WO2000075401A1 - Simultaneous electrical and fluid connection for anode - Google Patents

Simultaneous electrical and fluid connection for anode Download PDF

Info

Publication number
WO2000075401A1
WO2000075401A1 PCT/US2000/014975 US0014975W WO0075401A1 WO 2000075401 A1 WO2000075401 A1 WO 2000075401A1 US 0014975 W US0014975 W US 0014975W WO 0075401 A1 WO0075401 A1 WO 0075401A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
fluid
electrical
cell base
connection
Prior art date
Application number
PCT/US2000/014975
Other languages
French (fr)
Other versions
WO2000075401A9 (en
Inventor
David Windsor Stockbower
Peter V. Kimball
Iraj Gashgaee
Geoffrey Wayne Kaiser
Original Assignee
Mykrolis Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mykrolis Corporation filed Critical Mykrolis Corporation
Priority to US10/009,310 priority Critical patent/US6695957B1/en
Priority to AU54521/00A priority patent/AU5452100A/en
Publication of WO2000075401A1 publication Critical patent/WO2000075401A1/en
Publication of WO2000075401A9 publication Critical patent/WO2000075401A9/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/08Electroplating with moving electrolyte e.g. jet electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form

Definitions

  • a plating tool uses a negatively charged anode (usually a copper anode) to plate a positively charged (cathode) silicon wafer.
  • the anode provides a source of replenishing metal ions.
  • the metal ions are reduced to metal and deposited on the cathode surface.
  • Sulfuric acid and a plating solution flows through a chamber around the anode and is used to dissolve a metal (copper) plate.
  • the plating cell generally includes an anode (copper) held in anode holder, and a diffuser assembly. Conventionally, numerous fluid and electrical connections are required for the plating tool.
  • connection generally utilize O-rings, washers and fitting nuts to ensure a sealed connection. Some of these parts require complex machining.
  • the fittings must be electrically conductive and compatible with the plating solution. Titanium is commonly used, as it meets these criteria. As a result, the fittings are a large percentage of the cost of the device .
  • the anode is replaced often, requiring removal of the plating cell from the tool, and significant disassembly. Simplified and reduced numbers of fluid and electrical connections would simplify this process.
  • the present invention provides a plating cell base design that utilizes a single connection that provides both fluid communication and electrical communication to the cell.
  • the design eliminates many of the components previously necessary to effectuate fluid and electrical seals. With fewer connections, material cost is reduced, reliability is enhanced, and downtime is reduced.
  • Figure 1 is a cross-sectional view of the electrical and fluid connection in accordance with the present invention.
  • Figure 2 is a perspective view of another embodiment of the electrical and fluid connection in accordance with the present invention.
  • Figure 3 is a cross-sectional view of a third embodiment of the electrical and fluid connection in accordance with the present invention
  • Figure 4 is a cross-sectional view of a fourth embodiment of the electrical and fluid connection in accordance with the present invention.
  • Figure 5 is a perspective view of the embodiment of Figure 4 ; and Figure 6 is a cross-sectional view of a cell base in accordance with the present invention.
  • FIG. 1 there is shown an anode holder for use in semiconductor manufacturing.
  • the bowl 10 of the holder (only partially shown) is placed in an elbow 12, preferably made of a plastic, which receives fluid flow as shown by the arrow in the figure.
  • a sealing nose 15 seats in the elbow 12 as shown.
  • Metal (e.g, copper) female fitting 16 is secured through the elbow 12 with washer 17 and nut assembly 18.
  • a power cable 20 in communication with a suitable power supply (not shown) is fixed to the fitting 16 and in electrical communication with metal (e.g., copper) connection 25.
  • the nose 15 sealing connects the bowl 10 to the elbow 12 and also engages the standard electrical connection simultaneously.
  • the connection 25 is insulated from the fluid path formed in the elbow 12.
  • the elbow shape 12 is preferred, it is used for purposes of illustration; other shapes are within the scope of the present invention.
  • FIG. 2 An alternative embodiment is shown in Figure 2.
  • a standard bayonet-type electrical connection 30 (similar to a thermocouple probe connection) is used.
  • Nose 35 allows the bowl 10 to be interlocked into the fluid delivery system and the electrical rod to be interlocked with the electrical connect 36 (communicating with power cable 20) with a 90° twist.
  • FIGS 3-5 there is shown embodiments of the present invention which lend themselves to pre-assembly, thereby eliminating the need to install two O-rings during assembly of the anode package into the tool . Since the connectors come from outside the housing, the anode can be installed without the connectors, thereby avoiding potential damage to the connectors that can be caused by installing a relatively heavy part with delicate features.
  • Figure 3 is a low volume flow embodiment of this feature.
  • Anode holder bowl 10 preferably made of plastic, houses metal (preferably copper) anode 14.
  • a housing 20, preferably also made of plastic, is secured to the bowl 10 with an electrically conductive nut 18, preferably a copper nut. It is sealed to the bowl 10 by any suitable means, such as one or more O-rings 17 as shown.
  • the nut 18 is in electrical communication with the anode 14 via a metal rod 16, and in electrical communication with one or more external connect poles 21.
  • a fluid connection 25 is also provided in the housing 20. This embodiment reduces four assemblies and four disposable copper parts with two assemblies and two disposable parts.
  • FIG 4 illustrates a high flow embodiment of the present invention.
  • Housing 20 secures to anode bowl 10 with copper nut 18, sealed with a plurality of O-rings 17.
  • the nut 18 has a plurality of apertures 30 for fluid flow, the path of flow through one such aperture being shown in Figure 4 by the arrows.
  • Electrical communication is provided between the anode 14 and the external connection 21 by metal rod 16 and bolt 22 as shown.
  • This embodiment replaces two disposable electrical connectors with one re-usable plastic housing and one disposable flow through nut.
  • only two, not four, O-rings are needed for sealing.
  • FIG 6 another embodiment of the present invention is illustrated.
  • Anode 14 is secured in cell base 100 by retaining bolt 44 and support ring 43.
  • Membrane 50 is positioned in cell base 100 downstream of the anode 14, in the direction of fluid flow.
  • a center bolt 45 is preferably centrally located in the cell base 100 and secured with a center nut 46.
  • the center bolt 45 includes a fluid path 48 as shown.
  • the anode 14, anode support ring 43 and membrane 50 are all removable such as when changing the anode, but the center bolt 45 can remain in the cell base 100, thereby facilitating anode change.
  • the bolt 45 can be secured to the anode 14 by any suitable means, such as with threads or other locking mechanisms known to those skilled in the art.
  • the bolt 45 is electrically conductive, thereby providing electrical communication with an external power supply (not shown) .
  • An electrical pin 54 which may or may not be of the same material as the bolt 45, can be used to facilitate electrical communication between the power supply and the bolt 45.
  • Fitting adapter 60 is preferably offset from the center of the cell base 100, and includes external threads for connection to a main fluid supply.
  • the fitting adapter 60 has a central bore 62 for fluid flow, which fluid feeds into passageway 65 and is deflected by flow deflector 66 for uniform and symmetrical distribution of the fluid in the cell base 100.
  • copper is disclosed above for the electrically conductive fittings, other electrically conductive materials may be used, as long as they do not cause problems (such as contamination) with the other components of the system, including the plating bath.
  • other suitable electrically conductive materials include titanium, palladium, platinum, and coated platinum.
  • any of the aforementioned embodiments reduce the amount of connections necessary, thereby reducing the potential for leakage.
  • the connectology also allows for easy disassembly for maintenance or anode replacement, reducing the number of parts needed to provide a sealed connection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

A plating cell base design that utilizes a single connection that provides both fluid communication and electrical communication to the cell. The design eliminates many of the components previously necessary to effectuate fluid and electrical seals. With fewer connections, material cost is reduced, reliability is enhanced, and downtime is reduced.

Description

SIMULTANEOUS ELECTRICAL AND FLUID CONNECTION FOR ANODE
BACKGROUND OF THE INVENTION
In semiconductor manufacturing, a plating tool uses a negatively charged anode (usually a copper anode) to plate a positively charged (cathode) silicon wafer. The anode provides a source of replenishing metal ions. At the cathode, the metal ions are reduced to metal and deposited on the cathode surface. Sulfuric acid and a plating solution flows through a chamber around the anode and is used to dissolve a metal (copper) plate. As fluid (plating solution) flows past the anode, it becomes enriched with metal ions. The plating cell generally includes an anode (copper) held in anode holder, and a diffuser assembly. Conventionally, numerous fluid and electrical connections are required for the plating tool. Such connections generally utilize O-rings, washers and fitting nuts to ensure a sealed connection. Some of these parts require complex machining. The fittings must be electrically conductive and compatible with the plating solution. Titanium is commonly used, as it meets these criteria. As a result, the fittings are a large percentage of the cost of the device .
The anode is replaced often, requiring removal of the plating cell from the tool, and significant disassembly. Simplified and reduced numbers of fluid and electrical connections would simplify this process.
It is therefore an object of the present invention to provide improved fluid and electrical connectology for a plating tool. SUMMARY OF THE INVENTION
The problems of the prior art have been overcome by the present invention, which provides a plating cell base design that utilizes a single connection that provides both fluid communication and electrical communication to the cell. The design eliminates many of the components previously necessary to effectuate fluid and electrical seals. With fewer connections, material cost is reduced, reliability is enhanced, and downtime is reduced. BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a cross-sectional view of the electrical and fluid connection in accordance with the present invention;
Figure 2 is a perspective view of another embodiment of the electrical and fluid connection in accordance with the present invention;
Figure 3 is a cross-sectional view of a third embodiment of the electrical and fluid connection in accordance with the present invention; Figure 4 is a cross-sectional view of a fourth embodiment of the electrical and fluid connection in accordance with the present invention;
Figure 5 is a perspective view of the embodiment of Figure 4 ; and Figure 6 is a cross-sectional view of a cell base in accordance with the present invention.
DETAILED DESCRIPTION OF THE INVENTION
Turning now to Figure 1, there is shown an anode holder for use in semiconductor manufacturing. The bowl 10 of the holder (only partially shown) is placed in an elbow 12, preferably made of a plastic, which receives fluid flow as shown by the arrow in the figure. A sealing nose 15 seats in the elbow 12 as shown. Metal (e.g, copper) female fitting 16 is secured through the elbow 12 with washer 17 and nut assembly 18. A power cable 20 in communication with a suitable power supply (not shown) is fixed to the fitting 16 and in electrical communication with metal (e.g., copper) connection 25. The nose 15 sealing connects the bowl 10 to the elbow 12 and also engages the standard electrical connection simultaneously. The connection 25 is insulated from the fluid path formed in the elbow 12. Those skilled in the art will appreciate that the elbow shape 12 is preferred, it is used for purposes of illustration; other shapes are within the scope of the present invention.
An alternative embodiment is shown in Figure 2. In this embodiment, a standard bayonet-type electrical connection 30 (similar to a thermocouple probe connection) is used. Nose 35 allows the bowl 10 to be interlocked into the fluid delivery system and the electrical rod to be interlocked with the electrical connect 36 (communicating with power cable 20) with a 90° twist.
Turning now to Figures 3-5, there is shown embodiments of the present invention which lend themselves to pre-assembly, thereby eliminating the need to install two O-rings during assembly of the anode package into the tool . Since the connectors come from outside the housing, the anode can be installed without the connectors, thereby avoiding potential damage to the connectors that can be caused by installing a relatively heavy part with delicate features.
More specifically, Figure 3 is a low volume flow embodiment of this feature. Anode holder bowl 10, preferably made of plastic, houses metal (preferably copper) anode 14. A housing 20, preferably also made of plastic, is secured to the bowl 10 with an electrically conductive nut 18, preferably a copper nut. It is sealed to the bowl 10 by any suitable means, such as one or more O-rings 17 as shown. The nut 18 is in electrical communication with the anode 14 via a metal rod 16, and in electrical communication with one or more external connect poles 21. A fluid connection 25 is also provided in the housing 20. This embodiment reduces four assemblies and four disposable copper parts with two assemblies and two disposable parts.
Figure 4 illustrates a high flow embodiment of the present invention. Housing 20 secures to anode bowl 10 with copper nut 18, sealed with a plurality of O-rings 17. As best seen in Figure 5, the nut 18 has a plurality of apertures 30 for fluid flow, the path of flow through one such aperture being shown in Figure 4 by the arrows. Electrical communication is provided between the anode 14 and the external connection 21 by metal rod 16 and bolt 22 as shown. This embodiment replaces two disposable electrical connectors with one re-usable plastic housing and one disposable flow through nut. In addition, only two, not four, O-rings are needed for sealing. Turning now to Figure 6, another embodiment of the present invention is illustrated. Anode 14 is secured in cell base 100 by retaining bolt 44 and support ring 43. Membrane 50 is positioned in cell base 100 downstream of the anode 14, in the direction of fluid flow. A center bolt 45 is preferably centrally located in the cell base 100 and secured with a center nut 46. The center bolt 45 includes a fluid path 48 as shown. The anode 14, anode support ring 43 and membrane 50 are all removable such as when changing the anode, but the center bolt 45 can remain in the cell base 100, thereby facilitating anode change. The bolt 45 can be secured to the anode 14 by any suitable means, such as with threads or other locking mechanisms known to those skilled in the art. The bolt 45 is electrically conductive, thereby providing electrical communication with an external power supply (not shown) . An electrical pin 54, which may or may not be of the same material as the bolt 45, can be used to facilitate electrical communication between the power supply and the bolt 45.
Fitting adapter 60 is preferably offset from the center of the cell base 100, and includes external threads for connection to a main fluid supply. The fitting adapter 60 has a central bore 62 for fluid flow, which fluid feeds into passageway 65 and is deflected by flow deflector 66 for uniform and symmetrical distribution of the fluid in the cell base 100. Although copper is disclosed above for the electrically conductive fittings, other electrically conductive materials may be used, as long as they do not cause problems (such as contamination) with the other components of the system, including the plating bath. For example, other suitable electrically conductive materials include titanium, palladium, platinum, and coated platinum.
Any of the aforementioned embodiments reduce the amount of connections necessary, thereby reducing the potential for leakage. The connectology also allows for easy disassembly for maintenance or anode replacement, reducing the number of parts needed to provide a sealed connection.

Claims

What is claimed is:
1. An anode, comprising: a cell base housing said anode; a fluid flow path in said cell base providing fluid communication from outside said cell base to said anode; an electrical connector insulated from said fluid flow path and in electrical communication with said anode.
2. The anode of claim 1, wherein said anode is copper and said fluid is copper sulphate.
3. The anode of claim 1, further comprising a membrane in said cell base.
4. The anode of claim 1, wherein said electrical connector is removably secured to said anode.
5. The anode of claim 1, wherein said anode is removable from said cell base without removing said electrical connector.
PCT/US2000/014975 1999-06-04 2000-05-31 Simultaneous electrical and fluid connection for anode WO2000075401A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/009,310 US6695957B1 (en) 1999-06-04 2000-05-31 Simultaneous electrical and fluid connection for anode
AU54521/00A AU5452100A (en) 1999-06-04 2000-05-31 Simultaneous electrical and fluid connection for anode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13756199P 1999-06-04 1999-06-04
US60/137,561 1999-06-04

Publications (2)

Publication Number Publication Date
WO2000075401A1 true WO2000075401A1 (en) 2000-12-14
WO2000075401A9 WO2000075401A9 (en) 2002-06-20

Family

ID=22477995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/014975 WO2000075401A1 (en) 1999-06-04 2000-05-31 Simultaneous electrical and fluid connection for anode

Country Status (2)

Country Link
AU (1) AU5452100A (en)
WO (1) WO2000075401A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3836438A (en) * 1973-02-23 1974-09-17 Rhone Progil Apparatus for the recovery of leakages of brine in the metallic bottoms of diaphragm cells
US3891531A (en) * 1971-12-23 1975-06-24 Rhone Progil Electrolytic diaphragm cells including current connection means between the cell base and anode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3891531A (en) * 1971-12-23 1975-06-24 Rhone Progil Electrolytic diaphragm cells including current connection means between the cell base and anode
US3836438A (en) * 1973-02-23 1974-09-17 Rhone Progil Apparatus for the recovery of leakages of brine in the metallic bottoms of diaphragm cells

Also Published As

Publication number Publication date
WO2000075401A9 (en) 2002-06-20
AU5452100A (en) 2000-12-28

Similar Documents

Publication Publication Date Title
US6497801B1 (en) Electroplating apparatus with segmented anode array
US6908540B2 (en) Method and apparatus for encapsulation of an edge of a substrate during an electro-chemical deposition process
US20040035695A1 (en) Flow diffuser to be used in electro-chemical plating system
US8187382B2 (en) Polycrystalline silicon manufacturing apparatus
EP2746433B1 (en) Device for vertical galvanic metal, preferably copper, deposition on a substrate and a container suitable for receiving such a device
CN101376996A (en) Micro-electroforming apparatus
WO2004100333A1 (en) Corona discharge apparatus and method of manufacture
JPS58182823A (en) Plating apparatus for semiconductor wafer
US7138039B2 (en) Liquid isolation of contact rings
US6695957B1 (en) Simultaneous electrical and fluid connection for anode
US3891531A (en) Electrolytic diaphragm cells including current connection means between the cell base and anode
US4409086A (en) Electrolytic cell
US20080017505A1 (en) Anode holder
WO2000075401A9 (en) Simultaneous electrical and fluid connection for anode
US7090751B2 (en) Apparatus and methods for electrochemical processing of microelectronic workpieces
US6723224B2 (en) Electro-chemical polishing apparatus
CN109735864A (en) Electrolytic water device and cleaning equipment
KR20040007399A (en) Plating system with remote secondary anode for semiconductor manufacturing
CN216473473U (en) Gas path structure of chemical vapor deposition equipment and chemical vapor deposition equipment
US20020022403A1 (en) Connectors for an eletrostatic chuck
KR20140025420A (en) Cell stack system
US8765322B2 (en) Fuel cell support structure and method of assembly/disassembly thereof
US5525759A (en) Pin-shaped feedthrough
US20040060819A1 (en) Electrodialysis and electrodeposition membrane electrode device
CN117116728B (en) Etching equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10009310

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

AK Designated states

Kind code of ref document: C2

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: C2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

COP Corrected version of pamphlet

Free format text: PAGES 1/4-4/4, DRAWINGS, REPLACED BY NEW PAGES 1/4-4/4; DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP