WO2001007669A1 - Steel sheet for heat-shrink band and production method therefor - Google Patents

Steel sheet for heat-shrink band and production method therefor Download PDF

Info

Publication number
WO2001007669A1
WO2001007669A1 PCT/JP2000/004873 JP0004873W WO0107669A1 WO 2001007669 A1 WO2001007669 A1 WO 2001007669A1 JP 0004873 W JP0004873 W JP 0004873W WO 0107669 A1 WO0107669 A1 WO 0107669A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
rolling
steel
annealing
magnetic permeability
Prior art date
Application number
PCT/JP2000/004873
Other languages
French (fr)
Japanese (ja)
Inventor
Hideki Matsuoka
Tatsuhiko Hiratani
Kenji Tahara
Yasuyuki Takada
Yasushi Tanaka
Yoshihiko Ono
Original Assignee
Nkk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nkk Corporation filed Critical Nkk Corporation
Publication of WO2001007669A1 publication Critical patent/WO2001007669A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/87Means for avoiding vessel implosion

Definitions

  • the present invention relates to a heat-shrink band steel plate for tightening around a panel of a cathode ray tube used in a television or the like, and a method for manufacturing the same.
  • Background technology color cathode ray tube the tube body is 1. Since a high vacuum of about OX 10- 7 Torr, processing such deformation preventing and tube inner explosion prevention of the panel surface is required.
  • a heat shrink band made of a steel sheet formed into a band is heated and expanded for several seconds to several tens of seconds in a temperature range of about 400 to 600 ° C, fitted into a color CRT glass panel, and cooled and contracted to reduce tension.
  • the so-called shrink fit treatment prevents deformation of the panel surface and internal explosion of the tube. Furthermore, such a heat shrink band also has a function of shielding geomagnetism as well as an internal magnetic shield, and a shift in the landing position of the electron beam on the fluorescent screen due to the geomagnetism, that is, a color shift occurs. It has the function of preventing From this point of view, mild steel has been used as a material for heat shrink bands.
  • Japanese Patent Application Laid-Open No. 1-140601 discloses that, by weight%, C: 0.0008-0. 0050%, Si: 0.3.1.8, S: 0.002-0. 020%, Ti: Disclosed are cold rolled steel sheets with good geomagnetic shielding properties and a method for manufacturing the same, which are intended for use in TV CRT shrink bands with a composition of 0. CH-0.06%. Also, JP-A-11-158548 and JP-A-11-158549 disclose a TV cathode ray tube shrink band in which components such as C ⁇ 0.01 ° S i: u 4 are specified by weight%. A hot rolled steel sheet for use and a cold rolled steel sheet and a method for producing the same are disclosed.
  • Japanese Patent Application Laid-Open No. Hei 10-208670 states that a tension force for correcting the deformation of the panel surface due to the atmospheric pressure is secured.
  • a method for manufacturing a heat shrink band having a sufficient magnetic shielding property has been proposed.
  • this steel sheet for heat shrink bands uses mild steel, has a magnetic permeability of about 200 at the force-geomagnetic level (about 0.3 ⁇ e), and does not have sufficient magnetic shielding. Did not. Therefore, complicated steps such as adjusting the position of the phosphor screen have been required for color misregistration due to terrestrial magnetism.
  • Japanese Patent Application Laid-Open No. 1-140601 discloses that, after annealing, the relative permeability in a DC magnetic field of about 0.3 Oe decreases with temper rolling, shearing of a steel sheet, and processing into a part shape. Since it is used in the fitted state, much of the strain applied during the process of reheating to 600 ° C is released, and the geomagnetic shielding properties, that is, the relative magnetic permeability in a DC magnetic field of around 0.3 Oe, immediately after annealing This is not significantly different from the state described above. "In the Examples, examples in which temper rolling at an elongation of 0.3% was performed were shown. However, as will be described later, the present inventors have conducted a detailed investigation on the effect of the temper rolling reduction on the magnetic properties after shrink fitting. It became clear that the magnetic properties did not always return to the as-annealed state even when heat equivalent to the treatment was applied.
  • JP-A-11-58548 and JP-A-11-158549 state that both excellent coercive force and excellent strength are compatible.
  • the correlation between the magnetic properties and the magnetic properties described in the examples are those at the time of manufacture of the steel sheet, and there is no description on the magnetic properties when a treatment assuming shrink fitting is performed. It is not always clear how to improve sex.
  • the present invention has been made in view of the above circumstances, and a steel sheet for a heat shrink band capable of maintaining a sufficient magnetic shielding property and realizing a cathode ray tube having a small color shift and a manufacturing thereof.
  • the aim is to provide a method.
  • the first invention comprises a step of hot rolling steel, a step of cold rolling after hot rolling, and a step of annealing after cold rolling, wherein temper rolling is performed after force annealing. This is a method of manufacturing a heat shrink band steel sheet.
  • the second invention has a step of hot rolling steel, a step of cold rolling after hot rolling, and a step of annealing after cold rolling, and more than 0% to 0.5% or less after annealing.
  • This is a method for producing a steel sheet for heat shrink band, in which temper rolling is performed at an elongation rate.
  • the third invention is the method for producing a steel sheet for a heat shrink band according to claim 1 or 2, wherein a steel containing a weight r si: o. More than 1%-2% is hot-rolled.
  • a fourth invention is the method according to any one of claims 1 to 3, wherein the product Xt of the magnetic permeability and the plate thickness t (optionally) in a magnetic field of 0.3 e after the shrink fitting is 380 or more.
  • FIG. 2 is a diagram showing the relationship between Xt and the amount of geomagnetic drift.
  • the present invention is not particularly limited with respect to the chemical composition of the steel sheet, as long as it can secure a magnetic permeability that can maintain a sufficient magnetic shielding property while maintaining a level of strength that does not cause a problem in explosion protection.
  • C 0.005% or less
  • N 0.005% or less
  • Solid-solution strengthening elements such as Si, Mn, P, etc. in so-called ultra-low carbon steel are selected according to the desired strength.
  • Mn 0.1-2%
  • P 0.15% or less
  • A1 1% or less
  • Nb 0.005-0.04%
  • B 0.0003- 0.005 %
  • steel to which one or more elements that fix solid solution C, solid solution N and the like as precipitates are added.
  • Si is an element effective in increasing the strength and increasing the magnetic permeability, so it is recommended that Si be added in excess of 0.1, and that Si: more than 0%-2% steel be used in the present invention. As a result, it is possible to obtain a steel sheet for a heat shrink band, which has more excellent magnetic shielding properties and less color shift.
  • the amount of C It is effective to make the level as low as possible, but if the magnetic permeability can be ensured, it goes without saying that the amount of C and N may be out of the above range.
  • steelmaking, production, hot rolling, and cold rolling may be performed in a conventional manner.
  • the final thickness is not particularly limited, for example, a range of 0.6 to 2.0 mm is preferable.
  • the annealing after the cold rolling is preferably continuous annealing. This is because in the case of batch annealing, high elongation temper rolling is indispensable to correct the shape after annealing, rolling strain is introduced into the steel sheet, and the magnetic properties in that state and after shrink fitting are reduced. This is due to deterioration.
  • the annealing temperature and time are determined in consideration of the balance between the strength and the magnetic permeability of the steel sheet.
  • the concept of setting the annealing temperature to the magnetic permeability is shown below.
  • the magnetic permeability of the material improves as the annealing temperature increases, but no remarkable change in the magnetic permeability is observed.
  • the annealing temperature is higher than this temperature range, the magnetic permeability is significantly improved.
  • the annealing temperature is increased, there is a temperature region where the magnetic permeability decreases.
  • This change in magnetic permeability corresponds to the mouth M of the steel sheet.
  • the annealing temperature should be determined according to the chemical composition of the steel.
  • the annealing temperature is 650 It is necessary to be between 750 ° C and 900 ° C, preferably between 750 ° C and 900 ° C.
  • the annealing temperature is 750 ° C or more and 875 ° C. It is more preferred that:
  • the annealing temperature In the case of ultra-low carbon steel containing one of Ti, 'b, and B, the annealing temperature must be between 700 ° C and 900 ° C, and between 750 ° C and 900 ° C. Preferably, the annealing temperature is more preferably 750 ° C or more and 875 ° C or less in consideration of material stability in a high temperature range. In the case of ultra-low carbon steel containing two or more of Ti, Nb and B, the annealing temperature must be between 750 ° C and 900 ° C, and between 780 ° C and 900 ° C. In consideration of material stability in a high temperature range, the annealing temperature is more preferably 780 ° C or more and 875 ° C or less.
  • the overaging zone is not cooled down to around room temperature, for example, in a temperature range of 250 to 500 ° C.
  • room temperature for example, in a temperature range of 250 to 500 ° C.
  • the elongation must be 0.5% or less, preferably less than 0.3%. This is determined as a condition in which the magnetic permeability is significantly lower than that of the unpressurized material from the relationship between the magnetic permeability after the shrink-fitting equivalent heat treatment and the temper rolling conditions as described later.
  • the heat shrink band may be plated from the viewpoint of corrosion resistance.
  • the steel plate manufactured by the above method may be subjected to electric plating according to a conventional method.
  • Plating species is not particularly limited, for example, Zn, Zn- N T i alloy, Ni, Sn, monolayers plated such as Cr or their multilayered plating,, etc. are applicable.
  • the type of plating is not particularly limited.
  • a single-layer plating of Zn, Zn-Al alloy, A1, etc., a multi-layer plating thereof, or a part or all of the plating layer and the ground iron Suitable for alloyed plating, etc. Is available. It is also possible to form various chemical conversion coatings on the steel sheet surface or plating surface.
  • the product Xt of the magnetic permeability and the plate thickness t (ram) in a magnetic field of 0.3 e after the shrink fitting is 380 or more, more preferably 400 or more, and further preferably Is 420 or more. This is determined as a condition in which the color shift (drift amount of the electron beam) force is significantly lower than that of the conventional technology due to the relationship between the color shift and the magnetic permeability as described later.
  • the measurement of magnetic permeability in a magnetic field of 0.30 e was performed on this sample that had been annealed at 500 ° C and 600 ° C for 60 seconds, which was a heat treatment equivalent to shrink fitting. As a criterion, the same measurement was performed for a material without heat treatment equivalent to shrink fit of unpressurized material.
  • FIG. 1 is a diagram showing the relationship between the elongation ratio and the magnetic permeability of the temper rolling.
  • the vertical axis shows the value obtained by dividing the magnetic permeability of each material by the magnetic permeability of the unregulated original plate (before heat treatment equivalent to shrink fit).
  • the higher permeability than the original sheet after heat treatment equivalent to shrink fitting is due to the strain force introduced when processing the annealed material or when handling the sample. This is considered to be due to the release by heat treatment equivalent to shrink fit. Also, the reason why the value of the heat treatment temperature equivalent to shrink fit of 600 ° C is higher than that of the case of 500 ° C is considered that the strain relief is more likely to proceed in the high temperature treatment. Up to an elongation of 0.5, although the permeability of the material slightly decreases as the elongation increases, a permeability of 80% or more of the unregulated original plate can be secured.
  • a magnetic permeability of 90% or more of the unpressurized master sheet can be obtained after heat treatment equivalent to shrink-fitting.
  • temper rolling with an elongation ratio exceeding 0.5 is performed, even after the heat treatment equivalent to shrink fit, a magnetic permeability of less than 80% of the unpressurized master sheet can be obtained.
  • the cause is not necessarily clear, according to the findings of the present inventors, when the elongation rate is extremely small up to 0.5 mm, the strain introduced into the steel sheet by temper rolling is compared to the extreme surface of the steel sheet. Although it is introduced uniformly uniformly, it is only introduced very coarsely inside the steel sheet, and as a result, the permeability reduction effect after heat treatment equivalent to shrink fit was not remarkable, but the elongation exceeded 0.5% In this case, it is presumed that the amount of strain introduced is so large that it cannot be completely released by the heat treatment equivalent to shrink fit.
  • temper rolling is performed for the purpose of preventing surface defects generally called stretcher strain marks after work forming.
  • stretcher strain marks In the case of a heat shrink band, however, Forming and processing are not severe in nature, so no remarkable surface defects occur without temper rolling. Rather, from the viewpoint of obtaining high magnetic permeability, it is desirable to omit temper rolling if there is no problem in appearance.
  • the processed band After heating the processed band at 500 ° C for 60 seconds, it was fitted into a 29-inch TV cathode ray tube panel, and the geomagnetic drift was evaluated to evaluate the color shift.
  • FIG. 2 is a diagram showing the relationship between color misregistration and magnetic permeability. Bh and Bv on the vertical axis indicate the drift amount of the landing point of the electron beam. Specifically, with a vertical magnetic field of 0.35 Oe and a horizontal magnetic field of 0.3 Oe applied to the CRT, the CRT is rotated 360 ° and the displacement of the landing point of the electron beam with respect to the reference point is (Landing error) was measured, and the difference between the maximum value and the minimum value was taken as the horizontal drift amount Bh.
  • the horizontal magnetic field was OO e and the landing error when the vertical magnetic field was changed from OO e to 0.35 0e was measured as the vertical drift Bv. Note that the drift amount of the landing error on the vertical axis is shown as a relative value when the value of the above-mentioned conventional material is set to 1.
  • the horizontal axis in the figure represents the product x X t of the magnetic permeability at an external magnetic field of 0.3 Oe equivalent to the geomagnetism and the plate thickness t (thigh).
  • the magnetic permeability was measured on a ring specimen taken from the annealed plate before the shrink fitting, after performing a heat treatment at 500 ° C for 60 seconds corresponding to the shrink fitting.
  • the ratio of both Bh and Bv to the conventional material is around 1.0 up to Xt of about 300, which is about the same value as that of the conventional material, but tends to decrease remarkably from 380. From this, it can be seen that the color shift due to the geomagnetism is improved by increasing / z X t, and the value is 380 or more, which is superior to the conventional material.
  • the effect of preventing color misregistration is more excellent when Xt is 400 or more, and more excellent when Xt is 420 or more.
  • test steels shown in Table 1 After smelting the test steels shown in Table 1, they were heated to 1200-1280 ° C and hot-rolled to a plate thickness of 3.2 strokes at a finishing temperature of 820-900 ° C and a winding temperature of 680 ° C. After pickling the obtained hot-rolled sheet, cold-rolling to a sheet thickness of 1.0-1.2 1., annealing at 700-850 ° C for 90 seconds, and then Overage treatment was applied for minutes. These steel sheets were further heated to 500 ° (equivalent to shrink fit) for 5 seconds and air-cooled to room temperature before yield stress, DC magnetic properties (permeability at 0.3 Oe, and external magnetic field up to 10 Oe).
  • the coercive force at the time of excitation was measured by a ring test piece (outer diameter: 45, inner diameter: 33mm) Also, the annealed material (including the temper-rolled one) was processed into a band After heating to ° C, it was fitted into a 29-inch TV cathode ray panel via a double-sided adhesive tape, and the geomagnetic drift property was evaluated.
  • W The coercive force at the time of excitation was measured by a ring test piece (outer diameter: 45, inner diameter: 33mm)
  • the annealed material including the temper-rolled one
  • was processed into a band After heating to ° C it was fitted into a 29-inch TV cathode ray panel via a double-sided adhesive tape, and the geomagnetic drift property was evaluated.
  • Table 2 shows the results.
  • the geomagnetic drift property is shown in Table 1 as a relative value when the geomagnetic drift amount of one temper-rolled material of the test steel as a conventional material is set to 1.
  • Table 2 shows that in the example of the present invention in which the elongation ratio of the temper rolling is within the range of the present invention, there is no deterioration of the magnetic permeability due to the strain introduced at the time of the temper rolling.
  • the product of magnetic permeability and the thickness t (thigh) / iXt of the magnetic field was 380 or more, confirming that it exhibited excellent characteristics in geomagnetic drift. Further, it was confirmed that the examples of the present invention exhibited stable magnetic characteristics regardless of the presence or absence of overaging treatment or the temperature of overaging treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

A method of producing a steel sheet for a heat-shrink band comprising the steps of hot-rolling steel, cold-rolling the hot-rolled steel, and annealing the cold-rolled steel, the annealed steel not being subjected to temper-rolling or subjected to temper-rolling at an elongation of above 0% and up to 0.5%, whereby a color cathode ray tube that can maintain a sufficient magnetic shielding performance and has a minimum color misregister can be implemented by a steel sheet for a heat-shrink band produced by this method.

Description

明細 ヒートシュリンクバンド用鋼板およびその製造方法 技術分野 本発明は、 テレビなどに用いられる力ラー陰極線管のパネル周囲を緊締するヒ一 トシュリンク用バンド用鋼板およびその製造方法に関する。 背景技術 力ラー陰極線管では、 管体内が 1. O X 10—7Torr程度の高真空状態であることから、 パネル面の変形防止および管体の内爆防止といった処理が必要とされる。 すなわち、 バンド状に成形した鋼板からなるヒートシュリンクバンドを 400°Cから 600°C程度の 温度域で数秒-数十秒間加熱 ·膨張させ、 カラー陰極線管ガラスパネルにはめこみ、 冷却 ·収縮によって張力を付与する、 いわゆる焼きばめ処理によってパネル面の変 形や管体の内爆が防止されている。 さらに、 このようなヒートシュリンクバンドは、 内部磁気シールドと同様、 地磁気をシールドする機能をも有しており、 地磁気によ る電子ビームの蛍光面上の着弾位置のずれ、 すなわち色ずれが発生するのを防止す る機能を有している。 このような観点から、 ヒートシュリンクバンドの材料として は、 従来から軟鋼が用いられていた。 TECHNICAL FIELD The present invention relates to a heat-shrink band steel plate for tightening around a panel of a cathode ray tube used in a television or the like, and a method for manufacturing the same. Background technology color cathode ray tube, the tube body is 1. Since a high vacuum of about OX 10- 7 Torr, processing such deformation preventing and tube inner explosion prevention of the panel surface is required. In other words, a heat shrink band made of a steel sheet formed into a band is heated and expanded for several seconds to several tens of seconds in a temperature range of about 400 to 600 ° C, fitted into a color CRT glass panel, and cooled and contracted to reduce tension. The so-called shrink fit treatment prevents deformation of the panel surface and internal explosion of the tube. Furthermore, such a heat shrink band also has a function of shielding geomagnetism as well as an internal magnetic shield, and a shift in the landing position of the electron beam on the fluorescent screen due to the geomagnetism, that is, a color shift occurs. It has the function of preventing From this point of view, mild steel has been used as a material for heat shrink bands.
特開平 1 1-140601号公報には、 重量 %で、 C: 0. 0008-0. 0050%, S i : 0. 3-1. 8 、 S: 0. 002-0. 020%、 Ti : 0. CH-0. 06%などの成分を規定した TVブラウン管シュリンクバン ド用途をも想定した地磁気シールド性の良好な冷延鋼板およびその製造方法が開示 されている。 また、 特開平 1 1 -158548号公報および特開平 1 1- 1 58549号公報には、 重 量%で、 C≤0. 01°ん S i :卜 4 などの成分を規定した TVブラウン管シュリンクバンド 用熱延鋼板ゃ冷延鋼板およびその製造方法が開示されている。 一方、 特開平 10- 208670号公報には、 大気圧によるパネル面の変形を補正する張力カ確保されるとと もに、 十分な磁気シールド性を有するヒートシュリンクバンドの製造方法が提案さ れている。 この技術では、 重量 %で、 C≤0. 005%、 2. 0%≤S i≤4. 0¾, 0. l¾≤Mn≤1. 0¾, P≤0. 2¾, S≤0. 020%, Sol . Al≤0. 00«または 0. 1°≤Sol . Al≤1. 0%、 Ν≤0· 005%を含 有する鋼を、 熱間圧延および Ζまたは冷間圧延する工程と、 700〜900°Cで焼鈍する 工程と、 冷圧率 3-1 ¾で軽圧延する工程とを備える。 その結果、 上記軽圧延するェ 程後に加熱冷却された後の 0. 30 eにおける透磁率^が/ χ≥250となり、 降伏応力 YS カ^ S≥40kgf/讓 2となる。 Japanese Patent Application Laid-Open No. 1-140601 discloses that, by weight%, C: 0.0008-0. 0050%, Si: 0.3.1.8, S: 0.002-0. 020%, Ti: Disclosed are cold rolled steel sheets with good geomagnetic shielding properties and a method for manufacturing the same, which are intended for use in TV CRT shrink bands with a composition of 0. CH-0.06%. Also, JP-A-11-158548 and JP-A-11-158549 disclose a TV cathode ray tube shrink band in which components such as C≤0.01 ° S i: u 4 are specified by weight%. A hot rolled steel sheet for use and a cold rolled steel sheet and a method for producing the same are disclosed. On the other hand, Japanese Patent Application Laid-Open No. Hei 10-208670 states that a tension force for correcting the deformation of the panel surface due to the atmospheric pressure is secured. In particular, a method for manufacturing a heat shrink band having a sufficient magnetic shielding property has been proposed. In this technology, by weight%, C≤0.005%, 2.0% ≤S i≤4.0.0¾, 0. l¾≤Mn≤1.0¾, P≤0.2.2¾, S≤0.020%, Hot rolling and Ζ or cold rolling of steel containing Sol. Al≤0.00 00 or 0.1 ° ≤Sol. Al≤1.0%, Ν≤0.005%; It has a process of annealing at 900 ° C and a process of light rolling at a cold pressure ratio of 3-1 mm. As a result, the light rolling to E permeability at 0. 30 e after being heated cooling after extent permeability ^ is / Kai≥250 becomes, the yield stress YS Ca ^ S≥40kgf / Yuzuru 2.
従来技術においては、 このヒートシュリンクバンド用鋼板には軟鋼が用いられて いる力^ 地磁気レベル (約 0. 3〇e ) での透磁率がおよそ 200程度であり、 磁気シ一 ルド性が充分ではなかった。 そのため、 地磁気による色ずれに対しては、 蛍光面の 位置を調整するなどの煩雑な工程が必要となっていた。  In the prior art, this steel sheet for heat shrink bands uses mild steel, has a magnetic permeability of about 200 at the force-geomagnetic level (about 0.3〇e), and does not have sufficient magnetic shielding. Did not. Therefore, complicated steps such as adjusting the position of the phosphor screen have been required for color misregistration due to terrestrial magnetism.
特開平 1 1-140601号公報には、 「焼鈍後、 調質圧延や鋼板の剪断、 部品形状への 加工に伴って、 0. 3O e前後の直流磁場における比透磁率は低下するが、 焼きばめ 状態で使用されるため、 600°Cに再加熱される過程で付加されたひずみの多くが解 放され、 地磁気シールド特性、 すなわち 0. 3O e前後の直流磁場における比透磁率 は焼鈍直後の状態と大きくは違わない。 」 と記載されており、 また実施例には、 伸 び率 0. 3%の調質圧延を施した例が示されている。 しかしながら、 後述するように、 本願発明者らが焼きばめ後の磁気特性におよぼ す調質圧延率の影響に関して詳細に調査したところ、 調質圧延を実施した場合には その後に焼きばめ処理相当の熱が加わっても、 磁気特性は必ずしも焼鈍ままの状態 に戻らないことが明らかとなつた。  Japanese Patent Application Laid-Open No. 1-140601 discloses that, after annealing, the relative permeability in a DC magnetic field of about 0.3 Oe decreases with temper rolling, shearing of a steel sheet, and processing into a part shape. Since it is used in the fitted state, much of the strain applied during the process of reheating to 600 ° C is released, and the geomagnetic shielding properties, that is, the relative magnetic permeability in a DC magnetic field of around 0.3 Oe, immediately after annealing This is not significantly different from the state described above. "In the Examples, examples in which temper rolling at an elongation of 0.3% was performed were shown. However, as will be described later, the present inventors have conducted a detailed investigation on the effect of the temper rolling reduction on the magnetic properties after shrink fitting. It became clear that the magnetic properties did not always return to the as-annealed state even when heat equivalent to the treatment was applied.
また、 特開平 1 1-158548号公報および特開平 11- 158549号公報記載の技術には、 優 れた保磁力と優れた強度とが両立すると述べられているが、 地磁気シールド性と保 磁力との相関に関する記載がなく、 また、 実施例に記載されている磁気特性も鋼板 製造時のものであり、 焼きばめを想定した処理を施した場合の磁気特性に関する記 載がないため、 地磁気シールド性の向上については必ずしも明確でない。  In addition, the technologies described in JP-A-11-58548 and JP-A-11-158549 state that both excellent coercive force and excellent strength are compatible. There is no description on the correlation between the magnetic properties and the magnetic properties described in the examples are those at the time of manufacture of the steel sheet, and there is no description on the magnetic properties when a treatment assuming shrink fitting is performed. It is not always clear how to improve sex.
さらに、 上記 2件の先行技術のうち、 冷延鋼板の発明である特開平 1 1 - 158549号公 報には、 焼鈍方法に関して 「バッチ焼鈍は焼鈍後に形状矯正のためのスキンパスが 必要となって、 磁気特性を大きく劣化させるため好ましくない」 との記載があり、 連続焼鈍法を推奨しているが、 調質圧延に関する記載はない。 Further, of the above two prior arts, Japanese Patent Application Laid-Open No. 11-158549, According to the report, regarding the annealing method, "Batch annealing is not preferable because it requires a skin pass for shape correction after annealing, and magnetic properties are greatly deteriorated", and the continuous annealing method is recommended. There is no description about temper rolling.
以上のように、 地磁気シールド性に優れたヒ一トシュリンクバンド用鋼板を製造 するにあたり、 調質圧延率の影響を勘案すべきであるにもかかわらず、 従来技術に は、 この観点からの充分な配慮がなされていない。  As described above, despite the fact that the influence of the temper rolling reduction should be taken into account in manufacturing a heat-shrink band steel sheet with excellent geomagnetic shielding properties, the prior art is not sufficient from this viewpoint. Care has not been taken.
なお、 特開平 10- 208670号公報記載の技術では、 Si量の増加により透磁率が向上 するため、 焼鈍後に 3- 15%の軽冷圧を施しても所定の透磁率が確保できる力 焼鈍 後の軽圧延が必須であるため、 製造コスト上、 不利である。 発明の開示 本発明はかかる事情に鑑みてなされたものであって、 充分な磁気シールド性を維 持し、 かつ色ずれの少なレ ^力ラー陰極線管を実現できるヒートシュリンクバンド用 鋼板およびその製造方法を提供することを目的とする。 第 1の発明は、 鋼を熱間圧延する工程と、 熱間圧延後、 冷間圧延する工程と、 冷 間圧延後、 焼鈍する工程とを有し、 力 ^つ焼鈍後に調質圧延を施さないヒートシユリ ンクバンド用鋼板の製造方法である。  In the technique described in JP-A-10-208670, since the magnetic permeability is improved by increasing the amount of Si, a force that can secure a predetermined magnetic permeability even after applying a light cooling pressure of 3 to 15% after annealing is used. This is disadvantageous in terms of manufacturing cost because light rolling is required. DISCLOSURE OF THE INVENTION The present invention has been made in view of the above circumstances, and a steel sheet for a heat shrink band capable of maintaining a sufficient magnetic shielding property and realizing a cathode ray tube having a small color shift and a manufacturing thereof. The aim is to provide a method. The first invention comprises a step of hot rolling steel, a step of cold rolling after hot rolling, and a step of annealing after cold rolling, wherein temper rolling is performed after force annealing. This is a method of manufacturing a heat shrink band steel sheet.
第 2の発明は、 鋼を熱間圧延する工程と、 熱間圧延後、 冷間圧延する工程と、 冷 間圧延後、 焼鈍する工程とを有し、 かつ焼鈍後に 0%超- 0.5%以下の伸長率で調質圧 延を施すヒートシュリンクバンド用鋼板の製造方法である。  The second invention has a step of hot rolling steel, a step of cold rolling after hot rolling, and a step of annealing after cold rolling, and more than 0% to 0.5% or less after annealing. This is a method for producing a steel sheet for heat shrink band, in which temper rolling is performed at an elongation rate.
第 3の発明は、 重量 r si : o. 1%超- 2%を含む鋼を熱間圧延する請求の範囲 1または 2 のヒートシュリンクバンド用鋼板の製造方法である。  The third invention is the method for producing a steel sheet for a heat shrink band according to claim 1 or 2, wherein a steel containing a weight r si: o. More than 1%-2% is hot-rolled.
第 4の発明は、 焼きばめ後の状態で 0. 3〇eの磁界における透磁率 と板厚 t (隨 ) との積 X tが 380以上である請求の範囲 1から 3のいずれか一つのヒ一トシユリン クバンド用鋼板である。 図面の簡単な説明 図 1は、 調質圧延の伸長率と透磁率 との関係を示す図である。 A fourth invention is the method according to any one of claims 1 to 3, wherein the product Xt of the magnetic permeability and the plate thickness t (optionally) in a magnetic field of 0.3 e after the shrink fitting is 380 or more. One steel link band steel plate. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing the relationship between the elongation ratio and the magnetic permeability of the temper rolling.
図 2は、 X tと地磁気ドリフト量との関係を示す図である。 発明を実施するための最良の形態 この発明は、 前記した課題を解決すべく、 鋭意検討を重ねた結果なされたもので ある。 検討の過程で、 以下の知見を得た。  FIG. 2 is a diagram showing the relationship between Xt and the amount of geomagnetic drift. BEST MODE FOR CARRYING OUT THE INVENTION The present invention has been made as a result of intensive studies to solve the above-mentioned problems. In the course of the study, the following findings were obtained.
(1) 焼きばめ処理後の透磁率を高く保っためには、 焼鈍後の調質圧延を実施しな いか、 実施してもその伸長率を 0.5%以下とすることが有効である。  (1) In order to maintain high magnetic permeability after the shrink-fitting treatment, it is effective not to perform temper rolling after annealing, or to reduce the elongation to 0.5% or less even after the annealing.
(2) 地磁気レベルの外部磁界強度である 0.30 eでの透磁率 (比透磁率) と板厚 t (匪) との積: w xtが 380以上となると、 色ずれの改良がみられる。  (2) The product of the magnetic permeability (relative magnetic permeability) at the external magnetic field strength of 0.30 e at the geomagnetic level and the sheet thickness t (band): When w xt is 380 or more, the color shift is improved.
これらの知見に基づき、 詳細な検討を行い、 製造条件および特性値を決定し た。  Based on these findings, a detailed study was conducted to determine the manufacturing conditions and characteristic values.
本発明は、 鋼板の化学成分に関して特に限定するものではなく、 防爆性に問 題を生じないレベルの強度を保ちつつ、 充分な磁気シールド性を維持できる透 磁率を確保できればよい。  The present invention is not particularly limited with respect to the chemical composition of the steel sheet, as long as it can secure a magnetic permeability that can maintain a sufficient magnetic shielding property while maintaining a level of strength that does not cause a problem in explosion protection.
例としては、 重量で、 C : 0.005%以下、 N: 0.005%以下のいわゆる極低炭素鋼に 固溶強化元素である Si、 Mn、 Pなどを所望強度に応じて、 たとえば、 Si : 2%以下、 Mn : 0.1-2%、 P : 0.15%以下、 A1 : 1%以下、 を添加した鋼、 あるいは、 これらに、 Ti : 0.01-0.06¾, Nb: 0.005-0.04%, B: 0.0003- 0.005%など、 固溶 Cや固溶 Nなどを析 出物として固定する元素を 1種あるいは 2種以上添加した鋼などが挙げられる。  As an example, C, 0.005% or less, and N: 0.005% or less Solid-solution strengthening elements such as Si, Mn, P, etc. in so-called ultra-low carbon steel are selected according to the desired strength. Below, Mn: 0.1-2%, P: 0.15% or less, A1: 1% or less, or steel added with or Ti: 0.01-0.060.0, Nb: 0.005-0.04%, B: 0.0003- 0.005 %, And steel to which one or more elements that fix solid solution C, solid solution N and the like as precipitates are added.
この中で、 Siは高強度化および高透磁率化に有効な元素であるため、 0.1 超で添 加すること力 子ましく、 Si :0. 超- 2%の鋼を本発明に用いることにより、 より一層 磁気シールド性に優れ、 色ずれの少ないヒートシュリンクバンド用鋼板を得ること ができる。  Among these, Si is an element effective in increasing the strength and increasing the magnetic permeability, so it is recommended that Si be added in excess of 0.1, and that Si: more than 0%-2% steel be used in the present invention. As a result, it is possible to obtain a steel sheet for a heat shrink band, which has more excellent magnetic shielding properties and less color shift.
地磁気レベルである 0.3Oe前後の透磁率を高くするのに、 C量 · N量を上述のよ うに低いレベルにすることが有効であるが、 透磁率が確保できるのであれば、 上記 範囲外の C量 · N量であっても差し支えないことはもちろんである。 In order to increase the magnetic permeability around the geomagnetic level of 0.3 Oe, the amount of C It is effective to make the level as low as possible, but if the magnetic permeability can be ensured, it goes without saying that the amount of C and N may be out of the above range.
本発明の鋼板の製造方法において、 製鋼 ·铸造 ·熱間圧延 ·冷間圧延は、 常法に 従えばよい。 最終板厚は、 特に限定されるものではないが、 たとえば、 0. 6- 2. 0mm の範囲が好ましい。  In the method for producing a steel sheet according to the present invention, steelmaking, production, hot rolling, and cold rolling may be performed in a conventional manner. Although the final thickness is not particularly limited, for example, a range of 0.6 to 2.0 mm is preferable.
冷間圧延後の焼鈍は、 連続焼鈍が好ましい。 これは、 バッチ焼鈍の場合には、 焼 鈍後に形状矯正のため高伸長率の調質圧延が必須となり、 鋼板に圧延ひずみが導入 され、 その状態での、 そして焼きばめ後の磁気特性が劣化するためである。  The annealing after the cold rolling is preferably continuous annealing. This is because in the case of batch annealing, high elongation temper rolling is indispensable to correct the shape after annealing, rolling strain is introduced into the steel sheet, and the magnetic properties in that state and after shrink fitting are reduced. This is due to deterioration.
焼鈍温度 ·時間は、 鋼板の強度 ·透磁率のバランスを配慮して決定される。 特に、 透磁率におよぼす焼鈍温度設定の考え方を以下に示す。  The annealing temperature and time are determined in consideration of the balance between the strength and the magnetic permeability of the steel sheet. In particular, the concept of setting the annealing temperature to the magnetic permeability is shown below.
一般に、 焼鈍温度が低い領域では、 焼鈍温度の上昇にともない材料の透磁率カ诺 干向上するものの、 著しい透磁率の変化は認められない。 この温度領域よりも焼鈍 温度を高くすると、 透磁率が著しく向上する。 さらに、 焼鈍温度を高めると、 逆に 透磁率の減少する温度領域が存在する。  In general, in a region where the annealing temperature is low, the magnetic permeability of the material improves as the annealing temperature increases, but no remarkable change in the magnetic permeability is observed. When the annealing temperature is higher than this temperature range, the magnetic permeability is significantly improved. Furthermore, when the annealing temperature is increased, there is a temperature region where the magnetic permeability decreases.
この透磁率の変化は鋼板のミク口 M と対応しており、 ①焼鈍温度が低すぎる場 合は再結晶およびその後の粒成長が不十分なために透磁率の大幅な向上が認められ ず、 ②焼鈍温度がもう少し高くなると、 再結晶 ·粒成長にともなって、 透磁率が向 上し、 ③焼鈍温度が変態点を越えると結晶粒が微細化して再び透磁率が低下するも のと考えられる。  This change in magnetic permeability corresponds to the mouth M of the steel sheet. (1) If the annealing temperature is too low, recrystallization and subsequent grain growth are insufficient, and no significant improvement in magnetic permeability is observed. ② If the annealing temperature is a little higher, the magnetic permeability will increase with recrystallization and grain growth. ③ If the annealing temperature exceeds the transformation point, the crystal grains will be refined and the magnetic permeability will decrease again. .
なお、 焼鈍温度の適正範囲は鋼の化学成分に応じて決定されるべきである。 たと えば、 C: 0. 005%以下、 N: 0. 005%以下の極低炭素鋼で、 Ti · Nb · Bなどの炭化物 · 窒化物等形成元素が含まれない場合、 焼鈍温度は、 650°C以上 900°C以下であること 力必要であり、 750°C以上 900°C以下であることが好ましく、 高温域での材質安定性 を考慮すると、 焼鈍温度は 750°C以上 875°C以下であることがさらに好ましい。  The appropriate range of the annealing temperature should be determined according to the chemical composition of the steel. For example, in the case of extremely low carbon steel with C: 0.005% or less and N: 0.005% or less and no carbide, nitride or other forming elements such as Ti, Nb, B, etc., the annealing temperature is 650 It is necessary to be between 750 ° C and 900 ° C, preferably between 750 ° C and 900 ° C. Considering the material stability at high temperature, the annealing temperature is 750 ° C or more and 875 ° C. It is more preferred that:
Ti · 'b · Bのうち 1種を含む極低炭素鋼の場合には、 焼鈍温度は、 700°C以上 900°C 以下であることが必要であり、 750°C以上 900°C以下であることが好ましく、 高温域 での材質安定性を考慮すると、 焼鈍温度は 750°C以上 875°C以下であることがさらに 好ましい。 Ti · Nb · Bのうち 2種以上を含む極低炭素鋼の場合には、 焼鈍温度は、 750°C以上 900°C以下であることが必要であり、 780°C以上 900°C以下であることが好ましく、 高温域での材質安定性を考慮すると、 焼鈍温度は 780°C以上 875°C以下であることが さらに好ましい。 In the case of ultra-low carbon steel containing one of Ti, 'b, and B, the annealing temperature must be between 700 ° C and 900 ° C, and between 750 ° C and 900 ° C. Preferably, the annealing temperature is more preferably 750 ° C or more and 875 ° C or less in consideration of material stability in a high temperature range. In the case of ultra-low carbon steel containing two or more of Ti, Nb and B, the annealing temperature must be between 750 ° C and 900 ° C, and between 780 ° C and 900 ° C. In consideration of material stability in a high temperature range, the annealing temperature is more preferably 780 ° C or more and 875 ° C or less.
なお、 焼鈍後、 たとえば 250°C以上 500°C以下の温度域にて過時効処理を実施して も磁気特性の面で支障のない場合がある。 たとえば、 C量が 0. 01%以下、 好ましくは 0. 005%以下、 さらに好ましくは 0. 003%以下と少ない場合、 過時効処理時に析出すベ き固溶 Cが仮に存在しても極めて少量であるものとみられる。 このため、 磁気特性 におよぼす過時効処理の影響が小さいものと考えられる。 したがって、 焼鈍帯に引 き続いて過時効帯を有する連続焼鈍設備において本鋼板を製造する場合でも、 過時 効帯を室温付近にまで冷却することなく、 たとえば、 250〜500°Cの温度域のまま通 板しても差し支えないので、 製造計画策定にあたり制約が少なくなるという利点も ある。  After annealing, even if overaging is performed in the temperature range of, for example, 250 ° C or more and 500 ° C or less, there may be no problem in terms of magnetic properties. For example, when the C content is as low as 0.01% or less, preferably 0.005% or less, and more preferably 0.003% or less, a very small amount of solid solution C to be precipitated during overage treatment, even if present, is present. It seems to be. Therefore, it is considered that the influence of the overaging treatment on the magnetic properties is small. Therefore, even when the steel sheet is manufactured in a continuous annealing facility having an overaging zone following the annealing zone, the overaging zone is not cooled down to around room temperature, for example, in a temperature range of 250 to 500 ° C. There is also the advantage that there are fewer restrictions in formulating the manufacturing plan, as it is possible to pass the board as it is.
焼鈍後は、 調質圧延を施さないか、 あるいは調質圧延を施してもその伸長率を 0. 5%以下、 好ましくは 0. 3%未満とする必要がある。 これは後述のように焼きばめ相 当熱処理後の透磁率と調質圧延条件との関係から、 未調圧材に比べて透磁率が顕著 に低下する条件として決定される。  After annealing, it is necessary that temper rolling is not performed, or even if temper rolling is performed, the elongation must be 0.5% or less, preferably less than 0.3%. This is determined as a condition in which the magnetic permeability is significantly lower than that of the unpressurized material from the relationship between the magnetic permeability after the shrink-fitting equivalent heat treatment and the temper rolling conditions as described later.
なお、 ヒートシュリンクバンドには、 耐食性の観点からめっきを施すこともある。 たとえば、 電気めつきの場合には、 上述の方法で製造された鋼板に、 常法に従って 電気めつきを施せばよい。 めっき種は、 特に限定されるものではなく、 たとえば、 Zn、 Zn- NTi合金、 Ni、 Sn、 Crなどの単層めつき、 あるいはこれらの複層めっき、 な どが適用可能である。 The heat shrink band may be plated from the viewpoint of corrosion resistance. For example, in the case of electric plating, the steel plate manufactured by the above method may be subjected to electric plating according to a conventional method. Plating species is not particularly limited, for example, Zn, Zn- N T i alloy, Ni, Sn, monolayers plated such as Cr or their multilayered plating,, etc. are applicable.
また、 溶融めつきの場合、 たとえば、 ライン内に焼鈍設備を有する連続溶融めつ きラインで製造する場合を例にとると、 冷間圧延した鋼板をライン内焼鈍温度を上 述の範囲内に設定して通板すれば、 所望の磁気特性を有する、 したがって地磁気 シールド性の優れためつき鋼板が得られる。 この場合もめつき種は特に限定される ものではなく、 たとえば、 Zn、 Zn-Al合金、 A1などの単層めつき、 これらの複層め つき、 あるいはめっき層と地鉄とを一部または全部合金化させためっき、 などが適 用可能である。 また、 鋼板表面あるいはめっき表面に各種の化成処理皮膜を形成す ることも可能である。 次に、 特性値の規定として、 焼きばめ後の状態で 0. 3〇 eの磁界における透磁率 と板厚 t (ram) との積 X tを 380以上、 より好ましくは 400以上、 さらに好ましく は 420以上とする。 これは後述のように色ずれ性と透磁率との関係から、 従来技術 に比べて色ずれ (電子ビームのドリフト量) 力顕著に低下する条件として決定され る。 Also, in the case of melting plating, for example, in the case of manufacturing on a continuous melting line with annealing equipment in the line, set the in-line annealing temperature of the cold-rolled steel sheet within the above range. When the steel sheet is passed through the steel sheet, a steel sheet having desired magnetic properties and therefore excellent geomagnetic shielding properties can be obtained. In this case, the type of plating is not particularly limited. For example, a single-layer plating of Zn, Zn-Al alloy, A1, etc., a multi-layer plating thereof, or a part or all of the plating layer and the ground iron Suitable for alloyed plating, etc. Is available. It is also possible to form various chemical conversion coatings on the steel sheet surface or plating surface. Next, as a specification of the characteristic value, the product Xt of the magnetic permeability and the plate thickness t (ram) in a magnetic field of 0.3 e after the shrink fitting is 380 or more, more preferably 400 or more, and further preferably Is 420 or more. This is determined as a condition in which the color shift (drift amount of the electron beam) force is significantly lower than that of the conventional technology due to the relationship between the color shift and the magnetic permeability as described later.
このようにして、 透磁率が高く地磁気ドリフトが小さいヒートシユリンクバ ンドに好適な鋼板の製造方法およびこの製造方法により透磁率が高く地磁気ド リフトが小さいヒートシュリンクバンドに好適な鋼板が得られる。  Thus, a method of manufacturing a steel sheet suitable for a heat shrink band having a high magnetic permeability and a small geomagnetic drift and a steel sheet suitable for a heat shrink band having a high magnetic permeability and a small geomagnetic drift can be obtained.
以下、 本発明に至る検討の詳細について説明する。  Hereinafter, the details of the study leading to the present invention will be described.
1.調質圧延の伸長率と透磁率の関係 1. Relationship between elongation and magnetic permeability in temper rolling
試料として、 C: 0. 002%、 S i : 0. 2%, Mn: 1. 1¾, P: 0. 08。ん S: 0. 005%、 so l . Al : 0. 03%、 N: 0. 0020 、 Ti : 0. 04%の組成を有する鋼を実験室溶解後、 板厚 2. 8mmまで 熱間圧延し、 1. 0mmまで冷間圧延した後、 840°Cで 90秒の焼鈍を施し、 伸長率 0-2 の 調質圧延を施して鋼板を製造した。  As samples, C: 0.002%, Si: 0.2%, Mn: 1.1¾, P: 0.08. S: 0.005%, sol. Al: 0.03%, N: 0.0020, Ti: 0.04% After melting in a laboratory, hot rolling to a sheet thickness of 2.8mm After cold rolling to 1.0 mm, the steel sheet was annealed at 840 ° C for 90 seconds, and temper rolled at an elongation of 0-2 to produce a steel sheet.
0. 30 eの磁界における透磁率 の測定は、 この試料に焼きばめ相当の熱処理で ある 500°Cおよび 600°Cで 60秒の焼鈍を施したものについて行った。 基準として、 未 調圧材の焼きばめ相当熱処理なしの材料についても同様の測定をした。  The measurement of magnetic permeability in a magnetic field of 0.30 e was performed on this sample that had been annealed at 500 ° C and 600 ° C for 60 seconds, which was a heat treatment equivalent to shrink fitting. As a criterion, the same measurement was performed for a material without heat treatment equivalent to shrink fit of unpressurized material.
図 1は、 調質圧延の伸長率と透磁率との関係を示す図である。 ここで、 縦軸には、 各材料の透磁率を未調圧原板 (焼きばめ相当熱処理前) の透磁率で割って規格化し た値を示す。  FIG. 1 is a diagram showing the relationship between the elongation ratio and the magnetic permeability of the temper rolling. Here, the vertical axis shows the value obtained by dividing the magnetic permeability of each material by the magnetic permeability of the unregulated original plate (before heat treatment equivalent to shrink fit).
伸長率 0% (すなわち調圧なし) において、 焼きばめ相当熱処理後に原板よりも高 い透磁率を示すのは、 焼鈍材を試験片加工する際に、 あるいは試料のハンドリング 時に導入されたひずみ力 焼きばめ相当熱処理により解放されたことに起因するも のと考えられる。 また、 焼きばめ相当熱処理温度 600°Cの場合の方が 500°Cの場合よ りも高い値を示すのは、 高温処理の方が歪み解放が進行しやすいためと考えられる。 伸長率が 0. 5 までは、 伸長率の増加に従い材料の透磁率が若干低下するものの、 未調圧原板の 80%以上の透磁率が確保できる。 伸長率が 0. 3%未満であれば、 焼きば め相当熱処理後には未調圧原板の 90%以上の透磁率が得られる。 一方、 0. 5 を超え た伸長率の調質圧延を施すと、 焼きばめ相当熱処理後であっても未調圧原板の 80% 未満の透磁率しか得られない。 At 0% elongation (that is, no pressure regulation), the higher permeability than the original sheet after heat treatment equivalent to shrink fitting is due to the strain force introduced when processing the annealed material or when handling the sample. This is considered to be due to the release by heat treatment equivalent to shrink fit. Also, the reason why the value of the heat treatment temperature equivalent to shrink fit of 600 ° C is higher than that of the case of 500 ° C is considered that the strain relief is more likely to proceed in the high temperature treatment. Up to an elongation of 0.5, although the permeability of the material slightly decreases as the elongation increases, a permeability of 80% or more of the unregulated original plate can be secured. If the elongation is less than 0.3%, a magnetic permeability of 90% or more of the unpressurized master sheet can be obtained after heat treatment equivalent to shrink-fitting. On the other hand, when temper rolling with an elongation ratio exceeding 0.5 is performed, even after the heat treatment equivalent to shrink fit, a magnetic permeability of less than 80% of the unpressurized master sheet can be obtained.
この原因は必ずしも明らかではないが、 本発明者らの考察結果によれば、 伸長率 が 0. 5¾までの極めて小さい場合は、 調質圧延により鋼板に導入される歪みが鋼板の 極表面に比較的均一に導入されるものの、 鋼板内部では極めて粗にしか導入されず、 その結果、 焼きばめ相当熱処理後の透磁率の低下力著しくなかったのに対し、 伸長 率が 0. 5%を超える場合には、 導入される歪み量が多く、 焼きばめ相当熱処理によつ て解放しきれなくなるためと推察される。  Although the cause is not necessarily clear, according to the findings of the present inventors, when the elongation rate is extremely small up to 0.5 mm, the strain introduced into the steel sheet by temper rolling is compared to the extreme surface of the steel sheet. Although it is introduced uniformly uniformly, it is only introduced very coarsely inside the steel sheet, and as a result, the permeability reduction effect after heat treatment equivalent to shrink fit was not remarkable, but the elongation exceeded 0.5% In this case, it is presumed that the amount of strain introduced is so large that it cannot be completely released by the heat treatment equivalent to shrink fit.
この種の鋼板において、 調質圧延は、 一般的に加工成形後のストレツチャ ·スト レインマークと呼ばれる表面不良を防止する目的で行われるものであるが、 ヒート シュリンクバンドの場合、 バンドとするための成形 ·加工はもともと厳しいもので はないため、 調質圧延を施さずとも著しい表面不良は発生しない。 むしろ、 高い透 磁率を得るという観点からは、 外観上問題ない場合には、 調質圧延を省略すること 力望ましい。  In this type of steel sheet, temper rolling is performed for the purpose of preventing surface defects generally called stretcher strain marks after work forming.In the case of a heat shrink band, however, Forming and processing are not severe in nature, so no remarkable surface defects occur without temper rolling. Rather, from the viewpoint of obtaining high magnetic permeability, it is desirable to omit temper rolling if there is no problem in appearance.
2.透磁率と色ずれ性の関係  2. Relationship between magnetic permeability and color shift
C: 0. 002%、 Si : 0. 02%、 Mn: 0. 9%、 P: 0. 07%、 S: 0. 006%, so l . Al : 0. 03%, N: 0. 0014%、 Ti : 0. 03%の組成を有する鋼を実験室溶解後、 まず板厚 3. 2mmまで熱間圧 延し、 その後、 板厚 0. 8〜1. 6IMIまで冷間圧延し、 780- 875°Cで 90秒の焼鈍後、 その まま調質圧延を施さずに所定の形状のバンドに加工した。  C: 0.002%, Si: 0.02%, Mn: 0.9%, P: 0.07%, S: 0.006%, sol. Al: 0.03%, N: 0.0014 %, Ti: 0.03% steel is melted in the laboratory, then hot-rolled to a thickness of 3.2 mm, and then cold-rolled to a thickness of 0.8 to 1.6 IMI. -After annealing at 875 ° C for 90 seconds, it was processed into a band of a given shape without temper rolling.
加工したバンドを、 500°Cで 60秒間加熱後、 29インチ TV陰極線管パネルにはめ込 み、 地磁気ドリフト性の評価を行い色ずれ性を評価した。  After heating the processed band at 500 ° C for 60 seconds, it was fitted into a 29-inch TV cathode ray tube panel, and the geomagnetic drift was evaluated to evaluate the color shift.
ここで、 従来材として、 C: 0. 04%, Si : 0. 01%、 Mn: 0. P: 0. 015%、 S: 0. 013%、 sol . Al : 0. 02%、 N: 0. 002%の組成の鋼板に、 過時効処理後、 伸長率 1%の調 質圧延を施した材料についても同様の評価を行なった。  Here, as conventional materials, C: 0.04%, Si: 0.01%, Mn: 0. P: 0.015%, S: 0.013%, sol. Al: 0.02%, N: The same evaluation was performed on a steel sheet with a composition of 0.002%, which was subjected to temper rolling at an elongation of 1% after overaging treatment.
図 2は、 色ずれ性と透磁率との関係を示す図である。 縦軸の Bh、 Bvは電子ビームのランディングポィントのドリフト量を示すものであ る。 具体的には、 CRTに対して 0. 35O eの垂直磁界と 0. 3O eの水平磁界を印加した 状態で、 CRTを 360° 回転させ、 電子ビームのランディングポイントの基準点に対す る位置ずれ (ランディングエラー) を測定し、 これの最大値と最小値との差を水平 ドリフト量 Bhとした。 FIG. 2 is a diagram showing the relationship between color misregistration and magnetic permeability. Bh and Bv on the vertical axis indicate the drift amount of the landing point of the electron beam. Specifically, with a vertical magnetic field of 0.35 Oe and a horizontal magnetic field of 0.3 Oe applied to the CRT, the CRT is rotated 360 ° and the displacement of the landing point of the electron beam with respect to the reference point is (Landing error) was measured, and the difference between the maximum value and the minimum value was taken as the horizontal drift amount Bh.
また、 水平磁界を OO eとし、 垂直磁界を OO eから 0. 35〇eに変化させたときの ランディングエラーを垂直ドリフト量 Bvとして測定した。 なお、 縦軸のランデイン グエラーのドリフト量については、 上述の従来材の値を 1としたときの相対値をも つて示している。  The horizontal magnetic field was OO e and the landing error when the vertical magnetic field was changed from OO e to 0.35 0e was measured as the vertical drift Bv. Note that the drift amount of the landing error on the vertical axis is shown as a relative value when the value of the above-mentioned conventional material is set to 1.
図中の横軸は、 地磁気相当の外部磁界 0. 3O eでの透磁率; と板厚 t (腿) との積 x X tを示す。 なお、 透磁率 は、 焼きばめ前の焼鈍板から採取したリング試験片 について焼きばめ相当の 500°Cで 60秒の熱処理を施した後に測定を行なった。  The horizontal axis in the figure represents the product x X t of the magnetic permeability at an external magnetic field of 0.3 Oe equivalent to the geomagnetism and the plate thickness t (thigh). The magnetic permeability was measured on a ring specimen taken from the annealed plate before the shrink fitting, after performing a heat treatment at 500 ° C for 60 seconds corresponding to the shrink fitting.
図 2から、 X tが 300程度までは Bh、 Bv共に従来材との比が 1. 0前後で、 従来材と 同程度の値であるが、 380から顕著に減少する傾向が見られる。 これより、 地磁気 による色ずれは、 /z X tが増加することによって改善され、 その値が 380以上で従来 材ょりも優れた値になることがわかる。 色ずれ防止効果は、 X tが 400以上になる とより優れ、 420以上になるとさらに優れる。 実施例  From Fig. 2, the ratio of both Bh and Bv to the conventional material is around 1.0 up to Xt of about 300, which is about the same value as that of the conventional material, but tends to decrease remarkably from 380. From this, it can be seen that the color shift due to the geomagnetism is improved by increasing / z X t, and the value is 380 or more, which is superior to the conventional material. The effect of preventing color misregistration is more excellent when Xt is 400 or more, and more excellent when Xt is 420 or more. Example
表 1の供試鋼を溶製後、 1200-1280°Cに加熱し、 仕上温度 820- 900°C、 巻取温度 680 °Cにて板厚 3. 2画に熱間圧延した。 得られた熱延板を酸洗後、 板厚 1. 0- 1. 2删まで冷 間圧延した後、 700-850°Cにて 90秒間焼鈍し、 その後、 一部の材料については、 2分 間の過時効処理を施した。 これらの鋼板に、 さらに焼きばめ相当の 500° (:、 5秒間の 加熱を施し、 室温まで空冷した後、 降伏応力、 直流磁気特性 (0. 3O eにおける透 磁率、 および外部磁界 10O eまで励磁したときの保磁力) をリング試験片 (外径 45匪、 内径 33mm) によって測定した。 また、 焼鈍材 (調質圧延を施したものも含む ) を所定の形状のバンドに加工し、 500°Cに加熱後、 両面粘着テープを介して 29ィ ンチ TV陰極線パネルにはめ込み、 地磁気ドリフト性の評価を行つた。 W After smelting the test steels shown in Table 1, they were heated to 1200-1280 ° C and hot-rolled to a plate thickness of 3.2 strokes at a finishing temperature of 820-900 ° C and a winding temperature of 680 ° C. After pickling the obtained hot-rolled sheet, cold-rolling to a sheet thickness of 1.0-1.2 1., annealing at 700-850 ° C for 90 seconds, and then Overage treatment was applied for minutes. These steel sheets were further heated to 500 ° (equivalent to shrink fit) for 5 seconds and air-cooled to room temperature before yield stress, DC magnetic properties (permeability at 0.3 Oe, and external magnetic field up to 10 Oe). The coercive force at the time of excitation was measured by a ring test piece (outer diameter: 45, inner diameter: 33mm) Also, the annealed material (including the temper-rolled one) was processed into a band After heating to ° C, it was fitted into a 29-inch TV cathode ray panel via a double-sided adhesive tape, and the geomagnetic drift property was evaluated. W
10 Ten
結果を表 2に示す。 なお、 地磁気ドリフト性については、 表 1に示す従来材である 供試鋼 の 1 調質圧延材の地磁気ドリフト量を 1としたときの相対値で表示した。 表 2に示すように、 調質圧延の伸長率が本発明範囲内にある本発明例にあっては、 調質圧延時に導入される歪みに起因する透磁率の劣化がないため、 0.30 eの磁界 における透磁率 と板厚 t (腿) との積/ iXtが 380以上であり、 地磁気ドリフト性 に優れた特性を示すことが確認された。 また、 本発明例にあっては、 過時効処理の 有無、 あるいは過時効処理温度によらず安定した磁気特性を示すこと力確認された。 一方、 本発明範囲を外れた比較例にあっては、 調質圧延時に導入される歪みに起 因する透磁率の劣化が顕著となるため、 Xt が適正値を外れており、 本発明例に 比べて地磁気ドリフト性が劣るため、 色ずれ対策として煩雑な工程が必要となる。  Table 2 shows the results. The geomagnetic drift property is shown in Table 1 as a relative value when the geomagnetic drift amount of one temper-rolled material of the test steel as a conventional material is set to 1. As shown in Table 2, in the example of the present invention in which the elongation ratio of the temper rolling is within the range of the present invention, there is no deterioration of the magnetic permeability due to the strain introduced at the time of the temper rolling. The product of magnetic permeability and the thickness t (thigh) / iXt of the magnetic field was 380 or more, confirming that it exhibited excellent characteristics in geomagnetic drift. Further, it was confirmed that the examples of the present invention exhibited stable magnetic characteristics regardless of the presence or absence of overaging treatment or the temperature of overaging treatment. On the other hand, in the comparative examples out of the range of the present invention, the deterioration of the magnetic permeability caused by the strain introduced at the time of temper rolling is remarkable, so that Xt is out of the proper value. Compared to this, the geomagnetic drift property is inferior, so a complicated process is required as a countermeasure for color misregistration.
(重量 鋼 C Si Mn P S sol. Al T. N B Ti Nb(Weight steel C Si Mn P S sol.Al T. N B Ti Nb
A 0.001 0.01 0.79 0.066 0.005 0.06 0.0010 A 0.001 0.01 0.79 0.066 0.005 0.06 0.0010
B 0.002 0.01 0.95 0.078 0.004 0.03 0.0014 0.0015  B 0.002 0.01 0.95 0.078 0.004 0.03 0.0014 0.0015
C 0.002 0.01 0.96 0.072 0.004 0.04 0.0018 0.03  C 0.002 0.01 0.96 0.072 0.004 0.04 0.0018 0.03
D 0.002 0.21 0.89 0.080 0.007 0.04 0.0009 0.04  D 0.002 0.21 0.89 0.080 0.007 0.04 0.0009 0.04
E 0.001 0.02 1.00 0.070 0.006 0.03 0.0024 0.0008 0.04  E 0.001 0.02 1.00 0.070 0.006 0.03 0.0024 0.0008 0.04
F 0.002 0.19 1.94 0.081 0.006 0.03 0.0019 0.0007 0.05  F 0.002 0.19 1.94 0.081 0.006 0.03 0.0019 0.0007 0.05
G 0.002 0.02 0.90 0.079 0.005 0.04 0.0022 0.02 G 0.002 0.02 0.90 0.079 0.005 0.04 0.0022 0.02
H 0.009 0.01 0.59 0.015 0.006 0.003 0.0123 H 0.009 0.01 0.59 0.015 0.006 0.003 0.0123
1 0.003 1.35 0.20 0.050 0.003 0.29 0.0010  1 0.003 1.35 0.20 0.050 0.003 0.29 0.0010
J 0.001 1.29 1.03 0.074 0.003 0.02 0.0018 0.0024  J 0.001 1.29 1.03 0.074 0.003 0.02 0.0018 0.0024
K 0.040 0.01 0.20 0.021 0.010 0.02 0.0022 表 2 K 0.040 0.01 0.20 0.021 0.010 0.02 0.0022 Table 2
Figure imgf000013_0001
Figure imgf000013_0001

Claims

請求 の 範囲 The scope of the claims
1. 鋼を熱間圧延する工程と、 1. hot rolling steel;
熱間圧延後、 冷間圧延する工程と、  Cold rolling after hot rolling;
冷間圧延後、 焼鈍する工程と、  Annealing after cold rolling,
を有し、 かつ焼鈍後に調質圧延を施さないヒートシュリンクバンド用鋼板の製造方 法。 A method for producing a steel sheet for a heat shrink band, wherein the steel sheet does not undergo temper rolling after annealing.
2. 鋼を熱間圧延する工程と、 2. hot rolling the steel;
熱間圧延後、 冷間圧延する工程と、  Cold rolling after hot rolling;
冷間圧延後、 焼鈍する工程と、  Annealing after cold rolling,
を有し、 かつ焼鈍後に 0%超- 0.5%以下の伸長率で調質圧延を施すヒートシュリンク バンド用鋼板の製造方法。 A method for producing a steel sheet for a heat shrink band, wherein the steel sheet is subjected to temper rolling at an elongation of more than 0% to 0.5% or less after annealing.
3. 重量で S i : 0. 1 超- 2%を含む鋼を熱間圧延する請求の範囲 1 または 1 のヒー トシュリンクバンド用鋼板の製造方法。 3. The method for producing a steel sheet for a heat shrink band according to claim 1, wherein the steel containing S i: more than 0.1-2% by weight is hot-rolled.
4. 焼きばめ後の状態で 0. 3O eの磁界における透磁率//と板厚 t (mm) との積 X I力 380以上である請求の範囲 1から 3のいずれか一つのヒートシュリン: ンド用鋼板。 4. The heat shrink according to any one of claims 1 to 3, wherein a product of a permeability // and a thickness t (mm) in a magnetic field of 0.3 O e and a thickness t (mm) in a state after shrink fitting is 380 or more. Steel plate
PCT/JP2000/004873 1999-07-22 2000-07-21 Steel sheet for heat-shrink band and production method therefor WO2001007669A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20750599 1999-07-22
JP11/207505 1999-07-22

Publications (1)

Publication Number Publication Date
WO2001007669A1 true WO2001007669A1 (en) 2001-02-01

Family

ID=16540841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004873 WO2001007669A1 (en) 1999-07-22 2000-07-21 Steel sheet for heat-shrink band and production method therefor

Country Status (1)

Country Link
WO (1) WO2001007669A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562150B2 (en) * 1999-08-11 2003-05-13 Nkk Corporation Steel sheet for heat shrink band and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161255A (en) * 1997-08-19 1999-03-05 Kawasaki Steel Corp Production of ferritic stainless steel plate excellent in magnetic property
JPH11140601A (en) * 1997-11-05 1999-05-25 Nippon Steel Corp High strength cold rolled steel sheet and high strength plated steel sheet good in geomagnetic shield characteristic and production thereof
JPH11158549A (en) * 1997-11-21 1999-06-15 Nippon Steel Corp Cold rolled steel sheet for shrink band of tv cathode-ray tube and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161255A (en) * 1997-08-19 1999-03-05 Kawasaki Steel Corp Production of ferritic stainless steel plate excellent in magnetic property
JPH11140601A (en) * 1997-11-05 1999-05-25 Nippon Steel Corp High strength cold rolled steel sheet and high strength plated steel sheet good in geomagnetic shield characteristic and production thereof
JPH11158549A (en) * 1997-11-21 1999-06-15 Nippon Steel Corp Cold rolled steel sheet for shrink band of tv cathode-ray tube and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562150B2 (en) * 1999-08-11 2003-05-13 Nkk Corporation Steel sheet for heat shrink band and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR970007205B1 (en) Cold rolled steel sheet for shadow mask and manufacturing method
JP3243240B2 (en) Method of manufacturing thin cold rolled inner shield steel sheet with excellent magnetic field shielding properties
US6416594B1 (en) Heat shrink band steel sheet and manufacturing method thereof
JPH03277741A (en) Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture
JP3861003B2 (en) Steel plate for heat shrink band and method for producing the same
KR20060008892A (en) High strength and high magnetic permeability steel sheet for cathode ray tube band and method for production thereof
WO2001007669A1 (en) Steel sheet for heat-shrink band and production method therefor
JP3888020B2 (en) Steel plate for heat shrink band and method for producing the same
JPH11246945A (en) Plated steel sheet for heat shrink band reduced in color slippage
US6645317B1 (en) Metal components for picture tubes
WO1999023268A9 (en) High-strength cold rolled steel sheet and high-strength plated steel sheet which have excellent geomagnetism shielding characteristics, and method of manufacturing them
US6554917B1 (en) Steel sheet for heat shrink band effective for preventing color drift
JP2001032038A (en) Steel sheet for heat shrink band, and its manufacture
JP3494107B2 (en) Steel sheet for heat shrink band excellent in band stretching workability and method for producing the same
JPH11158548A (en) Hot rolled steel sheet for shrink band of tv cathode-ray tube and its production
JP2001032040A (en) Steel sheet for heat shrink band, and its manufacture
JP3430926B2 (en) Steel plate for CRT inner frame and method of manufacturing the same
JP3765222B2 (en) Steel sheet for magnetic shield and manufacturing method thereof
JPH11286726A (en) Steel sheet for heat shrink band, small in color slippage, and its manufacture
JPH10168551A (en) Magnetic shielding material for tv cathode-ray tube and its production
JP2001240946A (en) High strength steel sheet for heat shrink band, excellent in geomagnetic shielding property, and its manufacturing method
WO2003050317A1 (en) Heat shrink band and steel sheet for heat shrink band and method for its production
JPH11293397A (en) Cold rolled steel sheet for television cathode-ray tube shrink band, and its production
WO2000073526A1 (en) Steel sheet for heat shrink band with slight color misregistering
US6617776B1 (en) Color picture tube shadow mask material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

Ref country code: JP

Ref country code: JP

Ref country code: JP

Ref country code: JP