WO2001024927A1 - Composite member for deodorization or waste water treatment - Google Patents

Composite member for deodorization or waste water treatment Download PDF

Info

Publication number
WO2001024927A1
WO2001024927A1 PCT/JP2000/006836 JP0006836W WO0124927A1 WO 2001024927 A1 WO2001024927 A1 WO 2001024927A1 JP 0006836 W JP0006836 W JP 0006836W WO 0124927 A1 WO0124927 A1 WO 0124927A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite member
titanium oxide
photocatalytic function
function according
base material
Prior art date
Application number
PCT/JP2000/006836
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Ohmori
Akihiko Kotera
Hidenori Nakamura
Masayoshi Nobiki
Original Assignee
Showa Denko Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Kabushiki Kaisha filed Critical Showa Denko Kabushiki Kaisha
Priority to AU74521/00A priority Critical patent/AU7452100A/en
Publication of WO2001024927A1 publication Critical patent/WO2001024927A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • B01D53/885Devices in general for catalytic purification of waste gases
    • B01J35/30
    • B01J35/39
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/02Odour removal or prevention of malodour

Definitions

  • the present invention provides a composite member used for deodorization and / or wastewater treatment utilizing a photocatalytic reaction, that is, a composite member having a photocatalytic function capable of efficiently decomposing malodorous substances or harmful substances in air and wastewater, and About its use.
  • metal oxides such as titanium oxide have excellent functions such as antifouling by removing harmful substances, decomposition and purification of ammonia and sulfur compounds in the atmosphere, and sterilization of bacteria, and are used in various fields. Is expected.
  • Titanium oxide fine particles having photocatalytic ability (hereafter, the photocatalytic titanium oxide fine particles are often abbreviated simply as “titanium oxide”) are available in various forms, such as bulk particles, sols, and thin films, depending on the purpose. It is used, but in the field of deodorization and wastewater treatment, titanium oxide is often used by supporting it on glass, ceramics, or other substrates, instead of using titanium oxide powder alone. Many methods have been proposed for supporting titanium oxide on a substrate. In general, in order to increase the adhesion between titanium oxide and the base material and prevent the titanium oxide from easily falling off, (i) heat-treat at a high temperature after forming a titanium oxide coating film on the base material. (Ii) a method of using a porous substrate and impregnating the pores with a titanium oxide dispersion, and (iii) a method of forming a titanium oxide coating film on the substrate through a binder. And so on.
  • an object of the present invention is to provide a composite material for deodorization or wastewater treatment in which titanium oxide having a photocatalytic function is supported on a substrate, in which the activity of the photocatalyst is significantly increased, and the deodorization and Z or It is an object of the present invention to provide a composite member for deodorization or wastewater treatment, which improves wastewater treatment performance and generally makes it difficult for titanium oxide to fall off from a substrate and can continue to exhibit a photocatalytic function for a long period of time.
  • the present inventors have repeatedly studied a composite member having a photocatalytic function capable of efficiently decomposing malodorous substances or harmful substances in the air and water, and as a result, a foamed base material or a porous base material having a small apparent specific gravity. It has been found that a composite member comprising titanium oxide adhered on the surface of the present invention meets the above-mentioned object, and has completed the present invention. According to the present invention, in a composite member having a photocatalytic function that can be used for deodorization or wastewater treatment, the composite member has an apparent specific gravity of 0.9 to 0.01 on the surface of a foamed substrate or a porous substrate. There is provided a composite member having a photocatalytic function, wherein titanium oxide fine particles are adhered.
  • a composite as described above wherein titanium oxide fine particles having a photocatalytic function are adhered on the surface of a foamed substrate or a porous substrate having an apparent specific gravity of 0.9 to 0.01.
  • a method for treating malodorous air or wastewater characterized in that the members come into contact with air or other gas or wastewater to be deodorized to decompose malodorous substances or harmful substances in the gas or wastewater.
  • the titanium oxide fine particles having a photocatalytic function used in the present invention are not particularly limited, and commercially available titanium oxide powders can be used, but the sol obtained in the titanium oxide synthesis step as described below is used.
  • a form of titanium oxide is preferably used.
  • the titanium oxide there are known an anase type, a rutile type, and a brookite type. However, fine particles are desirable because those having high photocatalytic activity are desired.
  • Average particle size is usually in the range of 0.05 to 0.3 / im, preferably in the range of 0.01 to 0.1 m, because the production method is difficult for the finer than 0.05 / m. Is used.
  • the specific surface area of the titanium oxide particles is preferably not less than 2 0 m 2 / g, 5 0 ⁇ 3 0 0 m 2 / range is more preferable.
  • Known methods of producing titanium oxide include neutralizing and hydrolyzing titanyl sulfate / titanium tetrachloride and hydrolyzing a titanium alkoxide compound, but the titanium oxide produced has high activity. Considering that the production cost is low, a method using titanium sulfate / titanium tetrachloride as a raw material is preferable.
  • the method of hydrolyzing the titanium alkoxide compound is advantageous in that a titanium oxide sol having a very small size and excellent powder properties can be obtained, but it is much more effective than the method using titanium sulphate and titanium tetrachloride as raw materials. Expensive.
  • titanium oxide powder which is redispersed in water or a mixed solution of water and an organic solvent, and used as a coating solution for forming a titanium oxide thin film. It is possible, but not preferred. Titanium oxide, which is a hydrolysis product, has a high surface activity, and the finer the particles, the higher the activity.Therefore, it easily aggregates and is very difficult to redisperse in water, etc. The reason for this is that the transparency is poor, the photocatalytic action is reduced, and the support on the base material is not strong.
  • the aqueous sol produced by hydrolysis is dechlorinated and dehydrated, concentrated or diluted as required, and then a binder is added thereto and used as a coating solution.
  • the aqueous sol may be used in a form in which titanium oxide is dispersed in a water-organic solvent mixture by adding an organic solvent, if desired.
  • the dispersion medium used in the preferred titanium oxide sol is water or a mixture of water and a hydrophilic organic solvent.
  • the hydrophilic organic solvent include alcohols such as methanol, ethanol and ethylene glycol, ketones such as acetone, esters such as ethyl acetate, and ethyl cellosolves.
  • a preferred titanium oxide sol is the sol of water-spread titanium oxide described in JP-A-11-43327.
  • a titanium oxide thin film having particularly excellent transparency and peel strength can be formed on a foamed substrate or a porous substrate.
  • aqueous titanium solution is hydrolyzed while being refluxed and cooled, so that a sol having a titanium oxide concentration of approximately 0.05 to 10 mol mol is generated.
  • the sol can be used as it is as a coating material having a preferable titanium oxide concentration. Further, water may be added to the sol obtained by the hydrolysis, or the sol may be concentrated so that the concentration of titanium oxide is in the above range.
  • a stabilizer can be added, if desired, to prevent aggregation.
  • various surfactants such as a commonly used nonionic surfactant are used.
  • the amount of stabilizer used is usually from 0.1 to: L% by weight, based on the weight of the aqueous sol.
  • a small amount of a water-soluble polymer for example, about 10 to 100,000 ppm can be added to the titanium oxide sol in order to enhance the film forming property.
  • a water-soluble polymer polyvinyl alcohol, methylcellulose, ethylcellulose, carboxycellulose, starch and the like are preferable.
  • the term “foamed base material or porous base material” used to support titanium oxide refers to a base material having a large number of pores communicating with the surface, and may or may not have independent pores. Absent.
  • the form and material of the foamed base material or porous base material are not particularly limited, but a spherical or nearly spherical shape is preferred for handling.
  • the average particle size of the spherical substrate is preferably 1 mm to 10 mm.
  • foamed base material or porous base material examples include expanded obsidian (pearlite), a metal wire or ceramic fiber, which is rounded into a spherical shape, and a foamed cement.
  • obsidian foam is preferred because of the advantages that the titanium oxide carrying amount is large and that the supported titanium oxide is hard to fall off.
  • Obsidian foams are usually produced by heat treating milled obsidian at 500-1.000.
  • the foamed or porous substrate has an apparent specific gravity of 0.9 to 0.01, preferably 0.7 to 0.01, and more preferably 0.4 to 0.01. Used.
  • a foamed base material or a porous base material having a small apparent specific gravity By using a foamed base material or a porous base material having a small apparent specific gravity, a composite member having a small apparent specific gravity can be obtained. Therefore, when the composite member of the present invention is used for deodorization treatment or wastewater treatment, the composite member floats or flows in the air or wastewater. As a result, the number of times of contact with the odorous gas is increased, and the deodorizing performance is improved. In addition, during wastewater treatment, the composite members float on the liquid surface of the wastewater, so that the irradiation efficiency of ultraviolet rays increases and the wastewater treatment performance improves.
  • a foamed base material or a porous base material having an apparent specific gravity of more than 0.9 cannot sufficiently exhibit the above-mentioned features as a deodorizing material and a wastewater treatment material, and a foamed material having an apparent specific gravity of less than 0.01.
  • Substrates or porous substrates generally have low strength and are inferior in shape retention of composite members.
  • a compound containing at least one element selected from the group consisting of phosphorus, zirconium and gayne is preferably used.
  • the compound containing zirconium include water-soluble zirconium such as zirconium chloride, zirconium hydroxychloride, zirconium nitrate, zirconium sulfate, zirconium acetate, ammonium zirconium carbonate, and organic solvent soluble compounds such as zirconium propionate.
  • zirconium is mentioned.
  • a complex of a zirconium compound having at least one of a hydroxyl group, a carbonate group, and an alkylcarboxyl group, or a high molecular compound thereof can also be used.
  • the amount of the zirconium compound as the binder can be appropriately selected within a range of 3 to 200 parts by weight based on 100 parts by weight of titanium oxide.
  • the phosphorus-containing compound examples include orthophosphoric acid, pyrophosphoric acid, aluminum phosphate, polyphosphoric acid, and the like.
  • the amount of the phosphorus-containing compound to be used as the binder can be appropriately selected within the range of 1 to 100 parts by weight based on 100 parts by weight of titanium oxide.
  • the gayne-containing compound examples include water glass, calcium silicate, tetrachlorosilicate, tetrabromosilicate, tetraethylsilicate, tetramethylsilicate, tetra-n-propoxysilicate, tetrabutoxysilicate, methyltrimethylsilicate, and the like.
  • Methyltriethyl silicate methyltributoki Silicylates, ethyltrimethyl silicates, ethyltriethyl silicates, phenyltrimethyl silicates, phenyltriethyl silicates, dimethyl dimethyl silicates, dimethyl getyl silicates, phenyl methyl dimethyl silicates, Examples thereof include silicates such as enylmethylgetyl silicate, and hydrolysates or dehydrates thereof.
  • the compounding amount of the silicon-containing compound as a binder can be appropriately selected in the range of 100 to 100 parts by weight with respect to 100 parts by weight of titanium oxide.
  • a method of impregnating the foamed or porous substrate with the solution, foaming A method of spraying a liquid onto a base material or a porous base material, a method of applying the liquid to a foamed base material or a porous base material with a brush, and the like are employed. Above all, a method of impregnating the substrate with a titanium oxide-containing liquid is preferable. It is appropriate that the amount of the applied liquid is 0.01 to 0.2 mm in terms of the thickness of the liquid film.
  • the target thin film can be obtained, and can be used as it is for a catalyst or the like.
  • heat treatment after drying can increase the carrying capacity.
  • the heat treatment temperature is usually in the range of 20 to 200 :, preferably 20 to 15 Ot :, and the heat treatment time is about 5 to about 30 minutes.
  • the thin film can be formed and then fired, whereby the thin film is more strongly applied to the foamed or porous substrate. It adheres and the hardness of the thin film increases.
  • This firing temperature is preferably at least 200.
  • harsh firing conditions should be avoided because the particles may grow during the heat treatment during the firing process, causing the specific surface area of the titanium oxide particles to decrease and the photocatalytic function to decrease.
  • the upper limit of the sintering temperature may be determined according to the heat resistance of the foamed or porous substrate, but is usually up to about 80 O.
  • the atmosphere for firing is not particularly limited, and may be air.
  • the firing time is not particularly limited, but is usually selected in the range of 1 to 60 minutes.
  • the thickness of the thin film obtained by firing is about 0.02 to about L. 0 nm in the case of the above-mentioned coating amount.
  • the reaction solution began to become cloudy immediately after the start of dropping, but it was maintained at the same temperature, and after completion of the dropping, the temperature was further raised and heated to around the boiling point (at 104). To complete the hydrolysis reaction. After cooling, the residual chlorine generated in the reaction was removed by electrodialysis, and the pH was adjusted to l.9 (chlorine ion: 600 ppm). 0.1% by weight of the content was added to obtain a titanium oxide sol (Ti 0 2 about 0.25 mo 1 / liter). This sol was stable, and no sedimentation of the generated titanium oxide fine particles was observed even after 30 days or more.
  • titanium oxide coating liquid B tetramethyl orthosilicate S i ( ⁇ CH 3 ) 4 as a binder was added in an amount of 5% by weight in terms of Si ⁇ 2 with respect to the titanium oxide content to obtain a titanium oxide coating liquid B. .
  • a titanium oxide sol was prepared in the same manner as in the method for preparing the coating liquid B. However, dark By changing the conditions of condensation and electrodialysis, a titanium oxide sol with a titanium oxide concentration of 11% by weight and a pH of 5.5 was obtained.
  • Fluorite No. 2 (Perlite, manufactured by Fuyo Perlite Co., Ltd .: apparent specific gravity 0.10 to 0.16 gZcm 3 , particle size 1.2 to 2.5 mm) as a base material for supporting titanium oxide on 100 ml of coating solution A was added, and the mixture was sufficiently stirred and allowed to stand for 1 hour to be evenly mixed with the substrate. Next, after filtering and drying the base material, the base material was further dried at 150 for 1 hour, and the titanium oxide contained in the coating liquid A was supported on a foaming base material or a porous base material to form a composite member. . The amount of titanium oxide carried on the foamed or porous substrate was about 2% by weight.
  • the photocatalytic ability (deodorizing property) of the composite member supporting titanium oxide thus obtained was measured.
  • 100 g of the composite member was put into 100 ml of pure water, and washed with water to remove dust and unreacted residue.
  • Acetaldehyde a malodorous component
  • the results are shown in Table 1.
  • the wastewater treatment capacity using the composite member was measured.
  • the measurement was performed in the following manner.
  • the water stained with the organic dye (red) is regarded as waste water, 100 cc of this waste water is taken into a wide-mouth bottle, 1 g of composite material is added thereto, and an ultraviolet lamp is irradiated from the top of the bottle for 60 minutes (at the liquid level)
  • the light intensity was changed to 0.2 mWZcm 2 , 365 nm), and the color change (degree of fading) of the wastewater was visually evaluated in the following three stages.
  • Foaming base to support material or porous substrate to Fuyoraito No. 1 (Fuyo Perlite Corp. perlite:.... The apparent specific gravity 0 1 8 0 2 6 Noji 111 3, particle size 0 6- 1 2 mm)
  • a composite member was obtained in the same manner as in Example 1 except for changing the above.
  • the deodorizing performance and the wastewater treatment performance were measured in the same manner as in Example 1, and the results are shown in Table 1.
  • a composite member was obtained in the same manner as in Example 1, except that coating liquid B was used instead of coating liquid A.
  • the deodorizing performance and the wastewater treatment performance were measured in the same manner as in Example 1, and the results are shown in Table 1.
  • a composite member carrying titanium oxide was obtained in the same manner as in Example 1 except that the substrate used in Example 1 was changed to obsidian (approximate specific gravity: about 2.4).
  • the deodorizing performance and wastewater treatment performance were measured in the same manner as in Example 1, and the results are shown in Table 1.
  • Example Z Comparative Example Coating liquid Deodorizing performance (% decomposition) Wastewater treatment capacity
  • the composite material of the present invention is used for deodorization and / or wastewater treatment, that is, for decomposing air or other gas and water malodorous or harmful substances.
  • the composite member of the present invention is obtained by supporting titanium oxide on a foamed base material or a porous base material having a small apparent specific gravity, it can be floated or flown in the air or water when used for deodorization treatment. As a result, the number of times of contact with the odorous gas is Increases the deodorization performance.
  • the composite material of the present invention When used as a deodorant for air and other gases containing malodorous substances, put the composite material of the present invention in a net-like bag and irradiate it with an ultraviolet lamp (black light) to deodorize the indoor space. Can be. At this time, if the air in the indoor space is stirred with a fan or the like, the deodorizing effect is further enhanced. Furthermore, if the composite material of the present invention is wound up by a fan or the like and a deodorizer configured to be irradiated with ultraviolet rays is used, the degree of contact with malodorous components is improved, and the maximum deodorizing effect is obtained. can get.
  • an ultraviolet lamp black light
  • the composite member of the present invention When the composite member of the present invention is used for wastewater treatment, it floats on the liquid surface of the wastewater, so that the irradiation efficiency of ultraviolet rays is increased and the wastewater treatment performance is improved.
  • the photocatalyst activity is greatly expressed, and in general, the titanium oxide hardly falls off from the base material, and the photocatalytic function can be continuously exhibited for a long time.
  • the composite material of the present invention To decompose harmful substances in wastewater, it is only necessary to put the composite material of the present invention into a stream of harmful substance-containing wastewater to be treated and float it where sunlight is irradiated. If desired, a suitable artificial light source such as an ultraviolet lamp can be provided instead of or in addition to solar irradiation.
  • a suitable artificial light source such as an ultraviolet lamp can be provided instead of or in addition to solar irradiation.
  • the composite material is placed on a net-like tray, or the material placed in a net-like bag is sent to a wastewater treatment machine so as to contact the flow of wastewater. Can be installed.

Abstract

A composite member having photocatalyst function which can be used for deodorization of an air having offensive odor or for waste water treatment, characterized in that it comprises a foamed or porous substrate having an apparent specific gravity of 0.01 to 0.9 and, attached on the surface thereof, titanium oxide fine particles. The composite member is advantageous in that it can make much of the activity of the photocatalyst attached, and thus can achieve improved performance for deodorization and/or waste water treatment and also exhibit excellent durability of such performance.

Description

明 細 書 脱臭用または廃水処理用複合部材 技術分野  Description Composite materials for deodorization or wastewater treatment Technical field
本発明は、 光触媒反応を利用した脱臭および または廃水処理に用いる複合部 材、 すなわち、 空気中および廃水中の悪臭物質または有害物質を効率よく分解す ることのできる光触媒機能を有する複合部材、 およびその利用に関する。 背景技術  The present invention provides a composite member used for deodorization and / or wastewater treatment utilizing a photocatalytic reaction, that is, a composite member having a photocatalytic function capable of efficiently decomposing malodorous substances or harmful substances in air and wastewater, and About its use. Background art
酸化チタンなどの金属酸化物が有する光触媒作用を利用した研究開発が、 近年 盛んに行われている。 すなわち、 酸化チタンなどの金属酸化物は、 有害物質の除 去による防汚、 大気中のアンモニア、 硫黄化合物などの分解浄化、 細菌類の殺菌 などに優れた機能を持ち、 多様な分野での応用が期待されている。  Research and development utilizing the photocatalysis of metal oxides such as titanium oxide have been actively conducted in recent years. In other words, metal oxides such as titanium oxide have excellent functions such as antifouling by removing harmful substances, decomposition and purification of ammonia and sulfur compounds in the atmosphere, and sterilization of bacteria, and are used in various fields. Is expected.
光触媒能を有する (光触媒性) 酸化チタン微粒子 (以下、 光触媒性酸化チタン 微粒子を、 多くの場合、 単に 「酸化チタン」 と略称する) は、 目的によりバルク 粒子、 ゾル、 薄膜などとさまざまな形態で利用されるが、 脱臭,廃水処理分野に 関しては、 酸化チタン粉体単独ではなく、 酸化チタンをガラス、 セラミックス、 その他の基材に担持させて用いる場合が多い。 酸化チタンを基材に担持させる方 法としては、 多くの方法が提案されている。 一般には、 酸化チタンと基材との密 着性を高め、 酸化チタンが容易に脱落しないようにするため、 ( i ) 基材上に酸 化チタン塗膜を形成した後、 高温にて熱処理して燒結する方法、 ( i i ) 多孔質 な基材を用い、 その細孔中に酸化チタン分散液を含浸する方法、 ( i i i ) バイン ダーを介して基材上に酸化チタン塗膜を形成する方法などが採られる。  Titanium oxide fine particles having photocatalytic ability (photocatalytic properties) (hereafter, the photocatalytic titanium oxide fine particles are often abbreviated simply as “titanium oxide”) are available in various forms, such as bulk particles, sols, and thin films, depending on the purpose. It is used, but in the field of deodorization and wastewater treatment, titanium oxide is often used by supporting it on glass, ceramics, or other substrates, instead of using titanium oxide powder alone. Many methods have been proposed for supporting titanium oxide on a substrate. In general, in order to increase the adhesion between titanium oxide and the base material and prevent the titanium oxide from easily falling off, (i) heat-treat at a high temperature after forming a titanium oxide coating film on the base material. (Ii) a method of using a porous substrate and impregnating the pores with a titanium oxide dispersion, and (iii) a method of forming a titanium oxide coating film on the substrate through a binder. And so on.
しかしながら、 ( i ) 酸化チタン塗膜を高温にて熱処理して燒結する方法では 、 酸化チタン粒子が熱処理中に粒成長してその比表面積が低下し、 光触媒機能が 低下する、 (i i ) 多孔質基材の細孔中に含浸する方法では、 酸化チタン粒子の脱 落を十分に阻止するのは困難である。 (i i i ) バインダーを介する塗膜方法は、 広く利用されている方法であるが、 現状において満足できるものではない。 発明の開示 However, in the method of (i) heat-treating the titanium oxide coating film at a high temperature and sintering, the titanium oxide particles grow during the heat treatment and the specific surface area decreases, and the photocatalytic function decreases. With the method of impregnating into the pores of the substrate, it is difficult to sufficiently prevent the titanium oxide particles from falling off. (Iii) The coating method using a binder is a widely used method, but it is not satisfactory at present. Disclosure of the invention
上記のような従来技術に鑑み、 本発明の目的は、 光触媒機能を有する酸化チタ ンを基材に担持した脱臭用または廃水処理用複合部材において、 光触媒の活性が 大きく発現し、 脱臭および Zまたは廃水処理性能が向上するとともに、 概して、 酸化チタンが基材から脱落し難く、 光触媒機能を長期に発揮し続けることが可能 な脱臭用または廃水処理用複合部材を提供することにある。  In view of the prior art as described above, an object of the present invention is to provide a composite material for deodorization or wastewater treatment in which titanium oxide having a photocatalytic function is supported on a substrate, in which the activity of the photocatalyst is significantly increased, and the deodorization and Z or It is an object of the present invention to provide a composite member for deodorization or wastewater treatment, which improves wastewater treatment performance and generally makes it difficult for titanium oxide to fall off from a substrate and can continue to exhibit a photocatalytic function for a long period of time.
本発明者らは、 空気中および水中の悪臭物質または有害物質を効率よく分解す ることのできる光触媒機能を有する複合部材について検討を重ねた結果、 見かけ 比重が小さい発泡基材または多孔質基材の表面上に酸化チタンが被着されてなる 複合部材が、 上記目的に適合することを見出し、 本発明を完成するに至った。 本発明によれば、 脱臭または廃水処理用として用いることのできる光触媒機能 を有する複合部材において、 見かけ比重が 0 . 9〜0 . 0 1である発泡基材また は多孔質基材の表面上に酸化チタン微粒子が被着されていることを特徴とする光 触媒機能を有する複合部材が提供される。  The present inventors have repeatedly studied a composite member having a photocatalytic function capable of efficiently decomposing malodorous substances or harmful substances in the air and water, and as a result, a foamed base material or a porous base material having a small apparent specific gravity. It has been found that a composite member comprising titanium oxide adhered on the surface of the present invention meets the above-mentioned object, and has completed the present invention. According to the present invention, in a composite member having a photocatalytic function that can be used for deodorization or wastewater treatment, the composite member has an apparent specific gravity of 0.9 to 0.01 on the surface of a foamed substrate or a porous substrate. There is provided a composite member having a photocatalytic function, wherein titanium oxide fine particles are adhered.
さらに、 本発明によれば、 見かけ比重が 0 . 9〜0 . 0 1である発泡基材また は多孔質基材の表面上に光触媒機能を有する酸化チタン微粒子が被着されている 上記の複合部材を脱臭すべき空気その他のガスまたは廃水と接触して、 ガス中ま たは廃水中の悪臭物質または有害物質を分解することを特徴とする、 悪臭を有す る空気または廃水の処理方法が提供される。 発明を実施するための最良の形態  Furthermore, according to the present invention, there is provided a composite as described above, wherein titanium oxide fine particles having a photocatalytic function are adhered on the surface of a foamed substrate or a porous substrate having an apparent specific gravity of 0.9 to 0.01. A method for treating malodorous air or wastewater, characterized in that the members come into contact with air or other gas or wastewater to be deodorized to decompose malodorous substances or harmful substances in the gas or wastewater. Provided. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の脱臭用または廃水処理用複合部材、 およびその利用方法につい て詳しく説明する。  Hereinafter, the composite member for deodorization or wastewater treatment of the present invention and the method of using the same will be described in detail.
本発明に用いられる光触媒機能を有する酸化チタン微粒子は格別限定されるこ とはなく、 市販の酸化チタン粉末を用いることが可能であるが、 下記のように酸 化チタン合成工程で得られるゾルの形態の酸化チタンが好ましく用いられる。 酸化チタンにはアナ夕ーゼ型、 ルチル型、 ブルッカイト型が知られているが、 光触媒能が高いものが望まれるので微細な粒子であることが望ましい。 平均粒径 が 0 . 0 0 5 / mより細かいものは製法が難しいので、 通常、 平均粒径が 0 . 0 0 5〜0 . 3 /i mの範囲、 好ましくは 0 . 0 1〜0 . 1 mの範囲のものが用い られる。 酸化チタン粒子の比表面積は 2 0 m2 / g以上が好ましく、 5 0 ~ 3 0 0 m2 / の範囲がより好ましい。 The titanium oxide fine particles having a photocatalytic function used in the present invention are not particularly limited, and commercially available titanium oxide powders can be used, but the sol obtained in the titanium oxide synthesis step as described below is used. A form of titanium oxide is preferably used. As the titanium oxide, there are known an anase type, a rutile type, and a brookite type. However, fine particles are desirable because those having high photocatalytic activity are desired. Average particle size However, the average particle size is usually in the range of 0.05 to 0.3 / im, preferably in the range of 0.01 to 0.1 m, because the production method is difficult for the finer than 0.05 / m. Is used. The specific surface area of the titanium oxide particles is preferably not less than 2 0 m 2 / g, 5 0 ~ 3 0 0 m 2 / range is more preferable.
酸化チタンの製法としては、 硫酸チタ二ルゃ四塩化チタンを中和 ·加水分解す る方法、 およびチタンアルコシド化合物を加水分解する方法が知られているが、 生成する酸化チタンが高活性でかつ製造コストが低い点を考慮すると硫酸チタ二 ルゃ四塩化チタンを原料とする方法が望ましい。 チタンアルコシド化合物を加水 分解する方法は、 非常に微小で粉体特性に優れた酸化チタンのゾルが得られる点 では有利であるが、 硫酸チタニル、 四塩化チタンを原料とする方法に比べ非常に 高価である。  Known methods of producing titanium oxide include neutralizing and hydrolyzing titanyl sulfate / titanium tetrachloride and hydrolyzing a titanium alkoxide compound, but the titanium oxide produced has high activity. Considering that the production cost is low, a method using titanium sulfate / titanium tetrachloride as a raw material is preferable. The method of hydrolyzing the titanium alkoxide compound is advantageous in that a titanium oxide sol having a very small size and excellent powder properties can be obtained, but it is much more effective than the method using titanium sulphate and titanium tetrachloride as raw materials. Expensive.
加水分解して得られる水性ゾルを乾燥すれば微細な酸化チタンの粉体が得られ 、 これを水または水 有機溶媒混合液に再分散し、 酸化チタン薄膜形成用コ一テ イング液として用いることもできるが、 好ましくはない。 加水分解生成物である 酸化チタンは表面活性が高く、 微粒であればあるほど活性度が増大するため、 凝 集し易く、 水などへの再分散は非常に困難であり、 これから形成される薄膜は透 明性に劣り、 光触媒作用が低下するとともに、 基材への担持が強固でなくなるか らである。 従って、 加水分解により生成した水性ゾルを所望により脱塩素および 脱水濃縮もしくは希釈した後、 好ましくはバインダーを加え、 コーティング液と して用いることが好ましい。 水性ゾルは、 所望により有機溶剤を加えて、 酸化チ タンを水 有機溶媒混合液に分散した形態で用いることもできる。  When the aqueous sol obtained by hydrolysis is dried, fine titanium oxide powder is obtained, which is redispersed in water or a mixed solution of water and an organic solvent, and used as a coating solution for forming a titanium oxide thin film. It is possible, but not preferred. Titanium oxide, which is a hydrolysis product, has a high surface activity, and the finer the particles, the higher the activity.Therefore, it easily aggregates and is very difficult to redisperse in water, etc. The reason for this is that the transparency is poor, the photocatalytic action is reduced, and the support on the base material is not strong. Therefore, it is preferable that the aqueous sol produced by hydrolysis is dechlorinated and dehydrated, concentrated or diluted as required, and then a binder is added thereto and used as a coating solution. The aqueous sol may be used in a form in which titanium oxide is dispersed in a water-organic solvent mixture by adding an organic solvent, if desired.
上記の好ましい酸化チタンゾルに用いられる分散媒は、 水または水と親水性有 機溶媒との混合液である。 親水性有機溶媒としては、 例えばメタノール、 ェ夕ノ —ル、 エチレングリコールなどのアルコール、 アセトンなどのケトン類、 酢酸ェ チルなどのエステル類、 ェチルセルソルブ類などが挙げられる。  The dispersion medium used in the preferred titanium oxide sol is water or a mixture of water and a hydrophilic organic solvent. Examples of the hydrophilic organic solvent include alcohols such as methanol, ethanol and ethylene glycol, ketones such as acetone, esters such as ethyl acetate, and ethyl cellosolves.
好ましい酸化チタンゾルは、 特開平 1 1—4 3 3 2 7号に記載されている水分 散酸化チタンのゾルである。 このゾルを用いると、 発泡基材または多孔質基材上 に特に透明性と剥離強度に優れた酸化チタン薄膜を形成することができる。 四塩化チタンを加水分解するに際し、 0 . 0 5〜 1 0モルノリットルの四塩化 チタン水溶液を還流冷却しながら加水分解すれ【^化チタンの濃度がほぼ 0 . 0 5〜 1 0モルノリットルのゾルが生成するので、 そのまま好ましい酸化チタン濃 度のコーティング材として利用できる。 また、 加水分解により得られたゾルに水 を加え、 またはゾルを濃縮して酸化チタンの濃度を前記の範囲とすることもでき る。 A preferred titanium oxide sol is the sol of water-spread titanium oxide described in JP-A-11-43327. When this sol is used, a titanium oxide thin film having particularly excellent transparency and peel strength can be formed on a foamed substrate or a porous substrate. In hydrolyzing titanium tetrachloride, 0.05 to 10 mol mol of tetrachloride The aqueous titanium solution is hydrolyzed while being refluxed and cooled, so that a sol having a titanium oxide concentration of approximately 0.05 to 10 mol mol is generated. The sol can be used as it is as a coating material having a preferable titanium oxide concentration. Further, water may be added to the sol obtained by the hydrolysis, or the sol may be concentrated so that the concentration of titanium oxide is in the above range.
加水分解により得られたゾルには、 所望により、 凝集を防ぐため安定化剤を添 加することができる。 安定化剤としては、 例えば、 常用される非イオン界面活性 剤などの各種界面活性剤が用いられる。 安定化剤の使用量は通常水性ゾルの重量 に基づき 0 . 1〜: L重量%である。  To the sol obtained by hydrolysis, a stabilizer can be added, if desired, to prevent aggregation. As the stabilizer, for example, various surfactants such as a commonly used nonionic surfactant are used. The amount of stabilizer used is usually from 0.1 to: L% by weight, based on the weight of the aqueous sol.
成膜性を高めるために酸化チタンゾルに水溶性高分子を少量、 例えば 1 0〜 1 0, 0 0 0 p p m程度添加することもできる。 水溶性高分子としてはポリビニル アルコール、 メチルセルロース、 ェチルセルロース、 カルボキシセルロース、 澱 粉などが好適である。  A small amount of a water-soluble polymer, for example, about 10 to 100,000 ppm can be added to the titanium oxide sol in order to enhance the film forming property. As the water-soluble polymer, polyvinyl alcohol, methylcellulose, ethylcellulose, carboxycellulose, starch and the like are preferable.
本発明の複合部材において、 酸化チタンを担持させるために用いる 「発泡基材 または多孔質基材」 とは、 表面に連通した多数の孔を有する基材を指し、 独立し た気孔の有無は問わない。 発泡基材または多孔質基材の形態および材質は特に制 限はないが、 取り扱い上、 球状ないしそれに近い形状のものが好んで用いられる 。 球状基材の平均粒径は 1 mm〜 1 0 mmが好ましい。  In the composite member of the present invention, the term “foamed base material or porous base material” used to support titanium oxide refers to a base material having a large number of pores communicating with the surface, and may or may not have independent pores. Absent. The form and material of the foamed base material or porous base material are not particularly limited, but a spherical or nearly spherical shape is preferred for handling. The average particle size of the spherical substrate is preferably 1 mm to 10 mm.
このような発泡基材または多孔質基材の具体例としては、 発泡させた黒曜石 ( パーライト) 、 金属細線またはセラミックス繊維などを球状に丸めたもの、 発泡 セメントなどが挙げられる。 なかでも、 酸化チタン担持量が大きく、 しかも担持 酸化チタンが脱落し難いなどの利点から黒曜石発泡体が好ましい。 黒曜石発泡体 は、 通常、 粉碎された黒曜石を 5 0 0〜 1 , 0 0 0 で熱処理することによって 製造される。  Specific examples of such a foamed base material or porous base material include expanded obsidian (pearlite), a metal wire or ceramic fiber, which is rounded into a spherical shape, and a foamed cement. Above all, obsidian foam is preferred because of the advantages that the titanium oxide carrying amount is large and that the supported titanium oxide is hard to fall off. Obsidian foams are usually produced by heat treating milled obsidian at 500-1.000.
発泡基材または多孔質基材としては、 見かけ比重が 0 . 9〜0 . 0 1、 好まし くは 0 . 7〜0 . 0 1、 より好ましくは 0 . 4〜0 . 0 1のものが用いられる。 このように見かけ比重が小さい発泡基材または多孔質基材を用いることによって 、 見かけ比重の小さい複合部材を得ることができる。 従って、 本発明の複合部材 は、 脱臭処理または廃水処理に用いた場合に空中または廃水中に浮遊もしくは流 動させることが可能となり、 その結果、 悪臭ガスとの接触回数が多くなり、 脱臭 性能が向上する。 また、 廃水処理時には、 複合部材が廃水液面に浮遊するため、 紫外線の照射効率が増大し、 廃水処理性能が向上する。 見かけ比重が 0 . 9を超 える発泡基材または多孔質基材では、 脱臭材および廃水処理材としての上記の特 長が十分に発揮できず、 また、 見かけ比重が 0 . 0 1未満の発泡基材または多孔 質基材は概して強度が低く、 複合部材の形態保持性に劣る。 The foamed or porous substrate has an apparent specific gravity of 0.9 to 0.01, preferably 0.7 to 0.01, and more preferably 0.4 to 0.01. Used. By using a foamed base material or a porous base material having a small apparent specific gravity, a composite member having a small apparent specific gravity can be obtained. Therefore, when the composite member of the present invention is used for deodorization treatment or wastewater treatment, the composite member floats or flows in the air or wastewater. As a result, the number of times of contact with the odorous gas is increased, and the deodorizing performance is improved. In addition, during wastewater treatment, the composite members float on the liquid surface of the wastewater, so that the irradiation efficiency of ultraviolet rays increases and the wastewater treatment performance improves. A foamed base material or a porous base material having an apparent specific gravity of more than 0.9 cannot sufficiently exhibit the above-mentioned features as a deodorizing material and a wastewater treatment material, and a foamed material having an apparent specific gravity of less than 0.01. Substrates or porous substrates generally have low strength and are inferior in shape retention of composite members.
見かけ比重の小さい発泡基材または多孔質基材に酸化チタンを担持させるに際 しては、 酸化チタンと基材との密着性を高めるために熱処理による燒結、 バイン ダ一による接着、 基材細孔への含浸などの方法を採ることができる。 複合体の光 触媒性能および複合体の製造作業性などを考慮するとバインダーによる接着がも つとも効果的であり好ましい。  When supporting titanium oxide on a foamed or porous base material having a small apparent specific gravity, sintering by heat treatment, bonding with a binder, and thinning of the base material are used to increase the adhesion between the titanium oxide and the base material. A method such as impregnation of pores can be employed. Taking into account the photocatalytic performance of the composite and the workability of the production of the composite, adhesion with a binder is still more effective and preferable.
バインダーとしては、 リン、 ジルコニウムおよびゲイ素からなる群から選ばれ た少なくとも一種の元素を含有する化合物が好ましく用いられる。  As the binder, a compound containing at least one element selected from the group consisting of phosphorus, zirconium and gayne is preferably used.
ジルコニウムを含有する化合物の具体例としては、 ォキシ塩化ジルコニウム、 ヒドロキシ塩化ジルコニウム、 硝酸ジルコニウム、 硫酸ジルコニウム、 酢酸ジル コニゥム、 炭酸ジルコニウムアンモニゥムなどの水溶性ジルコニウム、 およびプ ロピオン酸ジルコニウムなどの有機溶剤可溶性ジルコニウムが挙げられる。 また 、 水酸基、 炭酸基、 アルキルカルボキシル基の少くとも一つを有するジルコニゥ ム化合物の錯体など、 またはそれらの高分子化合物を用いることもできる。 バイ ンダ一としてのジルコニウム化合物の配合量は、 酸化チタン 1 0 0重量部に対し 3〜2 0 0重量部の範囲で適宜選ぶことができる。  Specific examples of the compound containing zirconium include water-soluble zirconium such as zirconium chloride, zirconium hydroxychloride, zirconium nitrate, zirconium sulfate, zirconium acetate, ammonium zirconium carbonate, and organic solvent soluble compounds such as zirconium propionate. Zirconium is mentioned. Further, a complex of a zirconium compound having at least one of a hydroxyl group, a carbonate group, and an alkylcarboxyl group, or a high molecular compound thereof can also be used. The amount of the zirconium compound as the binder can be appropriately selected within a range of 3 to 200 parts by weight based on 100 parts by weight of titanium oxide.
リン含有化合物の具体例としては、 オルトリン酸、 ピロリン酸、 リン酸アルミ 二ゥム、 ポリリン酸などが挙げられる。 バインダーとしてのリン含有化合物の配 合量は、 酸化チタン 1 0 0重量部に対し 1〜1 0 0重量部の範囲で適宜選ぶこと ができる。  Specific examples of the phosphorus-containing compound include orthophosphoric acid, pyrophosphoric acid, aluminum phosphate, polyphosphoric acid, and the like. The amount of the phosphorus-containing compound to be used as the binder can be appropriately selected within the range of 1 to 100 parts by weight based on 100 parts by weight of titanium oxide.
ゲイ素含有化合物の具体例としては、 水ガラス、 珪酸カルシウム、 テトラクロ ロシリゲート、 テトラブロムシリゲート、 テトラエチルシリゲート、 テトラメチ ルシリケー卜、 テ卜ラ n—プロポキシシリゲート、 テトラブトキシシリゲート、 メチルトリメチルシリケート、 メチルトリェチルシリケ一卜、 メチルトリブトキ シシリゲート、 ェチルトリメチルシリケ一卜、 ェチルトリェチルシリゲート、 フ ェニルトリメチルシリゲート、 フエニルトリェチルシリゲート、 ジメチルジメチ ルシリゲート、 ジメチルジェチルシリゲート、 フエ二ルメチルジメチルシリケー ト、 フエニルメチルジェチルシリゲートなどのシリケ一ト類およびこれらの加水 分解物または脱水物などが挙げられる。 バインダーとしてのケィ素含有化合物の 配合量は、 酸化チタン 1 0 0重量部に対し 1 0〜1 0 0重量部の範囲で適宜選ぶ ことができる。 Specific examples of the gayne-containing compound include water glass, calcium silicate, tetrachlorosilicate, tetrabromosilicate, tetraethylsilicate, tetramethylsilicate, tetra-n-propoxysilicate, tetrabutoxysilicate, methyltrimethylsilicate, and the like. Methyltriethyl silicate, methyltributoki Silicylates, ethyltrimethyl silicates, ethyltriethyl silicates, phenyltrimethyl silicates, phenyltriethyl silicates, dimethyl dimethyl silicates, dimethyl getyl silicates, phenyl methyl dimethyl silicates, Examples thereof include silicates such as enylmethylgetyl silicate, and hydrolysates or dehydrates thereof. The compounding amount of the silicon-containing compound as a binder can be appropriately selected in the range of 100 to 100 parts by weight with respect to 100 parts by weight of titanium oxide.
酸化チタンの水性ゾルまたはバインダーを添加したコ一ティング液を発泡基材 または多孔質基材に塗布して成膜するには、 発泡基材または多孔質基材を液中に 含浸する方法、 発泡基材または多孔質基材に液をスプレーする方法、 液を刷毛で 発泡基材または多孔質基材に塗布する方法などが採用される。 中でも、 基材を酸 化チタン含有液中に含浸する方法が好ましい。 液の付着量は液状の塗膜厚さにし て 0 . 0 1〜0 . 2 mmが適当である。  In order to apply a coating liquid containing an aqueous sol or binder of titanium oxide to a foamed or porous substrate to form a film, a method of impregnating the foamed or porous substrate with the solution, foaming A method of spraying a liquid onto a base material or a porous base material, a method of applying the liquid to a foamed base material or a porous base material with a brush, and the like are employed. Above all, a method of impregnating the substrate with a titanium oxide-containing liquid is preferable. It is appropriate that the amount of the applied liquid is 0.01 to 0.2 mm in terms of the thickness of the liquid film.
塗布後乾燥して溶媒を除去すれば目的とする薄膜が得られ、 このままでも触媒 などの用途に供することができる。 しかしながら、 一般に、 乾燥後熱処理して担 持力を高めることができる。 熱処理温度は通常 2 0〜2 0 0 :、 好ましくは 2 0 〜1 5 O t:の範囲で、 熱処理時間は約 5〜約 3 0分間程度である。  If the solvent is removed by drying after coating, the target thin film can be obtained, and can be used as it is for a catalyst or the like. However, in general, heat treatment after drying can increase the carrying capacity. The heat treatment temperature is usually in the range of 20 to 200 :, preferably 20 to 15 Ot :, and the heat treatment time is about 5 to about 30 minutes.
発泡基材または多孔質基材が金属ゃセラミックスなどの耐熱性材料からなる場 合は、 薄膜を形成後焼成することができ、 これによつて薄膜は一層強く発泡基材 または多孔質基材に密着し、 薄膜の硬度も高くなる。 この焼成温度は 2 0 0 以 上が好ましい。 ただし、 焼成の過程で粒子が熱処理中に粒成長して酸化チタン粒 子の比表面積が低下し、 光触媒機能が低下することがあるので、 過酷な焼成条件 は避けるべきである。 概して、 焼成温度の上限は、 発泡基材または多孔質基材の 耐熱性に応じて定めればよいが、 通常 8 0 O 位までが適当である。 焼成の雰囲 気は特に限定されず、 大気中でよい。 焼成時間は特に制限はないが、 通常 1〜6 0分の範囲で選ばれる。 焼成によって得られる薄膜の厚さは、 前記の塗布量の場 合 0 . 0 2〜: L . 0 n m位である。  When the foamed or porous substrate is made of a heat-resistant material such as metal-ceramic, the thin film can be formed and then fired, whereby the thin film is more strongly applied to the foamed or porous substrate. It adheres and the hardness of the thin film increases. This firing temperature is preferably at least 200. However, harsh firing conditions should be avoided because the particles may grow during the heat treatment during the firing process, causing the specific surface area of the titanium oxide particles to decrease and the photocatalytic function to decrease. Generally, the upper limit of the sintering temperature may be determined according to the heat resistance of the foamed or porous substrate, but is usually up to about 80 O. The atmosphere for firing is not particularly limited, and may be air. The firing time is not particularly limited, but is usually selected in the range of 1 to 60 minutes. The thickness of the thin film obtained by firing is about 0.02 to about L. 0 nm in the case of the above-mentioned coating amount.
以下、 実施例について本発明をより具体的に説明するが、 本発明はこれらの実 施例に限定されるものではない。 酸化チタンゾルの調製 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. Preparation of titanium oxide sol
蒸留水 954m 1を還流冷却器付きの反応槽に装入して 95 に加温し、 撹拌 速度を約 200 r pmに保ちながら、 この水溶液に四塩化チタン (T i含有量: 16. 3重量%、 比重 1. 59、 純度 99. 9重量%) 水溶液 46 m 1を約 5 m 1 Zm i nの速度で反応槽に滴下した。 この時、 反応液の温度が下がらないよう に注意した。 その結果、 反応液中の四塩化チタン濃度は 0. 25mo lZリット ル (酸化チタン換算 2重量%) であった。  954 ml of distilled water was charged into a reaction vessel equipped with a reflux condenser and heated to 95. While maintaining the stirring speed at about 200 rpm, titanium tetrachloride (Ti content: 16.3 wt. %, Specific gravity 1.59, purity 99.9% by weight) An aqueous solution (46 ml) was dropped into the reaction vessel at a rate of about 5 ml 1 Zmin. At this time, care was taken not to lower the temperature of the reaction solution. As a result, the concentration of titanium tetrachloride in the reaction solution was 0.25 molZ liter (2% by weight in terms of titanium oxide).
反応槽中では反応液が滴下開始直後から、 白濁し始めたがそのままの温度で保 持を続け、 滴下終了後さらに昇温し沸点付近 (104で) まで加熱し、 この状態 で 60分間保持して完全に加水分解反応を終了した。 冷却後、 反応で生成した残 留塩素を電気透析により取り除き、 pH= l. 9 (塩素イオン 600 p pm) と した後、 成膜用助剤として水溶性高分子であるポリビニルアルコールを酸化チタ ン含有量に対して 0. 1重量%添加して、 酸化チタンゾル (T i 02約 0. 25 mo 1/リットル) とした。 このゾルは安定であり、 30日以上経過しても生成 した酸化チタン微粒子の沈降は認められなかった。 In the reaction tank, the reaction solution began to become cloudy immediately after the start of dropping, but it was maintained at the same temperature, and after completion of the dropping, the temperature was further raised and heated to around the boiling point (at 104). To complete the hydrolysis reaction. After cooling, the residual chlorine generated in the reaction was removed by electrodialysis, and the pH was adjusted to l.9 (chlorine ion: 600 ppm). 0.1% by weight of the content was added to obtain a titanium oxide sol (Ti 0 2 about 0.25 mo 1 / liter). This sol was stable, and no sedimentation of the generated titanium oxide fine particles was observed even after 30 days or more.
前記ゾルの一部を濾過後 60での真空乾燥器を用いて粉末として取り出し、 X 線回析法により定量分析した結果、 (ブルツカイト型 121面のピーク強度) / After filtering out part of the sol as a powder using a vacuum dryer at 60 and quantitatively analyzing it by X-ray diffraction, (peak intensity of 121 wurtzite type) /
(三者が重なるピーク強度) 比は 0. 38、 (ルチル型のメインピーク強度)(Peak intensity where the three overlap) Ratio is 0.38, (rutile type main peak intensity)
(三者が重なるピーク強度) 比は 0. 05であった。 これから求めると酸化チタ ンはブルッカイト型が約 70. 0重量%、 ルチル型が約 1. 2重量%、 アナ夕一 ゼ型が約 28. 8重量%の結晶性であった。 また、 透過型電子顕微鏡でこの微粒 子を観察したところ、 1次粒子の平均粒径は 0. 015 であった。 さらに B ET法により測定したこの微粒子の比表面積は 10 Om2/gであった。 (Peak intensity at which the three overlap) The ratio was 0.05. From this calculation, it was found that brookite-type titanium oxide was about 70.0% by weight, rutile-type titanium oxide was about 1.2% by weight, and anazygose-type titanium oxide was about 28.8% by weight. Observation of this fine particle with a transmission electron microscope revealed that the average primary particle size was 0.015. Further, the specific surface area of the fine particles measured by the BET method was 10 Om 2 / g.
コーティング液 Bの調製  Preparation of coating liquid B
前記酸化チタンゾルに対し、 バインダーとしてテトラメチルオルソシリケー卜 S i (〇CH3) 4を酸化チタン含有量に対して S i〇2換算で 5重量%添加して 、 酸化チタンコーティング液 Bとした。 To the titanium oxide sol, tetramethyl orthosilicate S i (〇CH 3 ) 4 as a binder was added in an amount of 5% by weight in terms of Si〇 2 with respect to the titanium oxide content to obtain a titanium oxide coating liquid B. .
コーティング液 Aの調製  Preparation of coating liquid A
コーティング液 Bの調製方法と同様に酸化チタンゾルを調製した。 ただし、 濃 縮および電気透析の条件を変えて酸化チタン濃度 1 1重量%、 pH5. 5の水分 散酸化チタンゾルとした。 この水分散酸化チタンゾル 36. 6 gにヒドロキシ塩 化ジルコニウム水溶液 (Z r 02として 20重量%) 2. 2 gと、 純水 1 1. 4 gを加え、 コーティング液 Aを調製した。 A titanium oxide sol was prepared in the same manner as in the method for preparing the coating liquid B. However, dark By changing the conditions of condensation and electrodialysis, a titanium oxide sol with a titanium oxide concentration of 11% by weight and a pH of 5.5 was obtained. The aqueous dispersion titanium oxide sol 36. hydroxy salt of an aqueous solution of zirconium to 6 g (Z r 0 20% by weight) 2. and 2 g, of pure water 1 1. 4 g was added to prepare a coating solution A.
実施例 1  Example 1
コーティング液 A 100m lに, 酸化チタンを担持させる基材としてフヨーラ イト 2号 (芙蓉パーライト (株) 製パーライト:見かけ比重 0. 10— 0. 16 gZcm3、 粒径 1. 2-2. 5mm) を 100 g投入して十分に攪拌して、 1 時間放置し基材にまんべんなくなじませた。 次に、 この基材をろ別、 乾燥した後 、 150でで 1時間さらに乾燥させコーティング液 Aに含まれる酸化チタンを発 泡基材または多孔質基材に担持させることによって、 複合部材とした。 発泡基材 または多孔質基材に対する酸化チタンの担持量は約 2重量%であった。 Fluorite No. 2 (Perlite, manufactured by Fuyo Perlite Co., Ltd .: apparent specific gravity 0.10 to 0.16 gZcm 3 , particle size 1.2 to 2.5 mm) as a base material for supporting titanium oxide on 100 ml of coating solution A Was added, and the mixture was sufficiently stirred and allowed to stand for 1 hour to be evenly mixed with the substrate. Next, after filtering and drying the base material, the base material was further dried at 150 for 1 hour, and the titanium oxide contained in the coating liquid A was supported on a foaming base material or a porous base material to form a composite member. . The amount of titanium oxide carried on the foamed or porous substrate was about 2% by weight.
こうして得られた酸化チタンを担持した複合部材の光触媒能 (脱臭性) の測定 を行った。 まず、 複合部材 100 gを純水 100m 1中に投入し、 ゴミゃ未反応 残留物を取り除くため水洗を行った。 ファンを内蔵した容量 1. 3 Lのパイレツ クスガラス製のチャンバ一内中央部に、 複合部材を面積が 8. 5 cm2の円状の 孔開きセルに均一に広げて (重量約 0. 1 g) セットした。 チャンバ一内に悪臭 成分であるァセトアルデヒドを 500 p pm投入後、 このセルに風量 0. 1 LZ m i nで内部空気を流動させながら紫外線ランプ (365:1111での光強度0. 4 mWZcm2) を照射して 60分後のァセトアルデヒド残存量から分解率を求め 脱臭性能を調べた。 結果を表 1に示した。 The photocatalytic ability (deodorizing property) of the composite member supporting titanium oxide thus obtained was measured. First, 100 g of the composite member was put into 100 ml of pure water, and washed with water to remove dust and unreacted residue. In the center of a 1.3 L pyrex glass chamber with a built-in fan, spread the composite member evenly in a circular perforated cell with an area of 8.5 cm 2 (weight about 0.1 g). ) Set. Acetaldehyde, a malodorous component, was injected into the chamber at 500 ppm, and an ultraviolet lamp (light intensity at 365: 1111: 0.4 mWZcm 2 ) was applied to this cell while flowing air at a flow rate of 0.1 LZ min. 60 minutes after irradiation, the decomposition rate was determined from the residual amount of acetoaldehyde, and the deodorizing performance was examined. The results are shown in Table 1.
さらに、 複合部材を用いた廃水処理能力を測定した。 測定は、 次の方法で行つ た。 有機色素 (赤色) で染色した水を廃水に見立て、 この廃水 100 c cを広口 ビンに取り、 これに複合部材を 1 g添加して、 ビン上部から紫外線ランプを 60 分照射 (液面部での光強度 0. 2mWZcm2、 365 nm) して、 廃水の色の 変化 (退色度) を目視により下記三段階で評価した。 Furthermore, the wastewater treatment capacity using the composite member was measured. The measurement was performed in the following manner. The water stained with the organic dye (red) is regarded as waste water, 100 cc of this waste water is taken into a wide-mouth bottle, 1 g of composite material is added thereto, and an ultraviolet lamp is irradiated from the top of the bottle for 60 minutes (at the liquid level) The light intensity was changed to 0.2 mWZcm 2 , 365 nm), and the color change (degree of fading) of the wastewater was visually evaluated in the following three stages.
1 :退色が認められ、 ほぼ無色透明な水となった。  1: Discoloration was recognized and almost colorless and transparent water was obtained.
2 :退色が認められるが、 色素の残存がある。  2: Discoloration is observed, but pigment remains.
3 :退色が認められない。 結果を表 1に示した。 3: No fading is observed. The results are shown in Table 1.
実施例 2  Example 2
担持させる発泡基材または多孔質基材をフヨーライト 1号 (芙蓉パーライト ( 株) 製パーライト:見かけ比重 0 . 1 8— 0 . 2 6 ノじ1113、 粒径0 . 6— 1 . 2 mm) に代えた他は実施例 1と同様にして複合部材を得た。 脱臭性能および 排水処理性能を実施例 1と同様に測定し、 その結果を表 1に示した。 Foaming base to support material or porous substrate to Fuyoraito No. 1 (Fuyo Perlite Corp. perlite:.... The apparent specific gravity 0 1 8 0 2 6 Noji 111 3, particle size 0 6- 1 2 mm) A composite member was obtained in the same manner as in Example 1 except for changing the above. The deodorizing performance and the wastewater treatment performance were measured in the same manner as in Example 1, and the results are shown in Table 1.
実施例 3  Example 3
コーティング液 Aに代えてコーティング液 Bを用いた他は実施例 1と同様にし て複合部材を得た。 脱臭性能および排水処理性能を実施例 1と同様に測定し、 そ の結果を表 1に示した。  A composite member was obtained in the same manner as in Example 1, except that coating liquid B was used instead of coating liquid A. The deodorizing performance and the wastewater treatment performance were measured in the same manner as in Example 1, and the results are shown in Table 1.
比較例 1  Comparative Example 1
実施例 1で用いた基材を黒曜石 (見かけ比重約 2 . 4 ) に代えた他は実施例 1 と同様にして酸化チタンを担持させた複合部材を得た。 脱臭性能および排水処理 性能を実施例 1と同様に測定し、 その結果を表 1に示した。  A composite member carrying titanium oxide was obtained in the same manner as in Example 1 except that the substrate used in Example 1 was changed to obsidian (approximate specific gravity: about 2.4). The deodorizing performance and wastewater treatment performance were measured in the same manner as in Example 1, and the results are shown in Table 1.
実施例 Z比較例 コーティング液 脱臭性能 (分解率%) 排水処理能力 Example Z Comparative Example Coating liquid Deodorizing performance (% decomposition) Wastewater treatment capacity
実施例 1 A 5 0 1  Example 1 A 5 0 1
実施例 2 A 6 0 1  Example 2 A 6 0 1
実施例 3 B 4 0 1  Example 3 B 4 0 1
比較例 1 A 2 0 2 産業上の利用可能性  Comparative Example 1 A 2 0 2 Industrial applicability
本発明の複合材は、 脱臭および/または廃水処理、 すなわち、 空気その他のガ ス中および水中の悪臭物質または有害物質を分解するのに利用される。  The composite material of the present invention is used for deodorization and / or wastewater treatment, that is, for decomposing air or other gas and water malodorous or harmful substances.
本発明の複合部材は、 見かけ比重の小さい発泡基材または多孔質基材に酸化チ タンを担持せしめたものであるので、 脱臭処理に用いた場合に空中または水中に 浮遊もしくは流動させることが可能となり、 その結果、 悪臭ガスとの接触回数が 多くなり、 脱臭性能が向上する。 Since the composite member of the present invention is obtained by supporting titanium oxide on a foamed base material or a porous base material having a small apparent specific gravity, it can be floated or flown in the air or water when used for deodorization treatment. As a result, the number of times of contact with the odorous gas is Increases the deodorization performance.
悪臭物質を含む空気その他のガスの脱臭材として用いる場合は、 本発明の複合 材を網状の袋などに入れ、 これに紫外線ランプ (ブラックライト) を照射するこ とで室内空間の脱臭を行うことができる。 この際、 室内空間の空気をファンなど で攪拌すれば脱臭効果は一層高まる。 さらに、 本発明の複合材がファンなどで巻 き上げられ、 これに紫外線が照射されるように構成された脱臭器を用いれば、 悪 臭成分との接触度が向上し、 最大の脱臭効果が得られる。  When used as a deodorant for air and other gases containing malodorous substances, put the composite material of the present invention in a net-like bag and irradiate it with an ultraviolet lamp (black light) to deodorize the indoor space. Can be. At this time, if the air in the indoor space is stirred with a fan or the like, the deodorizing effect is further enhanced. Furthermore, if the composite material of the present invention is wound up by a fan or the like and a deodorizer configured to be irradiated with ultraviolet rays is used, the degree of contact with malodorous components is improved, and the maximum deodorizing effect is obtained. can get.
本発明の複合部材は、 廃水処理に用いた場合には廃水液面に浮遊するため、 紫 外線の照射効率が増大し、 廃水処理性能が向上する。 このように光触媒の活性が 大きく発現するとともに、 概して、 酸化チタンが基材から脱落し難く、 光触媒機 能を長期に発揮し続けることが可能である。  When the composite member of the present invention is used for wastewater treatment, it floats on the liquid surface of the wastewater, so that the irradiation efficiency of ultraviolet rays is increased and the wastewater treatment performance is improved. As described above, the photocatalyst activity is greatly expressed, and in general, the titanium oxide hardly falls off from the base material, and the photocatalytic function can be continuously exhibited for a long time.
廃水中の有害物質を分解するには、 太陽光が照射される所で、 処理すべき有害 物質含有廃水の流れに本発明の複合材を投入して浮かべるだけでよい。 所望によ り、 太陽光照射に代えて、 または加えて紫外線ランプなどの適当な人工光源を設 置することができる。 また、 複合材が廃水中に沈降するのを防ぐために、 複合材 を網状の受け皿の上に載置したり、 網状の袋内に入れたものを廃水の流れに接触 するように廃水処理機に設置することができる。  To decompose harmful substances in wastewater, it is only necessary to put the composite material of the present invention into a stream of harmful substance-containing wastewater to be treated and float it where sunlight is irradiated. If desired, a suitable artificial light source such as an ultraviolet lamp can be provided instead of or in addition to solar irradiation. To prevent the composite material from settling into wastewater, the composite material is placed on a net-like tray, or the material placed in a net-like bag is sent to a wastewater treatment machine so as to contact the flow of wastewater. Can be installed.

Claims

請求の範囲 The scope of the claims
1 . 脱臭用または廃水処理用として用いることのできる光触媒機能を有する 複合部材において、 見かけ比重が 0 . 9〜0 . 0 1である発泡基材または多孔質 基材の表面上に酸化チタン微粒子が被着されていることを特徴とする光触媒機能 を有する複合部材。  1. In a composite member having a photocatalytic function that can be used for deodorization or wastewater treatment, titanium oxide fine particles are formed on the surface of a foamed or porous substrate having an apparent specific gravity of 0.9 to 0.01. A composite member having a photocatalytic function, which is attached.
2 . 水に投じた時に浮かべることが可能である請求の範囲 1記載の光触媒機 能を有する複合部材。  2. The composite member having a photocatalytic function according to claim 1, wherein the composite member can float when exposed to water.
3 . 酸化チタン微粒子が平均粒径 0 . 0 5〜0 . 3 / mを有するものである 請求の範囲 1記載の光触媒機能を有する複合部材。  3. The composite member having a photocatalytic function according to claim 1, wherein the titanium oxide fine particles have an average particle diameter of 0.05 to 0.3 / m.
4 . 該発泡基材または多孔質基材表面上に酸化チタン微粒子がバインダ一を 介して被着されている請求の範囲 1〜 3のいずれかに記載の光触媒機能を有する 複合部材。  4. The composite member having a photocatalytic function according to any one of claims 1 to 3, wherein titanium oxide fine particles are applied on the surface of the foamed base material or the porous base material via a binder.
5 . バインダーが、 リン、 ジルコニウムおよびゲイ素からなる群から選ばれ た少くとも一種の元素を含有する化合物である請求の範囲 4記載の光触媒機能を 有する複合部材。  5. The composite member having a photocatalytic function according to claim 4, wherein the binder is a compound containing at least one element selected from the group consisting of phosphorus, zirconium, and gayne.
6 . 該発泡基材または多孔質基材が黒曜石の発泡体である請求の範囲 1〜 5 のいずれかに記載の光触媒機能を有する複合部材。  6. The composite member having a photocatalytic function according to any one of claims 1 to 5, wherein the foamed substrate or the porous substrate is an obsidian foam.
7 . 請求の範囲 1〜 6のいずれかに記載の光触媒機能を有する複合部材を、 脱臭すべきガスまたは廃水と接触して、 ガス中または廃水中の悪臭物質または有 害物質を分解することを特徴とする、 悪臭を有する空気または廃水の処理方法。 7. Contacting the composite member having a photocatalytic function according to any one of claims 1 to 6 with gas or wastewater to be deodorized to decompose malodorous substances or harmful substances in the gas or wastewater. A method for treating foul-smelling air or wastewater.
補正害の請求の範囲 Claims for amendment harm
[2001年 3月 1 2日 (1 2. 03. 01 ) 国瞎事務局受理:出願当初の請求の範囲 3は 取り下げられた;出願当初の請求の範囲 1, 4, 6及び 7は補正された;他の請求の範囲は 変更なし。 (1頁) ]  [March 12, 2001 (1 2. 03. 01) Accepted by Kuizui Secretariat: Claim 3 originally filed was withdrawn; Claims 1, 4, 6, and 7 originally filed were amended. Other claims remained unchanged. (1 page)]
1. (補正後) 脱臭用または廃水処理用として用いることのできる光触媒機 能を有する複合部材において、 見かけ比重が 0. 9〜0. 01である発泡基材ま たは多孔質基材の表面上に平均粒径 0. 05〜0. 3 mを有する酸化チタン微 粒子が被着されていることを特徴とする光触媒機能を有する複合部材。  1. (After correction) In the case of a composite member having a photocatalytic function that can be used for deodorization or wastewater treatment, the surface of a foamed or porous substrate with an apparent specific gravity of 0.9 to 0.011 A composite member having a photocatalytic function, wherein titanium oxide fine particles having an average particle diameter of 0.05 to 0.3 m are adhered thereon.
2. 水に投じた時に浮かべることが可能である請求の範囲 1記載の光触媒機 能を有する複合部材。  2. The composite member having a photocatalytic function according to claim 1, wherein the composite member can float when exposed to water.
3. (削除)  3. (Delete)
4. (補正後) 該発泡基材または多孔質基材表面上に酸化チタン微粒子がバ ィンダ一を介して被着されている請求の範囲 1または 2に記載の光触媒機能を有 する複合部材。  4. (After correction) The composite member having a photocatalytic function according to claim 1 or 2, wherein titanium oxide fine particles are adhered on the surface of the foamed base material or the porous base material via a binder.
5. バインダーが、 リン、 ジルコニウムおよびゲイ素からなる群から選ばれ た少くとも一種の元素を含有する化合物である請求の範囲 4記載の光触媒機能を 有する複合部材。  5. The composite member having a photocatalytic function according to claim 4, wherein the binder is a compound containing at least one element selected from the group consisting of phosphorus, zirconium, and gayne.
6. (補正後) 該発泡基材または多孔質基材が黒曜石の発泡体である請求の 範囲 1、 2、 4、 5のいずれかに記載の光触媒機能を有する複合部材。  6. (After correction) The composite member having a photocatalytic function according to any one of claims 1, 2, 4, and 5, wherein the foamed base material or the porous base material is an obsidian foam.
7. (補正後) 請求の範囲 1、 2、 4〜6のいずれかに記載の光触媒機能を 有する複合部材を、 脱臭すべきガスまたは廃水と接触して、 ガス中または廃水中 の悪臭物質または有害物質を分解することを特徵とする、 悪臭を有する空気また は廃水の処理方法。  7. (After amendment) The composite member having a photocatalytic function according to any one of claims 1, 2, 4 to 6 is brought into contact with the gas or wastewater to be deodorized, and the malodorous substance in the gas or wastewater is removed. A method for treating odorous air or wastewater, which is characterized by decomposing harmful substances.
補正された用紙 (条約第 19条) 条約第 19条 (1) に基づく説明書 国際調査報告において引用された文献のうち、 Amended paper (Article 19 of the Convention) Statements under Article 19 (1) of the Convention Of the documents cited in the international search report,
J P, 10-219236, Aおよび  J P, 10-219236, A and
J P, 1 1 - 188269, A  J P, 1 1-188269, A
は特に関連が深いと考えられるので、 これらの文献との差異を明確にするため、 請求項 3の内容を請求項 1に加入した (補正後の請求項 1) 。 Since it is considered to be particularly relevant, the content of claim 3 was added to claim 1 to clarify the differences from these documents (claim 1 after amendment).
PCT/JP2000/006836 1999-10-01 2000-10-02 Composite member for deodorization or waste water treatment WO2001024927A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU74521/00A AU7452100A (en) 1999-10-01 2000-10-02 Composite member for deodorization or waste water treatment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP28206099 1999-10-01
JP11/282060 1999-10-01

Publications (1)

Publication Number Publication Date
WO2001024927A1 true WO2001024927A1 (en) 2001-04-12

Family

ID=17647639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006836 WO2001024927A1 (en) 1999-10-01 2000-10-02 Composite member for deodorization or waste water treatment

Country Status (3)

Country Link
AU (1) AU7452100A (en)
TW (1) TW546168B (en)
WO (1) WO2001024927A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403097B1 (en) * 2001-04-18 2003-10-23 김동현 Photocatalyst Bodies Having a Photocatalyst Supported on a Metal Foam, Processes for Preparing The Same, and Processes for Treating Contaminants Using The Same
WO2011092753A1 (en) * 2010-01-29 2011-08-04 大建工業株式会社 Environmental purification agent, method for producing the same, environmental purification method, and method for recovering environmental purification agent
CN107661531A (en) * 2017-09-22 2018-02-06 孙伟 A kind of clinical breathing sterilised filtration device of internal medicine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992008768A1 (en) * 1989-09-25 1992-05-29 Board Of Regents, The University Of Texas System Materials and methods for photocatalyzing oxidation of organic compounds on water
JPH07148434A (en) * 1993-07-12 1995-06-13 Ishihara Sangyo Kaisha Ltd Photocatalyst and water cleaning method using the same
JPH1028875A (en) * 1996-05-17 1998-02-03 Sumitomo Metal Ind Ltd Carbonaceous hollow body catalyst, and its manufacture, and use
JPH10219236A (en) * 1997-02-10 1998-08-18 Norimasa Ozaki Spillage oil treating material
JPH10249210A (en) * 1997-03-14 1998-09-22 Titan Kogyo Kk Photocatalyst, its manufacture and applications
JPH11188269A (en) * 1997-12-26 1999-07-13 Toshiba Corp Photocatalystic body for decomposing organic material, proliferation preventing method of harmful organism using the same
JP2000119075A (en) * 1998-10-08 2000-04-25 Toshio Hoshino Titanium dioxide-deposited continuous porous sintered compact and its production
JP2000288402A (en) * 1999-04-05 2000-10-17 Daishin Nekki Kk Photocatalyst-carrying composition and its production

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992008768A1 (en) * 1989-09-25 1992-05-29 Board Of Regents, The University Of Texas System Materials and methods for photocatalyzing oxidation of organic compounds on water
JPH07148434A (en) * 1993-07-12 1995-06-13 Ishihara Sangyo Kaisha Ltd Photocatalyst and water cleaning method using the same
JPH1028875A (en) * 1996-05-17 1998-02-03 Sumitomo Metal Ind Ltd Carbonaceous hollow body catalyst, and its manufacture, and use
JPH10219236A (en) * 1997-02-10 1998-08-18 Norimasa Ozaki Spillage oil treating material
JPH10249210A (en) * 1997-03-14 1998-09-22 Titan Kogyo Kk Photocatalyst, its manufacture and applications
JPH11188269A (en) * 1997-12-26 1999-07-13 Toshiba Corp Photocatalystic body for decomposing organic material, proliferation preventing method of harmful organism using the same
JP2000119075A (en) * 1998-10-08 2000-04-25 Toshio Hoshino Titanium dioxide-deposited continuous porous sintered compact and its production
JP2000288402A (en) * 1999-04-05 2000-10-17 Daishin Nekki Kk Photocatalyst-carrying composition and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403097B1 (en) * 2001-04-18 2003-10-23 김동현 Photocatalyst Bodies Having a Photocatalyst Supported on a Metal Foam, Processes for Preparing The Same, and Processes for Treating Contaminants Using The Same
WO2011092753A1 (en) * 2010-01-29 2011-08-04 大建工業株式会社 Environmental purification agent, method for producing the same, environmental purification method, and method for recovering environmental purification agent
CN107661531A (en) * 2017-09-22 2018-02-06 孙伟 A kind of clinical breathing sterilised filtration device of internal medicine

Also Published As

Publication number Publication date
TW546168B (en) 2003-08-11
AU7452100A (en) 2001-05-10

Similar Documents

Publication Publication Date Title
KR100518956B1 (en) Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparing the same
EP2477947B1 (en) Stable nano titania sols and a process for their production
JP6113781B2 (en) Antiviral fiber
EP0572914A1 (en) Titanium oxide particles and method of producing same
JPH07171408A (en) Photocatalytic body and its production
JP2002540913A (en) Silane-based coating materials with catalytic oxidation and deodorization effects
JP2002253975A (en) Oxide photocatalytic material using organometallic compound and its application article
JP2945926B2 (en) Photocatalyst particles and method for producing the same
US6803023B1 (en) Composite structure for deodorization or wastewater treatment
JPH11343426A (en) Photocatalytic coating
CN104768642B (en) Photocatalyst, and method for producing photocatalyst
JP4980204B2 (en) Method for producing titanium oxide-based deodorant
WO2001024927A1 (en) Composite member for deodorization or waste water treatment
JP3978636B2 (en) Coating composition for photocatalyst film formation
JPH08165215A (en) Antimicrobial, mildewproofing, deodorizing and stain-decomposing spraying agent
JP2001190953A (en) Titanium oxide, photocatalyst body formed by using it, and photocatalyst body coating agent
JPH10180118A (en) Fixed photocatalyst, preparation thereof, and method for decomposition-removing harmful substance
CN104023847B (en) The manufacture method of photocatalyst and photocatalyst
JP2009268943A (en) Photocatalyst, photocatalyst dispersion containing the same, and photocatalyst coating composition
JP3431301B2 (en) Tile with photocatalytic function
JP2005263610A (en) Titanium oxide-coated activated carbon
CN106939142B (en) A kind of room temperature autoadhesion tio_2 suspension and preparation method thereof for the purification of ceramic tile automatically cleaning
Alijani et al. Photocatalytic degradation of acid red 73 using TiO2 nanoparticles immobilized on alumina foam
JP2005022897A (en) Silica gel carrying heteroelement
JP2002186861A (en) Porous photocatalyst and method for manufacturing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 527916

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642