WO2001024593A1 - Method and apparatus for controlling circular particle accelerator, and circular particle accelerator system - Google Patents

Method and apparatus for controlling circular particle accelerator, and circular particle accelerator system Download PDF

Info

Publication number
WO2001024593A1
WO2001024593A1 PCT/JP1999/005332 JP9905332W WO0124593A1 WO 2001024593 A1 WO2001024593 A1 WO 2001024593A1 JP 9905332 W JP9905332 W JP 9905332W WO 0124593 A1 WO0124593 A1 WO 0124593A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion beam
charged particle
particle beam
frequency
circular accelerator
Prior art date
Application number
PCT/JP1999/005332
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuo Hiramoto
Hiroshi Akiyama
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to AU59984/99A priority Critical patent/AU5998499A/en
Priority to JP2001527614A priority patent/JP3922022B2/en
Priority to PCT/JP1999/005332 priority patent/WO2001024593A1/en
Publication of WO2001024593A1 publication Critical patent/WO2001024593A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof

Definitions

  • the present invention relates to a control method and a control device for a circular accelerator, and a circular accelerator system.
  • a circular accelerator that accelerates or accumulates while accumulating or accumulating a charged particle beam such as an ion beam or an electron beam can emit an accelerated ion beam to irradiate a target (for example, tungsten).
  • a synchrotron for generating more neutrons, a synchrotron for emitting cancers by emitting an accelerated ion beam and irradiating the affected part of a cancer patient, or an electron There are known storage rings for obtaining radiation emitted from electrons by accelerating a beam. In these circular accelerators, the particle number density distribution of the incident charged particle beam becomes a Gaussian distribution, and flattening of the particle number density distribution is required.
  • the ion beam is emitted from the synchrotron using resonance, or the The ion beam is emitted from the synchrotron by deflecting the ion beam using a force-magnet or the like, but the particle number density distribution of the circulating ion beam when performing the extraction using resonance is Without flattening, it was difficult to suppress temporal fluctuations in the current value of the emitted ion beam.
  • the orbiting beam is deflected by the kicker magnet and emitted when it is emitted.
  • the particle number density distribution of the on-beam is not flattened, the particle number density distribution of the emitted ion beam will also be non-uniform, and the ion beam will be uniform with respect to the irradiation target such as tungsten or the affected part of a cancer patient.
  • Complex control was required to irradiate the water.
  • the particle number density distribution of the orbiting electron beam is not flattened, the intensity distribution of the extracted radiation becomes non-uniform. There was a problem.
  • Japanese Patent Laid-Open No. 111-1500 discloses a method of flattening the particle number density distribution utilizing the space charge effect generated in the charged particle beam. The technology is described. The technology described in the above publication will be described below. As the current value (particle number density) and the energy of a charged particle beam become larger and the energy becomes lower, a space charge effect occurs that lowers the tune of the charged particle beam, so that the charged particle beam has a Gaussian particle number density distribution.
  • the tune decreases as the charged particles located near the center with a high particle number density (that is, the charged particles with small Petertron oscillation amplitude). Therefore, by applying a high-frequency electromagnetic field containing a component of the frequency at which the tuned particles near the center where the tune is reduced to Petrotron oscillation to the charged particle beam, the charged particles located near the center are reduced. Can increase the petrol oscillation amplitude. By increasing the beta-tron oscillation amplitude of the charged particles located near the center in this way, the particle number density of the charged particles near the center decreases, and conversely, the density around the periphery of the charged particle beam decreases. The particle number density increases. Therefore, the particle number density distribution of the charged particle beam is flattened.
  • the particle number density distribution is flattened for a small current or a high energy charged particle beam in which the space charge effect hardly occurs. Can not do.
  • the particle number density distribution may not be able to be flattened depending on the current and energy values of the charged particle beam orbiting the circular accelerator. Disclosure of the invention
  • An object of the present invention is to provide a control method and a control device for a circular accelerator, and a circular accelerator system that can control the particle number density distribution of the charged particle beam regardless of the current and energy values of the orbiting charged particle beam. It is to do.
  • a feature of the present invention that achieves the above object is a high-frequency application device that applies a high-frequency electromagnetic field including a frequency component of betatron oscillation to a circulating charged particle beam, a multi-pole of six or more poles in the charged particle beam.
  • a control device for controlling a current supplied to the quadrupole electromagnet so as not to cause the third or lower order resonance.
  • the beta-ton oscillation amplitude of the charged particle beam changes, and the charged particle beam
  • the tune of the charged particle beam changes according to the magnitude of the betatron oscillation amplitude.
  • the change in the betatron oscillation amplitude due to the application of a high-frequency electromagnetic field and the change in the tune due to the application of a multipole magnetic field can be performed independently of the energy and current values of the charged particle beam.
  • the particle number density distribution of the charged particle beam can be controlled irrespective of the current and energy values.
  • FIG. 1 is a diagram showing a configuration of a circular accelerator system according to a preferred embodiment of the present invention
  • FIG. 2 is a diagram showing a relationship between a betatron oscillation amplitude of an ion beam and tune
  • FIG. Fig. 4 shows the configuration of the high-frequency application device 105a and the control device 2
  • Fig. 4 shows the particle number density distribution of the charged particle beam
  • Fig. 5 shows the high-frequency application device 105b and the control device 2
  • FIG. 6 is a configuration diagram of a circular accelerator system according to another embodiment of the present invention
  • FIG. 7 is a configuration diagram of a circular accelerator system according to another embodiment of the present invention
  • FIG. The figure shows the relationship between the betatron oscillation amplitude of the electron beam and the tune.
  • FIG. 1 shows a circular accelerator system according to a preferred embodiment of the present invention.
  • the circular accelerator system according to the present embodiment uses a 500 [MeV] ion beam of 5 [A] as a circular accelerator.
  • synchrotron 1 that is incident, accelerates to 2.5 [GeV], and then emits, irradiates the target (tungsten in this embodiment) with the ion beam emitted from synchrotron 1
  • the above incident current value is It is the value obtained by multiplying the total number of charges of the particles obtained by the orbital frequency.
  • a circular accelerator refers to a charged particle beam such as a synchrotron that accelerates and emits a charged particle beam and a storage ring that accelerates and accumulates a charged particle beam described in this embodiment. Refers to an accelerator that accelerates while orbiting.
  • the pre-accelerator 3 emits a 7 [A] hydrogen positive ion (proton) beam (hereinafter referred to as an ion beam) at 500 [MeV] according to an instruction from the controller 2.
  • an ion beam 7 [A] hydrogen positive ion (proton) beam
  • the reason why the current value is larger than that at the time of incidence is that the orbital frequency increases as the energy increases.
  • the particle number density distribution of the ion beam emitted from the pre-accelerator 3 (That is, the intensity distribution) has a Gaussian distribution as shown in Fig. 2 (a).
  • the ion beam emitted from the pre-accelerator 3 is guided to the injector 101 of the synchrotron 1 via the beam transport system, and is incident on the synchrotron 1 by the injector 101. Is done.
  • the synchrotron 1 is a pulsed electromagnet that adjusts the trajectory of the incident ion beam to a predetermined design trajectory, in addition to the injector 100 1 for inputting the ion beam to the synchrotron 1.
  • Bending electromagnet 103 that deflects the ion beam so that the ion beam orbits along the design trajectory, controls the ion beam tune (betatron frequency during one orbit around the synchrotron)
  • the control device 2 controls the pulse electromagnet 102, the deflection electromagnet 103, and the quadrupole so that the ion beam can orbit the synchrotron 1 as the ion beam is incident on the synchrotron 1.
  • the diverging electromagnet 104a and the quadrupole focusing electromagnet 104b are controlled. Specifically, the control device 2 sends a current value required by the pulsed electromagnet 102 to the power supply device 5a of the pulsed electromagnet 102 to adjust the trajectory of the incident ion beam to the design trajectory. Instruct.
  • the power supply 5a supplies a current of the indicated value to the pulse electromagnet 102.
  • the pulsed electromagnet 102 to which the current is supplied generates a magnetic field according to the value of the current, and the trajectory of the ion beam is adjusted to the design trajectory by the magnetic field.
  • control device 2 determines the value of the current supplied to the bending electromagnet 103 according to the energy (500 [MeV]) of the ion beam incident on the synchrotron 1.
  • Instruct b The power supply device 5b supplies a current having a value specified by the control device 2 to the bending electromagnet 103, and the bending electromagnet 103 generates a magnetic field according to the current supplied from the power supply device 5b.
  • FIG. 1 shows that the current is supplied from the power supply device 5b to only one bending electromagnet 103, the same current is also supplied to the other bending electromagnets 103. Is done.
  • the same current is supplied to the electromagnets other than the bending electromagnet 103 to the electromagnets having the same reference numerals.
  • the trajectory of the ion beam incident on the synchrotron 1 is bent by the bending electromagnet 103, and orbits the designed trajectory.
  • control device 2 instructs the power supply devices 5c and 5d to supply a current value to be supplied to the quadrupole diverging electromagnet 104a and the quadrupole collecting electromagnet 104b.
  • the power supply devices 5c and 5d supply the current of the value specified by the control device 2 to the quadrupole diverging electromagnets 104a and 104b, respectively.
  • the stone 104a and the quadrupole focusing electromagnet 104b generate a magnetic field in accordance with the current supplied from the power supply devices 5c and 5d.
  • the quadrupole diverging electromagnet 104 a is an electromagnet that changes the trajectory gradient of the ion beam so as to converge the ion beam in the horizontal direction and diverge the ion beam in the vertical direction.
  • 4 b is an electromagnetic stone that changes the orbit gradient of the ion beam so that the ion beam diverges in the horizontal direction and converges in the vertical direction.
  • the tune of the ion beam is controlled by the quadrupole diverging electromagnet 104a and the quadrupole focusing electromagnet 104b. In order to stably circulate the ion beam during the process of incidence and acceleration, the ion beam must be tuned to a value that does not cause resonance.
  • the amount of excitation of the quadrupole diverging electromagnet 104a and the quadrupole converging electromagnet 104b is controlled so that both the horizontal tune X and the vertical tune become 1.25. It is controlled by power supply units 5c and 5d.
  • the horizontal direction refers to a direction that is horizontal to the orbital surface of the ion beam in the synchrotron 1 and is perpendicular to the traveling direction of the ion beam
  • the vertical direction refers to the ion beam in the synchrotron 1. Refers to the direction perpendicular to the orbital plane and perpendicular to the traveling direction of the ion beam.
  • the ion beam is incident on the synchrotron 1 using the multiple rotation incidence method.
  • the current supplied to the pulse electromagnet 102 is controlled so as to decrease with time. That is, by gradually decreasing the intensity of the magnetic field generated from the pulse electromagnet 102, the ion beam is incident on the synchrotron 1 while shifting the position of the ion beam in the horizontal direction.
  • the diameter of the orbiting ion beam in the synchrotron 1 expands in the horizontal direction, and the number of particles in the horizontal direction increases.
  • the density distribution is slightly flatter than the particle number density distribution in the vertical direction.
  • the incidence of the ion beam is continued until the current value of the ion beam becomes 5 [A].
  • the current values supplied to the pulse electromagnet 102, the bending electromagnet 103, the quadrupole diverging magnet 104a, and the quadrupole converging electromagnet 104b described above may be determined in advance by calculation or experiment.
  • the values of the current values are determined in advance, and the pattern of each current value is stored in a memory (not shown) in the control device 2.
  • Fig. 2 (b) shows the relationship between the magnitude of the petatron oscillation amplitude in the vertical direction of the ions and the tune.
  • the tune decreases as the ionizer oscillation amplitude becomes smaller due to the space charge effect. This is because, as shown in Fig. 2 (a), the particle number density distribution of the ion beam in the vertical direction has a Gaussian distribution, so that the particle number density becomes higher near the center of the ion beam (the current increases.
  • the tune of the ion becomes 1.0 due to such a decrease in the tune, the beta-tron oscillation amplitude of the ion sharply increases due to the integer resonance, and the ion having the increased beta-tron oscillation amplitude becomes an ion beam. It collides with the vacuum duct, which is the passage of the building, and disappears. In the horizontal direction, the particle number density distribution is slightly flattened compared to the vertical direction due to the use of the multiple rotation incidence method, but the tune decreases due to the space charge effect as in the vertical direction.
  • the high-frequency applying device 1 0 5 vertical high frequency to the ion beam I by the a Apply an electromagnetic field, and use a high-frequency A high frequency electromagnetic field in the horizontal direction is applied to the on-beam.
  • FIG. 3 shows a configuration of a high-frequency application device 105a and a control device 2 for controlling the high-frequency application device 105a.
  • the high-frequency signal controller 21a instructs the frequency spectrum generator 22a with the minimum value fya and the maximum value fyb of the frequency band. ⁇ yb will be described.
  • the amplitude of the betatron oscillation in the vertical direction is
  • the frequency of the betatron oscillation of that ion is set to the maximum value f y b.
  • the maximum value f y b is
  • fyb frev-vb (Equation 1) where frev is the orbital frequency of the ion.
  • frev the orbital frequency of the ion.
  • the minimum value fya is a frequency that sets a frequency obtained by multiplying the value a smaller than the tune 0 of the ion positioned at the center of the ion beam in the vertical direction by the revolving frequency frev.
  • spectral generator 2 2 a high-frequency signal controller 2 1 minimum given from a value fya inverse Fourier transform unit 2 3 frequency spectrum having a frequency band up to a maximum fyb from a (reverse Ding
  • the inverse FFT unit 23a output to the unit 23) obtains a digital time-domain signal from the input frequency spectrum by inverse Fourier transform.
  • a time-domain signal is obtained by the inverse Fourier transform, the phase between each frequency spectrum is set at random.
  • the obtained time-domain signal is converted to a digital-to-analog converter 24 a
  • the high-frequency signal output from the D / A conversion unit 24a is input to the amplifier 31 of the high-frequency application device 105a, and the amplifier 31 operates according to the amplification factor indicated by the high-frequency control unit 21a. Amplify high frequency signals.
  • the high-frequency signal amplified by the amplifier 31 is applied to two vertically arranged electrodes 32a and 32b in a vacuum duct which is a beam path.
  • the electrodes 32a and 32b to which the high-frequency signal is applied generate a vertical high-frequency electromagnetic field having the same frequency component as the high-frequency signal, and the generated high-frequency electromagnetic field is an ion beam that passes through the vacuum duct. Is applied to
  • this high-frequency electromagnetic field contains the frequency component of the betatron oscillation of the ion beam
  • the orbit gradient of the ion beam to which the high-frequency electromagnetic field is applied changes, and the Petertron oscillation amplitude changes.
  • the phase difference between the frequency spectra is randomized, so the direction of the change in the betatron oscillation amplitude (whether the betatron oscillation amplitude increases or decreases) is Different for each ion.
  • the tune of the ion whose betatron oscillation amplitude has changed also changes in accordance with the relationship between the betatron oscillation amplitude and the tune in Fig. 2 (b).
  • the particle number density distribution of the ion beam is flattened in the vertical direction as shown in FIG.
  • the error of the particle number density could be controlled to about ⁇ 4 to 5% within a range of ⁇ 30% of the beam radius from the beam center.
  • FIG. 5 shows the configuration of a high-frequency application device 105b and a control device 2 for controlling the high-frequency application device 105b.
  • the high-frequency signal control unit 21b, the power frequency spectrum generation unit 22b , The minimum value f X a and the maximum value f X b of the frequency band are specified.
  • the method for determining the minimum value f Xa and the maximum value f Xb is similar to the case of the minimum value fya and the maximum value fyb in the vertical direction.
  • the frequency of the vibration of the ton is set as the maximum value fXb, and the minimum value Xa is multiplied by the frequency frev that is smaller than the tune of the ion located at the center of the ion beam in the horizontal direction. And set the required frequency.
  • the operations of the frequency spectrum generating section 22b, the inverse FFT section 23b, and the DZA converting section 24b are performed in the vertical frequency spectrum generating section 22a, the inverse FFT section 23a, and 0
  • the high-frequency signal output from the DZA conversion unit 24b is input to the amplifier 33 of the high-frequency application device 105b.
  • the amplifier 33 amplifies the high-frequency signal in accordance with the amplification factor indication value provided from the high-frequency control unit 21b.
  • the high-frequency signal amplified by the amplifier 33 is applied to two electrodes 34a and 34b arranged in a horizontal direction in a vacuum duct which is a beam path.
  • the electrodes 34a and 34b to which the high-frequency signal is applied generate a horizontal high-frequency electromagnetic field having the same frequency component as the high-frequency signal, and the generated high-frequency electromagnetic field passes through the vacuum duct. Applied to the ion beam.
  • this high-frequency electromagnetic field contains the frequency component of the betatron oscillation of the ion beam in the horizontal direction
  • the ion to which the high-frequency electromagnetic field is applied changes the orbit gradient in the horizontal direction, and the betatron oscillation amplitude decreases. Change.
  • the ion with the changed petatron oscillation amplitude also changes the tune, and by repeating the change of the betatron oscillation amplitude and the change of the tune, the particle number density distribution in the horizontal direction of the ion beam is the same as that in the vertical direction. Is flattened as follows.
  • the high-frequency signal control sections 21a and 21b output the amplification rate indication values to the amplifiers 31 and 33, but the higher the amplification rate indication value, the more the ion beam is output.
  • the intensity of the high-frequency electromagnetic field applied to the ion beam can be increased, and the particle number density distribution of the ion beam can be flattened more quickly.
  • the particle number density distribution can be flattened slowly.
  • the intensity of the high-frequency electromagnetic field applied to the ion beam can be controlled.
  • the rate of flattening of the particle number density distribution can be controlled.
  • the description is made such that the particle number density distribution is flattened after the ion beam is completely incident.However, a high-frequency electromagnetic field is applied before the ion beam is incident. It is desirable to keep it.
  • the application of the high-frequency electromagnetic field from the high-frequency application devices 105a and 105b is stopped. In this state, the ion beam stably circulates in synchrotron 1.
  • energy is given to the ion beam by applying a high-frequency electric field to the ion beam from the high-frequency accelerating cavity 1 ⁇ 6, and the ion beam is accelerated.
  • the frequency of the high-frequency electric field applied to the ion beam from the high-frequency accelerating cavity 106 is set to an integral multiple of the betatron oscillation frequency of the orbiting ion beam. It is.
  • the high-frequency accelerating cavity 106 is supplied with a current of a value specified by the control device 2 from a power supply 5e.
  • the ratio of the magnetic field intensity of the bending electromagnet 103, the quadrupole diverging electromagnet 104a and the quadrupole converging electromagnet 104b is kept constant. While increasing the magnetic field strength. As a result, even if the energy of the circulating ion beam increases, the tune does not deviate from the set value and the trajectory of the ion beam does not deviate from the design trajectory, so that the ion beam circulates stably. be able to.
  • the high-frequency accelerating cavity 1 Stop applying energy to the beam by 0 6. It is said that when the ion beam is accelerated in this way, the particle number density distribution of the flat ion beam returns to a Gaussian distribution. Therefore, it is necessary to flatten the particle number density distribution again. However, the energy of the ion beam after acceleration reaches 5 [GeV], and there is almost no decrease in tune due to the space charge effect. In this state, the high-frequency electromagnetic field is generated as described above. Even when applied to an ion beam, it is not possible to flatten the particle number density distribution.
  • the tune of the ion beam is changed in accordance with the oscillation amplitude of the betatron by applying an octopole magnetic field to the ion beam by the octopole electromagnet 107.
  • a current command is output from the control device 2 to the power supply device 5f.
  • the power supply 5f outputs a current of the indicated value to the octopole magnet 107.
  • the octopole electromagnet 107 generates an octopole magnetic field corresponding to the supplied current and applies it to the ion beam.
  • the octopole magnetic field generated by the octopole magnet 107 changes the orbit gradient of the ion beam.
  • the tune of the ion beam to which the octopole magnetic field is applied is tuned as shown in Fig. 2 (b), since the larger the betatron oscillation amplitude of the ions, the larger the change in the orbital gradient. As shown, it changes according to the amplitude of the betatron oscillation. That is, it acts on the ion beam in the same manner as the space charge effect.
  • the octopole electromagnet 107 is replaced by the quadrupole diverging electromagnet 104 a and the quadrupole converging electromagnet 100. It is located adjacent to 4b.
  • the quadrupole diverging electromagnet 104a has the largest beam diameter in the vertical direction of the ion beam, so that the octopole electromagnet 104 arranged next to the quadrupole diverging electromagnet 104a is used.
  • the tune of the ion beam in the vertical direction can be changed efficiently
  • the quadrupole focusing electromagnet 104 b has the maximum beam diameter in the horizontal direction of the ion beam, so the quadrupole focusing
  • the tune of the ion beam in the horizontal direction can be changed efficiently.
  • the tune of the ion beam is changed by the octopole electromagnet 107, and the high-frequency electromagnetic field in the vertical direction is again applied to the ion beam by the high-frequency application device 105a.
  • the method of determining the minimum value fya and the maximum value fyb of the frequency band output from the high-frequency signal control unit 21a to the frequency spectrum generation unit 22a has been described with reference to FIG. 2 (b). The detailed description is omitted because it is the same as the case of the flattening before acceleration. However, since the energy of the ion beam is higher than before acceleration, frev is large, and therefore the minimum value fya and the maximum value Both fyb are larger than before flattening before acceleration.
  • the application of the high-frequency electromagnetic field from the high-frequency applying devices 105 a and 105 b is stopped, and the octopole magnetic field from the octopole magnet 107 is removed. Stop the application.
  • a current is supplied to the pulsed electromagnet 108 from the power supply 5 g, and the magnetic field generated from the pulsed electromagnet 108 moves the ion beam trajectory outward from the design trajectory to the outside of the synchrotron 1. I will shift it.
  • the ion beam is guided to the emitter 109 and the ion beam is emitted from the synchrotron 1 by the emitter 109.
  • the ion beam emitted from the synchrotron 1 is transported to the irradiation chamber 4 via a beam transport system, and is irradiated on tungsten by an irradiation device (not shown) arranged in the irradiation chamber 4.
  • an irradiation device not shown
  • Tungsten generates neutrons when irradiated with an ion beam, but the intensity of the neutrons generated from the tungsten depends on the intensity (particle number density) of the irradiated ion beam.
  • neutrons having a flat intensity distribution can be obtained.
  • the tuned beta-tron by the octopole electromagnet 107 can be applied to the ion beam after acceleration, which is hardly affected by the space charge effect.
  • the particle number density distribution of the ion beam can be flattened. That is, the particle number density distribution of the ion beam can be flattened irrespective of the current and energy values of the ion beam.
  • the particle beam density Since the cloth is flattened, the ion beam can be emitted from the synchrotron 1 in a state where the particle beam density distribution is flattened. Therefore, when the beam is irradiated on tungsten, neutrons with a flat intensity distribution can be obtained.
  • the ion beam to which the present invention can be applied is accelerated.
  • the energy and current are not limited to the above values.
  • the energy after acceleration which is a general ion beam used for neutron generation, is 1 [GeV] or more (for example, 1 to 20 [G
  • the present invention is effective for a synchrotron that handles an ion beam in which the current is within the range of 1 to 50 [A] within the range of [e V]). This is because the ion beam whose energy is in the range of 1 to 50 [A] and whose energy is in the range of 1 [GeV] or more does not change in tune due to the space charge effect. It is.
  • the particle number density distribution of the ion beam is flattened.
  • the energy of the ion beam incident on synchrotron 1 is higher or the current is too small to cause a change in tune due to the space charge effect, It is not necessary to flatten the particle number density distribution of the ion beam before accelerating the ion beam, but it is sufficient to flatten the particle number density distribution of the ion beam only after acceleration of the ion beam.
  • the change in tune due to the space charge effect is used to flatten the particle number density distribution before accelerating the ion beam, but the tune is changed by exciting the octupole electromagnet 107. You may let it.
  • the use of the space charge effect can save the control of the octopole magnet 107 and also reduce the current supplied to the octopole magnet.
  • a circular accelerator system according to another embodiment of the present invention will be described.
  • the circular accelerator system according to the present embodiment is characterized in that the ion beam is emitted from the synchrotron using resonance, and that the ion beam emitted from the synchrotron is irradiated to the affected part of the cancer patient.
  • This embodiment differs from the first embodiment in that cancer treatment is performed.
  • points different from the first embodiment will be mainly described.
  • FIG. 6 shows the configuration of the circular accelerator system of the present embodiment.
  • an ion beam of 3 [MeV] is incident on the synchrotron 1 at 40 [mA].
  • the ion beam is incident by the multiple rotation incidence method.
  • the operation method of the synchrotron 1 from the injection of the ion beam to the synchrotron 1 to the flattening of the particle number density distribution of the ion beam after acceleration is the same as in the first embodiment. It is.
  • the ion beam is accelerated to 250 [MeV].
  • the tune of the ion beam is set to 1.32 by controlling the intensity of the magnetic field applied to the ion beam from the quadrupole diverging electromagnet 104a and the quadrupole focusing electromagnet 104b, and the hexapole electromagnet 1 Six poles applied to the ion beam from 1 1
  • the strength of the magnetic field is controlled so that the ion with the largest betatron oscillation amplitude has a channel of 1.33.
  • the amount of excitation of the hexapole electromagnet 111 is calculated or obtained in advance by experiment, and the controller 2 sends the value to the power supply unit 5 h that supplies current to the hexapole electromagnet 111.
  • a horizontal high-frequency electromagnetic field is applied to the beam by the high-frequency application device 105b.
  • the frequency band of the high-frequency electromagnetic field applied to the ion beam includes the petatron oscillation frequency of all ions as in the case of flattening the particle number density distribution described in the first embodiment. It should be set as follows.
  • the application of this high-frequency electromagnetic field changes the trajectory gradient of the ion beam and increases the amplitude of the betatron oscillation of the ion beam. Since the tune of the ion with the largest betatron oscillation amplitude is 1, 33, the betatron oscillation amplitude of the ion with the tune of 1.33 increases, and the tune exceeds 1 + 1 no3.
  • the beta resonance oscillation amplitude of the ion beam sharply increases due to the third order resonance.
  • the amplitude of the repeater-tron oscillation increases sharply.
  • the ion beam having an increased betatron oscillation amplitude is guided to the emitter 109 and is emitted from the synchrotron 1 by the emitter 109.
  • the betatron oscillation amplitude and the tune of the ion beam are constantly changing. Are emitted in order from those exceeding 1 + 1/3.
  • the high-frequency electromagnetic field is applied to the ion beam by the high-frequency application device 105b in order to extract the ion beam in the horizontal direction from the synchrotron 1.
  • the high-frequency application device 105 a What is necessary is just to apply a high frequency electromagnetic field.
  • the ion beam emitted from the synchrotron 1 is guided to the irradiation chamber 4 by the beam transport system, and is irradiated to the affected part of the cancer patient by the irradiation device (not shown) installed in the irradiation chamber 4.
  • the cancer treatment is performed.
  • the intensity of the high-frequency electromagnetic field applied at the time of emission is kept constant. Fluctuations in the current value of the ion beam emitted from the tron 1 can be suppressed.
  • the particle number density distribution of the ion beam is flattened by the same method as in the first embodiment, and therefore, as in the first embodiment, regardless of the current value and energy of the ion beam.
  • the particle number density distribution of the ion beam can be flattened.
  • an ion beam of 40 [mA] is accelerated to 250 [MeV] at 3 [MeV]
  • the energy and current of the ion beam are not limited to the above values.
  • the energy after acceleration which is a typical ion beam used for cancer treatment, is in the range of 70 to 250 [MeV].
  • the present invention is effective for a synchrotron that handles an ion beam in which the current is within the range of 100 to 100 [mA]. This is because the ion beam whose energy is in the range of 70 to 250 [MeV] and the current is in the range of 10 to 100 [ ⁇ ⁇ ] is not tuned by the space charge effect. No change occurs.
  • the particle number density distribution of the ion beam is flattened. Space charge effect due to the higher energy of the ion beam incident on synchrotron 1 or the lower current. If the tune does not change due to the ion beam, it is not necessary to flatten the particle number density distribution of the ion beam before accelerating the ion beam, and only after accelerating the ion beam. What is necessary is to flatten the distribution.
  • the ion beam is incident on the synchrotron by the multiple rotation incidence method, but the ion beam is reduced by utilizing the reduction of the ion beam diameter due to the electronic cooling. Multiple incidences may be used.
  • the method of gradually reducing the stability limit of resonance may be used for the emission of the ion beam from the synchrotron 1 in the second embodiment. Even in such a case, it is possible to suppress the fluctuation of the current value of the emitted ion beam by keeping the speed at which the stability limit of the resonance is narrowed constant.
  • FIG. 7 shows the configuration of the circular accelerator system of the present embodiment.
  • the pre-accelerator 3 emits an electron beam of 200 [MeV].
  • the electron beam emitted from the pre-accelerator 3 is incident on the storage ring 6 via the beam transport system.
  • the beam diameter of the electron beam incident on the storage ring 6 decreases while emitting emitted light.
  • This phenomenon is called radiation attenuation.
  • multiple incidences are performed by utilizing the reduction of the beam diameter due to the radiation attenuation, and finally several 100 [mA]
  • a small amount of electron beam is incident on the storage ring 6.
  • the particle number density distribution is flattened and accelerated in the same manner as in the first embodiment.
  • the electron beam is accelerated to 500 [MeV].
  • the accelerated electron beam emits radiation with a wavelength corresponding to its energy.
  • the beam diameter of an electron beam decreases as the emitted light is emitted. Therefore, in the present embodiment, the beam diameter of the electron beam is increased, but the increase in the beam diameter can be performed simultaneously with the flattening of the particle number density distribution. The details will be described below.
  • a high frequency electromagnetic field in the vertical direction is applied by the high frequency application device 105a.
  • a method of determining the minimum value fya and the maximum value fyb of the frequency band of the high-frequency electromagnetic field, that is, the frequency band output from the high-frequency signal control unit 21a will be described.
  • Fig. 8 shows the relationship between the betatron oscillation amplitude of the electron beam and the tune when the octopole electromagnet 107 was excited. In Fig.
  • the Petertron oscillation amplitude of the electron beam after the end of acceleration is ybO
  • the betatron oscillation amplitude is ybO
  • the tunes corresponding to the vibration amplitudes yb0 and yb are b0 and vb, respectively, and the tune of the electron located at the beam center is ⁇ a.
  • the minimum value fya output from the high-frequency signal control unit 21a is set to the value obtained by multiplying the tune a by the revolving frequency frev of the electron beam, that is, the Petertron oscillation frequency of the electron located at the beam center, and the maximum value fyb is set to the tune
  • the value obtained by multiplying vb by the orbital frequency frev of the electron beam, that is, the beta-tone oscillation frequency of the electron with the required beta-ton oscillation amplitude is set.
  • the orbit gradient of the electron beam changes.
  • electronic The betatron oscillation amplitude of the system changes.
  • the betatron oscillation amplitude increases, so does the beam tune.
  • the betatron oscillation amplitude of an electron whose betatron oscillation amplitude is yb 0 changes in the direction of increasing
  • the maximum frequency band of the high-frequency electromagnetic field is fyb.
  • the betatron oscillation amplitude changes.
  • the betatron oscillation amplitude of the electron beam repeatedly changes within the frequency band where the high-frequency electromagnetic field is applied, so that the beam diameter eventually expands to yb and the number of particles in the electron beam.
  • the density distribution is flattened.
  • the beam diameter of the ion beam can be similarly increased and the particle number density distribution can be flattened using the high-frequency application device 105b. If the amount of excitation is reduced, the frequency band of the applied high-frequency electromagnetic field can be narrowed.
  • the particle number density distribution of the electron beam can be flattened irrespective of the current value and energy of the electron beam as in the first embodiment.
  • the electron beam of 100 [] 118] is accelerated to 500 [MeV] by 200 [1 ⁇ 6] has been described.
  • the applicable energy and current of the electron beam are not limited to the above values.
  • the energy after acceleration which is a general electron beam used for extracting synchrotron radiation
  • the current is 100 to
  • the present invention is effective for a synchrotron that handles an electron beam in the range of 100 [mA]. This is because the electron beam whose energy is in the range of 500 to 3000 [MeV] and the current is in the range of 100 to 100 [mA] is tuned by the space charge effect. This is because no change occurs.
  • the particle number density distribution of the electron beam is flattened.
  • the energy of the electron beam incident on the storage ring 6 is higher, or the current is small, so that the change in the channel due to the space charge effect does not occur.
  • it is not necessary to flatten the particle number density distribution of the electron beam before accelerating the electron beam but it is sufficient to flatten the particle number density distribution of the electron beam only after accelerating the electron beam.
  • the circular accelerator to which the present invention can be applied is not limited to the three circular accelerators described above.
  • the present invention can be applied to any circular accelerator that accelerates while orbiting a charged particle beam, such as a synchrotron to be used or a storage ring for simultaneously accelerating and colliding electrons and positrons.
  • the force that excites the octopole electromagnet to change the tune of the ion beam in accordance with the amplitude of the betatron oscillation is not limited to the octopole electromagnet but is a multipole electromagnet having six or more poles. Can be used. Industrial applicability
  • the present invention can be applied to a synchrotron that accelerates and emits an ion beam, or a storage ring that accelerates an electron beam and extracts emitted light.
  • This application makes it possible to flatten the particle number density distribution of the beam in the synchrotron and the storage ring, simplify control to suppress fluctuations in the current value of the emitted ion beam, and remove the emitted radiation.
  • Light intensity can be made uniform.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)

Abstract

The amplitude of a betatron oscillation of a circulating charged-particle beam is varied by a high-frequency device, while the tune of the charged-particle beam is varied with the betatron oscillation amplitude by an eight-pole electromagnet. The distribution of particle density of the charged-particle beam is made uniform by repeatedly varying the betatron oscillation amplitude and tune. Since the change in betatron oscillation amplitude by the application of a high-frequency electromagnetic field and the change in tune by the application of eight-pole magnetic fields occur independently of the beam energy and current value, the distribution of particle density of the charged-particle beam can be controlled independently of the beam energy and current value.

Description

明 細 書  Specification
円形加速器の制御方法及び制御装置、 並びに円形加速器システム 技術分野  Control method and control device of circular accelerator, and circular accelerator system
本発明は、 円形加速器の制御方法及び制御装置、 並びに円形加速器シ ステムに関する。 背景技術  The present invention relates to a control method and a control device for a circular accelerator, and a circular accelerator system. Background art
イオンビ一ムや電子ビーム等の荷電粒子ビームを周回させながら加速 した り 、 或いは蓄積する円形加速器と しては、 加速したイオンビームを 出射してターゲッ ト (例えば、 タ ングステン) に照射する こと によ り 中 性子を発生させるためのシンク ロ トロ ンや、 加速したイオンビームを出 射して癌患者の患部に照射する こ と によ り癌治療を行う ためのシンク ロ トロ ン、 或いは、 電子ビームを加速する ことによ り電子から放出される 放射光を得る蓄積リ ング等が知られている。 これらの円形加速器では、 入射される荷電粒子ビームの粒子数密度分布はガウス分布となってぉ リ 粒子数密度分布の平坦化が要求されている。  A circular accelerator that accelerates or accumulates while accumulating or accumulating a charged particle beam such as an ion beam or an electron beam can emit an accelerated ion beam to irradiate a target (for example, tungsten). A synchrotron for generating more neutrons, a synchrotron for emitting cancers by emitting an accelerated ion beam and irradiating the affected part of a cancer patient, or an electron There are known storage rings for obtaining radiation emitted from electrons by accelerating a beam. In these circular accelerators, the particle number density distribution of the incident charged particle beam becomes a Gaussian distribution, and flattening of the particle number density distribution is required.
例えば、 上述の中性子を発生させるためのシンク ロ トロ ンや癌治療を 行う ためのシンク ロ トロンにおいては、 共鳴を利用 してイオンビームを シンク ロ トロ ンから出射するか、 若し く は、 キッ力一電磁石等を用いて イオンビームを偏向する ことによ ってイオンビームをシンク ロ トロ ンか ら出射するが、 共鳴を利用 して出射を行う場合に周回するイオンビーム の粒子数密度分布が平坦化されていないと、 出射されるイオンビームの 電流値の時間的変動を抑制するのが困難であっ た。 ま た、 周回するィォ ンビームをキ ッカー電磁石によ り偏向 して出射を行う場合に周回するィ オンビームの粒子数密度分布が平坦化されていないと、 出射されるィォ ンビームにおける粒子数密度分布も不均一とな り 、 タ ングステンや癌患 者の患部といった照射対象に対してイオンビームを均一に照射するため に複雑な制御が必要と された。 更に、 電子ビームを加速して放射光を取 リ 出す蓄積リ ングにおいては、 周回する電子ビームの粒子数密度分布が 平坦化されていないと、 取り 出 した放射光の強度分布が不均一になると いう問題があった。 For example, in the synchrotron for generating neutrons and the synchrotron for cancer treatment described above, the ion beam is emitted from the synchrotron using resonance, or the The ion beam is emitted from the synchrotron by deflecting the ion beam using a force-magnet or the like, but the particle number density distribution of the circulating ion beam when performing the extraction using resonance is Without flattening, it was difficult to suppress temporal fluctuations in the current value of the emitted ion beam. In addition, the orbiting beam is deflected by the kicker magnet and emitted when it is emitted. If the particle number density distribution of the on-beam is not flattened, the particle number density distribution of the emitted ion beam will also be non-uniform, and the ion beam will be uniform with respect to the irradiation target such as tungsten or the affected part of a cancer patient. Complex control was required to irradiate the water. Furthermore, in a storage ring that accelerates an electron beam to extract radiation, if the particle number density distribution of the orbiting electron beam is not flattened, the intensity distribution of the extracted radiation becomes non-uniform. There was a problem.
以上のよ う な問題を解決するためには、 前述のよ う に、 円形加速器に おいて周回する荷電粒子ビームの粒子数密度分布を平坦化しなければな らない。 周回する荷電粒子ビームの粒子数密度分布を平坦化する方法と しては、 特開平 1 1— 1 1 1500号公報に荷電粒子ビームに生じる空間電荷効 果を利用 した粒子数密度分布平坦化の技術が記載されている。 上記公報 に記載された技術について、 以下に説明する。 荷電粒子ビームにはその 電流値 (粒子数密度) が大きいほど、 またエネルギーが低いほど、 荷電 粒子ビームのチューンを低下させる空間電荷効果が生じるので、 粒子数 密度分布がガウス分布である荷電粒子ビームの場合、 粒子数密度の高い 中心部付近に位置する荷電粒子 (すなわち、 ペータ トロ ン振動振幅の小 さな荷電粒子) ほどチューンが低下する。 そこで、 チューンの低下した 中心部付近の荷電粒子がペータ 卜ロ ン振動する周波数の成分を含む高周 波電磁場を荷電粒子ビームに印加する こ と によ って、 中心部付近に位置 する荷電粒子のペータ ト ロ ン振動振幅を増加させる こ とができる。 この よ う に中心部付近に位置する荷電粒子のベータ ト ロ ン振動振幅を増加さ せる ことによって、 中心部付近の荷電粒子の粒子数密度は低下し、 逆に 荷電粒子ビームの周辺部付近の粒子数密度が上昇する。 よ って、 荷電粒 子ビームの粒子数密度分布は平坦化される。 しかしながら、 上記従来技術では、 空間電荷効果によるチューンの低 下を利用するため、 空間電荷効果が殆ど発生しないよ う な小電流又は高 エネルギーの荷電粒子ビームに対しては粒子数密度分布の平坦化を行う ことができない。 つま り 、 従来技術では、 円形加速器を周回する荷電粒 子ビームの電流とエネルギーの値によっては粒子数密度分布を平坦化で きない場合がある。 発明の開示 In order to solve the above problems, as described above, the particle number density distribution of the orbiting charged particle beam in the circular accelerator must be flattened. As a method of flattening the particle number density distribution of the orbiting charged particle beam, Japanese Patent Laid-Open No. 111-1500 discloses a method of flattening the particle number density distribution utilizing the space charge effect generated in the charged particle beam. The technology is described. The technology described in the above publication will be described below. As the current value (particle number density) and the energy of a charged particle beam become larger and the energy becomes lower, a space charge effect occurs that lowers the tune of the charged particle beam, so that the charged particle beam has a Gaussian particle number density distribution. In the case of, the tune decreases as the charged particles located near the center with a high particle number density (that is, the charged particles with small Petertron oscillation amplitude). Therefore, by applying a high-frequency electromagnetic field containing a component of the frequency at which the tuned particles near the center where the tune is reduced to Petrotron oscillation to the charged particle beam, the charged particles located near the center are reduced. Can increase the petrol oscillation amplitude. By increasing the beta-tron oscillation amplitude of the charged particles located near the center in this way, the particle number density of the charged particles near the center decreases, and conversely, the density around the periphery of the charged particle beam decreases. The particle number density increases. Therefore, the particle number density distribution of the charged particle beam is flattened. However, in the above-mentioned conventional technology, since the tune reduction caused by the space charge effect is used, the particle number density distribution is flattened for a small current or a high energy charged particle beam in which the space charge effect hardly occurs. Can not do. In other words, in the conventional technology, the particle number density distribution may not be able to be flattened depending on the current and energy values of the charged particle beam orbiting the circular accelerator. Disclosure of the invention
本発明の目的は、 周回する荷電粒子ビームの電流及びエネルギーの値 によ らず荷電粒子ビームの粒子数密度分布を制御する ことができる円形 加速器の制御方法及び制御装置、 並びに円形加速器システムを提供する ことにある。  An object of the present invention is to provide a control method and a control device for a circular accelerator, and a circular accelerator system that can control the particle number density distribution of the charged particle beam regardless of the current and energy values of the orbiting charged particle beam. It is to do.
上記目的を達成する本発明の特徴は、 周回する荷電粒子ビームにベ一 タ トロン振動の周波数成分を含む高周波電磁場を印加する高周波印加装 置と、 前記荷電粒子ビームに六極以上の多極磁場を印加する多極電磁石 と、 前記荷電粒子ビームに四極磁場を印加する四極電磁石と、 前記高周 波電磁場及び前記多極磁場が荷電粒子ビームに印加されていると きに、 荷電粒子ビームが 3次以下の共鳴を起こ さないよ う に前記四極電磁石に 供給される電流を制御する制御装置と を有する こと にある。  A feature of the present invention that achieves the above object is a high-frequency application device that applies a high-frequency electromagnetic field including a frequency component of betatron oscillation to a circulating charged particle beam, a multi-pole of six or more poles in the charged particle beam. A multipole electromagnet for applying a magnetic field; a quadrupole electromagnet for applying a quadrupole magnetic field to the charged particle beam; and a charged particle beam when the high frequency electromagnetic field and the multipole magnetic field are applied to the charged particle beam. A control device for controlling a current supplied to the quadrupole electromagnet so as not to cause the third or lower order resonance.
周回する荷電粒子ビームにペータ トロ ン振動の周波数成分を含む高周 波電磁場を印加する こ とによ り 、 荷電粒子ビームのベータ ト ロ ン振動振 幅は変化し、 ま た、 荷電粒子ビームに六極以上の多極磁場を印加する こ と によ リ荷電粒子ビームのチューンはベータ トロ ン振動振幅の大きさ に 応じて変化する。 このベータ ト ロ ン振動振幅の変化とチューンの変化と を繰り返すこ とによって、 荷電粒子ビームの粒子数密度分布は平坦化さ れる。 高周波電磁場の印加によるベータ トロ ン振動振幅の変化と、 多極 磁場の印加によるチューンの変化は荷電粒子ビームのエネルギーや電流 の値によ らずに行う ことができるため、 周回する荷電粒子ビームの電流 及びエネルギーの値によ らず荷電粒子ビームの粒子数密度分布を制御す る ことができる。 図面の簡単な説明 By applying a high-frequency electromagnetic field containing the frequency component of the Petertron oscillation to the orbiting charged particle beam, the beta-ton oscillation amplitude of the charged particle beam changes, and the charged particle beam By applying a multipole magnetic field of six or more poles, the tune of the charged particle beam changes according to the magnitude of the betatron oscillation amplitude. By repeating the change of the betatron oscillation amplitude and the change of the tune, the particle number density distribution of the charged particle beam is flattened. It is. The change in the betatron oscillation amplitude due to the application of a high-frequency electromagnetic field and the change in the tune due to the application of a multipole magnetic field can be performed independently of the energy and current values of the charged particle beam. The particle number density distribution of the charged particle beam can be controlled irrespective of the current and energy values. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 本発明の好適な一実施例である円形加速器システムの構成 図、 第 2 図は、 イオンビームのベータ トロ ン振動振幅とチューンとの関 係を示す図、 第 3 図は、 高周波印加装置 1 0 5 a と制御装置 2 の構成を 示す図、 第 4図は、 荷電粒子ビームの粒子数密度分布を示す図、 第 5 図 は、 高周波印加装置 1 0 5 b と制御装置 2 の構成を示す図、 第 6 図は、 本発明の他の実施例である円形加速器システムの構成図、 第 7 図は、 本 発明の他の実施例である円形加速器システムの構成図、 第 8 図は、 電子 ビームのベータ トロ ン振動振幅とチューンとの関係を示す図である。 発明を実施するための最良の形態  FIG. 1 is a diagram showing a configuration of a circular accelerator system according to a preferred embodiment of the present invention, FIG. 2 is a diagram showing a relationship between a betatron oscillation amplitude of an ion beam and tune, and FIG. Fig. 4 shows the configuration of the high-frequency application device 105a and the control device 2, Fig. 4 shows the particle number density distribution of the charged particle beam, and Fig. 5 shows the high-frequency application device 105b and the control device 2 FIG. 6 is a configuration diagram of a circular accelerator system according to another embodiment of the present invention, FIG. 7 is a configuration diagram of a circular accelerator system according to another embodiment of the present invention, FIG. The figure shows the relationship between the betatron oscillation amplitude of the electron beam and the tune. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を用いて本発明の実施例を詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(実施例 1 )  (Example 1)
第 1 図は、 本発明の好適な一実施例である円形加速器システムを示す, 本実施例の円形加速器システムは、 円形加速器と して 5 0 0 [ M e V ] のイオンビームを 5 [ A ] 入射して 2 . 5 〔G e V〕 まで加速した後出射 するシンク ロ トロ ン 1 を用い、 シンク ロ トロ ン 1 から出射されたイオン ビームをターゲッ ト (本実施例ではタ ングステン) に照射して中性子を 発生させる円形加速器システムである。 なお、 上記入射電流値は、 入射 された粒子の総電荷数に周回周波数をかけた値である。 ま た、 円形加速 器とは、 本実施例で説明する荷電粒子ビームを加速して出射するシンク ロ トロ ンや、 荷電粒子ビームを加速 ' 蓄積する蓄積リ ングのよ う な、 荷 電粒子ビームを周回させながら加速する加速器のことを指す。 FIG. 1 shows a circular accelerator system according to a preferred embodiment of the present invention. The circular accelerator system according to the present embodiment uses a 500 [MeV] ion beam of 5 [A] as a circular accelerator. Using synchrotron 1 that is incident, accelerates to 2.5 [GeV], and then emits, irradiates the target (tungsten in this embodiment) with the ion beam emitted from synchrotron 1 This is a circular accelerator system that generates neutrons. The above incident current value is It is the value obtained by multiplying the total number of charges of the particles obtained by the orbital frequency. Also, a circular accelerator refers to a charged particle beam such as a synchrotron that accelerates and emits a charged particle beam and a storage ring that accelerates and accumulates a charged particle beam described in this embodiment. Refers to an accelerator that accelerates while orbiting.
第 1 図において、 制御装置 2 からの指示に従って前段加速器 3 は 500 〔M e V〕で 7 〔 A〕の水素の正イオン (陽子) のビーム (以下、 イオンビ ームという ) を出射する。 こ こで、 電流値が入射時よ り も大き く なつて いるのは、 エネルギーの増加に伴って周回周波数が高く なるためである なお、 前段加速器 3 から出射されるイオンビームの粒子数密度分布 (す なわち強度分布) は、 第 2 図 ( a ) に示すよ う なガウス分布となってい る。 前段加速器 3 から出射されたイオンビームは、 ビーム輸送系を介し てシンク ロ ト ロ ン 1 の入射器 1 0 1 に導かれ、 入射器 1 0 1 によ ってシ ンク ロ トロ ン 1 に入射される。  In FIG. 1, the pre-accelerator 3 emits a 7 [A] hydrogen positive ion (proton) beam (hereinafter referred to as an ion beam) at 500 [MeV] according to an instruction from the controller 2. Here, the reason why the current value is larger than that at the time of incidence is that the orbital frequency increases as the energy increases.The particle number density distribution of the ion beam emitted from the pre-accelerator 3 (That is, the intensity distribution) has a Gaussian distribution as shown in Fig. 2 (a). The ion beam emitted from the pre-accelerator 3 is guided to the injector 101 of the synchrotron 1 via the beam transport system, and is incident on the synchrotron 1 by the injector 101. Is done.
シンク ロ トロ ン 1 は、 イオンビームをシンク ロ トロ ン 1 に入射する入 射器 1 0 1 の他に、 入射されたイオンビームの軌道を予め設定された設 計軌道に合わせるパルス電磁石 1 0 2 , イ オンビームが設計軌道に沿つ て周回するよ う にイオンビームを偏向する偏向電磁石 1 0 3 , イオンビ ームのチューン ( シンク ロ トロ ンを 1 周する間のベータ トロ ン振動数) を制御する四極発散電磁石 1 0 4 a と四極収束電磁石 1 0 4 b , イオン ビームに高周波の磁場及び電場 (以下、 高周波電磁場という ) を印加し てイオンのベータ トロ ン振動振幅を変化させる高周波印加装置 1 0 5 a 1 0 5 b , イオンビームにエネルギーを与えて加速する高周波加速空胴 1 0 6 , イオンのチューンをベータ ト ロ ン振動振幅に応じて変化させる 八極電磁石 1 0 7 , イオンビームを設計軌道から離すパルス電磁石 108, イオンビームをシンク ロ ト ロ ン 1 から出射する出射器 1 0 9 を有する。 制御装置 2 は、 シンク ロ トロン 1 にイオンビームが入射されるのに合 わせて、 イオンビームがシンクロ トロン 1 を安定に周回できるよ う にパ ルス電磁石 1 0 2 , 偏向電磁石 1 0 3 , 四極発散電磁石 1 0 4 a及び四 極収束電磁石 1 0 4 b を制御する。 具体的には、 制御装置 2 は、 パルス 電磁石 1 0 2 の電源装置 5 a に対し、 入射されたイオンビームの軌道を 設計軌道に合わせるのにパルス電磁石 1 0 2 で必要とされる電流値を指 示する。 電源装置 5 aは、 指示された値の電流をパルス電磁石 1 0 2 に 供給する。 電流が供給されたパルス電磁石 1 0 2 は電流の値に応じた磁 場を発生し、 その磁場によ ってイオンビームの軌道が設計軌道に合わせ られる。 The synchrotron 1 is a pulsed electromagnet that adjusts the trajectory of the incident ion beam to a predetermined design trajectory, in addition to the injector 100 1 for inputting the ion beam to the synchrotron 1. , Bending electromagnet 103 that deflects the ion beam so that the ion beam orbits along the design trajectory, controls the ion beam tune (betatron frequency during one orbit around the synchrotron) A quadrupole diverging electromagnet 104a and a quadrupole focusing electromagnet 104b, a high-frequency application device that changes the betatron oscillation amplitude of ions by applying a high-frequency magnetic field and an electric field (hereinafter referred to as a high-frequency electromagnetic field) to the ion beam 1 0 5 a 1 0 5 b, high-frequency accelerating cavity 10 6 for applying energy to ion beam for acceleration, octopole electromagnet 1 0 7 for changing ion tune according to beta-tron oscillation amplitude, Pulse electromagnet 108 separating the Onbimu from the design orbit, with the exit device 1 0 9 for emitting an ion beam from the sink B collected by filtration down 1. The control device 2 controls the pulse electromagnet 102, the deflection electromagnet 103, and the quadrupole so that the ion beam can orbit the synchrotron 1 as the ion beam is incident on the synchrotron 1. The diverging electromagnet 104a and the quadrupole focusing electromagnet 104b are controlled. Specifically, the control device 2 sends a current value required by the pulsed electromagnet 102 to the power supply device 5a of the pulsed electromagnet 102 to adjust the trajectory of the incident ion beam to the design trajectory. Instruct. The power supply 5a supplies a current of the indicated value to the pulse electromagnet 102. The pulsed electromagnet 102 to which the current is supplied generates a magnetic field according to the value of the current, and the trajectory of the ion beam is adjusted to the design trajectory by the magnetic field.
ま た、 制御装置 2 は、 シンク ロ トロ ン 1 に入射されたイオンビームの エネルギー ( 5 0 0 〔M e V〕) に応じて、 偏向電磁石 1 0 3 に供給する 電流の値を電源装置 5 b に指示する。 電源装置 5 b は、 制御装置 2 から 指示された値の電流を偏向電磁石 1 0 3 に供給し、 偏向電磁石 1 0 3 は、 電源装置 5 b よ り供給された電流に応じて磁場を発生する。 なお、 第 1 図では、 電源装置 5 b から 1 つの偏向電磁石 1 0 3 にのみ電流が供給さ れているよ う に示しているが、 その他の偏向電磁石 1 0 3 にも同 じ電流 が供給される。 ま た、 偏向電磁石 1 0 3以外の電磁石についても同様に、 同一符号の電磁石には同 じ電流が供給される。 シンク ロ トロ ン 1 に入射 されたイ オンビームは、 偏向電磁石 1 0 3 によ り軌道が曲げられて、 設 計軌道上を周回する。  In addition, the control device 2 determines the value of the current supplied to the bending electromagnet 103 according to the energy (500 [MeV]) of the ion beam incident on the synchrotron 1. Instruct b. The power supply device 5b supplies a current having a value specified by the control device 2 to the bending electromagnet 103, and the bending electromagnet 103 generates a magnetic field according to the current supplied from the power supply device 5b. . Although FIG. 1 shows that the current is supplied from the power supply device 5b to only one bending electromagnet 103, the same current is also supplied to the other bending electromagnets 103. Is done. Similarly, the same current is supplied to the electromagnets other than the bending electromagnet 103 to the electromagnets having the same reference numerals. The trajectory of the ion beam incident on the synchrotron 1 is bent by the bending electromagnet 103, and orbits the designed trajectory.
更に、 制御装置 2 は、 四極発散電磁石 1 0 4 a及び四極収朿電磁石 1 0 4 b に供給する電流の値を電源装置 5 c , 5 d に指示する。 電源装 置 5 c, 5 dは、 制御装置 2 から指示された値の電流を四極発散電磁石 1 0 4 a及び四極収束電磁石 1 0 4 b にそれぞれ供給し、 四極発散電磁 石 1 0 4 a及び四極収束電磁石 1 0 4 b は、 電源装置 5 c , 5 d よ り供 給された電流に応じて磁場を発生する。 なお、 四極発散電磁石 1 0 4 a は、 水平方向にイオンビームを収束させて垂直方向にイオンビームを発 散させるよ う にイオンビームの軌道勾配を変える電磁石であ り 、 四極収 束電磁石 1 0 4 b は、 水平方向にイオンビームを発散させて垂直方向に イオンビームを収束させるよ う にイオンビームの軌道勾配を変える電磁 石である。 このよ う な四極発散電磁石 1 0 4 a及び四極収束電磁石 104b によ リ イオンビームのチューンは制御される。 入射と加速の過程でィォ ンビームを安定に周回させる には、 イオンビームのチューンを共鳴が生 じない値に しておく 必要があ り 、 特に整数共鳴, 2次共鳴及び 3 次共鳴 を起こすチューンからは離しておく 必要がある。 本実施例では、 水平方 向チューン リ X及び垂直方向チューン が共に 1 . 2 5 になるよ う に 四極発散電磁石 1 0 4 a及び四極収束電磁石 1 0 4 b の励磁量を制御装 置 2及び電源装置 5 c , 5 d によ り制御する。 なお、 本実施例において . 水平方向とはシンク ロ トロ ン 1 におけるイオンビームの周回面に水平で かつイオンビームの進行方向に垂直な方向をいい、 垂直方向とはシンク 口 トロ ン 1 におけるイオンビームの周回面に垂直でかつイオンビームの 進行方向に垂直な方向をいう 。 Further, the control device 2 instructs the power supply devices 5c and 5d to supply a current value to be supplied to the quadrupole diverging electromagnet 104a and the quadrupole collecting electromagnet 104b. The power supply devices 5c and 5d supply the current of the value specified by the control device 2 to the quadrupole diverging electromagnets 104a and 104b, respectively. The stone 104a and the quadrupole focusing electromagnet 104b generate a magnetic field in accordance with the current supplied from the power supply devices 5c and 5d. The quadrupole diverging electromagnet 104 a is an electromagnet that changes the trajectory gradient of the ion beam so as to converge the ion beam in the horizontal direction and diverge the ion beam in the vertical direction. 4 b is an electromagnetic stone that changes the orbit gradient of the ion beam so that the ion beam diverges in the horizontal direction and converges in the vertical direction. The tune of the ion beam is controlled by the quadrupole diverging electromagnet 104a and the quadrupole focusing electromagnet 104b. In order to stably circulate the ion beam during the process of incidence and acceleration, the ion beam must be tuned to a value that does not cause resonance. In particular, integer resonance, secondary resonance, and tertiary resonance occur. It must be kept away from tune. In the present embodiment, the amount of excitation of the quadrupole diverging electromagnet 104a and the quadrupole converging electromagnet 104b is controlled so that both the horizontal tune X and the vertical tune become 1.25. It is controlled by power supply units 5c and 5d. In this embodiment, the horizontal direction refers to a direction that is horizontal to the orbital surface of the ion beam in the synchrotron 1 and is perpendicular to the traveling direction of the ion beam, and the vertical direction refers to the ion beam in the synchrotron 1. Refers to the direction perpendicular to the orbital plane and perpendicular to the traveling direction of the ion beam.
本実施例では、 多重回転入射法を用いてイオンビームをシンク ロ トロ ン 1 に入射する。 そのために、 パルス電磁石 1 0 2 に供給する電流を、 時間の経過と共に減少するよ う に制御する。 つま り 、 パルス電磁石 102 から発せられる磁場の強度を徐々 に弱く してい く こ と によ り 、 水平方向 におけるイオンビームの位置をずら しながら、 イオンビームをシンク ロ トロン 1 に入射してい く 。 そのこ と によ り 、 シンク ロ トロ ン 1 において 周回するイオンビームの径は水平方向に広がり 、 ま た水平方向の粒子数 密度分布は垂直方向の粒子数密度分布に比べて若干平坦な分布となる。 なお、 本実施例のシンク ロ トロ ン 1 では、 イオンビームの電流値が 5 〔 A〕となるま でイオンビームの入射を継続する。 In this embodiment, the ion beam is incident on the synchrotron 1 using the multiple rotation incidence method. For this purpose, the current supplied to the pulse electromagnet 102 is controlled so as to decrease with time. That is, by gradually decreasing the intensity of the magnetic field generated from the pulse electromagnet 102, the ion beam is incident on the synchrotron 1 while shifting the position of the ion beam in the horizontal direction. As a result, the diameter of the orbiting ion beam in the synchrotron 1 expands in the horizontal direction, and the number of particles in the horizontal direction increases. The density distribution is slightly flatter than the particle number density distribution in the vertical direction. In the synchrotron 1 of the present embodiment, the incidence of the ion beam is continued until the current value of the ion beam becomes 5 [A].
以上説明 したパルス電磁石 1 0 2 , 偏向電磁石 1 0 3 , 四極発散電磁 石 1 0 4 a及び四極収束電磁石 1 0 4 b に供給する電流値については、 予め計算若し く は実験によ リ適切な値を求めておき、 各電流値のバタ一 ンを制御装置 2 内のメモリ (図示せず) に記憶させてお く 。  The current values supplied to the pulse electromagnet 102, the bending electromagnet 103, the quadrupole diverging magnet 104a, and the quadrupole converging electromagnet 104b described above may be determined in advance by calculation or experiment. The values of the current values are determined in advance, and the pattern of each current value is stored in a memory (not shown) in the control device 2.
以上のよ う に して、 シンク ロ トロン 1 に 5 0 0 〔M e V〕で 5 〔A〕のィ オンビームが入射されると、 イオンビームには空間電荷効果が生じ、 ィ オンビームのチューンが変化する。 第 2 図 ( b ) は、 イオンの垂直方向 のペータ トロ ン振動振幅の大きさ とチューンとの関係を示す。 第 2 図 ( b ) に示される よう に、 空間電荷効果によ リベ一タ トロ ン振動振幅の 小さなイオンほどチューンが低下する。 これは、 第 2 図 ( a ) に示すよ う に垂直方向におけるイオンビームの粒子数密度分布がガウス分布を し ているために、 イオンビームの中心に近いほど粒子数密度が高く (電流 が大き く ) 、 空間電荷効果の影響が大き く なるからである。 このよ う な チューンの低下によ リ イオンのチューンが 1 . 0 になると、 整数共鳴に よってイオンのベータ トロ ン振動振幅が急激に増加 し、 ベータ トロ ン振 動振幅が増加したイオンはイオンビームの通路である真空ダク トに衝突 して消滅して しま う 。 なお、 水平方向においては、 多重回転入射法を用 いたことによ り粒子数密度分布が垂直方向に比べて若干平坦化されてい るが、 垂直方向と同様に空間電荷効果によ るチューンの低下が発生する c 上述のよ う な空間電荷効果に起因するイ オンビームの損失をな く すた めに、 本実施例では、 高周波印加装置 1 0 5 a によ ってイオンビームに 垂直方向の高周波電磁場を印加し、 高周波印加装置 1 0 5 b によ ってィ オンビームに水平方向の高周波電磁場を印加する。 As described above, when a 5 [A] ion beam is incident on the synchrotron 1 at 500 [MeV], a space charge effect occurs in the ion beam, and the ion beam tunes. Change. Fig. 2 (b) shows the relationship between the magnitude of the petatron oscillation amplitude in the vertical direction of the ions and the tune. As shown in Fig. 2 (b), the tune decreases as the ionizer oscillation amplitude becomes smaller due to the space charge effect. This is because, as shown in Fig. 2 (a), the particle number density distribution of the ion beam in the vertical direction has a Gaussian distribution, so that the particle number density becomes higher near the center of the ion beam (the current increases. This is because the effect of the space charge effect increases. When the tune of the ion becomes 1.0 due to such a decrease in the tune, the beta-tron oscillation amplitude of the ion sharply increases due to the integer resonance, and the ion having the increased beta-tron oscillation amplitude becomes an ion beam. It collides with the vacuum duct, which is the passage of the building, and disappears. In the horizontal direction, the particle number density distribution is slightly flattened compared to the vertical direction due to the use of the multiple rotation incidence method, but the tune decreases due to the space charge effect as in the vertical direction. to but because Star rather Na loss Lee Onbimu due to c above Yo I Do space charge effects occurring, in this embodiment, the high-frequency applying device 1 0 5 vertical high frequency to the ion beam I by the a Apply an electromagnetic field, and use a high-frequency A high frequency electromagnetic field in the horizontal direction is applied to the on-beam.
まずは、 高周波印加装置 1 0 5 aによる垂直方向の高周波電磁場の印 加方法について説明する。 第 3図は、 高周波印加装置 1 0 5 aと、 高周 波印加装置 1 0 5 aを制御するための制御装置 2の構成を示す。 第 3図 において、 まず高周波信号制御部 2 1 aが、 周波数スぺク トル発生部 2 2 aに対して周波数帯域の最小値 f y aと最大値 f y b と を指示する , この最小値 f y a及び最大値 ί y b について説明する。  First, a method of applying a high-frequency electromagnetic field in the vertical direction by the high-frequency application device 105a will be described. FIG. 3 shows a configuration of a high-frequency application device 105a and a control device 2 for controlling the high-frequency application device 105a. In FIG. 3, first, the high-frequency signal controller 21a instructs the frequency spectrum generator 22a with the minimum value fya and the maximum value fyb of the frequency band. ί yb will be described.
第 2図に示すよ う に、 垂直方向においてベータ トロ ン振動振幅が最大 As shown in Fig. 2, the amplitude of the betatron oscillation in the vertical direction is
( y b ) であるイオンのチューンがリ bであるとすると、 そのイオンの ベータ トロ ン振動の周波数を最大値 f y b とする。 最大値 f y bは、If the tune of an ion (y b) is ri b, the frequency of the betatron oscillation of that ion is set to the maximum value f y b. The maximum value f y b is
(数 1 ) で表わされる。 (Equation 1).
f y b = f r e v - v b … (数 1 ) なお、 f r e vはイオンの周回周波数である。 このよ う に、 最大のベ ータ トロ ン振動振幅を有するイオンのベータ トロ ン振動の周波数を、 最 大値 f y b と して設定する。 ま た、 最小値 f y aと しては、 垂直方向に おいてイオンビームの中心に位置するイオンのチューン リ 0 よ リ も小さ な値 aに周回周波数 f r e vを乗算して求め られる周波数を設定する 周波数スぺク トル発生部 2 2 aは、 高周波信号制御部 2 1 aから与え られた最小値 f y aから最大値 f y b までの周波数帯域を有する周波数 スペク トルを逆フーリ エ変換部 2 3 a (逆 丁部 2 3 ) に出力する 逆 F F T部 2 3 aは、 入力された周波数スぺク トルから逆フーリ エ変換 によ り ディ ジタルの時間領域信号を得る。 なお、 逆フーリ エ変換によ り 時間領域信号を得る際には、 各周波数スぺク トル間の位相をラ ンダムに 設定する。 得られた時間領域信号はディ ジタルノアナログ変換部 2 4 afyb = frev-vb (Equation 1) where frev is the orbital frequency of the ion. In this way, the frequency of the betatron oscillation of the ion having the largest betatron oscillation amplitude is set as the maximum value fyb. The minimum value fya is a frequency that sets a frequency obtained by multiplying the value a smaller than the tune 0 of the ion positioned at the center of the ion beam in the vertical direction by the revolving frequency frev. spectral generator 2 2 a high-frequency signal controller 2 1 minimum given from a value fya inverse Fourier transform unit 2 3 frequency spectrum having a frequency band up to a maximum fyb from a (reverse Ding The inverse FFT unit 23a output to the unit 23) obtains a digital time-domain signal from the input frequency spectrum by inverse Fourier transform. When a time-domain signal is obtained by the inverse Fourier transform, the phase between each frequency spectrum is set at random. The obtained time-domain signal is converted to a digital-to-analog converter 24 a
( 0/ 変換部 2 4 & ) に入力され、 0 / 変換部 2 4 &は、 ディ ジタ ルの時間領域信号をアナログの高周波信号に変換する。 D / A変換部 2 4 aから出力された高周波信号は高周波印加装置 1 0 5 aの増幅器 3 1 に入力され、 増幅器 3 1 は、 高周波制御部 2 1 aから与え られる増 幅率指示値に従って高周波信号を増幅する。 増幅器 3 1 で増幅された高 周波信号は、 ビームの通路である真空ダク ト内において垂直方向に並べ られた 2つの電極 3 2 a , 3 2 b に印加される。 高周波信号が印加され た電極 3 2 a , 3 2 b は、 その高周波信号と同 じ周波数成分を有する垂 直方向の高周波電磁場を発生し、 発生した高周波電磁場は真空ダク ト内 を通過するイオンビームに印加される。 (0 / conversion unit 24 &), and 0 / conversion unit 24 & To convert analog time domain signals into analog high frequency signals. The high-frequency signal output from the D / A conversion unit 24a is input to the amplifier 31 of the high-frequency application device 105a, and the amplifier 31 operates according to the amplification factor indicated by the high-frequency control unit 21a. Amplify high frequency signals. The high-frequency signal amplified by the amplifier 31 is applied to two vertically arranged electrodes 32a and 32b in a vacuum duct which is a beam path. The electrodes 32a and 32b to which the high-frequency signal is applied generate a vertical high-frequency electromagnetic field having the same frequency component as the high-frequency signal, and the generated high-frequency electromagnetic field is an ion beam that passes through the vacuum duct. Is applied to
この高周波電磁場には、 イオンビームのベータ トロ ン振動の周波数成 分が含まれているため、 高周波電磁場が印加されたイオンビームは軌道 勾配が変化し、 ペータ トロ ン振動振幅が変化する。 なお、 逆 F F T部 2 3 a において、 各周波数スぺク トル間の位相差をラ ンダムに したため ベータ トロ ン振動振幅の変化の方向 (ベータ トロ ン振動振幅が増加する のか減少するのか) は、 各イオン毎に異なる。 ベータ トロ ン振動振幅が 変化したイオンは、 第 2 図 ( b ) のベータ トロ ン振動振幅とチューンと の関係に従って、 チューンも変化する。 このベータ トロ ン振動振幅の変 化とチューンの変化を繰り返すこと によ って、 イオンビームの粒子数密 度分布は第 4図に示すよ う に垂直方向において平坦化される。 本実施例 の場合、 ビーム中心からビーム半径の ± 3 0 %の範囲で粒子数密度の誤 差を ± 4 〜 5 %程度に制御できる こ とが確かめ られた。  Since this high-frequency electromagnetic field contains the frequency component of the betatron oscillation of the ion beam, the orbit gradient of the ion beam to which the high-frequency electromagnetic field is applied changes, and the Petertron oscillation amplitude changes. In the inverse FFT section 23a, the phase difference between the frequency spectra is randomized, so the direction of the change in the betatron oscillation amplitude (whether the betatron oscillation amplitude increases or decreases) is Different for each ion. The tune of the ion whose betatron oscillation amplitude has changed also changes in accordance with the relationship between the betatron oscillation amplitude and the tune in Fig. 2 (b). By repeating the change of the betatron oscillation amplitude and the change of the tune, the particle number density distribution of the ion beam is flattened in the vertical direction as shown in FIG. In the case of this example, it was confirmed that the error of the particle number density could be controlled to about ± 4 to 5% within a range of ± 30% of the beam radius from the beam center.
次に、 高周波印加装置 1 0 5 b によ る水平方向の高周波電磁場の印加 方法について説明する。 第 5 図は、 高周波印加装置 1 0 5 b と、 高周波 印加装置 1 0 5 b を制御するための制御装置 2 の構成を示す。 第 5 図に おいて、 まず高周波信号制御部 2 1 b 力^ 周波数スぺク トル発生部 22 b に対して周波数帯域の最小値 f X a と最大値 f X b を指示する。 この最 小値 f X a及び最大値 f X b の決定方法は、 垂直方向における最小値 f y a及び最大値 f y b の場合と同様に、 水平方向において最大のベー タ トロ ン振動振幅を有するイオンのペータ トロ ン振動の周波数を最大値 f X b と して設定し、 最小値 X a と しては水平方向においてイオンビ ームの中心に位置するイオンのチューンよ り も小さな値に周回周波数 f r e v を乗算して求められる周波数を設定する。 Next, a method of applying a high-frequency electromagnetic field in the horizontal direction by the high-frequency application device 105b will be described. FIG. 5 shows the configuration of a high-frequency application device 105b and a control device 2 for controlling the high-frequency application device 105b. In FIG. 5, first, the high-frequency signal control unit 21b, the power frequency spectrum generation unit 22b , The minimum value f X a and the maximum value f X b of the frequency band are specified. The method for determining the minimum value f Xa and the maximum value f Xb is similar to the case of the minimum value fya and the maximum value fyb in the vertical direction. The frequency of the vibration of the ton is set as the maximum value fXb, and the minimum value Xa is multiplied by the frequency frev that is smaller than the tune of the ion located at the center of the ion beam in the horizontal direction. And set the required frequency.
周波数スペク トル発生部 2 2 b , 逆 F F T部 2 3 b 、 及び D Z A変換 部 2 4 b の動作は、 垂直方向における周波数スぺク トル発生部 2 2 a , 逆 F F T部 2 3 a、 及び0 /八変換部 2 4 a と同様であ り 、 D Z A変換 部 2 4 b から出力された高周波信号は高周波印加装置 1 0 5 b の増幅器 3 3 に入力される。 増幅器 3 3 は、 高周波制御部 2 1 b から与え られる 増幅率指示値に従って高周波信号を増幅する。 増幅器 3 3 で増幅された 高周波信号は、 ビームの通路である真空ダク 卜内に水平方向に並べられ た 2 つの電極 3 4 a , 3 4 b に印加される。 高周波信号が印加された電 極 3 4 a , 3 4 b は、 その高周波信号と同 じ周波数成分を有する水平方 向の高周波電磁場を発生し、 発生した高周波電磁場は真空ダク ト内を通 過するイオンビームに印加される。  The operations of the frequency spectrum generating section 22b, the inverse FFT section 23b, and the DZA converting section 24b are performed in the vertical frequency spectrum generating section 22a, the inverse FFT section 23a, and 0 In the same manner as in the / 8 conversion unit 24a, the high-frequency signal output from the DZA conversion unit 24b is input to the amplifier 33 of the high-frequency application device 105b. The amplifier 33 amplifies the high-frequency signal in accordance with the amplification factor indication value provided from the high-frequency control unit 21b. The high-frequency signal amplified by the amplifier 33 is applied to two electrodes 34a and 34b arranged in a horizontal direction in a vacuum duct which is a beam path. The electrodes 34a and 34b to which the high-frequency signal is applied generate a horizontal high-frequency electromagnetic field having the same frequency component as the high-frequency signal, and the generated high-frequency electromagnetic field passes through the vacuum duct. Applied to the ion beam.
この高周波電磁場には、 水平方向におけるイ オンビームのベータ トロ ン振動の周波数成分が含まれているため、 高周波電磁場が印加されたィ オンは水平方向における軌道勾配が変化し、 ベータ トロ ン振動振幅が変 化する。 ペータ トロン振動振幅が変化 したイオンは、 チューンも変化し このべ一タ トロ ン振動振幅の変化とチューンの変化を繰り返すこと によ つて、 イオンビームの水平方向における粒子数密度分布は垂直方向と同 様に平坦化される。 このよ う に、 垂直方向及び水平方向におけるイオンビームの粒子数密 度分布を平坦化する ことによって、 イオンビームの中心部付近における 粒子数密度が低下し、 空間電荷効果によるチューンの低下が抑制される ので、 共鳴によってイオンのペータ 卜ロ ン振動振幅が増加するのを防ぐ ことができる。 よって、 イオンビームの損失を低減する こ とができる。 なお、 本実施例では、 高周波信号制御部 2 1 a, 2 1 b から増幅器 3 1 , 3 3 に対して増幅率指示値を出力 しているが、 この増幅率指示値 を高く するほどイオンビームに印加される高周波電磁場の強度が強く な リ 、 イオンビームの粒子数密度分布の平坦化をよ リ早く 行う ことができ る。 逆に、 増幅率指示値を低く して、 高周波電磁場の強度を弱く すると . 粒子数密度分布の平坦化をゆつ く り と行う ことができる。 このよ う に、 高周波信号制御部 2 1 a, 2 l b から増幅器 3 1 , 3 3 に与える増幅率 指示値を制御するこ と によ リ 、 イオンビームに印加する高周波電磁場の 強度を制御して、 粒子数密度分布の平坦化の速度を制御する こ とができ る。 Since this high-frequency electromagnetic field contains the frequency component of the betatron oscillation of the ion beam in the horizontal direction, the ion to which the high-frequency electromagnetic field is applied changes the orbit gradient in the horizontal direction, and the betatron oscillation amplitude decreases. Change. The ion with the changed petatron oscillation amplitude also changes the tune, and by repeating the change of the betatron oscillation amplitude and the change of the tune, the particle number density distribution in the horizontal direction of the ion beam is the same as that in the vertical direction. Is flattened as follows. In this way, by flattening the particle number density distribution of the ion beam in the vertical and horizontal directions, the particle number density near the center of the ion beam is reduced, and the decrease in tune due to the space charge effect is suppressed. Therefore, it is possible to prevent an increase in the petatron oscillation amplitude of ions due to resonance. Therefore, the loss of the ion beam can be reduced. In this embodiment, the high-frequency signal control sections 21a and 21b output the amplification rate indication values to the amplifiers 31 and 33, but the higher the amplification rate indication value, the more the ion beam is output. The intensity of the high-frequency electromagnetic field applied to the ion beam can be increased, and the particle number density distribution of the ion beam can be flattened more quickly. Conversely, if the amplification factor indication value is lowered and the intensity of the high-frequency electromagnetic field is reduced, the particle number density distribution can be flattened slowly. In this way, by controlling the amplification factor indication value given to the amplifiers 31 and 33 from the high-frequency signal control units 21a and 2lb, the intensity of the high-frequency electromagnetic field applied to the ion beam can be controlled. In addition, the rate of flattening of the particle number density distribution can be controlled.
ま た、 本実施例では、 イ オンビームの入射が完全に終了 してから粒子 数密度分布の平坦化を行う よ う に説明 しているが、 イオンビームの入射 を行う前から高周波電磁場を印加しておく ことが望ま しい。  In this embodiment, the description is made such that the particle number density distribution is flattened after the ion beam is completely incident.However, a high-frequency electromagnetic field is applied before the ion beam is incident. It is desirable to keep it.
イオンビームの粒子数密度分布が平坦化されたら、 高周波印加装置 1 0 5 a , 1 0 5 b からの高周波電磁場の印加を停止する。 この状態で イオンビームはシンク ロ トロン 1 内を安定に周回する。 その過程で高周 波加速空胴 1 ◦ 6 からイオンビームに高周波電場を印加する こと によ り イオンビームにエネルギーが与え られ、 イオンビームは加速される。 高 周波加速空胴 1 0 6 からイオンビームに印加される高周波電場の周波数 は、 周回するイオンビームのベータ 卜 ロ ン振動周波数の整数倍に設定さ れる。 なお、 この高周波加速空胴 1 0 6 には、 制御装置 2 によ り指示さ れた値の電流が電源 5 e から供給される。 When the particle number density distribution of the ion beam is flattened, the application of the high-frequency electromagnetic field from the high-frequency application devices 105a and 105b is stopped. In this state, the ion beam stably circulates in synchrotron 1. In the process, energy is given to the ion beam by applying a high-frequency electric field to the ion beam from the high-frequency accelerating cavity 1◦6, and the ion beam is accelerated. The frequency of the high-frequency electric field applied to the ion beam from the high-frequency accelerating cavity 106 is set to an integral multiple of the betatron oscillation frequency of the orbiting ion beam. It is. The high-frequency accelerating cavity 106 is supplied with a current of a value specified by the control device 2 from a power supply 5e.
ま た、 高周波加速空胴 1 0 6 によ リ ビームを加速すると きには、 偏向 電磁石 1 0 3 , 四極発散電磁石 1 0 4 a及び四極収束電磁石 1 0 4 b 各 々の磁場強度比を一定に保ちつつ磁場強度を増加させる。 そのことによ リ 、 周回するイオンビームのエネルギーが上昇しても、 チューンが設定 された値からずれる ことなく 、 ま たイオンビームの軌道が設計軌道から はずれないため、 イオンビームを安定に周回させる こ とができる。  When the beam is accelerated by the high-frequency accelerating cavity 106, the ratio of the magnetic field intensity of the bending electromagnet 103, the quadrupole diverging electromagnet 104a and the quadrupole converging electromagnet 104b is kept constant. While increasing the magnetic field strength. As a result, even if the energy of the circulating ion beam increases, the tune does not deviate from the set value and the trajectory of the ion beam does not deviate from the design trajectory, so that the ion beam circulates stably. be able to.
シンク ロ ト ロ ン 1 内を周回するイオンビームのエネルギーが、 ォペレ —タが制御装置 2 に入力 した目標エネルギー(本実施例では 2 . 5 〔GeV〕) まで増加した ら、 高周波加速空胴 1 0 6 によるビームへのエネルギーの 付与を停止する。 このよ う にイオンビームを加速すると、 平坦であっ た イオンビームの粒子数密度分布はガウス分布に戻って しま う と言われて いる。 そこで、 再度、 粒子数密度分布の平坦化を行う必要がある。 しか しながら、 加速後のイオンビームのエネルギーは 5 〔 G e V〕に達してお リ 、 空間電荷効果によるチューンの低下は殆ど起こ らないため、 この状 態で前述のよ う に高周波電磁場をイオンビームに印加 したと しても、 粒 子数密度分布の平坦化を行う ことはできない。  When the energy of the ion beam circulating in the synchrotron 1 increases to the target energy (2.5 [GeV] in this embodiment) input by the operator to the controller 2, the high-frequency accelerating cavity 1 Stop applying energy to the beam by 0 6. It is said that when the ion beam is accelerated in this way, the particle number density distribution of the flat ion beam returns to a Gaussian distribution. Therefore, it is necessary to flatten the particle number density distribution again. However, the energy of the ion beam after acceleration reaches 5 [GeV], and there is almost no decrease in tune due to the space charge effect. In this state, the high-frequency electromagnetic field is generated as described above. Even when applied to an ion beam, it is not possible to flatten the particle number density distribution.
そこで、 本実施例では、 八極電磁石 1 0 7 によ リ イオンビームに八極 磁場を印加する こと によ って、 イオンビームのチューンをべ一タ トロ ン 振動振幅に応じて変化させる。 そのために、 まず制御装置 2 から電源装 置 5 f に対して電流指令を出力する。 電源装置 5 f は指示された値の電 流を八極電磁石 1 0 7 に対して出力する。 八極電磁石 1 0 7 は、 供給さ れた電流に応じた八極磁場を発生し、 イ オンビームに印加する。 八極電 磁石 1 0 7 によ って発せられる八極磁場は、 イ オンビームの軌道勾配を 変化させるが、 イオンのベータ トロ ン振動振幅が大きいほど軌道勾配の 変化量が大き く なるよ う に作用するため、 八極磁場が印加されたイオン ビームのチューンは、 第 2 図 ( b ) に示すよ う にベータ トロ ン振動振幅 に応じて変化する。 つま り 、 イオンビームに対して空間電荷効果と同様 に作用する。 なお、 八極磁場によるイオンビームのチューンの変化を効 率良く 行う ために、 本実施例のシンク ロ トロ ン 1 では八極電磁石 1 0 7 を四極発散電磁石 1 0 4 a及び四極収束電磁石 1 0 4 b に隣接させて配 置している。 つま り 、 シンク ロ トロ ン 1 において、 四極発散電磁石 104a ではイオンビームの垂直方向のビーム径が最大となっているので、 四極 発散電磁石 1 0 4 aの隣に配置された八極電磁石 1 0 7 によ リ 、 イオン ビームの垂直方向のチューンを効率良く 変化させる こ とができ、 逆に、 四極収束電磁石 1 0 4 b ではイオンビームの水平方向のビ一ム径が最大 となるので、 四極収束電磁石 1 0 4 aの隣に配置された八極電磁石 107 によ リ 、 イオンビームの水平方向のチューンを効率良く 変化させる こと ができる。 Therefore, in this embodiment, the tune of the ion beam is changed in accordance with the oscillation amplitude of the betatron by applying an octopole magnetic field to the ion beam by the octopole electromagnet 107. For this purpose, first, a current command is output from the control device 2 to the power supply device 5f. The power supply 5f outputs a current of the indicated value to the octopole magnet 107. The octopole electromagnet 107 generates an octopole magnetic field corresponding to the supplied current and applies it to the ion beam. The octopole magnetic field generated by the octopole magnet 107 changes the orbit gradient of the ion beam. The tune of the ion beam to which the octopole magnetic field is applied is tuned as shown in Fig. 2 (b), since the larger the betatron oscillation amplitude of the ions, the larger the change in the orbital gradient. As shown, it changes according to the amplitude of the betatron oscillation. That is, it acts on the ion beam in the same manner as the space charge effect. In order to efficiently change the tune of the ion beam due to the octopole magnetic field, in the synchrotron 1 of this embodiment, the octopole electromagnet 107 is replaced by the quadrupole diverging electromagnet 104 a and the quadrupole converging electromagnet 100. It is located adjacent to 4b. That is, in the synchrotron 1, the quadrupole diverging electromagnet 104a has the largest beam diameter in the vertical direction of the ion beam, so that the octopole electromagnet 104 arranged next to the quadrupole diverging electromagnet 104a is used. Thus, the tune of the ion beam in the vertical direction can be changed efficiently, and conversely, the quadrupole focusing electromagnet 104 b has the maximum beam diameter in the horizontal direction of the ion beam, so the quadrupole focusing With the octopole electromagnet 107 arranged next to the electromagnet 104a, the tune of the ion beam in the horizontal direction can be changed efficiently.
上述のよ う に して、 八極電磁石 1 0 7 によ リ イオンビームのチューン を変化させると共に、 再び高周波印加装置 1 0 5 a によってイオンビー ムに垂直方向の高周波電磁場を印加する。 なお、 高周波信号制御部 21 a から周波数スぺク トル発生部 2 2 a に出力する周波数帯域の最小値 fy a 及び最大値 f y b の決定方法については、 第 2 図( b ) を用いて説明 した 加速前の平坦化の場合と同様であるので、 詳細な説明は省略するが、 加 速前よ リ もイオンビームのエネルギーが高く なっているので、 f r e v が大き く 、 そのため最小値 f y a , 最大値 f y b共に加速前の平坦化の と き よ り も大き く なる。 この高周波電磁場の印加によ り 、 ベータ トロ ン 振動振幅の変化とチューンの変化が繰返し起こ リ 、 再びイオンビームの 粒子数密度分布が平坦化される。 ま た、 水平方向についても垂直方向と 同様に、 高周波印加装置 1 0 5 b によ り高周波電磁場を印加して、 再度 イオンビームの粒子数密度分布の平坦化を行う。 As described above, the tune of the ion beam is changed by the octopole electromagnet 107, and the high-frequency electromagnetic field in the vertical direction is again applied to the ion beam by the high-frequency application device 105a. The method of determining the minimum value fya and the maximum value fyb of the frequency band output from the high-frequency signal control unit 21a to the frequency spectrum generation unit 22a has been described with reference to FIG. 2 (b). The detailed description is omitted because it is the same as the case of the flattening before acceleration. However, since the energy of the ion beam is higher than before acceleration, frev is large, and therefore the minimum value fya and the maximum value Both fyb are larger than before flattening before acceleration. By the application of this high-frequency electromagnetic field, changes in the amplitude of the betatron oscillation and changes in the tune occur repeatedly, and again the ion beam The particle number density distribution is flattened. In the horizontal direction, similarly to the vertical direction, a high-frequency electromagnetic field is applied by the high-frequency application device 105b to flatten the particle number density distribution of the ion beam again.
イオンビームの粒子数密度分布が平坦化されたら、 高周波印加装置 1 0 5 a , 1 0 5 b からの高周波電磁場の印加を停止し、 ま た八極電磁 石 1 0 7 からの八極磁場の印加を停止する。 次に、 パルス電磁石 1 0 8 に対して電源装置 5 gから電流を供給し、 パルス電磁石 1 0 8 から発せ られる磁場によ リ イオンビームの軌道を設計軌道からシンク ロ トロ ン 1 の外側方向にずら してい く 。 そ してイオンビームを出射器 1 0 9 に導き 出射器 1 0 9 によ リ イオンビームをシンク ロ トロ ン 1 から出射する。 シンク ロ ト ロ ン 1 から出射されたイオンビームは、 ビーム輸送系を介 して照射室 4 に輸送され、 照射室 4 に配置された照射装置 (図示せず) によ り タ ングステンに照射される。 タ ングステンはイオンビームが照射 されると中性子を発生するが、 このタ ングステンから発生する中性子の 強度は照射されるイオンビームの強度 (粒子数密度) に依存するため、 本実施例のよ う に粒子数密度分布が平坦化されたイオンビームをタ ング ステンに照射する こ と によ リ 、 強度分布の平坦な中性子を得る ことがで きる。  When the particle number density distribution of the ion beam is flattened, the application of the high-frequency electromagnetic field from the high-frequency applying devices 105 a and 105 b is stopped, and the octopole magnetic field from the octopole magnet 107 is removed. Stop the application. Next, a current is supplied to the pulsed electromagnet 108 from the power supply 5 g, and the magnetic field generated from the pulsed electromagnet 108 moves the ion beam trajectory outward from the design trajectory to the outside of the synchrotron 1. I will shift it. Then, the ion beam is guided to the emitter 109 and the ion beam is emitted from the synchrotron 1 by the emitter 109. The ion beam emitted from the synchrotron 1 is transported to the irradiation chamber 4 via a beam transport system, and is irradiated on tungsten by an irradiation device (not shown) arranged in the irradiation chamber 4. You. Tungsten generates neutrons when irradiated with an ion beam, but the intensity of the neutrons generated from the tungsten depends on the intensity (particle number density) of the irradiated ion beam. By irradiating tungsten with an ion beam having a flattened particle number density distribution, neutrons having a flat intensity distribution can be obtained.
以上説明したよ う に、 本実施例によれば、 空間電荷効果の影響が殆ど ないよ う な加速後のイオンビームに対しても、 八極電磁石 1 0 7 によつ てチューンをベータ トロ ン振動振幅に応じて変化させた後、 高周波電磁 場を印加する ことで、 イオンビームの粒子数密度分布を平坦化する こ と ができる。 つま り 、 イオンビームの電流及びエネルギーの値によ らず、 イオンビームの粒子数密度分布を平坦化する ことができる。  As described above, according to this embodiment, the tuned beta-tron by the octopole electromagnet 107 can be applied to the ion beam after acceleration, which is hardly affected by the space charge effect. By applying a high-frequency electromagnetic field after changing according to the vibration amplitude, the particle number density distribution of the ion beam can be flattened. That is, the particle number density distribution of the ion beam can be flattened irrespective of the current and energy values of the ion beam.
ま た、 本実施例のよ う に、 イオンビームを加速 した後に粒子線密度分 布の平坦化を行う ため、 粒子線密度分布が平坦化された状態でイオンビ —ムをシンク ロ トロ ン 1 から出射する ことができる。 よって、 そのィォ ンビ一ムをタ ングステンに照射した場合に、 強度分布の平坦な中性子が 得られる。 Also, as in this embodiment, after accelerating the ion beam, the particle beam density Since the cloth is flattened, the ion beam can be emitted from the synchrotron 1 in a state where the particle beam density distribution is flattened. Therefore, when the beam is irradiated on tungsten, neutrons with a flat intensity distribution can be obtained.
なお、 本実施例では、 5 0 0 〔M e V〕で 5 〔A〕のイオンビームを、 2 . 5 C G e V ] まで加速する例について説明したが、 本発明が適用可能 なイオンビームのエネルギーや電流は上記の値に限られるものではない 例えば、 中性子発生に用いられるイオンビームと して一般的な、 加速後 のエネルギーが 1 〔 G e V〕以上 (例えば、 1 〜 2 0 〔 G e V〕) の範囲内 で電流が 1 〜 5 0 〔A〕の範囲内であるよ う なイオンビームを扱う シンク ロ トロ ンに対して本発明は有効である。 なぜならば、 エネルギーが 1 〔G e V〕以上の範囲内で電流が 1 ~ 5 0 〔A〕の範囲内であるよ う なィォ ンビームには空間電荷効果によるチューンの変化が起こ らないからであ る。  In this embodiment, an example in which the ion beam of 5 [A] is accelerated at 500 [MeV] to 2.5 CGeV] has been described, but the ion beam to which the present invention can be applied is accelerated. The energy and current are not limited to the above values. For example, the energy after acceleration, which is a general ion beam used for neutron generation, is 1 [GeV] or more (for example, 1 to 20 [G The present invention is effective for a synchrotron that handles an ion beam in which the current is within the range of 1 to 50 [A] within the range of [e V]). This is because the ion beam whose energy is in the range of 1 to 50 [A] and whose energy is in the range of 1 [GeV] or more does not change in tune due to the space charge effect. It is.
ま た、 本実施例では、 5 0 0 〔M e V〕で 5 〔A〕のイオンビームをシン ク ロ トロ ン 1 に入射して加速を行う前にイオンビームの粒子数密度分布 の平坦化を行っているが、 シンク ロ トロ ン 1 に入射するイオンビームの エネルギーがもっ と高いか、 若し く は電流が小さいために空間電荷効果 によるチューンの変化が発生しないよ う な場合には、 イオンビームの加 速前にイオンビームの粒子数密度分布の平坦化を行う必要はな く 、 ィォ ンビームの加速後にのみイオンビームの粒子数密度分布の平坦化を行え ば良い。  In this embodiment, before the ion beam of 500 [A] at 500 [MeV] is incident on the synchrotron 1 and accelerated, the particle number density distribution of the ion beam is flattened. However, if the energy of the ion beam incident on synchrotron 1 is higher or the current is too small to cause a change in tune due to the space charge effect, It is not necessary to flatten the particle number density distribution of the ion beam before accelerating the ion beam, but it is sufficient to flatten the particle number density distribution of the ion beam only after acceleration of the ion beam.
更に、 本実施例では、 イオンビームを加速する前の粒子数密度分布の 平坦化に空間電荷効果によるチューンの変化を利用 しているが、 八極電 磁石 1 0 7 を励磁してチューンを変化させても良い。 但し、 本実施例の よう に空間電荷効果を利用 した方が八極電磁石 1 0 7 の制御を省く こと ができ、 ま た八極電磁石に供給する電流も節約できる ことは言う までも ない。 Furthermore, in this embodiment, the change in tune due to the space charge effect is used to flatten the particle number density distribution before accelerating the ion beam, but the tune is changed by exciting the octupole electromagnet 107. You may let it. However, in this embodiment, It is needless to say that the use of the space charge effect can save the control of the octopole magnet 107 and also reduce the current supplied to the octopole magnet.
(実施例 2 )  (Example 2)
本発明の他の実施例である円形加速器システムについて説明する。 な お、 本実施例の円形加速器システムは、 シンク ロ ト ロ ンからのイオンビ 一ムの出射を共鳴を用いて行う点と、 シンク ロ トロ ンから出射したィォ ンビームを癌患者の患部に照射して癌治療を行う点で前述の実施例 1 と 異なる。 以下、 実施例 1 と異なる点について主に説明する。  A circular accelerator system according to another embodiment of the present invention will be described. The circular accelerator system according to the present embodiment is characterized in that the ion beam is emitted from the synchrotron using resonance, and that the ion beam emitted from the synchrotron is irradiated to the affected part of the cancer patient. This embodiment differs from the first embodiment in that cancer treatment is performed. Hereinafter, points different from the first embodiment will be mainly described.
第 6 図は、 本実施例の円形加速器システムの構成を示す。 本実施例の 円形加速器システムでは、 3 〔M e V〕のイオンビームをシンク ロ トロ ン 1 に 4 0 〔m A〕入射する。 本実施例でもイオンビームは多重回転入射法 によ り入射する。 ま た、 シンク ロ トロ ン 1 にイオンビームを入射してか ら加速後のイ オンビームの粒子数密度分布の平坦化を行う までのシンク ロ トロ ン 1 の運転方法は前述の実施例 1 と同様である。 なお、 本実施例 では、 イオンビームを 2 5 0 〔M e V〕まで加速する。  FIG. 6 shows the configuration of the circular accelerator system of the present embodiment. In the circular accelerator system of this embodiment, an ion beam of 3 [MeV] is incident on the synchrotron 1 at 40 [mA]. Also in this embodiment, the ion beam is incident by the multiple rotation incidence method. The operation method of the synchrotron 1 from the injection of the ion beam to the synchrotron 1 to the flattening of the particle number density distribution of the ion beam after acceleration is the same as in the first embodiment. It is. In this embodiment, the ion beam is accelerated to 250 [MeV].
本実施例におけるイオンビームのシンク ロ トロ ン 1 からの出射方法に ついて詳細に説明する。 加速後のイオンビームの粒子数密度分布の平坦 化が終わって、 高周波印加装置 1 0 5 a , 1 0 5 b からの高周波電磁場 の印加を停止し、 ま た、 八極電磁石 1 0 7 からの八極磁場の印加を停止 したら、 次に、 六極電磁石 1 1 1 を励磁すると共に、 四極発散電磁石 1 0 4 a及ぴ四極収束電磁石 1 0 4 b の励磁量を変化させる。 このと き 四極発散電磁石 1 0 4 a及び四極収束電磁石 1 0 4 b からイオンビーム に印加される磁場の強度を制御してイオンビームのチューンを 1 . 3 2 に設定すると共に、 六極電磁石 1 1 1 からイ オンビームに印加する六極 磁場の強度を制御して、 ベータ トロ ン振動振幅の最も大きなイオンのチ ユーンが 1 . 3 3 となるよ う に調節する。 なお、 この六極電磁石 1 1 1 の励磁量は予め計算若し く は実験によ リ 求めておき、 制御装置 2 はその 値を六極電磁石 1 1 1 に電流を供給する電源装置 5 h に対して出力する , 次に、 高周波印加装置 1 0 5 b によ り ビームに水平方向の高周波電磁 場を印加する。 なお、 イオンビームに印加する高周波電磁場の周波数帯 域は、 実施例 1 において説明 した粒子数密度分布の平坦化を行う と きと 同様に、 全てのイオンのペータ ト ロ ン振動周波数が含まれる よ う に設定 すれば良い。 この高周波電磁場が印加される こと によ リ イオンビームの 軌道勾配が変化し、 イオンビームのベータ 卜ロ ン振動振幅が増加する。 そ して、 ベータ トロン振動振幅の最も大きなイオンのチューンが 1 , 33で あるため、 チューンが 1 . 3 3 であるイオンのベータ トロ ン振動振幅が 増加してチューンが 1 + 1 ノ 3 を超えると、 3 次共鳴によ リ イオンビー ムのべ一タ トロン振動振幅が急激に増大する。 つま り 、 イオンビームが 安定限界をこえる ことによ リペータ トロ ン振動振幅が急激に増加する。 ベータ トロ ン振動振幅が増加したイオンビームは出射器 1 0 9 に導かれ 出射器 1 0 9 によってシンク ロ トロ ン 1 から出射される。 上述のよ う に シンク ロ トロ ン 1 において、 高周波印加装置 1 0 5 b から高周波電磁場 が印加されている間は、 イオンビームのベータ トロ ン振動振幅とチュー ンは絶えず変化してお り 、 チューンが 1 + 1 / 3 を超えたものから順に 出射されていく 。 The method of extracting the ion beam from the synchrotron 1 in this embodiment will be described in detail. After the flattening of the particle number density distribution of the ion beam after acceleration, the application of the high-frequency electromagnetic field from the high-frequency applying devices 105a and 105b was stopped, and the octupole electromagnet 107 When the application of the octopole magnetic field is stopped, the hexapole electromagnet 111 is excited, and the excitation amounts of the quadrupole diverging electromagnet 104a and the quadrupole converging electromagnet 104b are changed. At this time, the tune of the ion beam is set to 1.32 by controlling the intensity of the magnetic field applied to the ion beam from the quadrupole diverging electromagnet 104a and the quadrupole focusing electromagnet 104b, and the hexapole electromagnet 1 Six poles applied to the ion beam from 1 1 The strength of the magnetic field is controlled so that the ion with the largest betatron oscillation amplitude has a channel of 1.33. The amount of excitation of the hexapole electromagnet 111 is calculated or obtained in advance by experiment, and the controller 2 sends the value to the power supply unit 5 h that supplies current to the hexapole electromagnet 111. Then, a horizontal high-frequency electromagnetic field is applied to the beam by the high-frequency application device 105b. Note that the frequency band of the high-frequency electromagnetic field applied to the ion beam includes the petatron oscillation frequency of all ions as in the case of flattening the particle number density distribution described in the first embodiment. It should be set as follows. The application of this high-frequency electromagnetic field changes the trajectory gradient of the ion beam and increases the amplitude of the betatron oscillation of the ion beam. Since the tune of the ion with the largest betatron oscillation amplitude is 1, 33, the betatron oscillation amplitude of the ion with the tune of 1.33 increases, and the tune exceeds 1 + 1 no3. Then, the beta resonance oscillation amplitude of the ion beam sharply increases due to the third order resonance. In other words, as the ion beam exceeds the stability limit, the amplitude of the repeater-tron oscillation increases sharply. The ion beam having an increased betatron oscillation amplitude is guided to the emitter 109 and is emitted from the synchrotron 1 by the emitter 109. As described above, in the synchrotron 1, while the high-frequency electromagnetic field is being applied from the high-frequency application device 105b, the betatron oscillation amplitude and the tune of the ion beam are constantly changing. Are emitted in order from those exceeding 1 + 1/3.
なお、 本実施例では、 イオンビームをシンク ロ ト ロ ン 1 から水平方向 に取り 出すため、 高周波印加装置 1 0 5 b によ リ イオンビームに高周波 電磁場を印加しているが、 イ オンビームをシンク ロ トロ ン 1 の垂直方向 に取り 出す場合には、 高周波印加装置 1 0 5 a によ ってイオンビームに 高周波電磁場を印加すれば良い。 In this embodiment, the high-frequency electromagnetic field is applied to the ion beam by the high-frequency application device 105b in order to extract the ion beam in the horizontal direction from the synchrotron 1. When extracting in the vertical direction of the rotor 1, the high-frequency application device 105 a What is necessary is just to apply a high frequency electromagnetic field.
シンク ロ トロ ン 1 から出射されたイオンビームはビーム輸送系によ リ 照射室 4 に導かれ、 照射室 4 に設置された照射装置 (図示せず) によつ て癌患者の患部に照射され、 癌治療が行われる。  The ion beam emitted from the synchrotron 1 is guided to the irradiation chamber 4 by the beam transport system, and is irradiated to the affected part of the cancer patient by the irradiation device (not shown) installed in the irradiation chamber 4. The cancer treatment is performed.
本実施例によれば、 イオンビームの粒子数密度分布を平坦化した後に イオンビームの出射を行う ため、 出射の際に印加する高周波電磁場の強 度を一定に保つこ と によ り 、 シンク ロ トロ ン 1 から出射されるイオンビ ームの電流値の変動を抑制する ことができる。  According to the present embodiment, since the ion beam is emitted after the particle number density distribution of the ion beam is flattened, the intensity of the high-frequency electromagnetic field applied at the time of emission is kept constant. Fluctuations in the current value of the ion beam emitted from the tron 1 can be suppressed.
ま た、 本実施例では、 前述の実施例 1 と同様の方法にてイオンビーム の粒子数密度分布を平坦化するため、 実施例 1 と同様にイオンビームの 電流値及びエネルギーによ らず、 イオンビームの粒子数密度分布を平坦 化する ことができる。  Further, in this embodiment, the particle number density distribution of the ion beam is flattened by the same method as in the first embodiment, and therefore, as in the first embodiment, regardless of the current value and energy of the ion beam. The particle number density distribution of the ion beam can be flattened.
なお、 本実施例では、 3 〔M e V〕で 4 0 〔m A〕のイオンビームを、 2 5 0 〔 M e V〕まで加速する例について説明 したが、 本発明が適用可能 なイオンビームのエネルギーや電流は上記の値に限られるものではない 例えば、 癌治療に用いられるイオンビームと して一般的な、 加速後のェ ネルギ一が 7 0 ~ 2 5 0 〔M e V〕の範囲内で電流が 1 0 〜 1 0 0 〔m A〕 の範囲内である よ う なイオンビームを扱う シンク ロ トロ ンに対して本発 明は有効である。 なぜならば、 エネルギーが 7 0 〜 2 5 0 〔 M e V〕の範 囲内で電流が 1 0 〜 1 0 0 〔πι Α〕の範囲内であるよ う なイオンビームに は空間電荷効果によるチューンの変化が起こ らないからである。  In the present embodiment, an example in which an ion beam of 40 [mA] is accelerated to 250 [MeV] at 3 [MeV], but an ion beam to which the present invention can be applied is described. The energy and current of the ion beam are not limited to the above values.For example, the energy after acceleration, which is a typical ion beam used for cancer treatment, is in the range of 70 to 250 [MeV]. The present invention is effective for a synchrotron that handles an ion beam in which the current is within the range of 100 to 100 [mA]. This is because the ion beam whose energy is in the range of 70 to 250 [MeV] and the current is in the range of 10 to 100 [πι Α] is not tuned by the space charge effect. No change occurs.
ま た、 本実施例では、 3 〔M e V〕で 4 0 〔m A〕のイオンビームをシン ク ロ トロン 1 に入射して加速を行う前にイオンビームの粒子数密度分布 の平坦化を行っているが、 シンク ロ 卜 ロ ン 1 に入射するイ オンビームの エネルギーがもっ と高いか、 若し く は電流が小さいために空間電荷効果 によるチューンの変化が発生しないよ う な場合には、 イオンビームの加 速前にイオンビームの粒子数密度分布の平坦化を行う必要はなく 、 ィォ ンビームの加速後にのみイオンビームの粒子数密度分布の平坦化を行え ば良い。 In addition, in this embodiment, before the ion beam of 40 [mA] at 3 [MeV] is incident on the synchrotron 1 and accelerated, the particle number density distribution of the ion beam is flattened. Space charge effect due to the higher energy of the ion beam incident on synchrotron 1 or the lower current. If the tune does not change due to the ion beam, it is not necessary to flatten the particle number density distribution of the ion beam before accelerating the ion beam, and only after accelerating the ion beam. What is necessary is to flatten the distribution.
なお、 以上説明した実施例 1 及び実施例 2 では、 多重回転入射法によ リ イオンビームをシンク ロ トロ ンに入射しているが、 電子冷却によるィ オンビーム径の減少を利用 してイオンビームを多重入射しても よい。  In the first and second embodiments described above, the ion beam is incident on the synchrotron by the multiple rotation incidence method, but the ion beam is reduced by utilizing the reduction of the ion beam diameter due to the electronic cooling. Multiple incidences may be used.
ま た、 前述の実施例 2 におけるシンク ロ トロ ン 1 からのイオンビーム の出射に、 共鳴の安定限界を徐々 に狭く してい く 方法を用いても構わな い。 その場合にも共鳴の安定限界を狭く していく 速度を一定に保つこと によ って、 出射されるイオンビームの電流値の変動を抑制する ことが可 能となる。  Further, the method of gradually reducing the stability limit of resonance may be used for the emission of the ion beam from the synchrotron 1 in the second embodiment. Even in such a case, it is possible to suppress the fluctuation of the current value of the emitted ion beam by keeping the speed at which the stability limit of the resonance is narrowed constant.
(実施例 3 )  (Example 3)
本発明の他の実施例である円形加速器システムについて説明する。 な お、 本実施例の円形加速器システムは、 電子ビームを加速 ' 蓄積して電 子から発せられる放射光を取り 出す蓄積リ ングを有する円形加速器シス テムである。 以下、 前述の実施例 1 と異なる点について説明する。 第 7 図は、 本実施例の円形加速器システムの構成を示す。 第 7 図にお いて、 前段加速器 3 は、 2 0 0 〔M e V〕の電子ビームを出射する。 前段 加速器 3 から出射された電子ビームはビーム輸送系を介して蓄積リ ング 6 に入射される。 蓄積リ ング 6 に入射された電子ビームは、 放射光を放 出 しながらビーム径が減少する。 この現象を放射減衰と呼ぶが、 本実施 例の蓄積リ ング 6 ではこの放射減衰によ る ビーム径の減少を利用 して多 重入射を行い、 最終的には数 1 0 0 〔m A〕程度の電子ビームを蓄積リ ン グ 6 に入射する。 電子ビームの入射が終了 したら、 実施例 1 と同様に して粒子数密度分 布の平坦化と加速を行う 。 本実施例では、 5 0 0 〔M e V〕 まで電子ビー ムを加速する。 加速された電子ビームは、 そのエネルギーに応じた波長 の放射光を放出する。 前述のよ う に電子ビームは、 放射光の放出と共に そのビーム径が減少 して しま う 。 そこで、 本実施例では、 電子ビームの ビーム径の増加を行う が、 ビーム径の増加は粒子数密度分布の平坦化と 同時に行う こ とができる。 以下、 詳細に説明する。 A circular accelerator system according to another embodiment of the present invention will be described. The circular accelerator system according to the present embodiment is a circular accelerator system having a storage ring for accelerating and storing an electron beam and extracting radiation emitted from the electron. Hereinafter, differences from the first embodiment will be described. FIG. 7 shows the configuration of the circular accelerator system of the present embodiment. In FIG. 7, the pre-accelerator 3 emits an electron beam of 200 [MeV]. The electron beam emitted from the pre-accelerator 3 is incident on the storage ring 6 via the beam transport system. The beam diameter of the electron beam incident on the storage ring 6 decreases while emitting emitted light. This phenomenon is called radiation attenuation.In the storage ring 6 of the present embodiment, multiple incidences are performed by utilizing the reduction of the beam diameter due to the radiation attenuation, and finally several 100 [mA] A small amount of electron beam is incident on the storage ring 6. After the injection of the electron beam is completed, the particle number density distribution is flattened and accelerated in the same manner as in the first embodiment. In this embodiment, the electron beam is accelerated to 500 [MeV]. The accelerated electron beam emits radiation with a wavelength corresponding to its energy. As mentioned above, the beam diameter of an electron beam decreases as the emitted light is emitted. Therefore, in the present embodiment, the beam diameter of the electron beam is increased, but the increase in the beam diameter can be performed simultaneously with the flattening of the particle number density distribution. The details will be described below.
ビーム径の増加及び粒子数密度分布の平坦化に際し、 八極電磁石 107 を励磁すると ともに、 高周波印加装置 1 0 5 a によって垂直方向の高周 波電磁場の印加を行う。 高周波電磁場の周波数帯域、 すなわち高周波信 号制御部 2 1 aから出力する周波数帯域の最小値 f y a及び最大値 fyb の決定方法について説明する。 第 8 図は、 八極電磁石 1 0 7 を励磁した と きの電子ビームのベータ トロ ン振動振幅とチューンとの関係を示す。 第 8 図において、 加速終了後の電子ビームのペータ トロ ン振動振幅は y b O であ り 、 必要と される ( ビーム径増加後の) ベータ トロ ン振動振 幅を y b とすると、 ベータ ト ロ ン振動振幅 y b 0 , y b に対応するチュ —ンはそれぞれ b 0 , v b であ り 、 更にビーム中心に位置する電子の チューンは υ aである。 高周波信号制御部 2 1 aから出力する最小値 f y a にはチューン a に電子ビームの周回周波数 f r e v をかけた値 すなわちビーム中心に位置する電子のペータ トロ ン振動周波数を設定し 最大値 f y b にはチューン v b に電子ビームの周回周波数 f r e v をか けた値、 すなわち必要とされるベータ ト ロ ン振動振幅の電子のベータ ト 口 ン振動周波数を設定する。  Upon increasing the beam diameter and flattening the particle number density distribution, the octupole electromagnet 107 is excited, and a high frequency electromagnetic field in the vertical direction is applied by the high frequency application device 105a. A method of determining the minimum value fya and the maximum value fyb of the frequency band of the high-frequency electromagnetic field, that is, the frequency band output from the high-frequency signal control unit 21a will be described. Fig. 8 shows the relationship between the betatron oscillation amplitude of the electron beam and the tune when the octopole electromagnet 107 was excited. In Fig. 8, the Petertron oscillation amplitude of the electron beam after the end of acceleration is ybO, and if the required betatron oscillation amplitude (after the beam diameter is increased) is yb, the betatron oscillation amplitude is ybO. The tunes corresponding to the vibration amplitudes yb0 and yb are b0 and vb, respectively, and the tune of the electron located at the beam center is υa. The minimum value fya output from the high-frequency signal control unit 21a is set to the value obtained by multiplying the tune a by the revolving frequency frev of the electron beam, that is, the Petertron oscillation frequency of the electron located at the beam center, and the maximum value fyb is set to the tune The value obtained by multiplying vb by the orbital frequency frev of the electron beam, that is, the beta-tone oscillation frequency of the electron with the required beta-ton oscillation amplitude is set.
このよ う な周波数帯域の高周波電磁場を電子ビームに印加する ことに よって、 まずは、 電子ビームの軌道勾配が変化する。 つま り 、 電子ビ一 ムのベータ ト ロ ン振動振幅が変化する。 ベータ トロ ン振動振幅が増加す ると、 それに応じてビームのチューンも変化する。 こ こで、 例えば、 ぺ ータ トロ ン振動振幅が y b 0 である電子のベータ トロ ン振動振幅が増加 する方向に変化した場合を考えると、 高周波電磁場の周波数帯域は最大 値が f y b であるので、 更にベータ トロ ン振動振幅が変化する。 つま り . 高周波電磁場が印加されている周波数帯域の範囲内で電子ビームのベー タ トロ ン振動振幅は変化を繰返すので、 最終的にはビーム径は y b まで 広がるととも に、 電子ビームの粒子数密度分布が平坦化される。 なお、 水平方向についても、 高周波印加装置 1 0 5 b を用いて同様にイオンビ ームのビーム径の拡大と、 粒子数密度分布の平坦化を行う ことができる , なお、 八極電磁石 1 0 7 の励磁量を低下させれば、 印加する高周波電磁 場の周波数帯域を狭く する こ とも可能である。 By applying a high-frequency electromagnetic field in such a frequency band to the electron beam, first, the orbit gradient of the electron beam changes. In other words, electronic The betatron oscillation amplitude of the system changes. As the betatron oscillation amplitude increases, so does the beam tune. Here, for example, when the betatron oscillation amplitude of an electron whose betatron oscillation amplitude is yb 0 changes in the direction of increasing, the maximum frequency band of the high-frequency electromagnetic field is fyb. Then, the betatron oscillation amplitude changes. In other words, the betatron oscillation amplitude of the electron beam repeatedly changes within the frequency band where the high-frequency electromagnetic field is applied, so that the beam diameter eventually expands to yb and the number of particles in the electron beam. The density distribution is flattened. In the horizontal direction, the beam diameter of the ion beam can be similarly increased and the particle number density distribution can be flattened using the high-frequency application device 105b. If the amount of excitation is reduced, the frequency band of the applied high-frequency electromagnetic field can be narrowed.
このよう に して、 電子ビームのビーム径を拡大する ことによって、 得 られる放射光の照射野を拡大する こ とができ、 かつ、 電子ビームの粒子 数密度分布を平坦化する こと によ り放射光の強度分布を平坦化する こと が可能となる。 本実施例では、 電子ビームが偏向電磁石 1 0 3 ' によつ て偏向されると きに、 放出される放射光を取り 出 し、 放射光利用装置 7 において利用される。  In this way, by expanding the beam diameter of the electron beam, it is possible to expand the irradiation field of the obtained synchrotron radiation, and to radiate by flattening the particle number density distribution of the electron beam. It is possible to flatten the light intensity distribution. In this embodiment, when the electron beam is deflected by the bending electromagnet 103 ′, the emitted radiation is extracted and used in the radiation utilization device 7.
本実施例では、 実施例 1 と同様に電子ビームの電流値及びエネルギー によ らず、 電子ビームの粒子数密度分布を平坦化する ことができる。 なお、 本実施例では、 2 0 0 〔1^ 6 〕で 1 0 0 〔]11八〕の電子ビ一ムを 5 0 0 〔M e V〕まで加速する例について説明 したが、 本発明が適用可能 な電子ビームのエネルギーや電流は上記の値に限られるものではない。 例えば、 放射光取り 出 しに用い られる電子ビームと して一般的な、 加速 後のエネルギーが 5 0 0 〜 3 0 0 0 〔M e V〕の範囲内で電流が 1 0 0 〜 1 0 0 0 〔m A〕の範囲内であるよ う な電子ビームを扱う シンク ロ トロ ン に対して本発明は有効である。 なぜならば、 エネルギーが 5 0 0 ~ 3000 〔M e V〕の範囲内で電流が 1 0 0 ~ 1 0 0 0 〔m A〕の範囲内である よ う な電子ビームには空間電荷効果によるチューンの変化が起こ らないから である。 In this embodiment, the particle number density distribution of the electron beam can be flattened irrespective of the current value and energy of the electron beam as in the first embodiment. In this embodiment, an example in which the electron beam of 100 [] 118] is accelerated to 500 [MeV] by 200 [1 ^ 6] has been described. The applicable energy and current of the electron beam are not limited to the above values. For example, when the energy after acceleration, which is a general electron beam used for extracting synchrotron radiation, is within the range of 500 to 300 [MeV], the current is 100 to The present invention is effective for a synchrotron that handles an electron beam in the range of 100 [mA]. This is because the electron beam whose energy is in the range of 500 to 3000 [MeV] and the current is in the range of 100 to 100 [mA] is tuned by the space charge effect. This is because no change occurs.
ま た、 本実施例では、 2 0 0 〔M e V〕で 1 0 0 〔m A〕の電子ビームを 蓄積リ ング 6 に入射して加速を行う前に電子ビームの粒子数密度分布の 平坦化を行っている力 、 蓄積リ ング 6 に入射する電子ビームのエネルギ 一がもっ と高いか、 若し く は電流が小さいために空間電荷効果によ るチ ユーンの変化が発生しないよ う な場合には、 電子ビームの加速前に電子 ビームの粒子数密度分布の平坦化を行う必要はなく 、 電子ビームの加速 後にのみ電子ビームの粒子数密度分布の平坦化を行えば良い。  Further, in this embodiment, before the electron beam of 100 [mA] at 200 [MeV] is incident on the storage ring 6 and accelerated, the particle number density distribution of the electron beam is flattened. The energy of the electron beam incident on the storage ring 6 is higher, or the current is small, so that the change in the channel due to the space charge effect does not occur. In this case, it is not necessary to flatten the particle number density distribution of the electron beam before accelerating the electron beam, but it is sufficient to flatten the particle number density distribution of the electron beam only after accelerating the electron beam.
なお、 本実施例で説明 した粒子数密度分布を平坦化すると共にビーム 径を拡大する方法は、 前述の実施例 1 及び実施例 2 に対しても適用する ことができる。  Note that the method of flattening the particle number density distribution and expanding the beam diameter described in the present embodiment can be applied to the above-described first and second embodiments.
以上、 本発明の各実施例について説明 したが、 本発明が適用できる円 形加速器は上述の 3 つの円形加速器に限られるものではな く 、 例えば、 イオンビームを出射して生物に照射する実験に用いるシンク ロ トロ ンや 電子と陽電子と を同時に加速して衝突させる蓄積リ ングなど、 荷電粒子 ビームを周回させながら加速する円形加速器であれば、 本発明を適用す る ことができる。 ま た、 上述の各実施例では、 イオンビームのチューン をベータ トロ ン振動振幅に応じて変化させるために八極電磁石を励磁し ている力^ 八極電磁石に限らず六極以上の多極電磁石であれば用いる こ とができる。 産業上の利用可能性 Although the embodiments of the present invention have been described above, the circular accelerator to which the present invention can be applied is not limited to the three circular accelerators described above. The present invention can be applied to any circular accelerator that accelerates while orbiting a charged particle beam, such as a synchrotron to be used or a storage ring for simultaneously accelerating and colliding electrons and positrons. In each of the above-described embodiments, the force that excites the octopole electromagnet to change the tune of the ion beam in accordance with the amplitude of the betatron oscillation is not limited to the octopole electromagnet but is a multipole electromagnet having six or more poles. Can be used. Industrial applicability
本発明は、 イオンビームを加速して出射するシンク ロ ト ロ ン、 或いは 電子ビームを加速して放射光を取り 出す蓄積リ ング等に適用する こ とが できる。 この適用によ り 、 シンク ロ トロ ンや蓄積リ ングにおいてビーム の粒子数密度分布を平坦化でき、 出射されるイオンビームの電流値変動 を抑制するための制御の簡単化や、 取り 出される放射光の強度の均一化 が可能となる。  The present invention can be applied to a synchrotron that accelerates and emits an ion beam, or a storage ring that accelerates an electron beam and extracts emitted light. This application makes it possible to flatten the particle number density distribution of the beam in the synchrotron and the storage ring, simplify control to suppress fluctuations in the current value of the emitted ion beam, and remove the emitted radiation. Light intensity can be made uniform.

Claims

請 求 の 範 囲 The scope of the claims
1 . 周回する荷電粒子ビームにベータ トロン振動の周波数成分を含む高 周波電磁場を印加する高周波印加装置と、 前記荷電粒子ビームに六極以 上の多極磁場を印加する多極電磁石と、 前記荷電粒子ビームに四極磁場 を印加する四極電磁石と、 前記高周波電磁場及び前記多極磁場が荷電粒 子ビームに印加されているときに、 荷電粒子ビームが 3次以下の共鳴を 起こさないように前記四極電磁石に供給される電流を制御する制御装置 とを有することを特徴とする円形加速器システム。  1. A high-frequency application device that applies a high-frequency electromagnetic field containing a frequency component of betatron oscillation to the orbiting charged particle beam, a multipolar magnet that applies a multipolar magnetic field of six or more poles to the charged particle beam, and A quadrupole electromagnet for applying a quadrupole magnetic field to the particle beam; and the quadrupole electromagnet so that the charged particle beam does not cause tertiary or lower resonance when the high-frequency electromagnetic field and the multipole magnetic field are applied to the charged particle beam. A controller for controlling the current supplied to the circular accelerator.
2 . 前記高周波印加装置は、 設定された周波数帯域を有する高周波電磁 場を発生するものであって、 前記制御装置は、 前記荷電粒子ビームのチ ユーンの最大値と最小値とに基づいて、 前記高周波印加装置が発生する 前記高周波電磁場の周波数帯域の最小値と最大値とを設定するこ とを特 徴とする請求項 1 記載の円形加速器システム。  2. The high-frequency applying device generates a high-frequency electromagnetic field having a set frequency band, and the control device is configured to control the high-frequency electromagnetic field based on a maximum value and a minimum value of the channel of the charged particle beam. The circular accelerator system according to claim 1, wherein a minimum value and a maximum value of a frequency band of the high-frequency electromagnetic field generated by the high-frequency applying device are set.
3 . 前記多極電磁石は前記四極電磁石に隣接して配置されることを特徴 とする請求項 1及び 2のいずれかに記載の円形加速器システム。  3. The circular accelerator system according to claim 1, wherein the multipole electromagnet is arranged adjacent to the quadrupole electromagnet.
4 . 周回する荷電粒子ビームの振動振幅を変化させる手段と、 前記荷電 粒子ビームのチューンをベータ トロン振動振幅に応じて変化させる第 1 電磁石と、 前記荷電粒子ビームのチューンを制御する第 2電磁石と、 荷 電粒子ビームが 3次以下の共鳴を起こさないよう に前記第 2電磁石を制 御する手段とを備えたことを特徴とする円形加速器システム。  4. Means for changing the oscillation amplitude of the orbiting charged particle beam, a first electromagnet for changing the tune of the charged particle beam according to the betatron oscillation amplitude, and a second electromagnet for controlling the tune of the charged particle beam Means for controlling the second electromagnet so that the charged particle beam does not cause third or lower order resonance.
5 . 荷電粒子ビームを円形加速器に入射し、 前記円形加速器において入 射した荷電粒子ビームを加速し、 加速した荷電粒子ビームの粒子数密度 分布を前記円形加速器において制御することを特徴とする円形加速器の 制御方法。 5. A circular accelerator, wherein a charged particle beam is incident on a circular accelerator, the charged particle beam incident on the circular accelerator is accelerated, and the particle number density distribution of the accelerated charged particle beam is controlled by the circular accelerator. Control method.
6 . 荷電粒子ビームを円形加速器に入射し、 前記円形加速器において入 射した荷電粒子ビームを加速し、 加速した荷電粒子ビームの粒子数密度 分布を前記円形加速器において平坦化するこ と を特徴とする円形加速器 の制御方法。 6. The charged particle beam is incident on the circular accelerator and enters the circular accelerator. A method for controlling a circular accelerator, comprising: accelerating an emitted charged particle beam; and flattening a particle number density distribution of the accelerated charged particle beam in the circular accelerator.
7 . 前記荷電粒子ビームを円形加速器に入射した後で、 かつ、 前記荷電 粒子ビームの加速の前に、 前記荷電粒子ビームの粒子数密度分布を前記 円形加速器において平坦化する こと を特徴とする請求項 6記載の円形加 速器の制御方法。  7. The particle number density distribution of the charged particle beam is flattened in the circular accelerator after the charged particle beam is incident on the circular accelerator and before the charged particle beam is accelerated. Item 6. A method for controlling a circular accelerator according to item 6.
8 . 前記平坦化された荷電粒子ビームは、 ビーム中心からビーム半径の ± 3 0 %の範囲で粒子数密度の誤差が 4〜 5 %である ことを特徴とする 請求項 6及び 7 のいずれかに記載の円形加速器の制御方法。  8. The flattened charged particle beam has a particle number density error of 4 to 5% within a range of ± 30% of a beam radius from a beam center. 3. The method for controlling a circular accelerator according to item 1.
9 . エネルギーが 1 〔 G e V〕以上で、 かつ電流が 1 〜 5 0 〔 A〕の範囲内 であるよ う なイオンビームが周回するシンク ロ トロ ンにおいて前記ィォ ンビームの粒子数密度分布を平坦化した後、 前記イオンビームを前記シ ンク ロ トロ ンから出射し、 前記シンク ロ 卜ロ ンから出射されたイオンビ ームをターゲッ トに照射する こ と によ り 中性子を発生させる こ と を特徴 とする円形加速器の制御方法。  9. The particle number density distribution of the ion beam in a synchrotron in which the ion beam circulates such that the energy is 1 [GeV] or more and the current is in the range of 1 to 50 [A]. After flattening, the neutrons are generated by emitting the ion beam from the synchrotron and irradiating the target with the ion beam emitted from the synchrotron. A method for controlling a circular accelerator, characterized in that:
1 0 . エネルギーが 7 0 〜 2 5 0 〔 M e V〕の範囲内で、 かつ電流が 1 0 〜 9 0 〔πι Α〕の範囲内であるよ う なイオンビームが周回するシンク ロ ト ロ ンにおいて前記イオンビームの粒子数密度分布を平坦化した後、 前記 イオンビームを前記シンク ロ トロ ンから出射し、 前記シンク ロ トロ ンか ら出射されたイオンビームを患者の患部に照射する こ と を特徴とする円 形加速器の制御方法。  10. A synchro rotor in which the ion beam circulates such that the energy is in the range of 70 to 250 [MeV] and the current is in the range of 10 to 90 [πι Α]. After flattening the particle number density distribution of the ion beam in the ion beam, irradiating the ion beam from the synchrotron and irradiating the affected part of the patient with the ion beam emitted from the synchrotron. A method of controlling a circular accelerator characterized by the following.
1 1 . エネルギーが 5 0 0 〜 3 0 0 0 〔 M e V〕の範囲内で、 かつ電流が 1 0 0 〜 1 0 0 0 〔m A〕の範囲内である よ う な電子ビームが周回する蓄 積リ ングにおいて前記電子ビームの粒子数密度分布を平坦化した後、 前 記電子ビームから発生される放射光を照射対象に照射することを特徴と する円形加速器の制御方法。 1 1. An electron beam whose energy is in the range of 500 to 300 [MeV] and whose current is in the range of 100 to 100 [mA] After flattening the particle number density distribution of the electron beam in the accumulation ring, A method for controlling a circular accelerator, characterized by irradiating an irradiation target with radiation emitted from the electron beam.
1 2 . 周回する荷電粒子ビームにベータ トロン振動の周波数成分を含む 高周波電磁場を印加する高周波印加装置と前記荷電粒子ビームに六極以 上の多極磁場を印加する多極電磁石と前記荷電粒子ビームに四極磁場を 印加する四極電磁石とを有する円形加速器を制御する制御装置であって 前記荷電粒子ビームに高周波電磁場及び多極磁場が印加されているとき に、 前記荷電粒子ビームが 3次以下の共鳴を起こさないよう に前記四極 電磁石に供給される電流を制御することを特徴とする円形加速器の制御 装置。  1 2. A high-frequency application device that applies a high-frequency electromagnetic field containing the frequency component of betatron oscillation to the orbiting charged particle beam, a multipolar electromagnet that applies a multipolar magnetic field of six or more poles to the charged particle beam, and the charged particle beam A control device for controlling a circular accelerator having a quadrupole electromagnet for applying a quadrupole magnetic field to the charged particle beam when a high-frequency electromagnetic field and a multipole magnetic field are applied to the charged particle beam, A control device for a circular accelerator, wherein a current supplied to the quadrupole electromagnet is controlled so as not to cause a problem.
PCT/JP1999/005332 1999-09-29 1999-09-29 Method and apparatus for controlling circular particle accelerator, and circular particle accelerator system WO2001024593A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU59984/99A AU5998499A (en) 1999-09-29 1999-09-29 Method and apparatus for controlling circular particle accelerator, and circularparticle accelerator system
JP2001527614A JP3922022B2 (en) 1999-09-29 1999-09-29 Circular accelerator control method and control apparatus, and circular accelerator system
PCT/JP1999/005332 WO2001024593A1 (en) 1999-09-29 1999-09-29 Method and apparatus for controlling circular particle accelerator, and circular particle accelerator system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/005332 WO2001024593A1 (en) 1999-09-29 1999-09-29 Method and apparatus for controlling circular particle accelerator, and circular particle accelerator system

Publications (1)

Publication Number Publication Date
WO2001024593A1 true WO2001024593A1 (en) 2001-04-05

Family

ID=14236836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/005332 WO2001024593A1 (en) 1999-09-29 1999-09-29 Method and apparatus for controlling circular particle accelerator, and circular particle accelerator system

Country Status (3)

Country Link
JP (1) JP3922022B2 (en)
AU (1) AU5998499A (en)
WO (1) WO2001024593A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198397A (en) * 1991-10-08 1993-08-06 Hitachi Ltd Circular accelerator and, beam emitting method and device
JPH05266999A (en) * 1992-03-19 1993-10-15 Mitsubishi Electric Corp Charged particle acceleration device
JPH06163196A (en) * 1992-11-20 1994-06-10 Hitachi Ltd Beam outgoing device
JPH08148298A (en) * 1994-11-17 1996-06-07 Hitachi Ltd Accelerator and operating method thereof
JPH11111500A (en) * 1997-10-03 1999-04-23 Hitachi Ltd Accelerator and method for operation thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198397A (en) * 1991-10-08 1993-08-06 Hitachi Ltd Circular accelerator and, beam emitting method and device
JPH05266999A (en) * 1992-03-19 1993-10-15 Mitsubishi Electric Corp Charged particle acceleration device
JPH06163196A (en) * 1992-11-20 1994-06-10 Hitachi Ltd Beam outgoing device
JPH08148298A (en) * 1994-11-17 1996-06-07 Hitachi Ltd Accelerator and operating method thereof
JPH11111500A (en) * 1997-10-03 1999-04-23 Hitachi Ltd Accelerator and method for operation thereof

Also Published As

Publication number Publication date
AU5998499A (en) 2001-04-30
JP3922022B2 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
JP3307059B2 (en) Accelerator, medical device and emission method
KR101194652B1 (en) High-current dc proton accelerator
US7138771B2 (en) Apparatus for pre-acceleration of ion beams used in a heavy ion beam application system
JP3705091B2 (en) Medical accelerator system and operating method thereof
JP4633002B2 (en) Beam emission control method for charged particle beam accelerator and particle beam irradiation system using charged particle beam accelerator
JPWO2004073364A1 (en) Charged particle accelerator
JP2596292B2 (en) Circular accelerator, operation method thereof, and medical system
JP3308941B2 (en) Industrial X-ray source and electron beam source using electron beam accelerator
EP2466997B1 (en) Method for extracting a charged particle beam using pulse voltage
US20230249002A1 (en) Systems, devices, and methods for high quality ion beam formation
JP4650382B2 (en) Charged particle beam accelerator and particle beam irradiation system using the charged particle beam accelerator
Seidel Injection and extraction in cyclotrons
WO2001024593A1 (en) Method and apparatus for controlling circular particle accelerator, and circular particle accelerator system
JP6537067B2 (en) Particle beam irradiation apparatus and control method thereof
KR20230034349A (en) Charged-particle beam incident device and its incident method
JP2019105641A (en) Charged particle beam irradiator
JP2019080738A (en) Particle ray treatment system
Sawada et al. Performance test of electron cyclotron resonance ion sources for the Hyogo Ion Beam Medical Center
Tanaka et al. Development of a high-current microwave ion source for proton linac application systems
JP3943578B2 (en) Circular particle accelerator
JP2005129548A (en) Emitting method of charged particle beam
KR100548806B1 (en) Plasma ion implantation apparatus and method thereof
JPH08148298A (en) Accelerator and operating method thereof
JP2023084781A (en) Circular accelerator and particle beam treatment system
JPH09115700A (en) Circular accelerator, beam radiating method, and radiating device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN JP SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: (EXCEPT EP (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE))

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 527614

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase