .It is now assumed that the sensor 11 for determining the ambient air pressure ud should be dispensed with, and this operating variable should be determined in a different way from other measured operating variables.
Der Umgebungsluftdruck ist eine Größe, die z.B für die Berechnung der höhenabhängigen Ansprechdrehzahl des Abgasturboladers zur Freigabe der Adaption des Ladedruckregelers oder zur Begrenzung des Verdichterdruckverhältnisses zum Schutz vor Verdichterpumpen und vor Überdrehzahl in der Höhe oder zur Abschaltung von ON-Board-Diagnose-Funktionen oberhalb einer gewissen Höhe oder zur Korrektur der Lasterfassungsparameter (z.B. Restgasdruck im Zylinder) verwendet werden kann. Wie anstelle des gemessenen Umgebungsluftdrucks ud vom Steuergerät 14 ein Umgebungsluftdruck ud* bestimmt wird, verdeutlicht das in der Figur 3 dargestellte Funktionsdiagramm. Im Steuergerät 14 sind die Daten eines Verdichterkennfeldes KF abgespeichert. DasThe ambient air pressure is a parameter that is used, for example, to calculate the height-dependent response speed of the exhaust gas turbocharger to release the adaptation of the boost pressure regulator or to limit the compressor pressure ratio to protect against compressor pumps and against overspeed in height or to switch off ON-Board diagnostic functions above one certain height or to correct the load detection parameters (e.g. residual gas pressure in the cylinder). The function diagram shown in FIG. 3 illustrates how an ambient air pressure ud * is determined by the control unit 14 instead of the measured ambient air pressure ud. The data of a compressor map KF are stored in the control unit 14. The
Verdichterkennfeld eines Turboladers - Figur 2 zeigt ein exemplarisches Verdichterkennfeld - wird üblicherweise vom Hersteller des Abgasturboladers bereitgestellt. Es liefert einen eindeutigen Zusammenhang zwischen der dem Verdichter zugeführten Luftmasse Im, dem Verdichterdruckverhältnis - das ist der Quotient aus dem Luftdruck auf der Druckseite und dem Luftdruck auf der Saugseite des Verdichters - und der Turbinendrehzahl nt . Das Verdichterkennfeld in der Figur 2 macht deutlich, daß mit steigender Turbinendrehzahl nt (z.B. beginnend mit einer Drehzahl von 60.000 und endend mit einer Drehzahl von 180.000) das Verhältnis zwischen dem Luftdruck ld auf der Druckseite und dem Luftdruck sd auf der Saugseite des Verdichters 5 zunimmt. Die strichlierte Linie im Kennfeld deutet die Pumpgrenze des Turboladers an.Compressor map of a turbocharger - FIG. 2 shows an exemplary compressor map - is usually provided by the manufacturer of the exhaust gas turbocharger. It provides a clear relationship between the air mass Im fed to the compressor, the compressor pressure ratio - this is the quotient of the air pressure on the pressure side and the air pressure on the suction side of the compressor - and the turbine speed nt. The compressor map in FIG. 2 makes it clear that with increasing turbine speed nt (e.g. starting at a speed of 60,000 and ending at a speed of 180,000) the ratio between the air pressure ld on the pressure side and the air pressure sd on the suction side of the compressor 5 increases , The dashed line in the map indicates the surge limit of the turbocharger.
Wie die Figur 3 zeigt, werden dem Block KF, in dem das Verdichterkennfeld des Turboladers abgespeichert ist, die vom Sensor 10 gemessene Luftmasse Im und die vom Sensor 13 erfaßte Turbinendrehzahl nt zugeführt . Aus diesen beiden Größen leitet der Block KF aus dem Verdichterkennfeld die dritte Kennfeldgröße ab, nämlich das Verhältnis des Luftdrucks ld (Ladedruck) auf der Druckseite des Verdichters und des Luftdrucks sd auf der Saugseite des Verdichters 5. In einem Dividierblock DV wird dieses Luftdruckverhältnis ld/sd durch den vom Sensor 8 gemessenen Ladedruck ld dividiert, so daß nach einer anschließenden Kehrwertbildung im Block KW der Luftdruck sd auf der Saugseite des Verdichters zur Verfügung steht . Eigentlich würde der Luftdruck sd auf der Saugseite des Verdichters dem zu ermittelden Umgebungsluftdruck ud* entsprechen. Zwischen beiden besteht aber in der Realität eine gewisse noch zu korrigierende Abweichung, vor allem wegen eines im Saugrohr 2 vorhandenen Luftfilters 12, das einen gewissen Druckabfall verursacht. Deshalb wird in einem ersten Verknüpfungspunkt VI dem aus dem Verdichterkennfeld KF abgeleiteten Luftdruck sd ein erster Korrekturwert kl additiv überlagert. Dieser erste Korrekturwert kl wird einer Kennlinie KL1 entnommen, die den Zusammenhang zwischen demAs FIG. 3 shows, block KF, in which the compressor map of the turbocharger is stored, is supplied with the air mass Im measured by sensor 10 and the turbine speed nt detected by sensor 13. From these two values, the block KF derives the third map size from the compressor map, namely the ratio of the air pressure ld (boost pressure) on the pressure side of the compressor and the air pressure sd on the suction side of the compressor 5. This air pressure ratio ld / sd divided by the charge pressure ld measured by the sensor 8, so that after a subsequent reciprocal formation in block KW, the air pressure sd is available on the suction side of the compressor. Actually, the air pressure sd on the suction side of the compressor would correspond to the ambient air pressure ud * to be determined. In reality, however, there is a certain deviation to be corrected between the two, above all because of an air filter 12 present in the intake manifold 2, which causes a certain pressure drop. For this reason, a first correction value kl is additively superimposed on the air pressure sd derived from the compressor map KF in a first connection point VI. This first correction value kl is taken from a characteristic curve KL1, which shows the relationship between the
Druckabfall an dem Luftfilter 12 und dem nach dem Luftfilter 12 vom Sensor 10 erfaßten Luftmassenstrom Im angibt.Pressure drop across the air filter 12 and the air mass flow Im detected by the sensor 10 after the air filter 12 indicates.
Da auch die Umgebungslufttemperatur einen Einfluß auf den Luftdruck sd hat, wird diesem aus dem Kennfeld KF abgeleiteten Luftdruck sd ein zweiter Korrekturwert k2 in einem zweiten Verknüpfungspunkt V2 additiv überlagert. Dieser zweite Korrekturwert k2 wird einer Kennlinie KL2 entnommen, die den Einfluß der Umgebungslufttemperatur tu, welche vom Sensor 9 im Saugrohr 2 gemessen wird, auf denSince the ambient air temperature also has an influence on the air pressure sd, a second correction value k2 is additively superimposed on this air pressure sd derived from the map KF in a second connection point V2. This second correction value k2 is taken from a characteristic curve KL2, which influences the influence of the ambient air temperature tu, which is measured by the sensor 9 in the intake manifold 2
Umgebungsluftdruck wiedergibt. Mit den beiden beschriebenen Korrekturmaßnahmen erhält man aus dem vom Verdichterkennfeld KF abgeleiteten Luftdruck sd den tatsächlichen Umgebungsluftdruck ud* . Dieser kann nun im Steuerungsprozeß für die Brennkraftmaschine verwendet werden.Reproduces ambient air pressure. With the two corrective measures described, the actual ambient air pressure ud * is obtained from the air pressure sd derived from the compressor map KF. This can now be used in the control process for the internal combustion engine.
Die Figur 4 zeigt ein Funktionsdiagramm, nach dem die Turbinendrehzahl nt ermittelt werden kann, wenn auf den Sensor 13 verzichtet werden soll. In diesem Fall werden dem Block KF, in dem das Verdichterkennfeld abgespeichert ist, die vom Sensor 10 gemessene Luftmasse Im und das Verhältnis aus dem Ladedruck ld, der auf der Druckseite des Verdichters 5 vom Sensor 8 erfaßt wird, und dem Luftdruck sd auf der Saugseite des Verdichters 5 zugeführt. Mit diesen beiden Größen läßt sich dann aus dem Verdichterkennfeld KF die Turbinendrehzahl nt* ableiten. Das Verhältnis aus dem Ladedruck ld und dem Luftdruck sd auf der Saugseite des Verdichters 5 kann z. B. mittels eines Multiplizierers MP gebildet werden, der den vom Sensor 8 gemessenen Ladedruck ld mit dem vom Block KW gebildeten Kehrwert des Luftdrucks sd auf der Saugseite des Verdichters 5 mulitpliziert .FIG. 4 shows a functional diagram according to which the turbine speed nt can be determined if the sensor 13 is to be dispensed with. In this case, the block KF, in which the compressor map is stored, the air mass Im measured by the sensor 10 and the ratio of the boost pressure ld, which is detected on the pressure side of the compressor 5 by the sensor 8, and the air pressure sd on the suction side of the compressor 5 supplied. With these two sizes, the compressor map KF can then be used Derive turbine speed nt *. The ratio of the boost pressure ld and the air pressure sd on the suction side of the compressor 5 can, for. B. be formed by means of a multiplier MP, which multiples the boost pressure ld measured by the sensor 8 with the reciprocal value of the air pressure sd formed by the block KW on the suction side of the compressor 5.
Der Luftdruck sd auf der Saugseite des Verdichters 5 entspricht eigentlich dem Umgebungsluftdruck ud, der vom Sensor 11 erfaßt wird. Wie bereits im Zusammenhang mit der Figur 3 beschrieben, gibt es aber eine Abweichung zwischen dem gemessenen Umgebungsluftdruck ud und dem Luftdruck sd auf der Saugseite des Verdichters, die auf den vom Luftfilter 12 verursachten Druckabfall und den Einfluß der Umgebungstemperatur auf den Luftdruck sd zurückzuführen ist. Wie schon bei dem Ausführungsbeispiel der Figur 3 werden auch hier die bereits oben beschriebenen Korrekturwerte kl und k2 gebildet, welche die beiden Einflüsse dadurch kompensieren, daß sie in den Verknüpfungspunkten V3 und V4 dem vom Sensor 11 gemessenen Umgebungsluftdruck ud subtraktiv überlagert werden, wobei sich dann der tatsächlich auf der Saugseite des Verdichters 5 vorherrschende Luftdruck sd ergibt.The air pressure sd on the suction side of the compressor 5 actually corresponds to the ambient air pressure ud, which is detected by the sensor 11. As already described in connection with FIG. 3, there is a deviation between the measured ambient air pressure ud and the air pressure sd on the suction side of the compressor, which is due to the pressure drop caused by the air filter 12 and the influence of the ambient temperature on the air pressure sd. As in the exemplary embodiment in FIG. 3, the correction values kl and k2 already described above are formed here, which compensate for the two influences by subtractively superimposing the ambient air pressure ud measured by the sensor 11 in the connection points V3 and V4, in which case then the air pressure sd actually prevailing on the suction side of the compressor 5 results.
Die aus dem Verdichterkennfeld KF, wie anhand der Figuren 3 und 4 beschrieben, hergeleiteten Größen, nämlich der Umgebungsluftdruck ud* und die Turbinendrehzahl nt* können auch zur Fehlerdiagnose eines vorhandenen Sensors 11, der den Umgebungsluftdruck ud mißt, bzw. eines Sensors 13, der die Turbinendrehzahl nt erfaßt, herangezogen werden. Eine solche Fehlerdiagnose kann gemäß dem in Figur 5 dargestellten Funktionsdiagramm ablaufen. Dabei wird mittels eines Subtrahierers DF die Ablage zwischen dem gemessenen Umgebungsdruck ud und dem aus dem Verdichterkennfeld hergeleiteten Umgebungsdruck ud* bzw. zwischen der gemessenen Turbinendrehzahl nt und der aus dem Verdichterkennfeld hergeleiteten Turbinendrehzahl nt* bestimmt. Die Ablage wird einem Schwellwertentscheider SE zugeführt, der diese mit einem Schwellwert S vergleicht, der dem Schwellwertentscheider SE als veränderbare Größe zugeführt wird. Übersteigt die Ablage den vorgegebenen Schwellwert S, so gibt der Schwellwertentscheider SE an seinem Ausgang ein Fehlersignal fe ab, das darauf hindeutet, daß der betreffende Sensor 11 bzw. 8 defekt ist. The variables derived from the compressor map KF, as described with reference to FIGS. 3 and 4, namely the ambient air pressure ud * and the turbine speed nt * can also be used to diagnose the fault of an existing sensor 11, which measures the ambient air pressure ud, or a sensor 13, which the turbine speed nt detected, are used. Such a fault diagnosis can run according to the functional diagram shown in FIG. 5. The subtractor DF is used to determine the offset between the measured ambient pressure ud and the ambient pressure ud * derived from the compressor map or between the measured turbine speed nt and the turbine speed derived from the compressor map nt *. The storage is fed to a threshold value decision SE, which compares it with a threshold value S, which is supplied to the threshold value decision SE as a variable. If the storage exceeds the predefined threshold value S, the threshold value decision SE outputs an error signal fe at its output, which indicates that the sensor 11 or 8 in question is defective.

Claims

Ansprüche Expectations
1. Verfahren zur Bestimmung von Betriebsgrößen einer Brennkraftmaschine mit Turbolader, dadurch gekennzeichnet, daß mit Hilfe eines für den Turbolader (4, 5) erfaßten Verdichterkennfeldes (KF) , welches den Zusammenhang zwischen der Turbinendrehzahl (nt) , dem Verhältnis der Luftdrücke (ld, sd) auf der Druck- und der Saugseite des Verdichters (5) und dem dem Verdichter (5) zugeführten Luftmassenstrom (Im) im Saugrohr (2) angibt, eine dieser Größen bei Vorgabe der anderen Größen hergeleitet wird.1. A method for determining operating variables of an internal combustion engine with a turbocharger, characterized in that with the aid of a compressor map (KF) recorded for the turbocharger (4, 5), which shows the relationship between the turbine speed (nt), the ratio of the air pressures (ld, sd) on the pressure side and the suction side of the compressor (5) and the air mass flow (Im) supplied to the compressor (5) in the intake manifold (2) indicates whether one of these quantities is derived when the other quantities are specified.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß aus dem Verdichterkennfeld (KF) der Umgebungsluftdruck (ud*) bei Vorgabe der Turbinendrehzahl (nt) , des Ladeluftdrucks (ld) und des dem Verdichter (5) zugeführten Luftmassenstroms (Im) ermittelt wird.2. The method according to claim 1, characterized in that the ambient air pressure (ud *) is determined from the compressor map (KF) given the turbine speed (nt), the charge air pressure (ld) and the air mass flow (Im) supplied to the compressor (5) ,
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß dem aus dem Verdichterkennfeld (KF) abgeleiteten Umgebungsluftdruck (ud*) ein Korrekturwert (kl) überlagert wird, der einer Kennlinie (KL1) entnommen wird, die den Zusammenhang zwischen dem Druckabfall an einem im Saugrohr (2) vor dem Verdichter (5) angeordneten Luftfilter (12) und dem nach dem Luftfilter (12) erfaßten Luftmassenstrom (Im) angibt. 3. The method according to claim 2, characterized in that the ambient air pressure (ud *) derived from the compressor map (KF) is overlaid with a correction value (kl) which is taken from a characteristic curve (KL1) which shows the relationship between the pressure drop at an Induction pipe (2) in front of the compressor (5) arranged air filter (12) and the air mass flow (Im) detected after the air filter (12).
4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß dem aus dem Verdichterkennfeld (KF) abgeleiteten Umgebungsluftdruck (ud*) ein Korrekturwert (k.2) überlagert wird, der einer Kennlinie (KL2) entnommen wird, die den Einfluß der Umgebungslufttemperatur (tu) auf den Umgebungsluftdruck (ud) wiedergibt.4. The method according to claim 2, characterized in that from the compressor map (KF) derived ambient air pressure (ud *) a correction value (k.2) is superimposed, which is taken from a characteristic curve (KL2), the influence of the ambient air temperature (tu ) to the ambient air pressure (ud).
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß aus dem Verdichterkennfeld die Turbinendrehzahl (nt*) bei5. The method according to claim 1, characterized in that the turbine speed (nt *) from the compressor map
Vorgabe des Umgebungsluftdrucks (ud) , des Ladeluftdrucks (ld) und des dem Verdichter (5) zugeführten Luftmassenstroms (Im) auf der Saugseite des Verdichters (5) ermittelt wird.Specification of the ambient air pressure (ud), the charge air pressure (ld) and the air mass flow (Im) fed to the compressor (5) is determined on the suction side of the compressor (5).
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß dem gemessenen Umgebungsluftdruck (ud) ein Korrekturwert (kl) überlagert wird, der einer Kennlinie (KL1) entnommen wird, die den Zusammenhang zwischen dem Druckabfall an einem im Saugrohr (2) vor dem Verdichter (5) angeordneten Luftfilter (12) und dem nach dem Luftfilter (12) erfaßten Luftmassenstrom (Im) angibt.6. The method according to claim 5, characterized in that the measured ambient air pressure (ud), a correction value (kl) is superimposed, which is taken from a characteristic curve (KL1), which shows the relationship between the pressure drop at one in the intake manifold (2) before the compressor (5) arranged air filter (12) and the air mass flow (Im) detected after the air filter (12).
7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß dem gemessenen Umgebungsluftdruck (ud) ein Korrekturwert (k2) überlagert wird, der einer Kennlinie (KL2) entnommen wird, die den Einfluß der Umgebungslufttemperatur (tu) auf den Umgebungsluftdruck (ud) wiedergibt.7. The method according to claim 5, characterized in that the measured ambient air pressure (ud), a correction value (k2) is superimposed, which is taken from a characteristic curve (KL2), which reflects the influence of the ambient air temperature (tu) on the ambient air pressure (ud).
8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die aus dem Verdichterkennfeld (KF) hergeleitete Größe (ud*, nt*) zur Diagnose eines Sensors 11, 8) für die gleiche Größe (ud, nt) verwendet wird, indem die Abweichung zwischen der hergeleiteten Größe (ud*, nt*) und der vom Sensor (11, 8) erfaßten Größe (ud, nt) bestimmt wird. 8. The method according to claim 1, characterized in that the derived from the compressor map (KF) size (ud *, nt *) for diagnosis of a sensor 11, 8) for the same size (ud, nt) is used by the deviation between the derived variable (ud *, nt *) and the variable (ud, nt) detected by the sensor (11, 8).
PCT/DE2000/002673 1999-10-21 2000-08-10 Method for detecting operating variables of an internal combustion engine WO2001029386A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19950758.9 1999-10-21
DE19950758 1999-10-21

Publications (1)

Publication Number Publication Date
WO2001029386A1 true WO2001029386A1 (en) 2001-04-26

Family

ID=7926428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/002673 WO2001029386A1 (en) 1999-10-21 2000-08-10 Method for detecting operating variables of an internal combustion engine

Country Status (1)

Country Link
WO (1) WO2001029386A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2821889A1 (en) * 2001-03-12 2002-09-13 Volkswagen Ag Determination of compressor air output temperature of an automobiles turbo-compressor, uses turbo-compressor rotational speed and variation in compressor enthalpy
DE10122293A1 (en) * 2001-05-08 2002-11-21 Audi Ag Method for regulating a boost pressure limitation of a turbocharger in an internal combustion engine as a function of the density of the ambient air
FR2827336A1 (en) * 2001-07-16 2003-01-17 Siemens Ag Method of detecting faults in gas turbine exhaust flow involves determining error values for compressor and turbine stage powers
WO2003046356A2 (en) * 2001-11-28 2003-06-05 Volkswagen Aktiengesellschaft Method for determining the composition of a gas mixture in a combustion chamber of an internal combustion engine with re-circulation of exhaust gas and a correspondingly embodied control system for an internal combustion engine
GB2386689A (en) * 2002-03-19 2003-09-24 Cummins Inc Estimating turbocharger rotational speed
FR2842568A1 (en) * 2002-07-17 2004-01-23 Bosch Gmbh Robert METHOD AND DEVICE FOR MONITORING AN AIR MASS MEASURING APPARATUS
DE10310221A1 (en) * 2003-03-08 2004-09-23 Daimlerchrysler Ag Method for limiting a boost pressure
EP1748174A1 (en) * 2005-07-27 2007-01-31 Renault s.a.s. Method and apparatus for estimating air flow quantity of a vehicle tubocharged engine
WO2007112911A1 (en) * 2006-03-29 2007-10-11 Borgwarner Inc. Method and device for regulating or controlling a compressor of an exhaust gas turbocharger
WO2007117355A1 (en) * 2006-03-30 2007-10-18 Caterpillar Inc. Control system and method for estimating turbocharger performance
ES2292318A1 (en) * 2005-09-27 2008-03-01 Universidad Politecnica De Valencia Method for detecting faults in injection in turbocharger combustion motors, involves detecting signals corresponding to speed of turbo compressor by sensor and analyzing signal to detect faults in injection
WO2008049716A2 (en) * 2006-10-25 2008-05-02 Continental Automotive Gmbh Method for determining the rotational speed of a turbocharger of an internal combustion engine, and internal combustion engine
DE102007030233A1 (en) * 2007-06-29 2009-01-08 Ford Global Technologies, LLC, Dearborn Charged-air mass flow calculating method for intake pipe of e.g. diesel engine, involves detecting speed of turbine using speed sensor, and calculating effective charge-air mass flow in intake pipe using speed and compression ratio
US8393852B2 (en) 2007-04-16 2013-03-12 Continental Automotive Gmbh Turbocharger having a device for detecting a malfunction of the turbocharger and a method for detecting such a malfunction
DE112005001963B4 (en) * 2004-08-13 2015-01-22 Cummins, Inc. Method and device for determining a turbocharger speed
WO2015180939A1 (en) * 2014-05-29 2015-12-03 Delphi International Operations Luxembourg S.À R.L. Method of diagnosing failures in inlet manifold pressure sensors
FR3028565A1 (en) * 2014-11-18 2016-05-20 Renault Sa METHOD FOR DIAGNOSING THE INHIBITION OF AN AIR FILTER EQUIPPED WITH A SUPERIOR INTERNAL COMBUSTION ENGINE
EP3064756A1 (en) * 2015-03-06 2016-09-07 Kabushiki Kaisha Toyota Jidoshokki Method for estimating pressure loss of air cleaner and device for estimating pressure loss of air cleaner

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58211535A (en) * 1982-06-03 1983-12-09 Honda Motor Co Ltd Correction method for quantity of injection of electronic fuel injection controller for internal-combustion engine
DE4032451A1 (en) * 1990-10-12 1992-04-16 Bosch Gmbh Robert Microcomputer controlled equipment monitoring load pressure sensor - assumes fault if deviation is too wide and applies replacement signal for pressure regulation of turbo-charged IC engine
DE4214648A1 (en) 1992-05-02 1993-11-04 Bosch Gmbh Robert SYSTEM FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE
US5377112A (en) * 1991-12-19 1994-12-27 Caterpillar Inc. Method for diagnosing an engine using computer based models
DE19742445C1 (en) * 1997-09-26 1998-11-19 Daimler Benz Ag Engine braking control for turbocharged combustion engine
DE19730578A1 (en) * 1997-07-17 1999-01-21 Bosch Gmbh Robert Method and device for protecting a turbocharger
DE19924274A1 (en) * 1998-05-27 1999-12-02 Cummins Engine Co Inc Turbocharger control system for use in an internal combustion engine e.g. in a motor vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58211535A (en) * 1982-06-03 1983-12-09 Honda Motor Co Ltd Correction method for quantity of injection of electronic fuel injection controller for internal-combustion engine
DE4032451A1 (en) * 1990-10-12 1992-04-16 Bosch Gmbh Robert Microcomputer controlled equipment monitoring load pressure sensor - assumes fault if deviation is too wide and applies replacement signal for pressure regulation of turbo-charged IC engine
US5377112A (en) * 1991-12-19 1994-12-27 Caterpillar Inc. Method for diagnosing an engine using computer based models
DE4214648A1 (en) 1992-05-02 1993-11-04 Bosch Gmbh Robert SYSTEM FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE
DE19730578A1 (en) * 1997-07-17 1999-01-21 Bosch Gmbh Robert Method and device for protecting a turbocharger
DE19742445C1 (en) * 1997-09-26 1998-11-19 Daimler Benz Ag Engine braking control for turbocharged combustion engine
DE19924274A1 (en) * 1998-05-27 1999-12-02 Cummins Engine Co Inc Turbocharger control system for use in an internal combustion engine e.g. in a motor vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 008, no. 061 (M - 284) 23 March 1984 (1984-03-23) *

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2821889A1 (en) * 2001-03-12 2002-09-13 Volkswagen Ag Determination of compressor air output temperature of an automobiles turbo-compressor, uses turbo-compressor rotational speed and variation in compressor enthalpy
US6644029B2 (en) 2001-05-08 2003-11-11 Audi Ag Process for control of boost pressure limitation of a turbocharger in an internal combustion engine as a function of the density of ambient air
DE10122293A1 (en) * 2001-05-08 2002-11-21 Audi Ag Method for regulating a boost pressure limitation of a turbocharger in an internal combustion engine as a function of the density of the ambient air
EP1256702A3 (en) * 2001-05-08 2004-08-11 Audi Ag Process for regulating the turbocharger boost pressure of an internal combustion engine as a function of the ambient air density
DE10134543B4 (en) * 2001-07-16 2006-04-06 Siemens Ag Method for detecting faults in an exhaust gas turbocharger
DE10134543A1 (en) * 2001-07-16 2003-02-13 Siemens Ag Process for the detection of faults in an exhaust gas turbocharger
FR2827336A1 (en) * 2001-07-16 2003-01-17 Siemens Ag Method of detecting faults in gas turbine exhaust flow involves determining error values for compressor and turbine stage powers
EP1701025A3 (en) * 2001-11-28 2006-10-18 Volkswagen Aktiengesellschaft Method for determining the composition of a gas mixture in a combustion chamber of an internal combustion engine with exhaust gas recirculation
WO2003046356A2 (en) * 2001-11-28 2003-06-05 Volkswagen Aktiengesellschaft Method for determining the composition of a gas mixture in a combustion chamber of an internal combustion engine with re-circulation of exhaust gas and a correspondingly embodied control system for an internal combustion engine
US7174713B2 (en) 2001-11-28 2007-02-13 Volkswagen Aktiengesellschaft Method for determination of composition of the gas mixture in a combustion chamber of an internal combustion engine with exhaust gas recirculation and correspondingly configured control system for an internal combustion engine
WO2003046356A3 (en) * 2001-11-28 2004-12-23 Volkswagen Ag Method for determining the composition of a gas mixture in a combustion chamber of an internal combustion engine with re-circulation of exhaust gas and a correspondingly embodied control system for an internal combustion engine
GB2386689B (en) * 2002-03-19 2005-04-13 Cummins Inc A system for and a method of estimating turbocharger rotational speed
GB2386689A (en) * 2002-03-19 2003-09-24 Cummins Inc Estimating turbocharger rotational speed
DE10232337B4 (en) * 2002-07-17 2017-05-11 Robert Bosch Gmbh Method and device for monitoring an air mass measuring device
FR2842568A1 (en) * 2002-07-17 2004-01-23 Bosch Gmbh Robert METHOD AND DEVICE FOR MONITORING AN AIR MASS MEASURING APPARATUS
DE10310221B4 (en) * 2003-03-08 2006-11-23 Daimlerchrysler Ag Method for limiting a boost pressure
DE10310221A1 (en) * 2003-03-08 2004-09-23 Daimlerchrysler Ag Method for limiting a boost pressure
US7260933B2 (en) 2003-03-08 2007-08-28 Daimlerchrysler Ag Method for limiting a boost pressure
DE112005001963B4 (en) * 2004-08-13 2015-01-22 Cummins, Inc. Method and device for determining a turbocharger speed
FR2889253A1 (en) * 2005-07-27 2007-02-02 Renault Sas SYSTEM AND METHOD FOR ESTIMATING THE FRESH AIR SUPPLY RATE OF A MOTOR VEHICLE ENGINE EQUIPPED WITH A SUPER-CHARGING TURBOCHARGER
EP1748174A1 (en) * 2005-07-27 2007-01-31 Renault s.a.s. Method and apparatus for estimating air flow quantity of a vehicle tubocharged engine
ES2292318A1 (en) * 2005-09-27 2008-03-01 Universidad Politecnica De Valencia Method for detecting faults in injection in turbocharger combustion motors, involves detecting signals corresponding to speed of turbo compressor by sensor and analyzing signal to detect faults in injection
WO2007112911A1 (en) * 2006-03-29 2007-10-11 Borgwarner Inc. Method and device for regulating or controlling a compressor of an exhaust gas turbocharger
US7296562B2 (en) 2006-03-30 2007-11-20 Caterpiller Inc. Control system and method for estimating turbocharger performance
WO2007117355A1 (en) * 2006-03-30 2007-10-18 Caterpillar Inc. Control system and method for estimating turbocharger performance
WO2008049716A2 (en) * 2006-10-25 2008-05-02 Continental Automotive Gmbh Method for determining the rotational speed of a turbocharger of an internal combustion engine, and internal combustion engine
WO2008049716A3 (en) * 2006-10-25 2008-06-26 Siemens Vdo Automotive Ag Method for determining the rotational speed of a turbocharger of an internal combustion engine, and internal combustion engine
US8393852B2 (en) 2007-04-16 2013-03-12 Continental Automotive Gmbh Turbocharger having a device for detecting a malfunction of the turbocharger and a method for detecting such a malfunction
DE102007017823B4 (en) * 2007-04-16 2019-10-02 Continental Automotive Gmbh A turbocharger having means for detecting a turbocharger malfunction and a method for detecting such a malfunction
DE102007030233A1 (en) * 2007-06-29 2009-01-08 Ford Global Technologies, LLC, Dearborn Charged-air mass flow calculating method for intake pipe of e.g. diesel engine, involves detecting speed of turbine using speed sensor, and calculating effective charge-air mass flow in intake pipe using speed and compression ratio
WO2015180939A1 (en) * 2014-05-29 2015-12-03 Delphi International Operations Luxembourg S.À R.L. Method of diagnosing failures in inlet manifold pressure sensors
FR3028565A1 (en) * 2014-11-18 2016-05-20 Renault Sa METHOD FOR DIAGNOSING THE INHIBITION OF AN AIR FILTER EQUIPPED WITH A SUPERIOR INTERNAL COMBUSTION ENGINE
EP3064756A1 (en) * 2015-03-06 2016-09-07 Kabushiki Kaisha Toyota Jidoshokki Method for estimating pressure loss of air cleaner and device for estimating pressure loss of air cleaner
JP2016164391A (en) * 2015-03-06 2016-09-08 株式会社豊田自動織機 Pressure loss estimation method of air cleaner and pressure loss estimation device

Similar Documents

Publication Publication Date Title
WO2001029386A1 (en) Method for detecting operating variables of an internal combustion engine
DE4135190C2 (en) Exhaust gas recirculation control device
EP0975942B1 (en) Method and device for monitoring the operation of a pressure sensor
EP0795077B1 (en) Process and device for monitoring a fuel metering system
DE4225198C2 (en) Method and device for controlling the amount of fuel for an internal combustion engine
EP0856097A1 (en) Arrangement for recognizing differences in rpm between two exhaust gas turbochargers
DE10310221A1 (en) Method for limiting a boost pressure
DE19927674B4 (en) Method and device for controlling an internal combustion engine
EP1407128B1 (en) Method and device for monitoring a pressure sensor
DE102004036064A1 (en) Fault detecting method for use in internal combustion engine, involves comparing part of measured pressures and/or air mass flow with corresponding modeling pressures and/or with corresponding modeling mass flow by faultless operation
DE102008040633B4 (en) Method for operating an internal combustion engine
DE10206767A1 (en) Process to determine the atmospheric pressure on the basis of the inlet air pressure in a combustion engine uses mass flow and also detects air filter contamination
DE19750191A1 (en) Procedure for monitoring load determination of IC engine
DE10115750B4 (en) Method and device for controlling and / or diagnosing a mass flow influencing control system
DE19513370B4 (en) Method and device for controlling the power of an internal combustion engine
EP1242739B1 (en) Method for detecting malfunctioning in a sensor
DE10021639C1 (en) Diagnosis of faults in pressure sensors for internal combustion engines involves checking ambient pressure signal plausibility using modeled induction system pressure signal
EP1015747B1 (en) Method and device for regulating a gas flow by means of a throttle valve in an internal combustion engine
DE4333896B4 (en) Method and device for controlling an internal combustion engine
DE19719278A1 (en) Diagnosis method for IC engine exhaust feedback system
DE3438176A1 (en) DEVICE FOR CONTROLLING THE CHARGE PRESSURE OF AN INTERNAL COMBUSTION ENGINE
DE102007050026A1 (en) Method and apparatus for monitoring control circuits in an engine system
DE19954535C2 (en) Method for checking the plausibility of the measured load in an internal combustion engine with variable valve lift control
DE3904412C2 (en) Fuel injection system with devices for detecting faults in the intake area of an engine
DE4219015A1 (en) CONTROL DEVICE WITH EXHAUST GAS RECIRCULATION SYSTEM FOR AN INTERNAL COMBUSTION ENGINE

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP