WO2001027342A1 - Steel for welded structure purpose exhibiting no dependence of haz toughness on heat input and method for producing the same - Google Patents

Steel for welded structure purpose exhibiting no dependence of haz toughness on heat input and method for producing the same Download PDF

Info

Publication number
WO2001027342A1
WO2001027342A1 PCT/JP2000/007091 JP0007091W WO0127342A1 WO 2001027342 A1 WO2001027342 A1 WO 2001027342A1 JP 0007091 W JP0007091 W JP 0007091W WO 0127342 A1 WO0127342 A1 WO 0127342A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
heat input
added
less
haz toughness
Prior art date
Application number
PCT/JP2000/007091
Other languages
French (fr)
Japanese (ja)
Inventor
Ryuji Uemori
Yukio Tomita
Takuya Hara
Shuji Aihara
Naoki Saitoh
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to JP2001529471A priority Critical patent/JP3802810B2/en
Priority to DE60020522T priority patent/DE60020522T2/en
Priority to EP00966448A priority patent/EP1143023B1/en
Publication of WO2001027342A1 publication Critical patent/WO2001027342A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Definitions

  • the present invention relates to steel for welded structures used in marine structures, line pipes for transporting natural gas and crude oil, construction, shipbuilding, bridges, construction machines, and the like, and a method for producing the same. More specifically, in the present invention, the toughness of the welded part is required, and even when welding is performed under a wide range of heat input conditions, the heat input during welding is from 0.5 kJ Zmm to more than 150 kJ Zmm.
  • the former austenite grain size in the heat affected zone hereinafter referred to as “HAZ”) is small, and the toughness of the weld heat affected zone (hereinafter referred to as “HAZ toughness”) is excellent regardless of the heat input conditions. It relates to steel for welded structures. Background art
  • Japanese Unexamined Patent Publication (Kokai) No. 59-190313 discloses a welding method characterized by deoxidizing molten steel with Ti or a Ti alloy and then adding Al, Mg and the like.
  • a method for producing a steel material having excellent properties is disclosed. This production method uses the effect of increasing the ferrite fraction by using Ti oxide as a transformation nucleus of ferrite, and conventionally utilizes the pinning effect of precipitates such as nitrides. This is a technique to improve the HAZ toughness by a method different from the method of performing HAZ.
  • the gist of these inventions is that “ferrite nucleation at the time of ⁇ ⁇ hypertransformation, that is, And uniformly disperse the Ti-containing oxides that can be used for the miniaturization of the oxides.This does not ensure the pinning effect due to nitrides and the like as described above, but occurs during the cooling process. By promoting the fly transformation during the ⁇ ⁇ ⁇ transformation, the formation of a coarse embrittlement structure is suppressed, and the structure is refined.
  • the method for introducing oxides is to remove Ti and other substances in the steel smelting process.
  • oxide agglomerates form during the retention of molten steel, leading to the formation of coarse oxides, which in turn impairs copper cleanliness and reduces toughness.
  • various devices such as a complex deoxidation method have been devised in order to reduce the size of these oxides.
  • the present invention improves the conventional composite deoxidation method, disperses oxides and / or nitrides more finely and more uniformly than before, and furthermore, the finely dispersed particles also have ferrite transformation ability. It is an object of the present invention to provide a steel for a welded structure having excellent HAZ toughness in welding under any heat input conditions including super-high heat input.
  • the gist of the present invention is as follows.
  • O contains 0.001 to 0.08%, with the balance being iron and unavoidable impurities, Particles precipitated from Mg-containing oxides with a particle diameter of 0.2 to 5 ⁇ as nuclei, either sulfides or nitrides alone or in combination of both, are average particles. Dispersed in steel at an interval of 30 to 100 ⁇ , or with Mg-containing oxides with particle diameters of less than 0.05 to 0. Or the particles precipitated by combining both are dispersed in the steel with an average particle interval of 30 ⁇ m or less.
  • R EM One or more of 0.005 to 0.005% of HAZ toughness described in (1) or (2) above is contained. Steel for welded structures without heat dependence.
  • the former austenite grain size of the HAZ structure is not affected by welding heat input.
  • T i 0.003 to 0.05 mass 0 and the required amount of Mg .
  • Figure 1 is a diagram showing the former ⁇ grain size in HAZ when the welding heat input was changed.
  • FIG. 2 is a diagram schematically showing a morphology of a composite particle having an ultrafine Mg oxide as a nucleus.
  • Mg has conventionally been known as a strong deoxidizing agent and desulfurizing agent, as an element that increases the cleanliness of steel and improves HAZ toughness.
  • Japanese Patent Application Laid-Open No. 59-19013 discloses a technique of composite addition in which Mg is added after Ti is added.
  • the purpose of the technique is to promote the increase of Ti oxides, which are intragranular transformation nuclei, by the addition of Mg. It does not achieve fine graining by finely dispersing and pinning.
  • the present inventors have focused on the action of Mg as a strong deoxidizing agent, and have taken advantage of the property that coagulation and coarsening are less likely to occur than A 1, and that Ti-added copper is used. Then, the idea was reached that if the order and amount of the deoxidizing agent added in the steelmaking process were controlled, there would be room for the fine dispersion of oxides.
  • the present invention will be described in detail.
  • the present inventors systematically investigated the state of oxides when Mg was added to molten steel that had been weakly deoxidized with Ti added.
  • one is a Mg-containing oxide having a particle diameter of 0.2 to 5.0 m, and the other is an ultrafine MgO or M having a particle diameter of 0.005 to 0. ⁇ . It is a g-containing oxide.
  • the generation of such oxides is presumed to be based on the following reasons.
  • the addition amount of Mg is limited to about 30 to 50 ppm.
  • Mg can be added up to 100 ppm.
  • the oxides generated in the steel become nucleation sites for sulfides and nitrides during fabrication or during the subsequent cooling process or reheating-hot process.
  • the state of oxides in steel was as follows.
  • Mg-containing oxides with a particle size of 0.2 to 5 ⁇ , and either sulfides or nitrides, or a mixture of both, is averaged. It is contained in steel with a particle interval of 30 to 100 / zm.
  • Mg-containing oxide having a particle size of 0.05 to less than 0.2 / zm as nuclei, one of sulfide and nitride alone, or a combination of both These particles are contained in the steel with an average particle interval of 30 ⁇ or less.
  • the present invention relates to a steel material having excellent HAZ toughness achieved by the presence of the oxides of 1) and Z or 2) above. This is to provide a revolutionary technology that can minimize the change in toughness in steel.
  • the intragranular transformation is promoted when the number of oxides is large and when sulfides and nitrides are deposited on the oxide. As shown in 1) above, the number increased by more than 10 times compared to the conventional ones.Also, with regard to complex precipitation, 100% sulfide or nitride Since the compound is precipitated in a complex manner, the Mg-containing oxide of the present invention has an extremely large intragranular transformation ability.
  • FIG. Figure 1 shows the old ⁇ particle size in HAZ with 0.10 C—1.
  • OM n steel as the base component and the heat input on the horizontal axis, for each heat input condition [1 kJ Zmm, 1 0 kJZmm, 50 kJZmm, 100 kjZmm, 150 kJ / mm].
  • the old ⁇ particle size in the case of a real joint, after a part of ⁇ was extracted by cutting or the like, it was polished, and furthermore, the microstructure obtained by nital corrosion was obtained. Tissues were photographed with an optical microscope at a magnification of 50 to 200 times (5 or more) and cut by a cutting method.
  • the old y grain size of 1 to 50 kJ / mm in Fig. 1 is the value obtained by this method.
  • grain boundary ferrite is generated along the old ⁇ grain boundary, so that the force calculated as the old ⁇ grain including the grain boundary ferrite, or It is usual to measure the old ⁇ particle size from the microstructure obtained by heating to the specified conditions using a reproducible thermal cycle tester with the same heat equivalent and then quenching.
  • the former ⁇ particle size for 100 kJ Zmm and 150 kJ mm is a value obtained from the microstructure formed using the latter reproducible thermal cycle tester.
  • the presence state of the oxide described in 2) above depends on the refinement of the former ⁇ grain size. Is a dominant factor.
  • the Mg ultrafine oxide acts as a preferential precipitation site for sulfides and nitrides. That is, it is considered that the presence of a large number of the preferential precipitation sites increases the number of nitrides effective for pinning crystal grains.
  • one of the features of the present invention is that, unlike the conventional steel, in which crystal grains are pinned by using a nitride such as Ti, in addition to the marked improvement of the intragranular transformation ability.
  • a nitride such as Ti
  • oxides such as MgO into the steel finely, the precipitation nuclei of the nitride are created, thereby increasing the number of the nitrides, thereby reducing the nitrides.
  • the existence of these composite particles makes it possible to obtain old ⁇ grains of 100 to 200 m or less with HAZ.
  • Another feature of the present invention is that, even in adult heat to ultra-high heat input welding, in which nitride has been dissolved and no improvement effect of toughness has been obtained conventionally, grain growth is suppressed by oxide alone. Due to this effect, the former ⁇ particle size hardly changes in HAZ.
  • the optimum amount of Mg added depends on the amount of oxygen present in the molten steel after the addition of Ti, but according to experiments, the oxygen concentration at that time depends on the amount of Ti added and the time until the addition of Mg. Therefore, after all, the amount of Ti and the amount of Mg added may be controlled within an appropriate range.
  • the appropriate amount of dissolved oxygen at the final Mg addition is about 0.1 to 50 ppm.
  • the minimum 0.1 ppm is the minimum amount of dissolved oxygen that can produce fine Mg oxides.
  • the limit was set at 50 ppm.
  • C is a basic element that improves the strength of the base metal of steel. In order to ensure the improvement effect, it is necessary to add 0.1% or more.However, an excessive addition exceeding 0.2% causes a decrease in the weldability and toughness of the steel material. . 2%.
  • S i is an element necessary as a deoxidizing element in steelmaking, and the addition of more than 0.02% to steel requires a force exceeding 0.5%, which lowers the HAZ toughness. , 0.5% as the upper limit.
  • Mn is an element necessary for ensuring the strength and toughness of the base metal.However, if added over 2%, it significantly impairs the HAZ toughness, and conversely, if added less than 0.3%, Since it is difficult to secure the strength, the range of the added amount is 0.3 to 2%.
  • P is an element that affects the toughness of steel. If contained in excess of 0.03%, not only the base metal but also the toughness of HAZ is significantly impaired, so the upper limit is 0.3%.
  • S is contained in excess of 0.03%, coarse sulfides are formed and the toughness is impaired.However, if S is less than 0.001%, the content of intragranular ferrite is reduced. Since the amount of sulfide, such as MnS, that is effective for formation is significantly reduced, the addition amount is set to be in the range of 0. Q001 to 0.03%.
  • a 1 is usually added as a deoxidizing agent, but in the present invention, If added in excess of 0.05%, the effect of the addition of Mg is impaired, so the upper limit is 0.05%. Also, stable, in order to generate ⁇ 2 0 4 is less and also 0.0 0 0 5% because it is necessary, to 0.0 0 0 5% lower limit.
  • T i is an element that exerts an effect on grain refinement as a deoxidizing agent and also as a nitride-forming element, but when added in large amounts, the toughness due to the formation of carbides Therefore, the upper limit must be set to 0.05%. Then, in order to obtain a predetermined effect, 0.003% or more of addition is necessary. Therefore, the range of the addition amount is set to 0.003% to 0.05%.
  • Mg is a main alloying element in the present invention, and is mainly added as a deoxidizing agent, but if added in excess of 0.01%, coarse oxides are likely to be generated. As a result, the base material and HAZ toughness decrease. However, if the addition is less than 0.0001%, the intragranular transformation and the formation of oxides required as pinning particles cannot be sufficiently expected. Therefore, the range of the addition amount is set to 0.0001 to 0.010%.
  • oxygen
  • oxygen is an essential element for generating Mg-containing oxides. If the amount of oxygen finally remaining in the steel is less than 0.001%, the number of oxides will not be sufficient, so the lower limit is 0.001%. On the other hand, if the residual amount exceeds 0.008%, the amount of coarse oxides increases, resulting in a decrease in base metal toughness and HAZ toughness. Therefore, the upper limit is made 0.008%.
  • elements for improving strength and toughness one of the following elements: Cu, Ni, Cr, Mo, V, Nb, Zr, Ta, and B Alternatively, two or more elements can be added.
  • Cu is an element effective for increasing strength without reducing toughness. Force is ineffective at less than 0.05%, and copper flakes are heated at over 1.5%. Cracks during welding and welding. Therefore, the content range is set to 0.05 to: 0.5%.
  • Ni is an element effective in improving toughness and strength.To obtain the effect, Ni must be added in an amount of 0.05% or more. Since it decreases, the upper limit is set to 5%.
  • Cr is effective for improving the strength of steel by precipitation strengthening.
  • the addition of 0.02% or more is effective. When added in a large amount exceeding 1.5%, hardenability is increased and It will give rise to tissue and reduce toughness. Therefore, the upper limit is 1.5%.
  • Mo is an element that forms a carbonitride and improves the strength at the same time as improving the hardenability.To obtain the effect, it is necessary to add 0.02% or more. Addition of a large amount exceeding 5%, together with unnecessarily strengthening, causes a marked decrease in toughness. Therefore, the content range is set from 0.02 to: 1.5%.
  • V is an element that forms carbides and nitrides and is effective in improving the strength.It has no effect when it is added at less than 0.01%, and conversely, when it exceeds 0.1%.
  • the content range is set to 0.0 :! to 0.1%, since it causes a decrease.
  • Nb is an element that forms carbides and nitrides and is effective in improving the strength.However, Nb has no effect when added at less than 0.001%, and has toughness when added at more than 0.2%. The content range is set to 0.0001 to 0.2% because it causes a decrease.
  • Z r and T a are also carbides like the N b, is an element which is effective in improving the form nitrides strength, 0.0 0 0 no its effect is the addition of less than 1%, 0. If the addition exceeds 0.5%, on the contrary, the toughness is reduced. Therefore, the content range is set to 0.001% to 0.05%.
  • B generally increases hardenability when it forms a solid solution. It is an element that reduces solid solution N and improves the toughness of the heat affected zone. Therefore, the effect can be utilized by adding 0.0003% or more. Addition of excessive force causes toughness to decrease, so the upper limit is made 0.005%.
  • Ca and REM suppress the generation of elongated MnS, and improve the properties in the thickness direction of the steel material, particularly, the resistance to lamellarity. If both C a and RE M are less than 0.0005%, this effect cannot be obtained, so the lower limit is set to 0.005%. Conversely, if the content exceeds 0.005%, the number of oxides of Ca and REM increases, and the number of ultrafine Mg-containing oxides decreases. 0 5%.
  • a steel ingot having the chemical composition shown in Tables 1 and 2 (continued from Table 1) was subjected to hot rolling and heat treatment under the conditions shown in Table 3 to obtain a steel sheet.
  • a small heat input of kj Zmm, a large heat input of 20 kj Zmm, and a super large heat input of 150 kJ Zmm were applied.
  • the old ⁇ particle size in HAZ is measured by the cutting method described above.
  • the heat input dependence of the HAZ toughness (the sample collection position was in the coarsest grain area) was evaluated by the Charpy impact test. Table 3 also shows the results.
  • ⁇ in Table 3 is the difference between the Charpy absorbed energy between the small heat input (1.7 kJ Zmm) and the very large heat input (150 kJ Zmm), that is, [small heat input Toughness at the time of: VE 0 (J)]-[Toughness at the time of extra large heat input: VE o (J)] was calculated, and the absorbed energy of each was measured for three test pieces at 0 ° C. It is the average of the values.
  • the average particle size of the oxide was calculated from the electron micrograph of L 1 with a magnification of 100 ⁇ and the electron micrograph of ⁇ 2 with a magnification of 100,000. The interval.
  • d1 Heat input 1.7kJ / mm old 7 particle size
  • d2 Heat input 20. OkJ / old old ⁇ particle size
  • d3 Heat input 150.0kJZ old a particle size (However, 20-2 D3 is the heat input 60. OkJZ ⁇ old particle size)
  • ⁇ 1 Average particle spacing of the contained oxide (0.2 to 5.0 / ⁇ 111)
  • ⁇ 2 Average particle spacing of the contained oxide (0.005 to 0.2 "111)
  • the force 1 is steel 2 1 _ 2, but the force is out of the range specified in the present invention; in these cases, even in steel 20 — 2, It was recognized that the particle size was hardly changed, and that the steel 21-2 had a particle size of 200 ⁇ m or less under the heat input condition of 60.0 kJ / mm. I understand.
  • the Charpy absorbed energy of these invention steels all exceeded 10 kgf ⁇ m, indicating that the above invention steels are high toughness steels.
  • the difference in the Charpy absorption energy in each case is as small as at most about 4 kgf ⁇ ⁇ or less, and there is no significant change in HA toughness even in a wide range of heat input conditions.
  • steels 23-35 represent comparative steels produced deviating from the method of the present invention. That is, the comparative steels 23, 24, 25, 26, 27, 29, 30, 33, 34, and 35 are each composed of one of the basic components or selected elements. This is an example in which the compound is added beyond the composition range specified in the invention.
  • Comparative steel 28 and comparative steel 31 are steels in which A 1 and T i are smaller than the lower limits of A 1 and T i specified in the present invention, respectively, as the heat input increases.
  • the old ⁇ grain size is coarse, and the comparative steel 28 and the comparative steel 31 both have low toughness values.
  • the comparative steel 32 has no added Mg, and has good toughness under a small heat input condition, but has a large toughness deterioration under a super-adult heat condition.
  • the difference in Charpy absorbed energy is as large as 10.3 kgf ⁇ m.
  • the HAZ toughness is at a low level, and when the heat input is large, the HAZ toughness is further reduced.
  • Comparative Steel 33 and Comparative Steel 34 the former ⁇ grain size was sufficiently smaller than the others because of the presence of many fine oxides. Nevertheless, the toughness is significantly degraded.
  • Comparative Steel 36 and Comparative Steel 37 have the same chemical composition as Inventive Steel 1 and Inventive Steel 2, respectively, but when a predetermined amount of the final Mg is added, the amount of dissolved oxygen in the molten steel was over 50 ppm.
  • an appropriate predetermined amount of Mg is added after the addition of Ti, or an appropriate predetermined amount of Mg is added after the simultaneous addition of Ti and Mg. Accordingly, the growth of old ⁇ grains in HAZ can be suppressed regardless of the heat input condition.
  • the toughness can be improved over a wide range of heat input conditions due to this suppression effect.
  • the present invention greatly contributes to the development of various industrial technologies.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

A steel for welded structure purpose exhibiting no dependence of HAZ toughness on heat input, characterized in that it has the chemical composition, in mass %: C: 0.01 to 0.2 %, Si: 0.02 to 0.5 %, Mn: 0.3 to 2 %, P: 0.03 % or less, S: 0.0001 to 0.03 %, Al: 0.0005 to 0.05 %, Ti: 0.003 to 0.05 %, Mg: 0.0001 to 0.01 %, O: 0.0001 to 0.008 % and the balance: Fe or inevitable impurities, and in that particles comprising cores of a Mg-containing oxide having an average particle size of 0.2 to 5 νm and, precipitated around the cores, one or both (in a composite form) of a sulfide and a nitride are dispersed in the steel with an average space between them of 30 to 100 νm, or particles comprising cores of a Mg-containing oxide having an average particle size of 0.005 to 0.2 νm and, precipitated around the cores, one or both (in a composite form) of a sulfide and a nitride are dispersed in the steel with an average space between them of 30 νm or less.

Description

明 細 書  Specification
H A Z靱性の入熱依存性がない溶接構造物用鋼とその製造方法 技術分野 Steel for welded structures without HAZ toughness dependence on heat input and its manufacturing method
本発明は、 海洋構造物、 天然ガス · 原油輸送用ライ ンパイプ、 建 築、 造船、 橋梁、 建設機械などに使用する溶接構造物用鋼およびそ の製造方法に関するものである。 さ らに詳しく は、 本発明は、 溶接 部の靭性が要求され、 溶接時の入熱が 0. 5 k J Zmmから 1 5 0 k J Zmm超という幅広い入熱条件で溶接を実施しても、 溶接熱影 響部 (以下 「HA Z」 という。 ) における旧オーステナイ ト粒径が 小さ く 、 溶接熱影響部の靭性 (以下 「HA Z靱性」 という。 ) が入 熱条件によらず優れた溶接構造物用鋼に関するものである。 背景技術  TECHNICAL FIELD The present invention relates to steel for welded structures used in marine structures, line pipes for transporting natural gas and crude oil, construction, shipbuilding, bridges, construction machines, and the like, and a method for producing the same. More specifically, in the present invention, the toughness of the welded part is required, and even when welding is performed under a wide range of heat input conditions, the heat input during welding is from 0.5 kJ Zmm to more than 150 kJ Zmm. The former austenite grain size in the heat affected zone (hereinafter referred to as “HAZ”) is small, and the toughness of the weld heat affected zone (hereinafter referred to as “HAZ toughness”) is excellent regardless of the heat input conditions. It relates to steel for welded structures. Background art
海洋構造物など溶接構造物の脆性破壊を防止する観点から、 溶接 部から生じる脆性破壊の発生を抑制する研究、 すなわち、 使用する 鋼板における HA Z靱性の向上に関する研究が数多く報告されてい る。 近年では、 溶接施工能率の向上の観点から、 従来実施されてき た大入熱溶接 (およそ 2 0 k J Zmm以下) から、 さらに溶接入熱 が増大した超大人熱溶接 ( 2 0〜 1 5 0 k J /mm) を実施する場 合が増加している。  From the viewpoint of preventing brittle fracture of welded structures such as offshore structures, many studies have been reported on the suppression of brittle fracture generated from welds, that is, on the improvement of HAZ toughness in steel sheets used. In recent years, from the viewpoint of improving welding work efficiency, conventional adult large heat input welding (approximately 20 kJ Zmm or less) has been replaced by ultra-adult heat welding (20-150), which has increased welding heat input. (kJ / mm) is increasing.
大入熱溶接と超大入熱溶接が鋼板へ及ぼす影響の差異は、 1 4 0 0 °C以上の高温での滞留時間の差異に起因している。  The difference between the effects of large heat input welding and ultra-high heat input welding on the steel sheet is attributed to the difference in residence time at high temperatures above 140 ° C.
即ち、 超大入熱溶接では、 その滞留時間が極めて長時間であるた めに、 H A Zにおいて結晶粒径が著しく粗大化する領域が広く なり 、 靱性の低下が著しい。 一般に、 鋼板の H A Zにおける結晶粒の粗大化に対する粗大化防 止策と しては、 例えば、 特開昭 5 5 — 2 6 1 6 4号公報に記載され ている T i Nや、 特開昭 5 2 — 1 7 3 1 4号公報に記載されている "重量0/。で、 C : 0. 0 1 〜 0. 2 %、 S i : 0. 0 0 2〜 1 . 5 %、 M n : 0. 5〜 2. 5 %、 T i およびノあるレ、は Z r : 0. 0 0 2〜 0. 1 %、 C aおよび Zあるいは M g : 0. 0 0 4 %以下、 C eおよび Zあるレヽは L a : 0. 0 Q 1〜 0. 1 %、 A 1 : 0. 0 0 5〜 0. 1 %、 N : 0. 0 0 2〜 0. 0 1 5 %を含有するこ とを 特徴とする大入熱溶接用構造用鋼" における Z r Nなどのよ う に、 鋼中に微細分散させた介在物粒子によ り 、 旧オーステナイ ト粒 (以 下 「旧 γ粒」 とレヽう。 また、 その粒径を 「旧 γ粒径」 という。 ) を ピニングする効果 (ピニング効果) を利用する策が知られている。 That is, in the ultra-high heat input welding, since the residence time is extremely long, the region where the crystal grain size is remarkably coarsened in HAZ is widened, and the toughness is significantly reduced. In general, measures for preventing coarsening of crystal grains in the HAZ of a steel sheet include, for example, TiN described in Japanese Patent Application Laid-Open No. 55-21664, 5 2 — 1 7 3 14 The publication “No. of weight 0 /., C: 0.01 to 0.2%, Si: 0.02 to 1.5%, Mn : 0.5 to 2.5%, T i and a certain Zr: 0.02 to 0.1%, Ca and Z or Mg: 0.04% or less, Ce And some Z contain La: 0.0 Q 1 ~ 0.1%, A1: 0.05 ~ 0.1%, N: 0.002 ~ 0.015% As shown in ZrN in “Structural steel for large heat input welding characterized by this feature”, inclusion particles that are finely dispersed in the steel form the former austenite grains (hereinafter referred to as “old γ grains”). It is also known to use the effect of pinning the particle size (the “old γ particle size”) (pinning effect).
しかしながら、 このよ う な窒化物は、 小入熱ないし中入熱の溶接 時には溶解せずに旧 γ粒をピニングしてピニング効果を発揮し、 結 晶粒の微細化に寄与するが、 1 4 0 0 °C以上の高温での滞留時間が 極めて長い大人熱ないし超大入熱の溶接時には、 該溶接熱で、 鋼中 で容易に溶解し、 消滅してしま う という 問題点を抱えている。  However, such nitrides do not dissolve during welding with small or medium heat input and pin the old γ grains to exert a pinning effect, contributing to the refinement of crystal grains. When welding with adult heat or very large heat input, the residence time of which is extremely high at a temperature of 00 ° C or more, there is a problem that the welding heat easily dissolves in steel and disappears.
一方、 近年、 H A Z靱性のさ らなる向上を目的と して、 溶鋼中で 生成する酸化物を用いる技術が開示されている。 例えば、 特開昭 5 9— 1 9 0 3 1 3号公報には、 溶鋼を T i あるいは T i 合金で脱酸 し、 ついで、 A l 、 M gなどを添加するこ とを特徴とする溶接性の 優れた鋼材の製造方法が開示されている。 この製造方法は、 T i 酸 化物をフェライ トの変態核と して作用させ、 フェライ ト分率を増加 させる という効果を利用する もので、 従来、 窒化物などの析出物に よる ピニング効果を利用する方法とは異なった方法で、 HA Z靱性 の向上を図る技術である。  On the other hand, in recent years, a technique using an oxide generated in molten steel has been disclosed for the purpose of further improving the HAZ toughness. For example, Japanese Unexamined Patent Publication (Kokai) No. 59-190313 discloses a welding method characterized by deoxidizing molten steel with Ti or a Ti alloy and then adding Al, Mg and the like. A method for producing a steel material having excellent properties is disclosed. This production method uses the effect of increasing the ferrite fraction by using Ti oxide as a transformation nucleus of ferrite, and conventionally utilizes the pinning effect of precipitates such as nitrides. This is a technique to improve the HAZ toughness by a method different from the method of performing HAZ.
その後、 この技術分野においては、 特開昭 6 1 - 7 9 7 4 5号公 報、 特開平 5 — 4 3 9 7 7号公報、 特開平 6— 3 7 3 6 4号公報な どで、 粒内変態核と しての酸化物の個数の増加を図る発明など、 様 々な発明が開示されている。 After that, in this technical field, Japanese Patent Laid-Open No. And Japanese Patent Application Laid-Open Nos. Hei 5-43977 and Hei 6-37364, the invention of increasing the number of oxides as intragranular transformation nuclei, etc. Inventions are disclosed.
特に、 特開昭 5 9— 1 9 0 3 1 3号公報に記載されているよ う に 、 これらの発明の骨子は、 「 γ→ひ変態時のフェライ ト核生成、 即 ち、 フユライ ト組織の微細化に利用可能な含 T i 酸化物を、 均一に 微細分散させる」 こ とであり 、 先に述べたよ う な窒化物などによ り ピニング効果を確保するものではなく 、 冷却過程で生じる γ→ α変 態時のフ ライ ト変態を促進する こ とで、 粗大な脆化組織の生成の 抑制を図り 、 組織の微細化を達成するものである。 In particular, as described in JP-A-59-190313, the gist of these inventions is that “ferrite nucleation at the time of γ → hypertransformation, that is, And uniformly disperse the Ti-containing oxides that can be used for the miniaturization of the oxides.This does not ensure the pinning effect due to nitrides and the like as described above, but occurs during the cooling process. By promoting the fly transformation during the γ → α transformation, the formation of a coarse embrittlement structure is suppressed, and the structure is refined.
これらの靱性改善方法は、 すべて、 粗大な組織の中に、 粒内での フェライ ト変態を促進させるために、 変態核と して 1 μ m程度の比 較的大きい酸化物を分散せしめて利用するものである。  All of these toughness improvement methods are used by dispersing a relatively large oxide of about 1 μm as a transformation nucleus in a coarse structure to promote intra-granular ferrite transformation. Is what you do.
しかしながら、 近年、 溶接構造物の大型化、 軽量化の観点から、 よ り高強度の高張力鋼に対する要求が高ま りつつあり、 高張力鋼の 成分組成においては、 合金元素の添加量が増加する傾向にある。 そ の場合、 H A Zでの焼入れ性の増加に起因して、 従来のフヱライ ト 変態を利用する H A Z靱性の向上対策は、 有効ではなく なってきつ つある。  However, in recent years, demands for higher strength and high strength steel have been increasing from the viewpoint of increasing the size and weight of welded structures, and the amount of alloying elements added to the composition of high strength steel has increased. Tend to. In this case, due to the increase in hardenability in HAZ, conventional measures for improving HAZ toughness using fly transformation are becoming ineffective.
以上のよ う な観点から、 抜本的な H A Z靱性の向上を図るために は、 幅広い入熱条件においても旧 γ粒に対する ピニング効果が期待 でき、 高温でも溶解し難い酸化物粒子などを、 窒化物と同様に、 鋼 中に微細分散せしめるこ とができる技術の開発が望まれる。 しかも 、 その場合に、 これまでのフェライ ト変態核以上の変態能力を付与 するこ とが可能ならば、 この技術分野で利用される鋼材特性に対し て、 H A Ζ靱性の飛躍的な向上をもたらすものと考えられる。  From the above viewpoint, in order to drastically improve the HAZ toughness, a pinning effect on old γ grains can be expected even under a wide range of heat input conditions. Similarly, it is desired to develop a technology that can be finely dispersed in steel. Moreover, in this case, if it is possible to provide a transformation ability higher than that of the conventional ferrite transformation nucleus, it will dramatically improve the HA toughness of the steel materials used in this technical field. It is considered something.
酸化物の導入方法と しては、 鋼の溶製工程において T i などの脱 酸元素を単独に添加する方法がある。 しかし、 多く の場合、 溶鋼保 持中に酸化物の凝集合体が生成し、 粗大な酸化物の生成をもたらす こ とにな り 、 かえって、 銅の清浄度を損ない、 靱性を低下させてし ま う。 そこで、 これらの酸化物の微細化を図るために、 先の例に述 ベたごと く 、 複合脱酸法などさまざまな工夫がなされている。 The method for introducing oxides is to remove Ti and other substances in the steel smelting process. There is a method of adding an acid element alone. However, in many cases, oxide agglomerates form during the retention of molten steel, leading to the formation of coarse oxides, which in turn impairs copper cleanliness and reduces toughness. U. Therefore, as described in the previous example, various devices such as a complex deoxidation method have been devised in order to reduce the size of these oxides.
しかしながら、 従来知られている方法では、 溶接入熱が大きい場 合において結晶粒の粗大化を完全に阻止し得る程の作用をなす微細 な酸化物を、 銅中に分散させるこ とはできない。 発明の開示  However, according to the conventionally known method, it is impossible to disperse fine oxides in the copper that act to completely prevent the crystal grains from being coarsened when the welding heat input is large. Disclosure of the invention
本発明は、 従来の複合脱酸方法を改良し、 従来以上に、 酸化物お よび あるいは窒化物を微細でかつ均一に分散させ、 さ らに、 この 微細分散粒子にフェライ ト変態能も併せて付与し、 超大入熱を含む いかなる入熱条件での溶接においても、 H A Z靱性に優れる溶接構 造物用鋼を提供するこ とを課題と している。  The present invention improves the conventional composite deoxidation method, disperses oxides and / or nitrides more finely and more uniformly than before, and furthermore, the finely dispersed particles also have ferrite transformation ability. It is an object of the present invention to provide a steel for a welded structure having excellent HAZ toughness in welding under any heat input conditions including super-high heat input.
本発明の要旨は、 以下のとおり である。  The gist of the present invention is as follows.
( 1 ) 質量%で、  (1) In mass%,
C : 0. 0 1〜 0. 2 %、  C: 0.01 to 0.2%,
S i : 0. 0 2〜 0. 5 %、  S i: 0.02 to 0.5%,
M n : 0. 3〜 2 %、  Mn: 0.3-2%,
P : 0. 0 3 %以下、  P: 0.03% or less,
S : 0. 0 0 0 1〜 0. 0 3 %、  S: 0.0 0 0 1 to 0.03%,
A 1 : 0. 0 0 0 5〜 0 , 0 5 %、  A 1: 0.00 0 5 ~ 0, 0 5%,
T i : 0. 0 0 3〜 0. 0 5 %、  T i: 0.03 to 0.05%,
M g : 0. 0 0 0 1〜 0. 0 1 %、  M g: 0.000 0 1 to 0.0 1%,
O : 0. 0 0 0 1〜 0. 0 0 8 %を含有し、 残部が鉄および 不可避的不純物からな り 、 粒子径が 0. 2〜 5 μ πιの M g含有酸化物を核にして、 硫化物お よび窒化物の一方が単独で、 も しく は、 両方が複合して析出した粒 子が、 平均粒子間隔 3 0〜 1 0 0 μ πιで鋼中に分散し、 あるいは 粒子径が 0. 0 0 5〜 0. 未満の M g含有酸化物を核にし て、 硫化物および窒化物の一方が単独で、 も しく は、 両方が複合し て析出した粒子が、 平均粒子間隔 3 0 μ m以下で鋼中に分散してい る、 O: contains 0.001 to 0.08%, with the balance being iron and unavoidable impurities, Particles precipitated from Mg-containing oxides with a particle diameter of 0.2 to 5 μπι as nuclei, either sulfides or nitrides alone or in combination of both, are average particles. Dispersed in steel at an interval of 30 to 100 μπι, or with Mg-containing oxides with particle diameters of less than 0.05 to 0. Or the particles precipitated by combining both are dispersed in the steel with an average particle interval of 30 μm or less.
こ とを特徴とする H A Z靱性の入熱依存性がない溶接構造物用鋼。  This is a steel for welded structures that has no HAZ toughness dependence on heat input.
( 2 ) 質量%で、 さ らに、  (2) In mass%,
C u : 0. 0 5〜 : L . 5 %、  Cu: 0.05 to: L. 5%,
N i : 0. 0 5〜 5 %、  Ni: 0.05 to 5%,
C r : 0. 0 2〜 : L . 5 %、  Cr: 0.0 2-: L. 5%,
M o : 0. 0 2〜 : L . 5 %、  Mo: 0.02 to: L. 5%,
V : 0. 0 1〜 0. 1 %、  V: 0.01 to 0.1%,
N b : 0. 0 0 0 1 〜 0. 2 %、  Nb: 0.0000-1 to 0.2%,
Z r : 0. 0 0 0 1 〜 0. 0 5 %、  Zr: 0.000 0 1 to 0.05%,
T a : 0. 0 0 0 1 〜 0. 0 5 %、  T a: 0.000 0 1 to 0.05%,
B : 0. 0 0 0 3〜 0. 0 0 5 %のう ち 1種または 2種以上 を含有する、  B: One or two or more of 0.000 to 0.05%
こ とを特徴とする前記 ( 1 ) に記載の H A Z靱性の入熱依存性がな い溶接構造物用鋼。 The steel for a welded structure according to the above (1), wherein the HAZ toughness does not have a heat input dependency.
( 3 ) 質量%で、 さ らに、  (3) In mass%,
C a : 0. 0 0 0 5〜 0. 0 0 5 %、  C a: 0.0 0 0 5 to 0.0 0 5%,
R EM : 0. 0 0 0 5〜 0. 0 0 5 %のう ち 1種または 2種以 上を含有するこ とを特徴とする前記 ( 1 ) または ( 2 ) に記載の H A Z靱性の入熱依存性がない溶接構造物用鋼。  R EM: One or more of 0.005 to 0.005% of HAZ toughness described in (1) or (2) above is contained. Steel for welded structures without heat dependence.
( 4 ) HA Z組織の旧オーステナイ 卜粒径が、 溶接入熱によ らず 1 0〜 2 0 0 i mであるこ とを特徴とする前記 ( 1 ) 、 ( 2 ) また は ( 3 ) に記載の H A Z靱性の入熱依存性がない溶接構造物用鋼。 (4) The former austenite grain size of the HAZ structure is not affected by welding heat input. The steel for welded structures having no heat input dependency of the HAZ toughness according to the above (1), (2) or (3), which is 100 to 200 im.
( 5 ) 製綱段階において、 S i 、 M nを添加して弱脱酸処理を行 つた後、 T i : 0. 0 0 3〜 0. 0 5質量0んと、 所要量の M gを、 順次あるレ、は同時に添加して溶存酸素量を 5 0 p p m以下と し、 そ の状態で铸造、 あるいは、 さ らに M gを、 最終含有量で 0. 0 1質 量%以下となるよ うに添加し铸造するこ とを特徴とする前記 ( 1 )(5) At the steelmaking stage, after adding S i and M n and performing weak deoxidation treatment, T i: 0.003 to 0.05 mass 0 and the required amount of Mg , In order, to reduce dissolved oxygen content to 50 ppm or less, and then to produce or to further reduce Mg to a final content of 0.01 mass% or less. (1)
、 ( 2 ) 、 ( 3 ) または ( 4 ) に記載の H A Z靱性の入熱依存性が ない溶接構造物用鋼の製造方法。 , (2), (3) or (4), the method for producing a steel for welded structures having no heat input dependency of HAZ toughness.
( 6 ) 製綱段階において、 S i 、 M nを添加して弱脱酸処理を行 つた後、 T i : 0. 0 0 3〜 0. 0 5質量0んと、 所要量の A l 、 C a、 M gを、 順次、 あるいは同時に添加して溶存酸素量を 5 0 p p m以下と しその状態で铸造、 あるいは、 さ らに M g を、 最終含有量 で 0. 0 1質量%以下となるよ うに添加し、 铸造するこ とを特徴と する前記 ( 1 ) 、 ( 2 ) 、 ( 3 ) または ( 4 ) に記載の HA Z靱性 の入熱依存性がない溶接構造物用鋼の製造方法。 図面の簡単な説明 (6) In the steelmaking stage, after adding S i and M n and performing a weak deoxidation treatment, T i: 0.003 to 0.05 mass 0, and the required amount of Al, Ca and Mg were added sequentially or simultaneously to reduce the dissolved oxygen content to 50 ppm or less, and then produced, or the Mg content was further reduced to 0.01% by mass or less. (1), (2), (3) or (4), wherein the HAZ toughness has no heat input dependence on heat input. Method. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 溶接入熱量を変化させた場合の H A Zにおける旧 γ粒径 を示す図である。  Figure 1 is a diagram showing the former γ grain size in HAZ when the welding heat input was changed.
図 2は、 超微細な M g酸化物を核にした複合粒子の形態を模式的 に示す図である。 発明を実施するための最良の形態  FIG. 2 is a diagram schematically showing a morphology of a composite particle having an ultrafine Mg oxide as a nucleus. BEST MODE FOR CARRYING OUT THE INVENTION
M gは、 従来から、 強脱酸剤、 脱硫剤と して鋼の清浄度を高め、 HA Z靱性を向上せしめる元素と して知られている。  Mg has conventionally been known as a strong deoxidizing agent and desulfurizing agent, as an element that increases the cleanliness of steel and improves HAZ toughness.
また、 酸化物の分散を制御して HA Z靱性を向上させる技術と し て、 T i 添加後、 M gを添加する複合添加の技術が、 特開昭 5 9 — 1 9 0 3 1 3号公報に記載されている。 Also, a technology to control oxide dispersion and improve HAZ toughness has been developed. Japanese Patent Application Laid-Open No. 59-19013 discloses a technique of composite addition in which Mg is added after Ti is added.
しかしながら、 その技術の目的は、 先に引用したよ う に、 M g添 加によ り 、 粒内変態核である T i 酸化物の増加を促進するこ とであ り 、 酸化物をよ り微細に分散させてピニングによ り結晶粒の細粒化 を達成する ものではない。  However, the purpose of the technique, as quoted above, is to promote the increase of Ti oxides, which are intragranular transformation nuclei, by the addition of Mg. It does not achieve fine graining by finely dispersing and pinning.
そこで、 本発明者らは、 M gの有する強脱酸剤と しての作用に着 目 し、 A 1 よ り凝集粗大化が起こ り にく い性質を利用して、 T i 添 加銅において、 製鋼工程での脱酸剤の添加順序および量を制御すれ ば、 酸化物の微細分散を期待できる余地がある との着想に至った。 以下、 本発明に関して詳細に説明する。  Accordingly, the present inventors have focused on the action of Mg as a strong deoxidizing agent, and have taken advantage of the property that coagulation and coarsening are less likely to occur than A 1, and that Ti-added copper is used. Then, the idea was reached that if the order and amount of the deoxidizing agent added in the steelmaking process were controlled, there would be room for the fine dispersion of oxides. Hereinafter, the present invention will be described in detail.
本発明者らは、 T i を添加し弱脱酸した溶鋼中に M gを添加した 場合において、 酸化物の状態を系統的に調査した。  The present inventors systematically investigated the state of oxides when Mg was added to molten steel that had been weakly deoxidized with Ti added.
その結果、 溶銅を S i 、 M nによ り脱酸した後、 T i 、 M gの順 に T i と M gを添加した場合に、 あるいは、 T i 添加と M g添加を 同時に行い、 さ らに、 平衡状態になった状態で再度 M gを添加した 場合に、 酸化物の粒子径と して 2種類の粒子径を有する酸化物が生 成する こ とを見出した。  As a result, when the molten copper is deoxidized by Si and Mn and then Ti and Mg are added in the order of Ti and Mg, or when Ti and Mg are added simultaneously. Furthermore, it was found that when Mg was added again in an equilibrium state, an oxide having two kinds of particle diameters was generated as the oxide particle diameter.
なお、 1段目の M g脱酸においては、 同時あるいは前段に A 1 、 C a を添加した場合も、 上記と同様な傾向になる こ とが、 本発明で は確認できている。  In the first stage of Mg deoxidation, it has been confirmed by the present invention that the same tendency as described above also occurs when A 1 and Ca are added simultaneously or in the previous stage.
すなわち、 1つは、 粒子径が 0. 2〜 5. 0 mの M g含有酸化 物であり 、 他は、 0. 0 0 5〜 0. Ι μ πιの超微細な M g Oないし は M g含有酸化物である。 このよ う な酸化物の生成は、 次のよ うな 理由に基づく ものと推定される。  That is, one is a Mg-containing oxide having a particle diameter of 0.2 to 5.0 m, and the other is an ultrafine MgO or M having a particle diameter of 0.005 to 0.Ιμππι. It is a g-containing oxide. The generation of such oxides is presumed to be based on the following reasons.
まず、 T i 添加、 あるいは、 T i と少量の M gの同時添加によ り 、 一旦 T i あるいは T i を主体とする μ πιサイズの酸化物が生成さ れる。 次に、 この状態で、 脱酸力の強い M gがさ らに添加される と 、 既に生成されている酸化物が M gによ り還元されて、 最終的に、 mサイズの、 M g を主体とする M g含有酸化物が生成される。 また、 この際に、 溶存酸素が少なく なつているにもかかわらず、 M gが T i よ り も脱酸力が強いために、 新たな M g単独のサブ m サイズの微細な酸化物も同時に生成される。 First, by the addition of T i or the simultaneous addition of T i and a small amount of Mg, an oxide of μ πι size mainly composed of T i or T i is once formed. It is. Next, in this state, if Mg having a strong deoxidizing power is further added, the already generated oxide is reduced by Mg, and finally, the m-sized Mg An Mg-containing oxide mainly composed of is produced. At this time, despite the fact that the dissolved oxygen is decreasing, Mg has a stronger deoxidizing power than Ti, so that a new sub-m-size fine oxide of Mg alone is also added at the same time. Generated.
その結果、 従来の添加方法では達成できなかった粒子数の増加と サイズの微細化を達成するこ とができるよ うになる。  As a result, it becomes possible to achieve an increase in the number of particles and a reduction in size, which could not be achieved by the conventional addition method.
一般に、 μ mサイズの酸化物に関しては、 5 μ πι以上のものが多 く なる程破壊の起点になり易く なるので、 M gを添加する場合には 、 特開平 9 一 1 5 7 7 8 7号公報にも記載されているよ う に、 M g 添加量は、 3 0〜 5 0 p p m程度が限界と されている。  In general, with respect to oxides having a size of μm, the larger the number of oxides having a size of 5 μπι or more, the easier it becomes to become a starting point of destruction. As described in the official gazette, the addition amount of Mg is limited to about 30 to 50 ppm.
しかしながら、 本発明に従えば、 このよ うな問題は回避され、 1 0 0 p p mまでは M gの添加が可能になる。  However, according to the present invention, such problems are avoided and Mg can be added up to 100 ppm.
一方、 T i脱酸や、 丁 1 +少量1^18脱酸では、 弱脱酸元素あるい は少量の強脱酸元素による脱酸であるので、 溶銅中に溶存酸素がま だ残っていて、 その時点で、 再度、 M g を添加する と、 前述の μ ιη ないしサブ / X mの酸化物だけでなく 、 まだ残っている溶存酸素と M gの酸化反応が穏やかに進行して、 超微細な酸化物がさ らに生成す るこ とになる。 超微細な酸化物が生成する理由は、 溶存酸素量が少 なく なっているこ とに加えて、 溶存酸素の溶鋼中での分布が均一化 されるこ とから、 酸化物のク ラスター化が抑制されたものと推定さ れる。 On the other hand, in the case of Ti deoxidation or deoxidation of 1 + a small amount of 1 ^ 18 deoxidation, dissolved oxygen remains in the molten copper because it is deoxidation by a weak deoxidizing element or a small amount of a strong deoxidizing element. At that point, when Mg was added again, not only the aforementioned μιη or sub / Xm oxide, but also the remaining dissolved oxygen and the oxidation reaction of Mg proceeded gently. Then, ultrafine oxides are further generated. Ultrafine oxides are generated because the amount of dissolved oxygen is small and the distribution of dissolved oxygen in the molten steel is uniform, so that oxides are clustered. It is estimated that it was suppressed.
以上のよ う に、 鋼中に生成した酸化物は、 铸造時、 あるいは、 そ の後の冷却過程や再加熱一熱間工程中に、 硫化物および窒化物の核 生成サイ 卜になる。  As described above, the oxides generated in the steel become nucleation sites for sulfides and nitrides during fabrication or during the subsequent cooling process or reheating-hot process.
そして、 電子顕微鏡を用いて、 1 0 0 0倍〜 1 0万倍の倍率で、 鋼中酸化物の様子を調査した結果、 鋼中酸化物の存在状態は、 以下Then, using an electron microscope, at a magnification of 1000 to 100,000 times, As a result of investigating the state of oxides in steel, the state of oxides in steel was as follows.
、 1 ) および 2 ) のよ う に整理できる。 なお、 酸化物の存在状態に ついては、 特定倍率 (例えば、 超微細な酸化物の場合には 1 0万倍 程度) で 1 0視野以上を観察し、 平均粒子間隔等を測定するこ とが 望ま しい。 , 1) and 2). Regarding the state of oxides, it is desirable to observe at least 10 visual fields at a specific magnification (for example, about 100,000 times for ultra-fine oxides) and measure the average particle spacing and the like. New
1 ) 粒子径が 0. 2〜 5 μ πιの M g含有酸化物を核にして、 硫化 物および窒化物の一方が単独で、 も しく は、 両方が複合して析出し た粒子が、 平均粒子間隔 3 0〜 1 0 0 /z mで、 鋼中に含有されてい る。  1) The average particle size of Mg-containing oxides with a particle size of 0.2 to 5 μπι, and either sulfides or nitrides, or a mixture of both, is averaged. It is contained in steel with a particle interval of 30 to 100 / zm.
2 ) 粒子径が 0. 0 0 5〜 0. 2 /z m未満の M g含有酸化物を核 にして、 硫化物および窒化物の一方が単独で、 も しく は、 両方が複 合して析出した粒子が、 平均粒子間隔 3 0 μ πι以下で鋼中に含有さ れている。  2) Precipitated with Mg-containing oxide having a particle size of 0.05 to less than 0.2 / zm as nuclei, one of sulfide and nitride alone, or a combination of both These particles are contained in the steel with an average particle interval of 30 μπι or less.
本発明は、 上記 1 ) および Zまたは 2 ) の酸化物の存在状態によ つて達成される優れた HA Z靱性を備える鋼材に関する ものであ り 、 従来は入熱量に大き く依存していた H A Zにおける靱性変化を極 力抑えるこ とができる画期的な技術を提供する ものである。  The present invention relates to a steel material having excellent HAZ toughness achieved by the presence of the oxides of 1) and Z or 2) above. This is to provide a revolutionary technology that can minimize the change in toughness in steel.
以下に、 H A Z靭性の向上について、 さ らに説明する。  Hereinafter, the improvement in the HAZ toughness will be further described.
これまで知られているよ うに、 粒内変態は、 酸化物の個数が多い 程、 かつ、 硫化物と窒化物の酸化物上への析出がある場合の方が促 進される。 上記 1 ) に示したよ う に、 個数については、 従来に比較 して 1 0倍以上増加しているこ と、 また、 複合析出についても、 確 認した限り において、 1 0 0 %硫化物あるいは窒化物が複合的に析 出しているこ とから、 本発明の M g含有酸化物においては、 粒内変 態能が極めて大き く なる。  As is known, the intragranular transformation is promoted when the number of oxides is large and when sulfides and nitrides are deposited on the oxide. As shown in 1) above, the number increased by more than 10 times compared to the conventional ones.Also, with regard to complex precipitation, 100% sulfide or nitride Since the compound is precipitated in a complex manner, the Mg-containing oxide of the present invention has an extremely large intragranular transformation ability.
次いで、 本発明で最も重要な旧 γ粒径の微細化について図 1 に基 づいて説明する。 図 1 は、 0. 1 0 C— 1 . O M n鋼をベース成分と し、 入熱量を 横軸に したと きの H A Zにおける旧 ^ 粒径を、 各入熱条件 [ 1 k J Zmm、 1 0 k J Zmm、 5 0 k J Zmm、 1 0 0 k j Zmm、 1 5 0 k J / m m ] で測定したものである。 Next, the most important refinement of the old γ particle size in the present invention will be described with reference to FIG. Figure 1 shows the old ^ particle size in HAZ with 0.10 C—1. OM n steel as the base component and the heat input on the horizontal axis, for each heat input condition [1 kJ Zmm, 1 0 kJZmm, 50 kJZmm, 100 kjZmm, 150 kJ / mm].
旧 γ粒径の測定は、 実継手の場合には、 ΗΑ Ζの一部を切断加工 等によ り抽出した後、 研磨処理を行い、 さ らに、 ナイ タール腐食し て得られる ミ ク ロ組織を、 光学顕微鏡を用い、 5 0倍〜 2 0 0倍の 倍率で写真撮影 ( 5枚以上) し、 切断法によって行った。 図 1 にお ける 1〜 5 0 k J /mmの旧 y粒径は、 この方法によって求めた値 である。 For the measurement of the old γ particle size, in the case of a real joint, after a part of ΗΑ was extracted by cutting or the like, it was polished, and furthermore, the microstructure obtained by nital corrosion was obtained. Tissues were photographed with an optical microscope at a magnification of 50 to 200 times (5 or more) and cut by a cutting method. The old y grain size of 1 to 50 kJ / mm in Fig. 1 is the value obtained by this method.
また、 超大人熱の場合は、 旧 γ粒界に沿って粒界フェライ 卜が生 成するので、 粒界フ ェライ トを含めて旧 γ粒と して算出する力、、 あ るいは、 入熱相当量を同一にした再現熱サイ クル試験機を用いて所 定の条件に加熱した後、 急冷処理して得たミ ク ロ組織から旧 γ粒径 を測定するのが普通である。 図 1 における 1 0 0 k j Zmmと 1 5 0 k J mmの場合の旧 γ粒径は、 後者の再現熱サイ クル試験機を 用いて形成したミ ク 口組織よ り求めた値である。  Also, in the case of super-adult heat, grain boundary ferrite is generated along the old γ grain boundary, so that the force calculated as the old γ grain including the grain boundary ferrite, or It is usual to measure the old γ particle size from the microstructure obtained by heating to the specified conditions using a reproducible thermal cycle tester with the same heat equivalent and then quenching. In Fig. 1, the former γ particle size for 100 kJ Zmm and 150 kJ mm is a value obtained from the microstructure formed using the latter reproducible thermal cycle tester.
こ こでは、 A 1脱酸鋼、 T i 添加 A 1脱酸鋼、 M g脱酸銅の測定 例を示しており 、 上記 2 ) の M g酸化物の有無によって、 旧 γ粒径 の入熱依存性が全く異なっているこ とがわかる。  Here, measurement examples of A1 deoxidized steel, Ti-added A1 deoxidized steel, and Mg deoxidized copper are shown, and depending on the presence or absence of Mg oxide in 2) above, the input of the former γ particle size is determined. It can be seen that the heat dependence is completely different.
すなわち、 M g脱酸鋼以外では、 入熱量の増大に従って、 明らか に、 旧 τ/粒径が顕著に大き く なつている。  In other words, except for Mg deoxidized steel, the old τ / particle size clearly increases significantly as the heat input increases.
これに対して、 上記 1 ) と 2 ) の酸化物の存在状態が実現してい る場合、 あるいは、 上記 2 ) の酸化物の存在状態が実現している場 合には、 入熱量が大き く 変化した場合の M g脱酸鋼では、 旧 γ粒径 の変化が極めて小さいこ とがわかる。  On the other hand, when the presence states of the oxides in 1) and 2) above are realized, or when the presence state of the oxides in 2) above is realized, the heat input is large. It can be seen that the change in the former γ grain size is extremely small in the Mg deoxidized steel when it changes.
特に、 上記 2 ) の酸化物の存在状態は、 旧 γ粒径の微細化に対し て支配的な要因になっている。 In particular, the presence state of the oxide described in 2) above depends on the refinement of the former γ grain size. Is a dominant factor.
しかしながら、 入熱量が 6 0 k J / m m程度までであれば、 上記 1 ) の酸化物の存在状態 (単独) だけでも、 旧 γ粒径の細粒化は達 成されている。  However, as long as the heat input is up to about 60 kJ / mm, the refinement of the former γ grain size has been achieved only by the presence state (single) of the oxide described in 1) above.
なお、 上記 1 ) 単独の酸化物の存在状態においても、 ピニンダカ 力;、 その効力は小さいものの作用しているが、 上記 2 ) の酸化物の 存在状態と共存する と、 旧 γ粒の微細化が顕著に促進されている。  In the presence of the above-mentioned 1) single oxide, the pinindaka force; although its effect is small, it works, but if it coexists with the presence of the oxide of 2) above, the former γ grains are refined. Is remarkably promoted.
旧 γ粒が微細化した鋼板を電子顕微鏡で観察した結果、 0. 1 /i m以下の面心立方構造の M g Oや M g を主構成元素とするス ピネル 型構造の ΜΙΙΜΙΠ24 (MII : M g、 C a、 F e、 Mn等、 Mil I : A 1 、 T i 、 C r 、 M n、 V等) 粒子、 あるレヽは、 図 2に形態 を模式的に示す M g含有酸化物一硫化物および Zあるいは窒化物 [ T i N等] の複合粒子が、 多数存在する こ とが明らかになった。 また、 電子顕微鏡観察において、 M g含有酸化物一硫化物あるい は窒化物粒子間の結晶学的な方位関係を調べる と、 いずれも、 完全 平行の方位関係を持っているこ と も明らかになつた。 As a result of observing the steel sheet in which the former γ grains were refined with an electron microscope, it was found that a spinel-type structure M 24 (MgO or Mg with a face-centered cubic structure of 0.1 MII: Mg, Ca, Fe, Mn, etc., Mil I: A1, Ti, Cr, Mn, V, etc.) Particles. Some lasers contain Mg, whose morphology is schematically shown in FIG. It was revealed that there were many composite particles of oxide monosulfide and Z or nitride [such as TiN]. Examination of the crystallographic orientation relationship between the Mg-containing oxide monosulfide and nitride particles by electron microscopy reveals that both have completely parallel orientation relationships. Natsuta
このこ とは、 M gの超微細酸化物が、 硫化物や窒化物の優先析出 サイ ト と して作用 している こ とを示している。 即ち、 この優先析出 サイ 卜が多数存在するこ とによ り、 結晶粒のピニングに有効な窒化 物の数が増加しているものと考えられる。  This indicates that the Mg ultrafine oxide acts as a preferential precipitation site for sulfides and nitrides. That is, it is considered that the presence of a large number of the preferential precipitation sites increases the number of nitrides effective for pinning crystal grains.
つま り 、 入熱が小さい場合には、 これらの複合粒子が、 ピニング をなす粒子と して作用している と考えられ、 さ らに、 超大入熱溶接 時のよ う な高温での滞留時間が長い場合には、 窒化物粒子の溶解が 生じるものの、 本発明では、 多数の M g Oないしは M g含有酸化物 が存在していて、 たとえ、 窒化物粒子が溶解しても、 依然と して存 在する微細な酸化物粒子が、 高温でのピニング粒子と して作用して いる と考えられる。 したがって、 本発明においては、 従来鋼では決して得る こ とがで きなかった H A Zにおける旧 γ粒の成長抑制を達成する こ とができ るのである。 In other words, when the heat input is small, it is considered that these composite particles are acting as particles forming pinning, and furthermore, the residence time at a high temperature such as during super-high heat input welding is considered. When the length of the oxide particles is long, the dissolution of the nitride particles occurs, but in the present invention, a large number of MgO or Mg-containing oxides are present, and even if the nitride particles are dissolved, they are still present. It is considered that the existing fine oxide particles act as pinning particles at high temperatures. Therefore, in the present invention, it is possible to achieve suppression of the growth of old γ grains in HAZ, which could never be obtained with conventional steel.
すなわち、 本発明の特徴の一つは、 粒内変態能の顕著な向上に加 え、 T i Νなどの窒化物を利用 して結晶粒のピニ ングを図った従来 鋼の場合とは異な り 、 M g O等の酸化物を鋼中に微細に導入する こ とによ り窒化物の析出核を創出し、 これによ り 、 窒化物の個数の増 加を実現して、 窒化物が有効に作用する小入熱溶接においては、 こ れらの複合粒子の存在によ り 、 HA Zで 1 0〜 2 0 0 m以下の旧 γ粒を得るこ とができる点にある。  That is, one of the features of the present invention is that, unlike the conventional steel, in which crystal grains are pinned by using a nitride such as Ti, in addition to the marked improvement of the intragranular transformation ability. By introducing oxides such as MgO into the steel finely, the precipitation nuclei of the nitride are created, thereby increasing the number of the nitrides, thereby reducing the nitrides. In small heat input welding that works effectively, the existence of these composite particles makes it possible to obtain old γ grains of 100 to 200 m or less with HAZ.
さ らに、 本発明の他の特徴は、 窒化物が溶解してしまい、 従来、 全く靱性の改善効果が得られなかった大人熱〜超大入熱溶接におい ても、 酸化物単独による粒成長抑制効果によ り、 HA Zにおいて、 旧 γ粒径には、 ほとんど変化が生じない点にある。  Further, another feature of the present invention is that, even in adult heat to ultra-high heat input welding, in which nitride has been dissolved and no improvement effect of toughness has been obtained conventionally, grain growth is suppressed by oxide alone. Due to this effect, the former γ particle size hardly changes in HAZ.
本発明における M gの添加方法は、 既に述べたよ う に、 最初に、 S i 、 M nを添加し、 その後、 まず、 T i を添加し溶鋼中の酸素量 を調整し、 その後、 少量の M gを徐々に添加する力、、 あるいは、 T i と少量の M gを同時に添加し、 その後に、 最終的に、 再度、 M g を添加する という ものである。  As described above, in the method of adding Mg in the present invention, first, Si and Mn are added, and then, first, Ti is added to adjust the amount of oxygen in the molten steel. The force to add Mg gradually, or adding Ti and a small amount of Mg at the same time, and finally adding Mg again.
最適な M g添加量は、 T i 添加後、 溶鋼中に存在する酸素量など に依存するが、 実験によれば、 その時の酸素濃度は、 T i 添加量と M g添加までの時間に依存するので、 結局は、 T i 添加量と M g添 加量を適正な範囲で制御すればよい。  The optimum amount of Mg added depends on the amount of oxygen present in the molten steel after the addition of Ti, but according to experiments, the oxygen concentration at that time depends on the amount of Ti added and the time until the addition of Mg. Therefore, after all, the amount of Ti and the amount of Mg added may be controlled within an appropriate range.
なお、 最終的な M g添加時の溶存酸素量は 0. l〜 5 0 p p m程 度が適量である。 最小の 0. l p p mは、 微細な M g酸化物ができ る最小限度の溶存酸素量である。 一方、 溶存酸素量が 5 O p p mを 超える と、 粗大な M g酸化物ができてしまい、 ピニ ンダカが弱く な るので、 5 0 p p mを限度と した。 The appropriate amount of dissolved oxygen at the final Mg addition is about 0.1 to 50 ppm. The minimum 0.1 ppm is the minimum amount of dissolved oxygen that can produce fine Mg oxides. On the other hand, if the amount of dissolved oxygen exceeds 5 O ppm, coarse Mg oxides are formed and pininaka becomes weak. Therefore, the limit was set at 50 ppm.
また、 M gを添加する際に用いる M gの素材および添加方法につ いては、 金属 M g を F e箔に包んで添加する方法、 M g合金を用い て添加する方法などを試みた結果、 前者は、 溶銅投入の際の酸化反 応が激しく、 歩留ま りが低下することが判明したので、 通常の大気 圧下で溶製する場合には、 比重の比較的重い M g合金を用いて添加 するのが好ましい。  Regarding the material and the method of adding Mg used when adding Mg, the results of trials of a method of adding metal Mg wrapped in Fe foil and a method of adding a Mg alloy were used. In the former, however, it was found that the oxidation reaction when molten copper was charged was severe, and the yield was reduced.Therefore, when smelting under normal atmospheric pressure, Mg alloy with a relatively heavy specific gravity was used. It is preferable to add it.
以下、 本発明の成分組成の限定理由について述べる。  Hereinafter, the reasons for limiting the component composition of the present invention will be described.
Cは、 鋼の母材強度を向上させる基本的な元素である。 その向上 効果を確保するため 0. 0 1 %以上の添加が必要であるが、 0. 2 %を越えて過剰に添加する と、 鋼材の溶接性ゃ靱性の低下を招く の で、 上限を 0. 2 %とする。  C is a basic element that improves the strength of the base metal of steel. In order to ensure the improvement effect, it is necessary to add 0.1% or more.However, an excessive addition exceeding 0.2% causes a decrease in the weldability and toughness of the steel material. . 2%.
S i は、 製鋼上脱酸元素と して必要な元素であり、 鋼中に 0. 0 2 %以上の添加が必要である力 0. 5 %を越えて添加すると、 H A Z靱性を低下させるので、 0. 5 %を上限とする。  S i is an element necessary as a deoxidizing element in steelmaking, and the addition of more than 0.02% to steel requires a force exceeding 0.5%, which lowers the HAZ toughness. , 0.5% as the upper limit.
Mnは、 母材の強度および靱性の確保に必要な元素であるが、 2 %を越えて添加する と、 H A Z靱性を著しく阻害し、 逆に、 0. 3 %未満の添加では、 母材の強度確保が困難になるので、 添加量範囲 を 0. 3〜 2 %とする。  Mn is an element necessary for ensuring the strength and toughness of the base metal.However, if added over 2%, it significantly impairs the HAZ toughness, and conversely, if added less than 0.3%, Since it is difficult to secure the strength, the range of the added amount is 0.3 to 2%.
Pは、 鋼の靱性に影響を与える元素であり、 0. 0 3 %を越えて 含有されていると、 母材だけでなく H A Zの靱性が著しく阻害され るので、 上限を 0. ◦ 3 %とする。  P is an element that affects the toughness of steel.If contained in excess of 0.03%, not only the base metal but also the toughness of HAZ is significantly impaired, so the upper limit is 0.3%. And
Sは、 0. 0 3 %を越えて含有されていると、 粗大な硫化物を生 成し、 靱性を阻害するが、 0. 0 0 0 1 %未満の含有になると、 粒 内フェライ 卜の生成に有効な M n S等の硫化物の生成量が著しく低 下するので、 0. Q 0 0 1 〜 0. 0 3 %を添加量の範囲とする。  If S is contained in excess of 0.03%, coarse sulfides are formed and the toughness is impaired.However, if S is less than 0.001%, the content of intragranular ferrite is reduced. Since the amount of sulfide, such as MnS, that is effective for formation is significantly reduced, the addition amount is set to be in the range of 0. Q001 to 0.03%.
A 1 は、 通常、 脱酸剤と して添加されるが、 本発明においては、 0. 0 5 %を越えて添加される と、 M gの添加の効果を阻害するの で、 0. 0 5 %を上限とする。 また、 安定して、 ΜΠΜΙΙΙ204 を 生成するためには、 少なく と も、 0. 0 0 0 5 %は必要であるので 、 0. 0 0 0 5 %を下限とする。 A 1 is usually added as a deoxidizing agent, but in the present invention, If added in excess of 0.05%, the effect of the addition of Mg is impaired, so the upper limit is 0.05%. Also, stable, in order to generate ΜΠΜΙΙΙ 2 0 4 is less and also 0.0 0 0 5% because it is necessary, to 0.0 0 0 5% lower limit.
T i は、 脱酸剤と して、 さ らには、 窒化物形成元素と して、 結晶 粒の細粒化に効果を発揮する元素であるが、 多量の添加は、 炭化物 の形成による靱性の著しい低下をもたらすので、 上限を 0. 0 5 % にする必要がある。 そして、 所定の効果を得るためには、 0. 0 0 3 %以上の添加が必要であるので、 その添加量の範囲を、 0. 0 0 3〜 0. 0 5 %とする。  T i is an element that exerts an effect on grain refinement as a deoxidizing agent and also as a nitride-forming element, but when added in large amounts, the toughness due to the formation of carbides Therefore, the upper limit must be set to 0.05%. Then, in order to obtain a predetermined effect, 0.003% or more of addition is necessary. Therefore, the range of the addition amount is set to 0.003% to 0.05%.
M gは、 本発明における主たる合金元素であ り 、 主に、 脱酸剤と して添加されるが、 0. 0 1 %を越えて添加される と、 粗大な酸化 物が生成し易く な り 、 母材および H A Z靱性の低下をもたらす。 し かし、 0. 0 0 0 1 %未満の添加では、 粒内変態およびピニング粒 子と して必要な酸化物の生成が十分に期待できなく なるの。 それ故 、 添加量の範囲を、 0. 0 0 0 1〜 0. 0 1 0 %とする。  Mg is a main alloying element in the present invention, and is mainly added as a deoxidizing agent, but if added in excess of 0.01%, coarse oxides are likely to be generated. As a result, the base material and HAZ toughness decrease. However, if the addition is less than 0.0001%, the intragranular transformation and the formation of oxides required as pinning particles cannot be sufficiently expected. Therefore, the range of the addition amount is set to 0.0001 to 0.010%.
〇 (酸素) は、 M g含有酸化物を生成させるための必須元素であ る。 鋼中に最終的に残存する酸素量が、 0. 0 0 0 1 %未満である と、 酸化物の個数が十分とはならないので、 0. 0 0 0 1 %を下限 とする。 一方、 0. 0 0 8 %を越えて残存した場合には、 粗大な酸 化物が多く なり 、 母材靱性および H A Z靭性の低下をもたらすので 、 上限を 0. 0 0 8 %とする。  〇 (oxygen) is an essential element for generating Mg-containing oxides. If the amount of oxygen finally remaining in the steel is less than 0.001%, the number of oxides will not be sufficient, so the lower limit is 0.001%. On the other hand, if the residual amount exceeds 0.008%, the amount of coarse oxides increases, resulting in a decrease in base metal toughness and HAZ toughness. Therefore, the upper limit is made 0.008%.
なお、 本発明においては、 強度および靱性を改善する元素と して 、 C u、 N i 、 C r 、 M o、 V、 N b、 Z r 、 T a、 Bの中力、ら、 1種または 2種以上の元素を添加する こ とができる。  In the present invention, as elements for improving strength and toughness, one of the following elements: Cu, Ni, Cr, Mo, V, Nb, Zr, Ta, and B Alternatively, two or more elements can be added.
C uは、 靱性を低下させずに強度を高めるのに有効な元素である 力 0. 0 5 %未満では効果がなく 、 1 . 5 %を越える と銅片加熱 時や溶接時に割れを生じ易く なる。 従って、 その含有量範囲を、 0 . 0 5〜: L . 5 %とする。 Cu is an element effective for increasing strength without reducing toughness. Force is ineffective at less than 0.05%, and copper flakes are heated at over 1.5%. Cracks during welding and welding. Therefore, the content range is set to 0.05 to: 0.5%.
N i は、 靱性および強度の改善に有効な元素であり、 その効果を 得るためには、 0. 0 5 %以上の添加が必要である力 s、 5 %を越え て添加する と溶接性が低下するので、 上限を 5 %とする。  Ni is an element effective in improving toughness and strength.To obtain the effect, Ni must be added in an amount of 0.05% or more. Since it decreases, the upper limit is set to 5%.
C r は、 析出強化による鋼の強度を向上させるために、 0. 0 2 %以上の添加が有効である力 1 . 5 %を越えて多量に添加する と 、 焼入れ性を上昇させ、 ペイナイ ト組織を生じさせ、 靱性を低下さ せてしま う。 従って、 その上限を 1 . 5 %とする。  Cr is effective for improving the strength of steel by precipitation strengthening. The addition of 0.02% or more is effective. When added in a large amount exceeding 1.5%, hardenability is increased and It will give rise to tissue and reduce toughness. Therefore, the upper limit is 1.5%.
M oは、 焼入れ性を向上させると同時に、 炭窒化物を形成し強度 を改善する元素であり、 その効果を得るためには、 0. 0 2 %以上 の添加が必要になるが、 1 . 5 %を越えた多量の添加は、 必要以上 の強化と ともに、 靱性の著しい低下をもたらすので、 その含有量範 囲を 0. 0 2〜: I . 5 %とする。  Mo is an element that forms a carbonitride and improves the strength at the same time as improving the hardenability.To obtain the effect, it is necessary to add 0.02% or more. Addition of a large amount exceeding 5%, together with unnecessarily strengthening, causes a marked decrease in toughness. Therefore, the content range is set from 0.02 to: 1.5%.
Vは、 炭化物、 窒化物を形成し強度の向上に効果がある元素であ る力 0. 0 1 %未満の添加ではその効果がなく、 0. 1 %を越え る添加では、 逆に靱性の低下を招く ので、 その含有量範囲を 0. 0 :!〜 0. 1 %とする。  V is an element that forms carbides and nitrides and is effective in improving the strength.It has no effect when it is added at less than 0.01%, and conversely, when it exceeds 0.1%. The content range is set to 0.0 :! to 0.1%, since it causes a decrease.
N bは、 炭化物、 窒化物を形成し強度の向上に効果がある元素で あるが、 0. 0 0 0 1 %未満の添加ではその効果がなく 、 0. 2 % を越える添加では、 靱性の低下を招く ので、 その含有量範囲を 0. 0 0 0 1 〜 0. 2 %とする。  Nb is an element that forms carbides and nitrides and is effective in improving the strength.However, Nb has no effect when added at less than 0.001%, and has toughness when added at more than 0.2%. The content range is set to 0.0001 to 0.2% because it causes a decrease.
Z r と T a も、 N b と同様に炭化物、 窒化物を形成し強度の向上 に効果がある元素であるが、 0. 0 0 0 1 %未満の添加ではその効 果がなく、 0. 0 5 %を越える添加では、 逆に靱性の低下を招く の で、 その含有量範囲を 0. 0 0 0 1〜 0. 0 5 %とする。 Z r and T a are also carbides like the N b, is an element which is effective in improving the form nitrides strength, 0.0 0 0 no its effect is the addition of less than 1%, 0. If the addition exceeds 0.5%, on the contrary, the toughness is reduced. Therefore, the content range is set to 0.001% to 0.05%.
Bは、 一般に、 固溶すると焼入れ性を増加させるが、 また、 B N と して固溶 Nを低下させ、 溶接熱影響部の靱性を向上させる元素で ある。 従って、 0. 0 0 0 3 %以上の添加でその効果を利用できる 力 過剰の添加は、 靱性の低下を招くので、 その上限を 0. 0 0 5 %とする。 B generally increases hardenability when it forms a solid solution. It is an element that reduces solid solution N and improves the toughness of the heat affected zone. Therefore, the effect can be utilized by adding 0.0003% or more. Addition of excessive force causes toughness to decrease, so the upper limit is made 0.005%.
C aおよび R EMは、 硫化物を生成することによ り、 伸長した M n Sの生成を抑制し、 鋼材の板厚方向の特性、 特に、 耐ラメ ラティ ァー性を改善する。 C a、 R E Mは、 と もに、 0. 0 0 0 5 %未満 の添加では、 この効果が得られないので、 その下限を 0. 0 0 0 5 %とする。 逆に、 0. 0 0 5 %を越えて添加すると、 C aおよび R E Mの酸化物の個数が増加し、 超微細な M g含有酸化物の個数が低 下するので、 その上限を 0. 0 0 5 %とする。  By producing sulfides, Ca and REM suppress the generation of elongated MnS, and improve the properties in the thickness direction of the steel material, particularly, the resistance to lamellarity. If both C a and RE M are less than 0.0005%, this effect cannot be obtained, so the lower limit is set to 0.005%. Conversely, if the content exceeds 0.005%, the number of oxides of Ca and REM increases, and the number of ultrafine Mg-containing oxides decreases. 0 5%.
上記成分を含有する鋼は、 製鋼工程で溶製後、 連続铸造などをへ て、 厚板加熱、 圧延が施される。 この場合、 圧延方法と加熱冷却方 法および熱処理方法においては、 当該分野において従来から適用さ れている方法を用いても、 HA Z靱性に対して何ら差し支えがない 特に、 母材の粒径が小さければ小さい程、 HA Zの粒径との粒径 差が大きく なるこ とから、 本発明による H A Zにおける旧 γ粒径の 微細化は、 H A Ζ靭性だけでなく 、 硬度マッチングなどを考慮する 必要がある場合にも、 大きな効力を発揮する。  Steel containing the above components is subjected to smelting in a steelmaking process, and then to heating and rolling of a thick plate through continuous production and the like. In this case, the rolling method, the heating / cooling method, and the heat treatment method have no problem with respect to the HAZ toughness even if a method conventionally applied in the relevant field is used. Since the smaller the smaller, the larger the difference in particle size from the particle size of HAZ, the refinement of the old γ particle size in the HAZ according to the present invention requires consideration of not only HA toughness but also hardness matching etc. In some cases, it is very effective.
実施例 Example
次に、 本発明の実施例について述べる。  Next, examples of the present invention will be described.
表 1および表 2 (表 1 の続き) の化学成分を有する鋼塊に、 表 3 に示す条件で熱間圧延および熱処理を施し、 鋼板と した後、 該鋼板 に、 溶接入熱が 1 . 7 k j Zmmの小入熱、 2 0 k j Zmmの大入 熱、 および、 1 5 0 k J Zmmの超大入熱溶接を施した。 そして、 H A Zにおける旧 γ粒径を、 前述の切断法によって測定すると とも に、 シャルピー衝撃試験によ り HA Z靭性 (試験片採取位置は最粗 粒域) の入熱依存性を評価した。 その結果を同じく 表 3に示す。 A steel ingot having the chemical composition shown in Tables 1 and 2 (continued from Table 1) was subjected to hot rolling and heat treatment under the conditions shown in Table 3 to obtain a steel sheet. A small heat input of kj Zmm, a large heat input of 20 kj Zmm, and a super large heat input of 150 kJ Zmm were applied. The old γ particle size in HAZ is measured by the cutting method described above. Next, the heat input dependence of the HAZ toughness (the sample collection position was in the coarsest grain area) was evaluated by the Charpy impact test. Table 3 also shows the results.
なお、 表 3中の Δ ν Ε οは、 小入熱 ( 1 . 7 k J Zmm) と超大 入熱 ( 1 5 0 k J Zmm) のシャルピー吸収エネルギーの差、 すな わち [小入熱時の靱性 : V E 0 ( J ) ] 一 [超大入熱時の靱性 : V E o ( J ) ] を計算したものであ り 、 それぞれの吸収エネルギーは 、 0 °Cにおける 3本の試験片について測定した値の平均値である。  ΔνΕο in Table 3 is the difference between the Charpy absorbed energy between the small heat input (1.7 kJ Zmm) and the very large heat input (150 kJ Zmm), that is, [small heat input Toughness at the time of: VE 0 (J)]-[Toughness at the time of extra large heat input: VE o (J)] was calculated, and the absorbed energy of each was measured for three test pieces at 0 ° C. It is the average of the values.
また、 え 1 と え 2は、 L 1が 1 0 0 0倍の電子顕微鏡写真 1 0枚 から、 λ 2が 1 0万倍の電子顕微鏡写真 1 0枚から、 それぞれ算出 した酸化物の平均粒子間隔である。 In addition, the average particle size of the oxide was calculated from the electron micrograph of L 1 with a magnification of 100 × and the electron micrograph of λ 2 with a magnification of 100,000. The interval.
Figure imgf000020_0001
Figure imgf000020_0001
61 61
Figure imgf000021_0001
Figure imgf000021_0001
I60.0/00dT/13d ひ ε"/ιο θΛ 表 3 I60.0 / 00dT / 13d "/ ιο θΛ Table 3
Figure imgf000022_0001
Figure imgf000022_0001
d 1 :入熱 1.7kJ/mmの旧 7粒径、 d 2 :入熱 20. OkJ/醒の旧 Ί粒径、 d 3 :入熱 150.0 kJZ画の旧ァ粒径 (ただし、 20- 2の d 3は入熱 60. OkJZ瞧の旧ァ粒径)  d1: Heat input 1.7kJ / mm old 7 particle size, d2: Heat input 20. OkJ / old old Ί particle size, d3: Heat input 150.0kJZ old a particle size (However, 20-2 D3 is the heat input 60. OkJZ 瞧 old particle size)
λ 1 : 含有酸化物(0.2〜5.0/^111)の平均粒子間隔、 λ 2 :^含有酸化物(0.005~0.2"111) の平均粒子間隔  λ 1: Average particle spacing of the contained oxide (0.2 to 5.0 / ^ 111), λ 2: Average particle spacing of the contained oxide (0.005 to 0.2 "111)
vEo (kgf · m) :入熱 1.7kJ "瞧の場合の 0°Cにおけるシャルピー吸収エネルギー 厶 vEo (kgf - m) : [入熱 1.7kJZ匪のシャルピー吸収エネルギー] ― [入熱 150. OkJ/醒 (または、 60. OkJ/讓) のシャルビ一吸収エネルギー 1 鋼 1 〜 2 2 は本発明の例を示す。 表 3から明らかなよ う に、 これ らの発明鋼における旧 γ粒径は、 小入熱〜超大入熱の広い入熱条件 の範囲において、 すべて、 2 0 0 μ πι以下である。 鋼 2 0 — 2 と 2 1 一 2 は、 化学成分が、 それぞれ、 鋼 2 0 と 2 1 の化学成分とほと んど同様のものである力 脱酸条件を変化させたものであ り 、 M g 量が多少異なるものである。 銅 2 0 — 2の場合はえ 1 が、 鋼 2 1 _ 2の場合はん 2力';、 本発明で規定する範囲の外である力 これらの 場合においても、 鋼 2 0 — 2では、 粒径がほとんど変化していない こ とが認められ、 また、 鋼 2 1 — 2では、 入熱条件 6 0. 0 k J / m mで粒径が 2 0 0 μ m以下になっているこ とがわかる。 また、 こ れら発明鋼のシャルピー吸収エネルギーは、 すべて、 1 0 k g f · mを超えていて、 上記発明鋼が高靭性の鋼であるこ とを示している しかも、 小入熱と超大入熱の場合におけるシャルピー吸収エネル ギ一の差は、 最大でも、 およそ 4 k g f · πι以下と小さ く 、 幅広い 入熱条件の範囲においても、 H A Ζ靱性に大きな変化はない。 vEo (kgf · m): Charpy absorbed energy at 0 ° C in the case of 1.7kJ heat input v vo (kgf-m): [1.7kJZ Charpy absorbed energy of bandits] ― [heat input 150. OkJ / Awake (or 60. OkJ / Yellow) Charpy absorbed energy 1 Steels 1-22 show examples of the present invention. As is evident from Table 3, the prior γ grain sizes in these inventive steels are all less than 200 μπι in a wide range of heat input conditions from small heat input to very large heat input. Steels 20--2 and 21-1-2 have different deoxidation conditions where the chemical composition is almost the same as the chemical composition of steels 20 and 21, respectively. The M g amounts are somewhat different. In the case of copper 20 — 2, the force 1 is steel 2 1 _ 2, but the force is out of the range specified in the present invention; in these cases, even in steel 20 — 2, It was recognized that the particle size was hardly changed, and that the steel 21-2 had a particle size of 200 μm or less under the heat input condition of 60.0 kJ / mm. I understand. In addition, the Charpy absorbed energy of these invention steels all exceeded 10 kgf · m, indicating that the above invention steels are high toughness steels. The difference in the Charpy absorption energy in each case is as small as at most about 4 kgf · πι or less, and there is no significant change in HA toughness even in a wide range of heat input conditions.
なお、 表 3 には、 上記シャルピー吸収エネルギーの差にマイナス が付されているものがあるが、 これは、 旧 y粒径が大き く なつたに もかかわらず靱性が向上したこ とを示している。 そして、 このこ と は、 本発明においては M g含有酸化物の粒内変態能が極めて大きい こ とに起因している。  In Table 3, some of the differences in the Charpy absorbed energy are negative, indicating that the toughness was improved despite the increase in the former y grain size. I have. This is because, in the present invention, the Mg-containing oxide has an extremely large intragranular transformation ability.
それに対し、 鋼 2 3〜 3 5 は、 本発明の方法から逸脱して製造さ れた比較鋼を示す。 すなわち、 比較鋼 2 3、 2 4、 2 5、 2 6、 2 7 、 2 9、 3 0、 3 3 、 3 4および 3 5は、 基本成分あるいは選択 元素の内、 いずれかの元素が、 本発明で規定する組成範囲を越えて 添加されている例である。  In contrast, steels 23-35 represent comparative steels produced deviating from the method of the present invention. That is, the comparative steels 23, 24, 25, 26, 27, 29, 30, 33, 34, and 35 are each composed of one of the basic components or selected elements. This is an example in which the compound is added beyond the composition range specified in the invention.
上記比較鋼においては、 本発明において重要な要件である酸化物 の平均粒子間隔は、 大部分が、 本発明で規定する要件を満たしてい るが、 靱性劣化の要因となる元素が過剰に添加されている こ とによ り 、 小入熱条件および超大人熱条件での溶接時、 H A Z靱性の劣化 が助長されたものである。 In the above comparative steel, oxide which is an important requirement in the present invention Most of the average particle spacings satisfy the requirements stipulated in the present invention, but due to the excessive addition of elements that cause toughness degradation, small heat input conditions and ultra-adult heat The deterioration of HAZ toughness was promoted during welding under the conditions.
比較鋼 2 8 と比較鋼 3 1 は、 それぞれ、 A 1 と T i が、 本発明で 規定する A 1 と T i の下限値よ り小さい場合の鋼であ り 、 入熱量が 大き く なるに従って、 旧 γ粒径は粗大化しており 、 比較鋼 2 8 と比 較鋼 3 1 は、 と もに、 靱性値が低いものである。  Comparative steel 28 and comparative steel 31 are steels in which A 1 and T i are smaller than the lower limits of A 1 and T i specified in the present invention, respectively, as the heat input increases. The old γ grain size is coarse, and the comparative steel 28 and the comparative steel 31 both have low toughness values.
また、 比較鋼 3 2 は、 M gが無添加のものであ り 、 小入熱条件の 下では、 靱性は良好であるが、 超大人熱条件の下では、 靭性の劣化 が大き く 、 結局、 シャルピー吸収エネルギーの差は、 1 0 . 3 k g f · mと大きレ、。  The comparative steel 32 has no added Mg, and has good toughness under a small heat input condition, but has a large toughness deterioration under a super-adult heat condition. The difference in Charpy absorbed energy is as large as 10.3 kgf · m.
上記比較鋼においては、 いずれも、 H A Z靱性は低いレベルにあ り 、 そのう え、 入熱量が大きい場合には、 さ らに、 H A Z靱性が低 下している。  In all of the above comparative steels, the HAZ toughness is at a low level, and when the heat input is large, the HAZ toughness is further reduced.
なお、 比較鋼 3 3 と比較鋼 3 4においては、 微細な酸化物が数多 く存在している こ とによ り、 他に比べて十分に、 旧 γ粒径が小さ く なっているにもかかわらず、 靱性が大き く劣化している。  In Comparative Steel 33 and Comparative Steel 34, the former γ grain size was sufficiently smaller than the others because of the presence of many fine oxides. Nevertheless, the toughness is significantly degraded.
この理由は、 過剰の M g あるいは Oが添加されたこ とに起因して 、 主と して、 5 μ m以上の粗大な粒子が生成され、 脆性破壊が促進 されたためである。  The reason for this is that, due to the addition of excess Mg or O, coarse particles of 5 μm or more were mainly generated, and brittle fracture was promoted.
比較鋼 3 6 と比較鋼 3 7は、 化学成分が、 それぞれ、 発明鋼 1 と 発明鋼 2 の化学成分と同じであるが、 最終の M g を所定量添加する 際、 溶鋼中の溶存酸素量が 5 0 p p mを越えていた鋼である。  Comparative Steel 36 and Comparative Steel 37 have the same chemical composition as Inventive Steel 1 and Inventive Steel 2, respectively, but when a predetermined amount of the final Mg is added, the amount of dissolved oxygen in the molten steel Was over 50 ppm.
結局、 比較鋼 3 6 と比較鋼 3 7 は、 鋼中において超微細酸化物の 生成が少ないこ とから、 旧 γ粒径の粗大化と、 顕著な靱性劣化が起 きているものである。 産業上の利用可能性 As a result, in Comparative Steel 36 and Comparative Steel 37, since the generation of ultra-fine oxides in the steel was small, the coarseness of the old γ grain size and the remarkable deterioration in toughness occurred. Industrial applicability
本発明の化学成分および製造方法によれば、 T i 添加後に M g を 適切に所定量添加するカ あるいは、 T i と M g を同時に添加した 後に、 M g を適切に所定量添加する こ とによ り 、 入熱条件にかかわ らず、 H A Zにおける旧 γ粒の成長を抑制するこ とができる。 According to the chemical composition and the production method of the present invention, an appropriate predetermined amount of Mg is added after the addition of Ti, or an appropriate predetermined amount of Mg is added after the simultaneous addition of Ti and Mg. Accordingly, the growth of old γ grains in HAZ can be suppressed regardless of the heat input condition.
本発明においては、 この抑制効果によ り、 Η Α Ζ靱性を、 入熱条 件の幅広い範囲で向上させるこ とが可能である。  In the present invention, the toughness can be improved over a wide range of heat input conditions due to this suppression effect.
その結果、 海洋構造物、 天然ガス · 原油輸送用ライ ンパイプ、 建 築、 造船、 橋梁、 建設機械などの幅広い技術分野において、 溶接構 造物の脆性破壊に対する安全性が、 大幅に向上する。  As a result, the safety of the welded structures against brittle fracture is greatly improved in a wide range of technical fields such as offshore structures, line pipes for transporting natural gas and crude oil, construction, shipbuilding, bridges, and construction machinery.
従って、 本発明は、 各種産業技術の発展に寄与する と ころが極め て大きいものである。  Therefore, the present invention greatly contributes to the development of various industrial technologies.

Claims

5W 求 の 5W
. 質量%で、 In mass%,
C : 0. 0 1 0. 2 %、  C: 0.01 0.2%,
S i 0 0 2〜 0. 5 %、  S i 00 2 to 0.5%,
M n 0 3〜 2 %、  M n 0 3-2%,
P 0 0 3 %以下、  P 0 0 3% or less,
S 0 0 0 0 1〜 0. 0 3 %、  S 0 0 0 0 1 to 0.0 3%,
A 1 0 0 0 0 5〜 0. 0 5 %、  A 1 0 0 0 0 5 to 0.05%,
T i 0 0 0 3〜 0. 0 5 %、  T i 0 0 0 3 to 0.0 5%,
M g 0 0 0 0 1 〜 0. 0 1 %、  M g 0 0 0 0 1 to 0.0 1%,
O 0 0 0 0 1〜 0. 0 0 8 %を含有し、 残部が鉄および 不可避的不純物からな り 、  O 0 0 0 1 to 0.008%, the balance being iron and unavoidable impurities,
粒子径が 0. 2〜 5 μ mの M g含有酸化物を核にして、 硫化物お よび窒化物の一方が単独で、 も しく は、 両方が複合して析出した粒 子が、 平均粒子間隔 3 0〜 1 0 0 mで鋼中に分散し、 あるいは 粒子径が 0. 0 0 5〜 0. 2 μ m未満の M g含有酸化物を核にし て、 硫化物および窒化物の一方が単独で、 も しく は、 両方が複合し て析出した粒子が、 平均粒子間隔 3 0 / m以下で鋼中に分散してい る、  Particles precipitated from Mg-containing oxides with a particle size of 0.2 to 5 μm as nuclei, either sulfides or nitrides alone, or a combination of both, are average particles. One of the sulfides and nitrides is dispersed in steel at an interval of 30 to 100 m, or the core is an Mg-containing oxide with a particle size of 0.05 to less than 0.2 μm. The particles precipitated alone or in combination of both are dispersed in steel with an average particle spacing of 30 / m or less.
こ とを特徴とする HA Z靱性の入熱依存性がない溶接構造物用鋼。 This is a steel for welded structures that has no HAZ toughness dependence on heat input.
2. 質量%で、 さ らに、  2. In mass%,
C u 0 0 5 1 . 5 %、  Cu00.51.5%,
N i 0 0 5 5 %、  N i 0 0 5 5%,
C r 0 0 2 1 . 5 %、  C r 0 0 2 1.5%,
M o 0 0 2 1 . 5 %、  Mo 0 0 21.5%,
V 0 0 1 0. 1 %、 N b : 0. 0 0 0 1 〜 0. 2 %、 V 0 0 1 0.1%, Nb: 0.0000-1 to 0.2%,
Z r : 0. 0 0 0 1〜 0. 0 5 %、  Zr: 0.00 0 1 to 0.05%,
T a : 0. 0 0 0 1 〜 0. 0 5 %、  T a: 0.00 0 1 to 0.05%,
B : 0. 0 0 0 3〜 0. 0 0 5 %のう ち 1種または 2種以上 を含有することを特徴とする請求の範囲 1 に記載の HA Z靱性の入 熱依存性がない溶接構造物用鋼。  B: A weld having no heat input dependency of HAZ toughness according to claim 1, characterized in that it contains one or more of 0.03 to 0.05%. Structural steel.
3. 質量%で、 さ らに、  3. In mass%,
C a : 0. 0 0 0 5〜 0. 0 0 5 %、  C a: 0.0 0 0 5 to 0.0 0 5%,
R EM : 0. 0 0 0 5〜 0. 0 0 5 %のう ち 1種または 2種以 上を含有することを特徴とする請求の範囲 1 または 2に記載の HA Z靱性の入熱依存性がない溶接構造物用鋼。  REM: 0.005 to 0.005%, one or more of which are contained in HAZ toughness according to claim 1 or 2, characterized by heat input. Steel for welded structures without resistance.
4. HA Z組織の旧オーステナイ ト粒径が、 溶接入熱によらず 1 0〜 2 0 0 μ πιであることを特徴とする請求の範囲 1 、 2または 3 に記載の H A Ζ靱性の入熱依存性がない溶接構造物用鋼。  4. The HA austenitic grain size according to claim 1, 2 or 3, wherein the prior austenite grain size of the HA Z structure is 10 to 200 μππ regardless of welding heat input. Steel for welded structures without heat dependence.
5. 製綱段階において、 S i 、 Mnを添加して弱脱酸処理を行つ た後、 T i : 0. 0 0 3〜 0. 0 5質量%と、 所要量の M gを、 順 次あるいは同時に添加して溶存酸素量を 5 0 p p m以下と し、 その 状態で铸造、 あるいは、 さ らに M gを、 最終含有量で 0. 0 1質量 %以下となるよ うに添加し、 铸造することを特徴とする請求の範囲 1 、 2、 3または 4に記載の H A Z靱性の入熱依存性がない溶接構 造物用鋼の製造方法。  5. In the steelmaking stage, after adding S i and Mn and performing weak deoxidation treatment, T i: 0.003 to 0.05 mass% and the required amount of Mg are sequentially reduced. Next or at the same time, add the dissolved oxygen to 50 ppm or less, and make it in that state. 5. The method for producing a steel for a welded structure having no HAZ toughness dependence on heat input as set forth in claim 1, 2, 3, or 4.
6. 製綱段階において、 S i 、 M nを添加して弱脱酸処理を行つ た後、 T i : 0. 0 0 3〜 0. 0 5質量0 /0と、 所要量の A l 、 C a 、 M gを、 順次あるいは同時に添加して溶存酸素量を 5 0 p p m以 下と し、 その状態で铸造、 あるいは、 さ らに M g を、 最終含有量で 0. 0 1 質量%以下となるよ うに添加し、 铸造するこ とを特徴とす る請求の範囲 1 、 2、 3または 4に記載の H A Z靱性の入熱依存性 がない溶接構造物用鋼の製造方法。 In 6. Seitsuna stage, S i, after having conducted an addition to weak deoxidation of M n, T i: the 0.0 0 3 to 0.0 5 weight 0/0, the required amount of A l , C a, and Mg are added sequentially or simultaneously to reduce the amount of dissolved oxygen to 50 ppm or less. In that state, Mg is added, or Mg is further added to a final content of 0.01% by mass. The heat input dependency of the HAZ toughness according to claims 1, 2, 3 or 4, characterized by being added and manufactured as follows. Method for producing steel for welded structures with no gaps.
PCT/JP2000/007091 1999-10-12 2000-10-12 Steel for welded structure purpose exhibiting no dependence of haz toughness on heat input and method for producing the same WO2001027342A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001529471A JP3802810B2 (en) 1999-10-12 2000-10-12 Steel for welded structures having no dependence on heat input of HAZ toughness and method for manufacturing
DE60020522T DE60020522T2 (en) 1999-10-12 2000-10-12 STEEL FOR WELDED STRUCTURES, IN WHICH TOGGLE IS INDEPENDENT OF THE HEAT ENTRY, AND METHOD OF MANUFACTURING
EP00966448A EP1143023B1 (en) 1999-10-12 2000-10-12 Steel for welded structure purpose exhibiting no dependence of haz toughness on heat input and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP28941299 1999-10-12
JP11/289412 1999-10-12

Publications (1)

Publication Number Publication Date
WO2001027342A1 true WO2001027342A1 (en) 2001-04-19

Family

ID=17742916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007091 WO2001027342A1 (en) 1999-10-12 2000-10-12 Steel for welded structure purpose exhibiting no dependence of haz toughness on heat input and method for producing the same

Country Status (5)

Country Link
EP (1) EP1143023B1 (en)
JP (1) JP3802810B2 (en)
KR (1) KR100430067B1 (en)
DE (1) DE60020522T2 (en)
WO (1) WO2001027342A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049237A (en) * 2001-08-06 2003-02-21 Nippon Steel Corp High strength steel for welding structure having excellent base metal toughness and haz toughness and production method therefor

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100605717B1 (en) * 2001-12-27 2006-08-01 주식회사 포스코 Steels for Welded Structures With Finely Disperded Oxides of Ti-Al-Zr-Mg
CN100402688C (en) * 2002-09-04 2008-07-16 杰富意钢铁株式会社 Steel material for high heat input welding and its manufacturing method
WO2004106571A1 (en) * 2003-05-27 2004-12-09 Nippon Steel Corporation High strength thin steel sheet excellent in resistance to delayed fracture after forming and method for preparation thereof, and automobile parts requiring strength manufactured from high strength thin steel sheet
CA2542762C (en) 2003-10-17 2012-11-13 Nippon Steel Corporation High-strength steel sheets excellent in hole-expandability and ductility
DE102007004147A1 (en) * 2007-01-22 2008-07-24 Heraeus Electro-Nite International N.V. Method for influencing the properties of cast iron and oxygen sensor
CN101578384B (en) 2007-12-07 2011-06-15 新日本制铁株式会社 Steel with weld heat-affected zone having excellent CTOD properties and process for producing the steel
JP4547044B2 (en) * 2008-07-30 2010-09-22 新日本製鐵株式会社 High-strength thick steel material excellent in toughness and weldability, high-strength extra-thick H-shaped steel, and methods for producing them
EP2385149B1 (en) * 2009-05-19 2016-07-06 Nippon Steel & Sumitomo Metal Corporation Steel material for welding and method for producing same
TWI365915B (en) 2009-05-21 2012-06-11 Nippon Steel Corp Steel for welded structure and producing method thereof
US9403242B2 (en) 2011-03-24 2016-08-02 Nippon Steel & Sumitomo Metal Corporation Steel for welding
KR101883588B1 (en) * 2014-04-15 2018-07-30 신닛테츠스미킨 카부시키카이샤 Steel h-beam and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543977A (en) * 1991-08-14 1993-02-23 Nippon Steel Corp Production of low temperature high toughness steel for welding
JPH09310147A (en) * 1996-05-21 1997-12-02 Nippon Steel Corp Steel sheet excellent in heat affected zone toughness
JPH10298705A (en) * 1997-02-19 1998-11-10 Nippon Steel Corp Steel for super heat input welding containing mg
JPH1121613A (en) * 1997-05-07 1999-01-26 Nippon Steel Corp Production of steel excellent in toughness at low temperature and sour resistance
JPH11293382A (en) * 1998-04-15 1999-10-26 Nippon Steel Corp Magnesium-containing steel for extra-large heat input welding

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177535A (en) * 1989-12-04 1991-08-01 Nippon Steel Corp Manufacture of low temperature high toughness steel for welding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543977A (en) * 1991-08-14 1993-02-23 Nippon Steel Corp Production of low temperature high toughness steel for welding
JPH09310147A (en) * 1996-05-21 1997-12-02 Nippon Steel Corp Steel sheet excellent in heat affected zone toughness
JPH10298705A (en) * 1997-02-19 1998-11-10 Nippon Steel Corp Steel for super heat input welding containing mg
JPH1121613A (en) * 1997-05-07 1999-01-26 Nippon Steel Corp Production of steel excellent in toughness at low temperature and sour resistance
JPH11293382A (en) * 1998-04-15 1999-10-26 Nippon Steel Corp Magnesium-containing steel for extra-large heat input welding

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1143023A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049237A (en) * 2001-08-06 2003-02-21 Nippon Steel Corp High strength steel for welding structure having excellent base metal toughness and haz toughness and production method therefor

Also Published As

Publication number Publication date
DE60020522D1 (en) 2005-07-07
KR100430067B1 (en) 2004-05-03
JP3802810B2 (en) 2006-07-26
EP1143023A1 (en) 2001-10-10
DE60020522T2 (en) 2005-11-24
EP1143023A4 (en) 2003-01-02
KR20010080751A (en) 2001-08-22
EP1143023B1 (en) 2005-06-01

Similar Documents

Publication Publication Date Title
EP2975148B1 (en) Thick steel sheet having excellent ctod properties in multilayer welded joints, and manufacturing method for thick steel sheet
CN110050082B (en) High Mn steel sheet and method for producing same
KR100733016B1 (en) FERRITIC STAINLESS STEEL PLATE WITH Ti AND METHOD FOR PRODUCTION THEREOF
EP2977479B1 (en) Steel material having superior toughness at welding heat affected zone
WO2007055387A1 (en) HIGH-STRENGTH STEEL SHEET OF 450 MPa OR HIGHER YIELD STRESS AND 570 MPa OR HIGHER TENSILE STRENGTH HAVING LOW ACOUSTIC ANISOTROPY AND HIGH WELDABILITY AND PROCESS FOR PRODUCING THE SAME
JP5216530B2 (en) Thick steel plate with excellent brittle crack propagation stop properties
JP5842314B2 (en) High heat input welding steel
JP2008163446A (en) Steel member for high heat input welding
WO2001027342A1 (en) Steel for welded structure purpose exhibiting no dependence of haz toughness on heat input and method for producing the same
JP2003213366A (en) Steel having excellent toughness in base metal and large -small heat input weld heat-affected zone
JPH09157787A (en) High tensile strength steel for welding excellent in toughness in very large heat input welded heat affected zone
TW201823484A (en) High manganese steel sheet and production method therefor capable of satisfactorily resisting erosion in a salt water environment
JP5818343B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
JP6665515B2 (en) Sour-resistant steel plate
JP4276576B2 (en) Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness
JP5520105B2 (en) Steel material excellent in toughness of weld heat-affected zone and method for producing the same
EP3128024B1 (en) Welded joint
WO2009082156A1 (en) Steel for welding structure having welded joint with superior ctod properties in weld heat affected zone
JP3752076B2 (en) Super high heat input welding steel containing Mg
EP2899289B1 (en) Thick steel sheet having excellent welding heat-affected zone toughness
JP3749616B2 (en) High-strength steel for welding with excellent toughness of heat affected zone
WO2001059167A1 (en) Steel product having weld heat-affected zone excellent in rigidity
JP5434437B2 (en) High heat input welding steel
JP6631353B2 (en) Sour-resistant steel plate and sour-resistant steel pipe
JP3513001B2 (en) Ultra-high heat input welding High-strength steel for welding with excellent heat-affected zone toughness

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2001 529471

Country of ref document: JP

Kind code of ref document: A

AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1020017007269

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2000966448

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000966448

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000966448

Country of ref document: EP