WO2001006182A1 - Refrigerating cycle - Google Patents

Refrigerating cycle Download PDF

Info

Publication number
WO2001006182A1
WO2001006182A1 PCT/JP2000/002436 JP0002436W WO0106182A1 WO 2001006182 A1 WO2001006182 A1 WO 2001006182A1 JP 0002436 W JP0002436 W JP 0002436W WO 0106182 A1 WO0106182 A1 WO 0106182A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pressure
temperature
radiator
substances
Prior art date
Application number
PCT/JP2000/002436
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuhiko Suzuki
Original Assignee
Bosch Automotive Systems Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Automotive Systems Corporation filed Critical Bosch Automotive Systems Corporation
Publication of WO2001006182A1 publication Critical patent/WO2001006182A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Definitions

  • the present invention relates to a refrigeration cycle using a supercritical refrigerant, for example, carbon dioxide (C 0 2 ) as a refrigerant.
  • a supercritical refrigerant for example, carbon dioxide (C 0 2 ) as a refrigerant.
  • the pressure control valve controls the pressure on the outlet side of the radiator by a pressure control valve.
  • the pressure control valve is formed in a refrigerant flow path, and partitions the refrigerant flow path into an upstream space and a downstream space.
  • a valve port formed in the partition wall for communicating the upstream space and the downstream space; and a sealed space formed in the upstream space, and displaced in accordance with a pressure difference between the inside and outside of the sealed space.
  • the valve port is configured to open when the displacement member is displaced.
  • the density carbon dioxide in the sealed space 4 5 OK g / m 3 ⁇ 9 5 0 K g / m 3 (6 0 0 K g / m 3 in the embodiment) of the pressure control valve By enclosing, the pressure on the high pressure side is detected, and this pressure is controlled to be the target pressure, and the pressure on the outlet side of the radiator is controlled along the optimal control line shown in the same publication. Points are shown.
  • the pressure control valve of the above-mentioned reference displaces the displacement member due to a pressure difference from the pressure of the refrigerant sealed in the closed space.
  • the direction of closing the valve opening by closing the valve body by displacing the displacement member by expanding the refrigerant in the closed space When the outlet side pressure is reduced and the refrigerant temperature at the outlet side of the radiator is high, the direction of closing the valve opening by closing the valve body by displacing the displacement member by expanding the refrigerant in the closed space.
  • the pressure at the outlet of the radiator rises, and the pressure at the outlet of the radiator can be increased without increasing the compression work of the compressor, thus suppressing the deterioration of the coefficient of performance of the refrigeration cycle.
  • the cooling capacity can be secured.
  • a refrigerant temperature-high pressure characteristic having a desired slope is obtained and approximated to a target characteristic line as compared with the related art.
  • the task is to provide a refrigeration cycle that can be operated efficiently. Disclosure of the invention
  • a refrigeration cycle compresses a refrigerant to bring a high pressure line into a supercritical state or a subcritical state depending on operating conditions.
  • a compressor a radiator that cools the refrigerant compressed by the compressor, an expansion device that decompresses the refrigerant cooled by the radiator, and an evaporator that evaporates the refrigerant depressurized by the expansion device.
  • the expansion device further comprises: an inlet-side passage communicating with the radiator side; an outlet-side passage communicating with the evaporator side; a valve seat provided between the inlet-side passage and the outlet-side passage; A valve body that moves with respect to a valve seat to change a communication state between the inlet-side passage and the outlet-side passage; A sensible element for controlling the movement of the valve element in accordance with the refrigerant temperature or the refrigerant pressure on the radiator side; Refrigerant temperature or refrigerant pressure Flip and is characterized in that so as to control the communication state.
  • the slope of the pressure change characteristics with respect to the temperature change can be varied by adjusting the ratio of each material.
  • the slope of the pressure change characteristics with respect to the temperature change can be varied by adjusting the ratio of each material.
  • two or more types of substances are filled at a temperature lower than the critical temperature of the refrigerant and higher than the saturation pressure of the refrigerant. It is preferable to select such that the equilibrium pressure is always higher than 0.1 MPa (claim 2).
  • one of them is carbon dioxide gas and the other is gaseous gas which always exists in a gaseous state in the operating temperature range.
  • the gas may be present in a gas-liquid two-phase state (claim 3).
  • one of the encapsulated substances can absorb or adsorb the other encapsulated substance at low temperature and release the other substance at high temperature. May be.
  • FIG. 1 is a diagram showing a configuration example of a refrigeration cycle according to the present invention using a supercritical refrigerant as a refrigerant.
  • FIG. 2 is a characteristic diagram illustrating a relationship between a refrigerant temperature and a high pressure, explaining characteristics of a refrigeration cycle according to the present invention.
  • Figure 3 is sealed two substances sensitive element is a characteristic diagram showing the relationship between the one of the material between the refrigerant temperature and high pressure in the case of the carbon dioxide (C_ ⁇ 2).
  • FIG. 4 is a characteristic diagram showing the relationship between refrigerant temperature and high pressure when two types of substances are sealed in a sensing element and one substance is nitrogen gas (N 2 ).
  • a refrigeration cycle 1 includes a compressor 2 for compressing a refrigerant, a radiator 3 for cooling the refrigerant, an internal heat exchanger 4 for exchanging heat between the high-pressure line and the low-pressure line 4, and a pressure reduction for the refrigerant. It comprises an expansion device 5, an evaporator 6 for evaporating and evaporating the refrigerant, and an accumulator 7 for gas-liquid separation of the refrigerant flowing out of the evaporator.
  • the discharge side (D) of the compressor 2 is connected to the high pressure passage 4a of the internal heat exchanger 4 via the radiator 3, and the outlet side of the high pressure passage 4a is connected to the expansion device 5.
  • a high-pressure line 8 extends from the discharge side of the compressor 2 to the expansion device 5.
  • the outlet side of the expansion device 5 is connected to an evaporator 6, and the outlet side of the evaporator 6 is connected to a low-pressure passage 4 b of the internal heat exchanger 4 via an accumulator 7.
  • the outflow side of the low pressure passage 4 b A low-pressure line 9 is connected to the suction side (S) of the compressor 2 and a path from the outflow side of the expansion device 5 to the compressor 2.
  • C 0 2 has been used as the refrigerant, compressed by the compressor 2 ⁇ enters the radiator 3 as a supercritical refrigerant of high temperature and high pressure, and heat dissipation here cooling I do. Thereafter, the heat is exchanged with the low-temperature refrigerant flowing out of the evaporator 6 in the internal heat exchanger 4 to be further cooled and sent to the expansion device 5 without being liquefied. Then, the pressure is reduced in the expansion device 5 to become low-temperature and low-pressure wet steam, and heat exchange with the air passing therethrough in the evaporator 6 to become gaseous, and thereafter, the high-temperature line 8 in the high-pressure line 8 in the internal heat exchanger 4. It is heated by exchanging heat with the refrigerant and returned to the compressor 2.
  • the expansion device 5 includes a housing 10, an inflow passage 11 communicating with the high-pressure passage 4a of the internal heat exchanger 4, an outflow passage 12 communicating with the evaporator 6, and a high-pressure space 13 in which these passages are opened.
  • the pressure reducing valve 14 is housed in the high-pressure space 13.
  • the opening of the outflow passage 12 serves as a valve seat 16 on which the valve element 15 of the pressure-reducing control valve 14 is seated.
  • the pressure reducing control valve 14 is composed of a valve element 15 and a bellows 18 joined to a rod 17 of the valve element 15. Two different substances (substance I and substance II) are contained in the bellows. ) Is enclosed.
  • the valve opening pressure of the pressure reducing control valve 14 and the movement of the valve body 15 are adjusted by changing the amount of gas and the type of gas sealed inside the bellows. It responds to the pressure and the temperature of the refrigerant around the bellows.
  • the equilibrium pressure of the encapsulated agent at least 1 0 ° C or above and becomes the critical temperature of the refrigerant and the following (the C 0 2 3 1 ° C as long as the configuration of the refrigerant)
  • two types of substances are selected so that they are always higher than the saturation pressure of the refrigerant by more than 0.1 IMPa.
  • it is sealed so that it is always higher than the saturation pressure of the refrigerant by more than 0.IMPa. The reason for this is to improve the refrigeration efficiency by making the refrigerant in the liquid phase state as much as possible at the inlet of the expansion valve and having a subcool.
  • either one of the substances to be encapsulated are carbon dioxide (C 0 2)
  • one of the other ones substance is nitrogen, air, and Mashimashi always exist in a gaseous state at a temperature range of helium It is preferable to use a gas that exists in a gas-liquid mixed state.
  • the bellows 18 are corrected so as to compensate only for the spring force. What is necessary is just to adjust the enclosed amount of the substance to be introduced.
  • the liquid or adsorbents used will, may absorb or adsorb co 2 at low temperatures, to select a material capable of emitting co 2 at high temperatures.
  • a polyol ester oil or a polyalkylene glycol oil may be selected, and for an adsorbent, zeolite or the like may be selected.
  • the internal pressure of the bellows is low, conversely, to release the C0 2 in the high temperature side, the internal pressure of the bellows is increased, the overall Compared to the characteristics shown by the dashed line in Fig. 3, the pressure can be set lower (slope) on the low temperature side and higher (slope) on the high temperature side, making it closer to the target optimal control line. Characteristics can be obtained.
  • the expansion device Since the communication between the high pressure side and the low pressure side is controlled according to the refrigerant pressure or the refrigerant temperature on the radiator side, it is desirable to adjust the amount and ratio of each substance to be enclosed. This makes it possible to obtain the refrigerant temperature-high pressure characteristic, and the cycle can be operated efficiently.
  • a supercritical refrigerant such as carbon dioxide (C 0 2)
  • the equilibrium pressure of the encapsulated substance is always higher than the saturation pressure of the refrigerant by at least 0.1 IMP a below the critical temperature of the refrigerant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

A refrigerating cycle, comprising an inlet side passage (11) communicating an expansion device (5) with a radiator side, an outlet side passage (12) communicating with an evaporator side, a valve seat (16) provided between the inlet side passage and the outlet side passage, a valve disc (15) which is moved relative to the valve seat (16) to vary the state of communication between the inlet side passage (11) and the outlet side passage (12), and a bellows (18) in which a substance is filled to sense a temperature or pressure on the radiator side and which controls the function of the valve disc (15) according to the temperature or pressure on the radiator side, wherein two types of substances (substance I, substance II) are sealed in the bellows (18) and the state of communication is controlled according to a refrigerant pressure or a refrigerant temperature on the radiator side, whereby, in a refrigerating cycle using as a refrigerant a supercritical fluid such as carbon dioxide, a refrigerant temperature - high pressure characteristic with a specified gradient is provided so as to approximate it to a target characteristic line closer than before and to operate a cycle efficiently.

Description

明 細 書  Specification
冷凍サイクル 技術分野 Refrigeration cycle technology
この発明は、 冷媒として超臨界冷媒、 例えば、 二酸化炭素 (C 0 2 ) を用いた冷凍サイクルに関する。 背景技術 The present invention relates to a refrigeration cycle using a supercritical refrigerant, for example, carbon dioxide (C 0 2 ) as a refrigerant. Background art
この種の冷凍サイクルとして、 特開平 9— 2 6 4 6 2 2号公報に開示 される構成が知られている。 これは、 圧力制御弁によって放熱器の出口 側圧力を制御するもので、 圧力制御弁は、 冷媒流路内に形成され、 前記 冷媒流路を上流側空間と下流側空間とに仕切る隔壁部と、 この隔壁部に 形成され、 前記上流側空間と前記下流側空間とを連通させる弁口と、 前 記上流側空間内に密閉空間を形成し、 前記密閉空間内外の圧力差に応じ て変位する変位部材と、 前記弁口を開閉する弁体部とを備え、 前記変位 部材は、 前記上流側空間内圧力が前記密閉空間内圧力より所定量大きく なったときに変位し、 前記弁体部は前記変位部材が変位した時に前記弁 口を開くように構成したものである。  As a refrigeration cycle of this type, a configuration disclosed in Japanese Patent Application Laid-Open No. 9-246462 is known. The pressure control valve controls the pressure on the outlet side of the radiator by a pressure control valve. The pressure control valve is formed in a refrigerant flow path, and partitions the refrigerant flow path into an upstream space and a downstream space. A valve port formed in the partition wall for communicating the upstream space and the downstream space; and a sealed space formed in the upstream space, and displaced in accordance with a pressure difference between the inside and outside of the sealed space. A displacement member, and a valve body for opening and closing the valve port, wherein the displacement member is displaced when the pressure in the upstream space becomes larger than the pressure in the closed space by a predetermined amount. The valve port is configured to open when the displacement member is displaced.
また、 この公報には、 圧力制御弁の密閉空間に 4 5 O K g/m 3 〜 9 5 0 K g/m 3 (実施例では 6 0 0 K g/m 3 ) の密度の二酸化炭 素を封入することにより高圧側の圧力を検出し、 この圧力が目標圧力と なるように制御して同公報に図示されている最適制御線に沿って放熱器 の出口側の圧力を制御するようにした点が示されている。 Further, this publication, the density carbon dioxide in the sealed space 4 5 OK g / m 3 ~ 9 5 0 K g / m 3 (6 0 0 K g / m 3 in the embodiment) of the pressure control valve By enclosing, the pressure on the high pressure side is detected, and this pressure is controlled to be the target pressure, and the pressure on the outlet side of the radiator is controlled along the optimal control line shown in the same publication. Points are shown.
これによつて、 上記引例の圧力制御弁は、 放熱器の出口側圧力が増大 した場合には、 密閉空間の内部に封入された冷媒の圧力との差圧によつ て変位部材が変位して弁体部を弁口を開口する方向に移動させるので、 1/一06182 As a result, when the pressure on the outlet side of the radiator increases, the pressure control valve of the above-mentioned reference displaces the displacement member due to a pressure difference from the pressure of the refrigerant sealed in the closed space. To move the valve body in the direction to open the valve port, 1 / 1-06182
2  Two
出口側圧力を低下させ、 また、 放熱器の出口側の冷媒温度が高い場合に は、 前記密閉空間内の冷媒が膨張することにより前記変位部材が変位し て弁体部を弁口を閉める方向に移動させるので、 放熱器の出口側圧力が 上昇し、 コンプレッサの圧縮仕事を増加させることなく、 放熱器の出口 側圧力を増加させることができるので、 冷凍サイクルの成績係数の悪化 を抑制しつつ冷却能力を確保することができるようになつている。 When the outlet side pressure is reduced and the refrigerant temperature at the outlet side of the radiator is high, the direction of closing the valve opening by closing the valve body by displacing the displacement member by expanding the refrigerant in the closed space. The pressure at the outlet of the radiator rises, and the pressure at the outlet of the radiator can be increased without increasing the compression work of the compressor, thus suppressing the deterioration of the coefficient of performance of the refrigeration cycle. The cooling capacity can be secured.
しかしながら、 上述の冷凍サイクルにおいては、 感圧素子内に封入す るガス量により圧力制御弁入口の冷媒温度と高圧圧力との関係を選択す ることは可能であるが、 封入ガスには固有の温度と圧力特性があるため、 全く自由に温度と圧力との関係を変更することはできない。 即ち、 二酸 化炭素冷媒のサイクルでは、 C O Pを最大にする高圧圧力 (P ) と放熱 器出口又は膨張装置入口の冷媒温度 (T ) との関係が存在することから、 上述のような構成では、 1種類の封入ガスの封入量を変えるだけである から、 温度と圧力との関係を示す特性線の位置は変えることができるが、 特性線の傾きは封入量を変えても概ね一定であり、 この傾きが目標とす る特性線の傾きと異なる場合には、 広範囲に亘つて満足した特性を得る ことができない不都合が生じる。  However, in the above-described refrigeration cycle, it is possible to select the relationship between the refrigerant temperature at the pressure control valve inlet and the high pressure based on the amount of gas sealed in the pressure-sensitive element. Because of the temperature and pressure characteristics, the relationship between temperature and pressure cannot be changed at will. That is, in the cycle of carbon dioxide refrigerant, there is a relationship between the high pressure (P) that maximizes COP and the refrigerant temperature (T) at the outlet of the radiator or the inlet of the expansion device. However, since only the amount of one type of gas to be charged is changed, the position of the characteristic line indicating the relationship between temperature and pressure can be changed, but the slope of the characteristic line is almost constant even if the amount of gas is changed. However, if the inclination is different from the inclination of the target characteristic line, there arises a problem that satisfactory characteristics cannot be obtained over a wide range.
そこで、 この発明においては、 炭酸ガスなどの超臨界流体を冷媒とす る冷凍サイクルにおいて、 所望の傾きの冷媒温度一高圧圧力特性を得て、 従来よりも目標とする特性線に近似させることを可能とし、 サイクルを 効率よく運転することができる冷凍サイクルを提供することを課題とし ている。 発明の開示  Therefore, in the present invention, in a refrigeration cycle in which a supercritical fluid such as carbon dioxide gas is used as a refrigerant, a refrigerant temperature-high pressure characteristic having a desired slope is obtained and approximated to a target characteristic line as compared with the related art. The task is to provide a refrigeration cycle that can be operated efficiently. Disclosure of the invention
上記課題を達成するために、 この発明に係る冷凍サイクルは、 冷媒を 圧縮して運転条件により高圧ラインを超臨界状態又は亜臨界状態とする コンプレッサと、 前記コンプレッサによって圧縮された冷媒を冷却する 放熱器と、 前記放熱器で冷却された冷媒を減圧する膨張装置と、 前記膨 張装置によって減圧された冷媒を蒸発させる蒸発器とによって少なくと も構成され、 前記膨張装置は、 放熱器側と連通する入口側通路と、 蒸発 器側と連通する出口側通路と、 前記入口側通路及び出口側通路の間に設 けられる弁座と、 前記弁座に対して移動して前記入口側通路と前記出口 側通路との間の連通状態を変化させる弁体と、 内部に物質が封入されて 前記放熱器側の冷媒温度又は泠媒圧力を感知し、 この放熱器側の冷媒温 度又は冷媒圧力に応じて弁体の動きを制御する感受素子とを有し、 前記 感受素子内には 2種類以上の物質を封入し、 前記放熱器側の冷媒温度又 は冷媒圧力に応じて前記連通状態を制御するようにしたことを特徴とし ている。 In order to achieve the above object, a refrigeration cycle according to the present invention compresses a refrigerant to bring a high pressure line into a supercritical state or a subcritical state depending on operating conditions. A compressor, a radiator that cools the refrigerant compressed by the compressor, an expansion device that decompresses the refrigerant cooled by the radiator, and an evaporator that evaporates the refrigerant depressurized by the expansion device. The expansion device further comprises: an inlet-side passage communicating with the radiator side; an outlet-side passage communicating with the evaporator side; a valve seat provided between the inlet-side passage and the outlet-side passage; A valve body that moves with respect to a valve seat to change a communication state between the inlet-side passage and the outlet-side passage; A sensible element for controlling the movement of the valve element in accordance with the refrigerant temperature or the refrigerant pressure on the radiator side; Refrigerant temperature or refrigerant pressure Flip and is characterized in that so as to control the communication state.
したがって、 膨張装置の感受素子内に 2種類以上の物質を封入したの で、 それそれの物質の封入割合を調節することによって温度の変化に対 する圧力の変化特性の傾きを可変させることができ、 単独の物質では目 標とする特性線から大きくずれてしまう場合でも、 これに近づけること ができる。  Therefore, since two or more substances are sealed in the sensing element of the expansion device, the slope of the pressure change characteristics with respect to the temperature change can be varied by adjusting the ratio of each material. However, even if a single substance greatly deviates from the target characteristic line, it can be approached.
ここで、 2種類以上の物質は、 冷凍サイクルにおいて膨張弁の入口で サブクールを得て冷房効率を向上させるために、 冷媒の臨界温度以下に おいて、 冷媒の飽和圧力よりも封入された物質の平衡圧が常に 0 . 1 M P a以上高くなるように選定することが好ましい (請求項 2 ) 。 また、 感温感圧素子内に封入された物質が 2種類である場合には、 その 1つは、 炭酸ガスであり、 他の 1つは使用温度範囲で常に気相状態で存在するガ スか、 気液 2相状態で存在するガスとしてもよい (請求項 3 ) 。 さらに、 封入される物質の 1つが、 封入される他の物質を低温時に吸収又は吸着 し、 高温時に前記他の物質を放出することのできる吸収剤又は吸着剤と してもよい。 図面の簡単な説明 Here, in order to obtain a subcool at the inlet of the expansion valve and improve the cooling efficiency in the refrigeration cycle, two or more types of substances are filled at a temperature lower than the critical temperature of the refrigerant and higher than the saturation pressure of the refrigerant. It is preferable to select such that the equilibrium pressure is always higher than 0.1 MPa (claim 2). When two kinds of substances are enclosed in the temperature-sensitive element, one of them is carbon dioxide gas and the other is gaseous gas which always exists in a gaseous state in the operating temperature range. Alternatively, the gas may be present in a gas-liquid two-phase state (claim 3). In addition, one of the encapsulated substances can absorb or adsorb the other encapsulated substance at low temperature and release the other substance at high temperature. May be. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 冷媒として超臨界冷媒を用いた本発明にかかる冷凍サイク ルの構成例を示す図である。  FIG. 1 is a diagram showing a configuration example of a refrigeration cycle according to the present invention using a supercritical refrigerant as a refrigerant.
第 2図は、 本発明に係る冷凍サイクルの特性を説明する冷媒温度と高 圧圧力との関係を示す特性線図である。  FIG. 2 is a characteristic diagram illustrating a relationship between a refrigerant temperature and a high pressure, explaining characteristics of a refrigeration cycle according to the present invention.
第 3図は、 感受素子に 2種類の物質を封入し、 一方の物質を炭酸ガス ( C〇2 ) とした場合の冷媒温度と高圧圧力との関係を示す特性線図で ある。 Figure 3 is sealed two substances sensitive element is a characteristic diagram showing the relationship between the one of the material between the refrigerant temperature and high pressure in the case of the carbon dioxide (C_〇 2).
第 4図は、 感受素子に 2種類の物質を封入し、 一方の物質を窒素ガス ( N 2 ) とした場合の冷媒温度と高圧圧力との関係を示す特性線図であ る。 発明を実施するための最良の形態 FIG. 4 is a characteristic diagram showing the relationship between refrigerant temperature and high pressure when two types of substances are sealed in a sensing element and one substance is nitrogen gas (N 2 ). BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明の実施の態様を図面に基づいて説明する。 第 1図にお いて、 冷凍サイクル 1は、 冷媒を圧縮する圧縮機 2、 冷媒を冷却する放 熱器 3、 高圧ラインと低圧ラインとの冷媒を熱交換する内部熱交換器 4 冷媒を減圧する膨張装置 5、 冷媒を蒸発気化する蒸発器 6、 蒸発器から 流出された冷媒を気液分離するアキュムレータ 7を有して構成されてい る。 このサイクルでは、 圧縮機 2の吐出側 (D ) を放熱器 3を介して内 部熱交換器 4の高圧通路 4 aに接続し、 この高圧通路 4 aの流出側を膨 張装置 5に接続し、 圧縮機 2の吐出側から膨張装置 5に至る経路を高圧 ライン 8としている。 また、 膨張装置 5の流出側は、 蒸発器 6に接続さ れ、 この蒸発器 6の流出側は、 アキュムレータ 7を介して内部熱交換器 4の低圧通路 4 bに接続されている。 そして、 低圧通路 4 bの流出側を 圧縮機 2の吸入側 (S ) に接続し、 膨張装置 5の流出側から圧縮機 2に 至る経路を低圧ライン 9としている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, a refrigeration cycle 1 includes a compressor 2 for compressing a refrigerant, a radiator 3 for cooling the refrigerant, an internal heat exchanger 4 for exchanging heat between the high-pressure line and the low-pressure line 4, and a pressure reduction for the refrigerant. It comprises an expansion device 5, an evaporator 6 for evaporating and evaporating the refrigerant, and an accumulator 7 for gas-liquid separation of the refrigerant flowing out of the evaporator. In this cycle, the discharge side (D) of the compressor 2 is connected to the high pressure passage 4a of the internal heat exchanger 4 via the radiator 3, and the outlet side of the high pressure passage 4a is connected to the expansion device 5. A high-pressure line 8 extends from the discharge side of the compressor 2 to the expansion device 5. The outlet side of the expansion device 5 is connected to an evaporator 6, and the outlet side of the evaporator 6 is connected to a low-pressure passage 4 b of the internal heat exchanger 4 via an accumulator 7. And the outflow side of the low pressure passage 4 b A low-pressure line 9 is connected to the suction side (S) of the compressor 2 and a path from the outflow side of the expansion device 5 to the compressor 2.
この冷凍サイクル 1においては、 冷媒として C 0 2 が用いられており、 圧縮機 2で圧縮された泠媒は、 高温高圧の超臨界状態の冷媒として放熱 器 3に入り、 ここで放熱して冷却する。 その後、 内部熱交換器 4におい て蒸発器 6から流出する低温冷媒と熱交換して更に冷やされ、 液化され ることなく膨張装置 5へ送られる。 そして、 この膨張装置 5において減 圧されて低温低圧の湿り蒸気となり、 蒸発器 6においてここを通過する 空気と熱交換してガス状となり、 しかる後に内部熱交換器 4において高 圧ライン 8の高温冷媒と熱交換して加熱され、 圧縮機 2へ戻される。 In this refrigeration cycle 1, C 0 2 has been used as the refrigerant, compressed by the compressor 2泠媒enters the radiator 3 as a supercritical refrigerant of high temperature and high pressure, and heat dissipation here cooling I do. Thereafter, the heat is exchanged with the low-temperature refrigerant flowing out of the evaporator 6 in the internal heat exchanger 4 to be further cooled and sent to the expansion device 5 without being liquefied. Then, the pressure is reduced in the expansion device 5 to become low-temperature and low-pressure wet steam, and heat exchange with the air passing therethrough in the evaporator 6 to become gaseous, and thereafter, the high-temperature line 8 in the high-pressure line 8 in the internal heat exchanger 4. It is heated by exchanging heat with the refrigerant and returned to the compressor 2.
前記膨張装置 5は、 ハウジング 1 0に内部熱交換器 4の高圧通路 4 aに 通じる流入通路 1 1と蒸発器 6に通じる流出通路 1 2と、 これら通路が 開口する高圧空間 1 3とが設けられ、 高圧空間 1 3に減圧調節弁 1 4が 収納されている。 また、 流出通路 1 2の開口部分は減圧調節弁 1 4の弁 体 1 5を着座する弁座 1 6となっている。 The expansion device 5 includes a housing 10, an inflow passage 11 communicating with the high-pressure passage 4a of the internal heat exchanger 4, an outflow passage 12 communicating with the evaporator 6, and a high-pressure space 13 in which these passages are opened. The pressure reducing valve 14 is housed in the high-pressure space 13. The opening of the outflow passage 12 serves as a valve seat 16 on which the valve element 15 of the pressure-reducing control valve 14 is seated.
減圧調節弁 1 4は、 弁体 1 5と、 この弁体 1 5のロッド 1 7に接合さ れたべローズ 1 8とから成り、 このべローズ内に異なる 2種類の物質 (物質 I、 物質 I I) が封入されている。 この減圧調節弁 1 4の開弁圧 や弁体 1 5の動きは、 ベローズ内部に封入する気体量や気体の種類を変 更することによって調整され、 減圧調節弁 1 4は、 高圧空間 1 3の圧力 やべローズ周囲の冷媒温度に応動するようになつている。  The pressure reducing control valve 14 is composed of a valve element 15 and a bellows 18 joined to a rod 17 of the valve element 15. Two different substances (substance I and substance II) are contained in the bellows. ) Is enclosed. The valve opening pressure of the pressure reducing control valve 14 and the movement of the valve body 15 are adjusted by changing the amount of gas and the type of gas sealed inside the bellows. It responds to the pressure and the temperature of the refrigerant around the bellows.
そして、 この例では、 封入された物質の平衡圧を、 少なくとも 1 0 °C 以上で、 且つ、 冷媒の臨界温度 (C 0 2 を冷媒とする本構成であれば 3 1 °C) 以下となる場合には、 冷媒の飽和圧力よりも常に 0 . I M P a以 上高くなるように封入される 2種類の物質が選定されている。 このよう に冷媒の飽和圧力よりも常に 0 . I M P a以上高くなるように封入され ているのは、 膨張弁入口において冷媒をできるだけ液相状態とし、 サブ クールを持たせることで冷凍効率の向上を図るためである。 And, in this example, the equilibrium pressure of the encapsulated agent, at least 1 0 ° C or above and becomes the critical temperature of the refrigerant and the following (the C 0 2 3 1 ° C as long as the configuration of the refrigerant) In this case, two types of substances are selected so that they are always higher than the saturation pressure of the refrigerant by more than 0.1 IMPa. In this way, it is sealed so that it is always higher than the saturation pressure of the refrigerant by more than 0.IMPa. The reason for this is to improve the refrigeration efficiency by making the refrigerant in the liquid phase state as much as possible at the inlet of the expansion valve and having a subcool.
ところで、 上述した冷凍サイクル 1は、 通常の稼動状態において、 膨 張装置 5の流入側での冷媒温度 T [°C] と、 膨張装置 5の流入側での冷 媒圧力 P [M P a ] とが、 第 2図の最適制御線ひ (太い実線で示す) と なるようにすることが望ましい。 これを実現するために、 従来の特開平 9 - 2 6 4 6 2 2号公報に示されるように、 封入される物質を C 0 2 だ けにすると、 封入量を変えることで第 2図の a, b, cで示す特性線の ように変化させ、 A点を通る特性を得たいのであれば特性線 bとなるよ うに封入量が選定されるが、 C 0 2 の有する固有の特性から特性線 bの 傾きは自ずと決まってしまい、 最適制御線ひとは A点から離れるほど大 きくずれてしまう。 これに対して、 本構成によれば、 ベロ一ズ内に異な る 2種類の物質が封入されているので、 それそれの封入物質の種類や量、 又は、 封入割合を適宜選定することで A点を通る任意の傾きを有する特 性線を得ることが可能となり (図中、 点線) 、 最適制御線 αに最も近い 特性を得ることができる。 By the way, in the refrigeration cycle 1 described above, the refrigerant temperature T [° C] on the inflow side of the expansion device 5 and the refrigerant pressure P [MPa] on the inflow side of the expansion device 5 in a normal operation state However, it is desirable to make the optimal control line (shown by a thick solid line) in FIG. To achieve this, conventional Hei 9 - as shown in 2 6 4 6 2 2 JP, when the substance to be encapsulated in only the C 0 2, of FIG. 2 by changing the filling amount a, b, varied as the characteristic line indicated by c, but urchin filling amount by comprising want as value, if the characteristic line b to obtain a characteristic passing through the point a is selected from the intrinsic properties possessed by C 0 2 The slope of the characteristic line b is naturally determined, and the optimal control line shifts farther away from point A. On the other hand, according to this configuration, two different types of substances are enclosed in the bellows. By appropriately selecting the type and amount of the substances to be enclosed, or the enclosing ratio, A A characteristic line having an arbitrary slope passing through the point can be obtained (dotted line in the figure), and a characteristic closest to the optimal control line α can be obtained.
ここで、 封入される物質の 1つは炭酸ガス (C 0 2 ) であり、 他の物 質の 1つは窒素、 空気、 ヘリウム等の使用温度範囲で常に気相状態で存 在しているか、 気液混合状態で存在しているガスを用いるとよい。 Here, either one of the substances to be encapsulated are carbon dioxide (C 0 2), one of the other ones substance is nitrogen, air, and Mashimashi always exist in a gaseous state at a temperature range of helium It is preferable to use a gas that exists in a gas-liquid mixed state.
このような構成によれば、 目標とする最適制御線が第 3図のひで示さ れる場合、 ベローズ 1 8に封入されたガスが炭酸ガス (C 0 2 ) 単独で あれば、 傾きを大きく変更することができずに最適制御線ひの特性を得 ることは不可能であるが、 例えば、 物質 Iとして密度 6 0 O k g/m 3 の炭酸ガス (C 0 2 ) を用い、 物質 I I として 2 5 °Cで 3 M P a分の窒 素ガス (N 2 ) を封入すると点線で示したようになることが実験によつ て確かめられており、 目標とする最適制御線ひに近似した特性を得るこ とができる。 According to such a configuration, if the optimal control line to the target are shown Hide of FIG. 3, if the gas sealed in the bellows 1 8 carbon dioxide (C 0 2) alone, greatly changing the inclination Although it is impossible to obtain the characteristics of the optimum control line without performing the above, for example, carbon dioxide (C 0 2 ) with a density of 60 O kg / m 3 is used as the substance I and 2 as the substance II Experiments have confirmed that when nitrogen gas (N 2 ) equivalent to 3 MPa at 5 ° C is filled, the results are as shown by the dotted line, and characteristics similar to the target optimal control line are obtained. Gain Can be.
尚、 上述の場合において、 ガス圧以外に弁体 15にスプリング力を加 えて閧弁圧や弁体の動きを制御する構成にあっては、 スプリング力の分 だけ補正するようにべローズ 18に有入される物質の封入量を調節すれ ばよい。  In the above-described case, in a configuration in which a spring force is applied to the valve body 15 in addition to the gas pressure to control the valve pressure and the movement of the valve body, the bellows 18 are corrected so as to compensate only for the spring force. What is necessary is just to adjust the enclosed amount of the substance to be introduced.
ベロ一ズ 18に封入される一方の物質 (物質 I) を炭酸ガス (C〇2 ) とし、 他方の物質 (物質 II) を、 一方の物質 (物質 I) を吸収又は 吸着することのできる液体か吸着剤としてもよい。 この際に用いられる 液体又は吸着剤は、 低温時に co2 を吸収又は吸着し、 高温時に co2 を放出することのできる物質を選定するとよい。 Liquid that can be one of the substances to be encapsulated in Vero Ichizu 18 (material I) and carbon dioxide (C_〇 2), other substances (substance II), absorb or adsorb one substance (substance I) Or it may be an adsorbent. In this case the liquid or adsorbents used will, may absorb or adsorb co 2 at low temperatures, to select a material capable of emitting co 2 at high temperatures.
例えば、 液体であれば、 ポリオールエステル油や、 ポリアルキレング リコール油等を選定すればよく、 また、 吸着剤であれば、 ゼォライ ト等 を選定すると良い。  For example, for a liquid, a polyol ester oil or a polyalkylene glycol oil may be selected, and for an adsorbent, zeolite or the like may be selected.
このような構成によれば、 低温側では co2 を吸収又は吸着するため、 ベローズの内圧が低くなり、 逆に、 高温側では C02 を放出するため、 ベローズの内圧が高くなり、 全体として第 3図の破線で示す特性よりも 低温側では圧力を低めに (傾きを小さく) 、 高温側では圧力を高めに (傾きを大きく) することができ、 より目標とする最適制御線ひに近似 させた特性を得ることができる。 According to such a configuration, to absorb or adsorb the co 2 is the low temperature side, the internal pressure of the bellows is low, conversely, to release the C0 2 in the high temperature side, the internal pressure of the bellows is increased, the overall Compared to the characteristics shown by the dashed line in Fig. 3, the pressure can be set lower (slope) on the low temperature side and higher (slope) on the high temperature side, making it closer to the target optimal control line. Characteristics can be obtained.
以上は、 封入ガスとして炭酸ガス (C02 ) を用いた場合であるが、 窒素ガス (N2 ) 等の他の物質を用いた場合でも同様であり、 例えば、 窒素ガス (N2 ) と吸着剤とを適度な量だけ封入し、 25°Cにおける平 衡圧を 1 OMPaとすれば、 高温下では吸着剤から窒素ガスが放出され るので、 ベローズ内に窒素ガスだけを単独で封入した場合 (第 4図の一 点破線で示す) よりも平衡圧は上がり、 低温下では逆に平衡圧が下がり、 破線で示されるように最適制御線ひに近似する特性を得ることが実験に より確認された。 The above is a case of using carbon dioxide (C0 2) as filler gas, the same can be with other materials of the nitrogen gas (N 2) or the like, for example, nitrogen gas (N 2) adsorption If only an appropriate amount of the gaseous agent is filled and the equilibrium pressure at 25 ° C is 1 OMPa, the nitrogen gas is released from the adsorbent at high temperatures. (Shown by the dashed line in Fig. 4), the equilibrium pressure rises, and the equilibrium pressure decreases at low temperatures. More confirmed.
尚、 上述の構成は、 ベローズを用いた膨張装置の例であるが、 ダイヤ フラムを用いた膨張装置にあっても、 高圧空間の圧力が作用するダイヤ フラムの面と反対側に設けられる密閉空間に上述した 2種類の物質を封 入することで、 同様の作用、 効果を得ることができる。 産業上の利用可能性  Note that the above configuration is an example of an expansion device using a bellows. However, even in an expansion device using a diaphragm, a closed space provided on the opposite side to the surface of the diaphragm on which the pressure of the high-pressure space acts. By sealing the two types of substances described above, the same function and effect can be obtained. Industrial applicability
以上述べたように、 この発明によれば、 炭酸ガス (C 0 2 ) 等の超臨 界冷媒を用いる冷凍サイクルにおいて、 膨張装置の感受素子内に 2種類 以上の物質を封入し、 膨張装置の放熱器側の冷媒圧力又は冷媒温度に応 じて高圧側と低圧側との連通状態を制御するようにしたので、 封入され る物質のそれそれの封入量や封入割合を調節することで、 所望の冷媒温 度—高圧圧力特性を得ることが可能となり、 サイクルを効率よく運転す ることができる。 As described above, according to the present invention, in a refrigeration cycle using a supercritical refrigerant such as carbon dioxide (C 0 2), two or more substances enclosed in sensitive elements of the expansion device, the expansion device Since the communication between the high pressure side and the low pressure side is controlled according to the refrigerant pressure or the refrigerant temperature on the radiator side, it is desirable to adjust the amount and ratio of each substance to be enclosed. This makes it possible to obtain the refrigerant temperature-high pressure characteristic, and the cycle can be operated efficiently.
このようなサイクルを構成するにあたり、 冷媒の臨界温度以下におい て、 感受素子内に封入される物質を冷媒の飽和圧力よりも封入された物 質の平衡圧が常に 0 . I M P a以上高くなるように選定したり、 また、 封入された物質が 2種類である場合には、 その 1つを炭酸ガスとし、 他 の 1つを使用温度範囲で常に気相状態で存在するガスか気液 2相状態で 存在するガスとしたり、 さらに、 封入される物質の 1つが、 封入される 他の物質を低温時に吸収又は吸着し、 高温時に前記他の物質を放出する ことのできる吸収剤又は吸着剤とする構成などが考えられるが、 これら の構成は所望の特性を得て目標とする制御特性に従来よりも近似させて サイクル効率を向上させるために有効である。  In constructing such a cycle, the equilibrium pressure of the encapsulated substance is always higher than the saturation pressure of the refrigerant by at least 0.1 IMP a below the critical temperature of the refrigerant. If there are two types of encapsulated substances, one should be carbon dioxide gas and the other should be a gas or gas-liquid two-phase A gas that exists in a state, and one of the enclosed substances absorbs or adsorbs the other enclosed substance at a low temperature and releases the other substance at a high temperature. Although these configurations are considered, these configurations are effective to obtain the desired characteristics and approximate the target control characteristics as compared with the conventional control characteristics to improve the cycle efficiency.

Claims

請 求 の 範 囲 The scope of the claims
1 . 冷媒を圧縮して運転条件により高圧ラインを超臨界状態又は亜 臨界状態とするコンプレッサと、 前記コンプレッサによって圧縮された 冷媒を冷却する放熱器と、 前記放熱器で冷却された冷媒を減圧する膨張 装置と、 前記膨張装置によって減圧された冷媒を蒸発させる蒸発器とに よって少なくとも構成される冷凍サイクルにおいて、 1. A compressor that compresses the refrigerant to bring the high-pressure line into a supercritical state or a subcritical state depending on operating conditions, a radiator that cools the refrigerant compressed by the compressor, and depressurizes the refrigerant cooled by the radiator. In a refrigeration cycle configured at least by an expansion device and an evaporator that evaporates the refrigerant decompressed by the expansion device,
前記膨張装置は、  The inflation device,
放熱器側と連通する入口側通路と、  An inlet side passage communicating with the radiator side,
蒸発器側と連通する出口側通路と、  An outlet side passage communicating with the evaporator side;
前記入口側通路及び出口側通路の間に設けられる弁座と、  A valve seat provided between the inlet-side passage and the outlet-side passage,
前記弁座に対して移動して前記入口側通路と前記出口側通路との間の 連通状態を変化させる弁体と、  A valve body that moves with respect to the valve seat to change a communication state between the inlet-side passage and the outlet-side passage;
内部に物質が封入されて前記放熱器側の冷媒温度又は冷媒圧力を感知 し、 この放熱器側の冷媒温度又は冷媒圧力に応じて弁体の動きを制御す る感受素子とを有し、  A sensing element for sensing a refrigerant temperature or a refrigerant pressure on the radiator side with a substance sealed therein, and controlling a movement of a valve element according to the refrigerant temperature or the refrigerant pressure on the radiator side;
前記感受素子内には 2種類以上の物質を封入し、 前記放熱器側の冷媒 温度又は冷媒圧力に応じて前記連通状態を制御するようにしたことを特 徴とする冷凍サイクル。  A refrigeration cycle characterized in that two or more types of substances are sealed in the sensing element, and the communication state is controlled according to the refrigerant temperature or the refrigerant pressure on the radiator side.
2 . 前記封入された物質の平衡圧を、 冷媒の臨界温度以下において は、 冷媒の飽和圧力よりも常に 0 . I M P a以上高くなるように前記 2 種類以上の物質が選定されることを特徴とする請求項 1記載の冷凍サイ クル。  2. The two or more kinds of substances are selected so that the equilibrium pressure of the sealed substance is always higher than the saturation pressure of the refrigerant by more than 0.IMPa at the critical temperature of the refrigerant or lower. The refrigeration cycle according to claim 1, wherein
3 . 前記感受素子内に封入された物質は 2種類からなり、 その 1つ は、 炭酸ガスであり、 他の 1つは使用温度範囲で常に気相状態で存在す るガスか、 気液 2相状態で存在するガスである請求項 1又は 2記載の冷 凍サイクル。 3. There are two kinds of substances enclosed in the sensing element, one of which is carbon dioxide gas and the other is always in a gaseous state in the operating temperature range. 3. The refrigeration cycle according to claim 1, wherein the refrigeration cycle is a gas that exists in a gas-liquid two-phase state.
4 . 封入される物質の 1つが、 封入される他の物質を低温時に吸収 又は吸着し、 高温時に前記他の物質を放出することのできる吸収剤又は 吸着剤である請求項 1、 2、 又は、 3のいずれかに記載の冷凍サイクル ( 4. One of the encapsulated substances is an absorbent or adsorbent capable of absorbing or adsorbing other encapsulated substances at a low temperature and releasing the other substances at a high temperature. Refrigeration cycle according to any of (3)
PCT/JP2000/002436 1999-07-16 2000-04-14 Refrigerating cycle WO2001006182A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11203548A JP2001033115A (en) 1999-07-16 1999-07-16 Refrigeration cycle
JP11/203548 1999-07-16

Publications (1)

Publication Number Publication Date
WO2001006182A1 true WO2001006182A1 (en) 2001-01-25

Family

ID=16475972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002436 WO2001006182A1 (en) 1999-07-16 2000-04-14 Refrigerating cycle

Country Status (2)

Country Link
JP (1) JP2001033115A (en)
WO (1) WO2001006182A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110998203A (en) * 2017-08-16 2020-04-10 Bsh家用电器有限公司 Refrigeration device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993006423A1 (en) * 1991-09-16 1993-04-01 Sinvent A/S Method of high-side pressure regulation in transcritical vapor compression cycle device
JPH05196307A (en) * 1992-01-16 1993-08-06 Sanyo Electric Co Ltd Injection valve for refrigeration cycle
JPH074785A (en) * 1993-06-11 1995-01-10 Tgk Co Ltd Expansion valve
JPH07146033A (en) * 1993-11-24 1995-06-06 Nippondenso Co Ltd Temperature sensitive actuator
JPH09133436A (en) * 1995-11-08 1997-05-20 Mitsubishi Heavy Ind Ltd Temperature type expansion valve and air-conditioning device for vehicle using the valve
EP0786632A2 (en) * 1996-01-25 1997-07-30 Denso Corporation Refrigerating system with pressure control valve
EP0837291A2 (en) * 1996-08-22 1998-04-22 Denso Corporation Vapor compression type refrigerating system
JPH10170105A (en) * 1996-12-05 1998-06-26 Tgk Co Ltd Expansion valve

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993006423A1 (en) * 1991-09-16 1993-04-01 Sinvent A/S Method of high-side pressure regulation in transcritical vapor compression cycle device
JPH05196307A (en) * 1992-01-16 1993-08-06 Sanyo Electric Co Ltd Injection valve for refrigeration cycle
JPH074785A (en) * 1993-06-11 1995-01-10 Tgk Co Ltd Expansion valve
JPH07146033A (en) * 1993-11-24 1995-06-06 Nippondenso Co Ltd Temperature sensitive actuator
JPH09133436A (en) * 1995-11-08 1997-05-20 Mitsubishi Heavy Ind Ltd Temperature type expansion valve and air-conditioning device for vehicle using the valve
EP0786632A2 (en) * 1996-01-25 1997-07-30 Denso Corporation Refrigerating system with pressure control valve
EP0837291A2 (en) * 1996-08-22 1998-04-22 Denso Corporation Vapor compression type refrigerating system
JPH10170105A (en) * 1996-12-05 1998-06-26 Tgk Co Ltd Expansion valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110998203A (en) * 2017-08-16 2020-04-10 Bsh家用电器有限公司 Refrigeration device
US11319748B2 (en) 2017-08-16 2022-05-03 Bsh Hausgeraete Gmbh Refrigerator

Also Published As

Publication number Publication date
JP2001033115A (en) 2001-02-09

Similar Documents

Publication Publication Date Title
JP3644970B2 (en) Valve assembly apparatus, refrigeration apparatus, and operation method of refrigeration apparatus
JP4053283B2 (en) Supercritical vapor compression system and apparatus for adjusting the pressure of the high-pressure component of the refrigerant circulating in the supercritical vapor compression system
EP0786632B1 (en) Refrigerating system with pressure control valve
JP2000035250A (en) Supercritical freezing cycle
US20060150650A1 (en) Expansion valve for refrigerating cycle
US6189326B1 (en) Pressure control valve
JPH10115470A (en) Steam compression type regrigeration cycle
JP2007155229A (en) Vapor compression type refrigerating cycle
JP2007139208A (en) Expansion valve for refrigerating cycle
WO2001006183A1 (en) Refrigerating cycle
JP4196450B2 (en) Supercritical refrigeration cycle
JP2001147048A (en) Superheat extent controller for refrigeration circuit
JP4841287B2 (en) Refrigeration equipment
WO2001006182A1 (en) Refrigerating cycle
JP2008164239A (en) Pressure regulation valve
JP2006234207A (en) Refrigerating cycle pressure reducing device
JP2008096072A (en) Refrigerating cycle device
JP2019066047A (en) Expansion valve
JP4676166B2 (en) Safety valve device for refrigeration cycle
JP3528433B2 (en) Vapor compression refrigeration cycle
JP2001116400A (en) Refrigeration cycle
JP2001116398A (en) Refrigeration cycle
JP2007033021A (en) Temperature and differential pressure sensing valve
JP2001116399A (en) Refrigeration cycle
JP3711718B2 (en) Pressure control valve

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase