WO2001014269A1 - Capillary member - Google Patents

Capillary member Download PDF

Info

Publication number
WO2001014269A1
WO2001014269A1 PCT/JP2000/005712 JP0005712W WO0114269A1 WO 2001014269 A1 WO2001014269 A1 WO 2001014269A1 JP 0005712 W JP0005712 W JP 0005712W WO 0114269 A1 WO0114269 A1 WO 0114269A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass material
cabillary
glass
member according
capillary
Prior art date
Application number
PCT/JP2000/005712
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshio Natsume
Masaru Sugiyama
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to AU67290/00A priority Critical patent/AU6729000A/en
Publication of WO2001014269A1 publication Critical patent/WO2001014269A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/047Re-forming tubes or rods by drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/20Uniting glass pieces by fusing without substantial reshaping
    • C03B23/207Uniting glass rods, glass tubes, or hollow glassware
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/06Cutting or splitting glass tubes, rods, or hollow products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/028Drawing fibre bundles, e.g. for making fibre bundles of multifibres, image fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/075Manufacture of non-optical fibres or filaments consisting of different sorts of glass or characterised by shape, e.g. undulated fibres
    • C03B37/0756Hollow fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/10Non-chemical treatment
    • C03B37/16Cutting or severing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface

Definitions

  • the present invention relates to a cabillary member, and more particularly to a cabillary member suitably used for a purification device or the like.
  • Capillary members such as capillary plates have a thickness of several hundreds / zm to several tens of m It is a glass material of mm and is applied in a wide range of fields such as optics and fluid control.
  • Japanese Patent Application Laid-Open No. H06-349497 proposes that a kyary member is used as a light irradiating means of an exposure apparatus.
  • an etching apparatus is used in Japanese Patent Application Laid-Open No. H07-214170. It has been proposed to use a capillary member for selecting a plasma fluid in the above.
  • the kyariari member is produced by a method including a pipe drawing step and a fusion step as shown below.
  • the drawing step first, the glass tube is heated and drawn to form a single fiber (S F) having a smaller inner diameter of the hole.
  • a plurality of SFs are bundled and aligned in a predetermined mold, and the aligned bundles of SFs are drawn to form a multifino, '(MF), whose inner diameter is further reduced.
  • a plurality of MFs formed in the above-mentioned drawing step are bundled, stacked on a predetermined glass pipe, and fused at a high temperature and a high pressure to fill gaps between the MFs to form a capillary tube. Thereafter, the capillary tube is cut into a predetermined thickness and subjected to a treatment such as polishing or washing to complete the capillary member.
  • the SF tends to become brittle, causing various inconveniences in handling.
  • the shape of the fiber is broken and the hole is easily crushed. Therefore, it was difficult to secure high accuracy.
  • voids tend to remain between the fibers, which reduced the strength of the cabling members and caused breakage or deterioration depending on the usage environment.
  • An object of the present invention is to solve the above-mentioned problems and to provide a cabillary member having improved strength and porosity. It is another object of the present invention to provide a cleaning member for purification that can be suitably used for a purification device or the like.
  • a capillary member according to the present invention is a capillary member in which a plurality of through-holes are two-dimensionally arranged, and an inner pipe made of a first glass material having a through-hole formed in a longitudinal direction; A plurality of double pipes each comprising an outer pipe made of a second glass material and covering the outer peripheral surface are bundled, and the outer pipes are formed by fusing each other.
  • a glass material having desired physical properties can be used for the inner tube and the outer tube, and the strength and the opening property can be controlled according to the use and the like.
  • the first glass material has a larger linear expansion coefficient at least in the longitudinal direction than the second glass material. In this case, practical strength against heat can be obtained in the pipe drawing step and the like.
  • cracks are less likely to occur on the inner wall of the hole and the like when the kyariari member is used in a high temperature environment.
  • the pipe drawing process is performed in a temperature range from the yielding temperature of the inner pipe to the softening temperature of the inner pipe. Therefore, the first glass material preferably has a higher softening temperature than the second glass material. In this case, since the viscosity of the inner tube becomes higher than the viscosity of the outer tube, it is possible to prevent the shape of the hole from being collapsed. Also, the first glass material preferably has a higher yield temperature than the second glass material. In this case, the adhesion between the fibers can be improved in the drawing process. On the other hand, the fusion process is performed in the temperature range from the glass transition temperature of the inner tube to the yielding temperature of the inner tube.
  • the yielding temperature of the first glass material is higher than that of the second glass material.
  • the porosity can be maintained in the fusion step.
  • the first glass material preferably has a higher glass transition temperature than the second glass material. In this case, it is possible to reduce the gap between the fibers and to perform effective fusion while maintaining the openness. In addition, the shape of the hole can be maintained even when the kyariary member is used in a high temperature environment.
  • the photocatalyst be carried on at least the inner wall surface of the inner tube of this inner member so that the inner member can be applied to a purification device.
  • a photocatalyst such as titanium oxide has a purifying action by irradiation with ultraviolet light
  • both the inner tube and the outer tube have a property of transmitting ultraviolet light.
  • at least the outer peripheral surface of the cabling member is coated with a light reflecting layer except for one or more light guiding portions for guiding light into the cabling member. In this case, it is possible to prevent light that has entered the calibrator member from leaking, and to easily transmit the light to the center of the cabaret member.
  • FIG. 1 is a perspective view showing an embodiment of a cabaret member according to the present invention.
  • FIG. 2 is a perspective view showing a cross section of a part of a hole cut out from the cabaret member shown in FIG.
  • FIG. 3 is an enlarged view of a plate portion including a plurality of holes as viewed from a plane in the cabaret member according to the present embodiment.
  • FIG. 4 is a perspective view of a glass double tube used at the time of manufacturing the capillary member according to the present embodiment.
  • FIG. 5A, FIG. 5B, FIG. 5C, FIG. 5D, FIG. 5E, and FIG. 5F are process diagrams for explaining a method of manufacturing a capillary member according to the present embodiment.
  • FIG. 6 is a perspective view of an embodiment of a cleaning-use cleaning member according to the present invention.
  • Fig. 7 shows a sewage purification device using the purification cabillary member shown in Fig. 6. 1 is a perspective view of FIG.
  • FIG. 1 is a perspective view showing an embodiment of a cabaret member according to the present invention.
  • FIG. 2 is a perspective view showing a cross section of a part of a hole cut out from the cabaret member 11 shown in FIG. is there.
  • the capillary member 11 is a disk-shaped capillary plate having a thickness of about 5.0 mm and a plane diameter of about 25 mm, and includes a disk-shaped plate portion 15 and an outer periphery of the plate portion 15. It comprises a tubular edge glass portion 17 formed so as to border the surface.
  • a plurality of holes 13 having an inner diameter of about 25 ⁇ m penetrating in the plate thickness direction are regularly arranged two-dimensionally.
  • the plate portion 15 is composed of a first glass material (hereinafter, referred to as material A) and a second glass material (hereinafter, referred to as material B), and the edge glass portion 17 is composed of only material B. I have.
  • FIG. 3 is an enlarged view of a plate portion 15 including a plurality of holes 13 as viewed from a plane in the capillaries 11 according to the present embodiment.
  • a tubular part (periphery of the hole) 19 with a thickness of about 32 zm surrounding the perimeter of the moss 13 is made of material A, and the space between the perimeters 19 of the moss
  • the joint 21 that fills the gap is made of material B.
  • the material A for example, # 8338 of Shot Corporation is used. In this case, the linear expansion coefficient of the material A is 5.
  • FIG. 4 is a perspective view of a glass double tube 31 used for manufacturing the capillary member 11 according to the present embodiment.
  • the glass double tube 31 has a cylindrical inner tube 35 made of a material A having a through hole 33 formed in the longitudinal direction, and a circular tube made of a material B covering the outer peripheral surface of the inner tube 35. And an outer tube 37.
  • the capillary member 11 according to the present embodiment is manufactured by a method as shown in FIGS. 5A to 5F.
  • the double pipe 3 has a temperature range between the yielding temperature of the inner pipe 35 (570 ° C in this embodiment) and the softening temperature of the inner pipe 35 (720 ° C in this embodiment). 1 is heated and piped to form a single fiber (SF) 39 with a smaller inner diameter of the hole.
  • SF single fiber
  • a plurality of SF 39s are bundled and aligned in a predetermined mold 41.
  • the bundle of aligned SF39s is heated to the above temperature range and drawn to form a multi-fiber (MF) 43 having a smaller hole diameter.
  • MF multi-fiber
  • a plurality of MF 43s may be aligned and drawn to form a multi-multi fiber (MMF).
  • MMF multi-multi fiber
  • a plurality of MF43s (or MMFs) are bundled and stacked on a predetermined glass pipe 45 made of material B, and the glass transition temperature (490 ° C in this embodiment) of the inner pipe 35 is reduced to the yield temperature of the inner pipe 35.
  • the fusion-bonded tube 47 is formed under pressure.
  • Polishing or cleaning is performed to complete the cabillary member 11.
  • the material A and the material B used for the inner tube and the outer tube of the capillary member according to the present invention are not limited to the glass materials shown in the above-described embodiment, but from the viewpoint of the strength and the encapsulating property of the capillary member. It is preferable that the combination of materials satisfy the following conditions (a) to (d).
  • the softening temperature of material A is preferably higher than that of material B.
  • the yield temperature of material A is preferably higher than that of material B. In this case, the adhesion between the fibers can be improved in the drawing step. In addition, the porosity can be maintained in the fusion step.
  • the glass transition temperature of material A is preferably higher than that of material B. In this case, the gap between the fibers It is possible to reduce and effectively fuse. In addition, the shape of the hole can be maintained even when the capillaries are used in a high-temperature environment.
  • the kyari member has an edge glass portion that rims the periphery of the plate portion, but the edge glass portion is the same as the outer tube. It is not necessary to be a glass material (material B in the present embodiment), and another glass material may be used.
  • FIG. 6 is a perspective view of an embodiment of a cleaning-use cleaning member according to the present invention.
  • the cleaning-use cleaning member 51 according to the present embodiment includes a cleaning member 11 illustrated in FIG. 1, a photocatalyst 53 supported on the inner wall surface of the plurality of holes 13, and an outer peripheral surface of the edge glass 17. It is configured by adding a coated light reflection layer 55.
  • the photocatalyst 53 is mainly composed of oxidized silicon, and is supported at a thickness of about 0.1 ⁇ m over the entire inner wall surface of each hole 13.
  • the light reflection layer 55 is mainly composed of aluminum, and is coated on the outer peripheral surface of the edge glass part 17 except for the light guide part 57 for introducing light into the scabbard member 11.
  • ultraviolet light is incident on the photocatalyst 53 from the light guide part 57, the photocatalyst 53 is activated, and exhibits a purifying action by an oxidation-reduction reaction.
  • the cleaning-use cleaning member according to the present invention preferably has a property of transmitting ultraviolet light in order to activate a photocatalyst such as titanium oxide.
  • the photocatalyst supported on the inner wall surface of the hole is preferably titanium oxide, but other photocatalysts can also be used.
  • the photocatalyst is titanium oxide
  • the light incident on the cabillary member preferably has a wavelength of 40 Onm or less.
  • at least the outer peripheral surface of the cabling member is coated with a light reflecting layer except for one or more light guide portions for introducing light into the cabling member. In this case, it is possible to prevent the light that has entered the calibrator member from leaking, and to easily reach the central portion of the cabaret member.
  • FIG. 7 is a perspective view of a sewage purification apparatus 61 using the purification kyariary member 51 shown in FIG.
  • the sewage purification device 61 is provided with a sewage tank 65 in which sewage 63 to be purified is stored and a valve (not shown) in a sewage discharge port (not shown) of the sewage tank 65.
  • a water intake pipe 67 connected at one end to the other end of the water intake pipe 67, a capillary member 51 connected to the other end of the water pipe 67, and a purified water connected at one end to another plane of the capillary member 51. It comprises a tube 69, an optical fiber 71 connected at one end to the light guide 57 of the cabillary member 51, and an ultraviolet light irradiator 73 connected to the other end of the optical fiber 71. I have.
  • this sewage purification device 61 when a valve (not shown) is opened, the sewage 63 stored in the sewage tank 65 is passed through a sewage outlet (not shown) of the sewage tank 65, and an intake pipe 6 is provided. 7, and then into the plurality of holes 13 of the cabling member 51.
  • ultraviolet light having a wavelength of 300 nm emitted from the ultraviolet light irradiating section 73 is incident on the capillary member 51 via the optical fiber 71, and the photocatalyst 53 Is activated. Therefore, the sewage 63 contacts the photocatalyst 53 and is purified by a redox reaction. After the sewage 63 is purified by the photocatalyst 53, the sewage 63 flows from the other surface of the cabillary member 51 to the water purification pipe 69.
  • the kyariari member according to the present invention can also be used for a purification device for purifying other contaminated fluids such as smoke exhaust.
  • a purification device for purifying other contaminated fluids such as smoke exhaust.
  • the amount of the photocatalyst to be supported can be optimized depending on the state of contamination of the object to be purified.
  • the purification kyariary member according to the present invention is suitably used for a purification device or the like, and can efficiently purify various contaminated fluids.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

A capillary member (11) comprising a disc-shaped plate unit (15) and a tubular edge glass unit (17), the plate unit (15) having a plurality of through holes (13) arranged regularly and two-dimensionally. This capillary member (11) is characterized in that a plurality of dual-tubes, each consisting of an inner tube of a first glass material formed with through holes and an outer tube of a second glass material, are bundled, and the outer tubes are fused to each other to be formed into a plate shape. The first glass material is larger in linear expansion coefficient than the second glass material, and is higher in softening temperature, yield temperature and glass transition temperature than the second glass material, thereby providing high strength and porosity.

Description

明細:  Details:
キヤビラリ部材  Capillaries
技術分野 Technical field
本発明は、 キヤビラリ部材に関し、 特に、 浄化装置等に好適に用いられるキヤ ビラリ部材に関するものである。  TECHNICAL FIELD The present invention relates to a cabillary member, and more particularly to a cabillary member suitably used for a purification device or the like.
背景技術 Background art
キヤビラリプレートをはじめとするキヤビラリ部材は、 内径数〃 m〜数百 m の直線性に優れた孔が形成されたガラス管を 2次元的に規則正しく配列した厚さ 数百/ zm〜数十 mmのガラス性部材であり、 光学及び流体制御等の幅広い分野に おいて応用されている。 例えば特開平 0 6— 3 4 9 4 0 7号では、 露光装置の光 照射手段にキヤビラリ部材を用いることが提案されており、 例えば特開平 0 7— 2 1 1 7 0 1号では、 エッチング装置におけるプラズマ流体の選別にキヤビラリ 部材を用いることが提案されている。  Capillary members such as capillary plates have a thickness of several hundreds / zm to several tens of m It is a glass material of mm and is applied in a wide range of fields such as optics and fluid control. For example, Japanese Patent Application Laid-Open No. H06-349497 proposes that a kyary member is used as a light irradiating means of an exposure apparatus. For example, in Japanese Patent Application Laid-Open No. H07-214170, an etching apparatus is used. It has been proposed to use a capillary member for selecting a plasma fluid in the above.
キヤビラリ部材は、 一般的には以下に示されるような管引き工程及び融着工程 を伴う方法によって作製される。 管引き工程においては、 まず、 ガラス管を加熱 して管引きし、 孔の内径を細くしたシングルファイバ (S F ) を形成する。 続い て、 S Fを複数本束ねて所定の型に整列し、 整列された S Fの束を管引きして内 径をさらに細くしたマルチファイノ、' (M F ) を形成する。 融着工程では、 上記管 引き工程により形成された M Fを複数本束ねて所定のガラスパイプに積み重ね、 高温高圧化で融着して M F間の空隙を埋めてキヤビラリチューブを形成する。 こ の後、 キヤビラリチューブを所定の厚さに切断し、 研磨又は洗浄等の処理を施し てキヤビラリ部材が完成する。  Generally, the kyariari member is produced by a method including a pipe drawing step and a fusion step as shown below. In the drawing step, first, the glass tube is heated and drawn to form a single fiber (S F) having a smaller inner diameter of the hole. Subsequently, a plurality of SFs are bundled and aligned in a predetermined mold, and the aligned bundles of SFs are drawn to form a multifino, '(MF), whose inner diameter is further reduced. In the fusion step, a plurality of MFs formed in the above-mentioned drawing step are bundled, stacked on a predetermined glass pipe, and fused at a high temperature and a high pressure to fill gaps between the MFs to form a capillary tube. Thereafter, the capillary tube is cut into a predetermined thickness and subjected to a treatment such as polishing or washing to complete the capillary member.
発明の開示 Disclosure of the invention
しかしながら、 上記方法による管引き工程では、 S Fがもろくなりやすく、 取 り扱い上さまざまな不便を生じていた。 また、 管引きの際、 ファイバの形状が崩 れて孔がつぶれやすいため、 キヤビラリ部材の開孔性が低下して流体制御等につ いて高い精度を確保することが困難であった。 一方、 融着工程では、 ファイバ間 に空隙が残りやすいため、 キヤビラリ部材の強度が低下して使用環境等によって は破壊又は劣化を起こしゃすかった。 However, in the tube drawing process according to the above method, the SF tends to become brittle, causing various inconveniences in handling. In addition, during drawing, the shape of the fiber is broken and the hole is easily crushed. Therefore, it was difficult to secure high accuracy. On the other hand, in the fusing step, voids tend to remain between the fibers, which reduced the strength of the cabling members and caused breakage or deterioration depending on the usage environment.
上記のような強度及び開孔性の問題によって、 キヤビラリ部材の高精度化及び 長寿命化が停滞し、 他の分野への応用が阻害されていた。 特に、 これらの問題点 は、 汚染流体を浄化する浄化装置等への応用に対して大きな障害となっていた。 本発明は、 上記課題を解決して、 強度及び開孔性が向上したキヤビラリ部材を 提供することを目的とする。 また、 浄化装置等に好適に用いることができる浄ィ匕 用のキヤビラリ部材を提供することを目的とする。  Due to the problems of strength and porosity as described above, the accuracy and longevity of the cabillary member have stagnated, and its application to other fields has been hindered. In particular, these problems have been a major obstacle to the application to purification devices for purifying contaminated fluids. An object of the present invention is to solve the above-mentioned problems and to provide a cabillary member having improved strength and porosity. It is another object of the present invention to provide a cleaning member for purification that can be suitably used for a purification device or the like.
本発明に係るキヤビラリ部材は、 複数の貫通孔が 2次元的に配列されたキヤピ ラリ部材であって、 長手方向に貫通孔が形成された第 1のガラス材料からなる内 管と、 内管の外周面を被覆する第 2のガラス材料からなる外管とから構成される 二重管を複数本束ね、 外管を互いに融着させて形成したことを特徴とする。 この キヤビラリ部材によれば、 内管及び外管について所望の物性を有するガラス材料 を用いることができ、用途等に合わせて強度及び開孔性を制御することができる。 このキヤビラリ部材において、 第 1のガラス材料は、 少なくとも長手方向にお ける線膨張係数が第 2のガラス材料より大きいことが好ましい。 この場合、 管引 き工程等において、 熱に対して実用的な強度を得ることができる。 また、 高温環 境におけるキヤビラリ部材使用時に孔内壁等に亀裂が生じにくい。  A capillary member according to the present invention is a capillary member in which a plurality of through-holes are two-dimensionally arranged, and an inner pipe made of a first glass material having a through-hole formed in a longitudinal direction; A plurality of double pipes each comprising an outer pipe made of a second glass material and covering the outer peripheral surface are bundled, and the outer pipes are formed by fusing each other. According to this capillary member, a glass material having desired physical properties can be used for the inner tube and the outer tube, and the strength and the opening property can be controlled according to the use and the like. In this cabaret member, it is preferable that the first glass material has a larger linear expansion coefficient at least in the longitudinal direction than the second glass material. In this case, practical strength against heat can be obtained in the pipe drawing step and the like. In addition, cracks are less likely to occur on the inner wall of the hole and the like when the kyariari member is used in a high temperature environment.
キヤビラリ部材を作製する際、 管引き工程は内管の屈伏温度から内管の軟化温 度までの温度範囲において行なわれる。 そのため、 第 1のガラス材料は、 軟化温 度が第 2のガラス材料より高いことが好ましい。 この場合、 内管の粘性が外管の 粘性より高くなるため、 孔の形状が崩れてしまうことを防止することができる。 また、 第 1のガラス材料は、 屈伏温度が第 2のガラス材料より高いことが好まし い。 この場合、 管引き工程においてファイバ同士の密着性を向上することができ る 一方、 融着工程は内管のガラス転移温度から内管の屈伏温度までの温度範囲に おいて行なわれる。 そのため、 第 1のガラス材料の屈伏温度が第 2のガラス材料 より高いことが好ましい。 この場合、 融着工程において開孔性を保持することが できる。 また、 第 1のガラス材料は、 ガラス転移温度が第 2のガラス材料より高 いことが好ましい。 この場合、 開孔性を保持しながら、 ファイバ間の空隙を減少 して効果的に融着することができる。 また、 高温環境におけるキヤビラリ部材使 用時にも孔の形状を保持することができる。 When fabricating the kyariari member, the pipe drawing process is performed in a temperature range from the yielding temperature of the inner pipe to the softening temperature of the inner pipe. Therefore, the first glass material preferably has a higher softening temperature than the second glass material. In this case, since the viscosity of the inner tube becomes higher than the viscosity of the outer tube, it is possible to prevent the shape of the hole from being collapsed. Also, the first glass material preferably has a higher yield temperature than the second glass material. In this case, the adhesion between the fibers can be improved in the drawing process. On the other hand, the fusion process is performed in the temperature range from the glass transition temperature of the inner tube to the yielding temperature of the inner tube. Therefore, it is preferable that the yielding temperature of the first glass material is higher than that of the second glass material. In this case, the porosity can be maintained in the fusion step. Further, the first glass material preferably has a higher glass transition temperature than the second glass material. In this case, it is possible to reduce the gap between the fibers and to perform effective fusion while maintaining the openness. In addition, the shape of the hole can be maintained even when the kyariary member is used in a high temperature environment.
このキヤビラリ部材では、 浄化装置に応用することができるように、 内管の少 なくとも孔内壁面に光触媒が担持されることが好ましい。 また、 酸化チタン等の 光触媒は紫外光の照射によって浄化作用を有するため、 内管及び外管は共に紫外 光を透過する性質を有することが好ましい。 さらに、 光をキヤビラリ部材内に導 入するための 1以上の導光部を除く少なくともキヤビラリ部材の外周面に光反射 層が被覆されることが好ましい。 この場合、 キヤビラリ部材に入射された光の漏 れを防止し、 光をキヤビラリ部材の中心部にまで容易に届かせることができる。 図面の簡単な説明  It is preferable that the photocatalyst be carried on at least the inner wall surface of the inner tube of this inner member so that the inner member can be applied to a purification device. Further, since a photocatalyst such as titanium oxide has a purifying action by irradiation with ultraviolet light, it is preferable that both the inner tube and the outer tube have a property of transmitting ultraviolet light. Further, it is preferable that at least the outer peripheral surface of the cabling member is coated with a light reflecting layer except for one or more light guiding portions for guiding light into the cabling member. In this case, it is possible to prevent light that has entered the calibrator member from leaking, and to easily transmit the light to the center of the cabaret member. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係るキヤビラリ部材の実施形態を示す斜視図である。  FIG. 1 is a perspective view showing an embodiment of a cabaret member according to the present invention.
図 2は、 図 1に示されるキヤビラリ部材から扇形部分を切り取り、 一部の孔の 断面を示す斜視図である。  FIG. 2 is a perspective view showing a cross section of a part of a hole cut out from the cabaret member shown in FIG.
図 3は、 本実施形態に係るキヤビラリ部材において、 複数の孔を含むプレート 部を平面から見た拡大図である。  FIG. 3 is an enlarged view of a plate portion including a plurality of holes as viewed from a plane in the cabaret member according to the present embodiment.
図 4は、 本実施形態に係るキヤビラリ部材の作製時に用いられるガラス二重管 の斜視図である。  FIG. 4 is a perspective view of a glass double tube used at the time of manufacturing the capillary member according to the present embodiment.
図 5 A、 図 5 B、 図 5 C、 図 5 D、 図 5 E及び図 5 Fは、 本実施形態に係るキ ャビラリ部材の作製方法を説明するための工程図である。  FIG. 5A, FIG. 5B, FIG. 5C, FIG. 5D, FIG. 5E, and FIG. 5F are process diagrams for explaining a method of manufacturing a capillary member according to the present embodiment.
図 6は、 本発明に係る浄化用のキヤビラリ部材の実施形態の斜視図である。 図 7は、 図 6に示される浄化用のキヤビラリ部材が用いられた汚水浄化装置 6 1の斜視図である。 FIG. 6 is a perspective view of an embodiment of a cleaning-use cleaning member according to the present invention. Fig. 7 shows a sewage purification device using the purification cabillary member shown in Fig. 6. 1 is a perspective view of FIG.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
図 1は、本発明に係るキヤビラリ部材の実施形態を示す斜視図であり、図 2は、 図 1に示されるキヤビラリ部材 1 1から扇形部分を切り取り、 一部の孔の断面を 示す斜視図である。 このキヤビラリ部材 1 1は、 厚さ約 5 . 0 mm、 平面の直径 約 2 5 mmの円板状のキヤビラリプレートであり、 円板状のプレート部 1 5と、 プレート部 1 5の外周面を縁取るように形成された円管状の縁ガラス部 1 7とか ら構成されている。 プレート部 1 5内には、 板厚方向に貫通する内径約 2 5〃m の複数の孔 1 3が 2次元的に規則正しく配列されている。 プレート部 1 5は、 第 1のガラス材料 (以下、 材料 Aという) と第 2のガラス材料 (以下、 材料 Bとい う) とから構成され、 縁ガラス部 1 7は材料 Bのみから構成されている。  FIG. 1 is a perspective view showing an embodiment of a cabaret member according to the present invention. FIG. 2 is a perspective view showing a cross section of a part of a hole cut out from the cabaret member 11 shown in FIG. is there. The capillary member 11 is a disk-shaped capillary plate having a thickness of about 5.0 mm and a plane diameter of about 25 mm, and includes a disk-shaped plate portion 15 and an outer periphery of the plate portion 15. It comprises a tubular edge glass portion 17 formed so as to border the surface. In the plate portion 15, a plurality of holes 13 having an inner diameter of about 25〃m penetrating in the plate thickness direction are regularly arranged two-dimensionally. The plate portion 15 is composed of a first glass material (hereinafter, referred to as material A) and a second glass material (hereinafter, referred to as material B), and the edge glass portion 17 is composed of only material B. I have.
図 3は本実施形態に係るキヤビラリ部材 1 1において、 複数の孔 1 3を含むプ レート部 1 5を平面から見た拡大図である。 プレート部 1 5において、 孑し 1 3の 周囲を取り囲む約 3 2 z mの厚さを有する円管状の部分 (孔周辺部) 1 9は材料 Aから構成され、 孑し周辺部 1 9同士の間隙を埋めつくす接合部 2 1は材料 Bから 構成される。 材料 Aとしては例えばショット社の # 8 3 3 8が用いられる。 この 場合、 材料 Aの線膨張係数は 5 . 7 X 1 0— 6ZKであり、 軟化温度、 屈伏温度、 ガラス転移温度はそれそれ 7 2 0 °C、 5 7 0 °C、 4 9 0 °Cである。 一方、 材料 B としては例えばショット社の # 8 3 3 7が用いられる。 この場合、 材料 Bの線膨 張係数は 4 . 1 X 1 0 _ 6ZKであり、 軟化温度、 屈伏温度、 ガラス転移温度はそ れそれ 6 9 5 °C、 5 5 5 °C、 4 2 2 °Cである。 また、 材料 A及び材料 Bは共に紫 外光を透過する性質を有している。 FIG. 3 is an enlarged view of a plate portion 15 including a plurality of holes 13 as viewed from a plane in the capillaries 11 according to the present embodiment. In the plate part 15, a tubular part (periphery of the hole) 19 with a thickness of about 32 zm surrounding the perimeter of the moss 13 is made of material A, and the space between the perimeters 19 of the moss The joint 21 that fills the gap is made of material B. As the material A, for example, # 8338 of Shot Corporation is used. In this case, the linear expansion coefficient of the material A is 5. 7 X 1 0- 6 ZK , softening temperature, the deformation temperature, the glass transition temperature it it 7 2 0 ° C, 5 7 0 ° C, 4 9 0 ° C. On the other hand, as the material B, for example, # 83337 of Schott is used. In this case, the linear expansion coefficient of material B is 4.1 X 10 _ 6 ZK, and the softening temperature, yield temperature, and glass transition temperature are 695 ° C, 555 ° C, and 42, respectively. 2 ° C. Further, both material A and material B have a property of transmitting ultraviolet light.
図 4は、 本実施形態に係るキヤビラリ部材 1 1の作製時に用いられるガラス二 重管 3 1の斜視図である。 このガラス二重管 3 1は、 長手方向に貫通孔 3 3が形 成された材料 Aからなる円管状の内管 3 5と、 内管 3 5の外周面を被覆する材料 Bからなる円管状の外管 3 7とから構成される。 本実施形態に係るキヤビラリ部材 1 1は、 図 5 A〜図 5 Fに示されるような方 法によって作製される。 ( 1) 内管 3 5の屈伏温度 (本実施形態においては 57 0°C) から内管 35の軟化温度 (本実施形態においては 720°C) までの間の温 度範囲に二重管 3 1を加熱して管引きし、 孔の内径を細くしたシングルファイバ (SF) 3 9を形成する。 (2) SF 39を複数本束ねて所定の型 4 1に整列す る。 (3) 整列された SF 39の束を上記温度範囲に加熱して管引きし、 孔の内 径がさらに細いマルチファイバ (MF) 43を形成する。 要求される孔の内径等 によっては、 この MF 43を複数本整列し、 管引きしてマルチマルチファイバ ( MMF) を形成することもある。 (4) MF 43 (又は MMF) を複数本束ねて 材料 Bからなる所定のガラスパイプ 45に積み重ね、 内管 35のガラス転移温度 (本実施形態においては 490°C) から内管 35の屈伏温度 (本実施形態におい ては 570°C) までの間の温度範囲において、 加圧融着してキヤビラリチューブ 47を形成する。 (5) キヤビラリチューブ 47を所定の厚さに切断する。 (6 ) 研磨又は洗浄等の処理を施してキヤビラリ部材 1 1が完成する。 FIG. 4 is a perspective view of a glass double tube 31 used for manufacturing the capillary member 11 according to the present embodiment. The glass double tube 31 has a cylindrical inner tube 35 made of a material A having a through hole 33 formed in the longitudinal direction, and a circular tube made of a material B covering the outer peripheral surface of the inner tube 35. And an outer tube 37. The capillary member 11 according to the present embodiment is manufactured by a method as shown in FIGS. 5A to 5F. (1) The double pipe 3 has a temperature range between the yielding temperature of the inner pipe 35 (570 ° C in this embodiment) and the softening temperature of the inner pipe 35 (720 ° C in this embodiment). 1 is heated and piped to form a single fiber (SF) 39 with a smaller inner diameter of the hole. (2) A plurality of SF 39s are bundled and aligned in a predetermined mold 41. (3) The bundle of aligned SF39s is heated to the above temperature range and drawn to form a multi-fiber (MF) 43 having a smaller hole diameter. Depending on the required inner diameter of the hole, etc., a plurality of MF 43s may be aligned and drawn to form a multi-multi fiber (MMF). (4) A plurality of MF43s (or MMFs) are bundled and stacked on a predetermined glass pipe 45 made of material B, and the glass transition temperature (490 ° C in this embodiment) of the inner pipe 35 is reduced to the yield temperature of the inner pipe 35. In a temperature range of up to 570 ° C. in the present embodiment, the fusion-bonded tube 47 is formed under pressure. (5) Cut the capillary tube 47 to a predetermined thickness. (6) Polishing or cleaning is performed to complete the cabillary member 11.
なお、 本発明に係るキヤビラリ部材の内管及び外管に用いられる材料 A及び材 料 Bは上記実施形態に示したガラス材料には限定されないが、 キヤビラリ部材の 強度及び閧孔性等の点から、 以下の (a) 〜 (d) の条件を満たす材料の組み合 わせであることが好ましい。 (a) 材料 Aの線膨張係数が材料 Bより大きいこと が好ましい。 この場合、 管引き工程等において熱に対して実用的な強度を得るこ とができる。 また、 高温環境におけるキヤビラリ部材使用時に孔内壁等に亀裂が 生じにくい。 (b) 材料 Aの軟化温度が材料 Bより高いことが好ましい。 この場 合、 内管の粘性が外管の粘性より高くなるため、 孔の形状が崩れてしまうことを 防止することができる。 (c) 材料 Aの屈伏温度が材料 Bより高いことが好まし レ、。 この場合、 管引き工程においてファイバ同士の密着性を向上することができ る。 また、 融着工程において開孔性を保持することができる。 (d) 材料 Aのガ ラス転移温度が材料 Bより高いことが好ましい。 この場合、 ファイバ間の空隙を 減少して効果的に融着することができる。 また、 高温環境におけるキヤビラリ部 材使用時にも孔の形状を保持することができる。 In addition, the material A and the material B used for the inner tube and the outer tube of the capillary member according to the present invention are not limited to the glass materials shown in the above-described embodiment, but from the viewpoint of the strength and the encapsulating property of the capillary member. It is preferable that the combination of materials satisfy the following conditions (a) to (d). (A) It is preferable that the linear expansion coefficient of the material A is larger than that of the material B. In this case, practical strength against heat can be obtained in the tube drawing step and the like. In addition, cracks are less likely to occur on the inner wall of the hole when using the kyabilizing member in a high-temperature environment. (B) The softening temperature of material A is preferably higher than that of material B. In this case, since the viscosity of the inner tube becomes higher than the viscosity of the outer tube, it is possible to prevent the shape of the hole from being collapsed. (C) The yield temperature of material A is preferably higher than that of material B. In this case, the adhesion between the fibers can be improved in the drawing step. In addition, the porosity can be maintained in the fusion step. (D) The glass transition temperature of material A is preferably higher than that of material B. In this case, the gap between the fibers It is possible to reduce and effectively fuse. In addition, the shape of the hole can be maintained even when the capillaries are used in a high-temperature environment.
また、 本発明に係るキヤビラリ部材においては、 キヤビラリ部材の外周部分の 強度を向上させるため、 プレート部の周囲を縁取る縁ガラス部を有することが好 ましいが、 縁ガラス部は外管と同じガラス材料 (本実施形態においては材料 B ) である必要はなく、 他のガラス材料であってもよい。  In addition, in order to improve the strength of the outer peripheral portion of the kyariari member, it is preferable that the kyari member has an edge glass portion that rims the periphery of the plate portion, but the edge glass portion is the same as the outer tube. It is not necessary to be a glass material (material B in the present embodiment), and another glass material may be used.
図 6は、 本発明に係る浄化用のキヤビラリ部材の実施形態の斜視図である。 本 実施形態に係る浄化用のキヤビラリ部材 5 1は、 図 1に示されるキヤビラリ部材 1 1に、 複数の孔 1 3の内壁面に担持された光触媒 5 3と、 縁ガラス 1 7の外周 面に被覆された光反射層 5 5とを付加して構成されている。 光触媒 5 3は酸化チ 夕ンを主成分とし、 各孔 1 3の内壁面全体にわたって厚さ約 0 . l〃mに担持さ れている。 光反射層 5 5はアルミニウムを主成分とし、 キヤビラリ部材 1 1内に 光を導入するための導光部 5 7を除く縁ガラス部 1 7の外周面に被覆されている。 導光部 5 7から紫外光が入射され光触媒 5 3に照射されると、 光触媒 5 3は活性 化され、 酸化還元反応による浄化作用を呈する。  FIG. 6 is a perspective view of an embodiment of a cleaning-use cleaning member according to the present invention. The cleaning-use cleaning member 51 according to the present embodiment includes a cleaning member 11 illustrated in FIG. 1, a photocatalyst 53 supported on the inner wall surface of the plurality of holes 13, and an outer peripheral surface of the edge glass 17. It is configured by adding a coated light reflection layer 55. The photocatalyst 53 is mainly composed of oxidized silicon, and is supported at a thickness of about 0.1 μm over the entire inner wall surface of each hole 13. The light reflection layer 55 is mainly composed of aluminum, and is coated on the outer peripheral surface of the edge glass part 17 except for the light guide part 57 for introducing light into the scabbard member 11. When ultraviolet light is incident on the photocatalyst 53 from the light guide part 57, the photocatalyst 53 is activated, and exhibits a purifying action by an oxidation-reduction reaction.
本発明に係る浄化用のキヤビラリ部材は、 酸化チタン等の光触媒を活性化させ るため、 紫外光を透過する性質を有することが好ましい。 孔内壁面に担持される 光触媒は酸化チタンであることが好ましいが、他の光触媒を用いることもできる。 光触媒が酸化チタンである場合、 キヤビラリ部材に入射される光は波長 4 0 O n m以下であることが好ましい。 また、 光をキヤビラリ部材内に導入するための 1 以上の導光部を除く少なくともキヤビラリ部材の外周面に光反射層が被覆される ことが好ましい。 この場合、 キヤビラリ部材に入射された光の漏れを防止し、 光 をキヤビラリ部材の中心部にまで容易に届かせることができる。  The cleaning-use cleaning member according to the present invention preferably has a property of transmitting ultraviolet light in order to activate a photocatalyst such as titanium oxide. The photocatalyst supported on the inner wall surface of the hole is preferably titanium oxide, but other photocatalysts can also be used. When the photocatalyst is titanium oxide, the light incident on the cabillary member preferably has a wavelength of 40 Onm or less. Further, it is preferable that at least the outer peripheral surface of the cabling member is coated with a light reflecting layer except for one or more light guide portions for introducing light into the cabling member. In this case, it is possible to prevent the light that has entered the calibrator member from leaking, and to easily reach the central portion of the cabaret member.
図 7は、 図 6に示される浄化用のキヤビラリ部材 5 1が用いられた汚水浄化装 置 6 1の斜視図である。 汚水浄化装置 6 1は、 被浄化物である汚水 6 3が貯水さ れた汚水漕 6 5と、 汚水漕 6 5の汚水導出口 (図示せず) にバルブ (図示せず) を介して一端が接続された取水管 6 7と、 一つの平面を取水管 6 7の他端に接続 されたキヤビラリ部材 5 1と、 キヤビラリ部材 5 1の他の平面に一端が接続され た浄水管 6 9と、 キヤビラリ部材 5 1の導光部 5 7に一端が接続された光フアイ バ 7 1と、 光ファイバ 7 1の他端と接続された紫外光照射部 7 3とから構成され ている。 FIG. 7 is a perspective view of a sewage purification apparatus 61 using the purification kyariary member 51 shown in FIG. The sewage purification device 61 is provided with a sewage tank 65 in which sewage 63 to be purified is stored and a valve (not shown) in a sewage discharge port (not shown) of the sewage tank 65. A water intake pipe 67 connected at one end to the other end of the water intake pipe 67, a capillary member 51 connected to the other end of the water pipe 67, and a purified water connected at one end to another plane of the capillary member 51. It comprises a tube 69, an optical fiber 71 connected at one end to the light guide 57 of the cabillary member 51, and an ultraviolet light irradiator 73 connected to the other end of the optical fiber 71. I have.
この汚水浄化装置 6 1において、 バルブ (図示せず) を開栓すると汚水槽 6 5 に貯水された汚水 6 3は、 汚水槽 6 5の汚水導出口 (図示せず) を通って取水管 6 7に流れ込み、 ついで、 キヤビラリ部材 5 1の複数の孔 1 3に流れ込む。 この とき、 紫外光照射部 7 3から発せられた波長 3 0 0 n mの紫外光が光ファイバ 7 1を介してキヤビラリ部材 5 1に入射されており、 各孔 1 3に担持された光触媒 5 3は活性化されている。 そのため、 汚水 6 3は、 光触媒 5 3と接触し、 酸化還 元反応によって浄化される。 汚水 6 3は、 光触媒 5 3によって浄ィヒされた後、 キ ャビラリ部材 5 1の他の面から浄水管 6 9へと流れる。  In this sewage purification device 61, when a valve (not shown) is opened, the sewage 63 stored in the sewage tank 65 is passed through a sewage outlet (not shown) of the sewage tank 65, and an intake pipe 6 is provided. 7, and then into the plurality of holes 13 of the cabling member 51. At this time, ultraviolet light having a wavelength of 300 nm emitted from the ultraviolet light irradiating section 73 is incident on the capillary member 51 via the optical fiber 71, and the photocatalyst 53 Is activated. Therefore, the sewage 63 contacts the photocatalyst 53 and is purified by a redox reaction. After the sewage 63 is purified by the photocatalyst 53, the sewage 63 flows from the other surface of the cabillary member 51 to the water purification pipe 69.
なお、 本発明に係るキヤビラリ部材は、 排煙等の他の汚染流体を浄化する浄ィ匕 装置についても用いることができる。 この場合、 孔の目詰り等を防止するため、 被浄化物の種類に適する内径及び長さの孔を有するキヤビラリ部材を用いること が好ましい。 また、 被浄化物の汚染状態によって、 担持する光触媒の量等を最適 化することができる。  The kyariari member according to the present invention can also be used for a purification device for purifying other contaminated fluids such as smoke exhaust. In this case, in order to prevent clogging of the holes, it is preferable to use a cabillary member having a hole having an inner diameter and a length suitable for the type of the object to be purified. In addition, the amount of the photocatalyst to be supported can be optimized depending on the state of contamination of the object to be purified.
産業上の利用可能性 Industrial applicability
本発明に係るキヤビラリ部材によれば、 強度及び開孔性が向上して高精度及び 長寿命を達成することができ、 さまざまな分野への応用が可能になる。 また、 本 発明に係る浄化用のキヤビラリ部材によれば、 浄化装置等に好適に用いられ、 さ まざまな汚染流体を効率よく浄化することができる。  ADVANTAGE OF THE INVENTION According to the cavillary member which concerns on this invention, intensity | strength and opening property are improved, high precision and long life can be achieved, and application to various fields becomes possible. Further, the purification kyariary member according to the present invention is suitably used for a purification device or the like, and can efficiently purify various contaminated fluids.

Claims

請求の範囲 The scope of the claims
1 . 複数の貫通孔が 2次元的に配列されたキヤビラリ部材であって、 長手方向に貫通孔が形成された第 1のガラス材料からなる内管と、 前記内管の 外周面を被覆する第 2のガラス材料からなる外管とから構成される二重管を複数 本束ね、前記外管を互いに融着させて形成したことを特徴とするキヤビラリ部材。 1. A cabillary member in which a plurality of through-holes are two-dimensionally arranged, wherein an inner pipe made of a first glass material having a through-hole formed in a longitudinal direction, and a second pipe covering an outer peripheral surface of the inner pipe. 2. A cabillary member comprising: a plurality of double pipes each comprising an outer pipe made of a glass material; and a bundle formed by fusing the outer pipes to each other.
2 . 前記第 1のガラス材料は、 少なくとも前記長手方向における線膨張係 数が前記第 2のガラス材料より大きい請求項 1に記載のキヤビラリ部材。  2. The capillary member according to claim 1, wherein the first glass material has a linear expansion coefficient at least in the longitudinal direction larger than that of the second glass material.
3 . 前記第 1のガラス材料は、 軟化温度が前記第 2のガラス材料より高い 請求項 1に記載のキヤビラリ部材。  3. The capillary member according to claim 1, wherein the first glass material has a softening temperature higher than that of the second glass material.
4 . 前記第 1のガラス材料は、 屈伏温度が前記第 2のガラス材料より高い 請求項 1に記載のキヤビラリ部材。  4. The cabillary member according to claim 1, wherein the first glass material has a yielding temperature higher than that of the second glass material.
5 . 前記第 1のガラス材料は、 ガラス転移温度が前記第 2のガラス材料よ り高い請求項 1に記載のキヤビラリ部材。  5. The capillary member according to claim 1, wherein the first glass material has a higher glass transition temperature than the second glass material.
6 . 前記内管の少なくとも孔内壁面に光触媒が担持された請求項 1に記載 のキヤビラリ部材。  6. The cabillary member according to claim 1, wherein a photocatalyst is supported on at least an inner wall surface of the hole of the inner tube.
7 . 前記内管及び前記外管は、 紫外光を透過する性質を有する請求項 1に 記載のキヤビラリ部材。  7. The cabillary member according to claim 1, wherein the inner tube and the outer tube have a property of transmitting ultraviolet light.
8 . 光を前記キヤビラリ部材内に導入するための 1以上の導光部を除く少 なくとも前記キヤビラリ部材の外周面に光反射層が被覆された請求項 1に記載の キヤビラリ部材。  8. The cabillary member according to claim 1, wherein at least an outer peripheral surface of the cabillary member is coated with a light reflection layer excluding one or more light guide portions for introducing light into the cabril member.
PCT/JP2000/005712 1999-08-24 2000-08-24 Capillary member WO2001014269A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU67290/00A AU6729000A (en) 1999-08-24 2000-08-24 Capillary member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP23696199A JP2001064027A (en) 1999-08-24 1999-08-24 Capillary member
JP11/236961 1999-08-24

Publications (1)

Publication Number Publication Date
WO2001014269A1 true WO2001014269A1 (en) 2001-03-01

Family

ID=17008338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005712 WO2001014269A1 (en) 1999-08-24 2000-08-24 Capillary member

Country Status (3)

Country Link
JP (1) JP2001064027A (en)
AU (1) AU6729000A (en)
WO (1) WO2001014269A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114720A1 (en) * 2011-02-22 2012-08-30 国立大学法人信州大学 Optical reactor and method for manufacturing same
CN109878069A (en) * 2019-02-11 2019-06-14 福建师范大学 A kind of dendritic phthalocyanine@SiO2The preparation method of photocatalytic device
US20220355329A1 (en) * 2012-04-20 2022-11-10 Eyenovia, Inc. Spray ejector device and methods of use

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1033635C2 (en) * 2007-04-03 2008-10-06 Stichting Nlisis Method and device for making a glass-glass connection between glass capillary tubes as well as a method for undoing it and a (gas) chromatograph.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724614A (en) * 1980-07-22 1982-02-09 Furukawa Electric Co Ltd:The Glass filter
JPH09135891A (en) * 1995-11-14 1997-05-27 Nhk Spring Co Ltd Deodorizing device
JPH10310779A (en) * 1997-05-12 1998-11-24 Tomoji Sumiya Device for dealing with oil spilled on the sea
JPH11239717A (en) * 1998-02-25 1999-09-07 Hamamatsu Photonics Kk Method and apparatus for purification

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724614A (en) * 1980-07-22 1982-02-09 Furukawa Electric Co Ltd:The Glass filter
JPH09135891A (en) * 1995-11-14 1997-05-27 Nhk Spring Co Ltd Deodorizing device
JPH10310779A (en) * 1997-05-12 1998-11-24 Tomoji Sumiya Device for dealing with oil spilled on the sea
JPH11239717A (en) * 1998-02-25 1999-09-07 Hamamatsu Photonics Kk Method and apparatus for purification

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114720A1 (en) * 2011-02-22 2012-08-30 国立大学法人信州大学 Optical reactor and method for manufacturing same
US20220355329A1 (en) * 2012-04-20 2022-11-10 Eyenovia, Inc. Spray ejector device and methods of use
CN109878069A (en) * 2019-02-11 2019-06-14 福建师范大学 A kind of dendritic phthalocyanine@SiO2The preparation method of photocatalytic device
CN109878069B (en) * 2019-02-11 2020-11-24 福建师范大学 Dendritic phthalocyanine @ SiO2Preparation method of photocatalytic device

Also Published As

Publication number Publication date
JP2001064027A (en) 2001-03-13
AU6729000A (en) 2001-03-19

Similar Documents

Publication Publication Date Title
WO2019071921A1 (en) Anti-resonant hollow core optical fiber having multiple resonant layers
FI120471B (en) Optical fiber processing method
IL257675A (en) Hollow-core fibre and method of manufacturing thereof
US20130121889A1 (en) Optical reactor and method for manufacturing the same
US20090202202A1 (en) Fiber lens with fresnel zone plate lens and method for producing the same
JP2006309146A (en) Light source module
CN102116902A (en) Optic fiber power beam combiner and preparation method thereof
WO2001014269A1 (en) Capillary member
US20110038587A1 (en) Multi-clad optical fiber
CN110361809B (en) Optical fiber, optical fiber cladding power filter, optical fiber laser and optical fiber preparation method
US20120027368A1 (en) Hollow core fiber power combiner and divider
US5449466A (en) Apparatus and method for photocatalytic treatment of a fluid
JP2007299774A (en) High-density optical excitation fiber laser device
US3244776A (en) Method of forming apertured optical discs
US20180356589A1 (en) Optical fiber, optical system, and method for producing optical fiber
JPH09299937A (en) Treating device for material
JP2004356318A (en) Photoexciting method of optical amplification medium fiber, photoexcited light incidence structure to optical amplification medium fiber, optical fiber amplifier and optical fiber laser
JP2000288406A (en) Light transmission body having photocatalytic ability, its designing method and production of light transmission body based on the same
JP3718127B2 (en) Medical laser transmission equipment
KR20060043019A (en) Bundle fiber
JP2005208262A (en) Surface leakage light optical waveguide and photo-catalytic device using the same
EP0888814B1 (en) Reaction support and reactor for the treatment of solid and fluid reactants subjected to a wave-shaped movement
JPH11239717A (en) Method and apparatus for purification
JP2004074018A (en) Photocatalyst carrier, its apparatus and method for treating fluid
KR102587611B1 (en) UV sterilizing device using light collection and multi-reflection

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase