WO2001027543A1 - Refrigerating cycle - Google Patents

Refrigerating cycle Download PDF

Info

Publication number
WO2001027543A1
WO2001027543A1 PCT/JP2000/006900 JP0006900W WO0127543A1 WO 2001027543 A1 WO2001027543 A1 WO 2001027543A1 JP 0006900 W JP0006900 W JP 0006900W WO 0127543 A1 WO0127543 A1 WO 0127543A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening area
pressure
communication passage
valve body
valve
Prior art date
Application number
PCT/JP2000/006900
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuhiko Suzuki
Shunichi Furuya
Yuji Kawamura
Shunji Muta
Kenji Iijima
Sakae Hayashi
Hiroshi Kanai
Akihiko Takano
Hajime Mukawa
Original Assignee
Zexel Valeo Climate Control Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Valeo Climate Control Corporation filed Critical Zexel Valeo Climate Control Corporation
Publication of WO2001027543A1 publication Critical patent/WO2001027543A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Definitions

  • the present invention refrigerant low critical point as the refrigerant, for example, about the carbon dioxide (C 0 2) refrigeration cycle using the available refrigerant in the supercritical region as such.
  • the pressure control valve controls the pressure on the outlet side of the radiator by a pressure control valve.
  • the pressure control valve is formed in a coolant flow path, and partitions the coolant flow path into an upstream space and a downstream space.
  • the valve body is configured to open the valve port when the displacement member is displaced.
  • the compressor at a low load pressure of the high pressure line is low subcritical region than the critical pressure while the variable capacity During operation, the refrigeration cycle will fluctuate intermittently even during steady-state operation where the compressor discharge rate and the load on the radiator and condenser are constant (environmental conditions are constant). The phenomenon has been confirmed.
  • the main causes are considered as follows. That is, regardless of the diaphragm type expansion device or the bellows type expansion device, the gas sealed in the expansion device expands or contracts according to the refrigerant temperature on the inlet side of the expansion device, and the valve expands or contracts. Since the position of the body is displaced and the position of the valve body is displaced in response to the refrigerant pressure on the inflow side of the expansion device, the charged gas is filled so that the relationship between the refrigerant temperature and the refrigerant pressure has optimal control characteristics. By enclosing, the opening of the expansion device is adjusted to the target opening according to the refrigerant temperature and the refrigerant pressure on the inflow side.
  • the discharge rate is originally low and the expansion device tries to close because the pressure in the high pressure line is relatively low. Work in the direction.
  • the opening degree of the expansion device is stable at a position where the optimum refrigerant pressure P is obtained for a certain refrigerant temperature T, the refrigerant temperature may become T If it is relatively high, the expansion device will close at low load due to the small opening.
  • Variable displacement compressors are designed so that the discharge rate is controlled according to the low pressure, so that the discharge rate is reduced if the low pressure is low, and the discharge rate is increased if the low pressure is high. Therefore, when the amount of refrigerant supplied to the low-pressure line decreases, the discharge amount of the compressor also decreases.
  • the compressor discharge decreases, the operation of reducing the specific volume of the refrigerant by condensing the radiator at low load, in which the cycle operates in the subcritical region, attempts to increase the volume by supplying the refrigerant. Therefore, the refrigerant pressure on the high pressure side does not rise for a while, and the closed state of the expansion device is maintained.
  • the compressor continues to discharge the refrigerant to the high pressure side little by little even in such a state, after a while, as the condensation in the radiator progresses, the area where the radiator actually performs the radiating action gradually decreases. Therefore, the operation of increasing the volume by the refrigerant discharged from the compressor is superior to the operation of reducing the specific volume of the refrigerant by the condensing operation of the radiator, and the high pressure gradually increases. Then, when the high pressure required for the cooling valve is reached, the expansion device opens and the high-pressure refrigerant flows at a stretch to the low-pressure side, and a sudden refrigerant flow occurs in a cycle in which the refrigerant flow has been almost stagnant until now. Flow occurs. It is considered that such a series of operations is repeated thereafter, resulting in intermittently large fluctuations in the cycle.
  • the shape of the valve body is reduced. In any case, it can be adjusted to the desired degree.
  • the movement of the valve element is controlled by the refrigerant. Since it is determined by the temperature and the refrigerant pressure, special consideration is required for adjusting the opening at low load. Nevertheless, the valve element used in the conventional non-electric expansion device has a ball valve as shown in FIGS.
  • the change of the valve opening (opening area of the communication passage) with respect to the high pressure (valve lift) is, as shown in FIG.
  • the valve opening (opening area of the communication passage) is approximately linear with respect to the lift (lift). Since the characteristic indicated by A, the change in the valve opening (opening area of the communication passage) increases as the high-pressure pressure decreases. However, the configuration shown in B is such that the higher the high pressure, the smaller the change in the valve opening (opening area of the communication passage) becomes.
  • a refrigeration cycle includes: a compressor that compresses a refrigerant to make a refrigerant in a high pressure line in a supercritical state according to operating conditions; and a radiator that cools the refrigerant compressed by the compressor.
  • a valve body that changes the opening area of the communication path; and a position of the valve body that is controlled in accordance with a refrigerant condition on the radiator side to change the opening area of the communication path.
  • the opening area fluctuation due to the pressure fluctuation of the high pressure space in the initial stage when the valve body of the expansion device is lifted is reduced, so that the movement of the valve body at low load with low flow rate and low pressure is reduced.
  • the valve can be made insensitive to fluctuation and the opening area of the communication passage may be minimized, that is, if the valve body is of a type that closes the communication passage by sitting on the valve seat, the expansion device is used. The possibility that the valve body easily seats on the valve seat and closes the communication passage can be reduced.
  • the valve body is formed in a shape having a characteristic of reducing the variation of the opening area with respect to the pressure variation of the high-pressure space as the opening area of the communication passage becomes smaller. Is also good.
  • the shape of the valve element such that the smaller the opening area of the communication passage is, the smaller the variation of the opening area in response to the pressure fluctuation of the high-pressure space is, and the communication passage has a through hole having the same diameter from the high-pressure space to the low-pressure space.
  • the valve body has a shape in which the change in the diameter per unit axial direction is continuously reduced from the base to the tip and the rate of decrease in the diameter is gradually increased.
  • the sensing element is capable of obtaining a stroke of the valve element substantially proportional to the high pressure, according to the above-described structure of the valve element, the valve element is Even if the stroke is the same, if the high pressure is low, the amount of change in the valve opening (opening area of the communication passage) with respect to the pressure change is small, and if the high pressure is high, the valve with respect to the pressure change is small.
  • the amount of change in the opening degree (opening area of the communication passage) increases, and the characteristics of the valve opening degree (opening area of the communication passage) with respect to the high-pressure pressure, as shown by the characteristic line in FIG.
  • the above-described configuration for obtaining the characteristics of the expansion device can also be realized by adjusting the shape of the communication passage (ie, the shape of the valve seat) instead of adjusting the shape of the valve body.
  • the shape of the communication passage may be formed such that the smaller the opening area of the passage is, the smaller the variation of the opening area with respect to the variation in pressure of the high-pressure space becomes.
  • the communication passage is configured so that the change in the passage cross-section per unit axial direction is continuously reduced from the high-pressure space to the low-pressure space, and the reduction rate of the passage cross-section is gradually reduced. Conceivable.
  • the communication passage is formed with a through hole having the same diameter from the high-pressure space to the low-pressure space.
  • the valve body is formed in a truncated cone shape in which the change in diameter per unit axial direction is continuously reduced at the same rate as going from the base to the tip, and from the position where the opening area of the communication passage becomes the minimum to the maximum.
  • the valve is being lifted to a certain position Then, even if the tip of the valve body is separated from the opening end of the communication passage, the shape of the valve body and the communication passage is optimized, and the diameter of the valve body is gradually reduced toward the front end.
  • the angle of the included angle between the generatrix of the second conical part and the generatrix of the first conical part is smaller than the angle of the included angle with the generatrix of the first conical part.
  • the angle of the included angle between the axis of the communication passage and the axis of the valve body is the angle between the axis of the valve body and the generatrix of the second conical portion.
  • the configuration may be such that it can abut on the transition from the road to the second conical road.
  • valve body has a first surface formed with a predetermined angle between the axis of the valve body and an axis thereof, and a first surface formed following the first surface further from the first surface and an axis of the valve body. Forming a second surface having an included angle formed at an angle smaller than the first surface, the characteristics of the expansion device, and the pressure of the high-pressure space at an early stage when the valve element is lifted. The variation of the entrance area with respect to the variation may be reduced.
  • the valve body is provided with a guide piece that is continuously inserted into the communication passage even when the valve is lifted, thereby adjusting the maximum opening area of the communication passage. May be cut in the axial direction to form a guide surface, and a guide receiving surface for receiving the guide surface may be formed in the communication passage for positioning.
  • the first surface of the valve body is connected to the end of the communication passage. Even if the position of the valve body where the opening area is minimized is determined by seating on the valve seat formed in the above, a stopper which is displaced integrally with the valve body is provided, and the opening area is minimized by the stopper.
  • the position of the valve element may be specified.
  • FIG. 1 is a diagram showing a configuration example of a refrigeration cycle according to the present invention.
  • FIG. 2 is an enlarged sectional view of an expansion device used in the refrigeration cycle shown in FIG.
  • FIG. 3 is an enlarged sectional view showing the vicinity of the valve body and the communication passage shown in FIG.
  • FIG. 4 is a characteristic diagram showing a change in a valve opening (opening area of a communication passage) with respect to a high pressure (valve lift) of the expansion device according to the present invention.
  • FIG. 5 is a sectional view showing another example of the expansion device.
  • FIG. 6 is an enlarged sectional view showing the vicinity of the valve body and the communication passage shown in FIG.
  • FIG. 7 shows yet another configuration example, and is an enlarged sectional view showing the vicinity of a valve body and a communication passage.
  • FIG. 8 shows yet another configuration example, and is an enlarged perspective view showing the vicinity of a valve body and a communication passage.
  • FIG. 9 is an enlarged sectional view showing the vicinity of the valve body and the communication passage shown in FIG.
  • FIG. 10 is a characteristic diagram showing a change in an opening area of a communication passage with respect to a valve lift of an expansion device.
  • FIG. 11 shows yet another configuration example, and is an enlarged perspective view showing the vicinity of a valve body and a communication passage.
  • FIG. 12 is an enlarged cross-sectional view showing the vicinity of the valve element and the communication passage shown in FIG. 11, in which the lifted state of the valve element is indicated by a solid line, and the state in which the valve element is seated on a valve seat is indicated by a broken line.
  • FIG. 13 is a diagram for explaining the included angle of each part of the valve body and the communication passage shown in FIG.
  • FIG. 14 shows yet another configuration example, and is an enlarged perspective view showing the vicinity of a valve body and a communication passage.
  • FIG. 15 is an enlarged cross-sectional view showing the vicinity of the valve body and the communication passage shown in FIG. 14, wherein the lifted state of the valve body is shown by a solid line, and the state where the valve body is seated on the valve seat is shown by a broken line. Show.
  • FIG. 16 is a view for explaining the included angle of each part of the valve element shown in FIG.
  • FIG. 17 shows yet another configuration example, and is an enlarged perspective view showing the vicinity of a valve body and a communication passage.
  • Fig. 18 is an enlarged sectional view showing the vicinity of the valve element and the communication passage shown in Fig. 17, and shows a state in which the valve element is lifted by a solid line, and a state in which the valve element is seated on a valve seat by a broken line. Show.
  • FIG. 19 shows yet another configuration example, and is an enlarged perspective view showing the vicinity of a valve body and a communication passage.
  • FIG. 20 is a perspective view showing only the stopper of FIG.
  • Fig. 21 is an enlarged cross-sectional view showing the vicinity of the valve element and the communication passage shown in Fig. 19, in which the lifted state of the valve element is indicated by a solid line, and the state in which the valve element is seated on a valve seat is indicated by a broken line. Show.
  • FIG. 22 is a characteristic diagram showing a change in a valve opening degree (opening area of a communication passage) of a communication passage with respect to a high pressure (valve lift) of a conventional expansion device.
  • a refrigeration cycle 1 includes a compressor 2 for compressing a refrigerant and a compressor 2 for cooling the refrigerant.
  • Heater 3 Internal heat exchanger 4 for exchanging heat between high-pressure line and low-pressure line 4, Expansion device 5 for depressurizing refrigerant 5, Evaporator 6 for evaporating and evaporating refrigerant, Evaporator 6 for evaporating refrigerant It has an accumulator 7 for liquid separation.
  • the discharge side (D) of the compressor 2 is connected to the high pressure passage 4a of the internal heat exchanger 4 via the radiator 3, and the outlet side of the high pressure passage 4a is connected to the expansion device 5,
  • a high-pressure line 8 is used as a path from the discharge side of the compressor 2 to the expansion device 5.
  • the outlet side of the expansion device 5 is connected to the evaporator 6, and the outlet side of the evaporator 6 is connected to the low-pressure passage 4 b of the internal heat exchanger 4 via the accumulator 7.
  • the outflow side of the low-pressure passage 4 b is connected to the suction side (S) of the compressor 2, and the path from the outflow side of the expansion device 5 to the compressor 2 is a low-pressure line 9.
  • a low critical point refrigerant as a refrigerant For example, carbon dioxide (C 0 2) is used and refrigerant compressed by the compressor 2, radiator 3 as a high-temperature high-pressure refrigerant
  • the heat is radiated and cooled here.
  • the internal heat exchanger 4 exchanges heat with the low-temperature refrigerant flowing out of the evaporator 6 to be further cooled and sent to the expansion device 5 without being liquefied.
  • the pressure is reduced in the expansion device 5 to become a low-temperature and low-pressure wet steam, and heat exchange with the air passing therethrough in the evaporator 6 to become gaseous, and thereafter, the high-pressure line 8 in the internal heat exchanger 4. It is heated by exchanging heat with the high-temperature refrigerant and returned to the compressor 2.
  • the expansion device 5 communicates with the high-pressure passage 4 a of the internal heat exchanger 4 in the housing 10 (communicates with the radiator side) and communicates with the high-pressure space 11 and the evaporator 6.
  • a low-pressure space 12 is defined by a partition wall 13, and a communication path 14 having a circular cross section having a predetermined diameter is formed in the partition wall 13 from the high-pressure space 11 to the low-pressure space 12.
  • the high-pressure space 11 accommodates a pressure-reducing control valve 15.
  • the valve 15 is joined to a valve element 17 seated on a valve seat 16 formed on the peripheral edge of the opening that opens into the high-pressure space 11 of the communication path 14, and is joined to the valve element 17 to form an integral body.
  • the bellows 18 is filled with a predetermined amount of sealing gas.
  • the opening pressure of the pressure-reducing control valve 15 and the movement of the valve element 17 are adjusted by changing the amount of gas and the type of gas sealed inside the bellows 18. Is responsive to the refrigerant pressure of the high-pressure space 11 divided by the refrigerant temperature. As shown in FIG. 3, the diameter of the valve element 17 changes continuously from its base to its tip.
  • the needle valve has a shape that gradually increases the rate of decrease in diameter, so that the smaller the opening area of the communication passage 14 becomes, the smaller the fluctuation of the opening area with respect to the pressure fluctuation of the high-pressure space 11 becomes. It is configured.
  • the radius of curvature is It may be a curve that changes continuously (decreases gradually) from the base to the tip.
  • the stroke amount of the valve element 17 is proportional to the refrigerant pressure in the high-pressure space 11.
  • the opening area of the communication passage 14, that is, the substantial opening area of the communication passage 14 can be exponentially increased as shown by the solid line in FIG.
  • the change in the area, that is, the change in the substantial opening area of the communication path 14 becomes smaller as the high pressure is lower, and becomes larger as the high pressure is higher.
  • the lower the high-pressure pressure the slower the fluctuation of the valve opening (opening area of the communication passage). Therefore, even in the case of using a variable capacity type in which the capacity is controlled and operating this cycle in a low load range where the cycle operates in a subcritical region where the high pressure is lower than the critical pressure, The possibility that the valve element 17 easily seats on the valve seat 16 and closes the communication passage 14 can be reduced, and therefore, the low pressure and the discharge amount of the compressor 2 can be significantly reduced. This can suppress the phenomenon that the refrigeration cycle 1 causes intermittent large fluctuations, and stabilize the cooling capacity at low load.
  • the above configuration has the characteristic that the smaller the opening area of the communication passage 14 with the shape of the valve element 17, the smaller the variation of the valve opening (opening area of the communication passage) with respect to the pressure fluctuation of the high-pressure space 11.
  • the shape of the communication passage 14, that is, the shape of the valve seat 16, may have the same characteristics.
  • FIG. 5 An example of the configuration is shown in FIG. 5, and the inflator 5 shown here has a valve body 17 that moves integrally with the bellows 18 as shown in FIG.
  • the shape of the communication passage 14 is gradually reduced as the shape of the communication passage 14 moves from the high-pressure space 11 to the low-pressure space 12.
  • the middle part of the communication path 14 where the diameter of the passage cross section is equal to the diameter of the valve element 17 is defined as a valve seat 16 on which the valve element 17 is seated.
  • the curvature radius is from the high-pressure space 11 to the low-pressure space. It may be a curve that changes continuously (increases gradually) toward 12. Since other configurations are the same as those of the above configuration example, the same portions are denoted by the same reference numerals and description thereof will be omitted. Even in such a configuration, the distance between the valve element 17 and the valve seat 16 increases exponentially as the valve element 17 moves away from the valve seat 16. As shown by the solid line in FIG.
  • the change in the opening area of the communication passage 14 with respect to the change in the refrigerant pressure of the refrigerant i.e., the change in the substantial opening area of the communication passage 14 becomes higher as the opening area of the communication passage 14 becomes smaller. It is possible to provide a characteristic that reduces fluctuations in the degree of reliability (opening area of the communication passage) with respect to fluctuations in the refrigerant pressure in the space 11.
  • FIG. 7 shows another configuration example.
  • the communication passage of the expansion device 5 shown here gradually reduces the diameter of the communication passage 14 from the high-pressure space 11 to the low-pressure space 12, and
  • the configuration example of FIG. 6 is that the reduction rate of the diameter is reduced toward the low-pressure space 12 so that the reduction rate of the cross section of the communication passage 14 is reduced toward the low-pressure space 12.
  • the valve element 17, which moves integrally with the bellows is formed in the shape of a truncated cone whose straight line is the generatrix. That is, the valve element 17 is formed in a shape in which the diameter continuously decreases at an equal rate from the base to the tip.
  • the middle portion of the communication passage 14 where the diameter of the passage cross section is equal to the tip diameter of the valve body 17 is defined as a valve seat 16 on which the valve body 17 is seated.
  • the bus / 5 of the communication passage 14 is a curve having a constant radius of curvature from the high pressure space 11 to the low pressure space 12 of the communication passage 14, the radius of curvature is from the high pressure space 11 to the low pressure space 1.
  • the curve may be a curve that changes continuously (increases gradually) toward 2. Further, since other configurations are the same as those of the above-described configuration example, the same portions are denoted by the same reference numerals and description thereof is omitted.
  • the fluctuation of the valve opening (opening area of the communication passage) can be made more gentle in a region where the high-pressure pressure is low, so that the compressor 2 has a low pressure.
  • the expansion device 5 The possibility that the valve element 17 easily seats on the valve seat 16 to close the communication passage 31 can be further reduced, and the remarkable decrease in low pressure and the discharge amount of the compressor 2 can be suppressed. As a result, fluctuations in the refrigeration cycle 1 that occur intermittently can be suppressed, and the cooling capacity at low load can be stabilized.
  • the valve element lifts from the position where the opening area of the communication passage becomes the smallest, and when the valve element lifts in the direction to increase the opening area of the communication passage, the communication with the pressure fluctuation in the high-pressure space starts. If the variation in the opening area of the passage can be reduced, the variation in the cycle can be suppressed.
  • the needle-shaped valve element shown in FIG. 7 is formed to have a predetermined diameter as shown in FIGS. 8 and 9, instead of the conventionally used ball valve. It may be used for the communication path 14.
  • the configuration shown in FIGS. 8 and 9 is such that the valve element 17 moving integrally with the bellows gradually reduces its diameter toward the tip and makes the bus bar straight.
  • the communication path 14 is separated from the end of the communication path 14 by a predetermined lift or more. In this example, when the diameter of the communication passage is about 2.0 mm, and the total lift amount of the valve body 17 is about 1.0 mm, the valve body 17 is located at the open end of the communication passage 14.
  • valve seat 17 With the valve seat 17 lifted by about 0.4 mm from being seated on the formed valve seat 16, the bottom surface of the valve element 17 coincides with the open end face of the communication passage 14, and further from the open end face. It is about 6 mm apart.
  • Other configurations are the same as those described above. Therefore, the same reference numerals are given to the same portions, and the description will be omitted.
  • the stroke amount of the valve element 17 is equal to the refrigerant pressure in the high-pressure space 11.
  • the pressure in the high pressure space is lower than the characteristic shown by the ball valve (I line shown by the broken line in FIG. 10).
  • the fluctuation of the opening area with respect to the pressure fluctuation of the high-pressure space becomes smaller.
  • the characteristic becomes as shown by the solid line (II line) in FIG. 10 which reaches the opening area corresponding to the passage cross section of the communication passage 17.
  • the horizontal axis represents the lift amount of the valve element (the opening area of the communication passage 14). Is the amount of lift from the position where is the minimum).
  • the expansion device 5 having such a valve body configuration when the expansion device 5 having such a valve body configuration is used, the fluctuation of the valve opening (opening area of the communication passage) in the region where the high pressure is low is more than that in the case where the conventional ball valve is used. Therefore, a variable capacity compressor whose capacity is controlled by the pressure of the low pressure line is used as the compressor 2 and this cycle is operated in a subcritical region where the high pressure is equal to or lower than the critical pressure. Therefore, even when operating in a low load range, the risk that the valve element 17 of the expansion device 5 easily seats on the valve seat 16 and closes the communication passage 31 can be further reduced. By suppressing a remarkable decrease and a remarkable decrease in the discharge amount of the compressor 2, fluctuations of the refrigeration cycle 1 that occur intermittently can be reduced, and the cooling capacity under a low load can be stabilized.
  • the lift amount until the degree of consideration (opening area of the communication passage) is maximized can be increased, the amount of refrigerant flowing to the low pressure side via the expansion device can be reduced accordingly. If the amount of the refrigerant passing through the expansion device 5 can be reduced, the valve opening time of the expansion device 5 can be lengthened, and the fluctuation due to hunting can be reduced as the valve opening time increases. From this point of view, it is difficult to further improve the characteristics of the opening area by improving only the valve 17, so that the shape of both the valve 17 and the communication passage 14 is optimal. Therefore, a combination of the valve body 1 and the communication passage 14 as shown in FIGS. 11 to 13 is considered.
  • the valve element 17 has a first conical portion 20 whose diameter gradually decreases toward the distal end, and is formed continuously from the first conical portion 20 on the distal end side and gradually toward the distal end.
  • the second conical portion 21 with respect to the axis of the valve element 17 and the generatrix of the second conical portion 21 are provided.
  • the angle of the included angle a is formed smaller than the angle of the included angle formed by the generatrix of the first conical portion 20 with respect to the axis of the valve element 17.
  • the communication path 14 is formed following the first conical path 22, which opens into the high-pressure space 11 and gradually decreases in diameter as the distance from the high-pressure space 11 decreases.
  • a second conical path 23 whose diameter gradually decreases toward the low-pressure space 12.
  • the second conical path 23 gradually decreases in diameter toward the low-pressure space 12. 2 cones
  • the angle d of the included angle with the bus of the path 23 is formed smaller than the angle d of the included angle with the bus of the first conical path 22 with respect to the axis of the communication path 14.
  • the transition from the second conical path 23 to the second conical path 23 is a valve seat 16 on which the transition from the first conical part 20 to the second conical part 21 of the valve element 17 is seated.
  • the relationship between hi, ⁇ , a, and 6 is defined as hi ⁇ ?>A> 5.
  • the expansion device 5 having such a valve body configuration when used, the fluctuation of the valve opening (opening area of the communication passage 14) in the initial region of the lift where the high pressure is reduced is shown in FIG. Like the valve body, it can be made dull, and the time until the opening area of the communication passage 14 becomes fully open can be lengthened, so that the capacity of the compressor 2 is controlled by the pressure of the low pressure line. Even when a variable displacement type is used and this cycle is operated in a low load region where the high pressure is operated in a subcritical region where the high pressure is equal to or lower than the critical pressure, the valve element 17 of the expansion device 5 has the valve seat 1. 6 can be further reduced, and the risk of blockage of the communication passage 3 1 can be further reduced, and the refrigeration cycle 1 Strange The cooling capacity can be stabilized at low load.
  • FIGS. 14 to 16 show another example of the structure of the valve element 17 and the communication path 14.
  • the valve element 17 has a pinch angle (an inclination with respect to the axis) formed with its axis. Angle) is formed at a predetermined angle (01) with the first surface 30 and the axis of the valve element 17 that is formed continuously from the first surface 30 on the distal end side. And a second surface 31 having an included angle (inclination angle with respect to the axis) larger than the first surface 30 at an angle (0 2).
  • a first surface 30 that is flatly cut at an inclination of 01 with respect to the axis from one point around the base end is formed on a columnar material
  • the second surface 31 cut into a flat shape at an inclination of 2 is formed following the first surface 30 from the middle to the tip of the valve element 17.
  • a guide surface 32 formed by pressing in a shape is formed.
  • the communication passage 14 has a passage cross section having substantially the same shape as a cross section cut by a plane passing through the middle of the first surface 30 of the valve element 17 and perpendicular to the axis.
  • the edge of the open end facing the first surface 30 is a valve seat 16. Therefore, the valve element 17 is seated on the valve seat 16 in the middle of the first surface 30 to close the communication path 14.
  • the communication passage 14 receives the guide surface 32 of the valve element 17, so that the guide receiving surface 33 for positioning the valve body 1 ⁇ in the communication passage 14 is aligned with the axis of the communication passage 14. It is formed along.
  • 01 is set to about 20 degrees
  • the cross-sectional area of the communication path 14 is set to be approximately the same as a hole having a diameter of about 1.5 to 3.0 mm.
  • the stroke amount of the valve element 17 is almost proportional to the refrigerant pressure of the high-pressure space 11, so that the valve element 17 separates from the valve seat 16.
  • the opening area characteristic is determined by the first surface 30, and the fluctuation of the valve opening (opening area of the communication passage) with respect to the pressure fluctuation (change of valve lift) in the high-pressure space becomes small.
  • the second surface 31 reaches the open end face of the communication passage, the fluctuation in the degree of instinct (opening area of the communication passage) with respect to the pressure fluctuation in the high-pressure space (change in valve lift) becomes large.
  • the opening area is increased up to the opening area corresponding to the passage cross section of FIG. 14, and it is possible to obtain the characteristics shown by the solid line (II line) in FIG. Therefore, when the expansion device 5 having such a valve element configuration is used, the valve element 17 is lifted in a region where the high pressure is reduced, that is, in a direction in which the opening area of the communication passage 14 is increased. In the initial stage, the fluctuation of the valve opening (opening area of the communication passage) with respect to the pressure fluctuation of the high-pressure space (change of valve lift) can be reduced, so that the capacity of the compressor 2 is reduced by the pressure of the low-pressure line.
  • valve element 1 of the expansion device 5 can be used. 7 can easily seat on the valve seat 16 and block the communication passage 31 even further, and intermittently occurs by suppressing a remarkable decrease in low pressure and a remarkable decrease in the discharge amount of the compressor 2. It is possible to suppress fluctuations in frozen cycle 1. Becomes ability, the cooling capacity at a low load current can be stabilized.
  • valve element 17 it is possible to adjust the opening area characteristic by processing the first surface 30. That is, according to the above-described configuration, an example in which the first surface 30 is formed flat has been described. However, the inclination angle (0 1) of the first surface 30 may be changed, or the first surface 30 may be changed. By forming 30 on a curved surface, etc., the pressure fluctuation in the high-pressure space at the beginning of the lift of the valve element 17 (valve lift) The change of the valve opening (opening area of the communication passage) with respect to the change of the valve can be set to a desired characteristic.
  • FIGS. 14 to 16 The configuration shown in FIGS. 14 to 16 described above is an example in which the valve 17 is lifted until the valve 17 is separated from the opening end face of the communication passage 14, but the valve 17 is lifted In this case, a guide piece continuously inserted into the communication passage may be provided on the valve element 17.
  • FIGS. 17 and 18 An example of such a configuration is shown in FIGS. 17 and 18.
  • a guide piece 35 extends from the tip of the face 31 in the axial direction of the valve element 17, and the guide face 32 extends behind the guide piece 35 to the tip of the guide piece 35.
  • the guide surface 32 is always in contact with the guide receiving portion 33 formed with the communication passage 14 regardless of the lift of the valve 17. ing.
  • Other configurations are the same as those shown in FIGS. 14 to 16, and therefore, the same portions are denoted by the same reference numerals and description thereof will be omitted.
  • the guide piece 35 inserted into the communication path 14 defines the maximum opening area of the communication path 14, and in this example, the maximum opening area is 1.5 to 3.0 mm in diameter. It is set to be about the same as a hole of about mm.
  • the first and second surfaces 30 and 31 define the opening area characteristics of the valve element 17 with respect to the lift.
  • the stroke amount of the valve 17 is almost proportional to the refrigerant pressure in the high-pressure space 11.
  • the opening area characteristics are determined by the first surface 30, and the valve opening degree (pressure change) with respect to the pressure fluctuation (change in valve lift) of the high-pressure space 11 is determined.
  • the opening area of the passage decreases, and then the second surface becomes the open end surface of the communication passage.
  • the valve opening degree opening area of the communication passage
  • the compressor 2 is of a variable capacity type whose capacity is controlled by the pressure of the low pressure line as the compressor 2, and this cycle is performed in a subcritical region where the high pressure is equal to or lower than the critical pressure.
  • the maximum opening area is a portion of the passage cross-section of the communication passage 14 excluding the portion occupied by the guide pieces 35, so that the portion occupied by the guide pieces 35 ( By adjusting the cross section of the guide piece, it is possible to adjust the opening area when fully opened.
  • the valve body 17 By the way, according to the above-described valve body structure, the position at which the opening area of the communication passage 14 is minimized by bringing the valve body 17 into contact with the valve seat 16 provided at the opening end of the communication passage 14.
  • the valve opening by adjusting the amount of insertion into the communication passage 14 of the valve body without providing a valve seat, the valve opening (communication Similarly, the opening area characteristics may be obtained by a spool type valve element that adjusts the opening area of the road. For example, to construct a spool-type valve structure using the valve element 17 shown in FIG. 17, as shown in FIG. 19, as shown in FIG. It is preferable that the valve body 17 be formed in accordance with the shape of the base end of the valve element 17 so that the opening area of the communication passage 14 can be minimized by the stopper 36.
  • the stopper 36 is formed, for example, in a cylindrical shape that is fixed integrally with the valve element 17 and is displaced with the movement of the valve element 17, and the valve element 17 enters the communication path 14.
  • the partition wall 13 is configured to abut around a portion where the communication passage 14 is opened to prevent further displacement of the valve element 17.
  • a notch is formed at an appropriate position on the side wall so that the flow of the refrigerant is not blocked. 7 should be formed.
  • the other configuration is the same as the configuration of the valve element shown in FIG. 17, and the same portions are denoted by the same reference numerals and description thereof will be omitted.
  • the opening area of the communication passage 14 is closed.
  • the movement of the valve element, that is, the position at which the opening area of the communication passage 14 is minimized is determined by the stop horn 36, so that the lower limit value of the included angle of the valve element 17, that is, The valve body shown in the figure can be freely set without considering the lower limit value of the included angle (inclination angle with respect to the axis) between the first surface 30 and the axis.
  • the non-electric type expansion device including the sensing element whose movement of the valve body is controlled according to the refrigerant condition on the radiator side has the smallest opening area of the communication path.
  • the valve body of the expansion device is made to have a characteristic of reducing the fluctuation of the opening area of the communication path due to the pressure fluctuation of the high-pressure space.
  • the communication path that connects the high pressure space and the low pressure space of the expansion device is formed. The characteristic of the valve opening area with respect to the high pressure is shown by the characteristic line in Fig.
  • the communication passage is formed as a through-hole having the same diameter from the high-pressure space to the low-pressure space, and the change in the diameter per unit axial direction is continuously changed at an equal rate from the base to the tip of the valve body. It is formed in a shape of a truncated cone, and the tip of the valve is separated from the open end of the communication passage while the valve is lifted from the position where the opening area is minimum to the position where it is maximum. Therefore, or alternatively, gradually reduce the diameter of the valve body toward the tip A first conical portion, and a second conical portion that is formed on the distal end side of the first conical portion and gradually decreases in diameter toward the distal end.
  • the angle of the included angle between the bus line of the conical portion and the axis of the valve body is smaller than the angle of the included angle between the bus line of the first conical portion and the communication passage.
  • a first conical path formed at an angle larger than the angle of the included angle between the axis of the valve body and the generatrix of the first conical portion; and an axis of the communication passage formed following the first conical path and formed with the first conical path.
  • a second conical path in which the angle of the included angle is smaller than the angle of the included angle between the axis of the valve body and the generatrix of the second conical portion.
  • the valve body has a first surface formed with a predetermined angle between the axis and the axis thereof, and a first surface formed further from the first surface than the first surface and formed with the axis of the valve body.
  • the fluctuation of the valve opening can be reduced, and at low load where the valve opening (opening area of the communication passage) decreases, the expansion device can be easily closed due to pressure fluctuation. Avoid inconveniences that occur intermittently Flip obtain low load cycle variations occur difficulty comb at the time, the cooling capacity at a low load current can be stabilized with.
  • the communication passage may be provided. Maximum opening area without changing the shape of the communication passage It is also possible to cut the side surface of the valve body in the axial direction to form a guide surface, and to form a guide receiving surface for receiving this guide surface in the communication passage. If this is the case, it becomes possible to easily position the valve element.
  • the valve body having the first surface and the second surface the valve having the smallest opening area by seating the first surface of the valve body on the valve seat formed at the end of the communication passage.
  • a stopper that displaces integrally with the valve body is provided, and the stopper defines the position of the valve body that minimizes the opening area. It is possible to adopt a type of seating on a valve seat or a spool type valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

An expansion device (5) in a refrigerating cycle having a characteristic for reducing a variation in opening area relative to a pressure fluctuation in a high pressure space at the beginning of lifting of a valve disc from a position where an opening area of a communication path becomes minimum, wherein the valve disc (17) may be formed in a shape with such a characteristic that a variation in valve opening relative to a pressure fluctuation in the high pressure space (11) becomes smaller as the opening area of the communication path (14) becomes smaller or, in place of adjusting the shape of the valve disc (17), the valve disc (17) may be formed in such a shape that a variation in valve opening relative to a pressure fluctuation in the high pressure space (11) becomes smaller as the opening area of the communication path (14) becomes smaller, whereby an intermittent variation in cycles at a low load can be avoided in a refrigerating cycle using a refrigerant with low critical point such as CO2.

Description

明 細 書 冷凍サイクル 技術分野  Description Refrigeration cycle technical field
この発明は、 冷媒として臨界点の低い冷媒、 例えば、 二酸化炭素 (C 0 2 ) 等のように超臨界域で使用可能な冷媒を用いた冷凍サイクルに関 する。 背景技術 The present invention, refrigerant low critical point as the refrigerant, for example, about the carbon dioxide (C 0 2) refrigeration cycle using the available refrigerant in the supercritical region as such. Background art
二酸化炭素 (C 0 2 ) を冷媒とする冷凍サイクルとして、 特開平 9一 2 6 4 6 2 2号公報に開示される構成が知られている。 これは、 圧力制 御弁によって放熱器の出口側圧力を制御するもので、 圧力制御弁は、 冷 媒流路内に形成され、 前記冷媒流路を上流側空間と下流側空間とに仕切 る隔壁部と、 この隔壁部に形成され、 前記上流側空間と前記下流側空間 とを連通させる弁口と、 前記上流側空間内に密閉空間を形成し、 前記密 閉空間内外の圧力差に応じて変位する変位部材と、 前記弁口を開閉する 弁体部とを備え、 前記変位部材は、 前記上流側空間内圧力が前記密閉空 間内圧力より所定量大きくなったときに変位し、 前記弁体部は前記変位 部材が変位した時に前記弁口を開くように構成したものである。 As a refrigeration cycle using carbon dioxide (C 0 2 ) as a refrigerant, a configuration disclosed in Japanese Patent Application Laid-Open No. Hei 9-246462 is known. The pressure control valve controls the pressure on the outlet side of the radiator by a pressure control valve. The pressure control valve is formed in a coolant flow path, and partitions the coolant flow path into an upstream space and a downstream space. A partition wall portion, a valve port formed in the partition wall portion, for communicating the upstream space and the downstream space, and a closed space formed in the upstream space, in response to a pressure difference between the inside and outside of the closed space. A displacement member that displaces the valve port, and a valve body that opens and closes the valve port. The displacement member is displaced when the pressure in the upstream space becomes larger than the pressure in the closed space by a predetermined amount. The valve body is configured to open the valve port when the displacement member is displaced.
このような圧力制御弁によれば、 放熱器の出口側圧力が増大した場合 には、 密閉空間の内部に封入された冷媒の圧力との差圧によって変位部 材が変位して弁体部を弁口を開口する方向に移動させるので、 出口側圧 力を低下させ、 また、 放熱器の出口側の冷媒温度が高い場合には、 前記 密閉空間内の冷媒が膨張することにより前記変位部材が変位して弁体部 を弁口を閉める方向に移動させるので、 放熱器の出口側圧力が上昇し、 圧縮機の圧縮仕事を増加させることなく、 放熱器の出口側圧力を増加さ せることができ、 もって冷凍サイクルの成績係数の悪化を抑制しつつ冷 却能力を確保することができるとされている。 According to such a pressure control valve, when the pressure on the outlet side of the radiator increases, the displacement member is displaced by the pressure difference between the pressure of the refrigerant sealed in the closed space and the valve body, and the valve body is displaced. Since the valve port is moved in the opening direction, the outlet side pressure is reduced, and when the refrigerant temperature on the outlet side of the radiator is high, the refrigerant in the closed space expands, so that the displacement member is displaced. To move the valve body in the direction to close the valve port, so the outlet pressure of the radiator rises, It is said that it is possible to increase the pressure on the outlet side of the radiator without increasing the compression work of the compressor, thereby securing the cooling capacity while suppressing the deterioration of the coefficient of performance of the refrigeration cycle. .
しかしながら、 上述の C 0 2 のような臨界点の低い冷媒を用いた冷凍 サイクルにおいて、 圧縮機を容量可変型にすると共に高圧ラインの圧力 が臨界圧よりも低い亜臨界領域となる低負荷時で運転される場合には、 コンプレッサの吐出量や放熱器及び凝縮器の負荷が一定 (環境条件が一 定) である定常運転時であっても、 冷凍サイクルが間欠的に大きな変動 を起こしてしまう現象が確認されている。 However, in a refrigeration cycle using a low critical point refrigerant such as C 0 2 described above, the compressor at a low load pressure of the high pressure line is low subcritical region than the critical pressure while the variable capacity During operation, the refrigeration cycle will fluctuate intermittently even during steady-state operation where the compressor discharge rate and the load on the radiator and condenser are constant (environmental conditions are constant). The phenomenon has been confirmed.
このような現象が生じる原因としてはいろいろ推定されているが、 主 たる原因としては、 次のように考えられている。 即ち、 ダイヤフラム式 の膨張装置であっても、 ベロ一ズ式の膨張装置であっても、 膨張装置流 入側の冷媒温度に応じて膨張装置に封入されているガスが膨張又は収縮 して弁体の位置が変位し、 また、 膨張装置流入側の冷媒圧力に応じても 弁体の位置が変位することから、 冷媒温度と冷媒圧力との関係が最適な 制御特性となるように封入ガスを封入することで、 流入側の冷媒温度や 冷媒圧力に応じて膨張装置の開度が目標となる開度となるように調節さ れている。  Various causes have been estimated for the occurrence of this phenomenon, but the main causes are considered as follows. That is, regardless of the diaphragm type expansion device or the bellows type expansion device, the gas sealed in the expansion device expands or contracts according to the refrigerant temperature on the inlet side of the expansion device, and the valve expands or contracts. Since the position of the body is displaced and the position of the valve body is displaced in response to the refrigerant pressure on the inflow side of the expansion device, the charged gas is filled so that the relationship between the refrigerant temperature and the refrigerant pressure has optimal control characteristics. By enclosing, the opening of the expansion device is adjusted to the target opening according to the refrigerant temperature and the refrigerant pressure on the inflow side.
ところが、 低負荷時においては、 容量可変型の圧縮機を用いる場合に は、 吐出量がもともと少なくなつており、 高圧ラインの圧力が比較的低 くなつていることから膨張装置は閉じようとする方向へ動作する。 特に、 このような低負荷時において、 ある冷媒温度 Tに対して最適な冷媒圧力 Pが得られる状態となる位置で膨張装置の開度が安定している場合に、 何らかの原因で冷媒温度が Tよりも相対的に高くなると、 低負荷時では 開度が小さくなっていることから膨張装置は閉じてしまう。  However, at low load, when a variable displacement compressor is used, the discharge rate is originally low and the expansion device tries to close because the pressure in the high pressure line is relatively low. Work in the direction. In particular, at such a low load, when the opening degree of the expansion device is stable at a position where the optimum refrigerant pressure P is obtained for a certain refrigerant temperature T, the refrigerant temperature may become T If it is relatively high, the expansion device will close at low load due to the small opening.
すると、 膨張装置を介して低圧ラインへ供給される冷媒がなくなって しまう。 容量可変型の圧縮機は、 低圧圧力に応じて吐出量が制御される ようになつており、 低圧圧力が低ければ吐出量を少なくし、 低圧圧力が 高ければ吐出量を多くする制御が行われることから、 低圧ラインへ供給 される冷媒が少なくなると、 圧縮機の吐出量も少なくなつてしまう。 圧 縮機の吐出量が少なくなると、 亜臨界域でサイクルが動作する低負荷時 においては、 放熱器の凝縮作用によって冷媒の比容積を減らす作用が冷 媒を供給して容積を増やそうとする動作に比べて勝ってしまうことから、 高圧側の冷媒圧力はしばらく上昇せず、 このため膨張装置の閉じた状態 が持続されてしまうこととなる。 Then, the refrigerant supplied to the low-pressure line via the expansion device disappears. I will. Variable displacement compressors are designed so that the discharge rate is controlled according to the low pressure, so that the discharge rate is reduced if the low pressure is low, and the discharge rate is increased if the low pressure is high. Therefore, when the amount of refrigerant supplied to the low-pressure line decreases, the discharge amount of the compressor also decreases. When the compressor discharge decreases, the operation of reducing the specific volume of the refrigerant by condensing the radiator at low load, in which the cycle operates in the subcritical region, attempts to increase the volume by supplying the refrigerant. Therefore, the refrigerant pressure on the high pressure side does not rise for a while, and the closed state of the expansion device is maintained.
圧縮機は、 このような状態でも少しずつ冷媒を高圧側へ吐出し続ける ことから、 しばらくすると、 放熱器での凝縮が進行するにつれて放熱器 で実際に放熱作用を行う面積が徐々に少なくなってくるため、 放熱器の 凝縮作用によって冷媒の比容積を減らす作用よりも圧縮機から吐出され る冷媒により容積を増やそうとする動作が勝り、 次第に高圧圧力が上昇 してくる。 すると、 閧弁に必要な高圧圧力に達すると、 膨張装置が開い て高圧側の冷媒が低圧側へ一気に流れるようになり、 いままで冷媒の流 れが殆ど停滞していたサイクルに急激な冷媒の流れが生じる。 そして、 このような一連の動作を以後繰り返すことにより、 間欠的にサイクルが 大きく変動してしまうものと考えられている。  Since the compressor continues to discharge the refrigerant to the high pressure side little by little even in such a state, after a while, as the condensation in the radiator progresses, the area where the radiator actually performs the radiating action gradually decreases. Therefore, the operation of increasing the volume by the refrigerant discharged from the compressor is superior to the operation of reducing the specific volume of the refrigerant by the condensing operation of the radiator, and the high pressure gradually increases. Then, when the high pressure required for the cooling valve is reached, the expansion device opens and the high-pressure refrigerant flows at a stretch to the low-pressure side, and a sudden refrigerant flow occurs in a cycle in which the refrigerant flow has been almost stagnant until now. Flow occurs. It is considered that such a series of operations is repeated thereafter, resulting in intermittently large fluctuations in the cycle.
このように低負荷時において膨張装置が閉塞しやすい現象を回避する ためには、 外部からの電気的な制御信号を受けて閧度を調節する電気式 膨張装置を用いれば、 弁体の形状がどのようであれ、 任意に所望の閧度 に調節することができるわけであるが、 ダイヤフラムやべローズを用い た感温感圧式の非電気的な膨張装置であれば、 弁体の動きは冷媒温度や 冷媒圧力によって決定されるので、 低負荷時での開度調整には格別の配 慮が必要となる。 それにも拘わらず、 従来の非電気的膨張装置に用いられる弁体は、 前 記特閧平 9一 2 6 4 6 2 2号公報の図 4や図 7に示されるように、 ボー ル弁が用いられており、 発明者らの調査によれば、 高圧圧力 (バルブリ フ ト) に対する弁開度 (連通路の開口面積) の変化は、 第 2 2図に示さ れるように、 高圧圧力 (バルブリフト) に対して弁開度 (連通路の開口 面積) が略線形となる Aで示される特性を有するものから、 高圧圧力が 低いほど弁開度 (連通路の開口面積) の変化が大きくなり、 高圧圧力が 高いほど弁開度 (連通路の開口面積) の変化が小さくなるような Bで示 される特性を有する構成となっている。 In order to avoid such a phenomenon that the expansion device is likely to be closed at the time of low load, if an electric expansion device that receives an external electric control signal and adjusts the degree is used, the shape of the valve body is reduced. In any case, it can be adjusted to the desired degree.However, in the case of a thermo-sensitive non-electric expansion device using a diaphragm or bellows, the movement of the valve element is controlled by the refrigerant. Since it is determined by the temperature and the refrigerant pressure, special consideration is required for adjusting the opening at low load. Nevertheless, the valve element used in the conventional non-electric expansion device has a ball valve as shown in FIGS. According to the investigation by the inventors, the change of the valve opening (opening area of the communication passage) with respect to the high pressure (valve lift) is, as shown in FIG. The valve opening (opening area of the communication passage) is approximately linear with respect to the lift (lift). Since the characteristic indicated by A, the change in the valve opening (opening area of the communication passage) increases as the high-pressure pressure decreases. However, the configuration shown in B is such that the higher the high pressure, the smaller the change in the valve opening (opening area of the communication passage) becomes.
このため、 高圧圧力が低くなる上述した低負荷時において、 圧力変動 に対する弁開度 (連通路の開口面積) の変動が高圧ラインの圧力が高い 場合と同程度、 又は、 高圧ラインの圧力が高い場合よりも大きくなると, 低負荷時では膨張装置の開口面積がもともと小さくなっているため、 僅 かな圧力変動で閉弁してしまう。 このように、 低負荷時において弁体の 動きが圧力変動に対して敏感になり過ぎることから上述した現象を一層 誘発してしまう不都合がある。  For this reason, at the time of the above-mentioned low load in which the high pressure is low, the fluctuation of the valve opening (opening area of the communication passage) with respect to the pressure fluctuation is almost the same as when the pressure of the high pressure line is high, or the pressure of the high pressure line is high. If it is larger than the case, the valve will close with a slight pressure fluctuation because the opening area of the expansion device is originally small at low load. As described above, when the load is low, the movement of the valve body becomes too sensitive to the pressure fluctuation, so that the above-described phenomenon is further caused.
そこで、 この発明においては、 二酸化炭素 (C 0 2 ) 等の臨界点の低 い冷媒を用いた冷凍サイクルにおいて、 膨張装置の弁体を改良すること により、 間欠的に生じ得る低負荷時でのサイクル変動を起こりにく くす ることができる冷凍サイクルを提供することを課題としている。 発明の開示 Therefore, in the present invention, in a refrigeration cycle using a low There refrigerant carbon dioxide (C 0 2) critical points, such as by improving the valve body of the expansion device, at a low load which may occur intermittently It is an object of the present invention to provide a refrigeration cycle that makes it difficult for cycle fluctuations to occur. Disclosure of the invention
上記課題を達成するために、 この発明に係る冷凍サイクルは、 冷媒を 圧縮して運転条件により高圧ラインの冷媒を超臨界状態とする圧縮機と 前記圧縮機によって圧縮された冷媒を冷却する放熱器と、 前記放熱器で 冷却された冷媒を減圧する膨張装置と、 前記膨張装置によって減圧され た冷媒を蒸発させる蒸発器とによって少なく とも構成されるものであり、 前記膨張装置は、 放熱器側と連通する高圧空間と、 蒸発器側と連通する 低圧空間と、 前記高圧空間と前記低圧空間とを連通する連通路と、 前記 連通路の開口面積を変化させる弁体と、 前記放熱器側の冷媒条件に応じ て前記弁体の位置を制御することにより前記連通路の開口面積を変更す る感受要素とを有し、 前記開口面積が最小となる位置から前記弁体がリ フ 卜する初期において前記高圧空間の圧力変動に対する前記開口面積の 変動を小さくする特性を備えていることを特徴としている。 In order to achieve the above object, a refrigeration cycle according to the present invention includes: a compressor that compresses a refrigerant to make a refrigerant in a high pressure line in a supercritical state according to operating conditions; and a radiator that cools the refrigerant compressed by the compressor. An expansion device for reducing the pressure of the refrigerant cooled by the radiator; The expansion device comprises a high-pressure space communicating with the radiator side, a low-pressure space communicating with the evaporator side, the high-pressure space and the low-pressure space. A valve body that changes the opening area of the communication path; and a position of the valve body that is controlled in accordance with a refrigerant condition on the radiator side to change the opening area of the communication path. At the initial stage when the valve element is lifted from the position where the opening area is minimum, and has a characteristic of reducing the fluctuation of the opening area with respect to the pressure fluctuation of the high-pressure space. And
したがって、 膨張装置の弁体がリフ 卜する初期での高圧空間の圧力変 動に対する開口面積の変動を小さくするようにしたので、 流量が少なく、 圧力の低い低負荷時において弁体の動きを圧力変動に対して鈍感にする ことができ、 連通路の開口面積を最小にしてしまう恐れ、 即ち、 弁体が 弁座に着座することによって連通路を閉塞する形式のものであれば、 膨 張装置の弁体が弁座に容易に着座して連通路を閉塞しまう恐れを低減す ることができる。  Therefore, the opening area fluctuation due to the pressure fluctuation of the high pressure space in the initial stage when the valve body of the expansion device is lifted is reduced, so that the movement of the valve body at low load with low flow rate and low pressure is reduced. If the valve can be made insensitive to fluctuation and the opening area of the communication passage may be minimized, that is, if the valve body is of a type that closes the communication passage by sitting on the valve seat, the expansion device is used. The possibility that the valve body easily seats on the valve seat and closes the communication passage can be reduced.
このような膨張装置の特性を得るために、 前記弁体を、 連通路の開口 面積が小さくなるほど高圧空間の圧力変動に対する開口面積の変動を小 さくする特性を備えた形状に形成するようにしてもよい。  In order to obtain such characteristics of the expansion device, the valve body is formed in a shape having a characteristic of reducing the variation of the opening area with respect to the pressure variation of the high-pressure space as the opening area of the communication passage becomes smaller. Is also good.
ここで、 連通路の開口面積が小さくなるほど高圧空間の圧力変動に対 する開口面積の変動を小さくするような弁体の形状としては、 連通路を 高圧空間から前記低圧空間にかけて径の等しい通孔をもって形成した場 合に、 弁体をその基部から先端に向かうにつれて単位軸方向当たりの径 の変化を連続的に減少させると共にその径の減少率を徐々に大きくする 形状などが考えられる。  Here, the shape of the valve element such that the smaller the opening area of the communication passage is, the smaller the variation of the opening area in response to the pressure fluctuation of the high-pressure space is, and the communication passage has a through hole having the same diameter from the high-pressure space to the low-pressure space. In the case of forming the valve body, it is conceivable that the valve body has a shape in which the change in the diameter per unit axial direction is continuously reduced from the base to the tip and the rate of decrease in the diameter is gradually increased.
感受要素は、 高圧圧力にほぼ比例した弁体のストロークが得られるよ うになつているので、 上述のような弁体の構成によれば、 弁体が従来と 同じだけストロ一クしても高圧圧力が低い場合には、 圧力変化に対する 弁開度 (連通路の開口面積) の変化量が小さくなり、 また、 高圧圧力が 高い場合には、 圧力変化に対する弁開度 (連通路の開口面積) の変化量 が大きくなり、 高圧圧力に対する弁開度 (連通路の開口面積) の特性は、 第 4図の特性線に示されるように、 高圧圧力が低いときほど (バルブリ フ トが小さいときほど) 圧力変動に対して弁開度 (連通路の開口面積) の変化が鈍くなる。 このため、 弁開度 (連通路の開口面積) が小さくな る低負荷時において、 圧力変動によって膨張装置が容易に閉じてしまう 不都合を回避することができる。 Since the sensing element is capable of obtaining a stroke of the valve element substantially proportional to the high pressure, according to the above-described structure of the valve element, the valve element is Even if the stroke is the same, if the high pressure is low, the amount of change in the valve opening (opening area of the communication passage) with respect to the pressure change is small, and if the high pressure is high, the valve with respect to the pressure change is small. The amount of change in the opening degree (opening area of the communication passage) increases, and the characteristics of the valve opening degree (opening area of the communication passage) with respect to the high-pressure pressure, as shown by the characteristic line in FIG. As the valve lift becomes smaller (as the valve lift becomes smaller), the change in the valve opening (opening area of the communication passage) with pressure fluctuation becomes slower. For this reason, at the time of a low load in which the valve opening (opening area of the communication passage) becomes small, it is possible to avoid a disadvantage that the expansion device is easily closed due to pressure fluctuation.
また、 上述した膨張装置の特性を得る構成は、 弁体の形状を調節する 代りに、 連通路の形状 (即ち、 弁座の形状) を調節することによつても 実現することができ、 連通路の開口面積が小さくなるほど、 高圧空間の 圧力変動に対する開口面積の変動が小さくなるように連通路の形状を形 成するようにしてもよい。  Further, the above-described configuration for obtaining the characteristics of the expansion device can also be realized by adjusting the shape of the communication passage (ie, the shape of the valve seat) instead of adjusting the shape of the valve body. The shape of the communication passage may be formed such that the smaller the opening area of the passage is, the smaller the variation of the opening area with respect to the variation in pressure of the high-pressure space becomes.
たとえば、 弁体をその変位方向を軸心とする円柱状に形成した場合や、 弁体をその基部から先端に向かうにつれて単位軸方向当たりの径の変化 を連続的に等しい割合で減少する形状に形成した場合において、 連通路 を高圧空間から低圧空間に向かうにつれて単位軸方向当たりの通路断面 の変化を連続的に減少させると共に通路断面の減少率を徐々に小さくす るような形状とする構成が考えられる。  For example, when the valve body is formed in a cylindrical shape with its displacement direction as the axis, or when the valve body has a shape in which the change in diameter per unit axial direction decreases continuously at the same rate from the base to the tip at the same rate. When formed, the communication passage is configured so that the change in the passage cross-section per unit axial direction is continuously reduced from the high-pressure space to the low-pressure space, and the reduction rate of the passage cross-section is gradually reduced. Conceivable.
さらに、 弁体がリフ トする初期において高圧空間の圧力変動に対する 開口面積の変動を小さくする上述した膨張装置の特性を得る構成として、 連通路を高圧空間から低圧空間にかけて径の等しい通孔をもって形成し、 弁体をその基部から先端に向かうにつれて単位軸方向当たりの径の変化 を連続的に等しい割合で減少する円錐台形状に形成し、 連通路の開口面 積が最小となる位置から最大となる位置にかけて弁体がリフ トする途中 で、 弁体の先端を連通路の開口端から離反させるようにしても、 弁体と 連通路との形状の最適化を図り、 前記弁体を、 先端に向かうにつれて 徐々に径を小さくする第 1円錐部と、 前記第 1円錐部よりも先端側に続 いて形成されると共に先端に向かうにつれて徐々に径を小さくする第 2 円錐部とを有して構成し、 前記弁体の軸線と前記第 2円錐部の母線との なす挟み角の角度を前記弁体の軸線と前記第 1円錐部の母線とのなす挟 み角の角度よりも小さくし、 前記連通路を、 その軸線とのなす挟み角の 角度が前記弁体の軸線と前記第 1円錐部の母線とのなす挟み角の角度よ りも大きく形成された第 1円錐形路と、 この第 1円錐形路に続いて形成 され、 前記連通路の軸線とのなす挟み角の角度が前記弁体の軸線と前記 第 2円錐部の母線とのなす挟み角の角度よりも小さい第 2円錐形路とを 有して構成し、 前記弁体の前記第 1円錐部から前記第 2円錐部への移行 部分を前記連通路の前記第 1円錐形路から前記第 2円錐形路への移行部 分に当接し得る構成としてもよい。 Furthermore, as a configuration for obtaining the above-described characteristic of the expansion device that reduces the variation of the opening area with respect to the pressure variation of the high-pressure space at the initial stage of the valve body lifting, the communication passage is formed with a through hole having the same diameter from the high-pressure space to the low-pressure space. The valve body is formed in a truncated cone shape in which the change in diameter per unit axial direction is continuously reduced at the same rate as going from the base to the tip, and from the position where the opening area of the communication passage becomes the minimum to the maximum. The valve is being lifted to a certain position Then, even if the tip of the valve body is separated from the opening end of the communication passage, the shape of the valve body and the communication passage is optimized, and the diameter of the valve body is gradually reduced toward the front end. A first conical portion, and a second conical portion that is formed following the first conical portion and that is gradually smaller in diameter toward the front end, and that has a second conical portion. The angle of the included angle between the generatrix of the second conical part and the generatrix of the first conical part is smaller than the angle of the included angle with the generatrix of the first conical part. A first conical path in which the angle of the included angle is greater than the angle of the included angle between the axis of the valve body and the generatrix of the first conical portion; and a shape formed following the first conical path. The angle of the included angle between the axis of the communication passage and the axis of the valve body is the angle between the axis of the valve body and the generatrix of the second conical portion. A second conical path smaller than the angle of the included angle, wherein a transition portion from the first conical portion to the second conical portion of the valve body is formed by the first conical shape of the communication passage. The configuration may be such that it can abut on the transition from the road to the second conical road.
また、 前記弁体に、 その軸線となす挟み角が所定の角度に形成されて いる第 1の面と、 前記第 1の面よりも先端側に続いて形成されると共に 前記弁体の軸線とのなす挟み角が前記第 1の面よりも小さい角度に形成 されている第 2の面とを形成することで、 前記膨張装置の特性を、 前記 弁体がリフトする初期において前記高圧空間の圧力変動に対する前記閧 口面積の変動を小さくするようにしてもよい。  In addition, the valve body has a first surface formed with a predetermined angle between the axis of the valve body and an axis thereof, and a first surface formed following the first surface further from the first surface and an axis of the valve body. Forming a second surface having an included angle formed at an angle smaller than the first surface, the characteristics of the expansion device, and the pressure of the high-pressure space at an early stage when the valve element is lifted. The variation of the entrance area with respect to the variation may be reduced.
このような構成においては、 弁体にリフト時においても前記連通路内 に挿入され続けるガイ ド片を設け、 これにより連通路の最大開口面積を 調節するようにしても、 また、 弁体の側面を軸方向にカッ トしてガイ ド 面を形成し、 連通路に、 前記ガイ ド面を受けるガイ ド受け面を形成して 位置決めをするようにしてもよい。  In such a configuration, the valve body is provided with a guide piece that is continuously inserted into the communication passage even when the valve is lifted, thereby adjusting the maximum opening area of the communication passage. May be cut in the axial direction to form a guide surface, and a guide receiving surface for receiving the guide surface may be formed in the communication passage for positioning.
さらに、 このような構成においては、 弁体の第 1の面を連通路の端部 に形成された弁座に着座させることによって開口面積が最小となる弁体 の位置を規定するようにしても、 弁体と一体をなして変位するストッパ を設け、 前記ストッパによって開口面積が最小となる弁体の位置を規定 するようにしてもよい 図面の簡単な説明 Further, in such a configuration, the first surface of the valve body is connected to the end of the communication passage. Even if the position of the valve body where the opening area is minimized is determined by seating on the valve seat formed in the above, a stopper which is displaced integrally with the valve body is provided, and the opening area is minimized by the stopper. The position of the valve element may be specified.
第 1図は、 本発明にかかる冷凍サイクルの構成例を示す図である。 第 2図は、 第 1図に示す冷凍サイクルで用いられる膨張装置を拡大し た断面図である。  FIG. 1 is a diagram showing a configuration example of a refrigeration cycle according to the present invention. FIG. 2 is an enlarged sectional view of an expansion device used in the refrigeration cycle shown in FIG.
第 3図は、 第 2図で示す弁体と連通路付近を示す拡大断面図である。 第 4図は、 本発明に係る膨張装置の高圧圧力 (バルブリフト) に対す る弁開度 (連通路の開口面積) の変化を示す特性線図である。  FIG. 3 is an enlarged sectional view showing the vicinity of the valve body and the communication passage shown in FIG. FIG. 4 is a characteristic diagram showing a change in a valve opening (opening area of a communication passage) with respect to a high pressure (valve lift) of the expansion device according to the present invention.
第 5図は、 膨張装置の他の例を示す断面図である。  FIG. 5 is a sectional view showing another example of the expansion device.
第 6図は、 第 5図で示す弁体と連通路付近を示す拡大断面図である。 第 7図は、 さらに他の構成例を示すものであり、 弁体と連通路付近を 示す拡大断面図である。  FIG. 6 is an enlarged sectional view showing the vicinity of the valve body and the communication passage shown in FIG. FIG. 7 shows yet another configuration example, and is an enlarged sectional view showing the vicinity of a valve body and a communication passage.
第 8図は、 さらに他の構成例を示すものであり、 弁体と連通路付近を 示す拡大斜視図である。  FIG. 8 shows yet another configuration example, and is an enlarged perspective view showing the vicinity of a valve body and a communication passage.
第 9図は、 第 8図で示す弁体と連通路付近を示す拡大断面図である。 第 1 0図は、 膨張装置のバルブリフ トに対する連通路の開口面積の変 化を示す特性線図である。  FIG. 9 is an enlarged sectional view showing the vicinity of the valve body and the communication passage shown in FIG. FIG. 10 is a characteristic diagram showing a change in an opening area of a communication passage with respect to a valve lift of an expansion device.
第 1 1図は、 さらに他の構成例を示すものであり、 弁体と連通路付近 を示す拡大斜視図である。  FIG. 11 shows yet another configuration example, and is an enlarged perspective view showing the vicinity of a valve body and a communication passage.
第 1 2図は、 第 1 1図で示す弁体と連通路付近を示す拡大断面図であ り、 弁体のリフトした状態を実線で示し、 弁体が弁座に着座した状態を 破線で示す。 第 1 3図は、 第 1 1図で示す弁体と連通路の各部の挟み角を説明する ための図である。 FIG. 12 is an enlarged cross-sectional view showing the vicinity of the valve element and the communication passage shown in FIG. 11, in which the lifted state of the valve element is indicated by a solid line, and the state in which the valve element is seated on a valve seat is indicated by a broken line. Show. FIG. 13 is a diagram for explaining the included angle of each part of the valve body and the communication passage shown in FIG.
第 1 4図は、 さらに他の構成例を示すものであり、 弁体と連通路付近 を示す拡大斜視図である。  FIG. 14 shows yet another configuration example, and is an enlarged perspective view showing the vicinity of a valve body and a communication passage.
第 1 5図は、 第 1 4図で示す弁体と連通路付近を示す拡大断面図であ り、 弁体のリフトした状態を実線で示し、 弁体が弁座に着座した状態を 破線で示す。  FIG. 15 is an enlarged cross-sectional view showing the vicinity of the valve body and the communication passage shown in FIG. 14, wherein the lifted state of the valve body is shown by a solid line, and the state where the valve body is seated on the valve seat is shown by a broken line. Show.
第 1 6図は、 第 1 4図で示す弁体の各部の挟み角を説明するための図 である。  FIG. 16 is a view for explaining the included angle of each part of the valve element shown in FIG.
第 1 7図は、 さらに他の構成例を示すものであり、 弁体と連通路付近 を示す拡大斜視図である。  FIG. 17 shows yet another configuration example, and is an enlarged perspective view showing the vicinity of a valve body and a communication passage.
第 1 8図は、 第 1 7図で示す弁体と連通路付近を示す拡大断面図であ り、 弁体のリフトした状態を実線で示し、 弁体が弁座に着座した状態を 破線で示す。  Fig. 18 is an enlarged sectional view showing the vicinity of the valve element and the communication passage shown in Fig. 17, and shows a state in which the valve element is lifted by a solid line, and a state in which the valve element is seated on a valve seat by a broken line. Show.
第 1 9図は、 さらに他の構成例を示すものであり、 弁体と連通路付近 を示す拡大斜視図である。  FIG. 19 shows yet another configuration example, and is an enlarged perspective view showing the vicinity of a valve body and a communication passage.
第 2 0図は、 第 1 9図のストッパのみを示す斜視図である。  FIG. 20 is a perspective view showing only the stopper of FIG.
第 2 1図は、 第 1 9図で示す弁体と連通路付近を示す拡大断面図であ り、 弁体のリフトした状態を実線で示し、 弁体が弁座に着座した状態を 破線で示す。  Fig. 21 is an enlarged cross-sectional view showing the vicinity of the valve element and the communication passage shown in Fig. 19, in which the lifted state of the valve element is indicated by a solid line, and the state in which the valve element is seated on a valve seat is indicated by a broken line. Show.
第 2 2図は、 従来の膨張装置の高圧圧力 (バルブリフト) に対する連 通路の弁開度 (連通路の開口面積) の変化を示す特性線図である。 発明を実施するための最良の形態  FIG. 22 is a characteristic diagram showing a change in a valve opening degree (opening area of a communication passage) of a communication passage with respect to a high pressure (valve lift) of a conventional expansion device. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明の実施の態様を図面に基づいて説明する。 第 1図にお いて、 冷凍サイクル 1は、 冷媒を圧縮する圧縮機 2、 冷媒を冷却する放 熱器 3、 高圧ラインと低圧ラインとの冷媒を熱交換する内部熱交換器 4、 冷媒を減圧する膨張装置 5、 冷媒を蒸発気化する蒸発器 6、 蒸発器 6か ら流出された冷媒を気液分離するアキュムレータ 7を有して構成されて いる。 このサイクルでは、 圧縮機 2の吐出側 (D ) を放熱器 3を介して 内部熱交換器 4の高圧通路 4 aに接続し、 この高圧通路 4 aの流出側を 膨張装置 5に接続し、 圧縮機 2の吐出側から膨張装置 5に至る経路を高 圧ライン 8としている。 また、 膨張装置 5の流出側は、 蒸発器 6に接続 され、 この蒸発器 6の流出側は、 アキュムレータ 7を介して内部熱交換 器 4の低圧通路 4 bに接続されている。 そして、 低圧通路 4 bの流出側 を圧縮機 2の吸入側 (S ) に接続し、 膨張装置 5の流出側から圧縮機 2 に至る経路を低圧ライン 9としている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, a refrigeration cycle 1 includes a compressor 2 for compressing a refrigerant and a compressor 2 for cooling the refrigerant. Heater 3, Internal heat exchanger 4 for exchanging heat between high-pressure line and low-pressure line 4, Expansion device 5 for depressurizing refrigerant 5, Evaporator 6 for evaporating and evaporating refrigerant, Evaporator 6 for evaporating refrigerant It has an accumulator 7 for liquid separation. In this cycle, the discharge side (D) of the compressor 2 is connected to the high pressure passage 4a of the internal heat exchanger 4 via the radiator 3, and the outlet side of the high pressure passage 4a is connected to the expansion device 5, A high-pressure line 8 is used as a path from the discharge side of the compressor 2 to the expansion device 5. The outlet side of the expansion device 5 is connected to the evaporator 6, and the outlet side of the evaporator 6 is connected to the low-pressure passage 4 b of the internal heat exchanger 4 via the accumulator 7. The outflow side of the low-pressure passage 4 b is connected to the suction side (S) of the compressor 2, and the path from the outflow side of the expansion device 5 to the compressor 2 is a low-pressure line 9.
この冷凍サイクル 1においては、 冷媒として臨界点の低い冷媒、 例え ば、 二酸化炭素 (C 0 2 ) が用いられており、 圧縮機 2で圧縮された冷 媒は、 高温高圧の冷媒として放熱器 3に入り、 ここで放熱して冷却する。 その後、 内部熱交換器 4において蒸発器 6から流出する低温冷媒と熱交 換して更に冷やされ、 液化されることなく膨張装置 5へ送られる。 そし て、 この膨張装置 5において減圧されて低温低圧の湿り蒸気となり、 蒸 発器 6においてここを通過する空気と熱交換してガス状になり、 しかる 後に内部熱交換器 4において高圧ライン 8の高温冷媒と熱交換して加熱 され、 圧縮機 2へ戻される。 In this refrigeration cycle 1, a low critical point refrigerant as a refrigerant, For example, carbon dioxide (C 0 2) is used and refrigerant compressed by the compressor 2, radiator 3 as a high-temperature high-pressure refrigerant The heat is radiated and cooled here. Thereafter, the internal heat exchanger 4 exchanges heat with the low-temperature refrigerant flowing out of the evaporator 6 to be further cooled and sent to the expansion device 5 without being liquefied. Then, the pressure is reduced in the expansion device 5 to become a low-temperature and low-pressure wet steam, and heat exchange with the air passing therethrough in the evaporator 6 to become gaseous, and thereafter, the high-pressure line 8 in the internal heat exchanger 4. It is heated by exchanging heat with the high-temperature refrigerant and returned to the compressor 2.
前記膨張装置 5は、 第 2図にも示されるように、 ハウジング 1 0内に 内部熱交換器 4の高圧通路 4 aに通じる (放熱器側に通じる) 高圧空間 1 1と蒸発器 6に通じる低圧空間 1 2とが仕切壁 1 3によって画成され、 この仕切壁 1 3に高圧空間 1 1から低圧空間 1 2にかけて所定の径を有 する断面円形状の連通路 1 4が形成されている  As shown in FIG. 2, the expansion device 5 communicates with the high-pressure passage 4 a of the internal heat exchanger 4 in the housing 10 (communicates with the radiator side) and communicates with the high-pressure space 11 and the evaporator 6. A low-pressure space 12 is defined by a partition wall 13, and a communication path 14 having a circular cross section having a predetermined diameter is formed in the partition wall 13 from the high-pressure space 11 to the low-pressure space 12.
高圧空間 1 1には、 減圧調節弁 1 5が収納されており、 この減圧調節 弁 1 5は、 連通路 1 4の高圧空間 1 1に開口する開口周縁部に形成され た弁座 1 6に着座する弁体 1 7と、 この弁体 1 7に接合されて一体をな して動くベロ一ズ 1 8とから成り、 このべローズ 1 8内には所定量の封 入ガスが封入されている。 The high-pressure space 11 accommodates a pressure-reducing control valve 15. The valve 15 is joined to a valve element 17 seated on a valve seat 16 formed on the peripheral edge of the opening that opens into the high-pressure space 11 of the communication path 14, and is joined to the valve element 17 to form an integral body. The bellows 18 is filled with a predetermined amount of sealing gas.
この減圧調節弁 1 5の開弁圧や弁体 1 7の動きは、 ベロ一ズ 1 8の内 部に封入するガス量やガスの種類を変更することによって調整され、 減 圧調節弁 1 5は、 高圧空間 1 1の冷媒圧力ゃ冷媒温度に応動するように なっており、 弁体 1 7は、 第 3図に示されるように、 その基部から先端 に向かうにつれて径が連続的に変化すると共に径の減少率を徐々に大き くする形状とすることで、 連通路 1 4の開口面積が小さくなるほど、 高 圧空間 1 1の圧力変動に対する開口面積の変動が小さくなるようなニー ドル弁によって構成されている。 ここで、 先端に向かうにつれて径の減 少率を徐々に大きくするような形状としては、 弁体 1 7の母線ひが基部 から先端にかけて一定の曲率半径を有する曲線であっても、 曲率半径が 基部から先端にかけて連続的に変化する (徐々に小さくなる) 曲線であ つてもよい。  The opening pressure of the pressure-reducing control valve 15 and the movement of the valve element 17 are adjusted by changing the amount of gas and the type of gas sealed inside the bellows 18. Is responsive to the refrigerant pressure of the high-pressure space 11 divided by the refrigerant temperature. As shown in FIG. 3, the diameter of the valve element 17 changes continuously from its base to its tip. In addition, the needle valve has a shape that gradually increases the rate of decrease in diameter, so that the smaller the opening area of the communication passage 14 becomes, the smaller the fluctuation of the opening area with respect to the pressure fluctuation of the high-pressure space 11 becomes. It is configured. Here, as a shape in which the reduction rate of the diameter gradually increases toward the distal end, even when the bus bar of the valve element 17 has a constant radius of curvature from the base to the distal end, the radius of curvature is It may be a curve that changes continuously (decreases gradually) from the base to the tip.
上記構成において、 ベローズ 1 8の伸縮量が高圧空間 1 1の冷媒圧力 にほぼ比例していると考えると、 弁体 1 7のストローク量は高圧空間 1 1の冷媒圧力に比例することから、 弁体 1 7が弁座 1 6から離反するに つれて弁体 1 7と弁座 1 6との距離は指数関数的に大きくなってくる。 このため、 連通路 1 4の開口面積、 即ち、 連通路 1 4の実質開口面積も、 第 4図の実線に示されるように、 指数関数的に大きくすることができ、 連通路 1 4の開口面積変化、 即ち、 連通路 1 4の実質開口面積の変化は、 高圧圧力が低いほど小さくなり、 また、 高圧圧力が高いほど大きくなる。 換言すれば、 高圧圧力が低いほど弁開度 (連通路の開口面積) の変動 を鈍くすることができるので、 圧縮機 2として低圧ライン 9の圧力によ つて容量が制御される容量可変型を用い、 且つ、 このサイクルを高圧圧 力が臨界圧以下となる亜臨界領域で動作するような低負荷域で運転する ような場合においても、 膨張装置 5の弁体 1 7が弁座 1 6に容易に着座 して連通路 1 4を閉塞しまう恐れを低減することができ、 このため、 低 圧圧力の著しい低下や圧縮機 2の吐出量の著しい減少を抑えることがで き、 冷凍サイクル 1が間欠的に大きな変動を起こす現象を抑えることが 可能となり、 低負荷時での冷房能力を安定させることができる。 In the above configuration, assuming that the amount of expansion and contraction of the bellows 18 is substantially proportional to the refrigerant pressure in the high-pressure space 11, the stroke amount of the valve element 17 is proportional to the refrigerant pressure in the high-pressure space 11. As the body 17 moves away from the valve seat 16, the distance between the valve body 17 and the valve seat 16 increases exponentially. Therefore, the opening area of the communication passage 14, that is, the substantial opening area of the communication passage 14 can be exponentially increased as shown by the solid line in FIG. The change in the area, that is, the change in the substantial opening area of the communication path 14 becomes smaller as the high pressure is lower, and becomes larger as the high pressure is higher. In other words, the lower the high-pressure pressure, the slower the fluctuation of the valve opening (opening area of the communication passage). Therefore, even in the case of using a variable capacity type in which the capacity is controlled and operating this cycle in a low load range where the cycle operates in a subcritical region where the high pressure is lower than the critical pressure, The possibility that the valve element 17 easily seats on the valve seat 16 and closes the communication passage 14 can be reduced, and therefore, the low pressure and the discharge amount of the compressor 2 can be significantly reduced. This can suppress the phenomenon that the refrigeration cycle 1 causes intermittent large fluctuations, and stabilize the cooling capacity at low load.
以上の構成は、 弁体 1 7の形状をもって連通路 1 4の開口面積が小さ くなるほど、 高圧空間 1 1の圧力変動に対する弁開度 (連通路の開口面 積) の変動を小さくする特性を実現するものであつたが、 連通路 1 4の 形状、 即ち弁座 1 6の形状をもって同様の特性を持たせるようにしても よい。  The above configuration has the characteristic that the smaller the opening area of the communication passage 14 with the shape of the valve element 17, the smaller the variation of the valve opening (opening area of the communication passage) with respect to the pressure fluctuation of the high-pressure space 11. Although it is realized, the shape of the communication passage 14, that is, the shape of the valve seat 16, may have the same characteristics.
その構成例が第 5図に示され、 ここで示される膨張装置 5は、 ベロー ズ 1 8と一体をなして動く弁体 1 7が、 第 6図にも示されるように、 変 位方向を軸心とする円柱状に形成されており、 連通路 1 4の形状が、 前 記高圧空間 1 1から前記低圧空間 1 2に向かうにつれて連通路 1 4の径 を徐々に小さくし、 この径の減少率を高圧空間 1 1から低圧空間 1 2に 向かうにつれて小さくすることで、 単位軸方向当たりの通路断面の変化 を連続的に、 且つ、 通路断面の減少率を低圧空間 1 2に向かうにつれて 小さくするように形成されている。 そして、 通路断面の径が弁体 1 7の 径と等しくなる連通路 1 4の中程部分を、 弁体 1 7が着座する弁座 1 6 としている。 尚、 連通路 1 4の母線 /5は、 連通路 1 4の高圧空間 1 1か ら低圧空間 1 2にかけて一定の曲率半径を有する曲線であっても、 曲率 半径が高圧空間 1 1から低圧空間 1 2にかけて連続的に変化する (徐々 に大きくする) 曲線であってもよい。 また、 他の構成は前記構成例と同 様であるので、 同一箇所に同一番号を付して説明を省略する。 このような構成においても、 弁体 1 7が弁座 1 6から離反するにつれ て弁体 1 7と弁座 1 6との距離は、 指数関数的に大きくなってくること から、 高圧空間 1 1の冷媒圧力の変化に対する連通路 1 4の開口面積、 即ち、 連通路 1 4の実質開口面積の変化は、 第 4図の実線で示されるよ うに、 連通路 1 4の開口面積が小さくなるほど高圧空間 1 1の冷媒圧力 変動に対して弁閧度 (連通路の開口面積) の変動を小さくする特性を持 たせることができる。 An example of the configuration is shown in FIG. 5, and the inflator 5 shown here has a valve body 17 that moves integrally with the bellows 18 as shown in FIG. The shape of the communication passage 14 is gradually reduced as the shape of the communication passage 14 moves from the high-pressure space 11 to the low-pressure space 12. By decreasing the reduction rate from the high-pressure space 11 to the low-pressure space 12, the change in the passage cross-section per unit axial direction is continuously reduced, and the reduction rate of the passage cross-section is reduced as it goes to the low-pressure space 12. It is formed so that. The middle part of the communication path 14 where the diameter of the passage cross section is equal to the diameter of the valve element 17 is defined as a valve seat 16 on which the valve element 17 is seated. Note that even though the bus / 5 of the communication passage 14 has a constant radius of curvature from the high-pressure space 11 to the low-pressure space 12 of the communication passage 14, the curvature radius is from the high-pressure space 11 to the low-pressure space. It may be a curve that changes continuously (increases gradually) toward 12. Since other configurations are the same as those of the above configuration example, the same portions are denoted by the same reference numerals and description thereof will be omitted. Even in such a configuration, the distance between the valve element 17 and the valve seat 16 increases exponentially as the valve element 17 moves away from the valve seat 16. As shown by the solid line in FIG. 4, the change in the opening area of the communication passage 14 with respect to the change in the refrigerant pressure of the refrigerant, i.e., the change in the substantial opening area of the communication passage 14 becomes higher as the opening area of the communication passage 14 becomes smaller. It is possible to provide a characteristic that reduces fluctuations in the degree of reliability (opening area of the communication passage) with respect to fluctuations in the refrigerant pressure in the space 11.
したがって、 このような構成とした場合にも、 高圧圧力が低くなる領 域、 即ち、 連通路の開口面積を大きくする方向へリフ トする初期におい て、 高圧空間の圧力変動に対する連通路の開口面積の変動を鈍くするこ とができ、 もって、 圧縮機 2として低圧ライン 9の圧力によって容量が 制御される容量可変型のものを用い、 且つ、 このサイクルを高圧圧力が 臨界圧以下となる亜臨界領域で動作するような低負荷域で運転するよう な場合でも、 膨張装置 5の弁体 1 7が弁座 1 6に着座して連通路 1 4を 閉塞してしまう恐れを低減することができ、 低圧圧力の著しい低下や圧 縮機 2の吐出量の著しい減少を抑えることができ、 冷凍サイクル 1が間 欠的に大きな変動を起こす現象を抑えることが可能となり、 低負荷時で の冷房能力を安定させることができる。  Therefore, even in the case of such a configuration, in the area where the high-pressure pressure decreases, that is, in the initial stage of lifting in the direction of increasing the opening area of the communication passage, the opening area of the communication passage against the pressure fluctuation of the high-pressure space is increased. Therefore, a variable capacity compressor whose capacity is controlled by the pressure of the low pressure line 9 is used as the compressor 2, and the cycle is subcritical in which the high pressure is equal to or lower than the critical pressure. Even in the case of operating in a low load region where the valve operates in a region, the risk that the valve element 17 of the expansion device 5 sits on the valve seat 16 and closes the communication passage 14 can be reduced. In addition, it is possible to suppress a remarkable decrease in low-pressure pressure and a remarkable decrease in the discharge amount of the compressor 2, and to suppress the phenomenon that the refrigerating cycle 1 causes large intermittent fluctuations. Stabilize Can be
第 7図に他の構成例が示され、 ここで示される膨張装置 5の連通路は、 高圧空間 1 1から低圧空間 1 2に向かうにつれて連通路 1 4の径を徐々 に小さく し、 且つ、 この径の減少率を低圧空間 1 2に向かうほど小さく することで、 連通路 1 4の通路断面の減少率を低圧空間 1 2に向かうに つれて小さく している点において第 6図の構成例と同じであるが、 ベロ —ズと一体をなして動く弁体 1 7が、 その母線ひを直線とする円錐台形 状に形成されている。 即ち、 弁体 1 7は、 その基部から先端に向かうに つれて径が連続的に等しい割合で減少する形状に形成されている。 そし て、 通路断面の径が弁体 1 7の先端径と等しくなる連通路 1 4の中程部 分を、 弁体 1 7が着座する弁座 1 6としている。 尚、 連通路 1 4の母線 /5は、 連通路 1 4の高圧空間 1 1から低圧空間 1 2にかけて一定の曲率 半径を有する曲線であっても、 曲率半径が高圧空間 1 1から低圧空間 1 2にかけて連続的に変化する (徐々に大きくする) 曲線であってもよい, また、 他の構成は前記構成例と同様であるので、 同一箇所に同一番号を 付して説明を省略する。 FIG. 7 shows another configuration example. The communication passage of the expansion device 5 shown here gradually reduces the diameter of the communication passage 14 from the high-pressure space 11 to the low-pressure space 12, and The configuration example of FIG. 6 is that the reduction rate of the diameter is reduced toward the low-pressure space 12 so that the reduction rate of the cross section of the communication passage 14 is reduced toward the low-pressure space 12. Same as, but the valve element 17, which moves integrally with the bellows, is formed in the shape of a truncated cone whose straight line is the generatrix. That is, the valve element 17 is formed in a shape in which the diameter continuously decreases at an equal rate from the base to the tip. Soshi The middle portion of the communication passage 14 where the diameter of the passage cross section is equal to the tip diameter of the valve body 17 is defined as a valve seat 16 on which the valve body 17 is seated. In addition, even though the bus / 5 of the communication passage 14 is a curve having a constant radius of curvature from the high pressure space 11 to the low pressure space 12 of the communication passage 14, the radius of curvature is from the high pressure space 11 to the low pressure space 1. The curve may be a curve that changes continuously (increases gradually) toward 2. Further, since other configurations are the same as those of the above-described configuration example, the same portions are denoted by the same reference numerals and description thereof is omitted.
このような構成においても、 弁体 1 7を用いた場合には、 弁体 1 7が 弁座 1 6から離反するにつれて弁体 1 7と弁座 1 6との距離は、 指数関 数的に大きくなつてくる。 しかも、 弁体の離反初期における単位軸方向 当たりの弁体 1 7と弁座 1 6との距離の変化を、 第 3図や第 6図で示す 構成よりも小さくできることから、 高圧空間 1 1の冷媒圧力変化に対す る連通路 1 4の開口面積、 即ち、 連通路 1 4の実質開口面積の変化は、 第 4図の実線で示されるよりも、 高圧圧力が低いほど弁開度 (連通路の 開口面積) を小さくすることができ、 一点鎖線で示されるような特性を 有する膨張装置 5を提供することが可能になる。  Even in such a configuration, when the valve element 17 is used, as the valve element 17 separates from the valve seat 16, the distance between the valve element 17 and the valve seat 16 becomes an exponential function. It's getting bigger. In addition, the change in the distance between the valve element 17 and the valve seat 16 per unit axial direction in the initial stage of separation of the valve element can be made smaller than in the configurations shown in FIGS. The change in the opening area of the communication passage 14 with respect to the change in the refrigerant pressure, that is, the change in the substantial opening area of the communication passage 14 is, as shown by the solid line in FIG. Opening area) can be reduced, and it is possible to provide an expansion device 5 having characteristics as indicated by a dashed line.
したがって、 このような膨張装置 5を用いた場合には、 高圧圧力が低 くなる領域において弁開度 (連通路の開口面積) の変動をより鈍くする ことができ、 もって、 圧縮機 2として低圧ラインの圧力によって容量が 制御される容量可変型のものを用い、 且つ、 このサイクルを高圧圧力が 臨界圧以下になる亜臨界領域で動作するような低負荷域で運転する場合 でも、 膨張装置 5の弁体 1 7が弁座 1 6に容易に着座して連通路 3 1を 閉塞しまう恐れを一層低減することができ、 低圧圧力の著しい低下や圧 縮機 2の吐出量の著しい減少を抑えて間欠的に生じる冷凍サイクル 1の 変動を抑えることが可能となり、 低負荷時での冷房能力を安定させるこ とができる。 尚、 上述で示した各種の構成は、 第 4図の特性を得るための構成を例 示列挙したものであり、 弁体、 弁座、 連通路の各形状を適宜変更して組 合せることで、 同様の特性を得ることが可能であり、 本発明は、 これら 列記しなかった構成をも射程範囲とするものである。 また、 上述の構成 にあっては、 膨張装置の感受要素としてべローズ 1 8を用いた場合の例 を示したが、 感受要素としてダイヤフラムを用いた膨張装置においても 成り立つ構成であり、 同様の作用効果を得ることができる。 Therefore, when such an expansion device 5 is used, the fluctuation of the valve opening (opening area of the communication passage) can be made more gentle in a region where the high-pressure pressure is low, so that the compressor 2 has a low pressure. Even if a variable capacity type whose capacity is controlled by the line pressure is used and this cycle is operated in a low load region where it operates in a subcritical region where the high pressure is below the critical pressure, the expansion device 5 The possibility that the valve element 17 easily seats on the valve seat 16 to close the communication passage 31 can be further reduced, and the remarkable decrease in low pressure and the discharge amount of the compressor 2 can be suppressed. As a result, fluctuations in the refrigeration cycle 1 that occur intermittently can be suppressed, and the cooling capacity at low load can be stabilized. Note that the various configurations shown above exemplify and enumerate the configurations for obtaining the characteristics shown in FIG. 4, and the shapes of the valve body, the valve seat, and the communication passage are appropriately changed and combined. It is possible to obtain similar characteristics, and the present invention also covers the configurations not listed in the scope of the present invention. Further, in the above-described configuration, an example in which the bellows 18 is used as the sensing element of the inflation device has been described, but the configuration is also realized in the inflation device using the diaphragm as the sensing element. The effect can be obtained.
ところで、 上述した各種構成は、 いずれも連通路 1 4の開口面積が小 さくなるほど、 高圧空間 1 1の圧力変動に対する弁開度 (連通路の開口 面積) の変動を小さくする構成であつたが、 連通路の開口面積が最小と なる位置から弁体がリフ 卜する初期において、 連通路の開口面積を大き くする方向へ弁体がリフ トする初期において、 高圧空間の圧力変動に対 する連通路の開口面積の変動を小さくすることができれば、 サイクルの 変動を抑えることができる。  By the way, in the various configurations described above, the smaller the opening area of the communication passage 14 is, the smaller the variation of the valve opening degree (opening area of the communication passage) with respect to the pressure variation of the high-pressure space 11 is. However, in the early stage when the valve element lifts from the position where the opening area of the communication passage becomes the smallest, and when the valve element lifts in the direction to increase the opening area of the communication passage, the communication with the pressure fluctuation in the high-pressure space starts. If the variation in the opening area of the passage can be reduced, the variation in the cycle can be suppressed.
このような観点から、 従来用いられていたボール弁に代えて、 第 8図 及び第 9図に示されるように、 第 7図で示したニードル形状の弁体を、 所定の径に形成された連通路 1 4に用いるようにしてもよい。 即ち、 第 8図及び第 9図に示す構成は、 ベロ一ズと一体をなして動く弁体 1 7が、 先端に向かうにつれて徐々に径を小さくすると共に、 母線ひを直線とす る円錐台形状に形成されており、 所定のリフ ト以上で連通路 1 4の閧ロ 端から離反するような構成となっている。 この例では、 連通路の直径を 約 2 . 0 m mとし、 弁体 1 7の全リ フ ト量が約 1 . O mmである場合に、 弁体 1 7が連通路 1 4の開口端に形成された弁座 1 6に着座している状 態から約 0 . 4 mmほどリフ トした状態で、 弁体 1 7の底面が連通路 1 4の開口端面に一致し、 さらに開口端面から 0 . 6 mmほど離反するよ うになつている。 尚、 その他の構成は、 前述までの構成と同様であるの で、 同一箇所に同一番号を付して説明を省略する。 From such a viewpoint, the needle-shaped valve element shown in FIG. 7 is formed to have a predetermined diameter as shown in FIGS. 8 and 9, instead of the conventionally used ball valve. It may be used for the communication path 14. In other words, the configuration shown in FIGS. 8 and 9 is such that the valve element 17 moving integrally with the bellows gradually reduces its diameter toward the tip and makes the bus bar straight. The communication path 14 is separated from the end of the communication path 14 by a predetermined lift or more. In this example, when the diameter of the communication passage is about 2.0 mm, and the total lift amount of the valve body 17 is about 1.0 mm, the valve body 17 is located at the open end of the communication passage 14. With the valve seat 17 lifted by about 0.4 mm from being seated on the formed valve seat 16, the bottom surface of the valve element 17 coincides with the open end face of the communication passage 14, and further from the open end face. It is about 6 mm apart. Other configurations are the same as those described above. Therefore, the same reference numerals are given to the same portions, and the description will be omitted.
このような構成においては、 ベローズ 1 8の伸縮量が高圧空間 1 1の 冷媒圧力にほぼ比例していると考えると、 弁体 1 7のス トロ一ク量は高 圧空間 1 1の冷媒圧力にほぼ比例することから、 弁体 1 7が弁座 1 6か ら離反してリフ トする初期においては、 ボール弁で示す特性 (第 1 0図 の破線で示す I線) に比べて高圧空間の圧力変動 (バルブリフ トの変 化) に対する開口面積の変動が小さくなり、 弁体 1 7の底面が連通路 1 4の開口端面に一致した以降は、 高圧空間の圧力変動に対する開口面積 の変動が大きくなり、 その後、 連通路 1 7の通路断面に相当する開口面 積に至る第 1 0図の実線 (I I線) で示すような特性となる。 尚、 第 1 0図においては、 高圧空間 1 1の圧力にほぼ比例して弁体 1 7のリフ ト 量が決まることから、 横軸を弁体のリフ ト量 (連通路 1 4の開口面積が 最小となる位置からのリフ ト量) としてある。  In such a configuration, considering that the amount of expansion and contraction of the bellows 18 is almost proportional to the refrigerant pressure in the high-pressure space 11, the stroke amount of the valve element 17 is equal to the refrigerant pressure in the high-pressure space 11. In the early stage when the valve element 17 lifts away from the valve seat 16, the pressure in the high pressure space is lower than the characteristic shown by the ball valve (I line shown by the broken line in FIG. 10). After the bottom surface of the valve element 17 coincides with the opening end face of the communication passage 14, the fluctuation of the opening area with respect to the pressure fluctuation of the high-pressure space becomes smaller. After that, the characteristic becomes as shown by the solid line (II line) in FIG. 10 which reaches the opening area corresponding to the passage cross section of the communication passage 17. In FIG. 10, since the lift amount of the valve element 17 is determined almost in proportion to the pressure of the high-pressure space 11, the horizontal axis represents the lift amount of the valve element (the opening area of the communication passage 14). Is the amount of lift from the position where is the minimum).
したがって、 このような弁体構成を有する膨張装置 5を用いた場合に は、 高圧圧力が低くなる領域において弁開度 (連通路の開口面積) の変 動を従来のボール弁を用いた場合よりも鈍くすることができ、 もって、 圧縮機 2として低圧ラインの圧力によって容量が制御される容量可変型 のものを用い、 且つ、 このサイクルを高圧圧力が臨界圧以下になる亜臨 界領域で動作するような低負荷域で運転する場合でも、 膨張装置 5の弁 体 1 7が弁座 1 6に容易に着座して連通路 3 1を閉塞しまう恐れを一層 低減することができ、 低圧圧力の著しい低下や圧縮機 2の吐出量の著し い減少を抑えて間欠的に生じる冷凍サイクル 1の変動を低減し、 低負荷 時での冷房能力を安定させることができるようになる。  Therefore, when the expansion device 5 having such a valve body configuration is used, the fluctuation of the valve opening (opening area of the communication passage) in the region where the high pressure is low is more than that in the case where the conventional ball valve is used. Therefore, a variable capacity compressor whose capacity is controlled by the pressure of the low pressure line is used as the compressor 2 and this cycle is operated in a subcritical region where the high pressure is equal to or lower than the critical pressure. Therefore, even when operating in a low load range, the risk that the valve element 17 of the expansion device 5 easily seats on the valve seat 16 and closes the communication passage 31 can be further reduced. By suppressing a remarkable decrease and a remarkable decrease in the discharge amount of the compressor 2, fluctuations of the refrigeration cycle 1 that occur intermittently can be reduced, and the cooling capacity under a low load can be stabilized.
ところで、 このような円錐台形状の弁体を利用する場合には、 連通路 1 4の径が一定の通孔である場合を想定すると、 弁体 1 7の軸線と母線 とのなす挟み角は、 2 0度が限界であると言われており、 この下限値よ りも挟み角が小さくなると、 弁体 1 7が連通路 1 4に嚙み込んで抜けな くなるような事態が懸念される。 このため、 単なる円錐台形状の弁体で は、 弁開度 (連通路の開口面積) の立ち上がり特性を改善できるもので あるが、 弁開度 (連通路の開口面積) が最大となるまでに至るリフ ト量 は従来のボール弁と同程度であることから、 更なる改善の余地がある。 即ち、 弁閧度 (連通路の開口面積) が最大となるまでのリフ ト量を大き くすることができれば、 それだけ冷媒が膨張装置を介して低圧側へ流れ る量を少なくすることができ、 膨張装置 5を通過する冷媒量が少なくす ることができれば、 膨張装置 5の開弁時間を長くすることができ、 開弁 時間が長くなるだけハンチングに伴う変動を低減することが可能となる。 このような観点から、 更なる開口面積の特性の改善を図るためには、 弁体 1 7だけの改良では困難であることから、 弁体 1 7と連通路 1 4と の両方の形状の最適化を図ることが望ましく、 このため、 第 1 1図乃至 第 1 3図に示されるような弁体 1 Ίと連通路 1 4の組み合わせが考えら れている。 By the way, when such a frustoconical valve element is used, assuming that the communication path 14 is a through hole having a constant diameter, the angle between the axis of the valve element 17 and the generatrix is , 20 degrees is said to be the limit, from this lower limit If the pinch angle becomes small, there is a concern that the valve element 17 may get stuck in the communication path 14 and become stuck. For this reason, a simple frustoconical valve element can improve the rising characteristics of the valve opening (opening area of the communication passage). However, the valve opening (opening area of the communication passage) can be improved up to the maximum. Since the amount of lift to be reached is almost the same as that of the conventional ball valve, there is room for further improvement. That is, if the lift amount until the degree of consideration (opening area of the communication passage) is maximized can be increased, the amount of refrigerant flowing to the low pressure side via the expansion device can be reduced accordingly. If the amount of the refrigerant passing through the expansion device 5 can be reduced, the valve opening time of the expansion device 5 can be lengthened, and the fluctuation due to hunting can be reduced as the valve opening time increases. From this point of view, it is difficult to further improve the characteristics of the opening area by improving only the valve 17, so that the shape of both the valve 17 and the communication passage 14 is optimal. Therefore, a combination of the valve body 1 and the communication passage 14 as shown in FIGS. 11 to 13 is considered.
この構成における弁体 1 7は、 先端に向かうにつれて徐々に径を小さ くする第 1円錐部 2 0と、 この第 1円錐部 2 0より先端側に続いて形成 されると共に先端に向かうにつれて徐々に径を小さくする第 2円錐部 2 1とを有して構成されているもので、 第 1 3図に示されるように、 弁体 1 7の軸線に対する第 2円錐部 2 1の母線とのなす挟み角の角度ァを弁 体 1 7の軸線に対する第 1円錐部 2 0の母線とのなす挟み角の角度/?よ りも小さく形成している。 また、 連通路 1 4は、 高圧空間 1 1に開口し、 高圧空間 1 1から遠ざかるにつれて徐々に径を小さくする第 1円錐形路 2 2と、 この第 1円錐形路 2 2に続いて形成されて低圧空間 1 2に開口 し、 低圧空間 1 2に向かうほど徐々に径を小さくする第 2円錐形路 2 3 とを有して構成されているもので、 連通路 1 4の軸線に対する第 2円錐 形路 2 3の母線とのなす挟み角の角度 dを連通路 1 4の軸線に対する第 1円錐形路 2 2の母線とのなす挟み角の角度ひよりも小さく形成し、 第 1円錐形路 2 2から第 2円錐形路 2 3への移行部分を、 弁体 1 7の第 1 円錐部 2 0から第 2円錐部 2 1へ移行する部分が着座する弁座 1 6とし ている。 そして、 ひ、 β、 ァ、 6の関係を、 ひ≥ ? >ァ > 5としている。 このような構成においては、 ベローズ 1 8の伸縮量が高圧空間 1 1の 冷媒圧力にほぼ比例していると考えると、 弁体 1 7のストロ一ク量は高 圧空間 1 1の冷媒圧力にほぼ比例することから、 弁体 1 7が弁座 1 6か ら離反してリフトする初期においては、 高圧空間の圧力変動に対する弁 開度 (連通路の開口面積) の変動が小さくなり、 その後、 第 2円錐部の 底面が第 1円錐形路に至ると、 幾分、 高圧空間の圧力変動 (パルブリフ 卜の変化) に対する弁開度 (連通路の開口面積) の変動が大きくなり、 この状態が弁体の底面が連通路の開口端面に一致するまで続き、 その後、 高圧空間の圧力変動に対する開口面積の変動が更に大きくなり、 その後、 連通路 1 4の通路断面に相当する開口面積に至る第 1 0図の一点鎖線 ( I II 線) で示されるような特性となる。 In this configuration, the valve element 17 has a first conical portion 20 whose diameter gradually decreases toward the distal end, and is formed continuously from the first conical portion 20 on the distal end side and gradually toward the distal end. As shown in FIG. 13, the second conical portion 21 with respect to the axis of the valve element 17 and the generatrix of the second conical portion 21 are provided. The angle of the included angle a is formed smaller than the angle of the included angle formed by the generatrix of the first conical portion 20 with respect to the axis of the valve element 17. In addition, the communication path 14 is formed following the first conical path 22, which opens into the high-pressure space 11 and gradually decreases in diameter as the distance from the high-pressure space 11 decreases. And a second conical path 23 whose diameter gradually decreases toward the low-pressure space 12. The second conical path 23 gradually decreases in diameter toward the low-pressure space 12. 2 cones The angle d of the included angle with the bus of the path 23 is formed smaller than the angle d of the included angle with the bus of the first conical path 22 with respect to the axis of the communication path 14. The transition from the second conical path 23 to the second conical path 23 is a valve seat 16 on which the transition from the first conical part 20 to the second conical part 21 of the valve element 17 is seated. Then, the relationship between hi, β, a, and 6 is defined as hi≥?>A> 5. In such a configuration, considering that the amount of expansion and contraction of the bellows 18 is almost proportional to the refrigerant pressure in the high-pressure space 11, the stroke amount of the valve element 17 is reduced by the refrigerant pressure in the high-pressure space 11. Since it is almost proportional, in the early stage when the valve element 17 lifts away from the valve seat 16, the fluctuation of the valve opening degree (opening area of the communication passage) with respect to the pressure fluctuation of the high-pressure space becomes small. When the bottom surface of the second conical portion reaches the first conical path, the fluctuation of the valve opening (opening area of the communication passage) with respect to the pressure fluctuation of the high-pressure space (change of the pallet lift) somewhat increases. This continues until the bottom surface of the valve element coincides with the opening end face of the communication passage. After that, the variation of the opening area with respect to the pressure variation of the high-pressure space further increases, and thereafter, the opening area corresponding to the passage area of the communication passage 14 reaches the opening area. 10 This is indicated by the dashed line (I II line) in Figure 10. Characteristics.
したがって、 このような弁体構成を有する膨張装置 5を用いた場合に は、 高圧圧力が低くなるリフト初期の領域において弁開度 (連通路 1 4 の開口面積) の変動を第 8図で示す弁体と同様に鈍くすることができ、 しかも、 連通路 1 4の開口面積が全開となるまでの時間を長くすること ができ、 もって、 圧縮機 2として低圧ラインの圧力によって容量が制御 される容量可変型のものを用い、 且つ、 このサイクルを高圧圧力が臨界 圧以下になる亜臨界領域で動作するような低負荷域で運転する場合でも、 膨張装置 5の弁体 1 7が弁座 1 6に容易に着座して連通路 3 1を閉塞し てしまう恐れを一層低減することができ、 低圧圧力の著しい低下や圧縮 機 2の吐出量の著しい減少を抑えて間欠的に生じる冷凍サイクル 1の変 動を抑えることが可能となり、 低負荷時での冷房能力を安定させること ができるようになる。 Therefore, when the expansion device 5 having such a valve body configuration is used, the fluctuation of the valve opening (opening area of the communication passage 14) in the initial region of the lift where the high pressure is reduced is shown in FIG. Like the valve body, it can be made dull, and the time until the opening area of the communication passage 14 becomes fully open can be lengthened, so that the capacity of the compressor 2 is controlled by the pressure of the low pressure line. Even when a variable displacement type is used and this cycle is operated in a low load region where the high pressure is operated in a subcritical region where the high pressure is equal to or lower than the critical pressure, the valve element 17 of the expansion device 5 has the valve seat 1. 6 can be further reduced, and the risk of blockage of the communication passage 3 1 can be further reduced, and the refrigeration cycle 1 Strange The cooling capacity can be stabilized at low load.
第 1 4図乃至第 1 6図において、 弁体 1 7と連通路 1 4の他の構成例 が示され、 この構成において、 弁体 1 7は、 その軸線となす挟み角 (軸 線に対する傾斜角) が所定の角度 (0 1 ) に形成されている第 1の面 3 0と、 前記第 1の面 3 0より先端側に続いて形成されると共に前記弁体 1 7の軸線とのなす挟み角 (軸線に対する傾斜角) が前記第 1の面 3 0 よりも大きい角度 (0 2 ) に形成されている第 2の面 3 1とを備えてい る。 この例では、 円柱形状の素材に対し、 基端の周囲の一点から軸線 に対して 0 1の傾斜で平坦状にカヅ トした第 1の面 3 0を形成し、 また、 軸線に対して 0 2の傾斜で平坦状にカツトした第 2の面 3 1を弁体 1 7 の中程から先端にかけて第 1の面 3 0に続いて形成するようにしている。 また、 第 1の面 3 0に差し掛からない弁体の側面、 この例では、 弁体の 軸線に対して第 1の面 3 0と反対側の側面に、 基端から先端にかけて軸 方向に平坦状に力ッ トして形成されたガイ ド面 3 2が形成されている。 これに対し、 連通路 1 4は、 その通路断面が前記弁体 1 7の第 1の面 3 0の中程を軸線に対して垂直に過ぎる平面によって切断された断面形 状とほぼ同形状に形成されており、 第 1の面 3 0が対峙する開口端の縁 部を弁座 1 6としている。 したがって、 弁体 1 7は、 第 1の面 3 0の中 程で弁座 1 6に着座し、 連通路 1 4を閉塞するようになっている。 また、 連通路 1 4には、 弁体 1 7のガイ ド面 3 2を受け、 これにより弁体 1 Ί を連通路 1 4に位置決めするガイ ド受け面 3 3が連通路 1 4の軸線に沿 つて形成されている。 尚、 この例では、 0 1を約 2 0度に設定し、 連通 路 1 4の通路断面積をおよそ直径が 1 . 5〜3 . 0 mm程度の孔と同程 度としている。  FIGS. 14 to 16 show another example of the structure of the valve element 17 and the communication path 14. In this configuration, the valve element 17 has a pinch angle (an inclination with respect to the axis) formed with its axis. Angle) is formed at a predetermined angle (01) with the first surface 30 and the axis of the valve element 17 that is formed continuously from the first surface 30 on the distal end side. And a second surface 31 having an included angle (inclination angle with respect to the axis) larger than the first surface 30 at an angle (0 2). In this example, a first surface 30 that is flatly cut at an inclination of 01 with respect to the axis from one point around the base end is formed on a columnar material, The second surface 31 cut into a flat shape at an inclination of 2 is formed following the first surface 30 from the middle to the tip of the valve element 17. Also, the side surface of the valve body that does not reach the first surface 30, in this example, the side surface opposite to the first surface 30 with respect to the axis of the valve body, and is axially flat from the base end to the distal end. A guide surface 32 formed by pressing in a shape is formed. On the other hand, the communication passage 14 has a passage cross section having substantially the same shape as a cross section cut by a plane passing through the middle of the first surface 30 of the valve element 17 and perpendicular to the axis. The edge of the open end facing the first surface 30 is a valve seat 16. Therefore, the valve element 17 is seated on the valve seat 16 in the middle of the first surface 30 to close the communication path 14. Further, the communication passage 14 receives the guide surface 32 of the valve element 17, so that the guide receiving surface 33 for positioning the valve body 1 に in the communication passage 14 is aligned with the axis of the communication passage 14. It is formed along. In this example, 01 is set to about 20 degrees, and the cross-sectional area of the communication path 14 is set to be approximately the same as a hole having a diameter of about 1.5 to 3.0 mm.
このような構成においては、 ベローズ 1 8の伸縮量が高圧空間 1 1の 冷媒圧力にほぼ比例していると考えると、 弁体 1 7のス トローク量は高 圧空間 1 1の冷媒圧力にほぼ比例することから、 弁体 1 7が弁座 1 6か ら離反してリフ トする初期においては、 第 1の面 3 0によって開口面積 特性が決定され、 高圧空間の圧力変動 (バルブリフ トの変化) に対する 弁開度 (連通路の開口面積) の変動が小さくなり、 その後、 第 2の面 3 1が連通路の開口端面に至ると、 高圧空間の圧力変動 (バルブリフ トの 変化) に対する弁閧度 (連通路の開口面積) の変動が大きくなり、 その 後、 連通路 1 4の通路断面に相当する開口面積に至るまで大きくなり、 第 1 0図の実線 (I I線) で示されるような特性を得ることが可能とな る。 したがって、 このような弁体構成を有する膨張装置 5を用いた場 合には、 高圧圧力が低くなる領域、 即ち、 連通路 1 4の開口面積を大き くする方向へ弁体 1 7がリフ トする初期において、 高圧空間の圧力変動 (バルブリフ トの変化) に対する弁開度 (連通路の開口面積) の変動を 鈍くすることができ、 もって、 圧縮機 2として低圧ラインの圧力によつ て容量が制御される容量可変型のものを用い、 且つ、 このサイクルを高 圧圧力が臨界圧以下になる亜臨界領域で動作するような低負荷域で運転 する場合でも、 膨張装置 5の弁体 1 7が弁座 1 6に容易に着座して連通 路 3 1を閉塞しまう恐れを一層低減することができ、 低圧圧力の著しい 低下や圧縮機 2の吐出量の著しい減少を抑えて間欠的に生じる冷凍サイ クル 1の変動を抑えることが可能となり、 低負荷時での冷房能力を安定 させることができる。 In such a configuration, the amount of expansion and contraction of the bellows 18 Considering that it is almost proportional to the refrigerant pressure, the stroke amount of the valve element 17 is almost proportional to the refrigerant pressure of the high-pressure space 11, so that the valve element 17 separates from the valve seat 16. In the initial stage of lifting, the opening area characteristic is determined by the first surface 30, and the fluctuation of the valve opening (opening area of the communication passage) with respect to the pressure fluctuation (change of valve lift) in the high-pressure space becomes small. When the second surface 31 reaches the open end face of the communication passage, the fluctuation in the degree of instinct (opening area of the communication passage) with respect to the pressure fluctuation in the high-pressure space (change in valve lift) becomes large. The opening area is increased up to the opening area corresponding to the passage cross section of FIG. 14, and it is possible to obtain the characteristics shown by the solid line (II line) in FIG. Therefore, when the expansion device 5 having such a valve element configuration is used, the valve element 17 is lifted in a region where the high pressure is reduced, that is, in a direction in which the opening area of the communication passage 14 is increased. In the initial stage, the fluctuation of the valve opening (opening area of the communication passage) with respect to the pressure fluctuation of the high-pressure space (change of valve lift) can be reduced, so that the capacity of the compressor 2 is reduced by the pressure of the low-pressure line. Even if this cycle is operated in a low-load range in which the cycle is operated in a subcritical region where the high pressure is equal to or lower than the critical pressure, the valve element 1 of the expansion device 5 can be used. 7 can easily seat on the valve seat 16 and block the communication passage 31 even further, and intermittently occurs by suppressing a remarkable decrease in low pressure and a remarkable decrease in the discharge amount of the compressor 2. It is possible to suppress fluctuations in frozen cycle 1. Becomes ability, the cooling capacity at a low load current can be stabilized.
しかも、 このような弁体 1 7によれば第 1の面 3 0の加工如何によつ て開口面積特性を調節することが可能となる。 つまり、 上述の構成によ れば、 第 1の面 3 0を平坦に形成した例を示したが、 第 1の面 3 0の傾 斜角度 (0 1 ) を変更したり、 第 1の面 3 0を曲面に形成すること等に よって弁体 1 7のリフ ト初期における高圧空間の圧力変動 (バルブリフ トの変化) に対する弁開度 (連通路の開口面積) の変動を所望の特性に 設定することが可能となる。 In addition, according to such a valve element 17, it is possible to adjust the opening area characteristic by processing the first surface 30. That is, according to the above-described configuration, an example in which the first surface 30 is formed flat has been described. However, the inclination angle (0 1) of the first surface 30 may be changed, or the first surface 30 may be changed. By forming 30 on a curved surface, etc., the pressure fluctuation in the high-pressure space at the beginning of the lift of the valve element 17 (valve lift) The change of the valve opening (opening area of the communication passage) with respect to the change of the valve can be set to a desired characteristic.
上述の第 1 4図乃至第 1 6図に示す構成は、 弁体 1 7が連通路 1 4の 開口端面から離れるまでリフ卜する場合の例であるが、 弁体 1 7がリフ トした場合においても連通路内に挿入され続けるガイ ド片を弁体 1 7に 設けるようにしてもよい。 そのような構成例が第 1 7図及び第 1 8図に 示されており、 この弁体 1 7にあっては、 第 1 4図乃至第 1 6図に示す 構成に対して、 第 2の面 3 1の先端部から弁体 1 7の軸方向にガイ ド片 3 5を延設し、 このガイ ド片 3 5の背面に前記ガイ ド面 3 2がガイ ド片 3 5の先端まで延設されている構成となっており、 弁体 1 7のリフ トに 拘わらず、 連通路 1 4の形成されたガイ ド受け部 3 3にガイ ド面 3 2が 常に接触している構成となっている。 その他の構成においては、 第 1 4 図乃至第 1 6図に示す構成と同様であるので、 同一部位に同一番号を付 して説明を省略する。  The configuration shown in FIGS. 14 to 16 described above is an example in which the valve 17 is lifted until the valve 17 is separated from the opening end face of the communication passage 14, but the valve 17 is lifted In this case, a guide piece continuously inserted into the communication passage may be provided on the valve element 17. An example of such a configuration is shown in FIGS. 17 and 18. In this valve element 17, the second configuration is different from the configuration shown in FIGS. 14 to 16. A guide piece 35 extends from the tip of the face 31 in the axial direction of the valve element 17, and the guide face 32 extends behind the guide piece 35 to the tip of the guide piece 35. The guide surface 32 is always in contact with the guide receiving portion 33 formed with the communication passage 14 regardless of the lift of the valve 17. ing. Other configurations are the same as those shown in FIGS. 14 to 16, and therefore, the same portions are denoted by the same reference numerals and description thereof will be omitted.
このような構成においては、 連通路 1 4内に挿入されたガイ ド片 3 5 によって連通路 1 4の最大開口面積が規定され、 この例では、 最大開口 面積が直径 1 . 5〜3 . O mm程度の孔と同程度になるように設定され ている。 また、 第 1 4図で示す弁体と同様、 第 1及び第 2の面 3 0 , 3 1によって弁体 1 7のリフトに対する開口面積特性が規定されることと なる。  In such a configuration, the guide piece 35 inserted into the communication path 14 defines the maximum opening area of the communication path 14, and in this example, the maximum opening area is 1.5 to 3.0 mm in diameter. It is set to be about the same as a hole of about mm. Similarly to the valve element shown in FIG. 14, the first and second surfaces 30 and 31 define the opening area characteristics of the valve element 17 with respect to the lift.
即ち、 ベローズ 1 8の伸縮量が高圧空間 1 1の冷媒圧力にほぼ比例し ていると考えると、 弁体 1 7のストローク量は高圧空間 1 1の冷媒圧力 にほぼ比例することから、 弁体 1 7が弁座 1 6から離反してリフトする 初期においては、 第 1の面 3 0によって開口面積特性が決定され、 高圧 空間 1 1の圧力変動 (バルブリフ トの変化) に対する弁開度 (連通路の 開口面積) の変動が小さくなり、 その後、 第 2の面が連通路の開口端面 に至ると、 高圧空間の圧力変動 (バルブリフ トの変化) に対する弁開度 (連通路の開口面積) の変動が大きくなり、 その後、 連通路 1 4の通路 断面に相当する開口面積に至るまで大きくなつて第 1 2図の実線 (I I 線) で示されるような特性を得ることが可能となる。 That is, assuming that the amount of expansion and contraction of the bellows 18 is almost proportional to the refrigerant pressure in the high-pressure space 11, the stroke amount of the valve 17 is almost proportional to the refrigerant pressure in the high-pressure space 11. In the initial stage, when the lift 17 moves away from the valve seat 16, the opening area characteristics are determined by the first surface 30, and the valve opening degree (pressure change) with respect to the pressure fluctuation (change in valve lift) of the high-pressure space 11 is determined. (The opening area of the passage) decreases, and then the second surface becomes the open end surface of the communication passage. , The fluctuation of the valve opening (opening area of the communication passage) with respect to the pressure fluctuation of the high-pressure space (change of valve lift) increases, and then increases to the opening area corresponding to the passage cross section of the communication passage 14. In addition, it is possible to obtain the characteristics shown by the solid line (II line) in FIG.
したがって、 このような弁体構成を有する膨張装置 5を用いた場合に は、 高圧圧力が低くなる領域、 即ち弁体のリフ ト初期において高圧空間 の圧力変動に対する弁開度 (連通路の開口面積) の変動を鈍くすること ができ、 もって、 圧縮機 2として低圧ラインの圧力によって容量が制御 される容量可変型のものを用い、 且つ、 このサイクルを高圧圧力が臨界 圧以下になる亜臨界領域で動作するような低負荷域で運転する場合でも、 膨張装置 5の弁体 1 7が弁座 1 6に容易に着座して連通路 3 1を閉塞し まう恐れを低減することができ、 低圧圧力の著しい低下や圧縮機 2の吐 出量の著しい減少を抑えて間欠的に生じる冷凍サイクル 1の変動を抑え ることが可能となり、 低負荷時での冷房能力を安定させることができる。 しかも、 このような弁体によれば、 第 1 4図乃至第 1 6図に示す構成 と同様、 第 1の面の加工如何によつて開口面積特性を調節することが可 能となる。 しかも、 このような弁体によれば、 最大開口面積が連通路 1 4の通路断面のうちガイ ド片 3 5が占める部分を除いた部分となること から、 ガイ ド片 3 5が占める部分 (ガイ ド片の断面) を調節することに よって全開時の開口面積を調節することが可能となる。 即ち、 連通路 1 4の形状を変更しなくても、 弁体 1 7の形状、 即ち、 ガイ ド片 3 5の形 状を変更することによって全開時の開口面積を調節することが可能とな る。 ところで、 以上の弁体構造によれば、 連通路 1 4の開口端部に設 けられた弁座 1 6に弁体 1 7を当接することによって連通路 1 4の開口 面積を最小とする位置が規定される構成であつたが、 弁座を設けずに弁 体の連通路 1 4に揷入する挿入量を調節することによって弁開度 (連通 路の開口面積) を調節するスプールタイプの弁体によって同様に開口面 積特性を得るようにしてもよい。 例えば、 第 1 7図に示される弁体 1 7 を用いてスプール型の弁構造を構築するには、 第 1 9図に示されるよう に、 連通路 1 4の形状を弁体 1 7の全体が挿通できるように弁体 1 7の 基端部の形状に合わせて形成し、 連通路 1 4の開口面積を最小とする位 置をス 卜 ヅパ 3 6によって規定するようにするとよい。 Therefore, when the expansion device 5 having such a valve element configuration is used, the valve opening degree (opening area of the communication passage) with respect to the pressure drop of the high pressure space in the region where the high pressure is low, that is, in the initial stage of the lift of the valve element. Therefore, the compressor 2 is of a variable capacity type whose capacity is controlled by the pressure of the low pressure line as the compressor 2, and this cycle is performed in a subcritical region where the high pressure is equal to or lower than the critical pressure. Even when operating in a low load range where the valve operates, the risk that the valve element 17 of the expansion device 5 easily sits on the valve seat 16 and closes the communication passage 31 can be reduced. It is possible to suppress a remarkable decrease in pressure and a remarkable decrease in the discharge amount of the compressor 2, thereby suppressing intermittent fluctuations in the refrigeration cycle 1, and stabilize the cooling capacity under a low load. Moreover, according to such a valve body, it becomes possible to adjust the opening area characteristic by processing the first surface, similarly to the configuration shown in FIGS. 14 to 16. In addition, according to such a valve element, the maximum opening area is a portion of the passage cross-section of the communication passage 14 excluding the portion occupied by the guide pieces 35, so that the portion occupied by the guide pieces 35 ( By adjusting the cross section of the guide piece, it is possible to adjust the opening area when fully opened. That is, even if the shape of the communication passage 14 is not changed, it is possible to adjust the opening area when fully opened by changing the shape of the valve element 17, that is, the shape of the guide piece 35. You. By the way, according to the above-described valve body structure, the position at which the opening area of the communication passage 14 is minimized by bringing the valve body 17 into contact with the valve seat 16 provided at the opening end of the communication passage 14. However, by adjusting the amount of insertion into the communication passage 14 of the valve body without providing a valve seat, the valve opening (communication Similarly, the opening area characteristics may be obtained by a spool type valve element that adjusts the opening area of the road. For example, to construct a spool-type valve structure using the valve element 17 shown in FIG. 17, as shown in FIG. 19, as shown in FIG. It is preferable that the valve body 17 be formed in accordance with the shape of the base end of the valve element 17 so that the opening area of the communication passage 14 can be minimized by the stopper 36.
ここで、 ストッパ 3 6としては、 例えば、 弁体 1 7と一体に固定され て弁体 1 7の動きに伴って変位する円筒形状に形成し、 弁体 1 7が連通 路 1 4に入り込むと、 仕切壁 1 3の連通路 1 4が開口する部分の周囲に 当接し、 これ以上の弁体 1 7の変位を阻止するように構成にするとよい。 このようなストッパ 3 6の構成にあっては、 ストヅパ 3 6が連通路 1 4 の開口部分の周囲に当接した場合に、 冷媒の流れが阻止されないように 側壁の適当な箇所に切り欠き 3 7を形成しておくとよい。 尚、 その他の 構成は、 第 1 7図に示す弁体の構成と同様であるので、 同一箇所に同一 番号を付して説明を省略する。  Here, the stopper 36 is formed, for example, in a cylindrical shape that is fixed integrally with the valve element 17 and is displaced with the movement of the valve element 17, and the valve element 17 enters the communication path 14. However, it is preferable that the partition wall 13 is configured to abut around a portion where the communication passage 14 is opened to prevent further displacement of the valve element 17. In such a configuration of the stopper 36, when the stopper 36 comes into contact with the periphery of the opening of the communication passage 14, a notch is formed at an appropriate position on the side wall so that the flow of the refrigerant is not blocked. 7 should be formed. The other configuration is the same as the configuration of the valve element shown in FIG. 17, and the same portions are denoted by the same reference numerals and description thereof will be omitted.
したがって、 このようなスプールタイプの弁体を有する膨張装置 5を 用いた場合には、 第 1 7図で示す弁体と同様の作用効果に加え、 連通路 1 4の開口面積を閉塞する方向への弁体の動き、 即ち、 連通路 1 4の開 口面積を最小とする位置がストツノ 3 6によって規定されることとなる ので、 弁体 1 7の挟み角の下限値、 即ち、 第 1 9図で示される弁体にあ つては、 第 1の面 3 0の軸線とのなす挟み角 (軸線に対する傾斜角) の 下限値を考慮することなく、 自由に設定することができる。 その結果、 第 1の面 3 0の軸線とのなす挟み角を一層小さくすることによって、 開 口面積が最小となる位置から前記弁体がリフ トする初期において、 高圧 空間 1 1の圧力変動 (バルブリフ トの変化) に対する開口面積の特性を、 第 1 0図の 2点鎖線 (IV線) に示されるように、 さらに小さくするこ とができ、 これにより、 間欠的に生じる冷凍サイクル 1の変動を一層抑 えて低負荷時での冷房能力を安定させることができるようになる。 産業上の利用可能性 Therefore, when the expansion device 5 having such a spool-type valve body is used, in addition to the same operation and effect as the valve body shown in FIG. 17, the opening area of the communication passage 14 is closed. The movement of the valve element, that is, the position at which the opening area of the communication passage 14 is minimized is determined by the stop horn 36, so that the lower limit value of the included angle of the valve element 17, that is, The valve body shown in the figure can be freely set without considering the lower limit value of the included angle (inclination angle with respect to the axis) between the first surface 30 and the axis. As a result, by further reducing the included angle between the first surface 30 and the axis, the pressure fluctuation of the high-pressure space 11 at the initial stage when the valve element lifts from the position where the opening area is minimized ( As shown by the two-dot chain line (IV line) in Fig. 10, the characteristics of the opening area with respect to changes in valve lift) should be further reduced. This makes it possible to further suppress intermittent fluctuations in the refrigeration cycle 1 and to stabilize the cooling capacity under a low load. Industrial applicability
以上述べたように、 この発明によれば、 放熱器側の冷媒条件に応じて 弁体の動きが制御される感受要素を備えた非電気式の膨張装置に、 連通 路の開口面積が最小となる位置から弁体がリフ トする初期において、 高 圧空間の圧力変動に対する連通路の開口面積の変動を小さくする特性を 持たせることにより、 例えば、 膨張装置の弁体を、 連通路の開口面積が 小さくなるほど高圧空間の圧力変動に対する開口面積の変動を小さくす る特性を備えた形状に形成したり、 膨張装置の高圧空間と低圧空間とを 連通する連通路を、 開口面積が小さくなるほど高圧空間の圧力変動に対 する開口面積の変動を小さくする特性を備えた形状に形成するようにし たりすることで、 高圧圧力に対する弁開口面積の特性を、 第 4図の特性 線に示されるように、 高圧圧力が低いときほど (バルブリフ トが小さい ときほど) 弁開度 (連通路の開口面積) の変動を小さくすることができ. 弁閧度 (連通路の開口面積) が小さくなる低負荷時において、 圧力変動 によって膨張装置が容易に閉じてしまう不都合を回避して、 間欠的に生 じ得る低負荷時でのサイクル変動を起こりにく く し、 もって低負荷時で の冷房能力を安定させることができる。  As described above, according to the present invention, the non-electric type expansion device including the sensing element whose movement of the valve body is controlled according to the refrigerant condition on the radiator side has the smallest opening area of the communication path. At the initial stage when the valve element is lifted from a certain position, the valve body of the expansion device is made to have a characteristic of reducing the fluctuation of the opening area of the communication path due to the pressure fluctuation of the high-pressure space. When the opening area is smaller, the communication path that connects the high pressure space and the low pressure space of the expansion device is formed. The characteristic of the valve opening area with respect to the high pressure is shown by the characteristic line in Fig. 4, for example, by forming it into a shape with the characteristic of reducing the variation of the opening area with respect to the pressure fluctuation. In addition, the lower the high pressure (the smaller the valve lift), the smaller the fluctuation of the valve opening (opening area of the communication passage). Avoids the inconvenience that the expansion device closes easily due to pressure fluctuations, making it less likely to cause intermittent low-load cycle fluctuations, thus stabilizing the cooling capacity at low loads. Can be done.
また、 連通路を前記高圧空間から低圧空間にかけて径の等しい通孔と して形成し、 弁体をその基部から先端に向かうにつれて単位軸方向当た りの径の変化を連続的に等しい割合で減少する円錐台形状に形成し、 開 口面積が最小となる位置から最大となる位置にかけて弁体がリフ トする 途中で、 弁体の先端を連通路の開口端から離反させる構成とすることに よって、 或いは、 弁体を、 先端に向かうにつれて徐々に径を小さくする 第 1円錐部と、 第 1円錐部よりも先端側に続いて形成されると共に先端 に向かうにつれて徐々に径を小さくする第 2円錐部とを有して構成し、 弁体の軸線と前記第 2円錐部の母線とのなす挟み角の角度を弁体の軸線 と前記第 1円錐部の母線とのなす挾み角の角度よりも小さくし、 連通路 を、 その軸線とのなす挟み角の角度が弁体の軸線と第 1円錐部の母線と のなす挟み角の角度よりも大きく形成された第 1円錐形路と、 この第 1 円錐形路に続いて形成され、 連通路の軸線とのなす挟み角の角度が弁体 の軸線と第 2円錐部の母線とのなす挟み角の角度よりも小さい第 2円錐 形路とを有して構成し、 弁体の第 1円錐部から第 2円錐部への移行部分 を連通路の第 1円錐形路から第 2円錐形路への移行部分に当接し得るよ うに構成することによって、 さらには、 弁体に、 その軸線となす挟み角 が所定の角度に形成されている第 1の面と、 第 1の面よりも先端側に続 いて形成されると共に弁体の軸線とのなす挟み角が第 1の面よりも小さ い角度に形成されている第 2の面とを設けることによって、 膨張装置の 特性を、 弁体がリフトする初期において高圧空間の圧力変動に対する開 口面積の変動を小さくするようにすれば、 高圧圧力に対する弁開口面積 の特性を、 第 1 0図の I I、 I I I 、 又は IV線に示されるように、 高圧圧 力が低いときほど (バルブリフトが小さいときほど) 弁開度 (連通路の 開口面積) の変動を小さくすることができ、 弁開度 (連通路の開口面 積) が小さくなる低負荷時において、 圧力変動によって膨張装置が容易 に閉じてしまう不都合を回避して、 間欠的に生じ得る低負荷時でのサイ クル変動を起こりにく くし、 もって低負荷時での冷房能力を安定させる ことができる。 Further, the communication passage is formed as a through-hole having the same diameter from the high-pressure space to the low-pressure space, and the change in the diameter per unit axial direction is continuously changed at an equal rate from the base to the tip of the valve body. It is formed in a shape of a truncated cone, and the tip of the valve is separated from the open end of the communication passage while the valve is lifted from the position where the opening area is minimum to the position where it is maximum. Therefore, or alternatively, gradually reduce the diameter of the valve body toward the tip A first conical portion, and a second conical portion that is formed on the distal end side of the first conical portion and gradually decreases in diameter toward the distal end. (2) The angle of the included angle between the bus line of the conical portion and the axis of the valve body is smaller than the angle of the included angle between the bus line of the first conical portion and the communication passage. A first conical path formed at an angle larger than the angle of the included angle between the axis of the valve body and the generatrix of the first conical portion; and an axis of the communication passage formed following the first conical path and formed with the first conical path. A second conical path in which the angle of the included angle is smaller than the angle of the included angle between the axis of the valve body and the generatrix of the second conical portion. (2) By making the transition section to the conical section abut on the transition section from the first conical path to the second conical path in the communication passage, Further, the valve body has a first surface formed with a predetermined angle between the axis and the axis thereof, and a first surface formed further from the first surface than the first surface and formed with the axis of the valve body. By providing the second surface having an included angle smaller than that of the first surface, the characteristics of the expansion device can be reduced in the initial stage when the valve element lifts. If the fluctuation is reduced, the characteristics of the valve opening area with respect to the high pressure will be reduced as the high pressure decreases (as shown by the line II, III or IV in Fig. 10). The fluctuation of the valve opening (opening area of the communication passage) can be reduced, and at low load where the valve opening (opening area of the communication passage) decreases, the expansion device can be easily closed due to pressure fluctuation. Avoid inconveniences that occur intermittently Flip obtain low load cycle variations occur difficulty comb at the time, the cooling capacity at a low load current can be stabilized with.
ここで、 弁体に第 1の面と第 2の面とを形成する上述の構成において、 リフト時においても連通路内に挿入され続けるガイ ド片を弁体に設ける ようにすれば、 連通路の最大開口面積を連通路の形状を変更せずに調節 することができるようになり、 また、 弁体の側面を軸方向にカッ トして ガイ ド面を形成し、 連通路に、 このガイ ド面を受けるガイ ド受け面を形 成するようにすれば、 弁体の位置決めを容易に行うことが可能となる。 第 1の面と第 2の面とを有する上述の弁体においては、 弁体の第 1の面 を連通路の端部に形成された弁座に着座させることによって開口面積が 最小となる弁体の位置を規定するようにしても、 弁体と一体をなして変 位するス トヅパを設け、 このストッパによって開口面積が最小となる弁 体の位置を規定し、 これによつて弁体を弁座に着座させる形式とするこ とも弁体をスプール型とすることも可能となる。 Here, in the above-described configuration in which the first surface and the second surface are formed on the valve body, if the guide piece that is continuously inserted into the communication passage even during the lift is provided on the valve body, the communication passage may be provided. Maximum opening area without changing the shape of the communication passage It is also possible to cut the side surface of the valve body in the axial direction to form a guide surface, and to form a guide receiving surface for receiving this guide surface in the communication passage. If this is the case, it becomes possible to easily position the valve element. In the above-described valve body having the first surface and the second surface, the valve having the smallest opening area by seating the first surface of the valve body on the valve seat formed at the end of the communication passage. Even if the position of the valve body is specified, a stopper that displaces integrally with the valve body is provided, and the stopper defines the position of the valve body that minimizes the opening area. It is possible to adopt a type of seating on a valve seat or a spool type valve.

Claims

請 求 の 範 囲 The scope of the claims
1 . 冷媒を圧縮して運転条件により高圧ラインの冷媒を超臨界状態 とする圧縮機と、 前記圧縮機によって圧縮された冷媒を冷却する放熱器 と、 前記放熱器で冷却された冷媒を減圧する膨張装置と、 前記膨張装置 によって減圧された冷媒を蒸発させる蒸発器とによって少なくとも構成 される冷凍サイクルにおいて、 1. A compressor that compresses the refrigerant to make the refrigerant in a high-pressure line in a supercritical state depending on operating conditions, a radiator that cools the refrigerant compressed by the compressor, and depressurizes the refrigerant cooled by the radiator. In a refrigeration cycle configured at least by an expansion device and an evaporator that evaporates the refrigerant decompressed by the expansion device,
前記膨張装置は、  The inflation device,
放熱器側と連通する高圧空間と、  A high-pressure space communicating with the radiator side,
蒸発器側と連通する低圧空間と、  A low-pressure space communicating with the evaporator side;
前記高圧空間と前記低圧空間とを連通する連通路と、  A communication passage communicating the high-pressure space and the low-pressure space,
前記連通路の開口面積を変化させる弁体と、  A valve element for changing an opening area of the communication path;
前記放熱器側の冷媒条件に応じて前記弁体の位置を制御することによ り前記連通路の開口面積を変更する感受要素とを有し、  A sensing element that changes an opening area of the communication path by controlling a position of the valve body according to a refrigerant condition on the radiator side;
前記開口面積が最小となる位置から前記弁体がリフトする初期におい て前記高圧空間の圧力変動に対する前記開口面積の変動を小さくする特 性を備えていることを特徴とする冷凍サイクル。  A refrigeration cycle characterized in that the opening area has a characteristic that the fluctuation of the opening area with respect to the fluctuation of the pressure in the high-pressure space is reduced at the initial stage when the valve element lifts from the position where the opening area is minimum.
2 . 前記弁体を、 前記連通路の開口面積が小さくなるほど前記高圧 空間の圧力変動に対する前記開口面積の変動を小さくする特性を備えた 形状に形成することで、 前記膨張装置の特性を、 前記弁体がリフトする 初期において前記高圧空間の圧力変動に対する前記開口面積の変動を小 さくすることを特徴とする請求項 1記載の冷凍サイクル。  2. The valve body is formed in a shape having a characteristic of reducing the variation of the opening area with respect to the pressure variation of the high-pressure space as the opening area of the communication passage becomes smaller, so that the characteristics of the expansion device are changed. 2. The refrigeration cycle according to claim 1, wherein a variation in the opening area with respect to a pressure variation in the high-pressure space is reduced at an early stage when the valve element lifts.
3 . 前記連通路を前記高圧空間から前記低圧空間にかけて径の等し ぃ通孔として形成し、 前記弁体をその基部から先端に向かうにつれて単 位軸方向当たりの径の変化を連続的に減少させると共にその径の減少率 を徐々に大きくすることで、 前記連通路の開口面積が小さくなるほど、 前記高圧空間の圧力変動に対する前記開口面積の変動を小さくしている ことを特徴とする請求項 2記載の冷凍サイクル。 3. The communication passage is formed as a through hole having an equal diameter from the high-pressure space to the low-pressure space, and the change in diameter per unit axial direction is continuously reduced as the valve element moves from its base toward its tip. And the reduction rate of the diameter 3. The refrigeration cycle according to claim 2, wherein the smaller the opening area of the communication passage, the smaller the fluctuation of the opening area with respect to the fluctuation of the pressure in the high-pressure space.
4 . 前記連通路を、 前記弁体によって前記連通路の開口面積が小さ くなるほど前記高圧空間の圧力変動に対する前記開口面積の変動を小さ くする特性を備えた形状に形成することで、 前記膨張装置の特性を、 前 記弁体がリフトする初期において前記高圧空間の圧力変動に対する前記 開口面積の変動を小さくすることを特徴とする請求項 1記載の冷凍サイ クル。  4. The expansion is formed by forming the communication passage in a shape having a characteristic of reducing the variation of the opening area with respect to the pressure variation of the high-pressure space as the opening area of the communication passage is reduced by the valve element. 2. The refrigeration cycle according to claim 1, wherein a characteristic of the device is such that a variation in the opening area with respect to a pressure variation in the high-pressure space is reduced in an early stage when the valve body is lifted.
5 . 前記弁体をその変位方向を軸心とする円柱状に形成し、 前記連 通路を前記高圧空間から前記低圧空間に向かうにつれて単位軸方向当た りの通路断面の変化を連続的に減少させると共に前記通路断面の減少率 を徐々に小さくする形状に形成することで、 前記弁体によって前記連通 路の開口面積が小さくなるほど、 前記高圧空間の圧力変動に対する前記 開口面積の変動を小さくしていることを特徴とする請求項 4記載の冷凍 サイクル。  5. The valve body is formed in a cylindrical shape with its displacement direction as the axis, and the change of the cross section of the communication passage per unit axial direction is continuously reduced as the communication passage goes from the high pressure space to the low pressure space. And the reduction rate of the cross section of the passage is gradually reduced, so that as the opening area of the communication passage is reduced by the valve element, the variation of the opening area with respect to the pressure variation of the high-pressure space is reduced. 5. The refrigeration cycle according to claim 4, wherein:
6 . 前記弁体をその基部から先端に向かうにつれて単位軸方向当た りの径の変化を連続的に等しい割合で減少する形状に形成し、 前記連通 路を前記高圧空間から前記低圧空間に向かうにつれて単位軸方向当たり の通路断面の変化を連続的に減少させると共に前記通路断面の減少率を 徐々に小さくする形状に形成することで、 前記弁体によって前記連通路 の開口面積が小さくなるほど、 前記高圧空間の圧力変動に対する前記開 口面積の変動を小さくしていることを特徴とする請求項 4記載の冷凍サ ィクル。  6. The valve body is formed in such a shape that the change in the diameter per unit axial direction is continuously reduced at an equal rate as going from the base to the tip thereof, and the communication path is directed from the high-pressure space to the low-pressure space. As a result, the change in the passage cross section per unit axial direction is continuously reduced, and the reduction rate of the passage cross section is gradually reduced, so that the opening area of the communication passage is reduced by the valve body. 5. The refrigeration cycle according to claim 4, wherein a variation in the opening area with respect to a pressure variation in a high-pressure space is reduced.
7 . 前記連通路を前記高圧空間から前記低圧空間にかけて径の等し ぃ通孔として形成し、 弁体をその基部から先端に向かうにつれて単位軸 方向当たりの径の変化を連続的に等しい割合で減少する円錐台形状に形 成し、 7. The communication passage is formed as a through-hole having a diameter equal to that from the high-pressure space to the low-pressure space, and a unit shaft is formed by moving the valve body from its base toward the tip. Forming a change in diameter per direction into a frusto-conical shape that continuously decreases at an equal rate;
前記開口面積が最小となる位置から最大となる位置にかけて前記弁体 がリフトする途中で、 前記弁体の先端を前記連通路の開口端から離反さ せることによって、 前記膨張装置の特性を、 前記弁体がリフトする初期 において前記高圧空間の圧力変動に対する前記開口面積の変動を小さく するようにしたことを特徴とする請求項 1記載の冷凍サイクル。  During the lift of the valve body from the position where the opening area is minimum to the position where the opening area is maximum, the tip of the valve body is separated from the opening end of the communication passage, whereby the characteristics of the expansion device are improved. 2. The refrigeration cycle according to claim 1, wherein a variation in the opening area with respect to a pressure variation in the high-pressure space is reduced at an early stage when the valve element lifts.
8 . 前記弁体を、 先端に向かうにつれて徐々に径を小さくする第 1 円錐部と、 前記第 1円錐部よりも先端側に続いて形成されると共に先端 に向かうにつれて徐々に径を小さくする第 2円錐部とを有して構成し、 前記弁体の軸線と前記第 2円錐部の母線とのなす挟み角の角度を前記弁 体の軸線と前記第 1円錐部の母線とのなす挟み角の角度よりも小さくし. 前記連通路を、 その軸線とのなす挟み角の角度が前記弁体の軸線と前記 第 1円錐部の母線とのなす挟み角の角度よりも大きく形成された第 1円 錐形路と、 この第 1円錐形路に続いて形成され、 前記連通路の軸線との なす挟み角の角度が前記弁体の軸線と前記第 2円錐部の母線とのなす挟 み角の角度よりも小さい第 2円錐形路とを有して構成し、 前記弁体の前 記第 1円錐部から前記第 2円錐部への移行部分を前記連通路の前記第 1 円錐形路から前記第 2円錐形路への移行部分に当接し得るようにするこ とで、 前記膨張装置の特性を、 前記弁体がリフトする初期において前記 高圧空間の圧力変動に対する前記開口面積の変動を小さくすることを特 徴とする請求項 1記載の冷凍サイクル。  8. A first conical portion that gradually reduces the diameter of the valve body toward the distal end, and a first conical portion that is formed following the distal end side of the first conical portion and gradually decreases in diameter toward the distal end. And the angle of the included angle between the axis of the valve element and the generatrix of the second conical part is defined as the included angle between the axis of the valve element and the generatrix of the first conical part. The angle of the included angle between the communication path and the axis thereof is larger than the angle of the included angle between the axis of the valve body and the generatrix of the first conical portion. An angle formed between the conical path and the first conical path and the axis of the communication passage is an angle between the axis of the valve body and the generatrix of the second conical portion. And a second conical path smaller than the angle of the second cone from the first cone portion of the valve body. The transition portion from the first conical path to the second conical path in the communication passage so that the valve body lifts the characteristics of the expansion device. 2. The refrigeration cycle according to claim 1, wherein a change in the opening area with respect to a pressure change in the high-pressure space is reduced in an early stage.
9 . 前記弁体に、 その軸線となす挟み角が所定の角度に形成されて いる第 1の面と、 前記第 1の面よりも先端側に続いて形成されると共に 前記弁体の軸線とのなす挟み角が前記第 1の面よりも小さい角度に形成 されている第 2の面とを形成することで、 前記膨張装置の特性を、 前記 弁体がリフ トする初期において前記高圧空間の圧力変動に対する前記開 口面積の変動を小さくすることを特徴とする請求項 1記載の冷凍サイク ル。 9. The valve body has a first surface formed with a predetermined angle between the axis of the valve body and an axial line of the valve body, the first surface being formed further to the tip side than the first surface. And a second surface having a smaller included angle formed than the first surface, so that the characteristics of the expansion device can be improved. 2. The refrigeration cycle according to claim 1, wherein a variation in the opening area with respect to a pressure variation in the high-pressure space is reduced at an early stage when the valve element lifts.
1 0 . 前記弁体に、 リフ ト時においても前記連通路内に挿入され続 けるガイ ド片を設けたことを特徴とする請求項 9記載の冷凍サイクル。  10. The refrigeration cycle according to claim 9, wherein the valve body is provided with a guide piece that is continuously inserted into the communication passage even during lifting.
1 1 . 前記弁体には、 その側面を軸方向にカツ トして形成されたガ ィ ド面が形成され、 前記連通路には、 前記ガイ ド面を受けるガイ ド受け 面が形成されていることを特徴とする請求項 9又は 1 0記載の冷凍サイ クル。  11. The valve body has a guide surface formed by cutting the side surface in the axial direction, and the communication passage has a guide receiving surface for receiving the guide surface. The refrigeration cycle according to claim 9 or 10, wherein
1 2 . 前記弁体は、 前記第 1の面を前記連通路の端部に形成された 弁座に着座させることによって前記開口面積の最小となる位置が規定さ れるものであることを特徴とする請求項 9記載の冷凍サイクル。  12. The valve body is characterized in that a position where the opening area is minimized is defined by seating the first surface on a valve seat formed at an end of the communication passage. The refrigeration cycle according to claim 9, wherein
1 3 . 前記弁体と一体をなして変位するス トッパを設け、 前記弁体 は、 前記ス トッパによって前記開口面積の最小となる位置が規定される ものであることを特徴とする請求項 9記載の冷凍サイクル。  13. A stopper which is displaced integrally with the valve body, wherein the valve body defines a position where the opening area is minimized by the stopper. Refrigeration cycle as described.
PCT/JP2000/006900 1999-10-08 2000-10-04 Refrigerating cycle WO2001027543A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP28751399 1999-10-08
JP11/287513 1999-10-08
JP2000/275761 2000-09-12
JP2000275761A JP2001174076A (en) 1999-10-08 2000-09-12 Refrigeration cycle

Publications (1)

Publication Number Publication Date
WO2001027543A1 true WO2001027543A1 (en) 2001-04-19

Family

ID=26556754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006900 WO2001027543A1 (en) 1999-10-08 2000-10-04 Refrigerating cycle

Country Status (2)

Country Link
JP (1) JP2001174076A (en)
WO (1) WO2001027543A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1265041A2 (en) * 2001-06-07 2002-12-11 TGK Co., Ltd. Refrigerating cycle
FR2863695A1 (en) * 2003-12-16 2005-06-17 Otto Egelhof Gmbh & Co Kg Shut-off valve for vehicle air conditioning system expansion valve, has travel generating device integrated on regulating screw and actuating valve arranged in screw and regulating space provided at end of screw
FR2867261A1 (en) * 2004-03-03 2005-09-09 Otto Egelhof Gmbh & Co Kg RETAINING VALVE AND METHOD FOR CONTROLLING THE SAME
FR2868830A1 (en) * 2004-04-09 2005-10-14 Valeo Climatisation Sa IMPROVED RELIEF DEVICE FOR AIR CONDITIONING CIRCUIT
EP1722175A2 (en) * 2005-05-12 2006-11-15 Behr GmbH & Co. KG Differential pressure valve
US7246501B2 (en) 2003-12-16 2007-07-24 Otto Egelhof Gmbh & Co. Kg Shut-off valve, kit having a shut-off valve, and an expansion valve
EP1832819A1 (en) * 2004-11-26 2007-09-12 Valeo Thermal Systems Japan Corporation Refrigerating cycle
EP1722176A3 (en) * 2005-05-13 2007-09-19 Behr GmbH & Co. KG Differential pressure valve
EP2883723A1 (en) * 2013-12-13 2015-06-17 Valeo Systemes Thermiques Method for thermal conditioning of a passenger compartment of a motor vehicle
WO2020259901A1 (en) * 2019-06-27 2020-12-30 Danfoss A/S Method for creating a maximum capacity variance of an expansion valve

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2862573B1 (en) * 2003-11-25 2006-01-13 Valeo Climatisation AIR CONDITIONING INSTALLATION OF VEHICLE
JPWO2006090826A1 (en) * 2005-02-24 2008-07-24 株式会社不二工機 Pressure control valve
JP2008064439A (en) * 2006-09-11 2008-03-21 Daikin Ind Ltd Air conditioner
JP6639876B2 (en) * 2015-11-17 2020-02-05 株式会社不二工機 Flow control valve

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0113882Y2 (en) * 1981-02-18 1989-04-24
WO1990007683A1 (en) * 1989-01-09 1990-07-12 Sinvent As Trans-critical vapour compression cycle device
WO1993006423A1 (en) * 1991-09-16 1993-04-01 Sinvent A/S Method of high-side pressure regulation in transcritical vapor compression cycle device
WO1994014016A1 (en) * 1992-12-11 1994-06-23 Sinvent A/S Trans-critical vapour compression device
JPH09133435A (en) * 1995-11-08 1997-05-20 Mitsubishi Heavy Ind Ltd Expansion valve
EP0786632A2 (en) * 1996-01-25 1997-07-30 Denso Corporation Refrigerating system with pressure control valve
EP0837291A2 (en) * 1996-08-22 1998-04-22 Denso Corporation Vapor compression type refrigerating system
JPH11248272A (en) * 1998-01-05 1999-09-14 Denso Corp Supercritical refrigeration cycle
JP2000097523A (en) * 1998-09-24 2000-04-04 Zexel Corp Inflation device of super-critical refrigeration cycle
EP1001229A2 (en) * 1998-11-12 2000-05-17 Ford-Werke Aktiengesellschaft Expansion element and valve unit for use therewith

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0113882Y2 (en) * 1981-02-18 1989-04-24
WO1990007683A1 (en) * 1989-01-09 1990-07-12 Sinvent As Trans-critical vapour compression cycle device
WO1993006423A1 (en) * 1991-09-16 1993-04-01 Sinvent A/S Method of high-side pressure regulation in transcritical vapor compression cycle device
WO1994014016A1 (en) * 1992-12-11 1994-06-23 Sinvent A/S Trans-critical vapour compression device
JPH09133435A (en) * 1995-11-08 1997-05-20 Mitsubishi Heavy Ind Ltd Expansion valve
EP0786632A2 (en) * 1996-01-25 1997-07-30 Denso Corporation Refrigerating system with pressure control valve
EP0837291A2 (en) * 1996-08-22 1998-04-22 Denso Corporation Vapor compression type refrigerating system
JPH11248272A (en) * 1998-01-05 1999-09-14 Denso Corp Supercritical refrigeration cycle
JP2000097523A (en) * 1998-09-24 2000-04-04 Zexel Corp Inflation device of super-critical refrigeration cycle
EP1001229A2 (en) * 1998-11-12 2000-05-17 Ford-Werke Aktiengesellschaft Expansion element and valve unit for use therewith

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1265041A3 (en) * 2001-06-07 2004-03-17 TGK Co., Ltd. Refrigerating cycle
EP1265041A2 (en) * 2001-06-07 2002-12-11 TGK Co., Ltd. Refrigerating cycle
US7246501B2 (en) 2003-12-16 2007-07-24 Otto Egelhof Gmbh & Co. Kg Shut-off valve, kit having a shut-off valve, and an expansion valve
FR2863695A1 (en) * 2003-12-16 2005-06-17 Otto Egelhof Gmbh & Co Kg Shut-off valve for vehicle air conditioning system expansion valve, has travel generating device integrated on regulating screw and actuating valve arranged in screw and regulating space provided at end of screw
FR2867261A1 (en) * 2004-03-03 2005-09-09 Otto Egelhof Gmbh & Co Kg RETAINING VALVE AND METHOD FOR CONTROLLING THE SAME
FR2868830A1 (en) * 2004-04-09 2005-10-14 Valeo Climatisation Sa IMPROVED RELIEF DEVICE FOR AIR CONDITIONING CIRCUIT
US7243501B2 (en) 2004-04-09 2007-07-17 Valeo Climatisation Expansion device for an air-conditioning system
EP1715264A1 (en) * 2004-04-09 2006-10-25 Valeo Systèmes Thermiques Improved expansion valve for air conditioning circuit
EP1832819A1 (en) * 2004-11-26 2007-09-12 Valeo Thermal Systems Japan Corporation Refrigerating cycle
EP1832819A4 (en) * 2004-11-26 2014-10-22 Valeo Thermal Sys Japan Co Refrigerating cycle
EP1722175A2 (en) * 2005-05-12 2006-11-15 Behr GmbH & Co. KG Differential pressure valve
EP1722175A3 (en) * 2005-05-12 2007-09-19 Behr GmbH & Co. KG Differential pressure valve
EP1722176A3 (en) * 2005-05-13 2007-09-19 Behr GmbH & Co. KG Differential pressure valve
EP2883723A1 (en) * 2013-12-13 2015-06-17 Valeo Systemes Thermiques Method for thermal conditioning of a passenger compartment of a motor vehicle
FR3014756A1 (en) * 2013-12-13 2015-06-19 Valeo Systemes Thermiques METHOD FOR THERMALLY CONDITIONING A HABITACLE OF A MOTOR VEHICLE
WO2020259901A1 (en) * 2019-06-27 2020-12-30 Danfoss A/S Method for creating a maximum capacity variance of an expansion valve

Also Published As

Publication number Publication date
JP2001174076A (en) 2001-06-29

Similar Documents

Publication Publication Date Title
WO2001027543A1 (en) Refrigerating cycle
JP4032875B2 (en) Ejector cycle
JP4285060B2 (en) Vapor compression refrigerator
JP5083107B2 (en) Expansion valve and vapor compression refrigeration cycle provided with the same
JP2000035250A (en) Supercritical freezing cycle
WO2001006183A1 (en) Refrigerating cycle
JP4348571B2 (en) Refrigeration cycle
JP2004142701A (en) Refrigeration cycle
EP1380801B1 (en) Expansion valve
US6209793B1 (en) Thermostatic expansion valve in which a valve seat is movable in a flow direction of a refrigerant
JP2007032945A (en) Ejector type cycle, and flow control valve of same
EP0934494B1 (en) A refrigeration circuit arrangement for a refrigeration system
JP2001116400A (en) Refrigeration cycle
JP2001116399A (en) Refrigeration cycle
JPH01141119A (en) Air conditioner
JP2001324246A (en) Expansion valve and freezing cycle using it
JP2002061990A (en) Refrigerating cycle
JP6740931B2 (en) Ejector type refrigeration cycle
JP3442949B2 (en) Refrigeration cycle using variable capacity compressor
WO2001063185A1 (en) Refrigerating cycle
JPH04134188A (en) Variable capacity and oscillating cam plate type compressor
JP2001116398A (en) Refrigeration cycle
JP4077308B2 (en) Expansion valve
JP3932621B2 (en) Thermal expansion valve
JP3807955B2 (en) Expansion valve

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase