WO2001019180A1 - Seaweed field forming material and its block - Google Patents

Seaweed field forming material and its block Download PDF

Info

Publication number
WO2001019180A1
WO2001019180A1 PCT/JP2000/006215 JP0006215W WO0119180A1 WO 2001019180 A1 WO2001019180 A1 WO 2001019180A1 JP 0006215 W JP0006215 W JP 0006215W WO 0119180 A1 WO0119180 A1 WO 0119180A1
Authority
WO
WIPO (PCT)
Prior art keywords
concrete
fertilizer component
bed
forming
fertilizer
Prior art date
Application number
PCT/JP2000/006215
Other languages
French (fr)
Japanese (ja)
Inventor
Takahiko Watanabe
Hajime Kobayashi
Hideto Narumi
Original Assignee
Nihon Data Service Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Data Service Inc. filed Critical Nihon Data Service Inc.
Publication of WO2001019180A1 publication Critical patent/WO2001019180A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/043Artificial seaweed
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/10Culture of aquatic animals of fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G33/00Cultivation of seaweed or algae
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/70Artificial fishing banks or reefs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Definitions

  • the present invention relates to a porous material used for forming a seaweed bed on the seabed of a coast, and a seaweed bed forming block made of the porous material. More specifically, the present invention relates to a porous material for promoting the growth of seaweeds and forming a seaweed bed suitable for the growth of aquatic organisms such as seaweeds and fishes, and a block thereof.
  • a seaweed bed block obtained by consolidating a large number of silicon-containing gypsum pellets.
  • We previously proposed a block for algae beds impregnated with oxycarboxylic acid, which shows algae-eating behavior such as shrubs Patent No. 273070.
  • the former block has a large porosity consisting of a macro space between the pellets and a micro space of the pellet itself, which provides a favorable growth environment for aquatic organisms. Having.
  • the algae beds with good growth of seaweeds are formed because the damage by alga-eating animals such as dinosaurs is suppressed.
  • the previously proposed algal bed formation block promotes the growth of seaweed Has excellent effects.
  • the present invention not only solves the above-mentioned problems in the conventional artificial reef made of concrete but also applies the seaweed bed forming block proposed by the present applicant to not only the block of the molded body but also other materials.
  • Another object of the present invention is to provide a seaweed bed forming material which can further enhance the growth effect of seaweed.
  • the present invention relates to a material for forming a seaweed bed, which comprises a fertilizer component serving as a nutrient source of seaweed, which is a material for forming a structure serving as a seaweed bed.
  • a material for forming the structure that becomes the seaweed bed a concrete material, cement, a hydraulic composition other than cement, a porous body, a block made of these materials, or the like can be used.
  • Fertilizer components include one or more of phosphoric acid, nitrogen, and potassium.
  • the term "concrete” is a general term for cement, a hydraulic composition other than cement, or a resin composition that has been solidified together with the aggregate, to which various admixtures (materials) for concrete have been added. Including mortar.
  • One embodiment of the seaweed bed forming material of the present invention is obtained by mixing a solid fertilizer component (fertilizer particles) with a concrete material forming a seaweed bed block.
  • Solid fertilizer components include hard fertilizers such as vitreous fertilizers, calcined phosphorus fertilizers, or fused phosphorus fertilizers made from various types of slag (slag).
  • slag slag
  • As fertilizer composed of slag for example, Hue mouth nickel slag, ferromanganese slag, silicomanganese slag and the like can be used.
  • slag fertilizers and fused phosphorus fertilizers are vitreous and burnt phosphorus fertilizers are not easily broken, when they are added to cement or the like to form a hardened concrete, as shown in Fig. 1, Concrete dispersed in the tissue together with the aggregate is obtained.
  • Fig. 1, 1 is a mixture of powdered fertilizer components 2 is concrete mixed with granular fertilizer components. Concrete 2 has granular fertilizer component 3 dispersed throughout the concrete structure. The solid fertilizer component dispersed in the concrete structure gradually elutes into the sea when the structure formed by this concrete is installed in the sea, and becomes a nutrient for seaweed.
  • the concrete material containing the solid fertilizer component may be any one or more of cement, a hydraulic composition other than cement, a resin composition, an aggregate, a concrete admixture (agent), and a porous material. good.
  • the seagrass bed-forming material of the present invention includes: (i) a mixture of solid fertilizer particles in a binder (agent) such as cement, a hydraulic composition other than cement, or a resin composition; Solid fertilizer particles mixed with aggregate components such as aggregates, fine aggregates or porous materials, and (iii) various types of concrete admixtures with solid fertilizer particles. including.
  • a solid phosphate fertilizer such as a fused phosphorus fertilizer or a baked phosphorus fertilizer is used as a solid fertilizer component
  • the amount of the solid phosphate fertilizer is appropriately 0.1 to 5% by weight or less based on the weight of the concrete. . If the amount of the phosphate fertilizer is larger than this, it is not preferable because the concrete hardly solidifies. If the amount of phosphate fertilizer is less than this, the effect of the fertilizer is insufficient.
  • the above-mentioned concrete material mixed with a solid fertilizer component may be in the form of a powder or a slurry in which water is added.
  • the seagrass bed forming material of the present invention also includes a mode in which a solid fertilizer component is added and dispersed in the slurry when kneading water is added to a concrete material such as cement to form a slurry.
  • Another embodiment of the seaweed bed forming material according to the present invention is one in which a fertilizer component is contained in concrete by adding a dissolved fertilizer component to a concrete material forming a seaweed bed block.
  • the step of dissolving the fertilizer component is not limited. Powder or granular solid fertilizer may be mixed with concrete material and dissolved in concrete mixing water. Alternatively, water in which a fertilizer component is previously dissolved may be used as a part of the mixing water. Fertilizer components may be contained in concrete.
  • the seagrass bed forming material of the present invention includes various kinds of kneading water in which a fertilizer component is dissolved, a combination of a kneading water in which a fertilizer component is dissolved and a concrete material, and a combination of a fertilizer component and a concrete material which are dissolved by kneading water and the like. Including embodiments.
  • the fertilizer component salts soluble in water and the like are used.
  • sodium nitrate including ammonium, calcium, magnesium, potassium, and chile saltpeter
  • potassium sulfate ammonium
  • sodium phosphate potassium, ammonium
  • disodium hydrogen phosphate potassium, ammonium
  • the dissolved fertilizer components are present, for example, in concrete structures in the form of precipitates in gaps between cement minerals and aggregates.
  • the fine crystals exist in a state dispersed throughout the concrete structure.
  • the seaweed bed forming material of the present invention is not limited to the form of the material before manufacturing the concrete block or the like described above, but may be applied to a structure that becomes a seaweed bed such as a concrete block or a porous body that forms this structure. This includes an embodiment in which a dissolved fertilizer component is impregnated.
  • the porous body used for the above seaweed bed forming material may be any as long as it can support a fertilizer component serving as a nutrient source of seaweed in its voids (pores).
  • pyroclastic rocks diatomaceous earth or zeolite porous rocks, crushed porous rocks, granules compacted with volcanic ash or coal ash, various ceramics such as bricks, hygroscopic solids Gel, porous polymer beads (porous organic material), or a mixture of concrete material and charcoal or activated carbon can be used.
  • lapilli is preferable because it has moderate voids (pores) and can be obtained at low cost.
  • lapilli is 4 mD in particle size!
  • the volcaniclastic material of ⁇ 32 iran is shown.
  • porous rock of volcanic nature regardless of the particle size is called lapilli.
  • the particle size of the gravel is preferably between gravel and gravel so that the surface of the volcanic gravel can have a large number of voids when blocks or the like are formed. It is difficult to obtain a simple substance and a molded body having a large water absorption at a particle size smaller than that of the silt. By adjusting the total amount of pores (pores) by combining several types of lapilli with different particle sizes, it is possible to obtain a block with a large amount of fertilizer component impregnation and a large molded body strength. .
  • coal ash, lime and gypsum are mixed and formed into pellets of about several millimeters, which are used as absorbents for sulfur oxides and nitrogen oxides.
  • These used pellets or used pellets Can be used as the porous body of the present invention.
  • This pellet is porous, has an adsorption function similar to activated carbon, and is excellent in water absorption.
  • about 2 0% to about 4 0% porosity were molded spent Peretsuto for the desulfurization cylindrical, be suitably used a porous body of compressive strength 1 0 ⁇ 3 3 N / mm 2 it can.
  • the porous body used in the present invention preferably has a water absorption of 20 ⁇ % or more.
  • the fertilizer component which is a nutrient source of the seaweed, can be sufficiently impregnated. Nutrients and promote the smooth growth of seaweed.
  • the same salts soluble in water as described above are used.
  • alkali metal salts such as nitric acid, phosphoric acid, and polyphosphoric acid, alkaline earth metal salts, and ammonium salts. These can be used as a mixture of two or more as necessary.
  • Means for impregnating the porous body with the fertilizer component (salts) is not limited.
  • the porous body may be immersed in an aqueous solution in which salts are dissolved and subjected to reduced pressure or pressure treatment, or may be treated using both reduced pressure and increased pressure.
  • the porous body is immersed in an aqueous solution in which salts are dissolved in a container, the container is sealed and the inside is depressurized, and the aqueous solution is impregnated in the porous body. After decompression, take out the porous body from the container and dry it if necessary. Drying removes only surface water (surface dried material), and heat-drys the inside of the porous body (absolutely dried material).
  • FIG. 2 is a schematic diagram showing the impregnation method using reduced pressure or increased pressure.
  • FIG. 2 (A) shows the case of impregnation under reduced pressure.
  • a vacuum container 21 is filled with an aqueous solution 22 in which a fertilizer component is dissolved, and the porous body 23 is immersed therein.
  • the sealed vessel 21 is provided with a pressure gauge 25 and a pressure regulating valve 26 and connected to a vacuum pump 24 through a pipe 27 to exhaust the vessel.
  • FIG. 2 (B) shows the case of pressure impregnation, in which a pressure-closed container 31 is filled with an aqueous solution 32 in which a fertilizer component is dissolved, and the porous body 33 is immersed therein.
  • the sealed container 31 is provided with a pressure gauge 35 and a pressure regulating valve 36, and is connected to a compressor 34 via a pipe 37 to pressurize the inside of the container.
  • the pressure or pressure should be such that the nutrient solution penetrates the inside of the porous material.
  • the pressure is reduced to the saturated water vapor pressure (10 to 12 hPa) to 50 0 hPa, 20000 ⁇ 500 O hPa under pressure is easy to handle.
  • lapilli with a particle size of about 0.8 to 2 mm (small grains) and lapilli with a grain size of about 2 to 5 thighs (medium grains) are combined with a saturated solution of sodium nitrate and a saturated solution of disodium hydrogen phosphate. After immersion and stirring, the saturated steam pressure at that temperature (approximately 2 3 at water temperature 2) When impregnated with these aqueous solutions at reduced pressure to hPa), the impregnated amount is about 27 wt% for small-scale rubble and about 20 wt% for medium-size rubble when absolutely dry wood is used.
  • the impregnated amount is about 27 wt% for small-scale rubble and about 20 wt% for medium-size rubble when absolutely dry wood is used.
  • the porous body to be impregnated with the fertilizer component may be impregnated with oxycarboxylic acid, which shows a repellent behavior by algae-eating animals such as dinosaurs, together with the fertilizer component.
  • oxycarboxylic acid which shows a repellent behavior by algae-eating animals such as dinosaurs
  • the impregnated amount of the oxycarboxylic acid is preferably such that the water concentration on the surface of the porous body is maintained at about lmg / liter or more for at least one month after installation in the sea (water).
  • the structure for algae beds is obtained by consolidating the porous body impregnated with the fertilizer component into blocks.
  • a fertilizer component may be impregnated after solidifying the porous body in a block shape with cement or the like.
  • the present invention includes both aspects.
  • This block may contain aggregates such as sand and gravel, if necessary, in addition to the porous body.
  • the shape and size of the block are not limited. It can have various shapes such as polyhedral, tetrapot, table, and box.
  • existing blocks may be fitted with plates impregnated with fertilizer components or molded bodies of various shapes.
  • the structure for a seaweed bed of the present invention includes any of these embodiments.
  • the weight of the single structure is about 210 to 240 kg.
  • the strength of the block must be stable for a long period of time when it is installed in the sea and can withstand waves and the like.
  • a block having the same compressive strength as a lightweight concrete is appropriate.
  • those having a compressive strength of 10 N / mm 2 or more are preferable.
  • This block whether solidified using a porous material alone or mixed with aggregates, is used for at least as long as the seaweed such as kelp has settled and at least initially grown. It is preferable to be able to stably release nutrient salts for 3 months. Specifically, it is preferable that the above-mentioned salts gradually elute, for example, an average of about 0.2 to 2 mg / l per hour as a nitrogen concentration on a block surface. In order for the block to be impregnated with such a sufficient amount of salts, it is generally preferable that the block contains the porous material in an amount of 5 wt% or more. The amount of cement and the amount of aggregate are not limited.
  • the installation state and the installation method are not limited.
  • a large number of blocks or the like may be laid on the seabed, or may be individually dispersed. In general, it is appropriate to set the installation location at the water depth where seaweeds grow, for example, about 1 to 10 m.
  • the material for forming a seaweed bed and the structure thereof (such as block) of the present invention have the following advantages.
  • a large amount of fertilizer component can be contained by mixing a solid fertilizer component in concrete or using a porous body to contain the fertilizer component.
  • the block containing the fertilizer component can be formed into an arbitrary shape by using cement or the like, and the strength of a molded product equivalent to that of a normal concrete product can be obtained.
  • FIG. 1 A photograph showing the solid fertilizer components dispersed in the concrete structure.
  • FIGS. 2A and 2B are schematic diagrams of a method of impregnating a porous body with a fertilizer component.
  • FIG. 3 is an external view of the block manufactured in Example 1.
  • FIG. 4 is an external view of a block manufactured in Example 4.
  • the lapilli subjected to the treatment of the present invention is impregnated with a large amount of salts, and the compact has high compressive strength.
  • the compressive strength of the conventional product is 19.6 N / mm 2 on average, which is significantly lower than the block of the present invention.
  • the conventional product does not contain phosphoric acid, and the elution amount is below the detection limit.
  • the block shown in Fig. 3 manufactured in Example 1 was installed at several power stations along the coast of the Sea of Japan in Hokkaido, and the epiphytic status of kelp was examined.
  • Table 4 shows the results.
  • Table 4 shows the results of the installation of the conventional products and the situation of the surrounding natural reefs.
  • the block using the block of the present invention was installed at any of the installation locations.
  • the growth of kelp is better than that of conventional products, and the growth is much better than that of natural reefs.
  • cylindrical pellets with a particle size of about 5 to 20 mm (a porous body formed by mixing coal ash, lime and gypsum used for desulfurization), it is made up of 20% by weight of sodium nitrate (Chile nitrite) and sodium tripolyphosphate. It was immersed in an aqueous solution containing wt% and stirred, and the pressure was reduced to about 23 hPa to impregnate the salts. This is dehydrated and dried only on the surface. Using 220 kg, add cement (Blast furnace type B: 296 kg), sand (6 39 kg), gravel (909 kg) and water, knead the mixture, air-dry and cure it.
  • cement Blast furnace type B: 296 kg
  • sand (6 39 kg)
  • gravel 909 kg
  • Table 8 shows the compressive strength of this block.
  • a small piece of this block was immersed in water and the concentrations of the eluted nitrate and phosphate ions were measured. The results are shown in Table 9.
  • this block has high compressive strength and releases high concentrations of fertilizer components (salts) over a long period of time.
  • This block was placed in the same test plot (section A) as in Example 1, and the condition of kelp was found. The results are shown in Table 10.
  • the block using the block of the present invention has a better growth condition of the kelp than the case of using the conventional product shown in Table 4, and the growth condition is remarkably better than the natural reef.
  • Diatomaceous earth with a particle size of about 10 to 50 fractions was immersed in a 25 wt% aqueous solution of sodium nitrate (Chile saltpeter), stirred, and impregnated with salts by reducing the pressure to about 23 hPa.
  • Chile saltpeter sodium nitrate
  • To 300 kg of dewatered and dried surface only 25 kg of powdered phosphate fertilizer (bone phosphorus) was added.
  • Example 4 Cement (Blast furnace B type: 29 l kg), sand (750 kg), gravel (75 1 kg) and water were added to the fertilizer component-containing material, and the mixture was air-dried and cured.
  • a block of the same shape was manufactured. Table 11 shows the compressive strength of this block.
  • this block was immersed in water to elute nitrate and phosphate ions. The degree was measured. The results are shown in Table 12. As shown in Table 111, this block has high compressive strength and releases high concentrations of fertilizer components (salts) over a long period of time.
  • Coverage is the percentage of the area covered by seaweed.
  • seaweed bed forming material of this invention the growth of seaweeds, such as a kelp, is good, and a favorable seaweed bed can be easily formed in the sea. Further, since the type and amount of the salt to be impregnated with the material for forming a seaweed bed of the present invention can be arbitrarily adjusted, a block for a seaweed bed suitable for an installation environment can be manufactured. In addition, stable fire Since it can be manufactured using rubble, etc., it is inexpensive and quality control is easy.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Engineering & Computer Science (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Cultivation Of Seaweed (AREA)

Abstract

A seaweed field forming material characterized by comprising fertilizer components incorporated in a concrete material or the like. Various modes are available, in which solid-form fertilizer components are dispersed into a concrete structure, fertilizer components are dissolved for inclusion into concrete when it is produced, or fertilizer components are impregnated into a porous material. Fertilizer components contained in a material or structure gradually elute in the sea to be used as a nutriment for seaweeds such as sea tangle and prompt their growth, thereby forming an excellent seaweed field thick with seaweeds.

Description

明細書 藻場形成材料およびそのプロック 〔技術分野〕  Description Seagrass bed forming material and its block [Technical field]
本発明は、 海岸の海底などに藻場を形成するために用いる多孔質材料およ びこの多孔質材料からなる藻場形成用ブロックに関する。 より詳しくは、 海 藻類の成長を促し、 海藻類や魚類などの水生生物の成育に適した藻場を形成 するための多孔質材料およびそのプロックに関する。  TECHNICAL FIELD The present invention relates to a porous material used for forming a seaweed bed on the seabed of a coast, and a seaweed bed forming block made of the porous material. More specifically, the present invention relates to a porous material for promoting the growth of seaweeds and forming a seaweed bed suitable for the growth of aquatic organisms such as seaweeds and fishes, and a block thereof.
〔背景技術〕 (Background technology)
藻場を形成するため、 海中に砕石やコンクリートブロック、 あるいは廃船 などを沈めて藻礁ゃ魚礁を人工的に形成することは従来から実施されており、 その形状や材質についてこれまで種々検討されている。 このうち人工資材を 利用するものとしては、 耐久性の点からコンクリートブロックを用いる方法 が主に実施されているが.、 設置場所の環境によって海藻類の生育に大きな相 違がみられ、 必ずしも目的の効果が得られないと云う問題がある。  In order to form a seaweed bed, it has conventionally been practiced to artificially form algae reefs and fish reefs by submerging crushed stones, concrete blocks, or abandoned ships in the sea, and various studies have been made on the shape and material. ing. Among them, the method of using artificial materials mainly uses concrete blocks from the viewpoint of durability.However, there is a big difference in the growth of seaweeds depending on the environment of the installation site, so it is not necessarily the purpose There is a problem that the effect of the above cannot be obtained.
このような問題を解決するため、 本出願人は、 多数の珪素含有石膏質ペレ ットを固結してなる藻場用ブロック (特許第 2 7 7 3 0 6 7号) 、 ゥニゃァ ヮビ等の藻食性動物が忌諱行動を示すォキシカルボン酸を含浸した藻場用ブ ロックを先に提案した (特許第 2 7 7 3 0 7 0号) 。 前者のブロックは、 ぺ レツト間のマクロな空間とペレツト自体のミクロな空間からなる大きな空隙 率を有し、 これが水中生物の好適な生育環境を提供するので、 藻場用ブロッ クとして優れた効果を有する。 また後者のプロックによればゥニゃァヮビな どの藻食性動物による食害が抑制されるので、 海藻類の成育が良好な藻場が 形成される。 このように先に提案した藻場形成ブロックは海藻の成育を促す 優れた効果を有する。 〔発明の開示〕 In order to solve such a problem, the present applicant has developed a seaweed bed block (Japanese Patent No. 2773067) obtained by consolidating a large number of silicon-containing gypsum pellets. We previously proposed a block for algae beds impregnated with oxycarboxylic acid, which shows algae-eating behavior such as shrubs (Patent No. 273070). The former block has a large porosity consisting of a macro space between the pellets and a micro space of the pellet itself, which provides a favorable growth environment for aquatic organisms. Having. In addition, according to the latter block, the algae beds with good growth of seaweeds are formed because the damage by alga-eating animals such as dinosaurs is suppressed. Thus, the previously proposed algal bed formation block promotes the growth of seaweed Has excellent effects. [Disclosure of the Invention]
本発明は、 従来のコンクリート製人工礁における上記問題を解決すると共 に、 本出願人が先に提案した藻場形成ブロックについても、 成形体のブロッ クに限らず、 他の材料にも適用でき、 かつ海藻の成育効果をさらに高めるこ とができる藻場形成材料を提供するものである。  The present invention not only solves the above-mentioned problems in the conventional artificial reef made of concrete but also applies the seaweed bed forming block proposed by the present applicant to not only the block of the molded body but also other materials. Another object of the present invention is to provide a seaweed bed forming material which can further enhance the growth effect of seaweed.
すなわち、 本発明は、 藻場となる構造体を形成する材料であって、 海藻類 の栄養源となる肥料成分を含有することを特徴とする藻場形成材料に関する。 この藻場となる構造体を形成する材料はコンクリート材料、 セメント、 セメ ント以外の水硬性組成物、 多孔質体、 またはこれらの材料からなるブロック などを用いることができる。 また、 肥料成分はリン酸、 窒素、 カリの何れか 1種または 2種以上を含むものが用いられる。 なお、 本発明においてコンク リートとは、 セメント、 セメント以外の水硬性組成物、 または樹脂組成物に よって骨材と共に固結したものを総称し、 各種のコンクリート用混和剤 (材) を添加したものを含み、 またモルタルを含む。  That is, the present invention relates to a material for forming a seaweed bed, which comprises a fertilizer component serving as a nutrient source of seaweed, which is a material for forming a structure serving as a seaweed bed. As a material for forming the structure that becomes the seaweed bed, a concrete material, cement, a hydraulic composition other than cement, a porous body, a block made of these materials, or the like can be used. Fertilizer components include one or more of phosphoric acid, nitrogen, and potassium. In the present invention, the term "concrete" is a general term for cement, a hydraulic composition other than cement, or a resin composition that has been solidified together with the aggregate, to which various admixtures (materials) for concrete have been added. Including mortar.
(A) 固形肥料成分を含有する態様  (A) Embodiment containing a solid fertilizer component
本発明の藻場形成材料の一態様は藻場用プロックを形成するコンクリート 材料に固形の肥料成分 (肥料粒子) を配合したものである。 固形肥料成分は 各種鉱滓 (スラグ)を原料とするガラス質の肥料、 焼成リン肥、 あるいは溶成 リン肥などの硬いものが用いられる。 スラグからなる肥料としては、 例えば、 フエ口ニッケルスラグ、 フエロマンガンスラグ、 シリコマンガンスラグなど を用いることができる。 これらのスラグ質肥料や溶成リン肥はガラス質であ り、 また焼成リン肥も砕け難いので、 これらをセメント等に加えてコンクリ ート硬化体を形成すると、 図 1に示すようにこれらが骨材と共に組織中に分 散したコンクリートが得られる。 図 1において、 1は粉状の肥料成分を混合 したコンクリートであり、 2は粒状の肥料成分を混合したコンクリートであ る。 コンクリート 2には粒状の肥料成分 3がコンクリ一ト組織全体に分散し ている。 コンクリート組織中に分散した固形肥料成分は、 このコンクリート によって形成した構造体を海中に設置すると、 次第に海中に溶出して海藻類 の養分になる。 また、 この固形肥料成分の溶出によってコンクリート表面に 微細な空隙や凹凸が生じ、 微小生物等の生育に適した空間が形成される。 固 形肥料成分を配合するコンクリート材料はセメント、 セメント以外の水硬性 組成物、 樹脂組成物、 骨材、 コンクリート用混和材 (剤)、 多孔質体の 1種ま たは 2種以上の何れでも良い。 具体的には、 本発明の藻場形成材料は、 (i) セメント、 セメント以外の水硬性組成物あるいは樹脂組成物などの結合材 (剤)に固形肥料粒子を混合したもの、 (i i)粗骨材や細骨材あるいは多孔質体 などの骨材成分に固形肥料粒子を混合したもの、 (i i i)各種のコンクリート 用混和材 (剤)に固形肥料粒子を配合したものなど種々の形態のものを含む。 なお、 固形肥料成分として溶成リン肥や焼成リン肥などの固形リン酸肥料 を用いる場合には、 固形リン酸肥料の量はコンクリート重量に対して 0 . 1 〜 5重量%以下が適当である。 リン酸肥料の量がこれより多いとコンクリー 卜が固結し難くなるので好ましくない。 また、 リン酸肥料の量がこれより少 ないとその肥料としての効果が不十分である。 One embodiment of the seaweed bed forming material of the present invention is obtained by mixing a solid fertilizer component (fertilizer particles) with a concrete material forming a seaweed bed block. Solid fertilizer components include hard fertilizers such as vitreous fertilizers, calcined phosphorus fertilizers, or fused phosphorus fertilizers made from various types of slag (slag). As fertilizer composed of slag, for example, Hue mouth nickel slag, ferromanganese slag, silicomanganese slag and the like can be used. Since these slag fertilizers and fused phosphorus fertilizers are vitreous and burnt phosphorus fertilizers are not easily broken, when they are added to cement or the like to form a hardened concrete, as shown in Fig. 1, Concrete dispersed in the tissue together with the aggregate is obtained. In Fig. 1, 1 is a mixture of powdered fertilizer components 2 is concrete mixed with granular fertilizer components. Concrete 2 has granular fertilizer component 3 dispersed throughout the concrete structure. The solid fertilizer component dispersed in the concrete structure gradually elutes into the sea when the structure formed by this concrete is installed in the sea, and becomes a nutrient for seaweed. In addition, the elution of the solid fertilizer component causes minute voids and irregularities on the concrete surface, thereby forming a space suitable for the growth of microscopic organisms. The concrete material containing the solid fertilizer component may be any one or more of cement, a hydraulic composition other than cement, a resin composition, an aggregate, a concrete admixture (agent), and a porous material. good. Specifically, the seagrass bed-forming material of the present invention includes: (i) a mixture of solid fertilizer particles in a binder (agent) such as cement, a hydraulic composition other than cement, or a resin composition; Solid fertilizer particles mixed with aggregate components such as aggregates, fine aggregates or porous materials, and (iii) various types of concrete admixtures with solid fertilizer particles. including. When a solid phosphate fertilizer such as a fused phosphorus fertilizer or a baked phosphorus fertilizer is used as a solid fertilizer component, the amount of the solid phosphate fertilizer is appropriately 0.1 to 5% by weight or less based on the weight of the concrete. . If the amount of the phosphate fertilizer is larger than this, it is not preferable because the concrete hardly solidifies. If the amount of phosphate fertilizer is less than this, the effect of the fertilizer is insufficient.
以上のようなコンクリート材料に固形肥料成分を配合したものは粉体状の ものでも良く、 あるいは水を加えたスラリー状のものでも良い。 本発明の藻 場形成材料はセメント等のコンクリート材料に混練水を加えてスラリー化す る際に、 固形肥料成分を加えてスラリー中に分散させた態様も含む。  The above-mentioned concrete material mixed with a solid fertilizer component may be in the form of a powder or a slurry in which water is added. The seagrass bed forming material of the present invention also includes a mode in which a solid fertilizer component is added and dispersed in the slurry when kneading water is added to a concrete material such as cement to form a slurry.
( B ) 溶解した肥料成分を含有する態様  (B) An embodiment containing a dissolved fertilizer component
本発明に係る藻場形成材料の他の態様は、 藻場用プロックを形成するコン クリート材料に、 溶解した肥料成分を加えることによってコンクリート中に 肥料成分を含有させたものである。 肥料成分を溶解する工程は限定されない。 粉体または粒体の固形肥料をコンクリート材料に配合し、 これをコンクリー 卜の混練水で溶解させたものでも良く、 または予め肥料成分を溶解した水を 混練水の一部として用いることによつて肥料成分をコンクリートに含有させ たものでも良い。 すなわち、 本発明の藻場形成材料は、 肥料成分を溶解した 混練水、 肥料成分を溶解した混練水とコンクリート材料の組合せ、 混練水等 によって溶解する肥料成分とコンクリート材料との組合せ等の種々の態様を 含む。 この肥料成分としては水に溶解する塩類等が用いられる。 例えば、 硝 酸ナトリウム (アンモニゥム、 カルシウム、 マグネシウム、 カリウム、 チリ 硝石を含む) 、 硫酸カリウム (アンモニゥム) 、 リン酸ナトリウム (力リウ ム、 アンモニゥム) 、 リン酸水素 2ナトリウム (カリウム、 アンモニゥム) 、 リン酸 2水素ナトリウム (カリウム、 アンモニゥム) 、 硫酸カリウム、 硫酸 水素カリウム、 トリポリリン酸ナトリウム (カリウム、 アンモニゥム) 、 ト リリン酸ナトリウム (カリウム、 アンモニゥム) 、 トリメタリン酸ナトリウ ム (カリウム、 アンモニゥム) 、 ピロリン酸ナトリウム (カリウム、 アンモ 二ゥム) 、 テトラメタリン酸ナトリウム (カリウム、 アンモニゥム) 等があ る。 Another embodiment of the seaweed bed forming material according to the present invention is one in which a fertilizer component is contained in concrete by adding a dissolved fertilizer component to a concrete material forming a seaweed bed block. The step of dissolving the fertilizer component is not limited. Powder or granular solid fertilizer may be mixed with concrete material and dissolved in concrete mixing water. Alternatively, water in which a fertilizer component is previously dissolved may be used as a part of the mixing water. Fertilizer components may be contained in concrete. That is, the seagrass bed forming material of the present invention includes various kinds of kneading water in which a fertilizer component is dissolved, a combination of a kneading water in which a fertilizer component is dissolved and a concrete material, and a combination of a fertilizer component and a concrete material which are dissolved by kneading water and the like. Including embodiments. As the fertilizer component, salts soluble in water and the like are used. For example, sodium nitrate (including ammonium, calcium, magnesium, potassium, and chile saltpeter), potassium sulfate (ammonium), sodium phosphate (potassium, ammonium), disodium hydrogen phosphate (potassium, ammonium), phosphoric acid 2 Sodium hydrogen (potassium, ammonium), potassium sulfate, potassium hydrogen sulfate, sodium tripolyphosphate (potassium, ammonium), sodium triphosphate (potassium, ammonium), sodium trimetaphosphate (potassium, ammonium), sodium pyrophosphate (potassium) , Ammonium and sodium tetrametaphosphate (potassium, ammonium).
溶解した肥料成分は、 例えば、 コンクリート組織において、 セメント鉱物 や骨材の隙間に析出した状態で存在する。 あるいはその微細結晶がコンクリ 一ト組織全体に分散した状態で存在する。 このコンクリートブロックを海中 に設置すると、 組織中の肥料成分が次第に海中に溶出して海藻類の養分にな る。  The dissolved fertilizer components are present, for example, in concrete structures in the form of precipitates in gaps between cement minerals and aggregates. Alternatively, the fine crystals exist in a state dispersed throughout the concrete structure. When this concrete block is installed in the sea, the fertilizer components in the tissue gradually elute into the sea and become nutrients for seaweed.
( C) 多孔質体等に肥料成分を含浸させた態様  (C) Porous material impregnated with fertilizer components
本発明の藻場形成材料は、 上述したコンクリートプロック等を製造する前 の材料の態様に限らず、 コンクリートブロック等の藻場となる構造体、 ある いはこの構造体を形成する多孔質体に溶解した肥料成分を含浸させた態様を 含む。 上記藻場形成材料に用いる多孔質体は、 その空隙 (細孔)内に海藻類の栄養 源となる肥料成分を担持できるものであれば良い。 具体的には、 例えば、 火 山礫類、 珪藻土またはゼォライトの多孔質岩石、 多孔質岩石の粉砕物、 火山 灰あるいは石炭灰類を固結した造粒体、 レンガなど各種のセラミックス、 吸 湿性固体ゲル、 またはポーラスポリマービーズ (多孔質有機体)、 あるいはコ ンクリート材料に木炭や活性炭を混合したものなどを用いることができる。 このうち、 火山礫類は適度な空隙 (細孔)を有し、 かつ安価に入手できるの で好ましい。 なお、 一般に火山礫は粒径 4 mD!〜 3 2 iranの火山砕屑物を示すが、 本発明においては粒径を問わず火山岩質の多孔質岩石を火山礫類と云う。 火 山礫類は、 これを材料としてブロック等を形成したときに表面に多数の空隙 を有することができるように、 その粒径は砂利〜礫の粒径のものが好ましい。 シルト程度以下の粒径では吸水率の大きな単体および成形体を得るのが難し い。 また、 火山礫類は数種類の粒径のものを組み合わせて全体の空隙 (細孔) 量を調整することにより、 肥料成分の含浸量が多く、 しかも成形体の強度が 大きなブロックを得ることができる。 The seaweed bed forming material of the present invention is not limited to the form of the material before manufacturing the concrete block or the like described above, but may be applied to a structure that becomes a seaweed bed such as a concrete block or a porous body that forms this structure. This includes an embodiment in which a dissolved fertilizer component is impregnated. The porous body used for the above seaweed bed forming material may be any as long as it can support a fertilizer component serving as a nutrient source of seaweed in its voids (pores). Specifically, for example, pyroclastic rocks, diatomaceous earth or zeolite porous rocks, crushed porous rocks, granules compacted with volcanic ash or coal ash, various ceramics such as bricks, hygroscopic solids Gel, porous polymer beads (porous organic material), or a mixture of concrete material and charcoal or activated carbon can be used. Among them, lapilli is preferable because it has moderate voids (pores) and can be obtained at low cost. In general, lapilli is 4 mD in particle size! The volcaniclastic material of ~ 32 iran is shown. In the present invention, porous rock of volcanic nature regardless of the particle size is called lapilli. The particle size of the gravel is preferably between gravel and gravel so that the surface of the volcanic gravel can have a large number of voids when blocks or the like are formed. It is difficult to obtain a simple substance and a molded body having a large water absorption at a particle size smaller than that of the silt. By adjusting the total amount of pores (pores) by combining several types of lapilli with different particle sizes, it is possible to obtain a block with a large amount of fertilizer component impregnation and a large molded body strength. .
また、 石炭灰、 石灰および石膏を混合して数ミリ前後のペレットに成形し たものが硫黄酸化物や窒素酸化物の吸収剤として用いられているが、 この使 用済みペレツト、 あるいは使用済みペレツトをセメント等によって固結した 成形体を本発明の多孔質体として用いることができる。 このペレツトは多孔 質であり活性炭と類似した吸着機能を有しており、 吸水性に優れている。 一 例として、 上記脱硫用の使用済みペレツトを円筒形に成形した空隙率約 2 0 %〜約 4 0 %、 圧縮強度 1 0〜3 3 N/mm2の多孔質体を好適に用いること ができる。 In addition, coal ash, lime and gypsum are mixed and formed into pellets of about several millimeters, which are used as absorbents for sulfur oxides and nitrogen oxides. These used pellets or used pellets Can be used as the porous body of the present invention. This pellet is porous, has an adsorption function similar to activated carbon, and is excellent in water absorption. As an example, about 2 0% to about 4 0% porosity were molded spent Peretsuto for the desulfurization cylindrical, be suitably used a porous body of compressive strength 1 0~3 3 N / mm 2 it can.
本発明に用いる多孔質体は吸水率が 2 0 ^ %以上のものが好ましい。 吸水 率がこの範囲であれば海藻類の栄養源となる肥料成分を十分に含浸でき、 含 浸した肥料成分が海藻類の初期生育期間を通じて海中に徐々に溶出して海藻 類の栄養となり、 海藻類の順調な生育を促すことができる。 The porous body used in the present invention preferably has a water absorption of 20 ^% or more. When the water absorption is within this range, the fertilizer component, which is a nutrient source of the seaweed, can be sufficiently impregnated. Nutrients and promote the smooth growth of seaweed.
含浸させる肥料成分は前述と同様の水に溶解する塩類が用いられる。 例え ば、 硝酸、 リン酸、 ポリ燐酸などのアルカリ金属塩、 アルカリ土類金属塩、 アンモニゥム塩などである。 これらは必要に応じて 2種以上を混合して用い ることができる。  As the fertilizer component to be impregnated, the same salts soluble in water as described above are used. For example, alkali metal salts such as nitric acid, phosphoric acid, and polyphosphoric acid, alkaline earth metal salts, and ammonium salts. These can be used as a mixture of two or more as necessary.
肥料成分 (塩類)を多孔質体に含浸させる手段は限定されない。 好ましくは 塩類を溶解した水溶液に多孔質体を浸漬し、 減圧もしくは加圧処理し、 ある いは減圧と加圧を併用して処理すれば良い。 具体的には、 容器内の塩類を溶 解した水溶液に多孔質体を浸漬し、 この容器を密封して内部を減圧し、 上記 水溶液を多孔質体に含浸させる。 減圧後、 多孔質体を容器から取り出し、 必 要に応じて乾燥する。 乾燥処理により、 表面水のみを除去したもの(表乾材)、 多孔質体内部まで加熱乾燥したもの (絶乾材)などを得る。  Means for impregnating the porous body with the fertilizer component (salts) is not limited. Preferably, the porous body may be immersed in an aqueous solution in which salts are dissolved and subjected to reduced pressure or pressure treatment, or may be treated using both reduced pressure and increased pressure. Specifically, the porous body is immersed in an aqueous solution in which salts are dissolved in a container, the container is sealed and the inside is depressurized, and the aqueous solution is impregnated in the porous body. After decompression, take out the porous body from the container and dry it if necessary. Drying removes only surface water (surface dried material), and heat-drys the inside of the porous body (absolutely dried material).
減圧または加圧による含浸方法を図 2の模式図に示す。 図 2 (A)は減圧含 浸の場合であり、 減圧密閉容器 2 1に肥料成分を溶解した水溶液 2 2を満た し、 そこに多孔質体 2 3を浸漬する。 密閉容器 2 1には圧力計 2 5, 圧力調 整バルブ 2 6を設け、 管路 2 7を通じて真空ポンプ 2 4に接続し、 容器内を 排気する。 図 2 (B)は加圧含浸の場合であり、 加圧密閉容器 3 1に肥料成分 を溶解した水溶液 3 2を満たし、 そこに多孔質体 3 3を浸漬する。 密閉容器 3 1には圧力計 3 5, 圧力調整バルブ 3 6を設け、 管路 3 7を通じてコンプ レッサー 3 4に接続し、 容器内を加圧する。 減圧もしくは加圧の強さは、 多 孔質体内部に栄養塩溶液が浸透する程度で良いが、 望ましくは、 減圧ではそ のときの飽和水蒸気圧 (1 0 で約 1 2 hPa) 〜5 0 0 hPa、 加圧では 2 0 0 0〜 5 0 0 O hPaが操作上扱いやすい。  FIG. 2 is a schematic diagram showing the impregnation method using reduced pressure or increased pressure. FIG. 2 (A) shows the case of impregnation under reduced pressure. A vacuum container 21 is filled with an aqueous solution 22 in which a fertilizer component is dissolved, and the porous body 23 is immersed therein. The sealed vessel 21 is provided with a pressure gauge 25 and a pressure regulating valve 26 and connected to a vacuum pump 24 through a pipe 27 to exhaust the vessel. FIG. 2 (B) shows the case of pressure impregnation, in which a pressure-closed container 31 is filled with an aqueous solution 32 in which a fertilizer component is dissolved, and the porous body 33 is immersed therein. The sealed container 31 is provided with a pressure gauge 35 and a pressure regulating valve 36, and is connected to a compressor 34 via a pipe 37 to pressurize the inside of the container. The pressure or pressure should be such that the nutrient solution penetrates the inside of the porous material. Preferably, the pressure is reduced to the saturated water vapor pressure (10 to 12 hPa) to 50 0 hPa, 20000 ~ 500 O hPa under pressure is easy to handle.
一例として、 粒径約 0. 8〜 2 mm (小粒)の火山礫と、 粒径約 2〜 5腿(中 粒)の火山礫とを、 硝酸ナトリウム飽和溶液、 燐酸水素ニナトリウム飽和溶 液に浸漬して攪拌し、 そのときの温度の飽和水蒸気圧 (水温 2 で約 2 3 hPa) まで減圧してこれらの水溶液を含浸させると、 絶乾材の場合、 小粒の 火山礫では約 2 7 wt %の含浸量、 中粒の火山礫では約 2 0 wt %の含浸量を得 ることができる。 As an example, lapilli with a particle size of about 0.8 to 2 mm (small grains) and lapilli with a grain size of about 2 to 5 thighs (medium grains) are combined with a saturated solution of sodium nitrate and a saturated solution of disodium hydrogen phosphate. After immersion and stirring, the saturated steam pressure at that temperature (approximately 2 3 at water temperature 2) When impregnated with these aqueous solutions at reduced pressure to hPa), the impregnated amount is about 27 wt% for small-scale rubble and about 20 wt% for medium-size rubble when absolutely dry wood is used. Can be
肥料成分を含浸させる多孔質体には、 肥料成分と共にゥニゃァヮビなどの 藻食性動物が忌避行動を示すォキシカルボン酸を含浸させても良い。 このォ キシカルボン酸としてはクェン酸やリンゴ酸などが入手し易く、 ゥニゃァヮ ビなどの忌避効果も良好であるので好ましい。 このォキシカルボン酸の含浸 量は海 (水)中設置後、 少なくとも 1月以上の期間、 多孔質体表面での水中濃 度が約 l mg/リットル以上を維持する溶出量となる量が好ましい。 リンゴ酸等の ォキシカルボン酸を藻場形成材料に含浸させることにより、 これらが海中で 徐々に溶出するので、 ゥニゃァヮビが寄り付かず、 これら藻食性動物による コンブ等の食害を抑制できるので海藻類の多い好適な藻場を形成することが できる。  The porous body to be impregnated with the fertilizer component may be impregnated with oxycarboxylic acid, which shows a repellent behavior by algae-eating animals such as dinosaurs, together with the fertilizer component. As the carboxylic acid, citric acid, malic acid, etc. are easily available, and the effect of repelling Penicillium and the like is favorable, so that it is preferable. The impregnated amount of the oxycarboxylic acid is preferably such that the water concentration on the surface of the porous body is maintained at about lmg / liter or more for at least one month after installation in the sea (water). By impregnating the algae bed forming material with an oxycarboxylic acid such as malic acid, these are gradually eluted in the sea. It is possible to form a suitable seaweed bed with many kinds.
(D) 藻場用構造体  (D) Seaweed bed structure
肥料成分を含浸させた多孔質体をブロック状に固結することによって藻場 用構造体を得る。 あるいは、 多孔質体をセメント等でブロック状に固結した 後に肥料成分を含浸させても良い。 本発明は何れの態様も含む。 このブロッ クは、 上記多孔質体と共に、 必要に応じて砂や砂利などの骨材を含有したも のでも良い。 ブロックの形状や寸法は限定されない。 多面体形、 テトラポッ ト形、 テーブル形、 ボックス形など各種の形状を有することができる。 さら に、 既存のブロックに肥料成分を含浸させたプレートまたは種々の形状の成 形体を取り付けたものでも良い。 本発明の藻場用構造体はこの何れの態様も 含む。 なお、 施工の取り扱い易すさからすれば構造体の単体重量は 2 1 0 0 〜2 4 0 0 kg程度が適当である。 ブロックの強度は、 海中に設置した際に波 浪などに耐えて長期間安定に存在する強度が必要であり、 例えば、 軽量コン クリートと同程度の圧縮強度を有するものが適当である。 具体的には、 例え ば 1 0 N/mm2以上の圧縮強度を有するものが好ましい。 The structure for algae beds is obtained by consolidating the porous body impregnated with the fertilizer component into blocks. Alternatively, a fertilizer component may be impregnated after solidifying the porous body in a block shape with cement or the like. The present invention includes both aspects. This block may contain aggregates such as sand and gravel, if necessary, in addition to the porous body. The shape and size of the block are not limited. It can have various shapes such as polyhedral, tetrapot, table, and box. In addition, existing blocks may be fitted with plates impregnated with fertilizer components or molded bodies of various shapes. The structure for a seaweed bed of the present invention includes any of these embodiments. From the viewpoint of easy handling of the construction, it is appropriate that the weight of the single structure is about 210 to 240 kg. The strength of the block must be stable for a long period of time when it is installed in the sea and can withstand waves and the like. For example, a block having the same compressive strength as a lightweight concrete is appropriate. Specifically, for example For example, those having a compressive strength of 10 N / mm 2 or more are preferable.
このブロックは、 多孔質材料を単独に用いて固化したもの、 あるいは骨材 を混合して固化したものの何れについても、 コンブ等の海藻類が着床して少 なくとも初期成育するまでの期間、 通常 3ヶ月、 栄養源となる塩類を安定に 放出できるものが好ましい。 具体的には、 上記塩類が徐々に、 例えば、 プロ ック表面での窒素濃度として 1時間当たり平均 0. 2〜2 mg/l 程度溶出する ものが好ましい。 ブロックがこのような十分な量の塩類を含浸するには、 概 ね、 上記多孔質材料を 5 wt %以上含有するものが好ましい。 セメント量およ び骨材量は限定されない。  This block, whether solidified using a porous material alone or mixed with aggregates, is used for at least as long as the seaweed such as kelp has settled and at least initially grown. It is preferable to be able to stably release nutrient salts for 3 months. Specifically, it is preferable that the above-mentioned salts gradually elute, for example, an average of about 0.2 to 2 mg / l per hour as a nitrogen concentration on a block surface. In order for the block to be impregnated with such a sufficient amount of salts, it is generally preferable that the block contains the porous material in an amount of 5 wt% or more. The amount of cement and the amount of aggregate are not limited.
本発明の藻場用構造体(ブロック等)を海中に設置する場合、 その設置状態 ないし設置方法は限定されない。 多数のブロック等を海底に敷詰めても良く、 あるいは個々に分散して設置しても良い。 なお、 設置箇所は一般に海藻類が 生育する水深、 例えば水深 1〜1 0 m程度が適当である。 本発明の藻場形成用材料およびその構造体(プロック等)は以下の利点を有 する。  When the seaweed bed structure (block or the like) of the present invention is installed in the sea, the installation state and the installation method are not limited. A large number of blocks or the like may be laid on the seabed, or may be individually dispersed. In general, it is appropriate to set the installation location at the water depth where seaweeds grow, for example, about 1 to 10 m. The material for forming a seaweed bed and the structure thereof (such as block) of the present invention have the following advantages.
(ィ)含有させる肥料成分の種類や量を許容範囲内で任意に調整することがで さる。  (B) It is possible to arbitrarily adjust the types and amounts of fertilizer components to be contained within an allowable range.
(口)固形の肥料成分をコンクリート中に配合し、 あるいは多孔質体を用いて 肥料成分を含有させるので、 多量の肥料成分を含有させることができる。 (Mouth) A large amount of fertilizer component can be contained by mixing a solid fertilizer component in concrete or using a porous body to contain the fertilizer component.
(八)これらの肥料成分 (塩類)は長期間にわたって徐々に海中に溶出し、 海藻 類の生育を安定的に促進することができる。 (8) These fertilizer components (salts) gradually elute into the sea over a long period of time, and can stably promote the growth of seaweeds.
(二)肥料成分を含有させたブロックはセメント等を用いて任意の形状に成形 することができ、 かつ普通コンクリート製品と同程度の成型品強度を得るこ とができる。  (2) The block containing the fertilizer component can be formed into an arbitrary shape by using cement or the like, and the strength of a molded product equivalent to that of a normal concrete product can be obtained.
(ホ)多孔質体として火山礫類を用いることができるので容易かつ安価に製造 することができる。 (E) Easy and inexpensive production because volcanic gravels can be used as a porous body can do.
〔図面の簡単な説明〕 [Brief description of drawings]
図 1 固形肥料成分がコンクリート組織に分散している状態を示す写真。 図 2 (A) (B)は多孔質体に肥料成分を含浸させる方法の模式図である。 図 3は実施例 1で製造したプロックの外観図。  Fig. 1 A photograph showing the solid fertilizer components dispersed in the concrete structure. FIGS. 2A and 2B are schematic diagrams of a method of impregnating a porous body with a fertilizer component. FIG. 3 is an external view of the block manufactured in Example 1.
図 4は実施例 4で製造したブロックの外観図。  FIG. 4 is an external view of a block manufactured in Example 4.
〔発明の実施の形態〕 [Embodiment of the invention]
以下、 本発明を実施例によって具体的に示す。 Hereinafter, the present invention will be specifically described with reference to Examples.
実施例 1 (ブロックの製造)  Example 1 (Manufacture of block)
粒径約 0 . 8〜 2 mm (小粒)の火山礫と、 粒径約 2〜 5 mm (中粒)の火山礫と を用い、 これを硝酸ナトリウム飽和溶液、 燐酸水素ニナトリウム飽和溶液に おのおの浸潰して攪拌し、 約 2 3 hPa まで減圧し、 上記水溶液を火山礫に含 浸させた。 これを 1 0 5 に乾燥した絶乾材の含浸量等を表 1に示す。  Using lapilli with a grain size of about 0.8 to 2 mm (small grains) and lapilli with a grain size of about 2 to 5 mm (medium grains), these are respectively added to a saturated solution of sodium nitrate and a saturated solution of disodium hydrogen phosphate. It was immersed and stirred, and the pressure was reduced to about 23 hPa, and the above aqueous solution was impregnated into lapilli. Table 1 shows the impregnation amount and the like of the absolutely dry material dried to 105.
この小粒と中粒の火山礫(表乾材:各々 344kg)を用い、 おのおのにセメン ト(高炉 B種: 450kg)と砂(824kg)および水を加えて混練し、 気乾養生し、 四 隅に脚部(幅 50cmx高さ 20cm)を有する四角なテ一ブル状(2 m角)のブロック を製造した (図 3 ) 。 成形体(ブロック)の圧縮強度を表 2に示す。 このプロ ックの小片を水中に浸漬して溶出した硝酸イオンとリン酸イオン濃度を測定 した。 この結果を表 3に示した。  Using small and medium-sized lapilli (surface-dry material: 344 kg each), cement (blast furnace type B: 450 kg), sand (824 kg) and water are added and kneaded, air-cured, and cured. A square table-shaped (2 m square) block with legs (width 50 cm x height 20 cm) was manufactured (Fig. 3). Table 2 shows the compressive strength of the compact (block). A small piece of this block was immersed in water, and the concentrations of nitrate and phosphate ions eluted were measured. Table 3 shows the results.
表 1、 2に示すように、 本発明の処理を施した火山礫は多量の塩類を含浸 し、 かつ成形体は高い圧縮強度を有する。 因みに、 従来品 (珪素含有石膏質 ペレットを 2 0 wt %含むコンクリート成形体、 含浸処理なし) の圧縮強度は 平均で 1 9. 6 N/mm2であり、 本発明のブロックよりも大幅に低い。 また、 表 3に示すように、 従来品はリン酸を含有せず、 その溶出量は検出限度以下で あるが、 本発明のブロックは長時間継続してリン酸が溶出し、 また硝酸の溶 出量も多く、 硝酸イオン濃度は従来品の約 3〜5倍である。 表 1
Figure imgf000012_0001
表 2
Figure imgf000012_0002
As shown in Tables 1 and 2, the lapilli subjected to the treatment of the present invention is impregnated with a large amount of salts, and the compact has high compressive strength. Incidentally, the compressive strength of the conventional product (concrete compact containing 20 wt% of silicon-containing gypsum pellets, without impregnation treatment) is 19.6 N / mm 2 on average, which is significantly lower than the block of the present invention. . Also, as shown in Table 3, the conventional product does not contain phosphoric acid, and the elution amount is below the detection limit. However, in the block of the present invention, phosphoric acid is continuously eluted for a long time, the amount of nitric acid dissolved is large, and the nitrate ion concentration is about 3 to 5 times that of the conventional product. table 1
Figure imgf000012_0001
Table 2
Figure imgf000012_0002
(注) 単位: N/mm2 (Note) Unit: N / mm 2
表 3 Table 3
Figure imgf000012_0003
Figure imgf000012_0003
(注) 単位: mg/'J- HK N. D:検出限界以下、 小粒, 中粒は絶乾材  (Note) Unit: mg / 'J-HK N. D: Below the detection limit, small and medium grains are absolutely dry wood
実施例 2 (藻場の形成) Example 2 (Seaweed bed formation)
実施例 1で製造した図 3に示すプロックを北海道の日本海沿岸の数力所に 設置し、 コンブ類の着生状況を調べた。 この結果を表 4に示した。 なお、 従 来品を設置した結果および周辺の自然岩礁の状況を表 4に対比して示した。 本発明のブロックを用いたものは、 表 4に示すように、 何れの設置個所にお いても従来品を用いた場合よりコンブ類の着生状況が良く、 また自然岩礁よ りも格段にその生育状況が良い。 表 4 The block shown in Fig. 3 manufactured in Example 1 was installed at several power stations along the coast of the Sea of Japan in Hokkaido, and the epiphytic status of kelp was examined. Table 4 shows the results. Table 4 shows the results of the installation of the conventional products and the situation of the surrounding natural reefs. As shown in Table 4, the block using the block of the present invention was installed at any of the installation locations. However, the growth of kelp is better than that of conventional products, and the growth is much better than that of natural reefs. Table 4
Figure imgf000013_0001
Figure imgf000013_0001
(注) 被度 (%)は海藻類に覆われた面積の割合  (Note) Coverage (%) is the percentage of the area covered by seaweed.
実施例 3 Example 3
コンクリート材料 (単位量 kg/m3 :セメント 350kg、 骨材 1710kg、 水 140kg) に、 平均粒径約 5誦の固形リン酸肥料を l m3当たり 5 kg配合して、 図 3と同じ形のプロックを製造した。 このプロックの圧縮強度を表 5に示す。 このブロックの小片を水中に浸漬して溶出したリン酸イオン濃度を測定した。 この結果を表 6に示した。 表 5、 6に示すように、 本ブロックは高い圧縮強 度を有するとともに長期間にわたり肥料成分 (塩類)を高濃度で放出する。 このブロックを実施例 1と同じ試験区(A区)に設置し、 コンブ類の着生状 況を調べた。 この結果を表 7に示した。 本発明のブロックを用いたものは、 表 4に示した従来品を用いた場合よりもコンブ類の着生状況が良く、 また自 然岩礁よりも格段にその生育状況が良い。 表 5
Figure imgf000014_0001
表 6
Figure imgf000014_0002
表 7
Figure imgf000014_0003
Concrete material (unit weight kg / m 3 : cement 350 kg, aggregate 1710 kg, water 140 kg) mixed with 5 kg per lm 3 of solid phosphate fertilizer with an average particle size of about 5 Was manufactured. Table 5 shows the compressive strength of this block. A small piece of this block was immersed in water and the phosphate ion concentration eluted was measured. Table 6 shows the results. As shown in Tables 5 and 6, this block has high compressive strength and releases high concentrations of fertilizer components (salts) over a long period of time. This block was placed in the same test plot (section A) as in Example 1, and the condition of kelp was found. The results are shown in Table 7. The block using the block of the present invention has a better growth condition of the kelp than the case of using the conventional product shown in Table 4, and the growth condition is remarkably better than the natural reef. Table 5
Figure imgf000014_0001
Table 6
Figure imgf000014_0002
Table 7
Figure imgf000014_0003
(注) 被度 (%)は海藻類に覆われた面積の割合  (Note) Coverage (%) is the percentage of the area covered by seaweed.
実施例 4 Example 4
粒径約 5〜 20mmの円柱状ペレット (脱硫に使用した石炭灰、 石灰および 石膏を混合して成形した多孔質体) を用い、 これを硝酸ナトリウム(チリ硝 石) 20wt%およびトリポリリン酸ナトリウム 2 wt%を含む水溶液に浸漬し て攪拌し、 約 23hPa まで減圧して塩類を含浸させた。 これを脱水して表面 のみ乾燥させたもの 220kgを用い、 セメント(高炉 B種: 296kg)、 砂(6 39kg), 砂利 (909kg) および水を加えて混練し、 気乾養生し、 四隅に 脚部(幅 50cmx高さ 20cm)を有する六角なテーブル状のブロック(総重量約 6 トン)を製造した (図 4) 。 このブロックの圧縮強度を表 8に示す。 このプロ ックの小片を水中に浸潰して溶出した硝酸イオンとリン酸イオン濃度を測定 した。 この結果を表 9に示した。 表 8、 9に示すように、 本ブロックは高い 圧縮強度を有するとともに長期間にわたり肥料成分 (塩類)を高濃度で放出す る。 このブロックを実施例 1と同じ試験区(A区)に設置し、 コンブ類の着生状 況を調べた。 この結果を表 1 0に示した。 本発明のブロックを用いたものは、 表 4に示した従来品を用いた場合よりもコンブ類の着生状況が良く、 また自 然岩礁よりも格段にその生育状況が良い。 表 8
Figure imgf000015_0001
表 9
Figure imgf000015_0002
表 1 0
Figure imgf000015_0003
Using cylindrical pellets with a particle size of about 5 to 20 mm (a porous body formed by mixing coal ash, lime and gypsum used for desulfurization), it is made up of 20% by weight of sodium nitrate (Chile nitrite) and sodium tripolyphosphate. It was immersed in an aqueous solution containing wt% and stirred, and the pressure was reduced to about 23 hPa to impregnate the salts. This is dehydrated and dried only on the surface. Using 220 kg, add cement (Blast furnace type B: 296 kg), sand (6 39 kg), gravel (909 kg) and water, knead the mixture, air-dry and cure it. A hexagonal table-shaped block (with a total weight of about 6 tons) with a part (width 50 cm x height 20 cm) was manufactured (Figure 4). Table 8 shows the compressive strength of this block. A small piece of this block was immersed in water and the concentrations of the eluted nitrate and phosphate ions were measured. The results are shown in Table 9. As shown in Tables 8 and 9, this block has high compressive strength and releases high concentrations of fertilizer components (salts) over a long period of time. This block was placed in the same test plot (section A) as in Example 1, and the condition of kelp was found. The results are shown in Table 10. The block using the block of the present invention has a better growth condition of the kelp than the case of using the conventional product shown in Table 4, and the growth condition is remarkably better than the natural reef. Table 8
Figure imgf000015_0001
Table 9
Figure imgf000015_0002
Table 10
Figure imgf000015_0003
実施例 5 Example 5
粒径約 1 0〜5 0画の珪藻土を硝酸ナトリウム(チリ硝石) 2 5 wt %の水溶 液に浸漬して攪拌し、 約 2 3 hPa まで減圧して塩類を含浸させた。 これを脱 水して表面のみ乾燥させたもの 3 0 0 kgに粉体状のリン酸肥料 (骨リン)を 2 5 kg加えた。 この肥料成分含有材料に、 セメント(高炉 B種: 2 9 l kg)、 砂 ( 7 5 0 kg) , 砂利(7 5 1 kg)および水を加えて混練し、 気乾養生し、 実施例 4と同じ形のブロックを製造した。 このブロックの圧縮強度を表 1 1に示す。 このブロックの小片を水中に浸漬して溶出した硝酸イオンとリン酸イオン濃 度を測定した。 この結果を表 1 2に示した。 表 1 1 1 2に示すように、 本 ブロックは高い圧縮強度を有するとともに長期間にわたり肥料成分 (塩類)を 高濃度で放出する。 Diatomaceous earth with a particle size of about 10 to 50 fractions was immersed in a 25 wt% aqueous solution of sodium nitrate (Chile saltpeter), stirred, and impregnated with salts by reducing the pressure to about 23 hPa. To 300 kg of dewatered and dried surface only, 25 kg of powdered phosphate fertilizer (bone phosphorus) was added. Example 4 Cement (Blast furnace B type: 29 l kg), sand (750 kg), gravel (75 1 kg) and water were added to the fertilizer component-containing material, and the mixture was air-dried and cured. A block of the same shape was manufactured. Table 11 shows the compressive strength of this block. A small piece of this block was immersed in water to elute nitrate and phosphate ions. The degree was measured. The results are shown in Table 12. As shown in Table 111, this block has high compressive strength and releases high concentrations of fertilizer components (salts) over a long period of time.
このブロックを実施例 1と同じ試験区(A区)に設置し、 コンブ類の着生状 況を調べた。 この結果を表 1 3に示した。 本発明のブロックを用いたものは、 表 4に示した従来品を用いた場合よりもコンブ類の着生状況が良く、 また自 然岩礁よりも格段にその生育状況が良い。  This block was placed in the same test plot (section A) as in Example 1, and the condition of kelp was found. The results are shown in Table 13. The block using the block of the present invention has a better growth condition of the kelp than the case of using the conventional product shown in Table 4, and the growth condition is remarkably better than the natural reef.
Figure imgf000016_0001
表 1 2
Figure imgf000016_0002
表 1 3
Figure imgf000016_0003
Figure imgf000016_0001
Table 1 2
Figure imgf000016_0002
Table 13
Figure imgf000016_0003
(注) 被度 ( )は海藻類に覆われた面積の割合  (Note) Coverage () is the percentage of the area covered by seaweed.
〔産業上の利用可能性〕 [Industrial applicability]
本発明の藻場形成材料によれば、 コンブ等の海藻類の生育が良く、 海中に おいて良好な藻場を容易に形成することができる。 また、 本発明の藻場形成 材料は含浸する塩類の種類および量を任意に調整できるので、 設置環境に応 じた藻場用ブッロクを製造することができる。 さらに、 安定に入手できる火 山礫などを用いて製造することができるので、 安価であり、 品質の管理も容 易である。 また、 固形肥料成分をコンクリート組織に分散させたものや、 肥 料成分を溶解したコンクリートを製造したものは容易に実施することができ、 しかも長期間にわたり肥料成分が溶出するので藻場の生育環境を整える上で 有利である。 ADVANTAGE OF THE INVENTION According to the seaweed bed forming material of this invention, the growth of seaweeds, such as a kelp, is good, and a favorable seaweed bed can be easily formed in the sea. Further, since the type and amount of the salt to be impregnated with the material for forming a seaweed bed of the present invention can be arbitrarily adjusted, a block for a seaweed bed suitable for an installation environment can be manufactured. In addition, stable fire Since it can be manufactured using rubble, etc., it is inexpensive and quality control is easy. In addition, those in which solid fertilizer components are dispersed in the concrete structure and those in which concrete in which the fertilizer components are dissolved can be easily implemented, and since the fertilizer components elute over a long period of time, the growth environment of the seaweed bed It is advantageous in preparing

Claims

請求の範囲 The scope of the claims
(1) 藻場となる構造体を形成する材料であって、 海藻類の栄養源となる肥 料成分を含有することを特徴とする藻場形成材料。 (1) A seagrass bed forming material characterized by containing a fertilizer component that is a nutrient source of seaweed, which is a material forming a structure serving as a seaweed bed.
(2) 藻場となる構造体を形成する材料が、 コンクリート材料、 セメント、 セメント以外の水硬性組成物、 多孔質体、 またはこれらの材料からなる プロックである請求項 1の藻場形成材料。 (2) The seagrass bed forming material according to claim 1, wherein the material forming the seaweed bed structure is a concrete material, cement, a hydraulic composition other than cement, a porous body, or a block made of these materials.
(3) 肥料成分がリン酸、 窒素、 カリの何れか 1種または 2種以上を含む請 求項 1または 2の藻場形成材料。 (3) The seagrass bed forming material according to claim 1 or 2, wherein the fertilizer component contains one or more of phosphoric acid, nitrogen, and potassium.
(4) 藻場となる構造体を形成する材料が、 藻場用ブロックを形成するコン クリート材料に固形肥料成分を配合したものであることを特徴とする請 求項 1の藻場形成材料。 (4) The seagrass bed forming material according to claim 1, wherein the material forming the structure forming the seaweed bed is a mixture of a concrete material forming a seaweed bed block and a solid fertilizer component.
(5) 固形肥料成分が、 各種鉱滓 (スラグ)を原料とするガラス質の肥料、 焼 成リン肥、 溶成リン肥であってコンクリート中に分散される固形成分で ある請求項 4の藻場形成材料。  (5) The seaweed bed according to claim 4, wherein the solid fertilizer component is a vitreous fertilizer, a sintered phosphorus fertilizer, or a fused phosphorus fertilizer made of various slags (slag), and is a solid component dispersed in concrete. Forming material.
(6) 固形肥料成分を配合したコンクリート材料が、 セメント、 セメント以 外の水硬性組成物、 樹脂組成物、 骨材、 コンクリート用混和材 (剤)、 多 孔質体の 1種または 2種以上である請求項 4または 5の藻場形成材料。 (6) The concrete material containing the solid fertilizer component is one or more of cement, non-cement hydraulic composition, resin composition, aggregate, concrete admixture (agent), and porous material The seagrass bed forming material according to claim 4, wherein the material is:
(7) 固形リン酸肥料の配合量がコンクリート重量に対して 0. 1〜5重 量%以下となる量である請求項 4、 5または 6の藻場形成材料。 (7) The seagrass bed forming material according to (4), (5) or (6), wherein the compounding amount of the solid phosphate fertilizer is 0.1 to 5% by weight or less based on the weight of the concrete.
( 8 ) 固形肥料成分をコンクリート材料に配合した粉体からなる請求項 4の 藻場形成材料。  (8) The seagrass bed forming material according to (4), comprising a powder obtained by mixing a solid fertilizer component with a concrete material.
( 9 ) 固形肥料成分をコンクリート材料のスラリ一に配合した請求項 4の藻 場形成材料。  (9) The seagrass bed forming material according to claim 4, wherein a solid fertilizer component is blended into a slurry of the concrete material.
(10) 固形肥料成分が骨材の間に分散したコンクリートからなる請求項 4 の藻場形成材料。 (10) The material for forming a seaweed bed according to claim 4, wherein the solid fertilizer component comprises concrete dispersed between aggregates.
(1 1) 藻場用ブロックを形成するコンクリート材料に、 溶解した肥料成分 を加えることによってコンクリート中に肥料成分を含有させたことを特 徵とする請求項 1の藻場形成材料。 (11) The seaweed bed forming material according to claim 1, wherein the fertilizer component is contained in the concrete by adding a dissolved fertilizer component to the concrete material forming the seaweed bed block.
(12) コンクリート材料に、 固体 (粉ないし粒)の肥料成分を加え、 コンク リートの混練水で肥料成分を溶解させることにより、 肥料成分をコンク リート中に含有させた請求項 1 1の藻場形成材料。  (12) The seagrass bed according to claim 11, wherein the fertilizer component is contained in the concrete by adding a solid (powder or granule) fertilizer component to the concrete material and dissolving the fertilizer component in the concrete kneading water. Forming material.
(13) 肥料成分を溶解した水を混練水の一部として用いることにより、 肥 料成分をコンクリートに含有させた請求項 11の藻場形成材料。  (13) The seaweed bed forming material according to claim 11, wherein the fertilizer component is contained in concrete by using water in which the fertilizer component is dissolved as a part of the kneading water.
(14) 藻場となる構造体を形成する多孔質体に溶解した肥料成分を含浸さ せたことを特徴とする請求項 1の藻場形成材料。  (14) The material for forming a seaweed bed according to claim 1, wherein a fertilizer component dissolved in a porous body forming a structure serving as a seaweed bed is impregnated.
(15) 多孔質体が、 火山礫類、 珪藻土またはゼォライトの多孔質岩石、 多 孔質岩石の粉碎物または火山灰あるいは石炭灰類を固結した造粒体、 セ ラミックス、 吸湿性固体ゲル、 またはポーラスポリマービーズの多孔質 有機材料である請求項 14の藻場形成材料。  (15) The porous body is composed of lapilli, diatomaceous earth or zeolite porous rock, ground porous material, granulated solidified volcanic ash or coal ash, ceramics, hygroscopic solid gel, 15. The seagrass bed forming material according to claim 14, which is a porous organic material of porous polymer beads.
(16) 肥料成分を含浸した多孔質体をセメントまたは樹脂材料で固結して 構造体としたことを特徴とする請求項 1の藻場形成材料。 (16) The seagrass bed forming material according to (1), wherein the porous body impregnated with the fertilizer component is consolidated with a cement or a resin material to form a structure.
(17) 多孔質体をセメントまたは樹脂材料で固結した構造体に肥料成分を 含浸させたことを特徴とする請求項 1の藻場形成材料。  (17) The seaweed bed forming material according to claim 1, wherein a fertilizer component is impregnated into a structure in which the porous body is consolidated with a cement or a resin material.
(18) 肥料成分と共に、 藻食性動物が忌避行動を示すォキシカルボン酸を 含有させたことを特徴とする請求項 1の藻場形成材料。  (18) The seaweed bed forming material according to (1), wherein the alga-eating animal contains oxycarboxylic acid exhibiting a repellent behavior together with the fertilizer component.
(19) 肥料成分を含有した藻場形成材料からなるプレートないし成形体を 取り付けた藻場用構造体。  (19) A structure for a seaweed bed equipped with a plate or a molded body made of a seaweed bed forming material containing a fertilizer component.
PCT/JP2000/006215 1999-09-13 2000-09-12 Seaweed field forming material and its block WO2001019180A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP25909199 1999-09-13
JP11/259091 1999-09-13

Publications (1)

Publication Number Publication Date
WO2001019180A1 true WO2001019180A1 (en) 2001-03-22

Family

ID=17329199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006215 WO2001019180A1 (en) 1999-09-13 2000-09-12 Seaweed field forming material and its block

Country Status (1)

Country Link
WO (1) WO2001019180A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006095394A (en) * 2004-09-29 2006-04-13 Akio Asahi Method for purifying drinking water
JP2009045006A (en) * 2007-08-20 2009-03-05 Jfe Steel Kk Hydrated solidified body for underwater installation
CN102177841A (en) * 2011-05-09 2011-09-14 中国科学院南海海洋研究所 Method for improving attaching effect of algas on surface of artificial reef
CN102630552A (en) * 2012-04-01 2012-08-15 苏州安德鲁尹生物技术咨询有限公司 Kelp with ultrahigh iodine content, and cultivation method and application thereof
US8312843B2 (en) * 2005-11-15 2012-11-20 Ora Technologies, Llc Artificial material conducive to attract and grow oysters, mollusks or other productive and/or stabilizing organisms
CN104642216A (en) * 2013-11-25 2015-05-27 山东大学(威海) Manufacturing method of artificial reef enabling nutrient salt to be slowly released
JP2016185098A (en) * 2015-03-27 2016-10-27 株式会社ホクコン Environment improving concrete block

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54117790A (en) * 1979-02-15 1979-09-12 Asahi Chemical Ind Production of artificial fish bank
JPS63178447U (en) * 1987-05-13 1988-11-18
JPH0750952A (en) * 1993-05-14 1995-02-28 Nippon Data Service Kk Formed porous material for growing aquatic life and artificial fishing bank composed of the material
JPH07222537A (en) * 1994-02-10 1995-08-22 Nippon Data Service Kk Artificial fish reef for aquatic resources, capable of preventing predation by herbivorous animals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54117790A (en) * 1979-02-15 1979-09-12 Asahi Chemical Ind Production of artificial fish bank
JPS63178447U (en) * 1987-05-13 1988-11-18
JPH0750952A (en) * 1993-05-14 1995-02-28 Nippon Data Service Kk Formed porous material for growing aquatic life and artificial fishing bank composed of the material
JPH07222537A (en) * 1994-02-10 1995-08-22 Nippon Data Service Kk Artificial fish reef for aquatic resources, capable of preventing predation by herbivorous animals

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006095394A (en) * 2004-09-29 2006-04-13 Akio Asahi Method for purifying drinking water
US8312843B2 (en) * 2005-11-15 2012-11-20 Ora Technologies, Llc Artificial material conducive to attract and grow oysters, mollusks or other productive and/or stabilizing organisms
JP2009045006A (en) * 2007-08-20 2009-03-05 Jfe Steel Kk Hydrated solidified body for underwater installation
CN102177841A (en) * 2011-05-09 2011-09-14 中国科学院南海海洋研究所 Method for improving attaching effect of algas on surface of artificial reef
CN102177841B (en) * 2011-05-09 2013-07-10 中国科学院南海海洋研究所 Method for improving attaching effect of algas on surface of artificial reef
CN102630552A (en) * 2012-04-01 2012-08-15 苏州安德鲁尹生物技术咨询有限公司 Kelp with ultrahigh iodine content, and cultivation method and application thereof
CN104642216A (en) * 2013-11-25 2015-05-27 山东大学(威海) Manufacturing method of artificial reef enabling nutrient salt to be slowly released
JP2016185098A (en) * 2015-03-27 2016-10-27 株式会社ホクコン Environment improving concrete block

Similar Documents

Publication Publication Date Title
JP4729120B1 (en) Iron ion supply material, manufacturing method thereof, and iron ion supply method
JP2008308396A (en) Water-containing composition, utilization and treatment method, and non-polluting water-resistant treated object
JP3169581U (en) Hardened product for seaweed formation
JP2006247645A (en) Modification treatment agent, modification treatment method of heat history silicate and binding shape body modified it
CN107254314A (en) A kind of soil-solidified-agent and its preparation method and application
WO2001019180A1 (en) Seaweed field forming material and its block
JP2007063084A (en) Diatom earth solidified body and solidifying method
JP2006257030A (en) Mineral supplement for water area, alga reef block and method for producing the same
CN109485295A (en) A kind of pervious concrete slow setting reinforcing agent and preparation method thereof
JP2000139268A (en) Seaweed bed growth promotion-type fishbank
KR100571288B1 (en) Manufacturing methods of porous concrete fishing reef and habitat block for recovering ocean ecology using construction wastes and waste wood charcoal
JP2003034562A (en) Hydraulic composition and hydrated hardened body
KR100732732B1 (en) Method for stabilization treatment of steel making slag, stabilized steel making slag, and material and method for environmental preservation of water area using said slag
JP5180328B2 (en) Iron ion supply material, manufacturing method thereof, and iron ion supply method
JP4474690B2 (en) Porous stone for water purification and water purification method
EP2055685A1 (en) Method for preparing a structure in a body of water.
JP7465268B2 (en) Aquaculture materials and their manufacturing method
JP2002114556A (en) Functional cement hardened body
JPH11156326A (en) Solidification of fly ash
JP3895961B2 (en) Underwater dephosphorization material, dephosphorization method using the same, and fertilizer production method
JP2009270059A (en) Burned ash granulated material and method for producing it
JP2020066550A (en) Clinker ash compact and method for producing the same
JP2773067B2 (en) Porous molded body for growing aquatic organisms and artificial reef comprising the molded body
JP2020157197A (en) Coal ash solidified matter
JP3559905B2 (en) Environmental purification type inorganic material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase