WO2001005877A1 - Aqueous polyvinyl alcohol gel, process for producing the same, and wastewater treatment apparatus - Google Patents

Aqueous polyvinyl alcohol gel, process for producing the same, and wastewater treatment apparatus Download PDF

Info

Publication number
WO2001005877A1
WO2001005877A1 PCT/JP2000/004647 JP0004647W WO0105877A1 WO 2001005877 A1 WO2001005877 A1 WO 2001005877A1 JP 0004647 W JP0004647 W JP 0004647W WO 0105877 A1 WO0105877 A1 WO 0105877A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
hydrogel
gel
wastewater treatment
wastewater
Prior art date
Application number
PCT/JP2000/004647
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroaki Fujii
Michiyuki Nanba
Masanobu Abe
Takanori Kitamura
Original Assignee
Kuraray Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd. filed Critical Kuraray Co., Ltd.
Publication of WO2001005877A1 publication Critical patent/WO2001005877A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/108Immobilising gels, polymers or the like
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F16/04Acyclic compounds
    • C08F16/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • Patent application title Polyvinyl alcohol-based hydrogel, method for producing the same and wastewater treatment equipment
  • the present invention relates to a polyvinyl alcohol-based hydrogel (hereinafter, polyvinyl alcohol is abbreviated as PVA), a method for producing the same, and a wastewater treatment apparatus. More specifically, the present invention relates to a PVA-based hydrogel comprising an outer layer having a crevass-like microporous surface and an inner layer having a dense three-dimensional network structure, a method for producing the same, and a wastewater treatment apparatus. Since the PVA-based hydrogel of the present invention is excellent in durability such as mechanical strength and abrasion resistance, it is preferably applied to wastewater treatment equipment used under severe conditions such as high-speed stirring and deep tanks. Background art
  • Polymer gels are being actively researched as biocatalyst carriers, water-retaining agents, cold-retaining agents, substitutes for biogels such as eyes, skin and joints, sustained-release materials for drugs, and base materials for actuators.
  • Agar, alginate, carrageenan, polyacrylamide, PVA, photocurable resin, etc. are known as high-molecular materials that can be used as raw materials for hydrogels.
  • PVA-based hydrogel has been studied because of its high mechanical strength and excellent hydrophilicity (hydrous content, microbial habitability, etc.). In particular, such a hydrogel is used as a carrier to fix microorganisms. Attention is being paid to the study of biocatalysts.
  • Hydrous gel used as a carrier for immobilizing microorganisms It is required that microorganisms, water and the like can be maintained at a high level, and that the ability to capture microorganisms and fine substances is high.
  • Various studies have been made to further improve the required performance.
  • Japanese Patent Application Laid-Open No. 7-41516 discloses that an aqueous solution containing PVA and sodium alginate is brought into contact with an aqueous solution of calcium chloride or the like so that at least the surface of sodium alginate is exposed.
  • a method for producing a PVA-based hydrogel by solidifying and shaping a gel and then repeating a freeze-thaw treatment to form a gel or contact with a PVA coagulating liquid to form a gel and gel.
  • an aqueous gel containing PVA and sodium alginate gelled by contacting the aqueous solution containing PVA with a coagulation solution of PVA has a smooth surface, and thus has a low ability to capture microorganisms.
  • the hydrated gel has the ability to form crater-like irregularities on its surface. Irregularities are not communicated with the inside of the gel, and microbes are present inside the gel because of the presence of a dense layer near the gel surface. It cannot penetrate and can only live on the surface of the gel.
  • Japanese Unexamined Patent Publication (Kokai) No. 63-179904 discloses that a mixed aqueous solution comprising PVA and a natural gelation accelerator (such as sodium chloride) is dispersed and ball-formed in an organic solvent such as toluene. It is disclosed that when natural gelation occurs, PVA precipitates out of the mixed aqueous solution and undergoes phase separation, resulting in a non-uniform structure, whereby macroporous PVA particles can be obtained.
  • a natural gelation accelerator such as sodium chloride
  • Japanese Unexamined Patent Publication (Kokai) No. 63-2766488 discloses that fine hydrogen bubbles are generated by adding sodium bicarbonate or the like to a PVA aqueous solution or the like, and the resulting PVA is subjected to a freeze-thaw treatment to produce PVA. Although it is disclosed that the gel is formed, the pores formed by the bubbles are extremely large at 100 ⁇ m or more. Therefore, although microorganisms can easily enter the interior, they are not supported for a long time.
  • Japanese Patent Application Laid-Open No. 7-251190 discloses that a mixed solution consisting of PVA and sodium alginate is dropped on a calcium chloride aqueous solution mixed with short fibers, and the short fibers are whisker-like on the surface.
  • a method for producing a gel having a form implanted therein is described.
  • the gel properties are reduced, and since the fibers are in a whisker-like shape, the gels are entangled with each other and the gel is easily damaged, so that more fibers are present on the surface. Therefore, the improvement of the ability to capture microorganisms is insufficient.
  • Japanese Patent Application Laid-Open No. H10-204024 discloses the degree of polymerization of PVA used for the production of porous spherical particles having interconnected pores having a polybutylacetal resin as a skeleton; If the degree is less than 50,000, it is difficult to obtain a material having a high porosity. If the degree is more than 380, the viscosity becomes high when dissolved in water, and it is difficult to handle in a process such as kneading.
  • 10-266357 discloses that, with respect to the degree of polymerization of PVA used for producing hydrogel, from the viewpoint of strength, water resistance, etc., the average degree of polymerization is 100,000 or more. In particular, it is stated that those having a molecular weight of 150 or more are preferably used (see paragraph 200), and the degree of acetalization of a hydrogel is determined with respect to the water resistance of the gel and the microorganisms. From the point strength of habitability, etc., 10 to 65 mol 0 /. And especially 3 ° to 60 mol 0 /. Is preferred (see paragraph 407).
  • H10-26635776 PVA used in Examples and Comparative Examples has a degree of polymerization of 170 (Examples 1 and 3, Comparative Examples 1, 2, and 3). And the degree of polymerization was 400000 (Example 2), and the acetalization degree of the hydrogel was 39% (Example 1), 37% (Example 2), 35% (Example 3). ), 40% (Comparative Example 1) and 0% (Comparative Examples 2 and 3).
  • the PVA-based hydrogel according to the invention of the present applicant in the above-mentioned Japanese Patent Application Laid-Open No. H10-2663576 can sufficiently exhibit its function in wastewater treatment under ordinary conditions. is there.
  • PVA with an average degree of polymerization of 100 or more is used for the production of hydrous gel
  • the degree of acetalization of hydrous gel is low, use it under severe conditions such as deep stirring under deep stirring. In such cases, they were not always satisfactory in terms of durability such as abrasion resistance and mechanical strength.
  • an object of the present invention is to provide a highly durable PVA-based hydrated gel which is excellent in various properties such as microbial capture and habitability, and is also excellent in abrasion resistance and mechanical strength, and a method for producing the same.
  • An object of the present invention is to provide a wastewater treatment device using a hydrogel. Disclosure of the invention The present inventors have conducted intensive studies to achieve the above object, and have reached the present invention. That is, the present invention is a PVA-based hydrogel comprising an outer layer having a crevass-like microporous surface and an inner layer having a dense three-dimensional network structure.
  • Another invention of the present invention is a polymer containing a vinyl alcohol-based polymer (A polymer) having a degree of polymerization of 300 or more and a polymer (B polymer) that gels by contact with a cation.
  • a substance (substance C) capable of phase-separating the high-molecular solution is added to the solution to prepare a phase-separated liquid.
  • the obtained solidified product is brought into contact with a coagulating liquid having a solidifying ability for the vinyl alcohol-based polymer to be gelled, and simultaneously with and / or after gelation
  • a coagulating liquid having a solidifying ability for the vinyl alcohol-based polymer to be gelled, and simultaneously with and / or after gelation
  • the invention of the present application relating to a method for producing a PVA-based hydrogel includes the following steps: (1) using a Bier alcohol-based polymer having a degree of polymerization of 300 or more,
  • the acetalization treatment When the acetalization treatment is performed simultaneously with the gelation and after the Z or gelation, the acetalization treatment should be performed for a long period of time exceeding the time required for obtaining an acetalization degree of 50% or more.
  • the upper limit of the average degree of polymerization of PVA is 20000 or less, especially 100000 It is better to use the following PVA: From the viewpoint of water resistance, etc., the saponification degree is preferably at least 95 mol%, particularly preferably at least 98%, and more preferably at least 99.8 mol%.
  • each phase shrinks to form gaps, so that a cress-like microporous or three-dimensional network structure is formed.
  • the degree of acetalization to 50% or more, the gaps become larger, and more micropores and pores are formed. That is, in producing a PVA-based hydrogel using a vinyl alcohol-based polymer having a degree of polymerization of at least 300, the acetalization degree must be increased to 50% or more.
  • a PVA-based hydrogel composed of an outer layer having crevass-like micropores on the surface and an inner layer having a dense three-dimensional network structure can be easily produced.
  • the degree of acetalization can be controlled by the concentration of the aldehyde compound and the acid, the reaction time, the temperature, etc.-
  • the outer layer having crevass-like micropores on the surface and the dense three-dimensional
  • the crevassoidal microporosity of the PVA-containing hydrogel of the present invention which is composed of an inner layer having a network structure of, and a fine particle of irregular shape on the gel surface by scanning electron microscopy (SEM). A structure in which a crack is observed as microporous and the microporous communicates with the inside of the gel.
  • the shape of the crevasse is indefinite, the shape of the crevasse must be clearly defined. Although it cannot be specified, in order for the PVA-based hydrogel to have excellent ability to capture and inhabit microorganisms, freeze-dry the hydrogel and observe the gel surface with a 50.3-fold SEM. In an SEM photograph of any part of the surface, it is preferable that at least 5 or more micropores are observed in a square having a side of 500 / m. Further, the opening ratio of the gel surface is preferably 1 to 10%. The opening ratio of the gel surface can be determined by enlarging the above SEM photograph to 200% and extracting the microporous portion using a commercially available image analysis software. Fig.
  • Fig. 1 is a photograph obtained by freeze-drying the hydrogel of the present invention and observing the surface of the gel with a 50.3-fold SEX4, and Fig. 2 is a photograph observed with a SEM of a 4.58-fold. is there.
  • the thickness of the outer layer is not particularly limited, but if it is too thin, it will peel off at the beginning of stirring when it is put into the wastewater treatment apparatus and is stirred, and if it is too thick, it will be durable. Since it tends to be inferior, it is preferable to set the thickness to about 10 to 30 ⁇ m.
  • the inner layer of the PVA hydrogel of the present invention has a dense three-dimensional network structure.
  • the dense three-dimensional network structure refers to a structure in which fine porosity in the form of a crevas on the gel surface communicates with the inside of the gel, and the communication holes are three-dimensionally interconnected.
  • the pore size of the communicating hole of the hydrogel can be measured by the mercury intrusion method.
  • the mercury intrusion method is a method of immersing a evacuated gel sample in mercury, increasing the pressure applied to the mercury, and calculating the pore size from the relationship between the amount of mercury that has penetrated the pores and the pressure.
  • FIG. 3 shows a mercury intrusion curve 1 and a pore distribution curve 2 obtained by measuring the hydrogel of the present invention by the mercury intrusion method.
  • Mercury intrusion curve 1 is a curve showing the relationship between mercury intrusion volume into pores and pore diameter, and pore distribution curve 2 is obtained by differentiating mercury intrusion curve 1: In the figure Each is the result of two measurements.
  • the pore size of the micropores of the hydrous glue of the present invention is preferably less than 20 // m from the viewpoint of mechanical strength, as measured by such a conventionally known mercury intrusion method.
  • Fig. 3 shows an example in which the pore size distribution of the hydrogel has a maximum at 8 ⁇ m.
  • the structure of the inner layer does not need to be uniform, and may differ in its parts. Also, the inner layer does not need to be a single layer, but may be composed of multiple layers. Sometimes composed of multiple layers may have better habitats for microorganisms. Since the inner layer of the PVA-based hydrogel of the present invention has a dense three-dimensional network structure, microorganisms can easily enter the inside of the gel from the microporous surface of the gel surface and have a good habitat. . From the viewpoint of abrasion resistance, it is preferable that the thickness of the inner layer be 95% or more of the maximum diameter of the gel.
  • FIG. 4 is a photograph obtained by observing the cross section of the PVA-based hydrogel of the present invention with a 50.3-fold SEM.
  • Another invention of the present invention provides a wastewater treatment apparatus comprising at least a wastewater treatment tank into which a biocatalyst in which microorganisms are immobilized is injected and organic matter and Z or inorganic substances in the wastewater are decomposed and removed.
  • the wastewater treatment device is a PVA-based hydrated gel in which the carrier for the formation is a PVA-based hydrated gel composed of an outer layer having a crevices-like microporous surface and an inner layer having a dense three-dimensional network structure.
  • the PVA-based hydrogel of the present invention When the PVA-based hydrogel of the present invention is used as a carrier, and the microorganisms are immobilized and used as a biocatalyst, the microorganisms are easily captured because the crevass-like microporous is formed on the surface. In addition, since the inside of the gel has a dense three-dimensional network structure, it has excellent mechanical strength and abrasion resistance.
  • FIG. 1 is a 5.3 times SEM photograph showing an example of the surface of the PVA-based hydrogel of the present invention
  • FIG. 2 is an example of the surface of the PVA-based hydrogel of the present invention
  • FIG. 3 is a SEM photograph at a magnification of 458 ⁇ .
  • FIG. 3 shows the results of measuring the pore size of the PVA-based hydrogel of the present invention by the mercury intrusion method.
  • FIG. 4 shows the PVA-based hydrogel of the present invention.
  • FIG. 5 is a 50.3 ⁇ SEM photograph showing one example of the cross section of FIG. 5, and FIG. 5 is a 50.3 ⁇ SEM photograph showing the surface of the PVA-based hydrogel of Comparative Example 1.
  • FIG. 5 is a 50.3 ⁇ SEM photograph showing one example of the cross section of FIG. 5
  • FIG. 5 is a 50.3 ⁇ SEM photograph showing the surface of the PVA-based hydrogel of Comparative Example 1.
  • FIG. 6 is a flow chart showing an example of the wastewater treatment apparatus of the present invention.
  • FIG. 7 is an arrangement of the wastewater treatment tank of the wastewater treatment apparatus of the present invention in the order of a denitrification tank and a nitrification tank from the wastewater introduction side.
  • FIG. 8 shows an example in which the wastewater treatment tanks of the wastewater treatment apparatus of the present invention are arranged in the order of the nitrification tank and the denitrification tank from the wastewater introduction side, and
  • FIG. It is a stirring blade attached to a stirrer used for measuring the volume retention of the PVA-based hydrogel of the present invention.
  • the PVA-based polymer used in the PVA-based hydrogel of the present invention is obtained by saponifying a polyvinyl carboxylate such as polyvinyl acetate or polyvinyl pivalate or a copolymer thereof. Obtainable.
  • homopolymerization or copolymers of vinyl ethers such as t-butyl vinyl ether, trimethylsilyl vinyl ether and penzinole vinyl ether (including block copolymers and graphite copolymers) Can also be obtained by decomposing You.
  • Examples of the comonomer units constituting the copolymer include olefins such as ethylene, propylene, 1-octene and isobutene, acrylic acid and its salts, and ata-linolenic acid.
  • Vinyl compounds such as linoles, vinyl chloride, vinyl chloride chloride, vinyl chloride fluoride, vinylidene fluoride, and other halogenated vinyl compounds, aryl acetates, and aryl chlorides.
  • vinyl compounds such as maleic acid and its salts and esters, itaconic acid and its salts and esters, vinylinolecinol compounds such as vinyltrimethoxysilane, and isopropionyl acetate. It can be used within a range that does not impair the gist of the present invention.
  • the shape of the hydrogel can be a desired shape such as a sphere, an ellipse, a fiber, a psycho, a film, a column, a hollow cylinder, a square, a rod, and an irregular shape.
  • the PVA-based hydrogel of the present invention is used as a carrier for immobilizing a biocatalyst, it should be spherical in terms of durability, filling effect, fluidity in a wastewater treatment tank, handleability, and the like. Is preferred.
  • the maximum diameter of the genole is preferably 1 to 1 Om m, and more preferably 3 to 5 m m from the viewpoints of separation from sludge and microbial activity.
  • a predetermined amount of the PVA-based hydrated gel of the present invention is poured into a two-liter torby with a # 80 sandpaper adhered to the inner wall thereof, and
  • a gel having a volume retention of at least 50%, preferably at least 70% after 14 days is desirable in terms of abrasion resistance and mechanical strength.
  • the volume retention ratio is the ratio of the volume of the hydrogel to the initially charged hydrogel, excluding the portion worn by stirring from the hydrogel initially charged.
  • the water-containing gel of the present invention is used for wastewater treatment, it is preferable that the water content is high, but from the viewpoint of strength, 50 units on a cut basis. % Or more, preferably 60% by weight or more and less than 90% by weight.
  • the PVA-based hydrogel of the present invention exhibits excellent effects in terms of abrasion resistance, mechanical strength, and the like, and is preferably applied to wastewater treatment.
  • at least a part of water contained in the hydrogel is used. It may be used after drying, or it may be used after being dried once and then immersed in water again. By removing at least a part of the water, the weight is reduced and transportation becomes easier.
  • the gel may be used not only in a hydrous state but also in a state other than a hydrous state.
  • the “water content” in the present invention is not limited to the state containing water, but also includes the state containing a mixture of water and other liquids and 7 or solids.
  • the PVA-based hydrogel of the present invention immobilizes microorganisms and is suitably used as a biocatalyst in the treatment of wastewater, but a reaction product is obtained by performing various biochemical reactions.
  • Excellent effect as a carrier and filter medium for bioreactors, and also has a remarkable increase in surface area.Excellent as a filler for power chromatography. The effect is shown.
  • a surface layer having a microporous shape in the form of crevasses is formed and the number of voids is increased, high water retention is secured, and excellent effects are also exhibited as a cold insulator and a water insulator.
  • Examples of the polymer (B polymer) that gels upon contact with a cation, preferably a polyvalent metal ion, include water-soluble synthetic compounds such as polyethylene glycol and its derivatives, and water-soluble polyurethane.
  • water-soluble high molecular polysaccharides are gelled by contact with cations. Many of them have the property of becoming plastic, and are particularly preferable because of their excellent moldability.
  • alkali metal salts of alginic acid particularly sodium alginate, are suitable in terms of moldability and network structure formation.
  • the concentration of the A polymer in the polymer solution is preferably higher from the viewpoint of the strength of the gel base material, and is preferably lower from the viewpoint of microbial habitability. Therefore, the solution concentration of the A polymer is preferably 1 to 40% by weight, and more preferably 3 to 20% by weight. /. Is more preferred. From the viewpoint of gel moldability, the concentration of the B polymer solution is preferably 0.2 to 4% by weight, and more preferably 0.5 to 2% by weight.
  • the mixing ratio (weight ratio) of the A polymer and the B polymer is from 100.2 to 30 in view of moldability, network structure forming property, gel strength, etc.
  • the concentration is preferably about 20 and the polymer concentration is preferably about 1 to 50% by weight.
  • a microorganism medium, a reinforcing material for increasing the strength of the gel, a filler for adjusting the specific gravity, and the like may be added.
  • the solvent water is usually used in terms of processability and the like, but various aqueous solutions of the solvent may be used depending on the case.
  • a solvent include alcohols such as ethylene glycol, glycerin, polyethylene glycol, dimethinole sulfoxide, dimethylformamide, and diethylenetriamine. One of these Or a mixture of two or more types can be used.
  • a solvent whose main component is water it is preferable to use a water-soluble polymer, particularly a water-soluble polysaccharide, as the B polymer.
  • the solution temperature is preferably about 10 to 100 ° C, particularly about 20 to 80, in terms of the thermal stability of the polymer and the solution viscosity.
  • a substance (substance C) that allows phase separation of these polymers is added to a mixed solution containing the A and B polymers to produce a phase separated liquid.
  • the substance C is not particularly limited, but salts can be preferably used.- Among them, divalent or more, since addition of a small amount causes phase separation of the polymer and has little effect on moldability and acetalization. Salts containing anion are preferred. In this case, it is particularly preferable to use sodium alginate as the polymer B that gels by contact with polyvalent metal ions from the viewpoints of gel forming property and phase separation liquid forming property. I like it.
  • the salts include carbonates such as sodium carbonate, potassium carbonate, calcium carbonate, ammonium carbonate, magnesium carbonate; sodium hydrogen carbonate, potassium hydrogen carbonate, hydrogen carbonate and the like.
  • Bicarbonates such as ammonium, calcium bicarbonate and magnesium bicarbonate; sulfates such as sodium sulfate, potassium sulfate, ammonium sulfate, magnesium sulfate; sodium phosphate, calcium phosphate
  • phosphates such as lithium, ammonium phosphate, and magnesium phosphate.
  • a halide salt such as sodium chloride or potassium chloride may be used. These may be used in combination of two or more kinds.
  • the amount of the substance that causes phase separation of the polymer is preferably about 0.01 to 1% by weight based on the polymer solution.
  • the phase separation according to the present invention is defined as adding a substance C to a homogeneous solution containing at least an A polymer and a B polymer to obtain a plurality of solution phases having a specific composition. This refers to the phenomenon of separation.
  • the resulting heterogeneous mixture is called the phase separation liquid.
  • the phase separation is measured by using an absorption spectrometer (660 nm) to measure the absorbance of a solution containing at least the A polymer and the B polymer, adding the substance C to the solution, and thoroughly mixing the substances.
  • the phase separation liquid of the A polymer and the B polymer is, for example, PVA (polymerization degree: 400, saponification degree: 99.5 mol%) for the A polymer, and sodium alginate for the B polymer.
  • phase separation liquid is brought into contact with a cation-containing liquid, preferably a polyvalent ion-containing liquid.
  • a cation-containing liquid preferably a polyvalent ion-containing liquid.
  • cations used include alkaline earth metal ions such as potassium ion, magnesium ion, strontium ion, and nitrogen ion, aluminum ion, nickel ion, and cerium ion. Any polyvalent metal ion, potassium ion, ammonium ion, etc. may be mentioned, and a plurality of these may be used.
  • a solvent water is usually used in terms of processability.
  • the A polymer From the viewpoints of cost, handleability, gel forming property, etc., it is more preferable to use calcium chloride for the A polymer, and to use the B polymer at this time in combination with sodium alginate. It is particularly preferably used because it has excellent moldability, and a gel having a fine pore in the form of crevasse on the surface is obtained.
  • the cation concentration is 0.05 to:! It is preferable to set the molar ratio to about 0.1 to about .5 mol / litre, particularly from the viewpoint of gel formability.
  • a gel is formed by solidifying at least the B polymer present on the surface of the phase separation liquid. If it is desired to make the gel into a spherical shape, a spherical gel can be easily obtained by dropping or atomizing the phase separation liquid into the liquid containing cations due to surface tension. At this time, it is preferable to use an extrusion nozzle to drip. The diameter of the extruded nozzle may be appropriately set, and a diameter of about 1 to 10 mm may be used. Next, this is brought into contact with a coagulating liquid to gel the inside to obtain a desired gel.
  • the gel of the present invention can be obtained by removing part or all of the B polymer contained in the gel.
  • the method for removing the B polymer is not particularly limited as long as the A polymer is not dissolved, and may be treated with an aqueous solution containing an alkali metal salt or left for a long time to be decomposed by microorganisms.
  • the B polymer is almost completely removed by immersing the molded product in a sodium hydroxide aqueous solution (1 mo 1 Z lit., 3 ° C) for 24 hours. Is out.
  • the B polymer By removing the B polymer, more crevasse-shaped micropores are formed in the outer layer, and pores with a three-dimensional network structure in which micropores are interconnected also inside the gel. Increased volume and excellent effects in terms of microbial adhesion-habitability, liquid permeability, etc. In order to sufficiently exhibit such effects, it is preferable to remove 50% by weight or more, particularly 80% by weight or more of the B polymer, but in some cases, the B polymer is substantially removed. It may be used without any modification. Even if some or all of the B polymer remains at the beginning of use, the B polymer is removed over time by microorganisms, alcohol, etc. The step for removing the polymer may be provided according to the purpose.
  • a The phase separation liquid of the polymer and the B polymer is composed of a mixed phase composed of the A polymer and the B polymer and a single phase composed of only the A polymer, and is composed of about 1 wt% of the A polymer and 2 wt% of the B polymer.
  • % Of the mixed phase, and the single phase of about 10 _ wt% of the A polymer, which is considered to affect the durability, are continuously interpenetrated with each other and are in close contact with each other.
  • the mixed phase By contacting with the cation-containing liquid, the mixed phase is immobilized, and by acetalization, each phase shrinks to form gaps, resulting in crevasse-like microporous or three-dimensional networks. It is considered that pores constituting the structure are formed, and by further removing the B polymer, the portion where the B polymer was present becomes a gap, so that more microporous and It is presumed that pores are formed.
  • Examples of the coagulating solution having a solidifying ability for vinyl alcohol-based polymers include sodium sulfate, ammonium sulfate, potassium sulfate, magnesium sulfate, aluminum sulfate, sodium citrate, and copper sulfate.
  • One kind of compounds such as ammonium citrate, potassium citrate, magnesium citrate, aluminum citrate, sodium tartrate, ammonium tartrate, potassium tartrate, magnesium tartrate, and aluminum tartrate
  • concentration is preferably at least 50 g Z liter, more preferably at least 100 g / liter, and more preferably an aqueous saturated sodium sulfate solution.
  • a treatment such as a cross-linking treatment may be performed at any step in the production process.
  • the acetalization treatment it is preferable to use an aqueous solution containing an aldehyde compound and an acid.
  • the aldehyde compound is blended into the coagulation solution and the acetalization treatment is performed simultaneously with coagulation (gelation).
  • coagulation gelation
  • the swelling or dissolution of the hydrogel in the presence of the aldehyde compound or the acid can be effectively prevented by the presence of the PVA coagulating liquid, so that a more excellent effect can be obtained.
  • aldehyde compounds examples include glyoxal, formaldehyde, benzanoledide, succinanoledaldehyde, malonaldehyde, gnoletaranoledaldehyde, adipine aldehyde, telefanolaldehyde, nonanandial, and the like.
  • Various aldehyde compounds or their acetalized compounds can be suitably used, and in particular, formaldehyde, glyoxazane, malondianoledide or its acetylated glutaraldehyde, and glutaraldehyde are preferred.
  • a strong acid such as sulfuric acid, hydrochloric acid, or nitric acid
  • a weak acid such as acetic acid, formic acid, oxalic acid, or phosphoric acid
  • an acid salt such as sodium hydrogen sulfate or ammonium hydrogen sulfate.
  • strong acids especially sulfuric acid, are preferred.
  • the concentration of the aldehyde compound in the reaction solution is 0.1 g / liter or more, and the acid concentration is 0.5 to 300 g. It is preferable to take a picture.
  • the concentration of the aldehyde compound should be 0.05 to 200 g Z liter and the acid concentration should be 1 to 100 g Z liter.
  • the coagulant When sodium sulfate is used, the sodium sulfate concentration is preferably set to 10 to 300 g Z liter, and the temperature of the processing solution is set to 10 to 8 g. The temperature is preferably set to 0 ° C.
  • the PVA-based hydrogel of the present invention is used for a bioreactor carrier or the like, it is preferable to subject the solidified (possibly acetalized) genole to washing and neutralization.
  • the solidified (possibly acetalized) genole it is preferable to sufficiently wash the presence of an aldehyde compound because the presence of an aldehyde compound reduces the habitability of microorganisms.
  • the hydrogel of the present invention has a crevass-like microporous surface formed on its surface, and has a large surface area and an excellent water retention effect, so that it can be used for all purposes.
  • filter media solid suspension removal materials, etc.
  • water retention materials cold insulation materials
  • biogels such as eyes, skin, joints, etc.
  • sustained release materials for drugs base materials for actuator units, and chromatographs
  • chromatographs It can be used as a filler, sewage purification material, etc.
  • the immobilization method is not particularly limited, and an inclusive immobilization method in which microorganisms are mixed in a mixed solution in advance may be employed, but later.
  • a treatment that adversely affects the biocatalyst such as an acetalization process, it is preferable to attach the biocatalyst after gel production.
  • the type of microorganism is not particularly limited, and may be any of bacteria, actinomycetes, molds, yeasts, etc., and includes pure cultures, mixed cultures, and activated sludge bacteria.
  • microorganisms include the genus Muccor and Fusarium.
  • Examples include microorganisms belonging to genera such as the genus (Streptomyces), the genus Escherichia, the genus Saccharomyces, and the genus Candida.
  • E. coli bacteria Methanobacterium, butyric acid bacteria, lactic acid bacteria, Bacillus subtilis, deformed bacteria, incomplete bacteria, nitrate bacteria, nitrite bacteria, and denitrifier bacteria.
  • the PVA-based hydrogel of the present invention When the PVA-based hydrogel of the present invention is used for wastewater treatment, it is preferable to immobilize a bacterium that produces a protease, a carbohydrate-decomposition enzyme, or a lipolytic enzyme on the hydrogel.
  • a bacterium that produces a protease, a carbohydrate-decomposition enzyme, or a lipolytic enzyme on the hydrogel.
  • nitrifying bacteria as aerobic bacteria
  • denitrifying bacteria sulfate reducing bacteria
  • methanotrophs as anaerobic bacteria.
  • an enzyme derived from an animal or a microorganism can be appropriately selected.
  • FIG. 6 shows a wastewater treatment apparatus comprising at least a wastewater treatment tank according to the present invention, which is provided with a biological catalyst having microorganisms immobilized thereon and decomposes and removes organic and / or inorganic substances in the wastewater.
  • a wastewater treatment apparatus using a biocatalyst obtained by immobilizing microorganisms on the acetalized PVA-based hydrogel according to the present invention in a tank as a biocatalyst. It is a flowchart.
  • wastewater 1 is supplied to wastewater treatment tank 2 from a sedimentation tank (not shown).
  • acetalized PVA hydrogel 3 is previously charged into the wastewater at the lower limit of operation, and is provided at the bottom of the wastewater treatment tank 2. It is fluidized by the diffuser 4 that was removed.
  • Reference numeral 5 denotes a blower connected to the diffuser 4, which is a driving means of the diffuser 4.
  • the wastewater is biologically treated in wastewater treatment tank 2.
  • the biologically treated water is sent to the final sedimentation tank 6 where the sediment is removed from the sludge discharge pipe 8 and the supernatant water 7 is discharged.
  • an acetalized PVA-based hydrogel for the wastewater treatment tank used in the wastewater treatment apparatus of the present invention, the efficiency of wastewater treatment can be increased.
  • a hydrogel that combines various conditions the wastewater treatment effect can be greatly enhanced.
  • FIG. 7 is a flow chart showing another embodiment of the present invention in which a denitrification tank and a nitrification tank are arranged in this order from the water introduction side.
  • 9 is a denitrification tank
  • 12 is a nitrification tank.
  • the wastewater 1 is supplied to the denitrification tank 9
  • the wastewater 1 is subjected to anaerobic conditions (under cows (under anoxic conditions))
  • the water is denitrified and sent to the nitrification tank 12 as denitrified water 11.
  • the denitrification-treated water sent to the nitrification tank 12 is biologically nitrified by microorganisms in the nitrification tank under aerobic conditions.
  • a portion of the nitrification water 13 is circulated to the denitrification tank 9 by the nitrification water return line 14, and the remaining nitrification water is sent to the final sedimentation tank 6 and settled. After removing matter, it is released as supernatant water 7.
  • the rate of return of the nitrified water 13 to the denitrification tank 9 is about 1 to 5 times that of the supernatant water. 3
  • the generated sludge is extracted out of the system by the sludge discharge pipe 8.
  • a stirring device 10 is installed in the denitrification tank 9, and the spherical acetalized PVA hydrogel 3 is charged into the mixed solution containing the microorganisms in the denitrification tank 9.
  • An organic carbon source is supplied to the denitrification tank as needed.
  • a diffuser 4 for supplying a gas such as air containing oxygen is connected to the probe 5 at the bottom of the nitrification tank 12, and a mixed solution containing microorganisms in the nitrification tank 12 is provided.
  • the same spherical acetalized PVA hydrogel 3 used in the denitrification tank is charged into the tank.
  • the acetalized PVA-based hydrated gel may be charged into both the denitrification tank and the nitrification tank, or may be charged into one or the other, but it is more efficient to charge both. Therefore, it is usually used in both tanks. Different types of acetalized PVA may be injected into each tank.
  • the stirrer 10 when the stirrer 10 is operated in a state in which the denitrification treatment water 11 is discharged into the nitrification tank 12 while introducing the wastewater 1 into the denitrification tank 9, the mixed solution is circulated in the denitrification tank 9.
  • the circulating flow causes the acetalized PVA hydrogel 3 to flow through the denitrification tank 9, during which microorganisms, mainly denitrifying bacteria, present in the mixed solution adhere to the hydrogel 3 and become immobilized. Is done.
  • the mixed solution in the tank floats with this immobilized denitrifying bacteria. It is denitrified by denitrifying bacteria.
  • the organic matter in the mixed solution is used as a respiratory substrate for denitrifying bacteria or as a carbon source for cell synthesis, but as described above, the carbon source can be added from outside the system as necessary.
  • the c nitrification tank 1 2 denitrified water 1 1 denitrification tank 9 yo Ri is supplied, and the nitrification treated water 1 3 of nitrification tank 1 in 2 the air diffuser 4 good Ri air while flowing
  • oxygen is supplied to the mixture in the nitrification tank 12 and, at the same time, the nitrifying bacteria present in the mixture are mainly contained while the circulating flow of the mixture is generated by the rising bubble flow at this time.
  • the microorganism to be adhered to the acetalized PVA hydrogel 3 is bonded and immobilized.-The liquid mixture in the tank is biologically nitrified by the immobilized nitrifying bacteria and the suspended nitrifying bacteria.
  • the microorganisms adhere to, bond to, and immobilize the surface and / or the inside of the acetalized PVA hydrogel 3, whereby the component to be treated and the microorganisms come into sufficient contact. Further, the microorganisms immobilized inside the carrier are difficult to peel off when the acetalized PVA hydrogel 3 flows in each tank. As a result, nitrogen in the water to be treated is extremely efficiently and rapidly decomposed and removed. It is a matter of course that a screen or the like may be provided in the denitrification tank and / or the nitrification tank in order to prevent the hydrogel from overflowing out of the tank.
  • FIG. 8 shows another flow chart of the present invention in which a nitrification tank and a denitrification tank are arranged in this order from the wastewater introduction side.
  • Wastewater 1 is biologically nitrified by microorganisms in a nitrification tank under aerobic conditions, and then nitrified water 13 is biologically denitrified by microorganisms in a denitrification tank under anaerobic conditions. Is done.
  • the denitrification water 11 is sent to the final sedimentation tank 6 where the sediment is removed and then discharged as supernatant water 7.
  • the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.
  • the method for observing the gel structure and the method for measuring each parameter are as follows.
  • 0.2 g of a sample obtained by drying the acetal-treated PVA hydrogel at 105 ° C for 2 hours was precisely weighed and placed in a distillation apparatus charged with a 25% sulfuric acid solution. Then heated while feeding steam liberated formalin Li down distilling monitor and water was absorbed 2% N a HS ⁇ 3 solution. Excess NaHSO 3 was back titrated with I 2 to determine the amount of free formalin, and the degree of acetalization was calculated from the ratio (molar ratio) of the amount of free formalin to the amount of hydroxyl groups in the PVA gel.
  • Moisture content (%) (W i W 2 ) / W i X 1 0 0
  • TOC removal rate (mg—T ⁇ C / Little gel ⁇ 1)
  • 500 g of the hydrogel was soaked in a drainage tank at the Kuraray Okayama Plant for one month, and 100 g was taken out and adjusted to a TOCSOO mg liter. Aeration in 1 liter of wastewater, gel weight The TOC removal rate per unit was determined.
  • a 100-mL sample of PVA-based hydrogel was collected in apparent volume (volume in water), and a 2 liter tall beaker (diameter 113 mm, height 2 mm) with # 80 sandpaper attached to the inner wall 50 mm), add pure water to make 1 liter, set the stirrer with stainless steel stirring blades shown in Fig. 9 and set it at 300 rpm at 20 ° C. It refers to the ratio of the volume of the hydrogel to the initially charged hydrogel, excluding the part worn by the stirring for 14 days from the hydrogel initially charged when stirred.
  • PVA average degree of polymerization: 400, degree of saponification: 99.5 mol 0 /.
  • Sodium alginate (“Duck Algin NSPL" manufactured by Kibun Food Chemifa) 1 weight 0 /.
  • a mixed aqueous solution of 0.25% by weight of sodium hydrogencarbonate was prepared at 70 ° C. The mixed aqueous solution was phase-separated in suspension and became cloudy. This phase separated liquid is sent at a speed of 5 milliliters Z using a roller pump equipped with a silicon tube with an internal diameter of about 5 mm and a nozzle with an internal diameter of 4 mm attached to the tip.
  • the mixture was added dropwise to an aqueous solution of calcium chloride at a concentration of 0.1 molnoliter at 22 ° C., which was stirred with a stirrer. At least the sodium alginate solidified and settled in the aqueous solution of chlorinated sodium chloride at the surface of the dropped droplet. The obtained solid was spherical.
  • a measurement of the volume retention rate and a nitrification test of ammonia were performed.
  • the measurement of the volume retention was performed in accordance with the measurement of the volume retention described above.
  • the hydrous gel that had been seeded with nitrifying sludge for one week was continuously acclimated at an ammonia concentration of 50 mg / 1, and evaluated by the rise of the nitrification rate, and the habitat of microorganisms was evaluated. investigated. Table 1 shows the results.
  • PVA average degree of polymerization: 400, degree of saponification: 99.5 mol%) 5 weight 0 /.
  • a 1% by weight of sodium alginate and 0.25% by weight of sodium hydrogencarbonate were mixed to prepare an aqueous solution (phase separation in suspension and cloudy), and the acetalization time was reduced to 60%.
  • a spherical hydrogel having a diameter of 4.3 mm was obtained in the same manner as in Example 1 except that the length was changed to minutes, and the mesh layer structure formed by entanglement of the fibrous materials was used as the surface layer.
  • the obtained hydrogel was freeze-dried, and the surface of the gel was observed with SEM as in Example 1. As shown in Fig. 5, a net-like structure formed by entanglement of fibrous materials with a diameter of 1 to 30 ⁇ m on the surface was observed. Table 1 shows the evaluation results of this gel.
  • PVA average degree of polymerization: 400, degree of saponification: 99.5 mol 0 /.
  • a water-containing gel having a diameter of 3.9 mm was produced in the same manner as in Example 1 except that the mixed aqueous solution was used instead of the phase separation liquid.
  • the obtained gel had a smooth surface because no phase separation liquid was used.
  • the evaluation results are shown in Table 1.
  • PVA average degree of polymerization 240, degree of saponification 99.8 mol./.
  • 1% by weight of sodium alginate and 0.3% by weight of sodium hydrogencarbonate A mixed aqueous solution (a cloudy turbid phase-separated suspension was prepared) was obtained in the same manner as in Example 1 except that the aqueous solution was used and a spherical hydrogel having a diameter of 3.7 mm was obtained. Table 1 shows the evaluation results.
  • PVA average degree of polymerization: 800, saponification degree: 99.3 mol%) 3.7 wt. /. , 1 weight of sodium alginate. /. And a 0.3% by weight mixed aqueous solution of sodium sulfate (phase separation in suspension and cloudiness) were prepared.
  • a spherical hydrogel having a diameter of 36 mm was obtained in the same manner as in Example 1 except that the gel was used. Table 1 shows the evaluation results.
  • the nitrification tank, denitrification tank and final sedimentation tank were arranged in this order from the wastewater introduction side to construct a wastewater treatment device as shown in Fig. 8.
  • the drainage of the total nitrogen 2 0 O mg ZL 0. 4 m 3 Z Date rate and is supplied to the nitrification tank was continuously treated for one year of time, the total nitrogen of the treated water is 1 0 ⁇ 1 5 mg ZL, SS was stable with 10 to 20 mg ZL.
  • Example 2 1 L of the carrier obtained in Example 2 was placed in a 10 L aeration tank and aerated, and wastewater of TOC 100 ppm was continuously introduced at 42 mL / min. A wire mesh with an aperture of 2 mm was attached to the outlet of the aeration tank to prevent the carrier from flowing out.
  • the TOC of the treated water after 10 days was 8.6 ppm and 7.5 ppm, respectively, indicating that sufficient treatment was performed.
  • the carrier was taken out, placed in a 20 L sealed container, and further 5 L of water was added. Air containing 10 ppm of hydrogen sulfide was flowed into the gas phase of this vessel for 10 L / min. After 5 minutes, ventilation was stopped and the vessel was sealed. After standing for 15 minutes, the gas phase was collected with a micro syringe and analyzed by gas chromatography. The hydrogen sulfide concentration was below the detection limit.
  • a PVA system composed of an outer layer having a crevice-like microporous surface on the surface and an inner layer having a dense three-dimensional network structure
  • a hydrogel can be obtained.
  • the hydrogel has excellent microbial capture and microbial habitability, and also has excellent durability such as abrasion resistance and mechanical strength.
  • it is suitable as a filter medium, a filler for chromatography, a cold insulator, a water insulator, a carrier for a bioreactor, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

An aqueous PVA gel having a structure comprising an outer layer having fine crevasse-like pores on the surface and an inner layer comprising a dense three-dimensional network structure. The aqueous gel can be produced by mixing a polymer solution containing a vinyl alcohol polymer having a degree of polymerization of 3,000 or higher and a polymer which gels upon contact with a cation with a substance capable of causing the polymer solution to undergo phase separation to thereby prepare a liquid having separated phases, contacting the phase-separated liquid with a cation-containing fluid to solidify at least the polymer constituting the surface of the phase-separated liquid, subsequently contacting the resultant solid with a gellant liquid for the vinyl alcohol polymer to cause it to gel, and conducting acetalization simultaneously with and/or after the gelation in such a manner that the acetalization is continued for a time sufficient to obtain a degree of acetalization of 50% or higher. The gel has excellent durability and can hence be advantageously used in wastewater treatment apparatuses operated under severe conditions, e.g., with vigorous agitation.

Description

明 細 ポリ ビニルアルコール系含水ゲル、 その製造方法及び排水処理装  Patent application title: Polyvinyl alcohol-based hydrogel, method for producing the same and wastewater treatment equipment
技術分野 Technical field
本発明は、 ポリ ビニルアルコール系含水ゲル (以下、 ポリ ビニ ルアルコールを P V A と略記する) 、 その製造方法及び排水処理 装置に関する。 さ らに詳しく は、 表面にク レバス状の微多孔を有 する外層と 、 緻密な三次元の網目構造からなる内層とから構成さ れた P V A系含水ゲル、 その製造方法及び排水処理装置に関する。 本発明の P V A系含水ゲルは機械的強度ゃ耐摩耗性などの耐久 性に優れているので、 高速撹拌下ゃ深槽など厳しい条件下で使用 される排水処理装置へ好ま しく適用される。 背景技術  The present invention relates to a polyvinyl alcohol-based hydrogel (hereinafter, polyvinyl alcohol is abbreviated as PVA), a method for producing the same, and a wastewater treatment apparatus. More specifically, the present invention relates to a PVA-based hydrogel comprising an outer layer having a crevass-like microporous surface and an inner layer having a dense three-dimensional network structure, a method for producing the same, and a wastewater treatment apparatus. Since the PVA-based hydrogel of the present invention is excellent in durability such as mechanical strength and abrasion resistance, it is preferably applied to wastewater treatment equipment used under severe conditions such as high-speed stirring and deep tanks. Background art
高分子ゲルは、 生体触媒の担体、 保水剤、 保冷剤、 眼 · 皮膚 - 関節などの生体ゲルの代替、 薬物の徐放材、 ァクチユエ一ターの 基材と して研究が盛んに行われている。 含水ゲルの原料と なる高 分子素材と しては、 寒天、 アルギン酸塩、 カラギーナン、 ポ リ ア ク リ ルア ミ ド、 P V A、 光硬化性樹脂などが知られているが、 こ れらの中でも機械的強度が高く親水性(含水性、微生物棲息性等) に優れている こ とから P V A系含水ゲルが検討されており 、 と く に こ のよ う な含水ゲルを担体と し、 微生物を固定化した生体触媒 と しての検討が注目 されている。  Polymer gels are being actively researched as biocatalyst carriers, water-retaining agents, cold-retaining agents, substitutes for biogels such as eyes, skin and joints, sustained-release materials for drugs, and base materials for actuators. I have. Agar, alginate, carrageenan, polyacrylamide, PVA, photocurable resin, etc. are known as high-molecular materials that can be used as raw materials for hydrogels. PVA-based hydrogel has been studied because of its high mechanical strength and excellent hydrophilicity (hydrous content, microbial habitability, etc.). In particular, such a hydrogel is used as a carrier to fix microorganisms. Attention is being paid to the study of biocatalysts.
微生物を固定化する ための担体と して使用 される含水ゲルに は、 微生物や水等を高度に保持できる こ と 、 微生物や微細物の捕 捉性が高いこ と等が要求されるが、 これらの要求性能を一層改善 する こ とが種々検討されている。 例えば、 特開平 7 — 4 1 5 1 6 号公報には、 P V A及びアルギン酸ナ ト リ ゥムを含む水溶液を—、 塩化カルシウム水溶液等に接触させて少なく と も表面のアルギ ン酸ナ ト リ ゥムを固化して成形し、 次いで凍結融解処理を繰り 返 してゲル化したり 、 P V A凝固液に接触させ、 ゲル化して P V A 系含水ゲルを製造する方法が開示されている。 Hydrous gel used as a carrier for immobilizing microorganisms It is required that microorganisms, water and the like can be maintained at a high level, and that the ability to capture microorganisms and fine substances is high. Various studies have been made to further improve the required performance. For example, Japanese Patent Application Laid-Open No. 7-41516 discloses that an aqueous solution containing PVA and sodium alginate is brought into contact with an aqueous solution of calcium chloride or the like so that at least the surface of sodium alginate is exposed. There is disclosed a method for producing a PVA-based hydrogel by solidifying and shaping a gel and then repeating a freeze-thaw treatment to form a gel or contact with a PVA coagulating liquid to form a gel and gel.
しかしながら、 P V A及びアルギン酸ナ ト リ ゥムを含む水溶液 を P V A凝固液に接触させてゲル化した含水ゲルは表面が平滑 であるため微生物の捕捉性が低く 、 また、 凍結融解処理によ り ゲ ル化した含水ゲルは、 表面にク レーター状の凹凸が形成される力 凹凸は該ゲルの内部に通じてお らず、 しかもゲルの表面付近に緻 密層が存在するため微生物はゲルの内部に侵入できず、 ゲルの表 面にしか棲息できなレ、。  However, an aqueous gel containing PVA and sodium alginate gelled by contacting the aqueous solution containing PVA with a coagulation solution of PVA has a smooth surface, and thus has a low ability to capture microorganisms. The hydrated gel has the ability to form crater-like irregularities on its surface. Irregularities are not communicated with the inside of the gel, and microbes are present inside the gel because of the presence of a dense layer near the gel surface. It cannot penetrate and can only live on the surface of the gel.
特開昭 6 3 - 1 7 9 0 4号公報には、 P V Aと 自然ゲル化促進 剤 (塩化ナ ト リ ゥム等) からなる混合水溶液を ト ルエ ン等の有機 溶剤中に分散造球して自然ゲル化させる と、 P V Aが混合水溶液 から析出 して相分離し、 不均一構造をと る こ と によ り 巨大多孔質 P V A粒子が得られる こ とが開示されている。 しかしながら、 力 かる方法によっても、 前記同様、 P V A凝固浴に接触させて得ら れるよ う な、 表面が平滑な含水ゲルしか得られなレ、 c Japanese Unexamined Patent Publication (Kokai) No. 63-179904 discloses that a mixed aqueous solution comprising PVA and a natural gelation accelerator (such as sodium chloride) is dispersed and ball-formed in an organic solvent such as toluene. It is disclosed that when natural gelation occurs, PVA precipitates out of the mixed aqueous solution and undergoes phase separation, resulting in a non-uniform structure, whereby macroporous PVA particles can be obtained. However, even by the force Cal method, the same, Do you'll give et al is in contact with the PVA coagulating bath surface such obtained only smooth hydrogel les, c
特開昭 6 3 - 2 7 6 4 8 8 号公報には、 P V A水溶液等に炭酸 水素ナ ト リ ゥム等を添加して微細な気泡を発生させ、 これに凍結 融解処理を施して P V Aをゲル化させる こ と が開示されている が、 気泡によ り形成される孔は 1 0 0 μ m以上と極めて大きいた め、 微生物は容易に内部に侵入でき るものの長期的に担持されな レヽ Japanese Unexamined Patent Publication (Kokai) No. 63-2766488 discloses that fine hydrogen bubbles are generated by adding sodium bicarbonate or the like to a PVA aqueous solution or the like, and the resulting PVA is subjected to a freeze-thaw treatment to produce PVA. Although it is disclosed that the gel is formed, the pores formed by the bubbles are extremely large at 100 μm or more. Therefore, although microorganisms can easily enter the interior, they are not supported for a long time.
特開平 7 — 2 5 1 1 9 0号公報には、 P V Aとアルギン酸ナ ト リ ゥムからなる混合液を、 短繊維が混合された塩化カルシウム水 溶液に滴下させ、 表面に短繊維が髭状に植え込まれた形態を有す るゲルを製造する方法が記載されている。 しかしなが ら、 かかる 方法で短繊維を付着させる とゲル物性が低下し、 しかも繊維が髭 状に存在するためゲル同志が絡み合ってゲルが損傷しやすく 、 さ らに多数の繊維を表面に存在させて網状構造を形成させる こ と ができないため、 微生物の捕捉性等の改善は不十分である。  Japanese Patent Application Laid-Open No. 7-251190 discloses that a mixed solution consisting of PVA and sodium alginate is dropped on a calcium chloride aqueous solution mixed with short fibers, and the short fibers are whisker-like on the surface. A method for producing a gel having a form implanted therein is described. However, when short fibers are adhered by such a method, the gel properties are reduced, and since the fibers are in a whisker-like shape, the gels are entangled with each other and the gel is easily damaged, so that more fibers are present on the surface. Therefore, the improvement of the ability to capture microorganisms is insufficient.
と ころで、 P V A系含水ゲルの製造に用いられる P V Aの重合 度および含水ゲルのァセタール化度に関して、 先行文献の中に好 適範囲を示唆する ものがある。 特開平 1 0 — 2 0 4 2 0 4号公報 には、 ポリ ビュルァセタール系樹脂を骨格とする連通気孔を有す る多孔性球状粒子の製造に用いられる P V Aの重合度 ;こ関して、 平均重合度が 5 0 0未満では高気孔率を有する も のを得る こ と が困難で、 3 8 0 0 を超える場合は水に溶解した場合に粘度が高 く なって混練などの工程で取り扱いが困難と なる こ と から、 平均 重合度が 5 0 0 〜 3 8 0 0 である ものが好適に使用 される こ と が述べられてお り ( 0 0 5 2段落参照) 、 また、 多孔性球状粒子 のァセタール化度に関しては、 3 0 〜 8 5 モル0 /。であれば、 耐微 生物侵食性の点で良好である こ とが述べられている ( 0 0 2 8段 落参照) 。 なお、 特開平 1 0 — 2 0 4 2 0 4号公報において、 実 施例および比較例で用いられている P V Aは、 いずれも重合度が 1 5 0 0である 3 実施例および比較例のもののァセタール化度は 示されていなレ、 = また、 特開平 1 0 — 2 6 3 5 7 6号公報に-は、 含水ゲルの製造 に用いられる P V Aの重合度に関して、 強度、 耐水性等の点から、 平均重合度 1 0 0 0以上、 特に 1 5 0 0以上のものが、 好適に使 用される こ とが述べられており ( 0 0 2 0段落参照) 、 また、 含 水ゲルのァセタール化度に関しては、 ゲルの耐水性及び微生物棲 息性等の点力 ら、 1 0 〜 6 5 モル0 /。、 特に 3 ◦〜 6 0 モル0 /。とす るこ とが好ま しいこ とが述べられている ( 0 0 4 7段落参照) 。 特開平 1 0 — 2 6 3 5 7 6 号公報において、 実施例および比較例 で用いられている P V Aは、 重合度 1 7 0 0 (実施例 1 、 3 、 比 較例 1 、 2 、 3 ) および重合度 4 0 0 0 (実施例 2 ) であ り 、 含 水ゲルのァセタール化度は、 3 9 % (実施例 1 ) 、 3 7 % (実施 例 2 ) 、 3 5 % (実施例 3 ) 、 4 0 % (比較例 1 ) 、 0 % (比較 例 2 、 3 ) である。 Meanwhile, there is a literature in the prior art that suggests an appropriate range for the degree of polymerization of PVA used in the production of PVA-based hydrogel and the degree of acetalization of the hydrogel. Japanese Patent Application Laid-Open No. H10-204024 discloses the degree of polymerization of PVA used for the production of porous spherical particles having interconnected pores having a polybutylacetal resin as a skeleton; If the degree is less than 50,000, it is difficult to obtain a material having a high porosity.If the degree is more than 380, the viscosity becomes high when dissolved in water, and it is difficult to handle in a process such as kneading. Therefore, it is described that those having an average degree of polymerization of 50,000 to 380 are preferably used (see paragraph 0502). Regarding the degree of acetalization, 30 to 85 mol 0 /. It is stated that if it is, then it is good in terms of microbial erosion resistance (refer to the 028 drop). In JP-A-10-204204, the PVAs used in Examples and Comparative Examples were those of Examples 3 and Comparative Examples in which the degree of polymerization was 150. The degree of acetalization is not shown, = Further, Japanese Patent Application Laid-Open No. 10-266357 discloses that, with respect to the degree of polymerization of PVA used for producing hydrogel, from the viewpoint of strength, water resistance, etc., the average degree of polymerization is 100,000 or more. In particular, it is stated that those having a molecular weight of 150 or more are preferably used (see paragraph 200), and the degree of acetalization of a hydrogel is determined with respect to the water resistance of the gel and the microorganisms. From the point strength of habitability, etc., 10 to 65 mol 0 /. And especially 3 ° to 60 mol 0 /. Is preferred (see paragraph 407). In Japanese Patent Application Laid-Open No. H10-26635776, PVA used in Examples and Comparative Examples has a degree of polymerization of 170 (Examples 1 and 3, Comparative Examples 1, 2, and 3). And the degree of polymerization was 400000 (Example 2), and the acetalization degree of the hydrogel was 39% (Example 1), 37% (Example 2), 35% (Example 3). ), 40% (Comparative Example 1) and 0% (Comparative Examples 2 and 3).
本件出願人による上記特開平 1 0 — 2 6 3 5 7 6 号公報の発 明に係る P V A系含水ゲルは、 通常の条件下での排水処理などに おいては充分その機能を発揮する ものである。 しかし、 含水ゲル の製造に平均重合度が 1 0 0 0以上の P V Aを用いても、 含水ゲ ルのァセタール化度が低い場合には、 激しい撹拌下ゃ深槽など厳 しい条件下で使用する場合、 耐摩耗性、 機械的強度など耐久性と いう点で必ずしも満足でき る ものではなかった。  The PVA-based hydrogel according to the invention of the present applicant in the above-mentioned Japanese Patent Application Laid-Open No. H10-2663576 can sufficiently exhibit its function in wastewater treatment under ordinary conditions. is there. However, even if PVA with an average degree of polymerization of 100 or more is used for the production of hydrous gel, if the degree of acetalization of hydrous gel is low, use it under severe conditions such as deep stirring under deep stirring. In such cases, they were not always satisfactory in terms of durability such as abrasion resistance and mechanical strength.
したがって、 本発明の 目的は、 微生物の捕捉性、 棲息性等の諸 性能に優れる と と もに、 耐摩耗性、 機械的強度にも優れる高耐久 性の P V A系含水ゲル、 その製造方法及び該含水ゲルを使用 した 排水処理装置を提供する こ とにある。 発明の開示 本発明者らは、 上記目的を達成するため鋭意検討を重ね、 本発 明に至った。 すなわち本発明は、 表面にク レバス状の微多孔を有 する外層と、 緻密な三次元の網目構造からなる内層と から構成さ れた P V A系含水ゲルである。 Therefore, an object of the present invention is to provide a highly durable PVA-based hydrated gel which is excellent in various properties such as microbial capture and habitability, and is also excellent in abrasion resistance and mechanical strength, and a method for producing the same. An object of the present invention is to provide a wastewater treatment device using a hydrogel. Disclosure of the invention The present inventors have conducted intensive studies to achieve the above object, and have reached the present invention. That is, the present invention is a PVA-based hydrogel comprising an outer layer having a crevass-like microporous surface and an inner layer having a dense three-dimensional network structure.
本発明のも う一つの発明は、 重合度が 3 0 0 0以上のビニルァ ルコール系ポリ マー (Aポリ マー) 及びカチオンとの接触によ り ゲル化する高分子 ( Bポリマー) を含む高分子溶液に、 これら高 分子溶液を相分離させう る物質 (物質 C ) を添加して相分離液を 調製し、 該相分離液をカチオン含有液に接触させて少なく と も相 分離液表面の Bポリ マーを固化させた後、 得られた固化物をビニ ルアルコール系ポリ マーに対して凝固能を有する凝固液に接触 させてゲル化させ、 ゲル化と 同時及び/又はゲル化後にァセター ル化処理を施すにあたり 、 5 0 %以上のァセタール化度が得られ る時間以上の時間でァセタール化処理を施す P V A系含水ゲル の製造方法である。  Another invention of the present invention is a polymer containing a vinyl alcohol-based polymer (A polymer) having a degree of polymerization of 300 or more and a polymer (B polymer) that gels by contact with a cation. A substance (substance C) capable of phase-separating the high-molecular solution is added to the solution to prepare a phase-separated liquid. After the polymer is solidified, the obtained solidified product is brought into contact with a coagulating liquid having a solidifying ability for the vinyl alcohol-based polymer to be gelled, and simultaneously with and / or after gelation This is a method for producing a PVA-based hydrogel, which is subjected to acetalization for a time not less than a time at which an acetalization degree of 50% or more is obtained.
P V A系含水ゲルの製造方法に関わる本願の上記発明は、 ( 1 ) 重合度が 3 0 0 0以上のビエルアルコール系ポリ マーを用 レ、る こ と 、  The invention of the present application relating to a method for producing a PVA-based hydrogel includes the following steps: (1) using a Bier alcohol-based polymer having a degree of polymerization of 300 or more,
( 2 ) ゲル化と 同時及び Z又はゲル化後にァセタール化処理を施 す際に、 5 0 %以上のァセタール化度が得られる時間を超える長 い時間のァセタール化処理を施すこ と、  (2) When the acetalization treatment is performed simultaneously with the gelation and after the Z or gelation, the acetalization treatment should be performed for a long period of time exceeding the time required for obtaining an acetalization degree of 50% or more.
とい う特徴を有してレ、る。 It has the following characteristics.
含水ゲルを製造するのに使用される P V Aと して、 平均重合度 が 3 0 0 0以上のものを用いる こ と によ り 、 強度、 耐水性等に優 れた P V A系含水ゲルが得られる: 工程性、 コ ス ト上の点から、 P V Aの平均重合度の上限は 2 0 0 0 0以下、 と く に 1 0 0 0 0 以下の P V Aを使用するのがよ り 好ま しい。 また、 耐水性等の点 からケン化度 9 5 モル%以上、 と く に 9 8 %以上、 さ らに 9 9 . 8 モル%以上とするのが好ま しい。 By using a PVA having an average degree of polymerization of 300 or more as a PVA used for producing a hydrogel, a PVA-based hydrogel excellent in strength, water resistance, etc. can be obtained. : From the viewpoint of processability and cost, the upper limit of the average degree of polymerization of PVA is 20000 or less, especially 100000 It is better to use the following PVA: From the viewpoint of water resistance, etc., the saponification degree is preferably at least 95 mol%, particularly preferably at least 98%, and more preferably at least 99.8 mol%.
ゲル化と 同時及び Z又はゲル化後にァセタール化処理する こ と によ り 、 後述のとお り 、 各相が収縮して隙間を生じるためク レ バス状の微多孔や三次元の網目構造を構成する細孔が形成され るが、 ァセタール化度を 5 0 %以上にまで高める こ と によって、 隙間が大き く なり 、 よ り 多く の微多孔や細孔が形成される。 すな わち、 重合度が 3 0 0 0以上の ビニルアルコ ール系ポ リ マーを用 いて、 P V A系含水ゲルを製造するにあた り 、 ァセタール化度を 5 0 %以上にまで高める こ とによって、 表面にク レバス状の微多 孔を有する外層と 、 緻密な三次元の網目構造からなる内層とから 構成された P V A系含水ゲルを容易に製造する こ と ができ るの である。 こ の表面にク レバス状の微多孔が形成された P V A系含 水ゲルでは、 微生物が容易に捕捉され、 また、 ゲルの内部の緻密 な三次元の網目構造によって、 機械的強度ゃ耐摩耗性に優れる。 P V Aのァセタール化度は、 ゲルの耐水性及び微生物棲息性等の 点カ ら 5 0 〜 8 0 モノレ 0 /。、 と く に 5 5 〜 7 5 モル 0 とするのが好 ま しい。 ァセタール化度は、 アルデヒ ド化合物及び酸の濃度、 反 応時間、 温度等によ り コ ン ト ロールする こ とができ る - 表面にク レバス状の微多孔を有する外層と 、 緻密な三次元の網 目構造からなる内層 と から構成された本発明の P V A系含水ゲ ノレにおける ク レバス状の微多孔と は、 走查電子顕微鏡 ( S E M ) によ り ゲルの表面に不定形形状の微細な裂け 目 が微多孔と して 観察され、 該微多孔がゲルの内部まで連通している構造をいう。 By performing acetalization treatment at the same time as gelation and after Z or gelation, as described later, each phase shrinks to form gaps, so that a cress-like microporous or three-dimensional network structure is formed. However, by increasing the degree of acetalization to 50% or more, the gaps become larger, and more micropores and pores are formed. That is, in producing a PVA-based hydrogel using a vinyl alcohol-based polymer having a degree of polymerization of at least 300, the acetalization degree must be increased to 50% or more. As a result, a PVA-based hydrogel composed of an outer layer having crevass-like micropores on the surface and an inner layer having a dense three-dimensional network structure can be easily produced. In this PVA-based hydrogel with crevassoidal microporosity formed on the surface, microorganisms are easily captured, and the mechanical strength and abrasion resistance are enhanced by the dense three-dimensional network structure inside the gel. Excellent. Asetaru degree of the PVA, the ignition et 5 0-8 0 Monore such water resistance and microbial habitat of the gel 0 /. It is particularly preferred to be 55 to 75 mole 0 . The degree of acetalization can be controlled by the concentration of the aldehyde compound and the acid, the reaction time, the temperature, etc.- The outer layer having crevass-like micropores on the surface and the dense three-dimensional The crevassoidal microporosity of the PVA-containing hydrogel of the present invention, which is composed of an inner layer having a network structure of, and a fine particle of irregular shape on the gel surface by scanning electron microscopy (SEM). A structure in which a crack is observed as microporous and the microporous communicates with the inside of the gel.
ク レバス の形状は不定形であるので、 ク レバス の形状を明確に 規定するこ とはできないが、 P V A系含水ゲ zレが微生物の捕捉性 及び棲息性に優れるためには、 該含水ゲルを凍結乾燥して 5 0 . 3倍の S E Mでゲルの表面を観察し、 表面の任意のいずれかの部 分における S E M写真において、 一辺 5 0 0 / mの正方形中に—少 なく と も 5個以上の微多孔が認められるのが好ま しい。 また、 ゲ ル表面の開口率は 1 〜 1 0 %であるのが好ま しい。 ゲル表面の開 口率は、 上記 S E M写真を 2 0 0 %に拡大し、 市販の画像解析ソ フ トを使用 し、 微多孔部分を抽出処理する こ と によって求める こ とができ る。 第 1 図は本発明の含水ゲルを凍結乾燥し、 ゲルの表 面を 5 0 . 3倍の S E X4で観察した写真であ り 、 第 2 図は 4 5 8 倍の S E Mで観察した写真である。 外層の厚さは特に限定される ものではないが、 あま り薄いと、 排水処理装置に投入して攪拌す る場合、 攪拌開始初期に剥離して しまい、 また、 あま り厚いと耐 久性に劣る傾向があるので、 1 0〜 3 0 μ m程度にするのが好ま しレ、。 Since the shape of the crevasse is indefinite, the shape of the crevasse must be clearly defined. Although it cannot be specified, in order for the PVA-based hydrogel to have excellent ability to capture and inhabit microorganisms, freeze-dry the hydrogel and observe the gel surface with a 50.3-fold SEM. In an SEM photograph of any part of the surface, it is preferable that at least 5 or more micropores are observed in a square having a side of 500 / m. Further, the opening ratio of the gel surface is preferably 1 to 10%. The opening ratio of the gel surface can be determined by enlarging the above SEM photograph to 200% and extracting the microporous portion using a commercially available image analysis software. Fig. 1 is a photograph obtained by freeze-drying the hydrogel of the present invention and observing the surface of the gel with a 50.3-fold SEX4, and Fig. 2 is a photograph observed with a SEM of a 4.58-fold. is there. The thickness of the outer layer is not particularly limited, but if it is too thin, it will peel off at the beginning of stirring when it is put into the wastewater treatment apparatus and is stirred, and if it is too thick, it will be durable. Since it tends to be inferior, it is preferable to set the thickness to about 10 to 30 μm.
本発明の P V A含水ゲルの内層は緻密な三次元の網目構造か らなっている。 緻密な三次元の網目構造とは、 ゲル表面のク レバ ス状の微多孔がゲル内部まで連通し、 各連通孔が立体的に相互に 連結している構造をい う 。 含水ゲルの連通孔の孔径は水銀圧入法 で測定する こ とができ る。 水銀圧入法とは、 真空引き したゲル試 料を水銀に浸し、 水銀にかける圧力を増して行き、 孔に侵入した 水銀の量と圧力の関係から孔径を求める方法である。 第 3図に本 発明の含水ゲルを水銀圧入法によ り 測定した水銀圧入曲線 1 と 細孔分布曲線 2 を示す。 水銀圧入曲線 1 は水銀の細孔への圧入容 積と細孔径の関係を示す曲線であ り 、 細孔分布曲線 2 は、 水銀圧 入曲線 1 を微分して求め られる ものである: 第 3 図においては 各々 2 回測定した結果である。 本発明の含水グルの微細孔の孔径 は、 このよ う な従来公知の水銀圧入法で測定して、 2 0 // m末満 であるのが機械的強度の観点から好ま しい。 第 3 図は含水ゲルの 細孔径分布が 8 μ mで極大を示す例である。 The inner layer of the PVA hydrogel of the present invention has a dense three-dimensional network structure. The dense three-dimensional network structure refers to a structure in which fine porosity in the form of a crevas on the gel surface communicates with the inside of the gel, and the communication holes are three-dimensionally interconnected. The pore size of the communicating hole of the hydrogel can be measured by the mercury intrusion method. The mercury intrusion method is a method of immersing a evacuated gel sample in mercury, increasing the pressure applied to the mercury, and calculating the pore size from the relationship between the amount of mercury that has penetrated the pores and the pressure. FIG. 3 shows a mercury intrusion curve 1 and a pore distribution curve 2 obtained by measuring the hydrogel of the present invention by the mercury intrusion method. Mercury intrusion curve 1 is a curve showing the relationship between mercury intrusion volume into pores and pore diameter, and pore distribution curve 2 is obtained by differentiating mercury intrusion curve 1: In the figure Each is the result of two measurements. The pore size of the micropores of the hydrous glue of the present invention is preferably less than 20 // m from the viewpoint of mechanical strength, as measured by such a conventionally known mercury intrusion method. Fig. 3 shows an example in which the pore size distribution of the hydrogel has a maximum at 8 µm.
内層の構造は均一である必要はなく 、 その部分部分で相違して いても よレ、。 また、 内層は単一の層である必要はなく 、 複数の層 から構成されていてもょレ、。 複数の層から構成されている方が微 生物の棲息性に優れるこ とがある。 本発明の P V A系含水ゲルの 内層は緻密な三次元の網目構造からなっているので、 微生物はゲ ル表面の微多孔からゲル内部に容易に侵入する こ とができ、 棲息 性もよレ、。 耐摩耗性の点から、 内層の厚さはゲルの最大直径の 9 5 %以上とするのが好ま しい。 第 4図は、 本発明の P V A系含水 ゲルの断面を 5 0 . 3倍の S E Mで観察した写真である。  The structure of the inner layer does not need to be uniform, and may differ in its parts. Also, the inner layer does not need to be a single layer, but may be composed of multiple layers. Sometimes composed of multiple layers may have better habitats for microorganisms. Since the inner layer of the PVA-based hydrogel of the present invention has a dense three-dimensional network structure, microorganisms can easily enter the inside of the gel from the microporous surface of the gel surface and have a good habitat. . From the viewpoint of abrasion resistance, it is preferable that the thickness of the inner layer be 95% or more of the maximum diameter of the gel. FIG. 4 is a photograph obtained by observing the cross section of the PVA-based hydrogel of the present invention with a 50.3-fold SEM.
本発明の別の発明は、 少なく と も、 微生物を固定化した生体触 媒を投入し、 排水中の有機物及び Z又は無機物を分解除去する排 水処理槽からなる排水処理装置において、 微生物を固定化するた めの担体が、 表面にク レバス状の微多孔を有する外層と、 緻密な 三次元の網 目構造からなる内層 と から構成された P V A系含水 ゲルである排水処理装置である。  Another invention of the present invention provides a wastewater treatment apparatus comprising at least a wastewater treatment tank into which a biocatalyst in which microorganisms are immobilized is injected and organic matter and Z or inorganic substances in the wastewater are decomposed and removed. The wastewater treatment device is a PVA-based hydrated gel in which the carrier for the formation is a PVA-based hydrated gel composed of an outer layer having a crevices-like microporous surface and an inner layer having a dense three-dimensional network structure.
本発明の P V A系含水ゲルを担体と し、 微生物を固定化して生 体触媒と して使用 した場合、 表面にク レバス状の微多孔が形成さ れているので、 微生物が容易に捕捉され、 また、 ゲルの内部が緻 密な三次元の網目構造からなっているので、 機械的強度ゃ耐摩耗 性に優れる。 したがって、 本発明の P V A系含水ゲルを担体と し て微生物を固定化した生体触媒を排水処理装置に投入して排水 処理を実施する と 、 ゲル内部に嫌気性菌が生息し、 外層及び内層 に好気性菌が生息する こ と によ り 、 一層優れ 浄化能が得られる c 図面の簡単な説明 When the PVA-based hydrogel of the present invention is used as a carrier, and the microorganisms are immobilized and used as a biocatalyst, the microorganisms are easily captured because the crevass-like microporous is formed on the surface. In addition, since the inside of the gel has a dense three-dimensional network structure, it has excellent mechanical strength and abrasion resistance. Therefore, when the biocatalyst in which microorganisms are immobilized using the PVA-based hydrated gel of the present invention as a carrier is put into a wastewater treatment device to carry out wastewater treatment, anaerobic bacteria inhabit inside the gel, and the outer layer and inner layer Aerobic bacteria Ri by the and this living, as simple c drawings obtained a more excellent purification performance described
第 1 図は、 本発明の P V A系含水ゲルの表面の 1 例を示す 5 Ό . 3倍の S E M写真であ り 、 第 2 図は、 本発明の P V A系含水ゲル の表面の 1 例を示す 4 5 8倍の S E M写真であ り 、 第 3 図は、 本 発明の P V A系含水ゲルの細孔径を水銀圧入法で測定した結果 であ り 、 第 4図は、 本発明の P V A系含水ゲルの断面の 1 例を示 す 5 0 . 3倍の S E M写真であ り 、 第 5 図は、 比較例 1 の P V A 系含水ゲルの表面を示す 5 0 . 3倍の S E M写真であ り 、 第 6 図 は、 本発明の排水処理装置の一例を示すフ ローチヤ一 トであ り 、 第 7 図は、 本発明の排水処理装置の排水処理槽を排水導入側から 脱窒槽、 硝化槽の順に配列した例であ り 、 第 8 図は、 本発明の排 水処理装置の排水処理槽を排水導入側から硝化槽、 脱窒槽の順に 配列 した例であ り 、 第 9 図は、 本発明の P V A系含水ゲルの体積 保持率を測定するのに使用する撹拌機に装着する攪拌羽根であ る。 発明を実施するための最良の形態  FIG. 1 is a 5.3 times SEM photograph showing an example of the surface of the PVA-based hydrogel of the present invention, and FIG. 2 is an example of the surface of the PVA-based hydrogel of the present invention. FIG. 3 is a SEM photograph at a magnification of 458 ×. FIG. 3 shows the results of measuring the pore size of the PVA-based hydrogel of the present invention by the mercury intrusion method. FIG. 4 shows the PVA-based hydrogel of the present invention. FIG. 5 is a 50.3 × SEM photograph showing one example of the cross section of FIG. 5, and FIG. 5 is a 50.3 × SEM photograph showing the surface of the PVA-based hydrogel of Comparative Example 1. FIG. 6 is a flow chart showing an example of the wastewater treatment apparatus of the present invention. FIG. 7 is an arrangement of the wastewater treatment tank of the wastewater treatment apparatus of the present invention in the order of a denitrification tank and a nitrification tank from the wastewater introduction side. FIG. 8 shows an example in which the wastewater treatment tanks of the wastewater treatment apparatus of the present invention are arranged in the order of the nitrification tank and the denitrification tank from the wastewater introduction side, and FIG. It is a stirring blade attached to a stirrer used for measuring the volume retention of the PVA-based hydrogel of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の P V A系含水ゲルに使用 される P V A系ポリ マーは、 ポリ 酢酸ビニル、 ポリ ピバリ ン酸ビ二ルなどのポリ カルボン酸ビ ニルエステル又はこれらの共重合体をケン化する こ と によ り 得 る こ とができる。 また、 t ーブチルビニルエーテルや ト リ メチル シ リ ルビニルエーテル、 ペンジノレビニルエーテルのよ う なビ二ル エーテルの単独重合あるいは共重合体 (ブロ ック共重合体、 グラ フ ト共重合体を含む) を分解する 二 と によっても得る こ とができ る。 The PVA-based polymer used in the PVA-based hydrogel of the present invention is obtained by saponifying a polyvinyl carboxylate such as polyvinyl acetate or polyvinyl pivalate or a copolymer thereof. Obtainable. In addition, homopolymerization or copolymers of vinyl ethers such as t-butyl vinyl ether, trimethylsilyl vinyl ether and penzinole vinyl ether (including block copolymers and graphite copolymers) Can also be obtained by decomposing You.
共重合体を構成する コモノ マー単位と しては、 例えば、 ェチ'レ ン、 プロ ピレン、 1 ープテ ン、 イ ソブテンな どのォレフ ィ ン類、 アク リ ル酸およびその塩、 アタ リ ノレ酸メ チル、 アク リ ル酸ェチル、 アタ リ ノレ酸 n プロ ピル、 ァク リ ノレ酸 i —プロ ピノレ、 ァク リ ノレ酸 n ブチル、 ア ク リ ル酸 i ーブチル、 アタ リ ノレ酸 t ブチル、 了 ク リ ノレ酸 2 —ェチノレへキシノレ、 アタ リ ノレ酸 ドデシノレ、 ァ ク リ ノレ酸 ォク タデシルな どのァク リ ル酸エステル類、 メ タ ク リ ル酸および その塩、 メ タ ク リ ノレ酸メ チル、 メ タ ク リ ノレ酸ェチル、 メ タ ク リ ノレ 酸 n プロ ピル、 メ タ ク リ ノレ酸 i プロ ピノレ、 メ タ ク リ ノレ酸 n — ブチノレ、 メ タ ク リ ノレ酸 i ー ブチノレ、 メ タ ク リ ノレ酸 t ブチノレ、 メ 夕 ク リ ノレ酸 2 —ェチノレへキシノレ、 メ タ ク リ ノレ酸 ドデシル、 メ 夕ク リ ノレ酸ォク タデシノレな どのメ タ ク リ ノレ酸エステル類、 ァ ク リ ノレア ミ ド、 N メ チルア タ リ ノレア ミ ド、 N ェチルアタ リ ノレア ミ ド、 N, N ジメ チルアタ リ ノレア ミ ド、 ジアセ ト ンアタ リ ノレア ミ ド、 アク リ ルア ミ ドプロ パンス ルホン酸およびその塩、 ア タ リ ノレア ミ ドプロ ピルジメ チルア ミ ンおよびその塩と 4級塩、 N メ チロ ー ルア ク リ ルア ミ ドおよ びその誘導体な どのア ク リ ルア ミ ド誘導 体、 メ タ ク リ ルア ミ ド、 N メ チルメ タ ク リ ノレア ミ ド、 N ェチ ノレメ タ ク リ ルア ミ ド、 N, N ジメ チノレメ タ ク リ ノレア ミ ド、 ジァ セ 卜 ン メ タ ク リ ルア ミ ド、 メ タ ク リ ノレア ミ ドプロ ノ ン ス ルホ ン酸 およびその塩、 メ タ ク リ ノレア ミ ドプロ ピルジメ チルァ ミ ンおよび その塩と 4級塩、 N メ チロールメ タ ク リ ルア ミ ドおよびその誘 導体などのメ タ ク リ ノレア ミ ド誘導体、 メ チルビニルエーテル、 ェ チノレビニノレエーテノレ、 n — プ ロ ピノレビニルエーテノレ、 i フ°口 ピ ノレ ビニルエーテノレ、 i ブチノレ ビニノレエーテノレ、 t ブチノレ ビ二 ノレェ——テノレ、 ベンジノレ ビニノレエ——テノレ、 ドデ ノレ ビ ノレエーテノレ、 ステア リ ルビニノレエーテルな どの ビニルエーテル類、 ァク リ 口 '二 ト リ ル、 メ タ タ リ ロ ニ ト リ ノレな どの二 ト リ ノレ類、 塩化ビニル、 塩 ィ匕ビユ リ デン、 フ ッィ匕ビニル、 フ ッ化 ビ二 リ デンな どのハロ ゲン 化ビニル類、 酢酸ァ リ ル、 塩化ァ リ ルなどのァ リ ル化合物、 マ レ ィ ン酸およびその塩とエステル、 ィ タ コ ン酸およびその塩とエス テル、 ビニル ト リ メ トキシシラ ンなどのビ二ノレシリノレ化合物、 酢 酸ィ ソプロぺニルなどを例示する こ とができ、 本発明の趣旨を損 なわない範囲で使用する こ とができる。 Examples of the comonomer units constituting the copolymer include olefins such as ethylene, propylene, 1-octene and isobutene, acrylic acid and its salts, and ata-linolenic acid. Methyl, ethyl acrylate, n-propyl acrylate, i-butyl acrylate, i-propynole, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, Crynoleic acid 2 —Acetyl acid esters such as ethynolehexyl olenoate, dodecinole atalinoleate, octadecyl acrylate, methacrylic acid and its salts, and methacrylate Methyl acid, methyl ethyl methacrylate, ethyl methacrylate, n-propyl, methacrylate i-propinole, metal acrylate, n-butynole, methacrylate oleate Butinore, Metal Metallic acid esters such as butyric acid butyric acid, methyl quinoleic acid 2—ethynolehexynoleic acid, dodecyl methacrylic acid, octadecinole methacrylic acid, and acrylic acid N, N-methylat-ino-rea, N-, N-dimethyl-at-no-rea, M-, di-aceton-at-ino-rea, acryl-amino-propane-sulfonic acid and its salts, Linoleamide propyl dimethylaminoamine and its salts and quaternary salts, acrylamide derivatives such as N-methylacrylamide and its derivatives, metalacrylamide, N Methyl methyl urea amide, N-methyl meth acryl amide, N, N dimethyl meth ole amide, diacet meth acryl amide, metal Crinorea midoprononsurone sulfonate and its salts, methanorinorea midopropirdimethylamine and its salts and quaternary salts, N-methylolmethacrylonitrile and its derivatives Tactinorea amide derivatives, methyl vinyl ether, ethynolebininoleatenole, n — propylinolevinylatenole, i-those pinole vinylateneole, i-butinole vinylinoleatene, t- butinole vinyl Nore—Tenore, Benzinole Vininolee—Tenore, Dode Nore Vinoleetenore, Stearylvininole ether, etc.Vinyl ethers, acetonitrile, etc. Vinyl compounds such as linoles, vinyl chloride, vinyl chloride chloride, vinyl chloride fluoride, vinylidene fluoride, and other halogenated vinyl compounds, aryl acetates, and aryl chlorides. Examples thereof include maleic acid and its salts and esters, itaconic acid and its salts and esters, vinylinolecinol compounds such as vinyltrimethoxysilane, and isopropionyl acetate. It can be used within a range that does not impair the gist of the present invention.
含水ゲルの形状は、 球状、 楕円状、 繊維状、 サイ コ ロ状、 フィ ルム状、 円柱状、 中空円筒状、 角型状、 棒状、 不定形等の所望の 形状とする こ とができる。 本発明の P V A系含水ゲルを生体触媒 を固定化するための担体と して使用する場合には、 耐久性、 充填 効果、 排水処理槽での流動性, 取扱性等の点で球状とするのが好 ま しレ、。 こ の時のゲノレの最大直径は 1 〜 1 O m m、 さ らに 3 〜 5 m mである のが、 汚泥との分離性、 微生物活性等の点から好ま し レヽ  The shape of the hydrogel can be a desired shape such as a sphere, an ellipse, a fiber, a psycho, a film, a column, a hollow cylinder, a square, a rod, and an irregular shape. When the PVA-based hydrogel of the present invention is used as a carrier for immobilizing a biocatalyst, it should be spherical in terms of durability, filling effect, fluidity in a wastewater treatment tank, handleability, and the like. Is preferred. At this time, the maximum diameter of the genole is preferably 1 to 1 Om m, and more preferably 3 to 5 m m from the viewpoints of separation from sludge and microbial activity.
本発明の P V A系含水ゲルは、 後述する よ う に、 所定量を、 内 壁に # 8 0 のサン ドペーパーを貼付した 2 リ ッ ト ノレの ト ール ビ 一力一に投入し、 水中で所定の攪拌を行ったと き、 1 4 日後の含 水ゲルの体積保持率が 5 0 %以上、 好ま しく は 7 0 %以上を示す ものが耐摩耗性及び機械的強度の点で望ま しい。 体積保持率とは、 最初に投入した含水ゲルから、 攪拌によって摩耗された部分を除 いた含水ゲルの最初に投入した含水ゲルに対する体積の割合を いう。 本発明の含水ゲルを排水処理に使用する場合には、 含水率 は高い方が好ま しいが、 強度の点からはゥュ ッ トベースで 5 0重 量%以上、 と く に 6 0重量%以上、 9 0重量%未満であるのが望 ま しい。 As described below, a predetermined amount of the PVA-based hydrated gel of the present invention is poured into a two-liter torby with a # 80 sandpaper adhered to the inner wall thereof, and When the agitation is carried out at a predetermined temperature, a gel having a volume retention of at least 50%, preferably at least 70% after 14 days is desirable in terms of abrasion resistance and mechanical strength. The volume retention ratio is the ratio of the volume of the hydrogel to the initially charged hydrogel, excluding the portion worn by stirring from the hydrogel initially charged. When the water-containing gel of the present invention is used for wastewater treatment, it is preferable that the water content is high, but from the viewpoint of strength, 50 units on a cut basis. % Or more, preferably 60% by weight or more and less than 90% by weight.
本発明の P V A系含水ゲルは、 耐摩耗性、 機械的強度などの点 で優れた効果を示し、 排水処理に好ま しく 適用されるが、 含水ゲ ノレに含まれる水の少なく と も一部を乾燥して使用 してもよ く 、 一 旦乾燥させた後に再度水に浸漬させて使用 してもよい。 水分の少 なく と も一部を除去する こ と によ り 軽量化して運搬が容易にな る。 勿論、 含水状態でゲルを活用するのみでなく 、 含水状態以外 の状態で活用 してもかまわない。 なお、 本発明における 「含水」 と は、 水を含む状態のみに限られず、 水と他の液体及び 7又は固 体の混合物を含む状態をも包含する。  The PVA-based hydrogel of the present invention exhibits excellent effects in terms of abrasion resistance, mechanical strength, and the like, and is preferably applied to wastewater treatment. However, at least a part of water contained in the hydrogel is used. It may be used after drying, or it may be used after being dried once and then immersed in water again. By removing at least a part of the water, the weight is reduced and transportation becomes easier. Of course, the gel may be used not only in a hydrous state but also in a state other than a hydrous state. The “water content” in the present invention is not limited to the state containing water, but also includes the state containing a mixture of water and other liquids and 7 or solids.
本発明の P V A系含水ゲルは、 前述したよ う に、 微生物を固定 化し、 生物触媒と して排水の処理に好適に使用されるが、 各種生 物化学反応を行わせて反応生成物を得るバイオリ ァク ター用の 担体ゃ濾材と しても優れた効果を示し、 さ らに表面積が顕著に増 大する こ と 力ゝら ク ロマ ト グラ フ ィ 一用の充填材と しても優れた 効果を示す。 また、 ク レバス状の微多孔を有する表面層が形成さ れて空隙が多く なる こ とから、 高い保水性が確保され、 保冷材、 保水材と しても優れた効果を示す。  As described above, the PVA-based hydrogel of the present invention immobilizes microorganisms and is suitably used as a biocatalyst in the treatment of wastewater, but a reaction product is obtained by performing various biochemical reactions. Excellent effect as a carrier and filter medium for bioreactors, and also has a remarkable increase in surface area.Excellent as a filler for power chromatography. The effect is shown. In addition, since a surface layer having a microporous shape in the form of crevasses is formed and the number of voids is increased, high water retention is secured, and excellent effects are also exhibited as a cold insulator and a water insulator.
カチオン、 好ま しく は多価金属イオンとの接触によ り ゲル化す る高分子 ( Bポリ マー) と しては、 ポリ エチレングリ コールおよ びその誘導体、 水溶性ポリ ウ レタ ンなどの水溶性合成高分子、 ァ ルギン酸およびその塩、 カラギーナン、 マンナン、 キ トサンなど の水溶性高分子多糖類が好ま しい。 勿論、 本発明の効果を損なわ ない範囲であれば、 これらを複数種併用 してもかまわない。 これ らの中でも水溶性高分子多糖類は、 カチオンと の接触によ り ゲル 化する性質を有している ものが多く 、 さ らに成形性に優れている こ とから と く に好ま しい。 また、 カチオンに対して凝固能を有す る官能基で変性したィ タ コ ン酸変性、 マ レイ ン酸変性 P V Aを B ポリ マーと して使用 してもよレ、。 なかでもアルギン酸のアルカ リ 金属塩、 と く にアルギン酸ナ ト リ ウムは、 成形性、 網状構造形成 性とい う点で好適である。 Examples of the polymer (B polymer) that gels upon contact with a cation, preferably a polyvalent metal ion, include water-soluble synthetic compounds such as polyethylene glycol and its derivatives, and water-soluble polyurethane. Preferred are polymers, water-soluble polysaccharides such as arginic acid and its salts, carrageenan, mannan and chitosan. Of course, a plurality of these may be used in combination as long as the effects of the present invention are not impaired. Of these, water-soluble high molecular polysaccharides are gelled by contact with cations. Many of them have the property of becoming plastic, and are particularly preferable because of their excellent moldability. In addition, it is also possible to use itaconic acid-modified or maleic acid-modified PVA modified with a functional group capable of coagulating cations as a B polymer. Among them, alkali metal salts of alginic acid, particularly sodium alginate, are suitable in terms of moldability and network structure formation.
高分子溶液中の Aポリ マーの濃度は、 ゲル基材の強度面からは 大きい方が好ま しく 、微生物の棲息性からは小さい方が好ま しい。 したがって、 Aポリ マーの溶液濃度は 1 〜 4 0重量%が好ま しく 、 3 〜 2 0重量。 /。がよ り好ま しい。 ゲル成形性の点からは Bポリ マ 一の溶液濃度は 0 . 2 〜 4重量%、 さ らに 0 . 5 〜 2重量%とす るのが好ま しい。  The concentration of the A polymer in the polymer solution is preferably higher from the viewpoint of the strength of the gel base material, and is preferably lower from the viewpoint of microbial habitability. Therefore, the solution concentration of the A polymer is preferably 1 to 40% by weight, and more preferably 3 to 20% by weight. /. Is more preferred. From the viewpoint of gel moldability, the concentration of the B polymer solution is preferably 0.2 to 4% by weight, and more preferably 0.5 to 2% by weight.
Aポリ マーと Bポリ マーの配合割合 (重量比) は、 成形性、 網 状構造形成性、 ゲル強度等の点から 1 0 0 0 . 2 〜 3 0、 と く に 1 0 0 7 1 〜 2 0程度とするのが好ま しく 、 ポリ マー濃度は 1 〜 5 0重量%程度とするのが好ま しい。 本発明においては、 Aポ リ マ一と Bポリ マーを含む混合液を用いるのが好ま しいが、 勿論 Aポリ マ ー及び Bポリ マ ー以外のポリ マ ー 、 添加物等を必要に応 じて添加してもかまわない。 例えば、 微生物の培地、 ゲルの強度 を上げるための補強材、 比重を調整するための充填剤等を添加し てもよい。  The mixing ratio (weight ratio) of the A polymer and the B polymer is from 100.2 to 30 in view of moldability, network structure forming property, gel strength, etc. The concentration is preferably about 20 and the polymer concentration is preferably about 1 to 50% by weight. In the present invention, it is preferable to use a mixed solution containing the A polymer and the B polymer, but it is needless to say that a polymer other than the A polymer and the B polymer, an additive, and the like are used as necessary. May be added. For example, a microorganism medium, a reinforcing material for increasing the strength of the gel, a filler for adjusting the specific gravity, and the like may be added.
溶媒と しては工程性等の点で水が通常用いられるが、 場合に応 じて各種の溶剤水溶液を用いてもよレ、。 このよ う な溶剤と しては、 例えばエチレング リ コール、 グ リ セ リ ン、 ポ リ エチ レング リ コー ノレ等のアルコール、 ジメ チノレ スルホキシ ド、 ジメ チルホルムア ミ ド、 ジエチレン ト リ ア ミ ン等をあげる こ と ができ 、 これ らの 1 種 または 2種以上を混合して使用する こ とがで る。 さ らにロダン 塩水溶液等を用いてよレ、。 主成分が水である溶媒を用いる場合に は、 Bポリ マーと して水溶性高分子、 と く に水溶性高分子多糖類 を用いるのが好ま しい。 溶液温度は、 ポリ マーの熱安定性、 溶液 粘度等の点で 1 0 〜 1 0 0 °C程度、 と く に 2 0 〜 8 0 程度とす るのが好ま しレ、。 As the solvent, water is usually used in terms of processability and the like, but various aqueous solutions of the solvent may be used depending on the case. Examples of such a solvent include alcohols such as ethylene glycol, glycerin, polyethylene glycol, dimethinole sulfoxide, dimethylformamide, and diethylenetriamine. One of these Or a mixture of two or more types can be used. In addition, use an aqueous solution of rodan salt or the like. When a solvent whose main component is water is used, it is preferable to use a water-soluble polymer, particularly a water-soluble polysaccharide, as the B polymer. The solution temperature is preferably about 10 to 100 ° C, particularly about 20 to 80, in terms of the thermal stability of the polymer and the solution viscosity.
本発明の P V A系含水ゲルの外層を形成させる上では、 Aポリ マ ー及び Bポ リ マ ーを含む混合液を相分離させる こ と が極めて 重要である。 以上のこ とから、 Aポリ マー及び Bポリ マーを含む 混合液に、 これら高分子を相分離させう る物質 (物質 C ) を添加 して相分離液を製造する。 物質 C と してはと く に限定されないが 塩類が好適に使用できる - なかでも少量の添加で高分子の相分離 が生じ、 成形性ゃァセタール化などへの影響が少ない点で、 2価 以上のァニオンを含有する塩類が好ま しい。 この場合、 多価金属 イオンと の接触によ り ゲル化する高分子 B と して、 ゲル形成性及 び相分離液形成性等の点からアルギン酸ナ ト リ ゥムを用いるの がと く に好ま しい。  In forming the outer layer of the PVA-based hydrogel of the present invention, it is extremely important to phase-separate a mixed solution containing the A polymer and the B polymer. Based on the above, a substance (substance C) that allows phase separation of these polymers is added to a mixed solution containing the A and B polymers to produce a phase separated liquid. The substance C is not particularly limited, but salts can be preferably used.- Among them, divalent or more, since addition of a small amount causes phase separation of the polymer and has little effect on moldability and acetalization. Salts containing anion are preferred. In this case, it is particularly preferable to use sodium alginate as the polymer B that gels by contact with polyvalent metal ions from the viewpoints of gel forming property and phase separation liquid forming property. I like it.
塩類の具体例と しては、 炭酸ナ ト リ ウム、 炭酸カ リ ウム、 炭酸 カルシウム、炭酸アンモニゥム、炭酸マグネシウムなどの炭酸塩 ; 炭酸水素ナ ト リ ゥム、 炭酸水素カ リ ゥム、 炭酸水素アンモニゥム、 炭酸水素カルシウム、 炭酸水素マグネシウムなどの炭酸水素塩 ; 硫酸ナ ト リ ウム、 硫酸カ リ ウム、 硫酸ア ンモニゥム、 硫酸マグネ シゥムなどの硫酸塩 ; リ ン酸ナ ト リ ウム、 リ ン酸カ リ ウム、 リ ン 酸アンモニゥム、 リ ン酸マグネシウムなどの リ ン酸塩などをあげ る こ とができる。 塩化ナ ト リ ゥム、 塩化カ リ ゥムなどのハロゲン 化物の塩でもよい: これらは複数種併用 してもかまわない。 と く に溶解性、 コス ト、 成形工程後の残留が少な.い点等かち、 炭酸水 素塩、 硫酸塩を用いるのがよ り 好ま しい。 Bポリマーと して、 'ァ ルギン酸ナ ト リ ゥムを用いている場合には、 物質じ と して炭酸水 素ナ ト リ ゥム及び Z又は硫酸ナ ト リ ゥムを用いるのが好ま しい。 Specific examples of the salts include carbonates such as sodium carbonate, potassium carbonate, calcium carbonate, ammonium carbonate, magnesium carbonate; sodium hydrogen carbonate, potassium hydrogen carbonate, hydrogen carbonate and the like. Bicarbonates such as ammonium, calcium bicarbonate and magnesium bicarbonate; sulfates such as sodium sulfate, potassium sulfate, ammonium sulfate, magnesium sulfate; sodium phosphate, calcium phosphate Examples include phosphates such as lithium, ammonium phosphate, and magnesium phosphate. A halide salt such as sodium chloride or potassium chloride may be used. These may be used in combination of two or more kinds. Special It is more preferable to use hydrogen carbonate or sulfate because of its low solubility, low cost, and little residue after the molding process. When sodium alginate is used as the B polymer, it is preferable to use sodium hydrogen carbonate and sodium or sodium sulfate as the substance. New
高分子を相分離させう る物質の添加量は、 高分子溶液に対して 0 . 0 1 〜 1 重量%程度とするのが好ま しい。 なお、 本発明にい う相分離と は、 少なく と も Aポリ マーと Bポリ マーを含む均一溶 液に物質 Cを添加する こ とによ り 、 特定の組成を有する複数の溶 液相に分離する現象をいい、 生成した不均一な混合液を相分離液 と レ、う。 相分離は、 少なく と も Aポリ マ一及び Bポリ マ一を含む 溶液に物質 C を添加 して十分混合 した状態での吸光度を吸光分 析計 ( 6 6 0 n m ) を用いて測定し、 物質 Cの添加量と吸光度の 関係をプロ ッ ト したと き、 吸光度の上昇率が急激に増大している こ と によ り確認する こ とができる。 また、 6 0 °Cで 1 〜 7 日間放 置して混合液が 2層以上に分離している こ と を 目視で観察する こ とによつても確認する こ とができ る:. 工程性等の点からは、 A ポ リ マーと Bポ リ マーの混合水溶液に物質 C を添加する のが好 ま しいが、 勿論これらの添加順序を変更してもかまわない。  The amount of the substance that causes phase separation of the polymer is preferably about 0.01 to 1% by weight based on the polymer solution. The phase separation according to the present invention is defined as adding a substance C to a homogeneous solution containing at least an A polymer and a B polymer to obtain a plurality of solution phases having a specific composition. This refers to the phenomenon of separation. The resulting heterogeneous mixture is called the phase separation liquid. The phase separation is measured by using an absorption spectrometer (660 nm) to measure the absorbance of a solution containing at least the A polymer and the B polymer, adding the substance C to the solution, and thoroughly mixing the substances. When the relationship between the amount of C added and the absorbance was plotted, it can be confirmed from the rapid increase in the absorbance increase rate. It can also be confirmed by visual observation that the mixture has been separated into two or more layers by leaving it at 60 ° C for 1 to 7 days. From the viewpoint of the above, it is preferable to add the substance C to the mixed aqueous solution of the A polymer and the B polymer, but of course, the order of adding these substances may be changed.
ク レバス状の微多孔の大き さ、 開口率、 内層の微細孔の大き さ を調整するには、 相分離の程度、 高分子の配合比 · 粘度比、 混合 条件、 混合液の温度、 物質 Cの種類及び添加量、 凝固温度等を調 整すればよレ、。 また、 Aポリマーと Bポリ マーの相分離液は、 例 えば Aポリ マーが P V A (重合度 4 0 0 0、 ケン化度 9 9 . 5 モ ル% ) 、 Bポリ マーがアルギン酸ナ ト リ ウムの場合、 Aポリ マー 及び Bポリ マーの混合相 と、 Aポリ マー又は Bポリ マーの実質的 な単独相によ り構成される: こ の と き分離相間の粘度、 界面エネ ルギ一、 比重等を近似させる こ と によ り 、 微分散が生じて外層を 構成するク レバス状の微多孔の直径が小さ く なる と推測される。 To adjust the size of the crevassed microporous material, the aperture ratio, and the size of the micropores in the inner layer, the degree of phase separation, the blending ratio of the polymer and the viscosity ratio, the mixing conditions, the temperature of the mixed solution, and the substance C Adjust the type and amount of coagulation, coagulation temperature, etc. The phase separation liquid of the A polymer and the B polymer is, for example, PVA (polymerization degree: 400, saponification degree: 99.5 mol%) for the A polymer, and sodium alginate for the B polymer. In the case of the above, it is composed of a mixed phase of the A and B polymers and a substantially single phase of the A or B polymer: the viscosity and interfacial energy between the separated phases It is presumed that by approximating lugi, specific gravity, etc., fine dispersion occurs and the diameter of the crevasse-shaped microporous forming the outer layer becomes smaller.
次に、 得られた相分離液をカチオン含有液、 好ま しく は多価金 属イ オン含有液に接触させる。 こ の と き相分離液を十分混合じて 均一分散液と した後にカチオン含有液に接触させるのがゲル構 造を均一にする上で好ま しい。 用いるカチオンの例と しては、 力 ノレシゥムイ オン、 マグネシウムイ オン、 ス ト ロ ンチウムイオン、 ノく リ ゥムイ オンな どのアルカ リ 土類金属イ オン、 アルミ ニウムィ オン、 ニ ッケルイオン、 セ リ ウムイ オンな どの多価金属イオン、 カ リ ウムイ オン、 アンモニ ゥムイ オンな どが挙げられ、 これら複 数種を用いてもかまわない。 溶媒と しては、 工程性の点で水が通 常用いられる。  Next, the obtained phase separation liquid is brought into contact with a cation-containing liquid, preferably a polyvalent ion-containing liquid. At this time, it is preferable to sufficiently mix the phase separation liquid to form a uniform dispersion and then contact the cation-containing liquid in order to make the gel structure uniform. Examples of cations used include alkaline earth metal ions such as potassium ion, magnesium ion, strontium ion, and nitrogen ion, aluminum ion, nickel ion, and cerium ion. Any polyvalent metal ion, potassium ion, ammonium ion, etc. may be mentioned, and a plurality of these may be used. As a solvent, water is usually used in terms of processability.
コス ト、 取扱性、 ゲル形成性等の点から、 Aポリマーに対して 塩化カルシウムを用いるのがよ り 好ま しく、 このと きの Bポリ マ 一をアルギン酸ナ ト リ ゥムとする組み合わせで用いる と 、 成形性 に優れ、 かつク レバス状の微多孔が表面に形成されたゲルが得ら れる こ とから と く に好適に使用される。 カチオン濃度は 0 . 0 5 〜 :! モル/ リ ッ トル、 と く に 0 . 1〜◦ . 5 モル/リ ッ トノレ程度 とするのがゲル成形性等の点で好ま しい。  From the viewpoints of cost, handleability, gel forming property, etc., it is more preferable to use calcium chloride for the A polymer, and to use the B polymer at this time in combination with sodium alginate. It is particularly preferably used because it has excellent moldability, and a gel having a fine pore in the form of crevasse on the surface is obtained. The cation concentration is 0.05 to:! It is preferable to set the molar ratio to about 0.1 to about .5 mol / litre, particularly from the viewpoint of gel formability.
相分離液をカチオン含有液に接触させるこ と によ り 、 少なく と も相分離液の表面に存在する Bポ リ マーが固化する こ と によ り ゲルが形成される。 ゲルの形状を球状と したい場合には、 カチォ ン含有液に相分離液を滴下又は嘖霧すれば表面張力によ り 容易 に球状ゲルが得られる。 このと き 、 押出ノ ズルを用いて滴下する のが好ま しい。 押出ノ ズルの直径は適宜設定すればよ く 、 直径 1 〜 1 0 m m程度のものを使用すればよレ、。 次いで、 これを凝固液に接触させて内部までゲル化させる こ と によ り所望のゲルが得られる。 先の工程で少なく と も表面の B 'ポ リ マ ーは固化していたが、 凝固液に接触させる こ と によ り Aポリ マ 一がゲル化して、 Aポリマー及び Bポリ マーからなるゲルが得 られ、 好ま しく は、 かかるゲルに含まれる Bポリ マーの一部又は 全部を除去する こ と によ り 、 本発明のゲルを得る こ と ができる。 By bringing the phase separation liquid into contact with the cation-containing liquid, a gel is formed by solidifying at least the B polymer present on the surface of the phase separation liquid. If it is desired to make the gel into a spherical shape, a spherical gel can be easily obtained by dropping or atomizing the phase separation liquid into the liquid containing cations due to surface tension. At this time, it is preferable to use an extrusion nozzle to drip. The diameter of the extruded nozzle may be appropriately set, and a diameter of about 1 to 10 mm may be used. Next, this is brought into contact with a coagulating liquid to gel the inside to obtain a desired gel. At least the B 'polymer on the surface was solidified in the previous step, but the A polymer gelled by contact with the coagulating liquid, and the gel composed of the A polymer and the B polymer Preferably, the gel of the present invention can be obtained by removing part or all of the B polymer contained in the gel.
Bポリ マーを除去する方法は、 Aポリ マーを溶解しない限り と く に限定されず、 アルカ リ金属塩を含む水溶液で処理した り 、 長 時間放置して微生物で分解させればよい。 例えば、 成形物を水酸 化ナ ト リ ウム水溶液 ( 1 m o 1 Zリ ッ トノレ、 3 ◦ °C ) に 2 4時間 浸漬する こ と によ り ほぼ完全に Bポ リ マーを除去する こ と がで さ る。  The method for removing the B polymer is not particularly limited as long as the A polymer is not dissolved, and may be treated with an aqueous solution containing an alkali metal salt or left for a long time to be decomposed by microorganisms. For example, the B polymer is almost completely removed by immersing the molded product in a sodium hydroxide aqueous solution (1 mo 1 Z lit., 3 ° C) for 24 hours. Is out.
Bポリ マーを除去する こ と によ り 、 外層のク レバス状の微多孔 がさ らに多く 形成され、 またゲル内部にも微細孔が相互に連結さ れた三次元の網目構造の細孔容積が増大し、 また微生物付着性 - 棲息性、 液体透過性等の点でも優れた効果が得られる。 かかる効 果を十分発現させるためには、 Bポリ マーの 5 0重量%以上、 と く に 8 0重量%以上除去するのが好ま しいが、 場合によっては B ポリ マーを実質的に除去する こ と なく使用 してもよい。 使用当初 は Bポリ マーの一部又はすべてが残存している場合であっても、 時間の経過と と もに微生物やアル力 リ 等によ り B ポ リ マーが除 去されるため、 Bポリ マーの除去を目的と した工程については目 的に応じて設ければよい。  By removing the B polymer, more crevasse-shaped micropores are formed in the outer layer, and pores with a three-dimensional network structure in which micropores are interconnected also inside the gel. Increased volume and excellent effects in terms of microbial adhesion-habitability, liquid permeability, etc. In order to sufficiently exhibit such effects, it is preferable to remove 50% by weight or more, particularly 80% by weight or more of the B polymer, but in some cases, the B polymer is substantially removed. It may be used without any modification. Even if some or all of the B polymer remains at the beginning of use, the B polymer is removed over time by microorganisms, alcohol, etc. The step for removing the polymer may be provided according to the purpose.
外層にク レバ ス状の微多孔が形成される理由及び内層に微細 孔が相互に連結された三次元の網 目構造が形成される機構を必 ずしも明確に説明する こ と はできないが、 前述したよ う に、 Aポ リ マーと Bポリマーの相分離液は、 Aポリマ 及び Bポリマーか らなる混合相 と Aポリ マーのみからなる単独相から構成されて おり 、 Aポリ マー 1 w t %程度及び Bポリ マ 一 2 w t %程度から なる該混合相と、 耐久性に影響する と思われる Aポリ マー 1 0_ w t %程度からなる該単独相は、 互いに連続して相互侵入し、 密着 した状態になっているが、 カチオン含有液と接触する こ とによ り 、 混合相が固定化され、 ァセタール化処理する こ と によ り 、 各相が 収縮して隙間を生じるためク レバス状の微多孔や三次元の網目 構造を構成する細孔が形成される と考えられ、 さ らに Bポリ マー を除去する こ と によ り 、 Bポリ マーが存在していた部分が隙間と なり 、 よ り 多く の微多孔や細孔が形成される ものと推察される。 Although it is not always possible to clearly explain the reason why the fine pores in the form of crevass are formed in the outer layer and the mechanism in which the three-dimensional network structure in which the micropores are interconnected are formed in the inner layer, As mentioned earlier, A The phase separation liquid of the polymer and the B polymer is composed of a mixed phase composed of the A polymer and the B polymer and a single phase composed of only the A polymer, and is composed of about 1 wt% of the A polymer and 2 wt% of the B polymer. % Of the mixed phase, and the single phase of about 10 _ wt% of the A polymer, which is considered to affect the durability, are continuously interpenetrated with each other and are in close contact with each other. By contacting with the cation-containing liquid, the mixed phase is immobilized, and by acetalization, each phase shrinks to form gaps, resulting in crevasse-like microporous or three-dimensional networks. It is considered that pores constituting the structure are formed, and by further removing the B polymer, the portion where the B polymer was present becomes a gap, so that more microporous and It is presumed that pores are formed.
ビニルアルコ ール系ボ リ マーに対して凝固能を有する凝固液 と しては、 硫酸ナ ト リ ウム、 硫酸アンモニゥム、 硫酸カ リ ウム、 硫酸マグネシウム、 硫酸アルミ ニウム、 クェン酸ナ ト リ ウム、 ク ェン酸ァンモニゥム、 クェン酸カ リ ウム、 クェン酸マグネシウム、 クェン酸アルミ ニウム、 酒石酸ナ ト リ ゥム、 酒石酸アンモニゥム、 酒石酸カ リ ウム、 酒石酸マグネシウム、 酒石酸アルミ ニ ウム等の 化合物の う ち 1 種以上を含有する液体をあげる こ とができ、 凝固 能が高い点等から硫酸ナ ト リ ゥム水溶液を使用する のが好ま し レ、。 濃度は 5 0 g Z リ ッ トル以上、 と く に 1 0 0 g / リ ッ トル以 上にするのが好ま しく 、 飽和芒硝水溶液を用いるのがよ り好ま し レヽ  Examples of the coagulating solution having a solidifying ability for vinyl alcohol-based polymers include sodium sulfate, ammonium sulfate, potassium sulfate, magnesium sulfate, aluminum sulfate, sodium citrate, and copper sulfate. One kind of compounds such as ammonium citrate, potassium citrate, magnesium citrate, aluminum citrate, sodium tartrate, ammonium tartrate, potassium tartrate, magnesium tartrate, and aluminum tartrate It is preferable to use an aqueous solution of sodium sulfate because of its high solidification ability and other liquids containing the above. The concentration is preferably at least 50 g Z liter, more preferably at least 100 g / liter, and more preferably an aqueous saturated sodium sulfate solution.
P V A系ゲルの耐水性を向上させるために、 製造工程中のあら ゆる工程で架橋処理等の処理を行ってもかまわない。 と く に処理 操作が平易でかつ耐水性が大き く 改善されるァセタール化処理 を導入するのが好ま しい: ァセタール化処理はどの工程で行って も良いが、 凝固液による凝固 (ゲル化) と 同時及び Z又はゲル化 後に施すのが好ま しく 、 工程性の点からは凝固と同時にァセダ一 ル化処理を施すのが好ま しい。 In order to improve the water resistance of the PVA-based gel, a treatment such as a cross-linking treatment may be performed at any step in the production process. In particular, it is preferable to introduce an acetalization treatment that is easy to operate and greatly improves the water resistance. However, it is preferable to apply it at the same time as coagulation (gelation) with a coagulation liquid and after Z or gelation. From the viewpoint of processability, it is preferable to perform an acedalization treatment at the same time as coagulation.
ァセタール化処理は、 アルデヒ ド化合物および酸を含む水溶液 を用いるのが好ま しいが、 工程性の点からは凝固液中にァルデヒ ド化合物を配合して凝固 (ゲル化) と 同時にァセタール化処理を 行う のが好ま しい。 この場合、 アルデヒ ド化合物や酸の存在下で 含水ゲルが膨潤したり 溶解するのを、 P V A凝固液が存在するこ とによって効果的に防止できるためよ り優れた効果が得られる。 アルデヒ ド化合物と しては、 グ リ オキザール、 ホルムアルデヒ ド、 ベンズァノレデヒ ド、 ス ク シンァノレデヒ ド、 マ ロ ンジアルデヒ ド、 グノレタルァノレデヒ ド、 アジピンアルデヒ ド、 テ レフタノレアル デヒ ド、 ノ ナンジアールな どの各種アルデヒ ド化合物又はそのァ セタール化物を好適に使用するこ とができ、 と く にホルムアルデ ヒ ド、 グリ オキザーノレ、 マ ロ ンジァノレデヒ ド又はそのァセタール ィ匕物、 グルタルァルデヒ ドが好ま しレ、。  For the acetalization treatment, it is preferable to use an aqueous solution containing an aldehyde compound and an acid. However, from the viewpoint of processability, the aldehyde compound is blended into the coagulation solution and the acetalization treatment is performed simultaneously with coagulation (gelation). Is preferred. In this case, the swelling or dissolution of the hydrogel in the presence of the aldehyde compound or the acid can be effectively prevented by the presence of the PVA coagulating liquid, so that a more excellent effect can be obtained. Examples of the aldehyde compounds include glyoxal, formaldehyde, benzanoledide, succinanoledaldehyde, malonaldehyde, gnoletaranoledaldehyde, adipine aldehyde, telefanolaldehyde, nonanandial, and the like. Various aldehyde compounds or their acetalized compounds can be suitably used, and in particular, formaldehyde, glyoxazane, malondianoledide or its acetylated glutaraldehyde, and glutaraldehyde are preferred.
酸と しては、 硫酸、 塩酸、 硝酸などの強酸や、 酢酸、 ギ酸、 シ ユウ酸、 リ ン酸などの弱酸や硫酸水素ナ ト リ ゥム、 硫酸水素アン モニゥムなどの酸性塩等を使用する こ とができ るが、 これらのな かでも強酸、 と り わけ硫酸を用いるのが好ま しレ、。  As the acid, use a strong acid such as sulfuric acid, hydrochloric acid, or nitric acid, a weak acid such as acetic acid, formic acid, oxalic acid, or phosphoric acid, or an acid salt such as sodium hydrogen sulfate or ammonium hydrogen sulfate. Of these, strong acids, especially sulfuric acid, are preferred.
凝固後に例えばホルムアルデヒ ドと硫酸によ り ァセタール化 処理を行う場合の反応液のアルデヒ ド化合物の濃度は 0 . 0 1 g /リ ッ トル以上、 酸濃度は 0 . 5 〜 3 0 0 g Zリ ッ トノレとするの が好ま しい。 また凝固と 同時にァセタール化処理を施す場合には、 アルデヒ ド化合物の濃度は 0 . 0 5 〜 2 0 0 g Zリ ッ トル、 酸濃 度 1 〜 1 0 0 g Zリ ッ トノレとするのが好ま しく 、 この と き凝固剤 と して硫酸ナ ト リ ゥムを用いる場合には硫酸ナ ト リ- ゥム濃度を 1 0〜 3 0 0 g Zリ ッ トルとするのが好ま しく 、 処理液の温度を 1 0〜 8 0 °Cとするのが好ま しレ、。 For example, when the acetalization treatment is performed with formaldehyde and sulfuric acid after coagulation, the concentration of the aldehyde compound in the reaction solution is 0.1 g / liter or more, and the acid concentration is 0.5 to 300 g. It is preferable to take a picture. When the acetalization treatment is performed simultaneously with coagulation, the concentration of the aldehyde compound should be 0.05 to 200 g Z liter and the acid concentration should be 1 to 100 g Z liter. Preferably, this time the coagulant When sodium sulfate is used, the sodium sulfate concentration is preferably set to 10 to 300 g Z liter, and the temperature of the processing solution is set to 10 to 8 g. The temperature is preferably set to 0 ° C.
本発明の P V A系含水ゲルをバイ オ リ アク ター担体等に用い る場合には凝固 (場合によってはァセタール化処理) を行ったゲ ノレに、 水洗 · 中和処理を施すのが好ま しい。 と く に生体触媒を固 定化するための担体と して用いる場合には、 アルデヒ ド化合物が 存在する と微生物の棲息性が低下する こ と から十分に洗浄する のが好ま しレ、。  When the PVA-based hydrogel of the present invention is used for a bioreactor carrier or the like, it is preferable to subject the solidified (possibly acetalized) genole to washing and neutralization. In particular, when used as a carrier for immobilizing a biocatalyst, it is preferable to sufficiently wash the presence of an aldehyde compound because the presence of an aldehyde compound reduces the habitability of microorganisms.
本発明の含水ゲルは表面にク レバス状の微多孔が形成されて おり 、 表面積が大き く保水効果等に優れている こ とからあらゆる 用途に使用でき る。 例えば濾材 (固体懸濁物除去材等) 、 保水材、 保冷材、 目 · 皮膚 · 関節などの生体ゲルの代替、 薬物の徐放材、 ァクチユエ一ターの基材、 ク ロマ ト グラフ ィー用の充填剤、 汚水 浄化材等に使用できる。 なかでも、 微生物の捕捉性及び棲息性に も優れている こ とから、 酵素 ·微生物を固定化して生体触媒と し、 排水処理槽に投入して用いるのが好ま しレ、。  The hydrogel of the present invention has a crevass-like microporous surface formed on its surface, and has a large surface area and an excellent water retention effect, so that it can be used for all purposes. For example, filter media (solid suspension removal materials, etc.), water retention materials, cold insulation materials, substitutes for biogels such as eyes, skin, joints, etc., sustained release materials for drugs, base materials for actuator units, and chromatographs It can be used as a filler, sewage purification material, etc. Above all, it is preferable to immobilize enzymes and microorganisms to form biocatalysts and put them into wastewater treatment tanks because they are excellent in capturing and inhabiting microorganisms.
本発明の P V A系含水ゲルに微生物を固定化する場合、 固定化 する方法はと く に限定されず、 予め混合溶液に微生物を配合して おく 包括固定方法を採用 してもかまわないが、 後にァセタール化 処理等の生体触媒に悪影響を与える処理を行う場合には、 ゲル製 造後に生体触媒を後付着させるのが好ま しい。 微生物の種類はと く に限定される ものではなく 、 細菌、 放線菌、 カ ビ、 酵母などの いずれでもよ く 、 純粋培養したもの、 混合培養したもの、 活性汚 泥菌が挙げられる。  When immobilizing microorganisms on the PVA-based hydrogel of the present invention, the immobilization method is not particularly limited, and an inclusive immobilization method in which microorganisms are mixed in a mixed solution in advance may be employed, but later. When a treatment that adversely affects the biocatalyst, such as an acetalization process, is performed, it is preferable to attach the biocatalyst after gel production. The type of microorganism is not particularly limited, and may be any of bacteria, actinomycetes, molds, yeasts, etc., and includes pure cultures, mixed cultures, and activated sludge bacteria.
微生物の具体例と しては、 ムコール (Mu c c or )属、 フザリ ウム (Fusarium)属、 ク ラ ドッ リ ッ ク ス (Cladothr i )属、 ス フエ ロ チノレ ス (Sphaerotilus)属、 ズ一グ レ ア (Zoogl ea)属、 レプ 卜 ミ ツ ス (Leptomitus)属、 ァ ス ぺノレ ギノレ ス (Aspergi 1 lus)属、 リ 、ノ、 プス (Rhizopus)属、 シュ ー ト モナス (Pseudomonas)属、 ァセ 卜ノ ク タ 一 (Acetobacter)属、 ス 卜 レプ ト マイ セ ス (Streptomyces)属、 ェ シェ リ シァ (Escherichia)属、 サッ力口 マイ セス (Saccharomyces) 属、 キャンディ ダ(Candida)属な どの属に属する微生物が挙げら れる。 その他に、 ィォゥ細菌、 メ タ ン菌、 酪酸菌、 乳酸菌、 枯草 菌、 変形菌、 不完全菌、 硝酸菌、 亜硝酸菌、 脱窒菌なども挙げら れる。 Specific examples of microorganisms include the genus Muccor and Fusarium. Genus (Fusarium), genus Cladothri, genus Sphaerotilus, genus Zooglea, genus Leptomitus, a Genus Aspergi 1 lus, genus Rhizopus, genus Pseudomonas, genus Acetobacter, streptomyces Examples include microorganisms belonging to genera such as the genus (Streptomyces), the genus Escherichia, the genus Saccharomyces, and the genus Candida. In addition, there may be mentioned, for example, E. coli bacteria, Methanobacterium, butyric acid bacteria, lactic acid bacteria, Bacillus subtilis, deformed bacteria, incomplete bacteria, nitrate bacteria, nitrite bacteria, and denitrifier bacteria.
本発明の P V A系含水ゲルを排水処理に使用する場合には、 該 含水ゲルにタンパク質分解酵素、 炭水化物分解酵素、 脂肪分解酵 素を生産する菌を固定する こ とが好ま しい。 こ の よ う な菌の具体 例と しては、 好気性菌と して硝化菌など、 また嫌気性菌と して脱 窒菌、 硫酸還元菌、 メ タ ン菌などをあげる こ と ができ る。 酵素と しては、 その起源にかかわらず、 動物由来のもの、 微生物由来の もの等を適宜選択すればょレ、:  When the PVA-based hydrogel of the present invention is used for wastewater treatment, it is preferable to immobilize a bacterium that produces a protease, a carbohydrate-decomposition enzyme, or a lipolytic enzyme on the hydrogel. Specific examples of such bacteria include nitrifying bacteria as aerobic bacteria, and denitrifying bacteria, sulfate reducing bacteria, and methanotrophs as anaerobic bacteria. . Regardless of the origin of the enzyme, an enzyme derived from an animal or a microorganism can be appropriately selected.
第 6 図は、 本発明の、 少なく と も、 微生物を固定化した生体触 媒を投入し、 排水中の有機物及び/又は無機物を分解除去する排 水処理槽からなる排水処理装置において、 排水処理槽に本発明の ァセタール化 P V A系含水ゲルに微生物を固定化したものを生 体触媒と して使用 した排水処理装置の例であ り 、 排水中の有機物 を好気性条件下で分解除去する場合のフ ロ ーチヤ一 トである。 ま ず、 最初沈殿槽 (図示せず) から排水 1 を排水処理槽 2 に供給す る。 排水処理槽 2 には、 運転下限の排水中に予めァセタール化 P V A含水ゲル 3が投入されており 、 排水処理槽 2 の底部に設けら れた散気装置 4 によ り 流動化されている。 5 は散気装置 4 に接続 されたブロ ワ一であ り 、 散気装置 4の駆動手段である。 排水は排 水処理槽 2 で生物学的に処理される。 FIG. 6 shows a wastewater treatment apparatus comprising at least a wastewater treatment tank according to the present invention, which is provided with a biological catalyst having microorganisms immobilized thereon and decomposes and removes organic and / or inorganic substances in the wastewater. This is an example of a wastewater treatment apparatus using a biocatalyst obtained by immobilizing microorganisms on the acetalized PVA-based hydrogel according to the present invention in a tank as a biocatalyst. It is a flowchart. First, wastewater 1 is supplied to wastewater treatment tank 2 from a sedimentation tank (not shown). In the wastewater treatment tank 2, acetalized PVA hydrogel 3 is previously charged into the wastewater at the lower limit of operation, and is provided at the bottom of the wastewater treatment tank 2. It is fluidized by the diffuser 4 that was removed. Reference numeral 5 denotes a blower connected to the diffuser 4, which is a driving means of the diffuser 4. The wastewater is biologically treated in wastewater treatment tank 2.
排水処理槽 2 内に排水 1 を導入しつつ、 散気装置 4 よ り 空気を 吹き出すと、 排水処理槽 2 内の混合液に酸素が供給される と と も に、 このと きの上昇気泡流によ り該処理槽に循環流が生じる。 こ の循環流によ り 、 ァセタール化 P V A含水ゲル 3 が排水処理槽 2 内を流動する過程で、 有機物を分解 · 除去する微生物が該含水ゲ ル 3 に付着 · 結合固定化される。 したがって、 微生物と有機物が 十分接触する結果、 混合液中の有機物は、 極めて効率的かつ高速 度に分解 · 除去される。 また、 担体内部に固定化された微生物は、 ァセタール化 P V A含水ゲル 3 が混合液中で流動する と き も剥 離しにく い。 処理槽内には、 ァセタール化 P V A系含水ゲルが溢 流するのを防ぐために各種のス ク リ ーンな どを適宜設けても よ い。  When air is blown out from the diffuser 4 while introducing the wastewater 1 into the wastewater treatment tank 2, oxygen is supplied to the mixed solution in the wastewater treatment tank 2 and the rising bubble flow at this time is increased. As a result, a circulating flow is generated in the processing tank. By this circulating flow, microorganisms that decompose and remove organic substances adhere and bind to the hydrogel 3 while the acetalized PVA hydrogel 3 flows through the wastewater treatment tank 2. Therefore, as a result of sufficient contact between the microorganisms and the organic matter, the organic matter in the mixture is decomposed and removed very efficiently and at a high speed. Further, the microorganisms immobilized in the carrier are difficult to exfoliate when the acetalized PVA hydrogel 3 flows in the mixed solution. Various screens may be appropriately provided in the treatment tank to prevent the acetalized PVA-based hydrogel from overflowing.
生物学的に処理された処理水は最終沈殿槽 6 に送られ、 こ こで 沈降物を汚泥排出管 8 から除去し、 上澄水 7 を放流する。 本発明 の排水処理装置に使用 される排水処理槽は、 ァセタール化 P V A 系含水ゲルを使用する こ と によ り 、 排水処理の効率を上げるこ と ができ るが、 さ らに上記のよ う な条件を相互に組み合わせた含水 ゲルを用いる こ と によ り 排水処理効果を飛躍的に高める こ と 力 S できる。  The biologically treated water is sent to the final sedimentation tank 6 where the sediment is removed from the sludge discharge pipe 8 and the supernatant water 7 is discharged. By using an acetalized PVA-based hydrogel for the wastewater treatment tank used in the wastewater treatment apparatus of the present invention, the efficiency of wastewater treatment can be increased. By using a hydrogel that combines various conditions, the wastewater treatment effect can be greatly enhanced.
第 7 図は、 被処理水導入側から、 脱窒槽、 硝化槽の順に配置し た本発明の他の態様を示すフローチヤ一トである。 9 は脱窒槽、 1 2 は硝化槽である。 排水 1 を脱窒槽 9 に供給する と、 排水 1 は 嫌気条 (牛下 (無酸素条件下) で脱窒槽内の微生物によ り生物学的 に脱窒処理され、 脱窒処理水 1 1 と して硝化槽 1 2 に送られる。 硝化槽 1 2 に送られた脱窒処理水は、 好気条件下で硝化槽内の微 生物によ り 生物学的に硝化処理される。 硝化処理水 1 3 の一部は 硝化処理水返送ライ ン 1 4 によ り 脱窒槽 9 に循環 ' 返送されると と もに、 残り の硝化処理水は最終沈殿槽 6 に送られて、 沈降物を 除去した後に上澄水 7 と して放流される。 硝化処理水 1 3 の脱窒 槽 9への返送割合は、 上澄水に対して 1 〜 5倍程度である 3 生成 する汚泥は汚泥排出管 8 によ り 系外へ抜き出される。 FIG. 7 is a flow chart showing another embodiment of the present invention in which a denitrification tank and a nitrification tank are arranged in this order from the water introduction side. 9 is a denitrification tank, and 12 is a nitrification tank. When the wastewater 1 is supplied to the denitrification tank 9, the wastewater 1 is subjected to anaerobic conditions (under cows (under anoxic conditions)), The water is denitrified and sent to the nitrification tank 12 as denitrified water 11. The denitrification-treated water sent to the nitrification tank 12 is biologically nitrified by microorganisms in the nitrification tank under aerobic conditions. A portion of the nitrification water 13 is circulated to the denitrification tank 9 by the nitrification water return line 14, and the remaining nitrification water is sent to the final sedimentation tank 6 and settled. After removing matter, it is released as supernatant water 7. The rate of return of the nitrified water 13 to the denitrification tank 9 is about 1 to 5 times that of the supernatant water. 3 The generated sludge is extracted out of the system by the sludge discharge pipe 8.
脱窒槽 9 内には、 攪拌装置 1 0が設置されており 、 脱窒槽 9 内 の微生物を含む混合液内に球状のァセタール化 P V A含水ゲル 3が投入される。 脱窒槽には、 必要に応じて有機炭素源が供給さ れる。 硝化槽 1 2 内の底部には、 酸素を含有する空気などの気体 を供給する散気装置 4がプロ ヮー 5 に接続して設置されてお り 、 硝化槽 1 2 内の微生物を含む混合液には、 脱窒槽に使用 したもの と同じ球状のァセタール化 P V A含水ゲル 3が投入される。 ァセ タール化 P V A系含水ゲルは、 脱窒槽及び硝化槽の両方に投入し て使用 しても、 いずれか一方に投入して使用 してもよいが、 両方 に投入して使用する方が効率的であるので、 通常は両方の槽に投 入して使用される。 各槽に種類の異なるァセタール化 P V Aを投 入してもよレヽ。  A stirring device 10 is installed in the denitrification tank 9, and the spherical acetalized PVA hydrogel 3 is charged into the mixed solution containing the microorganisms in the denitrification tank 9. An organic carbon source is supplied to the denitrification tank as needed. A diffuser 4 for supplying a gas such as air containing oxygen is connected to the probe 5 at the bottom of the nitrification tank 12, and a mixed solution containing microorganisms in the nitrification tank 12 is provided. The same spherical acetalized PVA hydrogel 3 used in the denitrification tank is charged into the tank. The acetalized PVA-based hydrated gel may be charged into both the denitrification tank and the nitrification tank, or may be charged into one or the other, but it is more efficient to charge both. Therefore, it is usually used in both tanks. Different types of acetalized PVA may be injected into each tank.
この装置において、 脱窒槽 9 内に排水 1 を導入しつつ脱窒処理 水 1 1 を硝化槽 1 2 に流出 させる状態で攪拌装置 1 0 を作動さ せる と 、 脱窒槽 9 内に混合液の循環流が生じ、 この循環流によ り ァセタール化 P V A含水ゲル 3 が脱窒槽 9 内を流動し、 その間に 混合液に存在する脱窒菌を主体とする微生物が該含水ゲル 3 に 付着 · 結合固定化される。 槽内の混合液はこの固定化脱窒菌と浮 遊脱窒菌とによ り脱窒処理される。 混合液中 _の有機物は、 脱窒菌 のための呼吸基質又は細胞合成の炭素源と して利用されるが、 上 述のよ う に、 炭素源を必要に応じて系外から添加してもょレ、 c 硝化槽 1 2 において、脱窒槽 9 よ り脱窒処理水 1 1 が供給され、 かつ硝化槽 1 2 内の硝化処理水 1 3 が流出する状態で散気装置 4 よ り 空気を吹き出すと 、 硝化槽 1 2 内の混合液に酸素が供給さ れる と と もに、 このと きの上昇気泡流によって混合液の循環流が 生じる間に、 混合液中に存在する硝化菌を主体とする微生物がァ セタール化 P V A含水ゲル 3 に付着 · 結合固定化される - この固 定化硝化菌と浮遊硝化菌によ り 槽内の混合液は生物学的に硝化 処理される。 In this apparatus, when the stirrer 10 is operated in a state in which the denitrification treatment water 11 is discharged into the nitrification tank 12 while introducing the wastewater 1 into the denitrification tank 9, the mixed solution is circulated in the denitrification tank 9. The circulating flow causes the acetalized PVA hydrogel 3 to flow through the denitrification tank 9, during which microorganisms, mainly denitrifying bacteria, present in the mixed solution adhere to the hydrogel 3 and become immobilized. Is done. The mixed solution in the tank floats with this immobilized denitrifying bacteria. It is denitrified by denitrifying bacteria. The organic matter in the mixed solution is used as a respiratory substrate for denitrifying bacteria or as a carbon source for cell synthesis, but as described above, the carbon source can be added from outside the system as necessary. Yore, the c nitrification tank 1 2, denitrified water 1 1 denitrification tank 9 yo Ri is supplied, and the nitrification treated water 1 3 of nitrification tank 1 in 2 the air diffuser 4 good Ri air while flowing When the mixture is blown out, oxygen is supplied to the mixture in the nitrification tank 12 and, at the same time, the nitrifying bacteria present in the mixture are mainly contained while the circulating flow of the mixture is generated by the rising bubble flow at this time. The microorganism to be adhered to the acetalized PVA hydrogel 3 is bonded and immobilized.-The liquid mixture in the tank is biologically nitrified by the immobilized nitrifying bacteria and the suspended nitrifying bacteria.
これによ り、 ァセタール化 P V A含水ゲル 3 の表面及び/又は 内部に微生物が付着 · 結合固定化される こ と によ り 、 被処理成分 と微生物が十分接触する こ と になる。 また、 担体内部に固定化さ れた微生物は、 ァセタール化 P V A含水ゲル 3 が各槽内で流動す る と き も剥離しにく レ、。 その結果、 被処理水中の窒素は、 極めて 効率的かつ高速度に分解 · 除去される。 含水ゲルが槽外に溢流す るのを防ぐために、 脱窒槽及び /又は硝化槽にスク リ ーンなどを 設けてよいのは勿論である。  As a result, the microorganisms adhere to, bond to, and immobilize the surface and / or the inside of the acetalized PVA hydrogel 3, whereby the component to be treated and the microorganisms come into sufficient contact. Further, the microorganisms immobilized inside the carrier are difficult to peel off when the acetalized PVA hydrogel 3 flows in each tank. As a result, nitrogen in the water to be treated is extremely efficiently and rapidly decomposed and removed. It is a matter of course that a screen or the like may be provided in the denitrification tank and / or the nitrification tank in order to prevent the hydrogel from overflowing out of the tank.
第 8 図は、 排水導入側から、 硝化槽、 脱窒槽の順に配置した本 発明の別のフ ローチヤ一トである。 排水 1 は好気条件下で硝化槽 内の微生物によ り 生物学的に硝化処理され、 次いで硝化処理水 1 3 は嫌気条件下で脱窒槽内の微生物によ り 生物学的に脱窒処理 される。 脱窒処理水 1 1 は最終沈殿槽 6 に送られて、 沈降物を除 去した後に上澄水 7 と して放流される。 生成する汚泥は汚泥排出 管 8 によ り 系外へ抜き出される = 以下、 実施例によ り本発明を具体的に説明するが、 本発明はこ れらの実施例によ り 限定される ものではない。 ゲル構造の観察'方 法および各パラメータの測定方法は以下のとおり である。 FIG. 8 shows another flow chart of the present invention in which a nitrification tank and a denitrification tank are arranged in this order from the wastewater introduction side. Wastewater 1 is biologically nitrified by microorganisms in a nitrification tank under aerobic conditions, and then nitrified water 13 is biologically denitrified by microorganisms in a denitrification tank under anaerobic conditions. Is done. The denitrification water 11 is sent to the final sedimentation tank 6 where the sediment is removed and then discharged as supernatant water 7. The generated sludge is extracted out of the system by the sludge discharge pipe 8 = Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples. The method for observing the gel structure and the method for measuring each parameter are as follows.
( 1 ) ゲル構造 - ゲル表面及びゲルを中心で切断した断面の S E M写真を撮影 し、 外層表面の微多孔、 内層の構造などを観察した。  (1) Gel structure-SEM photographs were taken of the gel surface and a cross section cut at the center of the gel, and the microporous surface of the outer layer surface and the structure of the inner layer were observed.
( 2 ) ァセタール化度 (% )  (2) Degree of acetalization (%)
ァセタール処理した P V A含水ゲルを 1 0 5 °Cで 2 時間乾燥 した試料 0. 2 g を精秤し、 2 5 %硫酸溶液を装填した蒸留装置 に投入した。 次いで蒸気を送り ながら加熱し、 遊離するホルマ リ ンを水と と もに留出させ、 2 % N a H S 〇 3水溶液に吸収した。 余剰の N a H S O 3 を I 2によ り 逆滴定して遊離ホルマ リ ン量を 求め、 P V Aゲル中の水酸基量に対する遊離ホルマ リ ン量の割合 (モル比) からァセタール化度を算出した。 0.2 g of a sample obtained by drying the acetal-treated PVA hydrogel at 105 ° C for 2 hours was precisely weighed and placed in a distillation apparatus charged with a 25% sulfuric acid solution. Then heated while feeding steam liberated formalin Li down distilling monitor and water was absorbed 2% N a HS 〇 3 solution. Excess NaHSO 3 was back titrated with I 2 to determine the amount of free formalin, and the degree of acetalization was calculated from the ratio (molar ratio) of the amount of free formalin to the amount of hydroxyl groups in the PVA gel.
( 3 ) 含水率 (% )  (3) Moisture content (%)
含水ゲルを 2 5 °Cの水に 2 4時間浸漬した後、 表面付着水を除 去したゲルの w e t 重量 ( W を測定し、 次にこれを 1 0 5 °C で 4時間乾燥した後、 ゲルの d r y重量 ( W 2) を測定し、 下式 によ り算出した。 After immersing the hydrogel in water at 25 ° C for 24 hours, the wet weight (W) of the gel from which water adhering to the surface was removed was measured, and then the gel was dried at 105 ° C for 4 hours. The dry weight (W 2 ) of the gel was measured and calculated by the following equation.
含水率 (% ) = ( W i W 2) / W i X 1 0 0 Moisture content (%) = (W i W 2 ) / W i X 1 0 0
( 4 ) T O C除去速度 (m g — T〇 C /リ ッ トル ゲル · 1 ) 微生物棲息性に優れている ゲルほど T O C除去速窆がはやい こ とから、微生物棲息性の指標と して T O C除去速度を測定した。 具体的には、 含水ゲル 5 0 0 g を (株) ク ラ レ岡山工場の排水処 理槽に 1 力月 間浸漬後、 1 0 0 g を取り 出 し、 T O C S O O m g リ ッ トルに調整した排水 1 リ ッ トル中に入れて曝気 し、 ゲル重 量当た り の T O C除去速度を求めた。 (4) TOC removal rate (mg—T〇C / Little gel · 1) The better the microbial habitability, the faster the TOC removal rate. Therefore, the TOC removal rate is an indicator of the microbial habitability. Was measured. Specifically, 500 g of the hydrogel was soaked in a drainage tank at the Kuraray Okayama Plant for one month, and 100 g was taken out and adjusted to a TOCSOO mg liter. Aeration in 1 liter of wastewater, gel weight The TOC removal rate per unit was determined.
( 5 ) 体積保持率 (%)  (5) Volume retention (%)
P V A系含水ゲルをみかけ体積 (水中での体積) で 1 0 0 m l 採取し、 内壁に # 8 0 のサン ドペー パーを貼付した 2 リ ッ トルの トールビーカー (直径 1 1 3 mm、 高さ 2 5 0 mm) に投入し、 純水を加えて 1 リ ッ トルと し、 第 9 図に示すステンレス製の攪拌 羽根を有する撹拌機をセ ッ ト し、 2 0 °Cにおいて 3 0 0 r p mで 攪拌したと き、 最初に投入した含水ゲルから、 1 4 日 間の攪拌に よって摩耗された部分を除いた含水ゲルの最初に投入した含水 ゲルに対する体積の割合をい う。  A 100-mL sample of PVA-based hydrogel was collected in apparent volume (volume in water), and a 2 liter tall beaker (diameter 113 mm, height 2 mm) with # 80 sandpaper attached to the inner wall 50 mm), add pure water to make 1 liter, set the stirrer with stainless steel stirring blades shown in Fig. 9 and set it at 300 rpm at 20 ° C. It refers to the ratio of the volume of the hydrogel to the initially charged hydrogel, excluding the part worn by the stirring for 14 days from the hydrogel initially charged when stirred.
実施例 1 Example 1
P V A (平均重合度 4 0 0 0 、 ケン化度 9 9 . 5モル0/。) 5重 量0 /。、 アルギン酸ナ ト リ ウム (紀文フー ドケミ ファ社製 「ダック アルギン N S P L」 ) 1 重量0/。、 炭酸水素ナ ト リ ウム 0. 2 5重 量%の混合水溶液を 7 0 °Cで調製した。 混合水溶液は懸濁状に相 分離を起こ し白濁していた。 この相分離液を、 先端に内径 4 m m のノ ズルを取 り 付けた内径約 5 m mのシ リ コ ンチューブを装着 したローラーポンプを用いて 5 ミ リ リ ッ トル Z分の速度で送液 し、 ス ターラーで撹拌した濃度 0. 1 モルノリ ッ トルの 2 2 °Cの 塩化カルシウム水溶液に滴下した。 滴下した液滴は塩化力ルシゥ ム水溶液中で少な く と も表面のアルギン酸ナ ト リ ゥムが固化し て沈降した。 得られた固化物は球状であった。 PVA (average degree of polymerization: 400, degree of saponification: 99.5 mol 0 /.) 5 weight: 0 /. Sodium alginate ("Duck Algin NSPL" manufactured by Kibun Food Chemifa) 1 weight 0 /. A mixed aqueous solution of 0.25% by weight of sodium hydrogencarbonate was prepared at 70 ° C. The mixed aqueous solution was phase-separated in suspension and became cloudy. This phase separated liquid is sent at a speed of 5 milliliters Z using a roller pump equipped with a silicon tube with an internal diameter of about 5 mm and a nozzle with an internal diameter of 4 mm attached to the tip. Then, the mixture was added dropwise to an aqueous solution of calcium chloride at a concentration of 0.1 molnoliter at 22 ° C., which was stirred with a stirrer. At least the sodium alginate solidified and settled in the aqueous solution of chlorinated sodium chloride at the surface of the dropped droplet. The obtained solid was spherical.
この球状固化物を、 ホルムアルデヒ ド 2 0 g Zリ ッ トノレ 、 硫酸 2 0 0 g Zリ ッ トノレ 、 硫酸ナ ト リ ゥム 1 0 ◦ g Zリ ッ トルを含む 水溶液に 4 0 ;Cで 2 1 0分間浸漬する こ と によ り 、 凝固させてゲ ル化する と 同時にァセタ ール化処理を行った。 得られたァセター ル化ゲルを水洗し、 直径 3 . 8 m πιの柔軟性に富んだ球状の含水 ゲルを製造した。 The spherical solidified product, formaldehyde 2 0 g Z Li Tsu Honoré, 2 0 0 g Z Li Tsu Honoré sulfate, 4 0 to an aqueous solution containing sulfuric acid Na Application Benefits © beam 1 0 ◦ g Z l; in C 2 By soaking for 10 minutes, the gel was coagulated and gelled, and at the same time, acetalizing treatment was performed. The obtained acetator The hydrogel was washed with water to produce a highly flexible spherical hydrogel having a diameter of 3.8 mπι.
得られた含水ゲルを凍結乾燥し、 ゲルの表面を 5 0 . 3倍の S E Mで観察する と、 第 1 図又は第 2 図に示すよ う な表面にク レバ ス状の微多孔が認められ、 該微多孔は一辺が 5 0 0 mの正方形 中に 1 6個存在した。 画像解析によ り 開口率を求めたと ころ 2 . 3 %であった。 水銀圧入法によ り ゲル内部の細孔径を測定したと ころ、 1 5 μ m未満であ り 、 細孔分布は 8 mで極大を示した。 また、 ゲルを中心で切断し、 断面を S E M写真で観察した結果、 第 4図に示すよ う な三次元の網目構造をな していた。 内層の厚さ は 9 9 %程度/ゲル最大直径であ り 、 外層の厚さは 1 % /ゲル最 大直径程度であった。  When the obtained hydrogel was freeze-dried and the gel surface was observed with a 50.3-fold SEM, a fine pore in the form of crevass was observed on the surface as shown in Fig. 1 or Fig. 2. There were 16 micropores in a square having a side length of 500 m. The aperture ratio was determined to be 2.3% by image analysis. When the pore diameter inside the gel was measured by the mercury intrusion method, it was less than 15 μm, and the pore distribution showed a maximum at 8 m. In addition, the gel was cut at the center, and the cross section was observed with a SEM photograph. As a result, a three-dimensional network structure was formed as shown in FIG. The thickness of the inner layer was about 99% / the maximum diameter of the gel, and the thickness of the outer layer was about 1% / the maximum diameter of the gel.
次に、 含水ゲルの耐久性及び微生物棲息性を確認するため、 体 積保持率の測定及びア ンモニア の硝化試験を実施した。 体積保持 率の測定は上述した体積保持率の測定に従って行った。 また、 硝 化試験は硝化汚泥で 1 週間の種付けを行った含水ゲルをア ンモ ユア濃度 5 0 m g / 1 で連続馴養 し、 硝化速度の立ち上が り で評 価し、 微生物の棲息性を検討した。 結果を表 1 に示す。  Next, in order to confirm the durability and microbial habitability of the hydrogel, a measurement of the volume retention rate and a nitrification test of ammonia were performed. The measurement of the volume retention was performed in accordance with the measurement of the volume retention described above. In the nitrification test, the hydrous gel that had been seeded with nitrifying sludge for one week was continuously acclimated at an ammonia concentration of 50 mg / 1, and evaluated by the rise of the nitrification rate, and the habitat of microorganisms was evaluated. investigated. Table 1 shows the results.
比較例 1 Comparative Example 1
P V A (平均重合度 4 0 0 0、 ケン化度 9 9 . 5 モル% ) 5重 量0/。、 アルギン酸ナ ト リ ゥム 1 重量%及び炭酸水素ナ ト リ ゥム 0 . 2 5重量%の混合水溶液 (懸濁状に相分離を起こ し白濁) を調製 し、 ァセタール化の時間を 6 0分間と した以外は実施例 1 と 同様 にして、 繊維状物が絡み合って形成された網城構造を表面層とす る直径 4 . 3 m mの球状の含水ゲルを得た。 得られた含水ゲルを 凍結乾燥し、 実施例 1 と 同様にゲルの表面を S E Mで観察する と 、 第 5 図に示すよ リ な表面に直径 1 〜 3 0 μ m ?)繊維状物が絡み合 つて形成された網状構造が認められた。 このゲルの評価結果を表 1 に示す。 PVA (average degree of polymerization: 400, degree of saponification: 99.5 mol%) 5 weight 0 /. A 1% by weight of sodium alginate and 0.25% by weight of sodium hydrogencarbonate were mixed to prepare an aqueous solution (phase separation in suspension and cloudy), and the acetalization time was reduced to 60%. A spherical hydrogel having a diameter of 4.3 mm was obtained in the same manner as in Example 1 except that the length was changed to minutes, and the mesh layer structure formed by entanglement of the fibrous materials was used as the surface layer. The obtained hydrogel was freeze-dried, and the surface of the gel was observed with SEM as in Example 1. As shown in Fig. 5, a net-like structure formed by entanglement of fibrous materials with a diameter of 1 to 30 µm on the surface was observed. Table 1 shows the evaluation results of this gel.
実施例 2 Example 2
P V A (平均重合度 3 3 0 0 、 ケン化度 9 9 . 5モル0/。) 5重 量。 /0、 アルギン酸ナ ト リ ウム (紀文フー ドケミ ファ社製 「ダック アルギン N S P L」 ) 1 重量%、 硫酸ナ ト リ ウム 0. 2 5重量% の混合水溶液を調製した。 混合水溶液は懸濁状に相分離を起こ し 白濁していた。 実施例 1 と 同様に行い、 直径 3 . 8 m mの柔軟性 に富んだ球状の含水ゲルを製造した。 結果を表 1 に示す。 PVA (average degree of polymerization 330, saponification degree 99.5 mol 0 /.) 5 weight. / 0, alginate Na Application Benefits um (Kibun Fu Dokemi files Co. "Duck Algin NSPL") 1 wt% to prepare a mixed aqueous solution of sulfuric acid Na Application Benefits um 0.2 5 wt%. The mixed aqueous solution was phase-separated in suspension and became cloudy. In the same manner as in Example 1, a highly flexible spherical hydrogel having a diameter of 3.8 mm was produced. Table 1 shows the results.
比較例 2 Comparative Example 2
P V A (平均重合度 4 0 0 0 、 ケン化度 9 9 . 5モル0/。) 5重 量%、 アルギン酸ナ ト リ ゥム 1 重量。/。の混合水溶液を相分離液の かわり に用いた以外は実施例 1 と 同様に直径 3 . 9 m mの含水ゲ ルを製造した。 得られたゲルは、 相分離液を用いていないために 表面が平滑であった, 評価結果を表 1 に示す。 PVA (average degree of polymerization: 400, degree of saponification: 99.5 mol 0 /.) 5% by weight, 1% by weight of sodium alginate. /. A water-containing gel having a diameter of 3.9 mm was produced in the same manner as in Example 1 except that the mixed aqueous solution was used instead of the phase separation liquid. The obtained gel had a smooth surface because no phase separation liquid was used. The evaluation results are shown in Table 1.
比較例 3 Comparative Example 3
P V A (平均重合度 2 4 0 0 、 ケン化度 9 9 . 8モル。/。) 7重 量%、 アルギン酸ナ ト リ ゥム 1 重量%及び炭酸水素ナ ト リ ゥム 0. 3重量%の混合水溶液 (懸濁状に相分離を起こ し白濁) を調製し、 使用 した以外は実施例 1 と 同様にして直径 3 . 7 mmの球状の含 水ゲルが得られた。 評価結果を表 1 に示す。  PVA (average degree of polymerization 240, degree of saponification 99.8 mol./.) 7% by weight, 1% by weight of sodium alginate and 0.3% by weight of sodium hydrogencarbonate A mixed aqueous solution (a cloudy turbid phase-separated suspension was prepared) was obtained in the same manner as in Example 1 except that the aqueous solution was used and a spherical hydrogel having a diameter of 3.7 mm was obtained. Table 1 shows the evaluation results.
実施例 3 Example 3
P V A (平均重合度 8 0 0 0 、 ケン化度 9 9 . 3モル%) 3 . 7重量。/。、 アルギン酸ナ ト リ ゥム 1 重量。/。及び硫酸ナ ト リ ウム 0. 3重量%の混合水溶液 (懸濁状に相分離を起こ し白濁) を調製し、 使用 した以外は実施例 1 と同様にして直径 3 6 mmの球状の含 水ゲルを得た。 評価結果を表 1 に示す。 PVA (average degree of polymerization: 800, saponification degree: 99.3 mol%) 3.7 wt. /. , 1 weight of sodium alginate. /. And a 0.3% by weight mixed aqueous solution of sodium sulfate (phase separation in suspension and cloudiness) were prepared. A spherical hydrogel having a diameter of 36 mm was obtained in the same manner as in Example 1 except that the gel was used. Table 1 shows the evaluation results.
Figure imgf000031_0001
Figure imgf000031_0001
*硝化菌馴養 4 5 日 目 の硝化速度 実施例 4  * Nitrifying bacteria acclimation 45 Nitrification rate on day 5 Example 4
1 m 3の好気槽に、 実施例 1 で作製したァセタール化 P V A含 水ゲルを 2 0容量%投入し、 0. 6 m 3の最終沈殿槽と組み合わ せて第 6 図に示すよ う な排水処理装置を構成した。 B O D 2 5 0 0 m g /リ ッ トル ( L ) の排水を 1 m 3 Z日 で好気槽に供給し、 6 ヶ月 間連続処理したと ころ、 処理済水の B O Dは 2 0 0〜 3 0 O m g / L、 S Sは 2 0〜 3 O m g / Lで安定していた。 The aerobic tank of 1 m 3, it will by shown in Figure 6 by the Asetaru-PVA hydrous gel as made in Example 1 2 0 capacitively% charged, was combined with the final sedimentation tank of 0. 6 m 3 A wastewater treatment device was configured. BOD 2 5 0 0 mg / Li Tsu supplies torr drainage (L) to the aerobic tank at 1 m 3 Z day, and was continuously treated for six months time, BOD of the treated water 2 0 0-3 0 O mg / L and SS were stable at 20-3 O mg / L.
実施例 5  Example 5
0. 2 m 3の脱窒槽及び 0. 2 m 3の硝化槽に実施例 4 で使用し たものと同じ P V A含水ゲルを 2 0容量%投入し、 0. 6 m 3 の 最終沈殿槽と組み合わせて第 7 図に示すよ う な排水処理装置を 構成した。 B O D 2 0 0 m g Z L、 総窒素 5 O m g Z L の排水を 1 . 3 m 3 Z日 で脱窒槽に供給し、 硝化処理水を、 上澄水の 3'倍 の流量で脱窒槽へ返送して 1 年間連続処理したと ころ、 処理済水 の B O Dは 8〜 1 O m g / L、 S S は 1 0〜 1 5 m g / L と安定 していた。 0. as that used in Example 4 to nitrification denitrification tank and 0. 2 m 3 of 2 m 3 the same PVA hydrogel 2 0 capacitively% charged, a final sedimentation tank of 0. 6 m 3 combined The wastewater treatment system shown in Fig. 7 Configured. 1 BOD 2 0 0 mg ZL, the drainage of the total nitrogen 5 O mg ZL. 3 is supplied to the denitrification tank in m 3 Z date, the nitrification treated water, and return at the 3 'times the flow rate of the upper supernatant water to the denitrification tank After one year of continuous treatment, the BOD of the treated water was stable at 8 to 1 O mg / L and the SS was stable at 10 to 15 mg / L.
実施例 6 Example 6
硝化槽、 脱窒槽及び最終沈殿槽を排水の導入側から この順に配 列して第 8 図に示すよ う な排水処理装置を構成した。 総窒素 2 0 O m g Z Lの排水を 0 . 4 m 3 Z日 の速度で硝化槽へ供給して 1 年間連続処理したと ころ、 処理済水の総窒素は 1 0〜 1 5 m g Z L、 S Sは 1 0〜 2 0 m g Z L と安定してレ、た。 The nitrification tank, denitrification tank and final sedimentation tank were arranged in this order from the wastewater introduction side to construct a wastewater treatment device as shown in Fig. 8. The drainage of the total nitrogen 2 0 O mg ZL 0. 4 m 3 Z Date rate and is supplied to the nitrification tank was continuously treated for one year of time, the total nitrogen of the treated water is 1 0~ 1 5 mg ZL, SS Was stable with 10 to 20 mg ZL.
実施例 7 Example 7
実施例 2 で得られた担体 1 L を 1 0 L の曝気槽に入れて曝気 し、 T O C 1 0 0 p p mの排水を 4 2 m L /分で連続的に導入し た。 曝気槽の出口には目開き 2 m mの金網を取 り付け、 担体の流 出を防止した。 1 0 日経過後の処理水の T O Cは各々 8 . 6 p p m及び 7 . 5 p p mであ り 、 十分な処理がなされていた。 その後、 担体を取り 出し、 2 0 L の密閉容器に入れ、 さ らに水を 5 L入れ た。 この容器の気相に、 硫化水素 1 0 p p mを含む空気を 1 0 L Z分で流し、 5分後に通気を止め、 密閉 した。 1 5分間放置後、 気相をマイ ク ロ シ リ ンジで採取し、 ガス ク ロマ トグラ フで分析し たと ころ、 硫化水素濃度は検出限界以下であった。 産業上の利用可能性  1 L of the carrier obtained in Example 2 was placed in a 10 L aeration tank and aerated, and wastewater of TOC 100 ppm was continuously introduced at 42 mL / min. A wire mesh with an aperture of 2 mm was attached to the outlet of the aeration tank to prevent the carrier from flowing out. The TOC of the treated water after 10 days was 8.6 ppm and 7.5 ppm, respectively, indicating that sufficient treatment was performed. Thereafter, the carrier was taken out, placed in a 20 L sealed container, and further 5 L of water was added. Air containing 10 ppm of hydrogen sulfide was flowed into the gas phase of this vessel for 10 L / min. After 5 minutes, ventilation was stopped and the vessel was sealed. After standing for 15 minutes, the gas phase was collected with a micro syringe and analyzed by gas chromatography. The hydrogen sulfide concentration was below the detection limit. Industrial applicability
本発明によ り 、 表面にク レバス状の微多孔を有する外層と、 緻 密な三次元の網 目構造からなる 内層 と から構成された P V A系 含水ゲルを得る こ とができる。 かかる含水ゲルは微生物の捕捉性 及び微生物の棲息性に優れる と と もに、 耐摩耗性、 機械的強度な どの耐久性に優れるので、 激しい攪拌下ゃ深槽など厳しい条件下 で使用される排水処理へ好ま しく 適用される。 また、 濾材、 ク ロ マ ト グラフィー用充填材、 保冷材、 保水材、 バイオリ アクター用 の担体などに好適である。 According to the present invention, a PVA system composed of an outer layer having a crevice-like microporous surface on the surface and an inner layer having a dense three-dimensional network structure A hydrogel can be obtained. The hydrogel has excellent microbial capture and microbial habitability, and also has excellent durability such as abrasion resistance and mechanical strength. Preferably applied to processing. Also, it is suitable as a filter medium, a filler for chromatography, a cold insulator, a water insulator, a carrier for a bioreactor, and the like.

Claims

δ肓 求 の 範 囲 The range of δ
1 . 表面にク レバス状の微多孔を有する外層と、 緻密な三次元の 網目構造からなる内層 と から構成されたボ リ ビニルアルコ ^-ル 系含水ゲル。 1. Polyvinyl alcohol-based hydrogel composed of an outer layer having a crevassed microporous surface and an inner layer having a dense three-dimensional network structure.
2 . 該含水ゲルの微細孔の孔径が、 水銀圧入法で測定して 2 0 μ m未満である請求の範囲第 1 項記載のポ リ ビニルアル コ ール系 含水ゲル。  2. The polyvinyl alcohol-based hydrogel according to claim 1, wherein the pore size of the micropores of the hydrogel is less than 20 μm as measured by a mercury intrusion method.
3 . 該含水ゲルが微生物を固定化するための担体である請求の範 囲第 1 項又は第 2項記載のポリ ビニルアルコ ール系含水ゲル。 3. The polyvinyl alcohol-based hydrogel according to claim 1 or 2, wherein the hydrogel is a carrier for immobilizing microorganisms.
4 . 該含水ゲルが微生物を固定化した生体触媒である請求の範囲 第 1 項〜第 3項のいずれ力 に記載のポ リ ビニルアル コ ール系含 水ゲル。 4. The polyvinyl alcohol-based hydrogel according to any one of claims 1 to 3, wherein the hydrogel is a biocatalyst in which microorganisms are immobilized.
5 . 該含水ゲルが直径 1 〜 1 0 m mの球状である請求の範囲第 1 項〜第 4項のいずれかに記載のポリ ビニルアルコール系含水ゲ ノレ。  5. The polyvinyl alcohol-based hydrogel according to any one of claims 1 to 4, wherein the hydrogel is spherical having a diameter of 1 to 10 mm.
6 . 1 4 日後の体積保持率が 5 0 %以上である請求の範囲第 1 項 〜第 5項のいずれ力 こ記載のポリ ビニルアルコ ール系含水ゲル。 6. The polyvinyl alcohol-based hydrogel according to any one of claims 1 to 5, wherein the volume retention after 14 days is 50% or more.
7 . 請求の範囲第 1 項〜第 6項のいずれかに記載の含水ゲルに含 まれる水分の少なく と も一部を除去して得られるポ リ ビニルァ ノレ コ ール成形物。 7. A molded article of polyvinyl alcohol obtained by removing at least a part of water contained in the hydrogel according to any one of claims 1 to 6.
8 . 重合度が 3 0 0 0以上のビニルアルコ ール系ポリ マー (Aポ リ マー) 及びカチオンと の接触によ り ゲル化する高分子 ( Bポリ マー) を含む高分子溶液に、 これら高分子溶液を相分離させう る 物質 (物質 C ) を添加して相分離液を調製し、 該相分離液をカチ オン含有液に接触させて少な く と も相分離液表面の B ポ リ マー を固化させた後、 得られた固化物をビニルアルコール系ポリ マー に対して凝固能を有する凝固液に接触させてゲル化させ、 ゲル化 と 同時及び Z又はゲル化後にァセタール化処理を施すにあた り 、8. A polymer solution containing a vinyl alcohol-based polymer (A polymer) having a degree of polymerization of 300 or more and a polymer (B polymer) that gels by contact with cations, A phase separation liquid is prepared by adding a substance (substance C) that can phase separate the molecular solution, and the phase separation liquid is contacted with a cation-containing liquid to at least B polymer on the surface of the phase separation liquid. After solidification, the obtained solidified product is brought into contact with a coagulating liquid having a solidifying ability for the vinyl alcohol-based polymer to be gelled, and subjected to acetalization simultaneously with gelation and after Z or gelation. Atari,
5 0 %以上のァセタール化度が得られる時間以上の時間でァセ タール化処理を施すポ リ ビニルアルコール系含水ゲルの製造方 法。 A method for producing a polyvinyl alcohol-based hydrogel, which is subjected to an acetalization treatment for a time not less than a time at which an acetalization degree of 50% or more is obtained.
9 . ァセタール化処理を施した後、 Bポリ マーの一部又はすベて を除去する請求の範囲第 8 項記載のポ リ ビニルアルコ ール系含 水ゲルの製造方法。  9. The method for producing a polyvinyl alcohol-based hydrogel according to claim 8, wherein part or all of the B polymer is removed after the acetalization treatment.
1 0 . カチオン と の接触によ り ゲル化する高分子 ( Bポリ マー) がアルギン酸ナ ト リ ゥムである請求の範囲第 8項又は第 9項記 載のゲルの製造方法。  10. The method for producing a gel according to claim 8, wherein the polymer (B polymer) that gels upon contact with a cation is sodium alginate.
1 1 . 少なく と も、 微生物を固定化した生体触媒粒子を投入し、 排水中の有機物及び Z又は無機物を分解除去する排水処理槽か らなる排水処理装置において、 微生物を固定化するための担体が、 表面にク レバス状の微多孔を有する外層と、 緻密な三次元の網目 構造からなる内層 と から構成されたポリ ビニルアル コ ール系含 水ゲルである排水処理装置。  11. At least a carrier for immobilizing microorganisms in a wastewater treatment device that is composed of a wastewater treatment tank that inputs biocatalyst particles with immobilized microorganisms and decomposes and removes organic substances and Z or inorganic substances in the wastewater. However, the wastewater treatment device is a polyvinyl alcohol-based hydrogel composed of an outer layer having a crevasse-shaped microporous surface on the surface and an inner layer having a dense three-dimensional network structure.
1 2 . 該排水処理槽が、 脱窒菌を固定化した生体触媒を投入して 嫌気条件下で排水と接触させる脱窒槽、 及び硝化菌を固定化した 担体粒子を投入して好気条件下で排水と接触させる硝化槽であ つて、 これらの排水処理槽を、 排水の導入側から この順に配列し、 硝化槽から流出する硝化処理水の一部を前記脱窒槽へ返送 · 循環 するよ う に構成した請求の範囲第 1 1 項記載の排水処理装置- 1 3 . 該排水処理槽が、 硝化菌を固定化した生体触媒を投入して 好気条件下で排水と接触させる硝化槽、 及び脱窒菌を固定化した 生体触媒を投入して嫌気条件下で排水と接触させる脱窒橹であ つて、 これらの排水処理槽を、 排水の導入側からこの順に配列す るよ う に構成した請求の範囲第 1 1 項記載の排水処理装置。 1 2. The wastewater treatment tank is charged with a biocatalyst immobilized with denitrifying bacteria and brought into contact with wastewater under anaerobic conditions, and charged with carrier particles immobilized with nitrifying bacteria under aerobic conditions. A nitrification tank that is brought into contact with wastewater.These wastewater treatment tanks are arranged in this order from the wastewater introduction side, and a part of the nitrification treatment water flowing out of the nitrification tank is returned and circulated to the denitrification tank. 13. The wastewater treatment apparatus according to claim 11, wherein the wastewater treatment tank is a nitrification tank in which a biocatalyst in which nitrifying bacteria are immobilized is put into contact with the wastewater under aerobic conditions. Immobilized nitrifying bacteria Claim 11: A denitrification system in which a biocatalyst is charged and brought into contact with wastewater under anaerobic conditions, wherein these wastewater treatment tanks are arranged in this order from the wastewater introduction side. The wastewater treatment device as described in the above.
PCT/JP2000/004647 1999-07-15 2000-07-12 Aqueous polyvinyl alcohol gel, process for producing the same, and wastewater treatment apparatus WO2001005877A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20118299 1999-07-15
JP11/201182 1999-07-15

Publications (1)

Publication Number Publication Date
WO2001005877A1 true WO2001005877A1 (en) 2001-01-25

Family

ID=16436717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004647 WO2001005877A1 (en) 1999-07-15 2000-07-12 Aqueous polyvinyl alcohol gel, process for producing the same, and wastewater treatment apparatus

Country Status (1)

Country Link
WO (1) WO2001005877A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114314836A (en) * 2021-12-31 2022-04-12 中国科学院生态环境研究中心 Sewage treatment device and process for deep denitrification under low carbon-nitrogen ratio by ASO method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09124876A (en) * 1995-11-01 1997-05-13 Kuraray Co Ltd Acetalized polyvinyl alcohol-based hydrous gel
JPH09124731A (en) * 1995-11-01 1997-05-13 Kuraray Co Ltd Acetalized polyvinyl alcohol hydrogel
JPH09157433A (en) * 1995-12-07 1997-06-17 Unitika Chem Kk Production of polyvinyl alcohol-based gel molding and microorganism-immobilized molding
JPH10204204A (en) * 1996-07-31 1998-08-04 Kanebo Ltd Porous spherical particles and production thereof
JPH10263576A (en) * 1996-11-28 1998-10-06 Kuraray Co Ltd Polyvinylacohol-based water-containing gel and its production
JPH10314782A (en) * 1997-05-22 1998-12-02 Kuraray Co Ltd Water treatment carrier, its manufacture and method for nitrification and denitrification using that
JPH1142497A (en) * 1997-02-28 1999-02-16 Kuraray Co Ltd Waste water treating device
WO1999036464A1 (en) * 1998-01-19 1999-07-22 Aion Co., Ltd. Spongy porous spherical particles and process for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09124876A (en) * 1995-11-01 1997-05-13 Kuraray Co Ltd Acetalized polyvinyl alcohol-based hydrous gel
JPH09124731A (en) * 1995-11-01 1997-05-13 Kuraray Co Ltd Acetalized polyvinyl alcohol hydrogel
JPH09157433A (en) * 1995-12-07 1997-06-17 Unitika Chem Kk Production of polyvinyl alcohol-based gel molding and microorganism-immobilized molding
JPH10204204A (en) * 1996-07-31 1998-08-04 Kanebo Ltd Porous spherical particles and production thereof
JPH10263576A (en) * 1996-11-28 1998-10-06 Kuraray Co Ltd Polyvinylacohol-based water-containing gel and its production
JPH1142497A (en) * 1997-02-28 1999-02-16 Kuraray Co Ltd Waste water treating device
JPH10314782A (en) * 1997-05-22 1998-12-02 Kuraray Co Ltd Water treatment carrier, its manufacture and method for nitrification and denitrification using that
WO1999036464A1 (en) * 1998-01-19 1999-07-22 Aion Co., Ltd. Spongy porous spherical particles and process for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114314836A (en) * 2021-12-31 2022-04-12 中国科学院生态环境研究中心 Sewage treatment device and process for deep denitrification under low carbon-nitrogen ratio by ASO method

Similar Documents

Publication Publication Date Title
EP0845480B1 (en) Polyvinyl alcohol hydrogel and process for producing the same
JP2001089574A (en) Polyvinyl alcohol-based water-containing gel, its production and drainage treating device
JP6172464B2 (en) Method for producing porous hydrogel molding
US6007712A (en) Waste water treatment apparatus
CN1216581A (en) Microorganism carrier and process for production thereof
JP3298562B2 (en) Denitrification accelerator and water treatment method using this denitrification accelerator
JP2933580B2 (en) Sponge-like spherical particles and method for producing the same
JP3441352B2 (en) Polyvinyl alcohol-based hydrogel and method for producing the same
JP6277539B2 (en) Porous hydrous gel molded product, method for producing the same, and use thereof
JP3287686B2 (en) Polymeric granular hydrogel and method for producing the same
JP3686215B2 (en) Water treatment carrier, production method thereof, and nitrification denitrification method using the same
WO2001005877A1 (en) Aqueous polyvinyl alcohol gel, process for producing the same, and wastewater treatment apparatus
JP3554613B2 (en) Wastewater treatment materials
JP6949705B2 (en) A porous hydrogel molded product containing polyvinyl alcohol and a method for producing the same.
JPH09316271A (en) Spherical hydrous gel
JPH09124731A (en) Acetalized polyvinyl alcohol hydrogel
JP2008229464A (en) Carrier, pellet sludge, and their preparation method, and organic waste water treatment method
JPH10204204A (en) Porous spherical particles and production thereof
JP2021195418A (en) Porous hydrous gel molded article, method of producing the same, and application of the same
KR100642032B1 (en) Polyvinyl alcohol hydrogel and preparation method thereof
WO2022163262A1 (en) Hydrogel porous molded product and method for producing same, microorganism carrier, and water treatment method
JP2882710B2 (en) Core-sheath fibrous gel and method for producing the same
JPH03236780A (en) Microorganism-immobilized formed product and production thereof
JP2777169B2 (en) Hydrous gel for immobilizing microorganisms
JP2004075761A (en) Method for producing low-specific-gravity polyvinyl alcohol-based hydrogel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase