WO2001022565A1 - Electrostatic generating method - Google Patents

Electrostatic generating method Download PDF

Info

Publication number
WO2001022565A1
WO2001022565A1 PCT/JP1999/006349 JP9906349W WO0122565A1 WO 2001022565 A1 WO2001022565 A1 WO 2001022565A1 JP 9906349 W JP9906349 W JP 9906349W WO 0122565 A1 WO0122565 A1 WO 0122565A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
electrode
charge
counter electrode
field forming
Prior art date
Application number
PCT/JP1999/006349
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuo Sakai
Original Assignee
Katsuo Sakai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Katsuo Sakai filed Critical Katsuo Sakai
Publication of WO2001022565A1 publication Critical patent/WO2001022565A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/06Influence generators

Definitions

  • the distance between the charge generation point and the charge collection point is very short, and the conductive fine particles also serve as a corona discharge point and a charge transporting material, and the electric field formed for corona discharge is charged by coronaion.
  • the present invention relates to an electrostatic power generation method for transporting conductive fine particles from a charge generation position to a charge collection electrode.
  • FIG. 1 (Electrical Engineering Pocketbook (4th edition), edited by The Institute of Electrical Engineers of Japan, Ohmsha R1124) outlines the Van der Graaff electrostatic generator.
  • a discharge electrode 1 is a needle-like electrode having a sharpened tip, and is arranged, for example, at a pitch of 0.01 m along the width of the insulating belt 3.
  • the distance between the needle electrode 1 and the insulating belt 3 is usually about 0.01 m. (It looks like they are touching but they are far apart.)
  • the ion supply power supply 2 is a normal DC high-voltage power supply. Any power supply that is not specially made for supplying ions, and that can generate a voltage of 4 kV or more and pass a current of about 1 mA is OK.
  • the mechanism is briefly introduced because it is directly related to the present invention.
  • the air layer is composed of 80% of nitrogen molecules and 20% of oxygen molecules, in which positive and negative ions and electrons generated by the cosmic ray are present.
  • the number is 1 cubic.
  • the two electrons are further accelerated by the electric field to increase their kinetic energy, travel an average of 0.34 * 10, collide with another two oxygen molecules, and strike two more electrons. These four electrons are further 0.34 * 10- 6 m traveling collides becomes 8 electrons
  • the positively charged insulating belt 3 to which positive ions are attached is mechanically moved by the driving pulley 13 to the collector electrode (4 in FIG. 1).
  • a roller is formed between the positive charge on the insulating belt 3 and the collector electrode 4.
  • a positive discharge occurs on the belt and positive charges on the belt move to the collector electrode 4.
  • the above is the power generation mechanism of the Van de Graaff electrostatic generator.
  • the advantage of the electrostatic generator is that a high voltage can be obtained, but the device is large (several meters in height) despite the small current that can be obtained as a general power supply, and many external devices are required for belt conveyance.
  • a major drawback is that it requires energy. Also, it is very difficult to recover 100% of the charge on the insulator, so this charge transport and recovery method is also disadvantageous.
  • electrostatic power generation method a large amount of insulating fine powder is circulated in a pipe by a blower, charged by corona discharge, and the electric charge is recovered by corona discharge.
  • the powder is much lighter than the belt, but the air inside the pipe is moved to transport the powder, so there is little effect on reducing the driving energy.
  • electrostatic power generation method using conductive water droplets instead of the insulating belt powder as the charge carrier in order to easily recover 100% of the electric charge. (Refer to the “Electrostatic Handbook (1989 edition, 6.52)”.) Electric charges on dielectrics can hardly be recovered by contact with grounded metal. Power contained in conductors such as water droplets is grounded. 100% can be recovered immediately when the metal is brought into contact.
  • a conductive powder (particle) which does not have the drawbacks of the conventional electrostatic power generation method and which can be reused without any regenerating means is used as a charge carrier, and only the conductive powder is transported.
  • Another object of the present invention is to provide an electrostatic power generation method in which the charge generation position and the charge collection position are close to each other by using the conductive powder itself as the charge carrier as one corona discharge electrode. Disclosure of the invention
  • an electric field close to, but less than, the corona discharge initiation electric field is formed between the electret film and the grounded counter electrode, and the conductive particles are brought close to the counter electrode to start the corona discharge between them.
  • a corona discharge is generated during this period, and the conductive particles charged with the generated corona ions are used to charge the conductive particles charged with the corona ions by using an electrostatic force acting on the particles by the electric field between the electret film and the counter electrode. Since the carrier is transported to the carrier, the charge can be easily collected, and the electrostatic power generation method does not require external energy for carrying the carrier.
  • the present invention provides a small-sized electrostatic power generator that can continuously and repeatedly use conductive particles by continuously performing the above-described new electrostatic power generation method at short intervals and making the circuit go round. Can be realized.
  • FIG. 1 is an explanatory diagram of a van de Graaff electrostatic generator
  • Fig. 2 is a drawing for calculating the electric field between the conductive prism and the grounded counter electrode
  • Fig. 3 is a diagram calculating the electric field between the conductive prism and the ground.
  • FIG. 4 is a drawing showing the calculated electric field between the counter electrodes
  • FIG. 4 is a drawing showing the estimated electric field between the conductive sphere and the grounded counter electrode estimated based on the calculated electric field
  • FIG. FIG. 6 is another drawing showing the calculated electric field between the sexual prism and the grounded counter electrode
  • FIG. 6 shows the estimated electric field between the conductive sphere and the grounded counter electrode estimated based on the calculated electric field.
  • Figure 7 shows the positive and negative charges induced in a conductive sphere near the counter electrode and its mirror.
  • FIG. 8 is a schematic diagram showing image charge
  • FIG. 8 is a schematic diagram showing a charge distribution of a conductive sphere charged with corona charge after corona discharge
  • FIG. 9 is a schematic diagram showing a conductive sphere charged with corona charge after corona discharge.
  • FIG. 10 is a schematic diagram showing the charge distribution of only the corona charge of FIG. 10.
  • FIG. 10 is a diagram showing the relationship between the gap between the conductive sphere and the counter electrode and the charge amount QZ m of the conductive sphere. The figure shows the relationship between the diameter of the conductive sphere and the amount of charge Q / m.
  • Fig. 12 is an electrode layout when the charged conductive sphere is transported to the charge collection electrode by electrostatic force.
  • Fig. 13 shows the calculation results of the maximum speed, landing speed, and arrival time when the charge amount QZni changes
  • Fig. 14 shows the conductive sphere that passed between the electric field forming electrodes as the charge recovery electrode.
  • Fig. 15 is a front view of an electrostatic power generation cell that circulates by changing the route to the destination.
  • Fig. 16 is a model diagram of the charge distribution during use.
  • Fig. 16 is a front view of a cell that transfers a charged conductive sphere to a course change plate and transports it to a vertical charge collection electrode.
  • Fig. 18 is a front view of a cell that transfers the conductive ball to the plane charge collecting electrode by applying the conductive ball to the course change plate, and Fig.
  • FIG. 18 is a front view of an electrostatic power generation cell with a narrow counter electrode and no electric field adjustment electrode.
  • FIG. 19 is a front view of the electrostatic power generation cell with the electrostatic power generation cell shown in FIG. 18 laid down, and
  • FIG. 20 is the electrostatic power generation cell shown in FIG. It is a power generation model figure of an electrostatic generator.
  • conductive spherical particles having a uniform diameter are used as a charge-generating member and a charge-transporting member, and are brought close to a counter electrode so that an electric field therebetween is equal to or greater than a corona discharge electric field, thereby generating a corona discharge therebetween. . Therefore, we first calculated this electric field.
  • the calculation of the electric field above the conductive particles placed on one electrode between the parallel plate electrodes is described in the Electrostatic Handbook, the calculation of the electric field below that, especially when there is no contact, is described. Has not been reported before. Therefore, we newly calculated the electric field.
  • the actual calculation is to apply +1000 V to the upper electrode (hereinafter referred to as the electric field forming electrode) 8 of two flat electrodes 500 * 10 "3 ⁇ 41 apart, and to ground the lower electrode (hereinafter referred to as the counter electrode) 7 , and one side of the counter electrode 7 is 10 * 10- 6 m from 100 * 10- 6 m of the conductive prismatic 9 5 * 10 ⁇ 3 ⁇ 4 ⁇ from release 100 * 10 ⁇ 6 ⁇ , from the counter electrode 7 2.5 * 10 "3 ⁇ 41 We calculated the electric field in the space above.
  • FIG. 3 shows the electric field calculated by the above-mentioned calculation method based on it.
  • the estimated electric field between the sex sphere 10 and the counter electrode 7 is shown in Fig. 4.
  • the conductive prism 9 when the distance is fixed to 10 * 10 "3 ⁇ 41 and the length of the side of the conductive prism 9 is changed.
  • the calculated electric field between the counter electrode 7 is shown in Fig. 5, and the estimated electric field between the conductive sphere 10 and the counter electrode 7 is shown in Fig. 6. From Fig. 3 and Fig. 5, when the sides of the prism 9 have the same length, the gap (gap It can be seen that the electric field becomes larger when the side is longer and the side is longer when the interval (gap) is constant.
  • the electric field between the sphere and the flat plate estimated based on this calculation result is narrower if the diameter is the same, and if the distance (gap) is equal, the diameter is smaller. Is larger, the electric field is larger.
  • the problem is the initial electric field and the electric field when corona discharge ends.
  • Figures 10 and 11 show the charge per unit mass Q / m obtained by dividing the corona discharge charge calculated by this method by the mass of the conductive sphere. Fig. 10.
  • FIGS. 1-7 when the charge amount QZm gaps 10 * 10 ⁇ 3 ⁇ 4 ⁇ fixed FIGS. 1-7 it can be seen that maximized when the diameter is 30 * 10- 6 m or 40 * 10- 6 m Noto. Looking at Fig. 4, the larger the diameter of the conductive sphere, the larger the electric field immediately below it. The area where corona discharge occurs should also increase in proportion to the square of the diameter. However, since the mass increases in proportion to the cube of the diameter, the charge per unit mass Q / m is conversely reduced. The specific gravity of the conductive sphere was set to 1.0 assuming that a polymer material was used as described below.
  • the two electrodes were placed at 500 * 10 "3 ⁇ 41 with the counter electrode 7 with many holes in the polyimide layer 1 underneath and the electric field forming electrode 8 overcoated with a non-porous polyimide layer on top.
  • the conductive spheres 10 were placed on the counter electrode 7 so that they fit in separate holes, and the counter electrode 7 was grounded and +1000 V was applied to the electric field forming electrode 8. All 30 * 10 ⁇ 3 ⁇ 4 ⁇ conductive spheres 10 instantly landed on the electric field forming electrode 8.
  • the conductive sphere 10 of an appropriate size was used as a corona discharge generating member and a charge transporting member.
  • the next problem was how to transport it to the charge recovery electrode 14. I do. In this regard, I came up with a good idea while shooting the above experiment with a high-speed camera and watching the video.
  • the charge recovery electrode 14 should be placed above this.
  • the charge recovery electrode 14 was placed at a position 500 * 10 ⁇ * ⁇ above the electric field forming electrode 8 and grounded with a capacitor interposed. When the charged conductive sphere 10 reaches here, the charge moves to the collecting electrode 14 and is stored in the capacitor.
  • simulation results show that the charge can reach the charge recovery electrode 14 at a charge amount of -10 ⁇ C / g or more and -20 // C / g or less, and fly below -8 / x C / g but reach the charge recovery electrode 14. It was found that it could not be reached, and that it was impossible to fly at -22 ⁇ C / g or more because the mirror image was too strong. Also, when it can fly and reach the charge recovery electrode 14, the more
  • the voltage applied to the electric field adjusting electrode 12 may be +1300 V instead of +1500 V, and the interval of the slit 13 may be increased from 100 * 10 6 ⁇ to 200 * l (T 6 m. It has reached the flying recovered electrode 1 4 no. also widen the field forming electrode 8 and the field control electrodes 1 2 from 150 * 10 ⁇ 6 ⁇ to 300 * 10 ⁇ 6 ⁇ , also horizontal gap therebetween the it was also OK to expand from 0.0 * 10 ⁇ 6 ⁇ to 150 * 10- 6 m.
  • the charge recovery electrodes 14 were arranged obliquely as shown in the figure.
  • the conductive sphere 10 that has been charged and flies collides with the oblique charge collecting electrode 14 and repels at the same time as releasing the electric charge. Further, it collides with the course change plate 20 at the right corner and rebounds. The speed of the slide is reduced by hitting the slide 21, and the slide 21 can slide down the slide 21 to fit in the slit of the center spacer layer 11.
  • the charged conductive sphere 10 may not travel straight and may be deflected left or right to hit the left and right electric field forming electrodes 8 without being able to pass through the slit 13.
  • a thin insulating film may be placed from the counter electrode 7 to the electric field forming electrode 8. In this case, isolated conductive islands are formed in this plastic film so that the charged conductive spheres 10 do not collide here.
  • the charge Q / m of the conductive sphere 10 after flying from the counter electrode 7 was separately measured-18 // C / g, and the charge after collision with the charge collection electrode 14 was 0.0 / i C / g.
  • each electrode was 0.01 m, and 250 000 (0.165 mg) conductive balls 10 having a diameter of SCmC ⁇ m were placed in the electrostatic power generation cell.
  • a capacitor was inserted between the capacitors and the upper limit potential of the capacitor was set to -24V using a varistor, a current of -1.2 ⁇ m was always obtained with a voltage of -24V.
  • Example 1 instead of the electric field forming electrode 8 and the electric field adjusting electrode 12, an electret film that gives a potential of +1000 V and +1500 V was placed at that position, and a voltage of ⁇ 24 V was also used.
  • An electret film that gives a potential of +1000 V and +1500 V was placed at that position, and a voltage of ⁇ 24 V was also used.
  • the embodiments described with electrodes can be similarly implemented with an electret, and the embodiments described with an electret can be similarly performed with electrodes, even if not specifically described.
  • Example 3
  • Example 3 when the varistor was removed and the potential limit of the capacitor 1 was removed, when the potential of the capacitor reached 220 V, the conductive sphere 10 stopped flying and the current flowing through the charge recovery electrode 14 became zero.
  • the potential of the counter electrode 7 Since the potential of the counter electrode 7 has risen to +220 V, the potential difference between the
  • Example 2 when the pressure in the cell was reduced from 1013 mb to 700 mb, the potential of the electric field forming electret 8 was reduced from +1000 V to +600 V, and the potential of the electric field adjusting electret 12 was reduced from +1500 V to +900 V. A current of -1.2 ⁇ m was always obtained with a voltage of -24 V.
  • the decrease in air pressure increases the mean free path of electrons, and provides the kinetic energy required to strike new electrons out of a low electric field when it collides with oxygen molecules. It is because.
  • any material having an appropriate electric resistance can be used, not necessarily a polyimide containing a titanium oxide filler. It is OK if the injection of charge from the counter electrode 7 to the spacer layer 11 and the injection of positive charge from the conductive sphere 10 to the spacer layer 11 can be prevented only for a short period of time during which corona discharge occurs. It is. After that, it is only necessary that the positive charges adhering to the slit wall can leak naturally over a relatively long time.
  • Example 6 when the conductive layer was placed directly on the smoother layer 11 having a smooth thickness of 5 * 10 6 m, the slit of the smoother layer 11 was eliminated. A current could be obtained. As can be seen in Fig. 21, the portion between the conductive sphere 10 and the counter electrode 7 where the electric field is strongest and where corona discharge is most likely to occur is occupied by the solid spacer layer 11, so no corona discharge occurs. It is probable that the corona discharge occurred only within a range of 5 * 10 ⁇ 6 ⁇ —20 * 10- 6 m from the center where the electric field was relatively weak, and so the current was reduced.
  • the absence of slits is advantageous in that the manufacturing method is simpler and that it can be made cheaper.
  • the spacer layer 11 can be eliminated and the sphere can be directly mounted on the counter electrode 7.
  • the dielectric constant is sufficiently high, the electric field between the counter electrode 7 and the conductive sphere 10 is strengthened as in the case of the conductive sphere 10, and corona discharge can occur to charge and fly. Efficiency is poor, because almost no charge can be recovered by just using it.
  • +1500 V is applied to the electric field forming electrode 8
  • the shield electrode 16 and the counter electrode 7 are grounded
  • -24 V is applied to the charge recovery electrode 14.
  • This configuration has an advantage that the electric field adjusting electrode (electret) 12 and the slit 13 between the electric field forming electrodes are unnecessary as compared with the first to eighth embodiments.
  • a route changing plate 15 is provided at a position where the slit 13 of the electric field forming electrode 8 has passed through, and the collision recovery is performed.
  • a way to reach 14 is also conceivable.
  • Fig. 17 shows a front view of the experimental device in which two electrostatic power generation cells are connected side by side.
  • +1400 V was applied to the electric field forming electrode 8
  • the shield electrode 16 and the counter electrode 7 were grounded
  • ⁇ 24 V was applied to the charge collection electrode 14, and the diameter was 50 * 10 ′′ 6 m
  • the conductive sphere 10 is placed in the slit of the spacer layer 11 of the counter electrode 7 on the left side, the conductive sphere 10 is charged and starts flying, and is placed between the electric field forming electrode 8 and the counter electrode 7.
  • the charge Q / m of the conductive sphere 10 was also ⁇ 18 / C / g, and the calculated electric field in the y direction immediately above the counter electrode 7 was also 1.93 * e + 6 V / m. Without ball).
  • a larger current can be obtained by connecting a large number of electrostatic power generation cells in which the charge recovery electrode 14 can be formed on the same plane as the counter electrode 7 to form a loop.
  • Example 1 1
  • the scan Bae colonel Similarly flying initially was placed more 1 1 Sri Tsu bets diameter 50 * 10- 6 conductive sphere 1 0 m of the counter electrode 7, the maximum speed after 0.21msec 3.8m / After reaching 0.5 sec, the charge-recovery electrode 14 having a potential of ⁇ 24 V was reached at a speed of 0.7 m / sec after 0.54 msec.
  • the electric field concentration effect of the narrow counter electrode 7 should accelerate the conductive sphere 10 flying in this electric field concentrated portion more strongly. As a result, the conductive sphere 10 can be expected to reach the charge recovery electrode 14 without the electric field adjusting electrode 12.
  • Example 1 and 2 can be connected side by side and endlessly, it will be easy to manufacture with a very simple configuration. Therefore, we prototyped an electrostatic power generation cell that displays only one unit in Fig. 19.
  • Fig. 20 schematically shows one unit, the counter electrode 7 of the next unit, and the upper and lower electric field forming electrodes 17 and 18.
  • the counter electrode 7 is grounded, the charge recovery electrode 14 is -24v, and the electric field is
  • +500 V is applied to the upper electrode 17 and +600 V is applied to the lower electrode 18, the conductive sphere 10 flies in a parabola and passes through the upper and lower electric field forming electrodes 17 and 18, and then the lower electric field Landed in the middle of the forming electrode 18 and the charge collecting electrode 14. The landing was too early.
  • the conductive sphere 10 landed on the charge recovery electrode 14.
  • the maximum horizontal speed at this time was 4.15 m / sec
  • the horizontal speed at landing was 0.8 m / sec
  • the vertical speed was -0.02 m / sec.
  • the conductive sphere 10 losing charge after landing on the charge recovery electrode 14 then rolled to the right and stopped at the slit in the spacer layer 11 of the adjacent counter electrode 7.
  • each unit is 0.1m, and the height is within 0.1m in width and 0.001m in height.
  • An electrostatic power generation device that connects 130 electrostatic power generation units endlessly in two stages
  • this shape is paired counter electrodes by etching and bonding pattern exposing the copper foil with a thickness of 20 * 10- e m on one side of a sheet of thickness 50 * 10- 6 m Boriimi de film 1 9 7 and charge recovery electrodes 14 (This method is well known in the electrical component industry and the product is generally called FPC.) Further, an electret pattern for forming an electric field is formed by corona charging. and films, similarly the two fill beam forming the electret Torre bract pattern electric field and the field control 120 * 10 distance e m by spaced easily formed at low cost.
  • Example 13 negative electret charges were formed at the edge of the spacer layer 14 of the counter electrode 7 at a rate of 5.0e-16 C per 0.001 m length.
  • a mirror image (Coulomb) force is generated between the conductive sphere 10 and the electric charge electrostatically induced in the conductive sphere 10 and the mirror image force is larger than the gravitational force acting on the conductive sphere 10.
  • the conductive sphere 10 does not fall from the slit due to gravity, even if the power generator is set up or turned over, so that it can be used anywhere.
  • the amount of charge that the conductive sphere 10 obtains by corona discharge is about 10,000 times the above induced charge, and the electrostatic force that the charged conductive sphere 10 receives from the electric field is 10,000 times the mirror image force. There is no effect on flight. (The gravity of the conductive sphere is 6.4 e-10 N, while the electrostatic force of the conductive sphere is 7.2 e-6 N)
  • the conductive spheres 10 that can move independently are used.
  • the conductive spheres 10 may be connected with an insulating thread, or the conductive spheres may be placed on a thin insulating film. Forming a sex hemisphere is theoretically possible as well.
  • irregular particles can be used depending on the conditions even if they have a distribution in particle size.
  • charging is sufficiently performed by corona discharge.
  • a small charge amount for charge injection may be possible.
  • the electrode (electret) configuration shown in the above embodiments is not always the best one: only possible examples are shown due to limitations in simulation software, computers and time. Industrial applicability
  • the electrostatic power generator manufactured by the electrostatic power generation method according to the present invention has an area of only 1 square cm, a height of about lmm, and 24 V or more of 1 mA or more, and without replenishing energy from outside. It can generate electricity semi-permanently, emits no harmful substances during use, and is harmless even when disposed, so it can be used for electrical products in all fields.

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

An electrostatic generating method obviating the needs of installing a corona charger for generating charge and a charge transfer belt driven by external energy both used in electrostatic generators such as a van de Graaff generator, wherein an electric field the strength of which is near and lower than that of the corona starting electric field is created between an electret film and a grounded counter electrode, electrical conductive particles are made to approach the counter electrode, the electric field therebetween is consequently strengthened over the corona starting electric field to start corona discharge, and the conductive particles charged by corona ions produced are transferred to a charge collecting electrode by using the electrostatic force produced by the electric field between the electret film and the counter electrode and acting on the particles.

Description

明細書 静電発電方法 技術分野  Description Electrostatic power generation method Technical field
この発明は、 電荷発生個所と電荷回収個所の間隔が大変短く、 導電性微 粒子がコロナ放電点と電荷搬送材料を兼ね、 コロナ放電のために形成され ている電界がコロナィオンで帯電された該導電性微粒子を電荷発生位置か ら電荷回収電極まで搬送する静電発電方法に関する。 ― 背景技術  According to the present invention, the distance between the charge generation point and the charge collection point is very short, and the conductive fine particles also serve as a corona discharge point and a charge transporting material, and the electric field formed for corona discharge is charged by coronaion. The present invention relates to an electrostatic power generation method for transporting conductive fine particles from a charge generation position to a charge collection electrode. ― Background technology
「静電発電」 の歴史は古く特に 1 7, 8世紀には盛んに研究されていた。 その後、 現在の静磁界発電機が普及するとともにほとんど忘れ去られた存 在となった。 ただ、 直流高電圧を必要とする分野に、 ファンデグラーフ静 電発電機が実用化されている。 (「静電気ハンドブック」 1 9 8 1年版 . 6 5 2より要約)  "Electrostatic power generation" has a long history, especially in the 17th and 8th centuries. After that, the current static magnetic field generator became widespread and almost forgotten. However, van de Graaff electrostatic generators have been put into practical use in fields requiring high DC voltage. (Summary from “Electrostatic Handbook” 1980 1st edition. 6.52)
ファンデグラーフ静電発電機の概要を図 1 (電気工学ポケットブック (第 四版) 電気学会編 オーム社 R1124) で説明する。 図 1において放電電極 1は先端を尖らせた針状電極で、 例えば 0 . 0 1 mピッチで絶縁ベルト 3 の幅に並べて構成する。 針状電極 1と絶縁ベルト 3の間隔は通常 0 . 0 1 m位である。 (図では接触しているように見えるが離れている。)  Figure 1 (Electrical Engineering Pocketbook (4th edition), edited by The Institute of Electrical Engineers of Japan, Ohmsha R1124) outlines the Van der Graaff electrostatic generator. In FIG. 1, a discharge electrode 1 is a needle-like electrode having a sharpened tip, and is arranged, for example, at a pitch of 0.01 m along the width of the insulating belt 3. The distance between the needle electrode 1 and the insulating belt 3 is usually about 0.01 m. (It looks like they are touching but they are far apart.)
図 1において、 イオン供給電源 2は通常の直流高圧電源である。 特にィ オン供給用に特別に作られた電源ではない、 4 k V以上の電圧を発生し 1 m A程度の電流が流せる電源であればなんでも O Kである。  In FIG. 1, the ion supply power supply 2 is a normal DC high-voltage power supply. Any power supply that is not specially made for supplying ions, and that can generate a voltage of 4 kV or more and pass a current of about 1 mA is OK.
本発明とも直接関係するのでそのメカニズムを簡単に紹介する。 空気層 は 8割の窒素分子と 2割の酸素分子より構成されているが、 そのなかに宇 宙線で生成された正負のイオンや電子が存在している。 その数は 1立方。  The mechanism is briefly introduced because it is directly related to the present invention. The air layer is composed of 80% of nitrogen molecules and 20% of oxygen molecules, in which positive and negative ions and electrons generated by the cosmic ray are present. The number is 1 cubic.
差替え用紙 (規貝 IJ26) m当たり約千個である。 Replacement paper (Kaikai IJ26) It is about 1,000 per m.
この正イオンと電子 (以下まとめて荷電粒子) をわずかに含む空間に電 界が加わると静電力で荷電粒子は加速運動を始める。 空気中を走行する荷 電粒子はそこに存在する酸素分子や窒素分子に衝突する。 電子が衝突する までの平均距離 (平均自由行程と呼ばれる) は実測値で 0.34*10·6πιである。 衝突時に電子が 1 2 . 0 6 e V以上のエネルギーを酸素分子に与える と酸素原子の最外郭電子がたたき出されて自由電子になり、 酸素分子は正 イオンとなる。 酸素原子からたたき出された電子、 酸素分子に衝突して運 動エネルギーを失った電子、 電子を 1個失って正イオンとなった酸素分子、 はそれぞれまた電界より静電力を受けて加速運動を始める。 When an electric field is applied to the space containing a small amount of positive ions and electrons (collectively, charged particles), the charged particles start accelerating by electrostatic force. Charged particles traveling in the air collide with the oxygen and nitrogen molecules present there. The average distance (called the mean free path) before the electron hits is 0.34 * 10 · 6 πι. When an electron gives an energy of more than 12.06 eV to an oxygen molecule at the time of collision, the outermost electron of the oxygen atom is knocked out to become a free electron, and the oxygen molecule becomes a positive ion. Electrons struck out of oxygen atoms, electrons that have lost kinetic energy by colliding with oxygen molecules, and oxygen molecules that have lost one electron to become positive ions, also undergo accelerated motion by receiving electrostatic force from an electric field. start.
2個の電子は電界で加速されて運動エネルギーを増加させながらさらに 平均して 0.34*10 走行して別の 2個の酸素分子に衝突してそこからさら に 2個の電子をたたき出す。 この 4個の電子がさらに 0.34*10-6m走行して 衝突し 8個の電子になる The two electrons are further accelerated by the electric field to increase their kinetic energy, travel an average of 0.34 * 10, collide with another two oxygen molecules, and strike two more electrons. These four electrons are further 0.34 * 10- 6 m traveling collides becomes 8 electrons
8個が 1 6個に、 1 6個が 3 2個にと短い距離の間にネズミ算的に自由 電子が増加していく。 (当然同数の正イオンも生まれる。) この現象を電子 雪崩 (アバランシヱ) と呼ぶ c Eight are reduced to 16 and 16 are reduced to 32, and the number of free electrons increases in a short distance. (Of course, the same number of positive ions are also created.) This phenomenon is called electron avalanche c
この効果は非常に大きく、 簡単な計算をしてみると、 わずか 13.3*10-6m の間に 1個の自由電子から 5 5 0 0 0 0 0 0 0 0 0 0個の自由電子と正ィ オンのペアが生成されることが分かる。 この効率の高さがファンデグラー フ静電発電機の電荷 (イオン) 供給にコロナ放電が使われる理由であり、 またこれから説明する本発明でコロナ放電を使う理由でもある。 This effect is very large, and try to a simple calculation, only 13.3 * 10- 6 m 1 pieces from free electrons 5 5 0 0 0 0 0 0 0 0 0 0 free electrons and positive during the It can be seen that a pair of ions is generated. This high efficiency is the reason why the corona discharge is used to supply the charge (ions) of the van der Graf electrostatic generator, and also the reason why the present invention described below uses the corona discharge.
コロナ放電に必要なのは 6 . 2 * 1 0 6 V/m以上の電界と該電界が形成 されている 5*10_6m以上の空間であることがよく知られている。 Necessary to corona discharge 6. 2 * 1 0 6 that V / m or more electric field and electric field are 5 * 10_ 6 m or more spaces are formed is well known.
正イオンが付着して正に帯電された絶縁ベルト 3は駆動プ一リ 1 3で機 械的に動かされてコレクタ電極 (図 1の 4 ) に向かう。 そして、 コレクタ 電極 4に接近すると絶縁ベルト 3上の正電荷とコレクタ電極 4の間にコロ  The positively charged insulating belt 3 to which positive ions are attached is mechanically moved by the driving pulley 13 to the collector electrode (4 in FIG. 1). When approaching the collector electrode 4, a roller is formed between the positive charge on the insulating belt 3 and the collector electrode 4.
差替え用紙 (規貝 IJ26) ナ放電が起こりベルト上の正電荷はコレクタ電極 4に移動する形になる。 以上がファンデグラーフ静電発電機の発電メカニズムである。 該静電発 電機の利点は高電圧が得られることであるが、 一般的な電源としては得ら れる電流が少ないのに装置が大きく (高さ数 m)、 ベルト搬送のために多く の外部エネルギーを必要とする点が大きな欠点である。 また、 絶縁体上の 電荷を 1 0 0 %回収することは非常に難しいのでこの電荷搬送回収方法も 欠点である。 Replacement paper (Kaikai IJ26) A positive discharge occurs on the belt and positive charges on the belt move to the collector electrode 4. The above is the power generation mechanism of the Van de Graaff electrostatic generator. The advantage of the electrostatic generator is that a high voltage can be obtained, but the device is large (several meters in height) despite the small current that can be obtained as a general power supply, and many external devices are required for belt conveyance. A major drawback is that it requires energy. Also, it is very difficult to recover 100% of the charge on the insulator, so this charge transport and recovery method is also disadvantageous.
この欠点を解消するために重たいベルトに代えて軽い絶縁性の粉末にコ ロナイオンを乗せて搬送する静電発電方法が試みられた。 (「静電気ハンド ブック (1 9 8 1年版 p . 6 5 2 )」 参照)  In order to solve this drawback, an electrostatic power generation method in which corona ions are placed on a light insulating powder instead of a heavy belt and conveyed has been attempted. (See “Electrostatic Handbook (1989, p.652)”)
該静電発電方法では多量の絶縁性の細かい粉末が送風機でパイプの中を 循環させられていてコロナ放電により帯電させられ、 該電荷がコロナ放電 により回収される。 ベルトに比較すれば粉末ははるかに軽量であるが粉末 を搬送するためにパイプ内の空気を移動させるため駆動エネルギーの低減 効果はあまりない。 また、 電荷を容易に 1 0 0 %回収するため電荷搬送体 として絶縁性のベルトゃ粉末に代えて導電性の水滴を使用する静電発電方 法もある。 (「静電気ハンドブック (1 9 8 1年版 . 6 5 2 )」 参照) 誘電体上の電荷は接地された金属を接触させてもほとんど回収できない 力 水滴のような導体に含まれている電荷は接地された金属を接触させる と 1 0 0 %即座に回収できる。 そのため、 この場合は細線の金網を張って 帯電した水滴を該細線に接触させるだけでよい。 しかしながら水滴の場合 も粉末と同様に周りの空気を移動させるエネルギーが必要になるのみなら ず、 粉末と異なり水滴が再利用できない、 しにくいことも大きな欠点であ る。  In the electrostatic power generation method, a large amount of insulating fine powder is circulated in a pipe by a blower, charged by corona discharge, and the electric charge is recovered by corona discharge. The powder is much lighter than the belt, but the air inside the pipe is moved to transport the powder, so there is little effect on reducing the driving energy. There is also an electrostatic power generation method using conductive water droplets instead of the insulating belt powder as the charge carrier in order to easily recover 100% of the electric charge. (Refer to the “Electrostatic Handbook (1989 edition, 6.52)”.) Electric charges on dielectrics can hardly be recovered by contact with grounded metal. Power contained in conductors such as water droplets is grounded. 100% can be recovered immediately when the metal is brought into contact. Therefore, in this case, it is only necessary to stretch a fine wire net and bring the charged water droplets into contact with the fine wire. However, in the case of water droplets, not only is energy required to move the surrounding air, like powder, it is also a major disadvantage that, unlike powder, water droplets cannot be reused and are difficult to reuse.
従って、 本発明は、 このような従来の静電発電方法の欠点のない、 何 らの再生手段なしにそのまま再利用できる導電性粉末 (粒子) を電荷搬送 体とし、 該導電性粉末のみを搬送する静電発電方法を提供することを目的  Therefore, according to the present invention, a conductive powder (particle) which does not have the drawbacks of the conventional electrostatic power generation method and which can be reused without any regenerating means is used as a charge carrier, and only the conductive powder is transported. To provide a static electricity generation method
差替え用紙 (規則 26) としている。 Replacement form (Rule 26) And
また、 本発明は、 さらに電荷搬送体である導電性粉末自身を一方のコロ ナ放電電極とすることで電荷発生位置と電荷回収位置が近接した静電発電 方法を提供することを目的としている。 発明の開示  Another object of the present invention is to provide an electrostatic power generation method in which the charge generation position and the charge collection position are close to each other by using the conductive powder itself as the charge carrier as one corona discharge electrode. Disclosure of the invention
本発明は、 エレク トレツ トフイルムと接地された対抗電極でその間にコ ロナ放電開始電界に近いがそれ以下の電界を形成し、 導電性粒子を対抗電 極に接近させてその間の電界をコロナ放電開始電界以上にしてその間にコ ロナ放電を発生させ、 発生したコロナイオンで帯電した導電性粒子をエレ ク トレツトフイルムと対抗電極間の電界が該粒子に作用する静電力を利用 して電荷回収電極に搬送するので、 電荷回収が容易であり、 電荷搬送のた めの外部エネルギーが不要な静電発電方法になる。  According to the present invention, an electric field close to, but less than, the corona discharge initiation electric field is formed between the electret film and the grounded counter electrode, and the conductive particles are brought close to the counter electrode to start the corona discharge between them. A corona discharge is generated during this period, and the conductive particles charged with the generated corona ions are used to charge the conductive particles charged with the corona ions by using an electrostatic force acting on the particles by the electric field between the electret film and the counter electrode. Since the carrier is transported to the carrier, the charge can be easily collected, and the electrostatic power generation method does not require external energy for carrying the carrier.
また、 本発明は、 上述の新しい静電発電方法を短い間隔で連続的に実施 し、 さらにこれを一回りさせることにより、 導電性粒子を連続的に繰り返 し使用できる小型の静電発電機を実現できる。 In addition, the present invention provides a small-sized electrostatic power generator that can continuously and repeatedly use conductive particles by continuously performing the above-described new electrostatic power generation method at short intervals and making the circuit go round. Can be realized.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1図はファンデグラーフ静電発電機の説明図であり、 第二図は導電性 角柱と接地された対抗電極間の電界を計算する図面でり、 第三図は導電性 角柱と接地された対抗電極間の計算電界を示す図面であり、 第四図は計算 された電界に基づいて推定された導電性球と接地された対抗電極間の推定 電界を示す図面であり、 第五図は導電性角柱と接地された対抗電極間の計 算電界を示す別の図面であり、 第六図は計算された電界に基づいて推定さ れた導電性球と接地された対抗電極間の推定電界を示す別の図面であり、 第七図は対抗電極に接近した導電性球の中に誘導された正負電荷とその鏡  Fig. 1 is an explanatory diagram of a van de Graaff electrostatic generator, Fig. 2 is a drawing for calculating the electric field between the conductive prism and the grounded counter electrode, and Fig. 3 is a diagram calculating the electric field between the conductive prism and the ground. FIG. 4 is a drawing showing the calculated electric field between the counter electrodes, FIG. 4 is a drawing showing the estimated electric field between the conductive sphere and the grounded counter electrode estimated based on the calculated electric field, and FIG. FIG. 6 is another drawing showing the calculated electric field between the sexual prism and the grounded counter electrode, and FIG. 6 shows the estimated electric field between the conductive sphere and the grounded counter electrode estimated based on the calculated electric field. Figure 7 shows the positive and negative charges induced in a conductive sphere near the counter electrode and its mirror.
差替え用紙 (規則 26) 像電荷を示す模式図であり、 第八図はコロナ放電後コロナ電荷で帯電した 導電性球の電荷分布を示す模式図であり、 第九図はコロナ放電後コロナ電 荷で帯電した導電性球のコロナ帯電電荷のみの電荷分布を示す模式図であ り、 第 1 0図は導電性球と対抗電極間のギャップと導電性球の帯電量 QZ mの関係を示す図であり、 第 1 1図は導電性球の直径と帯電量 Q/mの関 係を示す図であり、 第 1 2図は帯電した導電性球を静電力で電荷回収電極 まで搬送する時の電極配置図であり、 第 1 3図は帯電量 QZniが変わった 時の最高速度、 着地速度、 到達時間の計算結果を示す図であり、 第 1 4図 は電界形成電極間を抜けた導電性球を電荷回収電極にあて進路を変更させ て循環させる静電発電セルの正面図であり、 第 1 5図はスリットのないス ベ一サ一層を使用する時の電荷分布のモデル図であり、 第 1 6図は帯電し た導電性球を針路変更板にあてて垂直電荷回収電極に搬送するセルの正面 図であり、 第 1 7図は帯電した導電性球を針路変更板にあてて平面電荷回 収電極に搬送するセルの正面図であり、 第 1 8図は対向電極の幅が狭く電 界調整電極がない静電発電セルの正面図であり、 第 1 9図は図 1 8に示す 静電発電セルを横にした静電発電セルの正面図であり、 第 2 0図は図 1 8 に示す静電発電セルを横につないだ静電発電機の発電モデル図である。 発明を実施するための最良の形態 (実施例 1 ) Replacement form (Rule 26) FIG. 8 is a schematic diagram showing image charge, FIG. 8 is a schematic diagram showing a charge distribution of a conductive sphere charged with corona charge after corona discharge, and FIG. 9 is a schematic diagram showing a conductive sphere charged with corona charge after corona discharge. FIG. 10 is a schematic diagram showing the charge distribution of only the corona charge of FIG. 10. FIG. 10 is a diagram showing the relationship between the gap between the conductive sphere and the counter electrode and the charge amount QZ m of the conductive sphere. The figure shows the relationship between the diameter of the conductive sphere and the amount of charge Q / m.Fig. 12 is an electrode layout when the charged conductive sphere is transported to the charge collection electrode by electrostatic force. Fig. 13 shows the calculation results of the maximum speed, landing speed, and arrival time when the charge amount QZni changes, and Fig. 14 shows the conductive sphere that passed between the electric field forming electrodes as the charge recovery electrode. Fig. 15 is a front view of an electrostatic power generation cell that circulates by changing the route to the destination. Fig. 16 is a model diagram of the charge distribution during use.Fig. 16 is a front view of a cell that transfers a charged conductive sphere to a course change plate and transports it to a vertical charge collection electrode. Fig. 18 is a front view of a cell that transfers the conductive ball to the plane charge collecting electrode by applying the conductive ball to the course change plate, and Fig. 18 is a front view of an electrostatic power generation cell with a narrow counter electrode and no electric field adjustment electrode. FIG. 19 is a front view of the electrostatic power generation cell with the electrostatic power generation cell shown in FIG. 18 laid down, and FIG. 20 is the electrostatic power generation cell shown in FIG. It is a power generation model figure of an electrostatic generator. BEST MODE FOR CARRYING OUT THE INVENTION (Example 1)
本発明をより詳細に説述するために、 添付の図面に従ってこれを説明す る。 本発明では直径の均一な導電性の球状粒子を電荷発生部材兼電荷搬送 部材として使用し、 これを対抗電極に近接させてその間の電界をコロナ放 電電界以上にしてその間にコロナ放電を発生させる。 そこでまずこの電界 を計算することにした。 ところが、 平行平板電極間で片方の電極上に乗せ られた導電性粒子の上側の電界の計算に関しては静電気ハンドブックに記 載されているが、 その下側、 特に接触していない場合の電界の計算に関し ては従来報告されていない。 そこで新たにその電界を計算することにした。  The present invention will be described in more detail with reference to the accompanying drawings. In the present invention, conductive spherical particles having a uniform diameter are used as a charge-generating member and a charge-transporting member, and are brought close to a counter electrode so that an electric field therebetween is equal to or greater than a corona discharge electric field, thereby generating a corona discharge therebetween. . Therefore, we first calculated this electric field. However, although the calculation of the electric field above the conductive particles placed on one electrode between the parallel plate electrodes is described in the Electrostatic Handbook, the calculation of the electric field below that, especially when there is no contact, is described. Has not been reported before. Therefore, we newly calculated the electric field.
差替え用紙 (規則 26) 計算は 3次元空間で導体球と接近した電極の間の電界を求めればよい訳 であるが発明者の有する計算機ではできないので、 代わりに次の方法でそ の電界を推定した。 すなわち、 図 2に示すように、 二次元空間に導電性の 角柱 9を置き該角柱 9と接近した電極 7間の電界 E 1を求め、 該電 界 E 1と角柱がない場合の電界 E 0の比 C=E1/E0を求めた。 (Cは電界集 中係数と呼ばれる。) そして、 Cを三乗し元の電界 E 0にかけて導体球と平 板電極間の電界 E 3とした。 三乗した理由は、 三次元では電界集中係数が 二次元で計算した電界集中係数の二乗となり、 さらに正方形に対して球で は電界集中係数がより大きくなると考えたからである。 Replacement form (Rule 26) The calculation only needs to find the electric field between the conductive sphere and the close electrode in the three-dimensional space, but it cannot be done by the computer owned by the inventor. Therefore, the electric field was estimated by the following method instead. That is, as shown in FIG. 2, a conductive prism 9 is placed in a two-dimensional space, an electric field E 1 between the prism 9 and the approaching electrode 7 is obtained, and the electric field E 1 and the electric field E 0 when there is no prism are determined. The ratio C = E1 / E0 was determined. (C is called the electric field concentration coefficient.) Then, C was cubed and applied to the original electric field E 0 to obtain an electric field E 3 between the conductor sphere and the flat plate electrode. The reason for cubing is that the electric field concentration coefficient becomes the square of the electric field concentration coefficient calculated in two dimensions in three dimensions, and the electric field concentration coefficient is larger in a sphere than a square.
実際の計算は 500*10"¾1離れた 2枚の平板電極の上の電極 (以下電界形成 電極と呼ぶ) 8に +1000Vを印加し、 下の電極 (以下対向電極と呼ぶ) 7を 接地し、 対抗電極 7から一辺が 10*10—6mから 100*10—6mの導電性角柱 9 を 5*10·¾ιから 100*10·6ιη離して、 対抗電極 7から 2.5*10"¾1上の空間の 電界を計算した。 The actual calculation is to apply +1000 V to the upper electrode (hereinafter referred to as the electric field forming electrode) 8 of two flat electrodes 500 * 10 "¾1 apart, and to ground the lower electrode (hereinafter referred to as the counter electrode) 7 , and one side of the counter electrode 7 is 10 * 10- 6 m from 100 * 10- 6 m of the conductive prismatic 9 5 * 10 · ¾ι from release 100 * 10 · 6 ιη, from the counter electrode 7 2.5 * 10 "¾1 We calculated the electric field in the space above.
—辺を 50* l(T6mに固定し間隔を変えた場合の導電性角柱 9—対抗電極 7 間計算電界を図 3に、 それをもとに先に記した計算方法で求めた導電性球 1 0一対抗電極 7間推定電界を図 4に示す: 同様に、 間隔を 10*10"¾1に固 定し導電性角柱 9の辺の長さを変えた場合の導電性角柱 9一対抗電極 7間 計算電界を図 5に、 導電性球 1 0—対抗電極 7間推定電界を図 6にしめす。 図 3と図 5より、 角柱 9の辺の長さが同じ場合は間隔 (ギャップ) が狭 い方が、 間隔(ギャップ) が一定の場合には辺が長い方が電界が大きくな る ことが分かる。 —Conducting prism calculated when the side is fixed to 50 * l (T 6 m and the distance is changed) 9−Counter electrode 7 Figure 3 shows the electric field calculated by the above-mentioned calculation method based on it. The estimated electric field between the sex sphere 10 and the counter electrode 7 is shown in Fig. 4. Similarly, the conductive prism 9 when the distance is fixed to 10 * 10 "¾1 and the length of the side of the conductive prism 9 is changed. The calculated electric field between the counter electrode 7 is shown in Fig. 5, and the estimated electric field between the conductive sphere 10 and the counter electrode 7 is shown in Fig. 6. From Fig. 3 and Fig. 5, when the sides of the prism 9 have the same length, the gap (gap It can be seen that the electric field becomes larger when the side is longer and the side is longer when the interval (gap) is constant.
そのためこの計算結果をもとに推定された球と平板間の電界も図 4、 図 6に示されるように直径が同じなら間隔 (ギャップ) が狭い方が、 間隔 (ギ ヤップ) が等しければ直径が大きい方が電界はより大きくなる。  Therefore, as shown in Figs. 4 and 6, the electric field between the sphere and the flat plate estimated based on this calculation result is narrower if the diameter is the same, and if the distance (gap) is equal, the diameter is smaller. Is larger, the electric field is larger.
なおこの場合導電性角柱 9の上方の電界も計算したが電界集中はあま り起こっていなかった。  In this case, the electric field above the conductive prism 9 was also calculated, but the electric field concentration did not occur much.
差替え用紙 (規則 26) 先に記したようにコロナ放電開始電界はギヤップが 100*10·6ηι以下の時、 6 . 2 * 1 0 6 VZmである。 この値と図 6を比較すると直径 50*10"¾ιの導 電性粒子では 40*10—6m以上電極から離れるとその間の電界はコロナ放電開 始電界以下になってもうコロナ放電は起きないことが分かる。 Replacement form (Rule 26) Previously corona discharge start electric field as noted when Giyappu is less than 100 * 10 · 6 ηι, a 6. 2 * 1 0 6 VZm . 40 * 10- 6 therebetween field away from above the electrodes m and the other corona discharge is below the corona discharge start electric field does not occur at this value and 6 Comparing the diameter 50 * 10 "¾ι of conductive particles You can see that.
逆に、 間隔を 10*10·6ηιに固定し直径を変えた場合には、 直径 10*10—6以 下の導電性粒子ではコロナ放電が起きないことが図 4より明らかである。 それではコ口ナ放電開始電界以上の電界が形成された場合どのくらいの コロナ電荷が該導電性粒子に飛来するのであろうか。 コロナ放電は、 帯電 した電荷が新たに形成する逆電界が次第に大きくなりもとの電界に加えた 新しい複合電界がコロナ放電開始電界に下がるまで続くはずである。 つま りコロナ放電が止まった時のその空間の電界はコロナ放電開始電界になつ ているはずである。 Conversely, when changing the diameter to secure the interval 10 * 10 · 6 Itaiota is that does not occur corona discharge in the conductive particles 10 * 10- 6 hereinafter diameter is apparent from FIG. Then, how much corona charge will fly to the conductive particles when an electric field larger than the electric field at the corner of the discharge is formed? The corona discharge should continue until the reversal electric field newly formed by the charged charge gradually increases and the new composite electric field added to the original electric field drops to the corona discharge starting electric field. In other words, the electric field in the space when the corona discharge stops should be the corona discharge starting electric field.
そこで問題は初期の電界とコロナ放電が終了した時点の電界  Therefore, the problem is the initial electric field and the electric field when corona discharge ends.
の差の電界をここに形成するためには導電性粒子にどのくらいの電荷 を与えればよいかに置き換えられる。 この計算も複雑である、 しカゝしあら たに導電性粒子に帯電し表面に分布している該コロナ電荷がすべてある一 点にあると仮定するとと簡単な計算になる。 ここでその点を垂直軸上球の 中心から 1 Z 2半径の長さ分上の位置と仮定する。 In order to form an electric field having a difference of, the amount of charge applied to the conductive particles is replaced. This calculation is also complicated, and it is a simple calculation assuming that all the corona charges charged on the conductive particles and distributed on the surface are all at one point. Here, it is assumed that this point is a position 1 Z 2 radii above the center of the sphere on the vertical axis.
負コロナ電荷が帯電し導電性球の下に誘起された正電荷が中和された後 の電荷分布は図 8のようになっているが、 この電界を計算する代わりに帯 電前の電荷分布 (図 7 ) の作る電界と、 帯電電荷が単独で分布している時 (図 9 ) の電界を別々に計算して加えても同じである。 言い換えれば、 コ 口ナ放電前とコロナ放電終了後の電界の差はコ口ナ放電で帯電した電荷が 単独で形成する電界と同じである。 該帯電電荷の仮想の集中点を図 9で太 い文字の一記号で示す。  The charge distribution after the negative corona charge is charged and the positive charge induced under the conductive sphere is neutralized is shown in Fig. 8, but instead of calculating this electric field, the charge distribution before the charge is applied. The same applies if the electric field created by (Fig. 7) and the electric field when the charge is distributed alone (Fig. 9) are separately calculated and added. In other words, the difference between the electric field before the corner discharge and the end of the corona discharge is the same as the electric field formed solely by the charge charged by the corner discharge. The virtual concentration point of the charged charges is indicated by one symbol of a bold character in FIG.
この方法で計算したコロナ放電帯電電荷量をその導電性球の質量で除し た単位質量あたりの帯電量 Q/mとして図 1 0、 図 1 1に示す。 図 1 0力 ら、  Figures 10 and 11 show the charge per unit mass Q / m obtained by dividing the corona discharge charge calculated by this method by the mass of the conductive sphere. Fig. 10.
差替え用紙 (規則 26) 直径が一定 (50*10·6ιη)の時はギャップが広いほど帯電量 QZmは下がりギヤ ップ 40*10·6ιηでゼ口になることが分かる。 Replacement form (Rule 26) Diameter is understood that the constant (50 * 10 · 6 ιη) Ze opening in the gear-up 40 * 10 · 6 ιη down the charge QZm enough gap is wide when.
一方図 1 7からはギャップが 10*10·¾ι固定の場合帯電量 QZmは直径が 30*10-6mまたは 40*10—6mのと時最大になることが分かる。 図 4で見ると 導電性球の直径が大きいほどその直下の電界は大きい、 またコロナ放電の 発生する面積も直径の二乗に比例して広がるはずである。 ところが質量は 直径の三乗に比例して大きぐなるためあるところから単位質量当たりの帯 電量 Q/mは逆に小さくなるのである。 なお、 導電性球の比重は次に述べる ようにポリマー材料を使用することを仮定して 1.0とした。 On the other hand, when the charge amount QZm gaps 10 * 10 · ¾ι fixed FIGS. 1-7 it can be seen that maximized when the diameter is 30 * 10- 6 m or 40 * 10- 6 m Noto. Looking at Fig. 4, the larger the diameter of the conductive sphere, the larger the electric field immediately below it. The area where corona discharge occurs should also increase in proportion to the square of the diameter. However, since the mass increases in proportion to the cube of the diameter, the charge per unit mass Q / m is conversely reduced. The specific gravity of the conductive sphere was set to 1.0 assuming that a polymer material was used as described below.
そこで実験でこの計算結果を確認することにした。 導電性球 1 0として P MM A球状粒子表面にポリピロールを 0.02-0, l*10-6mコートしたもの(導 電率 =10e-l S/cm) を使用した。 直径は 30*10·6ηιと 50*10—6mの 2種類であ る。 これらの導電性球 1 0が対抗電極 7と 10*10-smの間隔を空けて対向で きるように対抗電極に厚さ約 24*10-6mのポリイミ ド層をオーバーコート しパターン露光後エッチングしてポリイミ ド層 1 1中に図 1 3に示すよう な孔を多数空けた。 また高電圧を印加する電界形成電極 8にも厚さ約 Therefore, we decided to confirm this calculation result by experiment. Polypyrrole as a conductive sphere 1 0 P MM A spherical particle surface 0.02-0, were used those l * 10- 6 m coating (conductivity = 10e-l S / cm) . Diameter Ru 2 kinds der of 30 * 10 · 6 ηι and 50 * 10- 6 m. These conductive sphere 1 0 counter electrode 7 and 10 * 10 s m thickness about the counter electrode to cut in the opposing apart of 24 * 10- 6 overcoated pattern exposing the polyimide layer of the m After etching, a number of holes were formed in the polyimide layer 11 as shown in FIG. The thickness of the electric field forming electrode 8 for applying high voltage is also approximately
10*10-6mのポリイミ ド層をコートした。 帯電して飛来した導電性球 1 0よ り該電極 8に電荷を逃がさないためである。 10 * 10 of 6 m the polyimide layer was coated. This is because the electric charge is not released to the electrode 8 from the conductive sphere 10 that has come flying.
ポリイミ ド層 1 1にたくさんの孔を空けた対抗電極 7を下に、 孔のない ポリイミ ド層でオーバーコートされた電界形成電極 8を上にして 2枚の電 極を 500*10"¾1の間隔を空けて平行にセットし、 対抗電極 7に上記導電性 球 1 0をそれぞれ別々の孔にはまるように置き、 対抗電極 7をアースし電 界形成電極 8に +1000Vを印加したところ、 直径 30*10·¾ιの導電性球 1 0 がすべて瞬時に電界形成電極 8に飛来した。  The two electrodes were placed at 500 * 10 "¾1 with the counter electrode 7 with many holes in the polyimide layer 1 underneath and the electric field forming electrode 8 overcoated with a non-porous polyimide layer on top. The conductive spheres 10 were placed on the counter electrode 7 so that they fit in separate holes, and the counter electrode 7 was grounded and +1000 V was applied to the electric field forming electrode 8. All 30 * 10 · ¾ι conductive spheres 10 instantly landed on the electric field forming electrode 8.
上電極 8に飛来して付着している直径 30*10-6mの導電性球 1 0の帯電量 Q/mをファラデーゲイジで測定したところ、 23 / C/gであった。 この値は さきほどの計算結果 25 // C/gとよく一致している。 すなわち、 適当な大き Was measured charge quantity Q / m of the conductive sphere 1 0 diameter 30 * 10- 6 m adhered to flying to the upper electrode 8 by the Faraday Gage was 23 / C / g. This value is in good agreement with the previous result 25 // C / g. That is, a suitable size
差替え用紙 (規則 26) さの導電性球 1 0をコロナ放電開始電界以下の電界中で対抗電極 7から適 当な距離に置いてやると両者間の電界がコロナ放電開始電界以上になって ここにコロナ放電が発生しそのコロナィオンが導電性球 1 0に乗って電界 で運ばれることが実証された。 Replacement form (Rule 26) When the conductive sphere 10 is placed at an appropriate distance from the counter electrode 7 in an electric field equal to or less than the corona discharge starting electric field, the electric field between the two becomes greater than the corona discharge starting electric field, and corona discharge occurs here. It was proved that the coronion was carried by an electric field on the conductive sphere 10.
(吸引式ファラデーゲージに関しては例えば 「電子写真技術の基礎と応用」 電子写真学会編コロナ社 P.680 図 9.35 を参照してくださレ、。) (For details on the suction-type Faraday gauge, see, for example, “Basics and Applications of Electrophotographic Technology”, edited by the Society of Electrophotographic Engineers, Corona P.680, Figure 9.35.)
なお直径 50*10—smの導電性球 1 0が飛翔しなかったのは帯電したが帯電 電荷と鏡像電荷間のクーロン力 (鏡像力) が強すぎて飛翔できなかったこ とが後で測定と計算により確認された。 Note that the conductive sphere 10 with a diameter of 50 * 10- s m did not fly because it was charged, but it was later measured that the Coulomb force (mirror force) between the charged charge and the mirror image charge was too strong to fly. Was confirmed by calculation.
ここに適当な大きさの導電性球 1 0はコロナ放電発生部材兼電荷搬送部 材となることが明らかになつたので次の問題は、 これをどのようにして電 荷回収電極 1 4まで搬送するかである。 これに関しては上記の実験を高速 度カメラで撮影しその映像を見ている間によいアイデアが生まれた。  Here, it was clarified that the conductive sphere 10 of an appropriate size was used as a corona discharge generating member and a charge transporting member.The next problem was how to transport it to the charge recovery electrode 14. I do. In this regard, I came up with a good idea while shooting the above experiment with a high-speed camera and watching the video.
すなわち、 帯電して導電性球 1 0が電界形成電極 8に飛来するときか なりな速度に達しているのである。 高速度カメラの画面からその速度を計 算すると 5-7m/secにもなる。 この速度、 言い換えればこの時点までに該導 電性球 1 0が電界より得た運動エネルギーを利用して電荷回収電極 1 4ま で到達させられないか、 である。  That is, when the conductive sphere 10 is charged and flies to the electric field forming electrode 8, it has reached a considerable speed. When the speed is calculated from the screen of the high-speed camera, it becomes 5-7m / sec. This speed, in other words, whether the conductive sphere 10 can reach the charge collection electrode 14 by this time by using the kinetic energy obtained from the electric field.
そこで、 +1000Vを印加する電界形成電極 8を左右に分割しその間を 100*10·6πι離した。 この時対抗電極 7のセンターから帯電して飛翔してく る負帯電導電性球 1 0には左右の電界形成電極 8からは水平方向に逆方向 で同じ大きさの静電力が作用するため左右に曲がることなく直進して電界 形成電極間スリット 1 3を抜ける。 そこでこの上方に電荷回収電極 1 4を 置いておけばよいはずである。 Therefore, by dividing the electric field forming electrode 8 for applying a + 1000V to the right and left release the 100 * 10 · 6 πι therebetween. At this time, the negatively charged conductive sphere 10, which is charged from the center of the counter electrode 7 and flies, receives the same magnitude of electrostatic force in the opposite direction in the horizontal direction from the left and right electric field forming electrodes 8, so that the left and right It goes straight without bending and passes through the slit 13 between the electric field forming electrodes. Therefore, the charge recovery electrode 14 should be placed above this.
そこで、 電界形成電極 8の上方 500*10·*^の位置に電荷回収電極 1 4を 置き、 コンデンサーを挟んで接地した。 帯電した導電性球 1 0がここに到 達すればその電荷が該回収電極 1 4に移動しコンデンサ一に貯えられるは  Therefore, the charge recovery electrode 14 was placed at a position 500 * 10 · * ^ above the electric field forming electrode 8 and grounded with a capacitor interposed. When the charged conductive sphere 10 reaches here, the charge moves to the collecting electrode 14 and is stored in the capacitor.
差替え用紙 (規則 26) ずである。 ところが、 コンデンサーの電位は(そのままであった。 そこで高 速度力メラで撮影しょく分析してみると、 飛来した直径 SC iO"6!!!の導電性 球 1 0は電荷回収電極 1 4の前で Uターンして戻って行くことが分かった。 そこで、 電界形成電極 8の左右の上方に別の電極 1 2 (以下電界調整電 極と呼ぶ。) を置き、 その位置とそこに印加する電圧を変えて実験とシミュ レーシヨンを行ったろところ、 電界調整電極 1 2に電界形成電極 8と同極 性でより大きい電圧を印加したら、 直径 30*10·6πιの負帯電導電性球 1 0 は電荷回収電極 1 4の直前 (10*10_sm以内) まで到達できた。 ところが各電 極の配置や大きさ、 印加電圧等どのように変えてもそれ以上接近すること はできず電荷回収電極 1 4に到達させられなかった。 Replacement form (Rule 26) It is. However, the potential of the condenser was (as it was. So, when I analyzed it with a high-speed force camera, the conductive sphere 10 of diameter SC iO " 6 !!! Then, another electrode 12 (hereinafter referred to as an electric field adjustment electrode) was placed above and to the left and right of the electric field forming electrode 8, and the position and the voltage applied to it were determined. where braze experiments and simulation Reshiyon changing the Once a field adjusting electrode 1 2 by applying a voltage greater than a field forming electrode 8 and the homopolar property, negatively charged conductive spheres 1 0 diameter 30 * 10 · 6 πι is It was reached just before the charge collection electrode 1 4 (10 * within 10_ s m). However the arrangement and size of each electrodes, the applied voltage, etc. how change can not be approaching more, charge collection electrode 14 could not be reached.
直径 30*10"6mでは小さく空気抵抗が相対的に大きいものと考えてこれを 減らすためにより大きい、 直径 50*10—6mの導電性球 1 0に変え、 かつ帯電 量を減らして鏡像力を小さくするためにギヤップを 10*10—smより 15*10—6m に広げた。 この結果帯電量 QZmは- 18 μ C/gに減少し鏡像力が小さくなつ て直径 50*10—6m球も飛翔できるようになった。 Larger in order to reduce this believe diameter 30 * 10 "as 6 m in less air resistance is relatively large, a diameter of 50 * 10- 6 changed to the conductive sphere 1 0 m, and mirror images to reduce the amount of charge spread the Giyappu to 15 * 10- 6 m from 10 * 10- s m in order to reduce the force results charge QZm is -. 18 μ C / g reduced image force on a small summer Te diameter 50 * 10 — Now able to fly 6 m spheres.
各電極の配置や大きさ、 印加電圧を変えてシミュレーションとその確認 実験を行ったところ、 lm/sec前後の速度を残して電荷回収電極 1 4に到達 できるようになった。 その一例を以下に示す。 図 1 2に示す電極配置で、 対抗電極 7と電荷回収電極 1 4を接地し、 電界形成電極 8に +1000V、 電界 調整電極 1 2に +1500Vを印加したところ対抗電極 7と図示しないスぺー サ一層 1 1で 15*10·6ηι離して置かれていた直径 δίΤΙΟ"6!!!の導電性球は電 圧印加直後に飛翔はじめ、 電圧印加 0.32msec後に最高速度 5.72m/secに達 し、 0.40msec後に 1.10m/secの速度で回収電極 1 4に到達した。 Simulations and confirmation experiments were performed by changing the arrangement, size, and applied voltage of each electrode. As a result, it was possible to reach the charge recovery electrode 14 with a speed of about lm / sec. An example is shown below. In the electrode arrangement shown in FIG. 12, the counter electrode 7 and the charge recovery electrode 14 were grounded, and +1000 V was applied to the electric field forming electrode 8 and +1500 V was applied to the electric field adjusting electrode 12. The conductive sphere of diameter δίΤΙΟ " 6 !!!, which was placed 15 * 10 · 6 ηι apart on the first layer 1 1, began to fly immediately after voltage application, and reached a maximum speed of 5.72 m / sec after voltage application 0.32 msec. After 0.40 msec, it reached the collection electrode 14 at a speed of 1.10 m / sec.
またシミュレーションの結果帯電量- 10 μ C/g以上、 -20 // C/g以下で電荷 回収電極 1 4に到達でき、 -8 /x C/g以下では飛翔するが電荷回収電極 1 4に 到達できず、 また- 22 μ C/g以上では鏡像力が強すぎて飛翔できないことが 分かった。 また飛翔し電荷回収電極 1 4に到達できる時、 帯電量が多いほ  In addition, simulation results show that the charge can reach the charge recovery electrode 14 at a charge amount of -10 μC / g or more and -20 // C / g or less, and fly below -8 / x C / g but reach the charge recovery electrode 14. It was found that it could not be reached, and that it was impossible to fly at -22 μC / g or more because the mirror image was too strong. Also, when it can fly and reach the charge recovery electrode 14, the more
差替え用紙 (規則 26) ど最高速度も着地速度も速いが到達時間は- 16uC/g、 -18uC/gの方が- 20uC/g より短くなることが分かつた。 これは帯電量が多レ、と飛翔できても鏡像力 が強くて飛翔開始時の速度が遅くなるためと考えられる。 これらの結果を 図 1 3に示す。 Replacement form (Rule 26) Although the maximum speed and the landing speed are fast, it was found that the arrival time was shorter at -16uC / g and -18uC / g was shorter than -20uC / g. This is considered to be due to the fact that, even if the charge amount is large, the image force is strong and the speed at the start of the flight becomes slow even if the flight is possible. Figure 13 shows these results.
なお、 電界調整電極 1 2に印加する電圧は +1500Vに代えて +1300Vでも 問題なく、 またスリッ ト 1 3の間隔も 100*10·6ιηから 200* l(T6mに広げて も問題なく飛翔し回収電極 1 4に到達した。 電界形成電極 8や電界調整電 極 1 2の幅を 150*10·6ιηから 300*10·6ι に広げても、 また両者の水平方向 の間隔を 0.0*10·6πιから 150*10— 6mに広げても O Kであった。 It should be noted that the voltage applied to the electric field adjusting electrode 12 may be +1300 V instead of +1500 V, and the interval of the slit 13 may be increased from 100 * 10 6 ιη to 200 * l (T 6 m. It has reached the flying recovered electrode 1 4 no. also widen the field forming electrode 8 and the field control electrodes 1 2 from 150 * 10 · 6 ιη to 300 * 10 · 6 ι, also horizontal gap therebetween the it was also OK to expand from 0.0 * 10 · 6 πι to 150 * 10- 6 m.
直径 50*10_6mの導電性球 1 0を使レ、図 1 2に示す電極構成を取れば導電 性球は- 18 μ C/gに帯電し回収電極 1 4に到達できることが分かったので、 図 1 4に示す静電発電セルを試作し電荷回収電極 1 4に流れる電流を測定 した。 Sile diameter 50 * 10_ 6 conductive sphere 1 0 m, Taking electrode configuration shown in FIG. 1 2 conductive spheres - 18 mu C / charged since it was found that can reach the collecting electrode 1 4 g A prototype of the electrostatic power generation cell shown in FIG. 14 was fabricated, and the current flowing through the charge recovery electrode 14 was measured.
ただし、 電荷回収後の導電性球 1 0を対抗電極 7に戻すために電荷回収 電極 1 4を図のように斜めに配置した。 このようにすると、 帯電して飛翔 した導電性球 1 0は該斜め電荷回収電極 1 4に衝突し電荷を放出すると同 時に跳ね返り、 さらに右角の進路変更板 2 0と衝突して跳ね返り、 右下の 滑り台 2 1に当たって速度が遅くなり該滑り台 2 1を滑り降りてセンター のスベーサ一層 1 1のスリ ットに収まることができる。  However, in order to return the conductive spheres 10 after charge recovery to the counter electrode 7, the charge recovery electrodes 14 were arranged obliquely as shown in the figure. In this way, the conductive sphere 10 that has been charged and flies collides with the oblique charge collecting electrode 14 and repels at the same time as releasing the electric charge. Further, it collides with the course change plate 20 at the right corner and rebounds. The speed of the slide is reduced by hitting the slide 21, and the slide 21 can slide down the slide 21 to fit in the slit of the center spacer layer 11.
なお、 スぺーサ一層に多数の小さな孔を空けるのは大変なのでスリッ ト に変えた。 スリツトでも導電性球 1 0と対抗電極 7の間のギャップを一定 にすることが可能である。  In addition, since it is difficult to make many small holes in one spacer, it was changed to a slit. Even with the slit, the gap between the conductive ball 10 and the counter electrode 7 can be kept constant.
なお図示していないが、 帯電した導電性球 1 0が直進できずに左または 右に偏向してスリット 1 3を抜けられずに左右の電界形成電極 8に当たる こともあるので、 飛翔経路を挟むように対抗電極 7から電界形成電極 8ま で薄い絶縁性のフィルムを置いてもよい。 その場合、 帯電した導電性球 1 0がここに衝突しないようにこのプラスチックフィルム内に孤立多島状に  Although not shown, the charged conductive sphere 10 may not travel straight and may be deflected left or right to hit the left and right electric field forming electrodes 8 without being able to pass through the slit 13. As described above, a thin insulating film may be placed from the counter electrode 7 to the electric field forming electrode 8. In this case, isolated conductive islands are formed in this plastic film so that the charged conductive spheres 10 do not collide here.
差替え用紙 (規則 26) 負電荷を閉じ込めると該孤立負電荷に接近した負帯電導電性球 1 0はク一 口ン斥力で排斥されて該フィルムに当らず電界より与えられた運動エネル ギーをムダにすることが防げる。 Replacement form (Rule 26) When the negative charges are confined, the negatively charged conductive spheres 10 approaching the isolated negative charges are rejected by the repulsive force of the pin, so that the kinetic energy given by the electric field without contacting the film can be prevented from being wasted.
図 1 4に示す構成において、 対向電極 7を接地し、 電荷回収電極 1 4に -24V、 電界形成電極 8に +1000V、 電界調整電極 1 2に +1500Vを印加して 直径 50*10·6πιの導電性球 1 0を対向電極 7のスぺーサ一層 1 1に切られた スリットに乗せて該導電性球 1 0と対向電極 7のギヤップを 15*10·6πιにし たところ、 導電性球 1 0は帯電して飛翔始め、 左右の電界形成電極 8間の スリ ット 1 3を抜けて電界形成電極 8と電界調整電極 1 2の間で最高速度 5.7m/secに達しその後減速して 0.6m/secで電荷回収電極 1 4に衝突するの が高速度カメラの映像を再生することにより確認された。 In the configuration shown in FIG. 1 4, grounding the counter electrode 7, -24V charge collection electrode 1 4, + 1000V to the electric field forming electrode 8, the electric field adjusting electrode 1 a 2 a + 1500V is applied to the diameter 50 * 10.6 was the Giyappu of the conductive sphere 1 0 and the counter electrode 7 to 15 * 10 · 6 πι conductive sphere 1 0 Paiiota placed on a slit cut into the spacer further 1 1 of the counter electrode 7, the conductive The sex sphere 10 is charged and starts flying, passes through the slit 13 between the left and right electric field forming electrodes 8, reaches a maximum speed of 5.7m / sec between the electric field forming electrode 8 and the electric field adjusting electrode 12, and then decelerates At 0.6 m / sec, the collision with the charge recovery electrode 14 was confirmed by playing back the image of the high-speed camera.
対向電極 7から飛翔後の導電性球 1 0の帯電量 Q/mを別途測定したと ころ- 18 // C/gであり、 電荷回収電極 1 4に衝突後の帯電量は 0.0/i C/g で あった。  The charge Q / m of the conductive sphere 10 after flying from the counter electrode 7 was separately measured-18 // C / g, and the charge after collision with the charge collection electrode 14 was 0.0 / i C / g.
各電極の長さ (奥行き) を 0.01mとし、 該静電発電セル中に直径 SCmC^m の導電性球 1 0を 2 5 0 0個 (0.165mg)入れ、 電荷回収電極 1 4とアース の間にコンデンサーを入れコンデンサーの上限電位をバリスターにより -24Vにしたところ、 常時- 24Vの電圧で、 -1.2 μ Αの電流を取り出すことが できた。 The length (depth) of each electrode was 0.01 m, and 250 000 (0.165 mg) conductive balls 10 having a diameter of SCmC ^ m were placed in the electrostatic power generation cell. When a capacitor was inserted between the capacitors and the upper limit potential of the capacitor was set to -24V using a varistor, a current of -1.2 µm was always obtained with a voltage of -24V.
電圧も低く、 電流も小さいが非常に小さなセルで発電が可能になった訳 である。 実施例 2  This means that power can be generated in a very small cell with low voltage and low current. Example 2
実施例 1において電界形成電極 8と電界調整電極 1 2に代えてその位 置でそれぞれ +1000Vと +1500Vの電位を与えるエレク トレットフィルムを 置いて同様に常時- 24Vの電圧で、 -1.2 μ Αの電流を取り出すことができた,: すなわちここに非常に小さな装置で (注、 エレク トレットを使用するこ  In Example 1, instead of the electric field forming electrode 8 and the electric field adjusting electrode 12, an electret film that gives a potential of +1000 V and +1500 V was placed at that position, and a voltage of −24 V was also used. Could extract the current of :, i.e. here a very small device (note,
差替え用紙 (規貝 IJ26) とにより高圧電源、 及びそれに電力を供給する回路が不要になった。)、 し かも外部よりエネルギーを供給することなく、 半永久的に発電することが 可能になった。 Replacement paper (Kaikai IJ26) This eliminates the need for a high-voltage power supply and a circuit for supplying power thereto. ) It became possible to generate electricity semi-permanently without supplying energy from outside.
以下の実施例においても特に記載しなくとも電極で記載された実施例は エレク トレットで同様に実施できるし、 逆にエレク トレットで記載された 実施例は同様に電極で実施できる。 実施例 3  Also in the following embodiments, the embodiments described with electrodes can be similarly implemented with an electret, and the embodiments described with an electret can be similarly performed with electrodes, even if not specifically described. Example 3
実施例 2において対向電極 7に流れる電流を測定したところ +1.2 μ Aで あった。 そこで、 対向電極 7とアース間に最高電位がバリスターで +100V に押さえられたコンデンサ一を入れたところ +100Vで連続して 0.6 μ Αの 電流を取り出すことができた。 得られる電流値が半減したのは対向電極 7 と電界形成エレクトレツト 8間の電位差がその分減少し、 その結果、 導電 性球 1 0と対向電極 7間のギャップに形成される電界も弱まり、 この間の コロナ放電がその分早く終わって導電性球 1 0の帯電量が減少したためで ある。 When the current flowing through the counter electrode 7 in Example 2 was measured, it was +1.2 μA. Then, when a capacitor whose maximum potential was suppressed to +100 V by a varistor was inserted between the counter electrode 7 and the ground, a current of 0.6 μm was continuously obtained at +100 V. The obtained current value was halved because the potential difference between the counter electrode 7 and the electric field forming electret 8 was reduced by that amount, and as a result, the electric field formed in the gap between the conductive sphere 10 and the counter electrode 7 was also weakened. This is because the corona discharge during this period ended earlier and the charge amount of the conductive sphere 10 decreased.
コンデンサ一の電圧を +200Vにすることも可能であるが得られる電流は 0. Ι μ Α以下になってしまった。  It is possible to set the voltage of one capacitor to + 200V, but the current obtained is less than 0.1 μμ.
この結果電流は半減するがより高い電圧を得ることができるようになつ た。 なお、 対抗電極と、 電荷回収電極の両方から同時に電流を取り出すこ とももちろん可能である。 実施例 4  As a result, the current was reduced by half, but a higher voltage could be obtained. It is of course possible to simultaneously extract current from both the counter electrode and the charge recovery electrode. Example 4
実施例 3においてバリスターをはずしコンデンサ一の電位制限を取り外し たところ、 コンデンサーの電位が 220Vになった時点で導電性球 1 0の飛 翔は止まり電荷回収電極 1 4に流れる電流もゼロになった。 対向電極 7の 電位が +220Vまで上がったため電界形成エレクトレット 8との電位差が In Example 3, when the varistor was removed and the potential limit of the capacitor 1 was removed, when the potential of the capacitor reached 220 V, the conductive sphere 10 stopped flying and the current flowing through the charge recovery electrode 14 became zero. Was. Since the potential of the counter electrode 7 has risen to +220 V, the potential difference between the
差替え用紙 (規則 26) 少なくなりその結果導電性球 1 0と対向電極 7間の電界もコロナ放電開 始電界以下になつてコロナ放電が起きなくなつたためである。 Replacement form (Rule 26) As a result, the electric field between the conductive sphere 10 and the counter electrode 7 became less than the corona discharge starting electric field, and corona discharge did not occur.
コンデンサ一とアース間に負荷を入れて電流を流したところ、 コンデン サ一の電位が +215Vになつた時点でまた導電性球の飛翔が始まつた。  When a load was applied between the capacitor and ground and current flowed, the conductive sphere began to fly again when the potential of the capacitor reached + 215V.
この現象を上手に利用することで使用しない時の発電自動停止、 使用始 めた時の発電自動再開が可能になる。 実施例 5  By making good use of this phenomenon, it is possible to automatically stop power generation when not in use and automatically restart power generation when it is started to use. Example 5
実施例 2においてセル内の気圧を 1013mbから 700mbに下げたところ、 電 界形成エレクトレッ ト 8の電位を +1000Vから +600Vに、 電界調整エレク トレット 1 2の電位を +1500Vから +900Vに下げて常時- 24Vの電圧で、 - 1.2 μ Αの電流を取り出すことができた。 In Example 2, when the pressure in the cell was reduced from 1013 mb to 700 mb, the potential of the electric field forming electret 8 was reduced from +1000 V to +600 V, and the potential of the electric field adjusting electret 12 was reduced from +1500 V to +900 V. A current of -1.2 µm was always obtained with a voltage of -24 V.
先に記したように気圧が減少したことで電子の平均自由行程が長くなり、 低くなった電界中でも酸素分子等に衝突した時にそこから新しい電子を叩 き出すのに必要な運動エネルギーを得られたためである。  As described above, the decrease in air pressure increases the mean free path of electrons, and provides the kinetic energy required to strike new electrons out of a low electric field when it collides with oxygen molecules. It is because.
エレクトレツトの電位の半減期は電位が低いほど長いので、 この結果装 置寿命を大幅に伸ばせたと考えられる。  Since the half-life of the electric potential of the electret is longer as the electric potential is lower, it is considered that as a result, the life of the device was greatly extended.
なお、 電子の平均自由行程を延ばす代わりに、 あるいはそれと併用して、 自由電子の数を増やすのも効果的である。 先に述べたように宇宙線で電離 されて自由電子が発生するが、 例えばこのセル中、 とくに導電性球 1 0と 対向電極 7間に軟 X線を照射すると同様に低めの電界でも十分な電流が 得られるはずである 実施例 6  It is also effective to increase the number of free electrons instead of or in combination with extending the mean free path of electrons. As mentioned earlier, free electrons are generated by ionization by cosmic rays.For example, when soft X-rays are irradiated in this cell, especially between the conductive sphere 10 and the counter electrode 7, a low electric field is sufficient. Current should be obtained Example 6
実施例 1, 2において、 連続発電させたところ得られる電流が少しずつ減 少始めた。 いろいろ調べたところポリイミ ドで形成したスべ一サ一層 1 1 がプラスに帯電したためだと判明した。 導電性球 1 0と対向電極 7間で発 In Examples 1 and 2, the current obtained by continuous power generation began to decrease little by little. Investigations revealed that the layer 11 formed of polyimide was positively charged. Emitted between conductive ball 10 and counter electrode 7
差替え用紙 (規則 26) 生したコロナ正イオンのほんの一部が対向電極 7に向かわずポリイミ ドス ぺ一サ一層 1 1のスリ ツ トの壁に付着し堆積したもようである。 Replacement form (Rule 26) It seems that only a part of the generated corona positive ions adhered and deposited on the slit wall of the polyimide layer 11 without going to the counter electrode 7.
そこで酸化チタンのフィラーを lwt%入れてスベーサ一層 1 1を作成した ら壁に付着した正イオンによる影響がなくなって連続使用時の電流減少は なくなつた。  Therefore, when lwt% of titanium oxide filler was added to form a base layer 11, the effect of positive ions attached to the wall was eliminated and the current did not decrease during continuous use.
この場合なにも酸化チタンフイラ一入りのボリイミ ドでなくとも適当な 電気抵抗を有するものなら何でも使用可能である。 コロナ放電が発生して いる短い時間だけ、 対向電極 7からスぺーサ一層 1 1への電荷の注入と、 逆に導電性球 1 0からスベーサ一層 1 1への正電荷の注入を阻止できれば O Kである。 その後で、 スリ ッ トの壁に付着した正電荷が相対的に長い時 間をかけて自然にリークできればよいわけである。 実施例 7  In this case, any material having an appropriate electric resistance can be used, not necessarily a polyimide containing a titanium oxide filler. It is OK if the injection of charge from the counter electrode 7 to the spacer layer 11 and the injection of positive charge from the conductive sphere 10 to the spacer layer 11 can be prevented only for a short period of time during which corona discharge occurs. It is. After that, it is only necessary that the positive charges adhering to the slit wall can leak naturally over a relatively long time. Example 7
実施例 6においてスべ一サ一層 1 1のスリ ッ トを無くし平滑な厚さ 5*106mのスぺ一サ一層 1 1の上に直接導電性球を乗せたところ 0.2 // A の電流を得ることができた。 図 2 1に見られるように導電性球 1 0と対向 電極 7間で一番電界が強くコロナ放電も発生しやすい部分が固体のスベー サ一層 1 1で占められているためコロナ放電が起こらず比較的電界が弱い センターから 5*10·6πι— 20*10-6m離れた範囲で起こったコロナ放電の電流 のみだったのでこのように小さくなってしまったと考えられる。 In Example 6, when the conductive layer was placed directly on the smoother layer 11 having a smooth thickness of 5 * 10 6 m, the slit of the smoother layer 11 was eliminated. A current could be obtained. As can be seen in Fig. 21, the portion between the conductive sphere 10 and the counter electrode 7 where the electric field is strongest and where corona discharge is most likely to occur is occupied by the solid spacer layer 11, so no corona discharge occurs. It is probable that the corona discharge occurred only within a range of 5 * 10 · 6 πι—20 * 10- 6 m from the center where the electric field was relatively weak, and so the current was reduced.
しかしながら、 スリツトがない方が製法が簡単でその分安く作れるメリ ッ卜力 ある。  However, the absence of slits is advantageous in that the manufacturing method is simpler and that it can be made cheaper.
なお導電性球 1 0に代えて絶縁性で高誘電率の球を使えばスぺーサ一層 1 1を無くして直接対向電極 7に乗せることができる。 ただし、 誘電率が 充分高ければ導電性球 1 0と同様に対向電極 7との間の電界が強まりコロ ナ放電が起きて帯電し飛翔することは可能であるが単に電荷回収電極 1 4 に当てただけではほとんど電荷を回収できないので効率は悪レ、。  If an insulating and high dielectric constant sphere is used instead of the conductive sphere 10, the spacer layer 11 can be eliminated and the sphere can be directly mounted on the counter electrode 7. However, if the dielectric constant is sufficiently high, the electric field between the counter electrode 7 and the conductive sphere 10 is strengthened as in the case of the conductive sphere 10, and corona discharge can occur to charge and fly. Efficiency is poor, because almost no charge can be recovered by just using it.
差替え用紙 (規則 26) また、 原理的にはスぺーサ一層 1 1は対向電極 7表面ではなく、 導電 性粒子 1 0表面に形成しても同じである。 実施例 9 Replacement form (Rule 26) In principle, the same applies when the spacer layer 11 is formed not on the surface of the counter electrode 7 but on the surface of the conductive particles 10. Example 9
次に、 帯電して飛翔する導電性球 1 0を電界形成電極 8間のスリット 1 3を抜けさせるのではなく、 電界形成電極 8の手前で進路変更板 1 5 に当ててその進路を変えさせて電界形成電極 8と対向電極 7の形成する空 間の外に導いてそこにある電荷回収電極 1 4に到達させる別の方法を試み た。 この方が、 電荷回収電極 1 4に向かう途中で電界形成電極 8と対向電 極 7の形成する電界の影響を受けにくく有利と考えたからである。  Next, instead of letting the charged conductive sphere 10 fly through the slit 13 between the electric field forming electrodes 8, the conductive sphere 10 hits the course changing plate 15 before the electric field forming electrode 8 to change its course. Then, another method was attempted in which the electric field forming electrode 8 and the counter electrode 7 were led out of the space formed by the electric field forming electrode 8 and reached the charge recovery electrode 14 there. This is because this was considered to be advantageous because it was less likely to be affected by the electric field formed by the electric field forming electrode 8 and the counter electrode 7 on the way to the charge recovery electrode 14.
図 1 6に正面図を示す静電発電ュニットにおいて、 電界形成電極 8に +1500Vを印加し、 シールド電極 1 6と対向電極 7を接地し、 電荷回収電 極 1 4に- 24Vを印加して、 直径 50*10·6πιの導電性球 1 0を対向電極 7の スぺ一サ一層 1 1のスリツ トにおいたところ導電性球 1 0は帯電して飛翔 始め、 電界形成電極 8と対向電極 7の中間に置かれた進路変更板 1 5に 4.5m/secの速度 ( y方向速度、 x方向速度は O.Om/sec)で衝突し跳ね返り、 X方向速度 3.0m/sec、 y方向速度- 2.8m/secで右下に向かい衝突後 In the electrostatic power generation unit whose front view is shown in Fig. 16, +1500 V is applied to the electric field forming electrode 8, the shield electrode 16 and the counter electrode 7 are grounded, and -24 V is applied to the charge recovery electrode 14. When the conductive sphere 10 having a diameter of 50 * 10 6 πι is placed on the slit of the counter layer 11 of the counter electrode 7, the conductive sphere 10 starts charging and starts flying, facing the electric field forming electrode 8. It collides with the course change plate 15 placed in the middle of the electrode 7 at a speed of 4.5 m / sec (velocity in the y direction and velocity in the x direction is O.Om/sec) and rebounds, and a speed in the X direction is 3.0 m / sec, in the y direction Speed-2.8m / sec.
0. 20msec後に電荷回収電極 1 4に X方向速度 0.4m/sec、 y方向速度 O.lm/secで衝突した。 0.20 msec later, it collided with the charge recovery electrode 14 at a velocity of 0.4 m / sec in the X direction and O.lm / sec in the y direction.
そこでまた跳ね返って左下に進み対向電極 7の手前で着地して転がりな がらさらに進んで対向電極 7のスぺーサ一層 1 1のスリットに収まって止 まった。  Then, it again bounced, proceeded to the lower left, landed in front of the opposing electrode 7, rolled, and further advanced to fit in the slit of the spacer layer 11 of the opposing electrode 7 and stopped.
この時の帯電量を別途測定したところ、 実施例 1と同様に- 18 C/gであ り、 また、 対向電極 7直上の電界をシミュレーションで求めたところ、 1.92*e+6 V/m であった (導電性球 1 0がなレ、場合)。  When the charge amount at this time was separately measured, it was -18 C / g as in Example 1, and when the electric field immediately above the counter electrode 7 was obtained by simulation, it was 1.92 * e + 6 V / m. (Conducting sphere 10 was missing).
この構成は実施例 1 _ 8に比較すると、 電界調整電極 (エレク トレット) 1 2と電界形成電極間スリット 1 3が不要になるメリットがある。  This configuration has an advantage that the electric field adjusting electrode (electret) 12 and the slit 13 between the electric field forming electrodes are unnecessary as compared with the first to eighth embodiments.
差替え用紙 (規則 26) また実施例 9の変形として電界形成電極 8のスリ ッ ト 1 3を抜けたとこ ろに進路変更板 1 5を設けここで衝突反発させてその進路を右上に変えて 右上に設けた電荷回収電極 1 4に到達させる方法も考えられる。 実施例 1 0 Replacement form (Rule 26) In addition, as a modification of the ninth embodiment, a route changing plate 15 is provided at a position where the slit 13 of the electric field forming electrode 8 has passed through, and the collision recovery is performed. A way to reach 14 is also conceivable. Example 10
図 1 7に 2個の静電発電セルを横につなげた実験装置の正面図を示す。 該実験装置において、 電界形成電極 8に +1400Vを印加し、 シ一ルド電極 1 6と対向電極 7を接地し、 電荷回収電極 1 4に- 24Vを印加して、 直径 50*10"6mの導電性球 1 0を左側の対向電極 7のスぺーサ一層 1 1のスリツ トにおいたところ導電性球 1 0は帯電して飛翔始め、 電界形成電極 8と対 向電極 7の中間に置かれた進路変更板 1 5に 4.5m/secの速度 (y方向速度、 X方向速度は 0.0m/sec)で衝突し跳ね返り、 x方向速度 2.6m/sec、 y方向速 度- 3.2m/secで右下に向かい衝突後 0.20msec後に電荷回収電極 1 4に x方 向速度 1.2m/sec、 y方向速度- 0.05m/secで着地するのが高速度カメラで観 察された。 Fig. 17 shows a front view of the experimental device in which two electrostatic power generation cells are connected side by side. In the experimental apparatus, +1400 V was applied to the electric field forming electrode 8, the shield electrode 16 and the counter electrode 7 were grounded, −24 V was applied to the charge collection electrode 14, and the diameter was 50 * 10 ″ 6 m When the conductive sphere 10 is placed in the slit of the spacer layer 11 of the counter electrode 7 on the left side, the conductive sphere 10 is charged and starts flying, and is placed between the electric field forming electrode 8 and the counter electrode 7. It collides with the course change plate 15 at a speed of 4.5 m / sec (velocity in the y direction, velocity in the X direction is 0.0 m / sec) and rebounds, velocity in the x direction is 2.6 m / sec, and velocity in the y direction is -3.2 m / sec. It was observed by a high-speed camera that it landed on the charge recovery electrode 14 at a speed of 1.2 m / sec in the x direction and a speed of -0.05 m / sec in the y direction 0.20 msec after the collision.
その後、 右方向に転がりながら移動し電荷回収電極 1 4やその支持部材 1 9との摩擦で速度を失って次の対向電極 7のスベーサ一層 1 1のスリツ トに収まり、 わずかに時間を置いてまた飛翔始めるのも観察された。  After that, it moves while rolling to the right, loses its speed due to friction with the charge recovery electrode 14 and its support member 19, and fits into the slit of the next spacer layer 11 of the counter electrode 7, and after a short time. It was also observed to start flying.
この時の導電性球 1 0の帯電量 Q/mも- 18 / C/gであり、 計算された対向 電極 7直上の y方向電界も 1.93*e+6 V/mであった (導電性球なし)。  At this time, the charge Q / m of the conductive sphere 10 was also −18 / C / g, and the calculated electric field in the y direction immediately above the counter electrode 7 was also 1.93 * e + 6 V / m. Without ball).
この電荷回収電極 1 4が対抗電極 7と同一平面に形成できる静電発電 セルを多数横につないでループ状に形成することでより大きな電流を得る ことが出きる。 実施例 1 1  A larger current can be obtained by connecting a large number of electrostatic power generation cells in which the charge recovery electrode 14 can be formed on the same plane as the counter electrode 7 to form a loop. Example 1 1
実施例 9, 1 0を実施中に対向電極 7の幅を狭くすると電界形成電極 8 の電位が同じでも対向電極 7直上の電界は強くなることに気が付いた。  It was noted that when the width of the counter electrode 7 was reduced during execution of Examples 9 and 10, the electric field immediately above the counter electrode 7 was increased even if the potential of the electric field forming electrode 8 was the same.
差替え用紙 (規則 26) 本発明においては直径 50* 10·¾ι程度の導電性球 1 0と近接して置かれた 対向電極 7との間の空間の電界が強くなればよい訳で他の部分は無関係で ある。 そのため、 対向電極 7の幅は導電性球の直径と同程度でよいはずで ある。 Replacement form (Rule 26) In the present invention, the other parts are irrelevant, as long as the electric field in the space between the conductive sphere 10 having a diameter of about 50 * 10 · 対 向 ι and the counter electrode 7 placed close to the conductive sphere 10 becomes strong. Therefore, the width of the counter electrode 7 should be almost equal to the diameter of the conductive sphere.
そこで実施例 1に戻ってこの幅の狭い対向電極 7による電界集中効果を 試すことにした。  Therefore, returning to the first embodiment, the electric field concentration effect of the narrow counter electrode 7 was determined.
図 1 2において対向電極 7の幅を 80*10-6m (厚さは 20*10-6m) にした ところ、 電界形成電極 8の電位を +1000Vより +500Vに、 電界調整電極 1 2の電位を +1500Vから +700Vに半減しても対向電極 7直上の電位は 2.02*e+6 V/mと変わらずむしろ少し強いくらいであった。 (なお、 この場 合電荷回収電極の電位を- 24Vにしているがその影響は小さレ、。) The width of the counter electrode 7 80 * 10- 6 m 1 2 (thickness 20 * 10- 6 m) was in, the more + 500V + 1000V potential of the electric field forming electrode 8, the electric field adjusting electrode 1 2 Even when the potential of was halved from +1500 V to +700 V, the potential immediately above the counter electrode 7 was 2.02 * e + 6 V / m, which was rather strong. (In this case, the potential of the charge recovery electrode is set to -24 V, but the effect is small.)
この構成で、 対向電極 7のスぺ一サ一層 1 1のスリ ッ トに直径 50*10-6m の導電性球 1 0を置いたところ同様に飛翔はじめ、 0.21msec後に最高速度 3.8m/secに達し、 0.54msec後に 0.7m/secの速度で電位- 24Vの電荷回収電 極 1 4に到達した。 In this configuration, the scan Bae colonel Similarly flying initially was placed more 1 1 Sri Tsu bets diameter 50 * 10- 6 conductive sphere 1 0 m of the counter electrode 7, the maximum speed after 0.21msec 3.8m / After reaching 0.5 sec, the charge-recovery electrode 14 having a potential of −24 V was reached at a speed of 0.7 m / sec after 0.54 msec.
エレタトレッ トで電界形成、 及び電界調整の電位を形成する時、 電位を 半減できると言うことは、 単にエレクトレツ卜の電荷密度を半減できるば かりでなくその寿命を大幅に伸ばすことが期待できる。  The fact that the potential can be halved when the electric field is formed and adjusted by the eleretret not only means that the charge density of the electret can be halved but also that its life can be greatly extended.
また、 対向電極 7の幅のみを縮め長細い短冊型にしたが長さも縮めてド ット状にすればさらに電界集中効果が上がる。 またこれは F P C作製技術 を使用すれば容易にできることである。 実施例 1 2  In addition, only the width of the counter electrode 7 is reduced to form a long and narrow strip, but if the length is also reduced to form a dot, the electric field concentration effect is further increased. This can be easily achieved using FPC fabrication technology. Example 1 2
幅の狭い対向電極 7による電界集中効果はこの電界集中部分を飛翔する 導電性球 1 0をより強く加速するはずである。 その結果、 電界調整電極 1 2がなく とも導電性球 1 0は電荷回収電極 1 4に到達することが期待でき る。  The electric field concentration effect of the narrow counter electrode 7 should accelerate the conductive sphere 10 flying in this electric field concentrated portion more strongly. As a result, the conductive sphere 10 can be expected to reach the charge recovery electrode 14 without the electric field adjusting electrode 12.
差替え用紙 (規則 26) そこで、 図 1 8に示すように幅の狭レ、対向電極 7と電界形成電極 8と電 荷回収電極 1 4のみの静電発電セルを試作し、 対向電極 7を接地し、 電荷 回収電極 1 4に- 8Vを印加して電界形成電極 8に +650Vを印加したところ、 直径 50*10—6mの導電性球 1 0は対向電極 7のスぺーサ一層 1 1のスリ ット から飛翔はじめ 0.19msec後に最高速度 43m/secに達し、 0.48msec後に 0.8m/secで電荷回収電極 1 4に到達した。 Replacement form (Rule 26) Therefore, as shown in Fig. 18, an electrostatic power generation cell with only a narrow width, the counter electrode 7, the electric field forming electrode 8, and the charge recovery electrode 14 was prototyped, and the counter electrode 7 was grounded. 4 - 8V a was applied to applied to + 650V to the electric field forming electrode 8, the diameter 50 * 10- 6 conductive sphere 1 0 m is flying from the spacer further 1 1 Sri Tsu City of counter electrode 7 First, the maximum speed reached 43 m / sec after 0.19 msec, and reached the charge recovery electrode 14 at 0.8 m / sec after 0.48 msec.
この時の対向電極 7直上の電界は 2.07*e+6 V/m であった。 これは もっともシンプルな構成であり、 し力 も、 電界形成電極 (エレク トレット) 8の電位も低い。 実施例 1 3  At this time, the electric field immediately above the counter electrode 7 was 2.07 * e + 6 V / m. This is the simplest configuration, with low force and low electric field forming electrode (electret) 8 potential. Example 13
実施例 1 2のュニットを横にしてエンドレスにつなげれことができれば 大変シンプルな構成で製造も容易になる。 そこで図 1 9にその 1ュニット のみを表示する静電発電セルを試作した。 (図 2 0に模式的に 1ュニッ卜と 隣のユニットの対向電極 7と上下電界形成電極 1 7, 1 8を示した。) 対向電極 7を接地し電荷回収電極 1 4に- 24v、 電界形成上電極 1 7に +500 V、 下電極 1 8に +600Vを印加したところ導電性球 1 0は放物線を描 いて飛翔し上下電界形成電極 1 7, 1 8間を抜けたのち、 下電界形成電極 1 8と電荷回収電極 1 4の中間に着地した。 着地が早すぎた訳である。 そこで、 図のように電界調整電極 1 2を付加してここに +150Vを印加し たところ導電性球 1 0は電荷回収電極 1 4に着地した。 この時の水平最高 速度は 4.15m/secで、 着地時の水平速度は 0.8m/sec、 垂直速度は- 0.02m/sec であった。 電荷回収電極 1 4に着地して電荷を失った導電性球 1 0はその 後は転がって右に移動し隣の対向電極 7のスぺーサ一層 1 1のスリットで 止まった。  If the unit of Example 1 and 2 can be connected side by side and endlessly, it will be easy to manufacture with a very simple configuration. Therefore, we prototyped an electrostatic power generation cell that displays only one unit in Fig. 19. (Fig. 20 schematically shows one unit, the counter electrode 7 of the next unit, and the upper and lower electric field forming electrodes 17 and 18.) The counter electrode 7 is grounded, the charge recovery electrode 14 is -24v, and the electric field is When +500 V is applied to the upper electrode 17 and +600 V is applied to the lower electrode 18, the conductive sphere 10 flies in a parabola and passes through the upper and lower electric field forming electrodes 17 and 18, and then the lower electric field Landed in the middle of the forming electrode 18 and the charge collecting electrode 14. The landing was too early. Thus, as shown in the figure, when the electric field adjusting electrode 12 was added and +150 V was applied thereto, the conductive sphere 10 landed on the charge recovery electrode 14. The maximum horizontal speed at this time was 4.15 m / sec, the horizontal speed at landing was 0.8 m / sec, and the vertical speed was -0.02 m / sec. The conductive sphere 10 losing charge after landing on the charge recovery electrode 14 then rolled to the right and stopped at the slit in the spacer layer 11 of the adjacent counter electrode 7.
各ユニットの奥行きを 0.1mとし、 幅 0.1m、 高さ 0.001mの中に上下 The depth of each unit is 0.1m, and the height is within 0.1m in width and 0.001m in height.
2段に 1 3 0個の静電発電ュニットをエンドレスにつなげた静電発電装置 An electrostatic power generation device that connects 130 electrostatic power generation units endlessly in two stages
差替え用紙 (規則 26) を試作し、 直径 50*10"6mの導電性球 1 3 0万個 (0.085g)を使用したところ 4Vの電圧で 1.56mAの電流が得られた。 この発電装置の発電モデルを図 2 0に示す。 Replacement form (Rule 26) A prototype of the power generator was used, and when 1300,000 conductive balls (0.085 g) with a diameter of 50 * 10 " 6 m were used, a current of 1.56 mA was obtained at a voltage of 4 V. 0 is shown.
具体的には、 この形状は 1枚の厚さ 50*10-6mボリイミ ドフィルム 1 9の 片面に厚さ 20*10—emの銅箔を貼りパターン露光しエッチングすることで対 向電極 7と、 電荷回収電極 1 4を形成し (なお、 この製法は電気部品業界 では公知でその製品は一般に F P Cと呼ばれている。) さらにコロナ帯電に より電界形成用のエレク トレツトパターンを形成したフィルムと、 同様に 電界形成及び電界調整用エレク トレツトパターンを形成した 2枚のフィル ムを 120*10—emの間隔を空けて配置することで容易に安価に形成できる。 実施例 1 4 Specifically, this shape is paired counter electrodes by etching and bonding pattern exposing the copper foil with a thickness of 20 * 10- e m on one side of a sheet of thickness 50 * 10- 6 m Boriimi de film 1 9 7 and charge recovery electrodes 14 (This method is well known in the electrical component industry and the product is generally called FPC.) Further, an electret pattern for forming an electric field is formed by corona charging. and films, similarly the two fill beam forming the electret Torre bract pattern electric field and the field control 120 * 10 distance e m by spaced easily formed at low cost. Example 14
実施例 1 3において対向電極 7のスぺ一サ一層 1 4の縁にマイナスの エレク トレッ ト電荷を 0.001m長さ当たり 5.0e-16 C の割合で形成したと ころ、 該エレク トレット電荷とスリ ットに収まった導電性球 1 0に静電誘 導された電荷との間に鏡像 (クーロン) 力が生まれ、 該鏡像力が該導電性 球 1 0に作用する重力より大きいため該静電発電装置を立てても、 ひつく り返しても重力で該導電性球 1 0がスリットより落下することがなくなり どんなところでも使用できるようになった。  In Example 13, negative electret charges were formed at the edge of the spacer layer 14 of the counter electrode 7 at a rate of 5.0e-16 C per 0.001 m length. A mirror image (Coulomb) force is generated between the conductive sphere 10 and the electric charge electrostatically induced in the conductive sphere 10 and the mirror image force is larger than the gravitational force acting on the conductive sphere 10. The conductive sphere 10 does not fall from the slit due to gravity, even if the power generator is set up or turned over, so that it can be used anywhere.
コロナ放電で該導電性球 1 0が得る電荷量は、 上記誘導電荷の約 1万倍 もあり、 帯電した該導電性球 1 0が電界より受ける静電力も該鏡像力の 1万 倍もあるので飛翔に対する影響はない。 (該導電性球の受ける重力は 6.4 e-10 N、 一方該導電性球が受ける静電力は 7.2 e-6 N )  The amount of charge that the conductive sphere 10 obtains by corona discharge is about 10,000 times the above induced charge, and the electrostatic force that the charged conductive sphere 10 receives from the electric field is 10,000 times the mirror image force. There is no effect on flight. (The gravity of the conductive sphere is 6.4 e-10 N, while the electrostatic force of the conductive sphere is 7.2 e-6 N)
また、 その形成する電界も同様に小さいのでコロナ放電に対する影響も ない。  In addition, since the electric field formed is similarly small, there is no influence on corona discharge.
なお、 スぺーサ一層の端に埋め込んだエレクトレット電荷の鏡像力で電 荷を有していない導電性球を重力に抗してスリットに固定する方法は実施  It should be noted that the method of fixing the conductive sphere having no charge to the slit against the gravity by the image force of the electret charge embedded in one end of the spacer is implemented.
差替え用紙 (規貝 IJ26) 例 1 3のみならずすべての実施例に応用して効果がある。 Replacement paper (Kaikai IJ26) The present invention is effective not only in Example 13 but also in all embodiments.
以上のすべての実施例において個々に独立に動ける導電性球 1 0を使用 してきたが、 その代わりに、 導電性球 1 0を絶縁性の糸で連結したり、 薄 い絶縁性フィルム上に導電性半球を形成しても、 理論上は同様に可能であ る。  In all of the embodiments described above, the conductive spheres 10 that can move independently are used. Alternatively, the conductive spheres 10 may be connected with an insulating thread, or the conductive spheres may be placed on a thin insulating film. Forming a sex hemisphere is theoretically possible as well.
またすベて球形の均一粒子を使用したが、 不定形の粒子でも粒径に分布 がある場合でも条件によっては可能である。  Although all spherical uniform particles were used, irregular particles can be used depending on the conditions even if they have a distribution in particle size.
また粒子の代わりに細い円柱や円筒を使用することは理論上可能である が球に比較して電界集中効果が減少するためより高い電位が必要になる。 またすベて比重が 1 . 0のプラスチック樹脂を導電性球 1 0の母体樹脂 としてきたが、 より比重の軽い樹脂が使用できればその分搬送すべき質量 は減って有利である。 榭脂の種類を変える代わりに中空の榭脂球を使用し てもよい。  It is theoretically possible to use thin cylinders or cylinders instead of particles, but higher potentials are required because the electric field concentration effect is reduced compared to spheres. In addition, all plastic resins having a specific gravity of 1.0 have been used as the base resin of the conductive spheres 10. However, if a resin having a lower specific gravity can be used, the mass to be conveyed is reduced, which is advantageous. Instead of changing the type of resin, a hollow resin ball may be used.
またすベての実施例でコロナ放電により充分に帯電させていたが、 一部 の実施例では条件によつては電荷注入の小さな帯電量でも可能な場合もあ る。  In all of the embodiments, charging is sufficiently performed by corona discharge. However, in some embodiments, depending on conditions, a small charge amount for charge injection may be possible.
以上の実施例に示した電極 (エレクトレツト) 構成は必ずしも最上のも のではない: シミュレーションソフトと計算機と時間に限界があるため可 能な一例を示しただけである。 産業上の利用可能性  The electrode (electret) configuration shown in the above embodiments is not always the best one: only possible examples are shown due to limitations in simulation software, computers and time. Industrial applicability
以上のように、 本発明にかかる静電発電方法で作製される静電発電機は わずか 1平方 c mの面積で、 高さ lmm程度で 24Vを 1mA以上、 しかも外 部からのエネルギーの補給なしに半永久的に発電でき、 しかも、 使用中に 有害物は出さず、 破棄しても無害なのであらゆる分野の電気製品に使用で さる。  As described above, the electrostatic power generator manufactured by the electrostatic power generation method according to the present invention has an area of only 1 square cm, a height of about lmm, and 24 V or more of 1 mA or more, and without replenishing energy from outside. It can generate electricity semi-permanently, emits no harmful substances during use, and is harmless even when disposed, so it can be used for electrical products in all fields.
差替え用紙 (規則 26) Replacement form (Rule 26)

Claims

請 求 の 範 囲 The scope of the claims
1 . 電位の異なる 2個の電位源 (以下,電界形成電極と対向電極と呼ぶ) に よりこの間にコロナ放電開始電界以下の電界を形成した状態で電荷発生兼 電荷搬送部材となる導電性または高誘電率の粒子を対向電極と近接させ両 者間の電界をコロナ放電開始電界以上にせしめて該粒子を帯電させ、 該帯 電粒子に電界形成電極と対向電極が形成する電界を作用させて加速運動さ せ該運動エネルギーを使って該帯電粒子を電荷回収電極まで搬送する静電 発電方法。 1. Two electric potential sources with different electric potentials (hereinafter referred to as an electric field forming electrode and a counter electrode) form a conductive or high charge generating and charge transporting member with an electric field below the corona discharge starting electric field formed between them. The particles having a dielectric constant are brought close to the opposing electrode, and the electric field between the two is set to be equal to or higher than the corona discharge starting electric field, and the particles are charged. An electrostatic power generation method in which the charged particles are moved to the charge collection electrode using the kinetic energy.
2 . 請求項 1において、 対向電極の幅を電界形成電極の幅より狭くして電 界を集中させること。  2. In claim 1, the electric field is concentrated by making the width of the counter electrode narrower than the width of the electric field forming electrode.
3 . 請求項 1、 2において、 対向電極表面または粒子表面にスぺ一サ一層 を設けること。  3. In Claims 1 and 2, a spacer layer is provided on the counter electrode surface or the particle surface.
4 . 請求項 3において、 スぺ一サ一層がスリットゃ孔等の対向電極や粒子 表面ににつながる空間を有すること。  4. In claim 3, the spacer layer has a space such as a slit hole or the like, which is connected to the counter electrode or the particle surface.
5 . 請求項 1において、 電界形成電極を分割し、 帯電粒子をその間のスリ ットを通過させて電界形成電極を挟んで対向電極の反対側に位置する電荷 回収電極に到達させること。  5. The method according to claim 1, wherein the electric field forming electrode is divided, and the charged particles are allowed to pass through a slit therebetween to reach a charge collecting electrode located on the opposite side of the counter electrode with the electric field forming electrode interposed therebetween.
6 . 請求項 5において、 電界形成電極とは別に電界調整電極を設けること。  6. In claim 5, an electric field adjusting electrode is provided separately from the electric field forming electrode.
7 . 請求項 5, 6において、 対向電極、 一つの電界形成電極、 電荷回収電 極を同一平面に複数組形成し対向電極より帯電して斜め上方に飛翔した粒 子を電界形成電極通過後斜め下に飛翔させ電荷回収電極と接触して電荷を 放出させその後は慣性力で隣の対向電極に到達させ以下この工程を繰り返 させること。 7. In Claims 5 and 6, a plurality of sets of the counter electrode, one electric field forming electrode, and the charge collection electrode are formed on the same plane, and the particles charged from the counter electrode and flying obliquely upward are obliquely passed through the electric field forming electrode. It is required to fly down to contact the charge recovery electrode to release the charge, and then reach the adjacent counter electrode by inertia, and then repeat this process.
8 . 請求項 1において、 対向電極と電界形成電極間で加速された該帯電粒 子を進路変更板にあててその進路を変更させ対向電極と電界形成電極を結 ぶ空間の外側に位置する電荷回収電極に到達させること。  8. The charge according to claim 1, wherein the charged particles accelerated between the counter electrode and the electric field forming electrode are applied to a course changing plate to change the course thereof, and the electric charge is located outside a space connecting the counter electrode and the electric field forming electrode. To reach the collection electrode.
差替え用紙 (規則 26) Replacement form (Rule 26)
9 . 請求項 8において、 電界形成電極と針路変更後の該帯電粒子の飛翔経 路の間にシールド電極を設けること。 9. In Claim 8, a shield electrode is provided between the electric field forming electrode and the flight path of the charged particles after changing the course.
1 0 . 請求項 8、 9において、 対向電極と電荷回収電極を同一平面に複数 組形成し進路変更板に当たつて電荷回収電極に到達した該帯電粒子から電 荷を放出させその後は慣性力で隣の対向電極に到達させ以下この工程を搡 り返させること。  10. In Claims 8 and 9, a plurality of sets of the counter electrode and the charge collection electrode are formed on the same plane, and the charged particles reaching the charge collection electrode by hitting the course changing plate are discharged, and thereafter the inertial force is applied. To reach the adjacent counter electrode, and then repeat this step.
1 1 . 請求項 1、 6において、 電界形成電極または電界調整電極、 あるい はその両方を同電位を与えるエレクトレツトで置き換えること。  11. In Claims 1 and 6, the electric field forming electrode and / or the electric field adjusting electrode are replaced with an electret which gives the same potential.
1 2 . 請求項 1において、 対向電極とアース間にコンデンサーを入れ対向 電極に流れ込むコロナ電流をここに貯えて対向電極の電位を高めて電界形 成電極との電位差を小さくすることで自動的にコロナ放電を止めること、 また該コンデンサーに貯えられた電荷を使用することで対向電極の電位を 下げ電界形成電極との電位差を大きくして自動的にコロナ放電を再開させ ること。  1 2. In claim 1, a capacitor is inserted between the counter electrode and the ground, the corona current flowing into the counter electrode is stored here, the potential of the counter electrode is raised, and the potential difference with the electric field forming electrode is automatically reduced. Stop the corona discharge, and use the electric charge stored in the capacitor to lower the potential of the counter electrode, increase the potential difference with the electric field forming electrode, and restart the corona discharge automatically.
1 3 . 請求項 1において、 電界形成電極と対向電極に挟まれた空間の気圧 を下げること。  13. The pressure of the space between the electric field forming electrode and the counter electrode according to claim 1.
1 4 . 請求項 4において、 スリ ットまたは孔を形成するスぺーサ一層の端 に導電性または高誘電率の粒子を該粒子に働く重力に抗して該スリットま たは孔に鏡像力で保持できる量のエレクトレット電荷を置くこと。  14. The device according to claim 4, wherein conductive or high-permittivity particles are applied to the ends of the spacers forming the slits or holes in the slits or holes against the gravity acting on the particles. Put an amount of electret charge that can be held by
差替え用紙 (規貝リ26) Replacement paper (26)
PCT/JP1999/006349 1999-09-17 1999-11-15 Electrostatic generating method WO2001022565A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/264675 1999-09-17
JP26467599 1999-09-17

Publications (1)

Publication Number Publication Date
WO2001022565A1 true WO2001022565A1 (en) 2001-03-29

Family

ID=17406649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006349 WO2001022565A1 (en) 1999-09-17 1999-11-15 Electrostatic generating method

Country Status (1)

Country Link
WO (1) WO2001022565A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2443031C2 (en) * 2009-12-29 2012-02-20 Федеральное государственное унитарное предприятие "Государственный научный центр Российской Федерации - Физико-энергетический институт имени А.И. Лейпунского" Method for cleaning gas-insulated high-voltage device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3515939A (en) * 1967-07-13 1970-06-02 High Voltage Engineering Corp Dust precipitator
JPS50103763A (en) * 1974-01-23 1975-08-16
JPS50158372A (en) * 1974-05-21 1975-12-22
US4680496A (en) * 1985-07-31 1987-07-14 Centre National de la Recherche Scintifique Apparatus for conveying electrostatic charges, in particular for very high voltage electrostatic generators
JPH0219156U (en) * 1988-07-26 1990-02-08
JPH04217856A (en) * 1990-10-01 1992-08-07 Yukio Nakagawa Dc generator employing direct movement of ion
US5363063A (en) * 1992-05-18 1994-11-08 Sgs-Thomson Microelectronics S.A. Amplifier with an output current limiter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3515939A (en) * 1967-07-13 1970-06-02 High Voltage Engineering Corp Dust precipitator
JPS50103763A (en) * 1974-01-23 1975-08-16
JPS50158372A (en) * 1974-05-21 1975-12-22
US4680496A (en) * 1985-07-31 1987-07-14 Centre National de la Recherche Scintifique Apparatus for conveying electrostatic charges, in particular for very high voltage electrostatic generators
JPH0219156U (en) * 1988-07-26 1990-02-08
JPH04217856A (en) * 1990-10-01 1992-08-07 Yukio Nakagawa Dc generator employing direct movement of ion
US5363063A (en) * 1992-05-18 1994-11-08 Sgs-Thomson Microelectronics S.A. Amplifier with an output current limiter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2443031C2 (en) * 2009-12-29 2012-02-20 Федеральное государственное унитарное предприятие "Государственный научный центр Российской Федерации - Физико-энергетический институт имени А.И. Лейпунского" Method for cleaning gas-insulated high-voltage device

Similar Documents

Publication Publication Date Title
Forward Extracting electrical energy from the vacuum by cohesion of charged foliated conductors
Atten et al. Study of dust removal by standing-wave electric curtain for application to solar cells on Mars
TW200941871A (en) Use, method, apparatus of removal of droplet in gaseous fluid and combination of apparatus and road
WO2009059451A1 (en) An electrostatic precipitator
Buehler Exploratory research on the phenomenon of the movement of high voltage capacitors
WO2001022565A1 (en) Electrostatic generating method
US20140092518A1 (en) Method For Suppressing Electrical Discharges Between A Web Exiting An Unwinding Roll And A First Conveyance Roller
Hamamoto et al. Experimental discussion on maximum surface charge density of fine particles sustainable in normal atmosphere
Younes et al. Numerical modeling of insulating particles trajectories in roll-type corona-electrostatic separators
US20140078637A1 (en) Apparatus and Method for Neutralizing Static Charge on Both Sides of a Web Exiting an Unwinding Roll
JP2010098925A (en) Configuration of electrostatic apparatus using asymmetric force, material for the same, and manufacturing method thereof
JP2020110019A (en) Electrostatic force application equipment for charging charge carrier in closely contact charge method
WO2008099653A1 (en) Electrostatic applied device using asymmetrical shape effect of mobile body
JP2023138883A (en) Novel electrostatic generator with high output and high life time
Kober Simulation of traveling wave toner transport
JP2020150780A (en) Electrostatic application equipment of charging infusion type, driven by image force
JP2002165468A (en) Electrostatic power generation method and apparatus
Chang et al. Physical mechanism of electrode coatings to suppress wire particle’s firefly motion under DC stress and selecting criterion for in situ applications
JP2021108524A (en) Image force driven electrostatic application apparatus and charging device of charge carrier body
JP2022084111A (en) Structure of novel electret and using method thereof
Xu et al. Dynamics of conductive and nonconductive particles under high-voltage electrostatic coupling fields
Guskov Electrostatic charging and powder coating with porcelain enamels
KR0138933B1 (en) Method for separating fine particles by static electricity and an apparatus therefor
JP2006236976A (en) Neutralizing device, neutralizing method and production method of electric-insulating sheet
JP2009295440A (en) Ion generator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase