WO2001028702A1 - Traitement des sediments de riviere contamines dans un four de verrerie - Google Patents

Traitement des sediments de riviere contamines dans un four de verrerie Download PDF

Info

Publication number
WO2001028702A1
WO2001028702A1 PCT/US2000/028027 US0028027W WO0128702A1 WO 2001028702 A1 WO2001028702 A1 WO 2001028702A1 US 0028027 W US0028027 W US 0028027W WO 0128702 A1 WO0128702 A1 WO 0128702A1
Authority
WO
WIPO (PCT)
Prior art keywords
contaminated sediment
furnace
dried
sediment
molten mass
Prior art date
Application number
PCT/US2000/028027
Other languages
English (en)
Inventor
Thomas J. Baudhuin
Original Assignee
Minergy Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minergy Corp. filed Critical Minergy Corp.
Priority to AU80081/00A priority Critical patent/AU8008100A/en
Publication of WO2001028702A1 publication Critical patent/WO2001028702A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/06Reclamation of contaminated soil thermally
    • B09C1/067Reclamation of contaminated soil thermally by vitrification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/20Agglomeration, binding or encapsulation of solid waste
    • B09B3/25Agglomeration, binding or encapsulation of solid waste using mineral binders or matrix
    • B09B3/29Agglomeration, binding or encapsulation of solid waste using mineral binders or matrix involving a melting or softening step
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B1/00Preparing the batches
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/109Glass-melting furnaces specially adapted for making beads
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/005Melting in furnaces; Furnaces so far as specially adapted for glass manufacture of glass-forming waste materials

Definitions

  • the present invention generally relates to the treatment of contaminated sediment, and more particularly to a method and a reactor system for melting contaminated dredged sediment to eliminate hazardous organic substances and to convert the contaminated sediment into a low leaching glass product.
  • Dredged river sediment contaminated with poly-chlorinated biphenyls (PCBs), dioxins, solvents, tars, fuels, and oils poses serious environmental problems, even at low levels of contamination.
  • PCBs poly-chlorinated biphenyls
  • these methods do have disadvantages.
  • one drawback of remediation methods employing landfilling is that toxic agents are never destroyed, only contained, and therefore, the toxic agents remain a possible threat for a long period of time due to potential leakage.
  • Incineration methods also have disadvantages.
  • several types of incineration processes do not achieve an operating temperature sufficient to achieve the level of destruction needed to assure that toxic air emissions are eliminated.
  • An additional concern with incineration processes is that the solid material generated from the incineration process may suffer from high degrees of variability which results in a material having no significant commercial market. Without significant commercial markets available for the material, the material must ultimately be disposed of in a landfill.
  • U.S. Patent Nos. 5,803,894 and 5,855,666 disclose methods of thermochemically transforming contaminated sediment and soils into amorphous silicate materials that may be used in blended cements; and U.S. Patent No. 5,795,285 discloses a system for treating contaminated sediment wherein the sediment is melted in a plasma melter to form a glassy molten mass that is cooled to form a low- leachability product suitable for use as road fill or roofing granules.
  • the remediation methods disclosed in these patents and other similar known methods do have disadvantages. For instance, these methods do not incorporate a drying step prior to melting the contaminated sediment.
  • direct melting of the river sediments can be used in order to treat the contaminated material.
  • This direct melting process can be distinguished from known incineration processes in that the direct melting process can be performed in the absence of, or in the presence of extremely low concentrations of, combustible material.
  • the direct melting process or vitrification process of the present invention involves the heating of contaminated river sediment material to a temperature above 2200°F (1204°C) in which the sediment material becomes a liquid or molten mass. The liquid or molten mass can be water quenched or further processed to make products having commercial applications.
  • a glass furnace is used to melt contaminated river sediment into a molten mass which is cooled into a glassy product.
  • Hazardous organic compounds contained in the contaminated river sediment are destroyed at the high temperatures attained in the glass furnace, and any trace metals in the contaminated river sediment are stabilized on the vitrified glass matrix, so that they cannot leach into the ground water.
  • the contaminated river sediment is dried prior to being fed into the glass furnace in order to reduce the energy requirement and furnace size.
  • the reduced furnace size reduces the initial capital costs of the system.
  • the river sediment drying can be performed using an indirect type of dryer to minimize the amount of energy needed and to minimize the resulting effluent from the dryer off gas.
  • the contaminated river sediment is blended with other additives before being fed into the glass furnace.
  • river sediment inorganic mineral chemistry is highly variable. Variable factors include local geology, sediment particle size characteristics, river speed, and other factors. Sand, clays, limestone, shale, and other materials are the primary constituents of the river sediment. In many cases, the contaminant of environmental concern is of such a small concentration, it has little or no influence whatsoever on the process of drying and/or vitrification. Since the ratio of sand, clay, and limestone can vary from river to river, in river depth, and along river width, the present invention includes a system that allows for testing and batching to provide for a consistent finished product that considers final markets, glass furnace life, and fuel usage. By testing the contaminated river sediment and blending the river sediment with additives in a batch operation, problems associated with excessive melting temperatures, increased gas use, and increased furnace refractory wear can be avoided.
  • Figure 1 A is a schematic flow diagram showing a process in accordance with a first embodiment of the invention
  • Figure 1 B is a schematic flow diagram showing a process in accordance with a second embodiment of the invention.
  • Figure 2 is a schematic drawing showing various components of a reactor system in accordance with the present invention.
  • FIG. 1 A there is shown a schematic flow diagram of a process in accordance with the invention.
  • Incoming contaminated sediment and/or soil such as sediment dredged from a river, is mechanically dewatered by a centrifuge, filter or the like.
  • the dewatered river sediment is then dried in a suitable dryer system to substantially reduce the moisture content of the contaminated sediment.
  • the dried sediment is then tumbled or mixed in order to obtain a homogeneous batch of dried sediment.
  • a suitable mixing system is a rotary batch mixer.
  • samples are obtained from the batch of homogeneous dried sediment and the samples are subjected to physical and chemical analyses to determine the mineral proportions and the total organic compound content of the samples to enable selection of the type and quantities of additives needed for both final product requirements and good furnace operation.
  • Additives such as silica sand, limestone, dolomite, soda ash, cullet, ammonium nitrate, sodium nitrate, mixtures thereof, and other materials, are then added to the batch of homogeneous dried river sediment in order to meet the target chemistry determined in the preceding physical and chemical analyses.
  • the batch of homogeneous dried sediment and any additives are then mixed into a homogeneous feed material.
  • the feed material is then fed into a furnace where the material is heated at a temperature in the range of 2200°F (1204°C) to 2700°F (1482°C) to transform the material into a molten mass. Any organic compounds contained in the feed material are destroyed in the heating process.
  • the molten mass may then be processed in a variety of alternative steps.
  • the molten mass is drained from the furnace into a water bath to quench the molten material and thereby form a glass frit.
  • the glass frit is then recovered from the water bath.
  • the glass frit recovered from the process can be used for various applications including but not limited to construction fill sand, air-blast abrasives, additives to roofing materials, and the like.
  • Figure 1B the molten mass is drawn to form glass fibers, mineral wool, or other useful articles or materials.
  • FIG. 2 there is shown a schematic drawing depicting various components of a reactor system 30 in accordance with the present invention.
  • Mechanically dewatered river sediments containing contaminants, such as PCBs or dioxins, are loaded into a dryer 3.
  • the dryer 3 reduces the moisture content of the river sediments to form a dried material having less than 10% moisture on a weight basis.
  • waste heat from the furnace (described below) may be used in the dryer 3.
  • the dried material then exits the dryer 3 and is transported into a batch silo 4 for temporary storage.
  • the dried material may be transported from the dryer 3 to the batch silo 4 by way of a conduit or may manually transferred to the batch silo 4.
  • the dried material is then fed out of the batch silo 4 (manually or by way of automated material handling equipment) into a weighing device 4A to measure the weight of the portion of dried material to be processed further in the reactor system.
  • the weighed portion of dried material is then transferred (manually or by way of automated material handling equipment) into a batch mixer 8.
  • the dried material is tumbled in the batch mixer 8 until a homogeneous mixture is obtained.
  • the batch mixer 8 is either a rotary drum type or a pan type mixer. A representative sample of the tumbled dried material is obtained
  • Additive silos are provided for storage and delivery of various additives to the tumbled dried material contained in the batch mixer 8.
  • the additive silos 5,6,7 may contain materials such as silica sand, soda ash, dolomite, limestone, or other raw materials necessary to achieve the correct mineral chemistry.
  • one of the additive silos preferably contains an oxidizing agent, such as ammonium nitrate or sodium nitrate, that serves to counter the effects of organic materials and prevent the melting furnace (described below) from operating in a reducing atmosphere.
  • Automated measurement and feeding equipment indicated at 5A, 6A and 7A, is associated with each additive silo 5,6,7 and is used to measure the prescribed amount of each additive and feed the weighed additive into the batch mixer 8.
  • the batch mixer 8 is mounted on a conveying apparatus that serves to move the batch mixer 8 under the automated measurement and feeding equipment, 5A,6A,7A, associated with each additive silo 5,6,7 so that each additive may be charged into the batch mixer 8. The dried material and all additives are then tumbled in batch mixer 8 until a homogeneous mixture is formed.
  • the mixed batch of dried material and additives in the batch mixer 8 is then introduced (manually or by way of automated material handling equipment) into a feed hopper 1 1.
  • the feed hopper 11 continuously or intermittently feeds the mixed dried material and additives into a glass furnace 12 where the dried material and additives are heated to temperatures sufficient to transform the dried material and additives in a molten mass.
  • One type of glass furnace 12 suitable for use in the reactor system 30 is a glass furnace that is used for the production of soda lime glass and is typically used for melting container and window glass.
  • the glass furnace 12 can be provided with a number of measures to improve fuel efficiency.
  • Three preferred forms of the furnace are the recuperative, regenerative, and oxygen fired furnace.
  • the recuperative furnace uses a heat exchanger to continuously exchange heat from the hot exhaust gas of the furnace to the cool combustion supply air for the furnace.
  • the recovered heat reduces the amount of fuel needed to transform the dried materials and additive to a molten mass.
  • the regenerative type furnace consists of two chambers constructed from refractory brick. The brick is stacked in such a way to allow air or gas to pass through the brick. The combustion air and hot exhaust gas flows are reversed periodically to allow cold combustion air to pass alternately through each chamber. This also reduces the amount of fuel needed to transform the dried materials and additive to a molten mass.
  • the oxygen fired furnace uses enriched oxygen rather than air as the source of oxygen for combustion of the fuel. This results in a reduced amount of exhaust gas flow and reduced amount of exhaust heat losses from the furnace. Oxides of nitrogen in the exhaust gas are also significantly reduced by oxygen/fuel firing and heat transfer to the molten mass of dried materials and additives is significantly increased.
  • the reactor system 30 shown in Figure 2 uses an oxygen fired furnace. Gaseous fuel is introduced through conduit 17 to an oxy-fuel burner 19. Oxygen provided through conduit 18 combines in oxy-fuel burner 19 with the fuel gas. The design of the oxy-fuel burner 19 (or multiple burners if desired) is configured to provide the correct heating profile and operating temperatures. Exhaust gases are vented out of the furnace 12 through exhaust stack 20.
  • the molten mass created from the dried materials and additives flows from one end of the glass furnace 12 to the other end.
  • the molten mass may then be processed in a variety of glass forming equipment.
  • the molten mass is drained from the furnace 12 through holes 13 into a water tank 15 and is quenched in a water bath 14.
  • the molten material fractures into a granular frit glass, which is removed from the quench tank through an outlet port 16 in the water tank 15.
  • the water tank 15 is replaced by equipment capable of forming insulating fibers or other useful glass articles.
  • the apparatus and process of manufacturing such fibers or articles is an established art.
  • the present invention provides a method and a reactor system that destroy hazardous organic compounds in contaminated river sediment and soils and that allow for the production of a commercially marketable glass product having a predetermined target chemistry.

Abstract

La présente invention concerne un procédé et un système de réacteur destiné à la fusion de sédiments de dragage contaminés de façon à en éliminer les substances organiques dangereuses, et à convertir ces sédiments contaminés en un matériau faiblement lixiviable. A cet effet, on prend des sédiments et des sols de rivière comprenant essentiellement du matériau inorganique et de faibles quantités de matières combustibles et on les met en fusion par un chauffage à une température d'environ 2200°F (1204°C), ce qui fait que les matériaux sédimentaires donnent une masse liquide ou fondue. Cette masse liquide ou fondue peut être essorée de son eau ou subir des étapes ultérieures de traitement pour donner des produits convenant à des applications commerciales, notamment la réalisation de produits vitreux. Selon un autre aspect de l'invention, les sédiments de rivière contaminés subissent un séchage préalablement à leur introduction dans le four de verrerie de façon à réduire l'énergie nécessaire et les dimensions du four. Selon encore un autre aspect de l'invention, les sédiments de rivière contaminés subissent un test puis sont mélangés à d'autres additifs avant leur introduction dans le four de verrerie. En testant les sédiments de rivière contaminés et en les mélangeant à des additifs, on évite certains problèmes liés au niveau excessif des températures de fusion, l'excès de consommation de gaz et l'usure prématurée des garnitures réfractaire du four.
PCT/US2000/028027 1999-10-19 2000-10-10 Traitement des sediments de riviere contamines dans un four de verrerie WO2001028702A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU80081/00A AU8008100A (en) 1999-10-19 2000-10-10 Processing of contaminated river sediment in a glass melting furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16026399P 1999-10-19 1999-10-19
US60/160,263 1999-10-19

Publications (1)

Publication Number Publication Date
WO2001028702A1 true WO2001028702A1 (fr) 2001-04-26

Family

ID=22576183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/028027 WO2001028702A1 (fr) 1999-10-19 2000-10-10 Traitement des sediments de riviere contamines dans un four de verrerie

Country Status (2)

Country Link
AU (1) AU8008100A (fr)
WO (1) WO2001028702A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1732714A2 (fr) * 2004-03-25 2006-12-20 Geosafe Corporation Appareil et procede de fusion de matieres a traiter
EP2042517A1 (fr) 2002-09-27 2009-04-01 Xencor, Inc. Variantes FC optimisées et leurs procédés de génération
EP2053062A1 (fr) 2004-03-24 2009-04-29 Xencor, Inc. Variantes d'immunoglobine en dehors de la région Fc
EP2221315A1 (fr) 2003-12-04 2010-08-25 Xencor, Inc. Procédés de génération de protéines variantes avec un contenu amélioré de fil hôte et compositions associées
EP2325207A2 (fr) 2004-11-12 2011-05-25 Xencor, Inc. Variants de FC avec une liaison altérée à FCRN
EP2368911A1 (fr) 2003-05-02 2011-09-28 Xencor Inc. Variantes FC optimisées et leurs procédés de génération
EP2471813A1 (fr) 2004-07-15 2012-07-04 Xencor Inc. Variantes optimisées de Fc
WO2013059280A2 (fr) * 2011-10-18 2013-04-25 Minergy Corporation Limited Déshalogénation des minéraux inorganiques avant vitrification
US9556272B2 (en) 2009-11-11 2017-01-31 The Trustees Of The University Of Pennsylvania Anti-TEM1 antibodies and uses thereof
US9783610B2 (en) 2012-04-27 2017-10-10 The Trustees Of The University Of Pennsylvania Anti-tumor endothelial marker-1 (TEM1) antibody variants and uses thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462570A (en) * 1993-01-26 1995-10-31 Dunkirk International Glass And Ceramics Corporation Process for producing an environmentally acceptable abrasive product from hazardous wastes
DE4435166C1 (de) * 1994-09-30 1996-05-23 Justus Goetz Volker Dr Ing Verfahren zur Verglasung von Reststoffen
US5541386A (en) * 1991-01-24 1996-07-30 Irm, L.P. Plasma arc decomposition of hazardous wastes into vitrified solids and non-hazardous gasses
US5795285A (en) * 1995-12-01 1998-08-18 Mclaughlin; David Francis Conversion of contaminated sediments into useful products by plasma melting
US5803894A (en) * 1996-12-24 1998-09-08 Cement-Lock L.L.C. Process for preparing enviromentally stable products by the remediation of contaminated sediments and soils

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541386A (en) * 1991-01-24 1996-07-30 Irm, L.P. Plasma arc decomposition of hazardous wastes into vitrified solids and non-hazardous gasses
US5462570A (en) * 1993-01-26 1995-10-31 Dunkirk International Glass And Ceramics Corporation Process for producing an environmentally acceptable abrasive product from hazardous wastes
DE4435166C1 (de) * 1994-09-30 1996-05-23 Justus Goetz Volker Dr Ing Verfahren zur Verglasung von Reststoffen
US5795285A (en) * 1995-12-01 1998-08-18 Mclaughlin; David Francis Conversion of contaminated sediments into useful products by plasma melting
US5803894A (en) * 1996-12-24 1998-09-08 Cement-Lock L.L.C. Process for preparing enviromentally stable products by the remediation of contaminated sediments and soils

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7429239B2 (en) 2001-09-25 2008-09-30 Geosafe Corporation Methods for melting of materials to be treated
EP3150630A1 (fr) 2002-09-27 2017-04-05 Xencor Inc. Variantes fc optimisées et leurs procédés de génération
EP2364996A1 (fr) 2002-09-27 2011-09-14 Xencor Inc. Variantes FC optimisées et leurs procédés de génération
EP2042517A1 (fr) 2002-09-27 2009-04-01 Xencor, Inc. Variantes FC optimisées et leurs procédés de génération
EP3321282A1 (fr) 2002-09-27 2018-05-16 Xencor, Inc. Variantes fc optimisées et leurs procédés de génération
EP3502133A1 (fr) 2002-09-27 2019-06-26 Xencor, Inc. Variantes fc optimisées et leurs procédés de génération
EP2298805A2 (fr) 2002-09-27 2011-03-23 Xencor, Inc. Variantes FC optimisées et leurs procédés de génération
EP2345671A1 (fr) 2002-09-27 2011-07-20 Xencor Inc. Variantes FC optimisées et leurs procédés de génération
EP2368911A1 (fr) 2003-05-02 2011-09-28 Xencor Inc. Variantes FC optimisées et leurs procédés de génération
EP3838920A1 (fr) 2003-05-02 2021-06-23 Xencor, Inc. Variantes fc optimisées et leurs procédés de génération
EP2221315A1 (fr) 2003-12-04 2010-08-25 Xencor, Inc. Procédés de génération de protéines variantes avec un contenu amélioré de fil hôte et compositions associées
EP2053062A1 (fr) 2004-03-24 2009-04-29 Xencor, Inc. Variantes d'immunoglobine en dehors de la région Fc
EP1732714A4 (fr) * 2004-03-25 2007-05-09 Geosafe Corp Appareil et procede de fusion de matieres a traiter
EP1732714A2 (fr) * 2004-03-25 2006-12-20 Geosafe Corporation Appareil et procede de fusion de matieres a traiter
EP3342782A1 (fr) 2004-07-15 2018-07-04 Xencor, Inc. Variantes optimisées de fc
EP2471813A1 (fr) 2004-07-15 2012-07-04 Xencor Inc. Variantes optimisées de Fc
EP2325207A2 (fr) 2004-11-12 2011-05-25 Xencor, Inc. Variants de FC avec une liaison altérée à FCRN
EP2845865A1 (fr) 2004-11-12 2015-03-11 Xencor Inc. Variantes Fc avec liaison altérée en FcRn
EP2332985A2 (fr) 2004-11-12 2011-06-15 Xencor, Inc. Variants de Fc avec une liaison altérée à fcrn
EP2325206A2 (fr) 2004-11-12 2011-05-25 Xencor, Inc. Variants de FC avec une liaison altérée à FCRN
US9556272B2 (en) 2009-11-11 2017-01-31 The Trustees Of The University Of Pennsylvania Anti-TEM1 antibodies and uses thereof
US11078285B2 (en) 2009-11-11 2021-08-03 The Trustees Of The University Of Pennsylvania Anti-TEM1 antibodies and uses thereof
WO2013059280A2 (fr) * 2011-10-18 2013-04-25 Minergy Corporation Limited Déshalogénation des minéraux inorganiques avant vitrification
WO2013059280A3 (fr) * 2011-10-18 2014-06-05 Minergy Corporation Limited Déshalogénation des minéraux inorganiques avant vitrification
US9783610B2 (en) 2012-04-27 2017-10-10 The Trustees Of The University Of Pennsylvania Anti-tumor endothelial marker-1 (TEM1) antibody variants and uses thereof

Also Published As

Publication number Publication date
AU8008100A (en) 2001-04-30

Similar Documents

Publication Publication Date Title
CA2276022C (fr) Produits sans danger pour l'environnement obtenus par la biorestauration de sediments et de sols contamines
US5803894A (en) Process for preparing enviromentally stable products by the remediation of contaminated sediments and soils
RU2592891C2 (ru) Способ обработки отходов
CA2099985C (fr) Granulat leger obtenu par le traitement des cendres volantes et des boues d'egout
RU2070548C1 (ru) Способ сжигания отходов любого происхождения, содержащих токсичные вещества, и продукт обжига
WO2001028702A1 (fr) Traitement des sediments de riviere contamines dans un four de verrerie
US7017371B2 (en) Method for producing a glass
CN113118181B (zh) 一种危险废物焚烧灰渣协同制备玻璃体及脱碳的方法
Sobiecka Thermal and physicochemical technologies used in hospital incineration fly ash utilization before landfill in Poland
AU626620B2 (en) A process and a device for transferring leachable substances in waste material into gas or leach stable compounds
CN112591767A (zh) 一种高温熔融处理化工废盐的方法
ZA200502879B (en) Treatment of smelting by-products
EP0398298A1 (fr) Procédé pour transformer les boues en surplus des procédés de purification des eaux recyclées civile et/ou industrielles en substances inertes et installation pour la réalisation de ce procédé
WO2006086874A1 (fr) Conversion des revetements de cuve uses en fritte de verre
KR100725662B1 (ko) 열플라즈마를 이용한 소각재와 슬러지가 혼합된 폐기물의 처리방법 및 장치
JP2008272599A (ja) 飛灰の処理方法と処理装置、およびこれを用いた廃棄物焼却施設からの排出物の処理方法と処理装置
JPH11278887A (ja) セメントクリンカーの製造方法
KR20000032282A (ko) 폐기물 처리용 2단 전기아크 용융장치 및 그 방법
DE19520197A1 (de) Verfahren zur Herstellung von Sekundärrohstoffen aus Abfällen
CA2536428A1 (fr) Transformation de revetements de cuve uses en fritte de verre
Batdorf et al. Assessment of selected furnace technologies for RWMC waste
EP0693306A1 (fr) Procédé de fabrication des matières secondaires brutes à partir des déchets
Bishop Characterization of Arsenic-Containing Mining/Smelting Wastes in the Clark Fork Basin, MT and Some Potential Remedial Technologies
MXPA99005986A (en) Environmentally stable products derived from the remediation of contaminated sediments and soils
KR20010096418A (ko) 시멘트 제조의 원료로 제철, 제강 더스트 및무기성슬러지의 사용.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09868295

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP