WO2001002339A1 - Versatile method for the synthesis of iso-dtpa - Google Patents

Versatile method for the synthesis of iso-dtpa Download PDF

Info

Publication number
WO2001002339A1
WO2001002339A1 PCT/US2000/017825 US0017825W WO0102339A1 WO 2001002339 A1 WO2001002339 A1 WO 2001002339A1 US 0017825 W US0017825 W US 0017825W WO 0102339 A1 WO0102339 A1 WO 0102339A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
benzyl
phenyl
synthesis
butyl
Prior art date
Application number
PCT/US2000/017825
Other languages
French (fr)
Inventor
Samuel I. Achilefu
Original Assignee
Mallinckrodt Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mallinckrodt Inc. filed Critical Mallinckrodt Inc.
Priority to AU57752/00A priority Critical patent/AU5775200A/en
Publication of WO2001002339A1 publication Critical patent/WO2001002339A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/14Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof
    • C07C227/18Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof by reactions involving amino or carboxyl groups, e.g. hydrolysis of esters or amides, by formation of halides, salts or esters

Definitions

  • This invention relates generally to the synthesis of esters of diethylenetriaminepentaacetic acid (DTP A) and of intermediates useful in the synthesis of such esters.
  • DTP A diethylenetriaminepentaacetic acid
  • These esters are well known, and have the general formula:
  • R R 2 , and R 3 are typically t-butyl, and R 4 and R 5 are typically H (Compound (II)) or a similar protecting group.
  • Such compounds are useful in the preparation of nuclear pharmaceuticals where they serve as a metal chelate and a link between a peptide and a radionuclide. Activation of the free dicarboxylic acid rapidly forms intramolecular acid anhydride which then reacts with the amino group on a peptide to form the DTPA-peptide conjugate. Acid mediated cleavage of the esters gives free tetra-carboxylic acid which readily forms stable metal complexes with the radionuclide of choice.
  • Compound (IV) is commercially available.
  • Compound (III) was prepared by the method taught in Rapoport, J. Org. Chem. 1993, 58, 1 151-1158 (incorporated herein by reference). This reaction yields two compounds in about a 1:4 ratio.
  • the minor product is:
  • reaction product of (VI) and (VII) is:
  • This compound is subjected to catalytic hydrogenation at room temperature to yield
  • WO 98/05626 (Bracco: P. L. Anelli, et al.) teaches compounds that are similar to the compounds made by the instant invention.
  • the invention comprises a method of synthesis of compounds of the formula
  • the invention includes a method for synthesizing compounds of the formula:
  • each R 4 is a removable protecting group, generally (a) an alkyl group having 1 to 15, desirably 2 to 10, more desirably 2 to 8, preferably 3 to 6, more preferably 4 carbon atoms, and most preferably being t-butyl or (b) benzyl or a benzyl derivative such as methoxy benzyl or nitrobenzyl, preferably benzyl; and each R ⁇ 5 is a linking moiety having 1 to 10, desirably 1 to 6, preferably 1 to 4, and most preferably 2 carbon atoms;.
  • the Compound (XII) is more useful in fluorenylmethoxycarbonyl (Fmoc) peptide synthesis, and if R, is benzyl or a similar group, the Compound (XII) is more useful in acid labile t- butoxycarbonyl (Boc) peptide synthesis.
  • R 4 and Rg are as defined above;
  • Y is alkyloxy, alkyl, or H, preferably methyl, methoxy, or H, and most preferably H;
  • Z is phenyl or a phenyl derivative such as methoxy phenyl or nitrophenyl, preferably phenyl or methoxy phenyl, and most preferably phenyl;
  • X is a group that will react with the amine of Compound (XIII), desirably a halide, mesylate, or triflate, more desirably a halide, preferably Cl or Br, and most preferably Br.
  • Y is H
  • Z is phenyl
  • X is Br
  • R ⁇ is ethyl
  • R 4 is t-butyl.
  • Rg is hydrogen or a C, to C 50 alkyl, carbohydrate, oxyethyleneglycol, hydroxyl, or nitrile moiety, desirably such as that taught by US 5,514,810 (inco ⁇ orated herein by reference), preferably hydrogen; and R 5 is a removable protecting group different from and removable separately from Redefined below), generally (a) t-butyl, allyl, or chlorotrityl, preferably t-butyl or (b) allyl, benzyl, or a benzyl derivative such as methoxy benzyl or nitrobenzyl, preferably benzyl or methoxy benzyl, and most preferably benzyl; and X is a group that will react with the amine of Compound (XXIII), desirably a halide, a mesylate, or a triflate, more desirably a halide, preferably
  • R 5 is preferably benzyl or a benzyl derivative, and if R 4 is benzyl or a similar group, R 5 is preferably t-butyl or allyl.
  • the reaction product is:
  • the ether solution was decanted and the oil was again triturated with a 500 ml portion of ether.
  • the ether was decanted and the combined ether solutions allowed to stand for about 2 hours to allow the triphenylphosphine oxide to crystallize.
  • the ether solution was decanted from the crystals and the solid washed with 500 ml of ether.
  • the volume of the combined ether abstracts was reduced with vacuum until a volume of about 80 ml was obtained. This was allowed to stand over night at 0°C.
  • Ether 100 ml was added to the cold mixture which was mixed to suspend the solid. The mixture was filtered and washed ten times with 4 ml of ether.
  • DTPA-Octreotate derivative Synthesis of DTPA-Octreotate derivative.
  • the DTPA-Octreotate conjugate was prepared by solid phase synthesis using pre-loaded fluorenemethoxycarbonyl- threonine (Fmoc-Thr) Wang resin on 0.025 mmol scale.
  • Commercially available automated peptide synthesizer from Applied Biosystems Model 432 A SYNERGY Peptide Synthesizer
  • Cartridges containing Fmoc-protected amino acids were used in the solid phase synthesis. Cysteines were protected with acetamidomethyl group.
  • Coupling reaction was carried out with 0.075 mmol of the protected amino acid and 2-(lH-benzotriazole-lyl)-l,l,3,3-tetramethyluronium hexafiuorophosphate (HBTU)/N-hydroxybenzotriazole (HOBT).
  • the amino acids and tetra-t-butyl DTPA (Compound X) cartridges were placed on the peptide synthesizer and the product was synthesized from the C-terminal to the N-terminal position. After the synthesis was completed, the product was cleaved from the solid support with a cleavage mixture containing trifluoroacetic acid (85%):water (5%):phenol (5%):thioanisole (5%) for 6 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The synthesis of compounds of formula (XII) is disclosed. These compounds are useful intermediates in the synthesis of compounds of formulae (XI) and (X). These compounds are useful in the preparation of nuclear pharmaceuticals such as those used for tumor imaging or tumor therapy.

Description

Versatile Method for the Synthesis of Iso-DTPA
BACKGROUND OF THE INVENTION
This invention relates generally to the synthesis of esters of diethylenetriaminepentaacetic acid (DTP A) and of intermediates useful in the synthesis of such esters. These esters are well known, and have the general formula:
Figure imgf000002_0001
(I)
wherein R R2, and R3 are typically t-butyl, and R4 and R5 are typically H (Compound (II)) or a similar protecting group. Such compounds are useful in the preparation of nuclear pharmaceuticals where they serve as a metal chelate and a link between a peptide and a radionuclide. Activation of the free dicarboxylic acid rapidly forms intramolecular acid anhydride which then reacts with the amino group on a peptide to form the DTPA-peptide conjugate. Acid mediated cleavage of the esters gives free tetra-carboxylic acid which readily forms stable metal complexes with the radionuclide of choice.
Using conventional techniques, these compounds are prepared by the following sequence (t-Bu = t-butyl):
Figure imgf000002_0002
(III) (IV) Compound (IV) is commercially available. Compound (III) was prepared by the method taught in Rapoport, J. Org. Chem. 1993, 58, 1 151-1158 (incorporated herein by reference). This reaction yields two compounds in about a 1:4 ratio. The major product is the penta ester (Compound (V)), (i.e.: Compound (I) in which all i of R1- .5 = t-butyl). This product is useless and must be disposed of. The minor product is:
Figure imgf000003_0001
(VI)
Compound (VI) is reacted with the compound (Bz = benzyl):
Figure imgf000003_0002
(VII) This compound is not commercially available, but may be synthesized by literature method as described by Rapoport (see the reference for Compound (III) above).
The reaction product of (VI) and (VII) is:
Figure imgf000003_0003
(VIII)
This compound is subjected to catalytic hydrogenation at room temperature to yield
Figure imgf000004_0001
(II) (i.e.: Compound (I) where R, and R2 are H and R3, R4, and R5 are t-butyl).
Although these compounds are useful, their syntheses are often complicated and expensive. Further, it would be useful to have other compounds available with different binding affinities.
US 5,618,513 (Mallinckrodt: A. Srinivasan) teaches a general method for using DTPA compounds in the preparation of radiopharmaceuticals. This reference also teaches the preparation of such compounds as outlined above.
US 4,479,930 (Univ. of Massachusetts: D. Hnatowich) teaches the use of a dicyclic dianhydride compound to couple polypeptides. Although useful, this method results in diaddition products which are not medically useful.
S. Ram and L. Spicer, Rapid Debenzylation of N-Benzylamino Derivatives to Amino-Derivatives Using Ammonium Formate as Catalytic Hydrogen Transfer Agent, Tetrahedron Letters, Vol. 28, No. 5, pp 515-516, 1987, teaches the deprotection of various N-benzyl compounds using ammonium formate as the hydrogen source.
S. Ram and L. Spicer, Debenzylation of N-Benzylamino Derivatives by Catalytic Transfer Hydrogenation with Ammonium Formate, Synthetic Communication, 17(4), 415-418 ( 1987), is similar to the first Ram and Spicer reference. C. Grote, D. Kim, and H. Rapoport, Stereocontrolled Synthesis of DTPA Analogues Branched in the Ethylene Unit, J. Org. Chem., 1995, 60, 6987-6997, teaches a synthesis similar to that outlined above, with the addition of stereo control of the reaction.
M. Brechbiel and O. Gansow, Backbone-Substituted DTPA Ligands for 90Y Radioimmunotherapy, Bioconjugate Chem. 1991, 2, 187-194, teaches the synthesis of new bifunctional DTPA ligands.
US 5,514,810 (Schering: J. Platzek et al.), disclose some of the compounds which may be synthesized by this invention. However, this reference teaches a different method of synthesis.
WO 98/05626 (Bracco: P. L. Anelli, et al.) teaches compounds that are similar to the compounds made by the instant invention.
SUMMARY OF THE INVENTION
Briefly, the invention comprises a method of synthesis of compounds of the formula
Figure imgf000005_0001
(XII)
These compounds are useful in the synthesis of compounds of the formula
Figure imgf000005_0002
(XI) and
Figure imgf000006_0001
(X)
DETAILED DESCRIPTION OF THE INVENTION
In this specification and claims, numerical values and ranges are not critical unless otherwise stated. That is, the numerical values and ranges may be read as if they were prefaced with the word "about" or "substantially".
The invention includes a method for synthesizing compounds of the formula:
Figure imgf000006_0002
(XII) wherein each R4 is a removable protecting group, generally (a) an alkyl group having 1 to 15, desirably 2 to 10, more desirably 2 to 8, preferably 3 to 6, more preferably 4 carbon atoms, and most preferably being t-butyl or (b) benzyl or a benzyl derivative such as methoxy benzyl or nitrobenzyl, preferably benzyl; and each R<5 is a linking moiety having 1 to 10, desirably 1 to 6, preferably 1 to 4, and most preferably 2 carbon atoms;. If R, is t-butyl or a similar group, the Compound (XII) is more useful in fluorenylmethoxycarbonyl (Fmoc) peptide synthesis, and if R, is benzyl or a similar group, the Compound (XII) is more useful in acid labile t- butoxycarbonyl (Boc) peptide synthesis.
The synthesis begins with the reaction of:
Figure imgf000007_0001
wherein R4 and Rg are as defined above; Y is alkyloxy, alkyl, or H, preferably methyl, methoxy, or H, and most preferably H; Z is phenyl or a phenyl derivative such as methoxy phenyl or nitrophenyl, preferably phenyl or methoxy phenyl, and most preferably phenyl; X, is a group that will react with the amine of Compound (XIII), desirably a halide, mesylate, or triflate, more desirably a halide, preferably Cl or Br, and most preferably Br. In a typical example, Y is H, Z is phenyl, X, is Br, Rή is ethyl, and R4 is t-butyl.
The reaction yields:
Figure imgf000007_0002
(XV) The moiety
Figure imgf000007_0003
is then removed, for instance by catalytic hydrogenolysis, to yield the compound
Figure imgf000007_0004
(XII)
This compound can then reacted with a compound of the formula
Figure imgf000008_0001
wherein Rg is hydrogen or a C, to C50 alkyl, carbohydrate, oxyethyleneglycol, hydroxyl, or nitrile moiety, desirably such as that taught by US 5,514,810 (incoφorated herein by reference), preferably hydrogen; and R5 is a removable protecting group different from and removable separately from Redefined below), generally (a) t-butyl, allyl, or chlorotrityl, preferably t-butyl or (b) allyl, benzyl, or a benzyl derivative such as methoxy benzyl or nitrobenzyl, preferably benzyl or methoxy benzyl, and most preferably benzyl; and X is a group that will react with the amine of Compound (XXIII), desirably a halide, a mesylate, or a triflate, more desirably a halide, preferably Cl or Br, and most preferably Br. If R4 is t-butyl or a similar group, R5 is preferably benzyl or a benzyl derivative, and if R4 is benzyl or a similar group, R5 is preferably t-butyl or allyl. The reaction product is:
(XI)
Selective removal of R5, yields:
Figure imgf000008_0003
(X)
The invention is further illustrated in the following examples. EXAMPLE 1
Synthesis of 2-[Bis-(t-butyloxycarbonylmethyl)arnino] ethyl bromide (Compound (XTV) where X = Br, R4 = t-butyl, and R = ethyl). A solution of 370 ml of dimethylformamide and t-butyl bromoacetate (100 g, 510 mmol) was stirred in a 1000 ml three-neck flask. Solid potassium bicarbonate (57 g, 570 mmol) was added. The flask was purged with argon and cooled to 0°C with an ice bath. To the stirring mixture was added dropwise a solution of ethanolamine (13.9 g, 230 mmol) in 30 ml of dimethylformamide over 15 minutes. After the addition was complete the mixture was stirred for 1 hour at 0°C. The ice bath was removed and the mixture stirred at room temperature for 12 hours. The reaction mixture was partitioned between 700 ml of methylene chloride and 700 ml of saturated sodium bicarbonate solution. The layers were separated and the methylene chloride layer was again washed with 700 ml of saturated sodium bicarbonate solution. The combined aqueous layers were extracted twice with 200 ml of methylene chloride. The combined methylene chloride layers were washed with 500 ml of brine, and dried over magnesium sulfate. The methylene chloride was removed with aspirator vacuum at ca. 35°C, and the remaining dimethylformamide was removed with vacuum at about 45 °C. The crude material was left on a vacuum line over night at room temperature.
The crude material from above was dissolved in 600 ml of methylene chloride at room temperature. Triphenylphosphine (65.8 g, 250 mmol) was added and dissolved with stirring. An argon purge was started and the mixture cooled to 0°C with an ice bath. The N-bromosuccinimide (44.7 g, 250 mmol) was added portion- wise over 5 minutes. The mixture was stirred for 1.5 hours at 0°C. The methylene chloride was removed with vacuum and gave a puφle oil. This oil was triturated with 500 ml of ether with constant manual stirring. During this time the oil became very thick. The ether solution was decanted and the oil was triturated with 500 ml of ether. The ether solution was decanted and the oil was again triturated with a 500 ml portion of ether. The ether was decanted and the combined ether solutions allowed to stand for about 2 hours to allow the triphenylphosphine oxide to crystallize. The ether solution was decanted from the crystals and the solid washed with 500 ml of ether. The volume of the combined ether abstracts was reduced with vacuum until a volume of about 80 ml was obtained. This was allowed to stand over night at 0°C. Ether (100 ml) was added to the cold mixture which was mixed to suspend the solid. The mixture was filtered and washed ten times with 4 ml of ether. The solution was percolated through a column of 500g g of silica gel and eluted with 500 ml portions of ether, 500 ml fractions were collected. The fractions that contained product by TLC were pooled and the ether removed en vacuo. This gave 68.6 g of crude product. The material was flash chromatographed on silica gel with hexane, changing to 9:1 hexane:ether. The product-containing fractions were pooled and the solvents removed en vacuo. This gave 54 g (67% yield) of pure product.
EXAMPLE 2
Synthesis of N'-ben.ζyl-N,N,N",N"-tetrakis(t-butyloxycarbonylmethyl)- diethylenetriamine (Compound (XV) where Y= H, Z = phenyl, R,, = t-butyl and R = ethyl). A mixture of 2-[Bis-(t-butyloxycarbonylmethyl)amino]ethyl bromide (6.0 g, 17.05 mmol), diisopropylethylamine (4.4 g, 34.1 mmol) and benzylamine (0.9 g, 8.41 mmol) in 100 ml of anhydrous acetonitrile was refluxed for 16 hours under argon. After reaction, the solvent was evaporated en vacuo and the residue was partitioned between dichloromethane (100 ml) and water (100 ml). The two layers formed were separated and the organic phase was washed with water (100 ml) and brine (100 ml) in that order. The dichloromethane layer was dried over magnesium sulfate and the solvent was removed en vacuo to give 7 g of the crude product. The crude product was dissolved in hexane and purified by dry flash chromatography with 20% diethyl ether in hexane to give 4.2 g (76%) of the pure compound as a pale yellow liquid. EXAMPLE 3
Preparation of N,N,N",N"-tetrakis(t-butyloxycarbonylmethyl) diethylenetriamine (Compound (XII) where R = ethyl and R4 = t-Butyl). A mixture of 10% palladium on carbon (0.4 g) and a solution of N'- (benzy loxycarbony lmethy 1)-N,N,N " ,N " -tetrakis(t-buty loxy carbony lmethy 1)- diethylenetriamine (4 g, 6.16 mmol) in 100 ml of methanol was hydrogenolyzed at 50 psi for 2 hours. The mixture was filtered over celite and the residue was washed with methanol (50 ml). The solvent was evaporated to give the pure product (3.3 g, 95%) as a viscous oil.
The following examples show the use of the compounds of the invention:
EXAMPLE 4 Preparation of N'-benzyloxycarbonylmethyl-N,N,N",N"-tetrakis(t- butyloxycarbonylmethyl)diethylenetriamine (Compound (XI) where R^ = ethyl, R4 = t-Butyl, Rg = COOBzl, and R, = H). A mixture of N,N,N",N"- tetrakis(t-butyloxycarbonylmethyl)diethylenetriamine (2 g, 3.57 mmol), benzyl bromoacetate (1.2 g, 5.36 mmol) and diisopropylethylamine (1 g, 7.86 mmol) in 50 ml of acetonitrile was refluxed for 16 hours. The solvent was evaporated and the residue was purified on a silica gel column by dry flash chromatography. The pure compound was eluted with 30% of diethyl ether in hexane (2 g, 80%).
EXAMPLE 5 Preparation of N'-acetic acid- N,N,N",N"-tetrakis(t-butyloxycarbonylmethyl) diethylenetriamine (Compound (X) where R4 = t-Butyl, R^ = ethyl, and R9 =
H). A mixture of 10% palladium on carbon (0.1 g) and N'- (benzyloxycarbonylmethyl)-N,N,N",N"-tetrakis(t-butyloxycarbonylmethyl) diethylenetriamine (0.6 g, 0.85 mmol) in 30 ml of methanol was hydrogenolyzed at 45 psi for 2 hours. The mixture was filtered over celite and the residue was washed with methanol (50 ml). The solvent was evaporated to give the pure mono- carboxylic acid (0.5 g, 96%) as a viscous pale yellow oil.
EXAMPLE 6
Synthesis of DTPA-Octreotate derivative. The DTPA-Octreotate conjugate was prepared by solid phase synthesis using pre-loaded fluorenemethoxycarbonyl- threonine (Fmoc-Thr) Wang resin on 0.025 mmol scale. Commercially available automated peptide synthesizer from Applied Biosystems (Model 432 A SYNERGY Peptide Synthesizer) was used. Cartridges containing Fmoc-protected amino acids were used in the solid phase synthesis. Cysteines were protected with acetamidomethyl group. Coupling reaction was carried out with 0.075 mmol of the protected amino acid and 2-(lH-benzotriazole-lyl)-l,l,3,3-tetramethyluronium hexafiuorophosphate (HBTU)/N-hydroxybenzotriazole (HOBT). The amino acids and tetra-t-butyl DTPA (Compound X) cartridges were placed on the peptide synthesizer and the product was synthesized from the C-terminal to the N-terminal position. After the synthesis was completed, the product was cleaved from the solid support with a cleavage mixture containing trifluoroacetic acid (85%):water (5%):phenol (5%):thioanisole (5%) for 6 hours. Note that the t-butyl esters of tetra- t-butyl DTPA were also cleaved to give the free tetra-carboxylic acid. The DTPA- peptide conjugate was precipitated with t-butyl methyl ether and lyophilized with water : acetonitrile (2/3) mixture. Mass spectral analysis indicated that only the mono peptide-DTPA conjugate was obtained in accordance with the following sequence: DTP A-D-Phe-Cys(Acm)-Tyr-D-Tφ-Lys-The-Cys(Acm)-Thr.

Claims

What is claimed is:
1. A method of synthesizing a compound of the formula
Figure imgf000013_0001
(XII) wherein each R4 is a removable protecting group and each Rή is a linking moiety having 1 to 10 carbon atoms comprising,
(a) reacting together compounds of the formulae
Figure imgf000013_0002
(XIII) (XIV) wherein R4 and Rg are as defined above; Y is alkyloxy, alkyl, or H; Z is phenyl or a phenyl derivative; and X, is a group that will react with the amine of Compound (XIII), to yield a compound of the formula
Figure imgf000013_0003
(XV) and (b) selectively removing the moiety
Figure imgf000013_0004
to produce Compound (XII).
2. The method of claim 1 wherein each R is (a) an alkyl group having 1 to 15 carbon atoms or (b) benzyl or a benzyl derivative; each ^ has 1 to 6 carbon atoms; Y is methyl, methoxy or H; Z is phenyl, methoxy phenyl, or nitrophenyl; and X! is a halide, mesylate, or triflate.
3. The method of claim 2 wherein each R4 is (a) an alkyl group having 2 to 8 carbon atoms or (b) benzyl, methoxybenzyl, or nitrobenzyl; each Rg has 1 to 4 carbon atoms; Y is H; Z is phenyl, or methoxy phenyl; and Xj is a halide.
4. The method of claim 3 wherein each R4 is (a) t-butyl or (b) benzyl; each R^ is ethyl; Y is H; Z is phenyl; and Xt is a Br or Cl.
5. The method of claim 4 wherein R4 is t-butyl.
6. The method of claim 4 wherein R» is benzyl.
PCT/US2000/017825 1999-07-01 2000-06-28 Versatile method for the synthesis of iso-dtpa WO2001002339A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU57752/00A AU5775200A (en) 1999-07-01 2000-06-28 Versatile method for the synthesis of iso-dtpa

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14199899P 1999-07-01 1999-07-01
US60/141,998 1999-07-01

Publications (1)

Publication Number Publication Date
WO2001002339A1 true WO2001002339A1 (en) 2001-01-11

Family

ID=22498152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/017825 WO2001002339A1 (en) 1999-07-01 2000-06-28 Versatile method for the synthesis of iso-dtpa

Country Status (2)

Country Link
AU (1) AU5775200A (en)
WO (1) WO2001002339A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514810A (en) * 1995-02-21 1996-05-07 Schering Aktiengesellschaft Process for the production of DTPA-tetraesters of terminal carboxylic acids
US5618513A (en) * 1995-06-07 1997-04-08 Mallinckrodt Medical, Inc. Method for preparing radiolabeled peptides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514810A (en) * 1995-02-21 1996-05-07 Schering Aktiengesellschaft Process for the production of DTPA-tetraesters of terminal carboxylic acids
US5618513A (en) * 1995-06-07 1997-04-08 Mallinckrodt Medical, Inc. Method for preparing radiolabeled peptides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PIER LUCIO ANELLI ET AL.: "L-glutamic Acid and L-Lysine as Useful Building Blocks for the Preparation of Bifunctional DTPA-like Ligands", BIOCONJUGATE CHEMISTRY, vol. 10, no. 1, 18 January 1999 (1999-01-18), US, pages 137 - 140, XP002148891 *

Also Published As

Publication number Publication date
AU5775200A (en) 2001-01-22

Similar Documents

Publication Publication Date Title
JP3358827B2 (en) N-acyl-S- (2-hydroxyalkyl) cysteine
EP1289571B1 (en) Prochelators of radiometal labeled molecules
JPH04505022A (en) Proteins labeled with radioisotopes for use in diagnosis or therapy
AU2001277488A1 (en) Prochelators of radiometal labeled molecules
JPH03176495A (en) Dopamine and preparation of 4-o-phosphoric acid ester derived from said dopamine
KR20040108717A (en) Method for preparing combretastatins
JPS60501605A (en) Novel radioprotective agent with amino-thioalkyl structure and method for producing the same
US5117009A (en) Xanthenylamide handle for use in peptide synthesis
JPH07500817A (en) Organic nitrates, their preparation and their use in the treatment of cardiovascular diseases
WO2001002339A1 (en) Versatile method for the synthesis of iso-dtpa
WO2000058269A1 (en) Dtpa esters with orthogonal removable protecting groups
JPH02306947A (en) Preparation of chiral bata-amino acid
EP0300431A2 (en) Method of radiolabeling chelating compounds comprising sulfur atoms with metal radionuclides
Loeffler et al. Antineoplastic agents. 1. N-Protected vinyl, 1, 2-dihaloethyl, and cyanomethyl esters of phenylalanine
RU2182908C2 (en) Stereoisomeric indole compounds, method of their synthesis and their using
HU200985B (en) Process for production of active esthers of carbonic acid
US5210270A (en) Method for synthesis and 99m C labelling of 2-alkoxyisobutylisonitrile
WO2000058264A1 (en) Method for the synthesis of non-symmetrical dtpa compounds
WO2000058266A1 (en) Divergent method for the synthesis of diethylene triaminepenta aceticacid esters
WO2000058265A1 (en) Preparation of dtpa esters with different ester groups
WO2000058267A1 (en) Enhanced selectivity in the synthesis of dtpa esters fom diethylenetriamine
Doerge et al. Synthesis of N-substituted benzimidazole-2-thiones
EP0365412B1 (en) Cyclic nitrogen-containing ligands, their metal complexes, diagnostic compositions containing these complexes and method of preparing the ligands
JP2003509504A (en) Synthetic method of ritonavir
US20040043920A1 (en) Compound for chelating a metal, radiopharmaceutical, manufacturing process therefor, and diagnostic kit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP