WO2000067760A1 - Liposome preparation of fat-soluble antitumor drug - Google Patents

Liposome preparation of fat-soluble antitumor drug Download PDF

Info

Publication number
WO2000067760A1
WO2000067760A1 PCT/JP2000/002993 JP0002993W WO0067760A1 WO 2000067760 A1 WO2000067760 A1 WO 2000067760A1 JP 0002993 W JP0002993 W JP 0002993W WO 0067760 A1 WO0067760 A1 WO 0067760A1
Authority
WO
WIPO (PCT)
Prior art keywords
ribosome
composition ratio
preparation according
lipid
polyethylene glycol
Prior art date
Application number
PCT/JP2000/002993
Other languages
French (fr)
Japanese (ja)
Inventor
Yuji Kasuya
Junichi Okada
Kenji Hanaoka
Shinichi Kurakata
Akira Matsuda
Takuma Sasaki
Original Assignee
Sankyo Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Company, Limited filed Critical Sankyo Company, Limited
Priority to AU44302/00A priority Critical patent/AU4430200A/en
Publication of WO2000067760A1 publication Critical patent/WO2000067760A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to 1- (2′-cyano 2′-, j3-D-arabinopentofuranosyl) 1 N having excellent antitumor activity.
  • one of its derivatives, 1 _ (2 '—cyanone 2' —doxy) 3—D—arabino-pentofuranosyl ⁇ 4 —palmitoylcytosine (l- (2'-cyano-2, -deoxy - ⁇ -D-arabino-pentofuranosyl) -N 4 -palmitoylcytosine 0 or less, referred to as AL-CNDAC) is a fat-soluble drug in which the N 4 position of C NDAC is palmitoylated (Tokuhei 5-1). No. 94497).
  • PAL-CNDAC shows excellent antitumor activity by oral administration
  • a formulation that has even better antitumor activity and that can be administered by other than oral administration has been demanded.
  • fat-soluble drugs such as PAL-CNDAC have extremely low water solubility, and to enable intravenous administration, a water-soluble surfactant or organic solvent must be added to the injection. It is necessary to use large quantities of the substance, and there is concern about toxicity.
  • antitumor drugs have been developed to improve drug transferability to tumor tissues and retention in tumor tissues, thereby obtaining better antitumor activity and reducing side effects. Pharmaceutical innovations for ribosome preparations are generally performed.
  • a drug that can be included in a ribosome preparation is limited to about 3 mol% of the total lipid mole (Mori et al., Pliarm. Res. 10, 507-514 ( 1993).), It is considered that it is difficult to administer the therapeutically necessary amount, or the drug does not have sufficient retention properties on the ribosome, and it is difficult to enhance drug activity or reduce side effects.
  • the present inventors have conducted intensive studies on lipids constituting ribosomes and their composition ratios.
  • lipids have specific lipids, in particular, when those specific lipids constitute liposomes with specific composition ratios, they are generally PAL-CNDAC, a highly lipid-soluble drug that can only be encapsulated in a small amount, can retain a large amount of PAL-CNDAC, and the ribosome preparation has high drug transferability to tumor tissue
  • PAL-CNDAC a highly lipid-soluble drug that can only be encapsulated in a small amount, can retain a large amount of PAL-CNDAC, and the ribosome preparation has high drug transferability to tumor tissue
  • the present inventors have found that a liposomal preparation having high retentivity at high temperature and having practically usable stability can be obtained, and thus completed the present invention.
  • the present invention provides a PAL-CNDAC-containing liposomal preparation having high drug transferability to tumor tissue, high retention in tumor tissue, and practical use.
  • the present invention provides a PAL-CNDAC-containing liposomal preparation having high drug transferability to tumor tissue
  • Lipids chemically modified with polyethylene glycols which are the lipid components of liposomes, are N-monomethoxy polyethylene glycol succinyl phosphatids.
  • Dilhetano-lamines N-monomethoxypolyethylene glycol (2-chloro-1,3-, 5-triazine-1,4-diyl) succinylphosphatidyl-etano-lamines, N-monomethoxypolyethylene glycolone-carbo-norrephosphatidyl
  • lipid chemically modified with polyethylene dalicols which is a lipid component of liposomes, is converted to N-monomethoxypolyethyleneglycolsuccinylphosphatidylethanolamines or N-monomethoxypolyethylene glycol carbohydrate.
  • the ribosome preparation according to 2> or ⁇ 3> characterized in that it is a phosphatidylethanolamine.
  • phosphatidylcholine which is a lipid component constituting the ribosome, is any of dimyristoylphosphatidylcholine, dipalmitoylphosphatidylcholine or distearoylphosphatidylcholine.
  • phosphatidylcholine that is a lipid component constituting the liposome is either dipalmitoyl phosphatidylcholine or distearoylphosphatidylcholine.
  • ribosome preparation according to any one of ⁇ 2> to ⁇ 6>, further comprising a sterol as a lipid component constituting the ribosome.
  • ⁇ 8> The liposome preparation according to ⁇ 7>, wherein the sterols, which are lipid components constituting ribosomes, are cholesterol.
  • the phosphatidylglycerol which is a lipid component constituting the ribosome is dimyristoyl phosphatidyl glycerol, dipalmitoyl phosphatidyl glycerol or distear yl phosphatidyl glycerol.
  • phosphatidylglycerols which are lipid components constituting ribosomes, are dipalmitoylphosphatidylglycerol or disteareinolephosphatidinoleglycerol, 9> or 10> Ribosome production described in, 1
  • ribosome preparation according to any one of ⁇ 1> to ⁇ 11>, further comprising a cationic lipid as a lipid component constituting the ribosome, ⁇ 13>
  • cationic lipid which is a lipid component constituting the liposome is N-hytrimethylammonioacetyldidodecyl-D-glutamate chloride.
  • ⁇ 14> The liposomal preparation according to any one of ⁇ 2> to ⁇ 13>, wherein the ribosome has a volume average particle diameter of 25 nm to 400 nm.
  • the lipid component constituting the liposome is
  • Liposomal preparation according to any one of 1) to 1),
  • composition ratio of monomethoxypolyethyleneglycolsuccinyldistaroylphosphatidylethanolamines or N-monomethoxypolyethyleneglycolcarbonylphosphatidylethanolamines is 0.5 mol% to 10 mol%.
  • composition ratio of sterols is 4 Omo 1% to 7 Omo 1. / o,
  • the lipid component of liposomes is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N
  • composition ratio of phosphatidylcholine leak is 10 m0 1% to 70 m0 1%
  • composition ratio of sterols is 1 Omo1. /. ⁇ 6 Omo 1%,
  • the lipid component constituting the liposome is
  • composition ratio of phosphatidylcholines is from 1 Omo 1% to 7 Omo1. /. (3) the composition ratio of the sterols is 10 mo 1% to 60 mo 1%, (4) The composition ratio of the phosphatidylglycerols is l mo 1% to 1 Omo 1%,
  • the lipid component of liposomes is
  • composition ratio of phosphatidylcholines is 1 Omo 1% to 7 Omo 1%
  • composition ratio of monomethoxy polyethylene glycol succinyl distearoyl phosphatidyl ethanolamines or N-monomethoxy polyethylene glycol carboxy phosphatidyl ethanolamines is 0.5 mol% to l Omo.
  • composition ratio of phosphatidylglycerols is l mo 1. /. ⁇ 1 Omo 1%
  • the lipid component constituting the liposome is
  • composition ratio of the phosphatidylcholines is 10 mol 1% to 70 mol 1%
  • composition ratio of the sterols is 10 mO 1% to 60 mO 1%
  • composition ratio of monomethoxypolyethylene glycol succidyl distearoyl phosphatidyl hetanolamines or N-monomethoxy polyethylene glycol carboxy phosphatidyl hetamines is 0.5 mol% to l Omo. 1%,
  • composition ratio of phosphatidylglycerols is lmo 1. /. ⁇ 1 Omo 1%
  • ribosome preparation is a force that means a closed vesicle composed of a lipid assembled in a membrane and an internal aqueous phase (DDLasic, “uposomes: irom basic to applications”, Elsevier Science Publishers ⁇ pp.1- 171 (1993)). In the present invention, it means the whole fine particles in which lipids are aggregated, irrespective of whether or not they have an internal aqueous phase.
  • the “ribosome preparation” of the present invention preferably comprises 1- (2,1-cyano-12′-doxy-1) 3-D-arabinopentofuranosyl) 1-N 4 -palmitoylcytosine,
  • the lower limit is 3 mo 1% based on the total lipid content (including PAL-CNDAC) (Preferably 25 mo 1% as a lower limit) and 65 mo 1% as an upper limit (preferably 5 O mo 1% as an upper limit).
  • the “ribosome preparation” of the present invention is preferably a “lipid chemically modified with polyericols”, “phosphatidylcholines”, “phos ′, lysethols”, “sterols”, or “cationic”.
  • lipid chemically modified with polyethylene glycols means a lipid covalently bonded to a polyethylene dalicol having various molecular weights and a lipid, and preferably the lipid Are phosphatidylethanolamines, for example, of the general formula
  • n 10 to 100
  • 1 NH_PE represents phosphatidylethanolamine.
  • N-monomethoxypolyethyleneglycol-l-succinylphosphatidylethanolamines represented by the following formula:
  • n 10 to 100
  • 1 NH_PE represents phosphatidylethanolamine.
  • n 10 to 100
  • 1 NH—PE represents phosphatidylethanolamine.
  • N-monomethoxypolyethylene glycol carbonyl phosphatidylethanolamine represented by the formula:
  • N-monomethoxypolyethyleneglycolethylenephosphatidylethanolamines represented by the following formula: Preferably, it is N-monomethoxypolyethylene glycol ethylene phosphatidinoleethanolamines or N-monomethoxy polyethylene glycol carbonyl phosphatidyl ethanol / reamines.
  • the molecular weight of the polyethylene glycol moiety is About 1000 to about 100000 N-monomethoxypolyethylene glycol ethylene phosphatidyl / reethanolamines or N-monomethoxypolyethylene glycol carbuel phosphatidylethanolamines (DD Lasic, " Liposomes: from basic to appl icationsj, El sevier Science Publ ishers ⁇ pp. 294-296 (1993)) 0
  • N-monomethoxypolyethylene glycol ethylene phosphatidylethanolamine or N-monomethoxypolyethylene glycol carbonyl phosphatidylethanolamine can reduce the total amount of liposomal lipids (including PAL-CNDAC). , Preferably 0.5 to 10 mol% in the liposome.
  • phosphatidylcholines include, for example, dilauroylphosphatidylcholine, dimyristoylphosphatidylcholine, dipalmitoylphosphatidyl Choline or distearoyl phosphatidylcholine and the like are preferable, and preferred are dimyristyl phosphatidylcholine, dipanolemityl phosphatidylcholine, and distearoylphosphatidylcholine.
  • the phosphatidylcholine is preferably 10 mol 1 as a lower limit with respect to the total lipid amount (including PAL-CNDAC) constituting the ribosome. / o, (preferably 30 mol 1% as the lower limit), 95 mol 1% (preferably as 70 mol% as the upper limit) as the upper limit, and contained in the ribosome.
  • phosphatidylglycerols include, for example, dilauroylphosphatidylglycerol, dimyristoylphosphatidylglycerol, dinonoremitolylphosphatidylglycerol, and distearylphosphatidylglycerol. Are dimyristoyl phosphatidyl glycerol, dipalmitoyl phosphatidyl glycerol or distearoyl phosphatidyl glycerol.
  • the phosphatidylglycerol is preferably 1 to 1 Omo 1 with respect to the total lipid amount (including PAL-CNDAC) constituting the ribosome. / o, contained in ribosome.
  • sterols include cholesterol, cholesterol hemi-succinate, 3 / 3— [N- (N ′, N′-dimethinoleaminoethane) rubamoyl] cholesterol, ergosterol, lanosterol And cholesterol is preferred.
  • the sterols preferably have a lower limit of 10 mol%, preferably a lower limit of 40 mol% based on the total lipid amount (including PAL-CNDAC) constituting the liposome. ), The upper limit being 70 mo 1% (preferably the upper limit is 6 Omo 1%), which is contained in the liposome.
  • cationic lipid for example, N— [1— (2,3—Gioreiro) Xy) propyl] -N, N, N-trimethylammonium mouth ride, ⁇ - ⁇ -trimethylammonioacetyldidodecyl-D-glutamate mouth ride, and the like.
  • the ribosome preparation of the present invention usually comprises Liposomes may contain lipids which can be used, for example, phosphatidylinositols such as dilauroylphosphatidylinositol, dimyristoylphosphatidylinositol, dipalmitoylphosphatidylinositol or distearoylphosphatidylinositol; dilauroyl Phosphatidylserines such as phosphatidylserine, dimyristoylphosphatidylserine, dipalmitoylphosphatidylserine or diste
  • phosphatidylcholines phosphatidylglycerols, phosphatidylinositols, phosphatidylserines, phosphatidylethanolamines, digalactosyldiglycerides, galactosyldiglycerides, sphingomyelins, gangliosides, N-gangliosides Monomethoxypolyethylene glycol succininolephosphatidyl ethanolamines, N-monomethoxypolyethylene glycol (2-1,3,5-triazine-1,4,6-diyl) saxchelphosphatidylethanola Amines, N-monomethoxypolyethylene glycol carbonyl phosphatidylethanolamines, and N-monomethoxypolyethyleneglycol-l-ethylene phosphatidylethanolamines.
  • the volume average particle diameter of the ribosome is preferably from 25 to 400 nm, more preferably from 50 to 400 nm, which has high retentivity in blood and high accumulation in Z or tumor tissue after intravenous administration. 200 nm (see A ⁇ . Klibanov et al., Biochim. Biophys. Acta 1062, 142-148 (1991J / DDLasic, ⁇ Liposomes: from basic to applications '', Elsevier Science Publishers, pp.261-471 (1993)). ), And the volume average particle size of the ribosome can be determined based on principles such as dynamic light scattering (DD ⁇ asic,
  • the PAL-CNDAC-containing ribosome preparation of the present invention can be produced according to a method well known to those skilled in the art, and the volume average particle diameter can also be adjusted. That is, ribosomes can be produced using the above lipids and aqueous phase by thin film method, reverse phase evaporation method, ethanol injection method, ether injection method, dehydration monorehydration method, etc., ultrasonic irradiation method, freezing The volume average particle diameter can be adjusted by methods such as ultrasonic irradiation after melting, extrusion, French press, and homogenization. (See DD @ asic, "Liposomes: from basic to applications," Elsevier Science Publishers, pp.
  • the “aqueous phase” means an aqueous solution constituting the inside of the ribosome, and is not particularly limited as long as it is commonly used in this technical field.
  • sodium chloride aqueous solution, phosphate buffer, A buffer such as an acetate buffer, a glucose aqueous solution, a saccharide aqueous solution such as trehalose, and a mixed aqueous solution thereof are preferable.
  • the aqueous phase constituting the internal aqueous phase used for the production of ribosomes is extra-ribosomal, that is, it is nearly isotonic with body fluids, It is desirable that the osmotic pressure applied to the substrate be low.
  • lipid used for producing the ribosome preparation of the present invention, a commercially available product can be used, and usually, various kinds of carbon atoms and Z or non-Z, such as egg yolk lecithin and soybean lecithin, are used.
  • lipids having a degree of saturation can also be used without separating and purifying them into a single component.
  • an antioxidant such as sodium tocofunniol may be added for the purpose of antioxidant action and the like.
  • the ribosome preparation of the present invention is administered to humans, it is diluted with various aqueous solutions so that the concentration of the lipid constituting the liposome calculated from the composition at the time of formulation is 1 to 30 OmM. Or, use by concentrating by centrifugation.
  • the aqueous solution used for the dilution is not particularly limited as long as it is usually used.
  • a phosphate buffer solution for example, a sugar aqueous solution such as glucose and trehalose, a salt aqueous solution such as sodium chloride, and a physiological saline solution
  • a physiological saline solution for example, a physiological saline solution
  • intravenous injection is used, and when the final liquid volume is 100 to 100 ml, intravenous infusion is used.
  • intravenous infusion is used.
  • ribosome preparation of the present invention that is, physical stability of the liposome itself Since the chemical properties and chemical stability of the lipids forming the ribosome and the drug included therein may vary depending on the lipid used, etc., they should generally be stored in a cold place such as a refrigerator or used at normal use. Similar to the dissolvable injection preparations, etc., freeze-dried according to the method described in the literature (see DD Lasi "Shi iposomes: from basic to applications", Elsevier Science Publishers pp. 529-532 (1993)). It is better to save it in a state.
  • a desired injection preparation can be reconstituted by adding distilled water or the like at the time of use.
  • BEST MODE FOR CARRYING OUT THE INVENTION will be described in more detail with reference to Examples and Test Examples. However, the present invention is not limited to these examples.
  • lipids used in the following Examples and Test Examples other than cholesterol, were purchased and used from Nippon Oil & Fats Co., Ltd. Cholesterol was purchased from Tokyo Chemical Industry Co., Ltd. And recrystallized from hot ethanol. Furthermore, the molecular weight of PAL-CNDAC was 490.65, and the production method was according to the method described in JP-A-5-194497.
  • DSPC Distearoylphosphatidylcholine
  • DPPC dipalmitoylphosphatidylcholine c hereinafter referred to as DPPC.
  • DM PC Dilauroyl phosphatidylcholine
  • DLPC dilauroylphosphatidylcholine.
  • EPC egg yolk phosphatidylcholine
  • DSPG dipalmitoylphosphatidylglycerol
  • DPPG dipalmitoylphosphatidylglycerol
  • DLPG N-monomethylethoxypolyethylene glycol succinyl-distearoylphosphatidylethanolamine having a molecular weight of about 2,000, and N-monomethoxyethoxyethylene glycol succinyl distearoyl phosphatidyl ethanoylamine.
  • N-monomethoxypoly (ethyleneglvcol) carbonyldistearoyiphosphatidvlethanolamine N-monomethoxypoly (ethyleneglvcol) carbonyldistearoyiphosphatidvlethanolamine 0 or less) with a molecular weight of polyethylene glycol of about 5,000, and PEG5000-SC-DSPE.
  • N-H-trimethylammonioacetyldodecyl-D-glutamate chloride N-H-trimethylammonioacetyldodecyl-D-glutamate chloride; hereinafter referred to as TMAG.
  • TMAG N-H-trimethylammonioacetyldodecyl-D-glutamate chloride
  • 5% by weight aqueous glucose solution or 10% by weight aqueous solution of Treha ore and 0.1 M acetate buffer at pH 4 0.1 M aqueous acetic acid solution and 0.1 M aqueous sodium acetate solution are mixed in a volume ratio of 5: 1) (Mixed at a volume ratio of 9: 1) as an aqueous phase, using Bangham et al. (See J. Mol. Biol., 8, 660-668 (1964)). According to the method, to obtain a crude dispersion of the ribosome.
  • predetermined amounts of various lipids shown in Table 1 were measured in a 25 mL eggplant-shaped flask, and 5 mL of cloper form was added per 1 ⁇ m of total lipid, and the mixture was heated and dissolved at 40 ° C.
  • the mouth form was distilled off to form a thin layer of lipid on the inner wall of the eggplant-shaped flask.
  • An aqueous phase was added to the lipid thin layer so that the ribosome dispersion had a predetermined volume, and the mixture was shaken using a vortex mixer to obtain a crude ribosome dispersion.
  • PAL-CNDAC ribosome The liposome thus obtained is hereinafter referred to as PAL-CNDAC ribosome.
  • Table 1 The letters “0” and “0” mean phosphatidylcholines and phosphatidylglycerols, respectively.
  • these acyl chains are represented by S (steroyl), p (palmitoyl) and M (myristoyl). The abbreviation of is shown. However, When egg yolk lecithin was used as PC, the abbreviation of E was shown in parentheses.
  • Formulation Examples 1 to 16, 40, and 41 a 5% by weight aqueous glucose solution was used as the aqueous phase, and the total lipid concentration was 55 to 11 O mM.
  • a 5% by weight aqueous glucose solution was used as the aqueous phase, and the total lipid concentration was 55 to 11 O mM.
  • the Formulation Examples 1 7 to 3 as an aqueous phase 1 0 wt 0/0 ⁇ ⁇ 1 M acetic acid buffer mixture of trehalose and p H 4 (volume ratio 9: 1) was used, the total lipid The concentration was between 100 and 110 mM.
  • Prescription amount of lipid component per 1 mL of liposome dispersion liquid (m o 1)
  • Prescription example PC Cholesterol PG PEG2000-SS-DSPE PAL-CNDAC
  • the average volume particle diameter of the liposome was adjusted by the extrusion method or the ultrasonic irradiation method.
  • an extruder Liposofast-Basic, manufactured by AVESTIN
  • a polycarbonate membrane filter Nomura Microscience
  • Pass the coarse dispersion of CNDAC ribosome through the membrane hereinafter, passing the liposome through the membrane using an extruder equipped with a pore size membrane filter of a predetermined size).
  • Table 2 shows the volume average particle diameter of the liposome after particle diameter adjustment. No precipitate was found in any of the production examples.
  • each of these ribosome dispersions was a homogeneous semi-clear emulsion, and at 25 ° C, no change in appearance was observed for at least one day, and was a stable dispersion.
  • the particle size of the ribosome was measured as follows. That is, by diluting the PAL-CNDAC ribosome dispersion after particle size adjustment with 150 mM aqueous sodium chloride solution, the lipid concentration was reduced to approximately 0.1 mM, and the particle size measurement device (Nicomp Particle Sizer) was used. Model 370, Nicomp particle Sizing body volume average particle diameter using Systems Corp.,) (volume-weighted diameter. below were measured to.) and D v. Table 2 shows the values of D v obtained in this way. Both ribosomes had a sufficiently small average particle size, and were of a particle size that could be administered intravenously.
  • the numbers in the prescription column for lipid components indicate the prescription example numbers in Table 1
  • the numbers in the size adjustment column indicate the respective size adjustment methods (1 is the ultrasonic irradiation method, 2 is the extinction zone). (200 nm), 3 is the extension (100 nm), and 4 is the extension (50 nm).
  • these lysates gelled after at least about 10 and 30 minutes, respectively, and formed precipitates after 30 and 60 minutes. Since no such precipitate was formed in the solution containing no PAL-CNDAC (Comparative Production Example 3 in Table 3), the precipitate formed from the lysate of PAL-CNDAC was considered Conceivable.
  • PAL-CNDAC intravenous administration of PAL-CNDAC can be made possible by a general solubilization method using a surfactant or the like. Maintaining a stable solubilized state of PAL-CNDAC proved to be extremely difficult (Table 3).
  • the ribosome dispersion was diluted with physiological saline, and the total lipid concentration in the dispersion calculated from the formulation at the time of production was 0.5 mM.
  • 100 ⁇ L of this ribosome dispersion add 100 ⁇ L of ⁇ 4 acetate buffer (consisting of 0.83 ⁇ acetic acid and 0.17 ⁇ sodium acetate) and 800 ⁇ L of methanol, and mix with a vortex mixer. The mixture was centrifuged (1 000 g x 5 mi ⁇ .), And the supernatant was analyzed by reversed-phase high-performance liquid chromatography under the conditions shown in Table 4. The concentration of PAL-CNDAC eluted at 0 minutes was measured.
  • the recovery of PAL-CNDAC was calculated as the ratio of the actual concentration of PAL-CNDAC in the dispersion to the concentration of PAL-CNDAC in the dispersion, calculated from the formulation at the time of ribosome production.
  • the drug concentration in the ribosome dispersion can be further increased, for example, by concentrating by ultracentrifugation etc. after adjusting the size, and in general, it can be concentrated to a total lipid concentration of about 30 OmM (DDLasic For example, see Liposomes: irom basic to applications, Elsevier Science Publishers ⁇ p.68 (1993).) It can be concentrated about 1-fold, and a product with a PAL-CNDAC concentration of 84 mg / mL can be obtained. On the other hand, the drug concentration can be reduced by diluting with an aqueous solution of an electrolyte or a saccharide.
  • a single intravenous administration of various formulations of PAL-CNDAC was performed in mice, and the adequacy of intravenous administration was examined.
  • the various liposomal preparations of PAL-CNDAC prepared in Example 1 and the solubilized preparation of PAL-CNDAC prepared in Comparative Example 1 were appropriately diluted at 1.5-fold intervals (the liposomal preparation was The aqueous phase used in the production of ribosomes was used as the diluting solution, and a 150 mM aqueous sodium chloride solution was used as the diluting solution for the solubilized preparation.) A female CDF 1 (body weight: 20 to 30 g) was used. Was administered from Charles River Co., Ltd.) via the tail vein at 2 OmL per kg of body weight.
  • mice By observing the survival of mice for 1 hour after administration, The maximum dose that could be administered for PAL-CNDAC in the seed formulation, ie, the highest drug concentration at which the mice survived, was determined. In determining the maximum dose that could be administered, at least 6 mice were administered and the reproducibility was examined, confirming that no single animal died.
  • MTD Maximum tolerated dose
  • the ribosome preparation of the present invention can safely administer a larger amount of PAL-CNDAC than a solubilized preparation using a surfactant or the like.
  • Formulations of PAL-CNDAC shown in Example 1 or formulations of PAL-CNDAC newly produced in the same manner as above are shown in Tables 7 and 9. )
  • the dosing schedule was four intermittent doses every three days.
  • the antitumor activity was evaluated using the tumor growth inhibitory effect and the survival rate as scales.
  • Test examples 3 (1) and 3 (2) were obtained from experiments performed on different days under the same conditions.
  • Test Example 3 Preparation of PAL-CNDAC Preparation Example Drug recovery rate after production (%) Volume average particle size (nm)
  • Comparison 6 50 Approx. 100 2 2 to 7.5 mg of PAL-CNDAC / mL Dissolve in 50 ⁇ L of toamide, 10 w / w. /.
  • a 150 mM aqueous sodium chloride solution containing a neutral surfactant (Emulphor EL-620; manufactured by Rhone Poulin 'Japan Co., Ltd.) was added to a predetermined volume.
  • Mouse colon cancer co1on26 was implanted subcutaneously into 5- to 6-week-old female CDF1 mice to engraft and grow tumor tissue. On the 7th day after transplantation, 6 animals per group were randomly divided into groups and administered the first dose. As for various preparations for intravenous administration, a volume of 2 OmLZkg was intravenously administered in the same manner as in Test Example 2.
  • the oral suspension preparation examined as a comparison was administered in a volume of 2 OmLZkg.
  • the same preparation was administered in the same volume, for a total of four administrations.
  • the MTD in this dosing schedule was also determined in the same manner as in Test Example 2.c
  • the maximum dose that could be administered was as follows: on Day 20 of the transplant, there were no deaths due to adverse drug reactions, and on the seventh day of the transplant. The maximum drug concentration in the drug product with an average weight loss of 20% or less for the eyes was determined.
  • tumor volume (mm 3 ) major axis (mm) X minor C2
  • the relative tumor volume calculated from the diameter 2 (mm 2 ) Z2 is the tumor volume on the day of the first administration. It was calculated as a relative value of the tumor volume set to 1. The smaller this value is, the stronger the tumor growth inhibitory effect is.
  • the relative tumor volume on the 20th day of transplantation was calculated as a measure of the tumor growth inhibitory effect.
  • mice After the administration of the various preparations, the mice were bred and the survival days of each mouse were determined.
  • the survival rate of each treatment group was calculated by the following equation: (a ⁇ b) / b ⁇ 100 (%).
  • a and b mean the median value of the number of days alive in the treated group and the untreated group, respectively.
  • Tables 10 to 11 show the evaluation results of the antitumor activity near the MTD of each preparation.
  • Test example 3 Antitumor activity test results of (1) Production example Survival rate on day 20 of tumor implantation (%)
  • Test result of antitumor activity of test example 3 (2) Production example Survival rate on the 20th day of tumor implantation (%)
  • Test Example 3 (1) in Table 10 when a formulation prepared by solubilizing PAL-CNDAC using polyoxyethylene hydrogenated castor oil 60 and dimethyl sulfoxide (Comparative Production Example 1) was administered intravenously. In comparison, the relative tumor volume was increased and the survival rate was reduced as compared with the case where the suspension of the drug (Comparative Production Example 4) was orally administered. Therefore, an antitumor activity comparable to the excellent antitumor activity at the time of oral administration cannot be obtained by intravenous administration of the solubilized preparation, and intravenous administration of PAL-CNDAC is disadvantageous compared to oral administration. This was found to be the administration route.
  • Test Example 4 Antitumor activity Various formulations of PAL-CNDAC shown in Example 1 or a formulation of PAL-CNDAC newly produced in the same manner as the formulation (The drug recovery and volume average particle size of the tested formulations are shown in Tables 12 and 14). The antitumor activity of a different cancer type from that used in Test Example 3 was examined. In Test Example 4 (1), the intravenous administration of ribosomes and oral administration of the suspension were single doses, and in Test Example 4 (2), the suspension was administered for 5 consecutive days and then suspended. The ribosome preparation was administered for 6 weeks on an administration schedule considered to be suitable for various preparations, such as every 7 days.
  • Mouse fibrosarcoma Meth A was implanted subcutaneously into 5- to 6-week-old female CDF1 mice to engraft and grow tumor tissue. On the 7th day of transplantation, the animals were randomly divided into groups, each group consisting of 6 animals. In Test Example 4 (1), a single dose was administered, and in Test Example 4 (2), the first dose was administered. As for the preparation for intravenous administration, a volume of 20 mLZZ kg was intravenously administered in the same manner as in Test Examples 2 and 3. In addition, the oral suspension preparations tested for comparison received 20 mLZkg in Test Example 4 (1) and 1 OmLZkg in Test Example 4 (2). The MTD in Test Example 4 was determined in the same manner as in Test Examples 2 and 3.
  • the maximum concentration that can be administered is that no death occurred due to the side effects of the drug 6 days after administration (13 days after transplantation), when the single administration in Test Example 4 (1) maximized the side effects of the drug, and The maximum drug concentration in the drug product with an average weight loss of 20% or less on the 7th day of transplantation was determined.
  • the administration schedule suitable for each of the preparations in Test Example 4 (2) there were no deaths due to adverse drug reactions until 3 days after the last administration (day 45 of transplantation) and weight loss relative to day 7 of transplantation The maximum drug concentration with an average rate of 20% or less was determined.
  • Test Example 4 (1) on the 7th day of transplantation, that is, on the day of the first administration and on the 20th day, in Test Example 4 (2), on the 73rd transplantation, that is, on the day of the first administration and on the 21st, 3 On day 1, the major axis and minor axis of the tumor tissue were measured from above the skin, and the relative tumor was measured in the same manner as in Test Example 3. The volume was calculated.
  • Test Example 4 (1) the relative tumor volume on the 20th day of transplantation and in Test Example 4 (2) on the 2nd and 31st days of transplantation were calculated as a measure of the tumor growth inhibitory effect. After administration of the various preparations, the mice were bred, and the survival rate was calculated as in Test Example 3. Tables 15 and 16 show the evaluation results of the antitumor activity near the MTD of each preparation. (Table 15)
  • Test result of antitumor activity of test example 4 (1) Production example Survival rate on the 20th day of tumor implantation (%)
  • Test Example 4 Test result of antitumor activity of (2) Production example Relative tumor volume Prolonged survival rate (%)
  • PAL-CNDAC concentrations in tumors after administration of various preparations of PAL-CNDAC were measured. As shown in Tables 17 and 18, as for the administration route, the liposomal preparation and the solubilized preparation were intravenously administered, and the suspension was oral administration, as in the evaluation of antitumor activity.
  • a 6-week-old CDF1 mouse was transplanted subcutaneously with mouse colon cancer co1on26 or mouse fibrosarcoma MethA, and a single dose of the formulation shown in Tables 17 and 18 was given 10 to 14 days later did.
  • the dose of PAL-CNDAC was close to the MTD determined in Test Example 3 for co 1 on 26 tumor-bearing mice and Test 4 (1) for Meth A tumor-bearing mice. did.
  • the PAL-CNDAC concentration in MethA tumors was investigated.
  • the PAL-CNDAC concentration in each tumor homogenate and the PAL-CNDAC concentration in the tumor tissue were determined from the dilution calculated from the weight ratio of the tumor tissue to the added aqueous sodium chloride solution.
  • PAL-CNDAC was detected for 48 to 72 hours after administration of the ribosome preparation in mouse colon cancer co 1 on 26 tumor-bearing mice.
  • PAL-CNDAC could not be detected after intravenous administration of the solubilized preparation and oral administration of the suspension.
  • Table 20 in the mouse fibrosarcoma MethA tumor-bearing mouse, PAL-CNDAC was detected in the tumor after administration of the liposomal preparation 24 hours after administration of the various preparations. After oral administration of the suspension, no detection was possible.
  • a ribosome having a high composition ratio of PAL-CNDAC to the total lipid amount can be produced, and intravenous administration of PAL-CNDAC can be performed without using a highly toxic neutral water-soluble surfactant.
  • a highly toxic neutral water-soluble surfactant could be possible.
  • FIG. 1 shows the time course of PAL-CNDAC concentration in tumor (Co 1 on 26) after administration of liposomal formulation of PAL-CNDAC.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

A liposome preparation containing 1-(2-C-cyano-2-deoxy-ß-D-arabinopentofuranosyl)-N4-palmitoylcytosine acting as an antitumor agent, which exhibits high drug transfer to tumor tissue and high residence in such tissue and can be put to practical use.

Description

明細書 脂溶性抗腫瘍薬のリポソ一ム製剤 技術分野 本発明は、 優れた抗腫瘍活性を有する、 1 - ( 2 ' —シァノー 2 ' ―, j3—D—ァラビノーペントフラノシル) 一 N' -パルミ トイルシトシン含有リポソ —ム製剤に関する。 背景技術  TECHNICAL FIELD The present invention relates to 1- (2′-cyano 2′-, j3-D-arabinopentofuranosyl) 1 N having excellent antitumor activity. '-Liposome formulation containing palmitoylcytosine. Background art
1— (2 ' —シァノ一 2' —デォキシ一 |3—D—ァラビノーペントフラノシル) シトシン 、丄 -(2'-cyano-2'-aeoxy- j3 -D-arabino-pentofuranosyl)cytosine。 以 ή"、 し NDACとする。) 及びその誘導体は、 優れた抗腫瘍活性を有する (特開平 4一 2 35 1 82号及び特開平 5— 1 94497号参照)。 1— (2′—cyanone 2′—doxy-1 | 3—D—arabinopentofuranosyl) cytosine, 丄-(2′-cyano-2′-aeoxy-j3-D-arabino-pentofuranosyl) cytosine. And NDAC.) And derivatives thereof have excellent antitumor activity (see JP-A-4-1235182 and JP-A-5-194497).
また、 その誘導体の一つである 1 _ (2' —シァノ一 2' —デォキシー ]3— D— ァラビノ一ペン トフラノシル) 一 Ν4—パルミ トイルシトシン (l-(2'-cyano-2,- deoxy- β -D-arabino-pentofuranosyl)-N4-palmitoylcytosine0 以下、 AL-CNDAC とする。) は、 C NDACの N4位がパルミ トイル化された脂溶性の薬物である (特 開平 5— 1 94497号参照)。 In addition, one of its derivatives, 1 _ (2 '—cyanone 2' —doxy) 3—D—arabino-pentofuranosyl 一4 —palmitoylcytosine (l- (2'-cyano-2, -deoxy -β-D-arabino-pentofuranosyl) -N 4 -palmitoylcytosine 0 or less, referred to as AL-CNDAC) is a fat-soluble drug in which the N 4 position of C NDAC is palmitoylated (Tokuhei 5-1). No. 94497).
PAL-CNDAC は、 経口投与により優れた抗腫瘍活性を示すものの、 さらに優れ た抗腫瘍活性を有し、 経口以外の投与を可能とする製剤が求められていた。 一般に、 PAL-CNDAC のような脂溶性の薬物は、 水溶性が極めて低いため、 静 脈内投与を可能とするためには、その注射剤等中に水溶性界面活性剤や有機溶媒等 の添加物を大量に使用する必要があり、 毒性が懸念される。 ところで、抗腫瘍薬の腫瘍組織への薬物移行性や腫瘍組織での滞留性を向上させ ることにより、 より優れた抗腫瘍活性を得、 つ、 副作用を軽減する目的で、 抗腫 瘍薬をリボソーム製剤とする製剤的工夫は、 一般に行なわれている。 Although PAL-CNDAC shows excellent antitumor activity by oral administration, a formulation that has even better antitumor activity and that can be administered by other than oral administration has been demanded. In general, fat-soluble drugs such as PAL-CNDAC have extremely low water solubility, and to enable intravenous administration, a water-soluble surfactant or organic solvent must be added to the injection. It is necessary to use large quantities of the substance, and there is concern about toxicity. By the way, antitumor drugs have been developed to improve drug transferability to tumor tissues and retention in tumor tissues, thereby obtaining better antitumor activity and reducing side effects. Pharmaceutical innovations for ribosome preparations are generally performed.
しかしながら、 一般に、 脂溶性の薬物の場合、 リボソーム製剤に包含可能な薬物 は、全脂質モル数に対し、 3 m o 1 %程度が限界であり (Moriら、 Pliarm. Res. 10、 507-514 (1993) 参照。)、 治療上必要な量が投与できなかったり、 リボソームへの 薬物の保持特性が十分ではなく、薬物の活性を増強したり、副作用を軽減すること は困難であると考えられる。 本発明者等は、 リボソームを構成する脂質及びその組成比につき、鋭意研究した 結果、 特定の脂質を有する場合、 特に、 それら特定の脂質が特定の組成比でリポソ —ムを構成する場合、一般に、少量しか封入できないと考えられる脂溶性の高い薬 物である、 PAL-CNDAC を、 高量保持することができ、 また、 当該リボソーム製 剤は、 腫瘍組織への薬物移行性が高く、 腫瘍組織での滞留性も高く、 かつ、 実用に 供し得る安定性を有するリポソ一ム製剤とし得ることを見出し、本発明を完成した。 発明の開示 本発明は、 腫瘍組織への薬物移行性が高く、 腫瘍組織での滞留性も高く、 かつ、 実用に供し得る PAL-CNDAC含有リポソ一ム製剤を提供する。 本発明は、  However, in general, in the case of a fat-soluble drug, a drug that can be included in a ribosome preparation is limited to about 3 mol% of the total lipid mole (Mori et al., Pliarm. Res. 10, 507-514 ( 1993).), It is considered that it is difficult to administer the therapeutically necessary amount, or the drug does not have sufficient retention properties on the ribosome, and it is difficult to enhance drug activity or reduce side effects. The present inventors have conducted intensive studies on lipids constituting ribosomes and their composition ratios. As a result, when lipids have specific lipids, in particular, when those specific lipids constitute liposomes with specific composition ratios, they are generally PAL-CNDAC, a highly lipid-soluble drug that can only be encapsulated in a small amount, can retain a large amount of PAL-CNDAC, and the ribosome preparation has high drug transferability to tumor tissue, The present inventors have found that a liposomal preparation having high retentivity at high temperature and having practically usable stability can be obtained, and thus completed the present invention. DISCLOSURE OF THE INVENTION The present invention provides a PAL-CNDAC-containing liposomal preparation having high drug transferability to tumor tissue, high retention in tumor tissue, and practical use. The present invention
< 1 > 1 - ( 2, ーシァノー 2 ' —デォキシ一 ]3— D—ァラビノーペントフラノシ ル) 一 N 4—パルミ トイルシトシン含有リボソーム製剤、 <1> 1 - (2, Shiano 2 '- Dokishi one] 3- D-§ Rabbi no pent furano Shi Le) one N 4 - palmitic Toirushitoshin containing ribosome preparations,
< 2 >リポソームを構成する脂質成分として、ポリエチレングリコール類で化学修 飾された脂質又はホスファチジルコリン類を含有することを特徴とする、 < 1 >に 記載のリボソーム製剤、  <2> The liposome preparation according to <1>, wherein the liposome composition comprises a lipid chemically modified with polyethylene glycols or phosphatidylcholines as a lipid component constituting the liposome.
く 3 >リポソームを構成する脂質成分であるポリエチレングリコール類で化学修 飾された脂質が、 N—モノメ トキシポリエチレングリコ一ルサクシニルホスファチ ジルェタノ一ルァミン類、 N—モノメ トキシポリエチレングリコール(2—クロ口 一 1 , 3 , 5—トリアジン一 4, 6—ジィル) サクシニルホスファチジルェタノ一 ルァミン類、 N—モノメ トキシポリエチレングリコーノレカルボ-ノレホスファチジル エタノ一ルアミン類又は N—モノメ トキシポリエチレングリコールエチレンホス ファチジルェタノ一ルァミン類であることを特徴とする、く 2〉に記載のリポソ一 ム製剤、 3> Lipids chemically modified with polyethylene glycols, which are the lipid components of liposomes, are N-monomethoxy polyethylene glycol succinyl phosphatids. Dilhetano-lamines, N-monomethoxypolyethylene glycol (2-chloro-1,3-, 5-triazine-1,4-diyl) succinylphosphatidyl-etano-lamines, N-monomethoxypolyethylene glycolone-carbo-norrephosphatidyl The liposome preparation according to item 2), wherein the liposome preparation is characterized by being ethanolamines or N-monomethoxypolyethylene glycol ethylene phosphatidylethanolamines.
< 4〉リポソ一ムを構成する脂質成分であるポリエチレンダリコール類で化学修 飾された脂質が、 N—モノメ トキシポリエチレングリコ一ルサクシニルホスファチ ジルエタノールァミン類又は N—モノメ トキシポリエチレングリコールカルボ二 ルホスファチジルエタノールァミン類であることを特徴とする、く 2 >又はぐ 3 > に記載のリボソーム製剤、  <4> The lipid chemically modified with polyethylene dalicols, which is a lipid component of liposomes, is converted to N-monomethoxypolyethyleneglycolsuccinylphosphatidylethanolamines or N-monomethoxypolyethylene glycol carbohydrate. The ribosome preparation according to 2> or <3>, characterized in that it is a phosphatidylethanolamine.
く 5〉リボソームを構成する脂質成分であるホスファチジルコリン類が、ジミリス トイルホスファチジルコリン、ジパルミ トイルホスファチジルコリン又はジステア ロイルホスファチジルコリンのいずれかであることを特徴とする、く 2〉に記載の リボソーム製剤、 <5> The ribosome preparation according to <2>, wherein the phosphatidylcholine, which is a lipid component constituting the ribosome, is any of dimyristoylphosphatidylcholine, dipalmitoylphosphatidylcholine or distearoylphosphatidylcholine.
く 6〉リポソームを構成する脂質成分であるホスファチジルコリン類が、ジパルミ トイルホスファチジルコリン又はジステアロイルホスファチジルコリンのいずれ かであることを特徴とする、 < 2〉又はく 5〉に記載のリボソーム製剤、 <6> The liposome preparation according to <2> or <5>, wherein the phosphatidylcholine that is a lipid component constituting the liposome is either dipalmitoyl phosphatidylcholine or distearoylphosphatidylcholine.
< 7〉リボソームを構成する脂質成分として、 さらに、 ステロール類を含有するこ とを特徴とする、 く 2〉乃至く 6〉のいずれか 1つに記載のリボソーム製剤、 <7> The ribosome preparation according to any one of <2> to <6>, further comprising a sterol as a lipid component constituting the ribosome.
< 8 >リボソームを構成する脂質成分であるステロール類が、コレステロ一ルであ ることを特徴とする、 く 7 >に記載のリボソーム製剤、 <8> The liposome preparation according to <7>, wherein the sterols, which are lipid components constituting ribosomes, are cholesterol.
< 9 >リボソームを構成する脂質成分として、 さらに、 ホスファチジルグリセロー ル類を含有することを特徴とする、 < 2 >乃至ぐ 8〉のいずれか 1つに記載のリポ ソーム製剤、  <9> The liposome preparation according to any one of <2> to <8>, further comprising a phosphatidylglycerol as a lipid component constituting the ribosome.
< 1 0 >リボソームを構成する脂質成分であるホスファチジルグリセロール類が、 ジミリストイルホスファチジルグリセロール、ジパルミ トイルホスファチジルグリ セ口一ル又はジステア口ィルホスファチジルグリセ口ールであることを特徴とす る、 < 9 >に記載のリボソーム製剤、 <10> The phosphatidylglycerol which is a lipid component constituting the ribosome is dimyristoyl phosphatidyl glycerol, dipalmitoyl phosphatidyl glycerol or distear yl phosphatidyl glycerol. The ribosome preparation according to <9>,
< 1 1〉リボソームを構成する脂質成分であるホスファチジルグリセロール類が、 ジパルミ トイルホスファチジルグリセ口一ル又はジステア口ィノレホスファチジノレ グリセロールであることを特徴とする、く 9 >又はく 1 0〉に記載のリボソーム製 斉,1 <11> phosphatidylglycerols, which are lipid components constituting ribosomes, are dipalmitoylphosphatidylglycerol or disteareinolephosphatidinoleglycerol, 9> or 10> Ribosome production described in, 1
< 1 2 >リボソームを構成する脂質成分として、 さらに、 カチオン性脂質を含有す ることを特徴とする、く 2 >乃至ぐ 1 1〉のいずれか 1つに記載のリボソーム製剤、 く 1 3〉リポソ一ムを構成する脂質成分であるカチオン性脂質が、 N—ひートリメ チルアンモニオアセチルジドデシルー D—グルタメートクロライ ドであることを 特徴とする、 < 1 2〉に記載のリボソーム製剤、  <12> The ribosome preparation according to any one of <1> to <11>, further comprising a cationic lipid as a lipid component constituting the ribosome, <13> The ribosome preparation according to <12>, wherein the cationic lipid which is a lipid component constituting the liposome is N-hytrimethylammonioacetyldidodecyl-D-glutamate chloride.
< 14〉リボソームの体積平均粒子径が、 25 nm乃至 400 nmであることを特 徴とする、 く 2 >乃至く 1 3 >のいずれか 1つに記載のリポソ一ム製剤、 く: 1 5 >リポソ一ムの体積平均粒子径が、 50 nm乃至 200 nmであることを特 徴とする、 く 2 >乃至く 14 >のいずれか 1つに記載のリボソーム製剤、  <14> The liposomal preparation according to any one of <2> to <13>, wherein the ribosome has a volume average particle diameter of 25 nm to 400 nm. The ribosome preparation according to any one of <2> to <14>, wherein the liposome has a volume average particle diameter of 50 nm to 200 nm.
< 1 6 >リポソームを構成する脂質成分が、 <16> The lipid component constituting the liposome is
(1) 1— (2 ' —シァノ一 2' —デォキシ一 ]3—D—ァラビノーペントフラノシ ル) —N4—パルミ トイルシトシン、 (1) 1— (2'—cyanone 2'—doxy] 3—D—arabinopentofuranosyl) —N 4— palmitoylcytosine,
(2)モノメ トキシポリエチレングリコ一ルサクシニルジステアロイルホスファチ ジルエタノールアミン類又は N—モノメ トキシポリエチレングリコールカルボェ ルホスファチジルエタノールアミン類、 及び、  (2) Monomethoxy polyethylene glycol succinyl distearoyl phosphatidyl ethanolamines or N-mono methoxy polyethylene glycol carboxy phosphatidyl ethanolamines, and
(3) ホスファチジルコリン類である、  (3) phosphatidylcholines,
く 1〉乃至く 1 5〉のいずれか 1つに記載のリポソ一ム製剤、 Liposomal preparation according to any one of 1) to 1),
< 1 7〉リポソ一ムを構成する総脂質量に対して、 <17> With respect to the total lipid content of the liposome,
(1) 1— (2, 一シァノー 2' —デォキシ一 |8—D—ァラビノーペントフラノシ ル) — N4—パルミ トイルシトシンの組成比が、 3mo 1 %乃至 65mo 1 %であ Ό、 (1) 1— (2, 1 cyano 2 '—doxy-1 | 8—D—arabinopentofuranosyl) — N 4 —palmitoylcytosine composition ratio is 3mo 1% to 65mo 1% Ό,
(2)モノメ トキシポリエチレングリコ一ルサクシニルジステアロイルホスファチ ジルェタノールァミン類又は N—モノメ トキシポリエチレングリコールカルボ二 ルホスファチジルエタノールァミン類の組成比が、 0. 5mo l %乃至 1 0mo 1 %であり、 (2) Monomethoxy polyethylene glycol succinyl distearoyl phosphatid The composition ratio of diluetanolamines or N-monomethoxypolyethylene glycol carboxyphosphatidylethanolamines is 0.5 mol% to 10 mol 1%,
(3) ホスファチジルコリン類の組成比が、 30mo 1 %乃至 95mo 1 %である、 く 1 6〉に記載のリボソーム製剤、  (3) a phosphatidylcholine having a composition ratio of 30mo 1% to 95mo 1%,
< 1 8〉リポソ一ムを構成する脂質成分が、 <18> The lipid component of liposomes is
(1) 1— (2' —シァノー 2' —デォキシ _/3— D—ァラビノ ^ントフラノシ ル) —N4—パルミ トイルシトシン、 (1) 1— (2 ′ —Cyanaw 2 ′ —Doxy _ / 3— D—Arabino ^ ntofuranosyl) —N 4 —Palmitoylcytosine,
(2)モノメ トキシポリエチレングリコ一ルサクシニルジステアロイルホスファチ ジルェタノ一ルァミン類又は N—モノメ トキシポリエチレングリコ一ルカルボ二 ルホスファチジルェタノ一ルァミン類、 及び、  (2) monomethoxy polyethylene glycol succinyl distearoyl phosphatidyl ethanolamines or N-monomethoxy polyethylene glycol carbonyl phosphatidyl ethanolamines; and
(3) ステロール類である、  (3) sterols,
< 1 >乃至ぐ 1 5 >のいずれか 1つに記載のリポソーム製剤、  The liposome formulation according to any one of <1> to
< 1 9〉リボソームを構成する総脂質量に対して、 <19> With respect to the total lipid amount constituting the ribosome,
(1) 1 - (2 ' —シァノ一 2' —デォキシー /3—D—ァラビノーペントフラノシ ル) — N4—パルミ トイルシトシンの組成比が、 25 mo 1。/。乃至 5 Omo 1 %で あり、 (1) 1 - (2 '- Shiano one 2' - Dokishi / 3-D-§ Lavi no pent furano sheet le) - N 4 - the composition ratio of Palmi Toirushitoshin is, 25 mo 1. /. ~ 5 Omo 1%
(2)モノメ トキシポリエチレングリコ一ルサクシユルジステアロイルホスファチ ジルエタノールァミン類又は N—モノメ トキシポリエチレングリコールカルボ二 ルホスファチジルエタノールァミン類の組成比が、 0. 5mo l %乃至 1 0mo 1 %であり、  (2) The composition ratio of monomethoxypolyethyleneglycolsuccinyldistaroylphosphatidylethanolamines or N-monomethoxypolyethyleneglycolcarbonylphosphatidylethanolamines is 0.5 mol% to 10 mol%. And
(3) ステロ一ル類の組成比が、 4 Omo 1 %乃至 7 Omo 1。/oである、  (3) The composition ratio of sterols is 4 Omo 1% to 7 Omo 1. / o,
< 1 8 >に記載のリポソ一ム製剤、 The liposomal preparation according to <18>,
く 20 >リポソ一ムを構成する脂質成分が、 20> The lipid component of liposomes is
(1) 1— (2, 一シァノー 2' —デォキシ一j3— D—ァラビノ一ぺントフラノシ ル) —N4—パルミ トイルシトシン、 (1) 1— (2, 1 cyano 2 '—Doxy 1j3— D—arabino 1-pentfuranosyl) —N 4 —palmitoylcytosine,
(2)モノメ トキシポリエチレングリコールサクシ-ルジステアロイルホスファチ ジルエタノールァミン類又は N—モノメ トキシポリエチレングリ コールカルボ- ルホスファチジルェタノ一ルァミン類、 (2) Monomethoxy polyethylene glycol succil-distearoyl phosphatidyl ethanolamines or N-mono methoxy polyethylene glycol carbo- Lephosphatidyl ethanoamines,
( 3 ) ホスファチジルコリン類、 及び、  (3) phosphatidylcholines, and
(4 ) ステロール類である、  (4) sterols,
< 1〉乃至く 1 5〉のいずれか 1つに記載のリボソーム製剤、  Ribosome preparation according to any one of <1> to <15>,
< 2 1 >リボソームを構成する総脂質量に対して、  <21> With respect to the total lipid amount constituting the ribosome,
( 1 ) 1 - (2 ' —シァノー 2 ' —デォキシ一 — D—ァラピノ一ペントフラノシ ル) — N4—パルミ トイルシトシンの,組成比が、 3 m o 1 %乃至 5 O m o 1。/。であ り、 (1) 1 - (2 '- Shiano 2' - Dokishi one - D-Arapino one Pentofuranoshi Le) - N 4 - Palmi Toirushitoshin, composition ratio, 3 mo 1% to 5 O mo 1. /. And
(2)モノメ トキシポリエチレングリコ一ルサクシニルジステアロイルホスファチ ジルエタノールアミン類又は N—モノメ トキシポリエチレングリコールカルボ二 ルホスファチジルエタノールァミン類の組成比が、 0. 5 mo l %乃至 1 0 m o (2) Monomethoxy polyethylene glycol succinyl distearoyl phosphatidyl ethanolamines or N-mono methoxy polyethylene glycol carboxy phosphatidyl ethanolamines have a composition ratio of 0.5 mol% to 10 mol
1 %であり、 1%,
(3) ホスファチジルコリン漏の,組成比が、 1 0 m o 1 %乃至 7 0 m o 1 %であり、 (3) The composition ratio of phosphatidylcholine leak is 10 m0 1% to 70 m0 1%,
(4) ステロール類の組成比が、 1 O m o 1。/。乃至 6 O m o 1 %である、 (4) The composition ratio of sterols is 1 Omo1. /. ~ 6 Omo 1%,
< 20 >に記載のリポソーム製剤、  The liposome preparation according to <20>,
< 2 2〉リポソームを構成する脂質成分が、  <22> The lipid component constituting the liposome is
( 1 ) 1— (2 ' 一シァノ一 2 ' —デォキシー ]3—D—ァラビノ一ペントフラノシ ル) —N4—パルミ トイルシトシン、 (1) 1— (2 'one cyano 2' -doxy) 3-D-arabino-pentofuranosyl) —N 4 —palmitoylcytosine,
(2) ホスファチジルコリン類、  (2) phosphatidylcholines,
(3) ステロール類、  (3) sterols,
(4) ホスファチジルグリセロール類である、  (4) phosphatidyl glycerols,
< 1〉乃至く 1 5 >のいずれか 1つに記載のリポソ一ム製剤、  <1> to liposomal formulation according to any one of 1 to 5,
< 23 >リボソームを構成する総脂質量に対して、  <23> With respect to the total amount of lipids constituting the ribosome,
(1 ) 1— (2, ーシァノー 2 ' —デォキシー ]3— D—ァラビノーペントフラノシ ル) 一 N4—パルミ トイルシトシンの組成比が、 3 m o 1 %乃至 5 0 m o 1 %であ り、 (1) 1- (2, Shiano 2 '- Dokishi] 3- D-§ Rabbi no pent furano Shi Le) one N 4 - palmitic Toirushitoshin composition ratio of, Ri 3 mo 1% to 5 0 mo 1% der ,
(2) ホスファチジルコリン類の組成比が、 1 O m o 1 %乃至 7 O m o 1。/。であり、 ( 3 ) ステロ一ル類の組成比が、 1 0 m o 1 %乃至 6 0 m o 1 %であり、 (4 ) ホスファチジルグリセロール類の組成比が、 l mo 1 %乃至 1 Omo 1 %で ある、 (2) The composition ratio of phosphatidylcholines is from 1 Omo 1% to 7 Omo1. /. (3) the composition ratio of the sterols is 10 mo 1% to 60 mo 1%, (4) The composition ratio of the phosphatidylglycerols is l mo 1% to 1 Omo 1%,
く 2 2 >に記載のリポソ一ム製剤、 Liposomal preparation according to
く 24〉リポソ一ムを構成する脂質成分が、 <24> The lipid component of liposomes is
( 1 ) 1— (2 ' —シァノ一 2' —デォキシ一 i3—D—ァラビノ ^ントフラノシ ル) —N4—パルミ トイルシトシン、 (1) 1— (2'-cyan-1'-doxy-i3—D—arabino ^ ntofuranosyl) —N 4 —palmitoylcytosine,
(2) ホスファチジルコリン類、  (2) phosphatidylcholines,
(3)モノメ トキシポリエチレングリコールサクシニルジステアロイルホスファチ ジルエタノ一ルァミン類又は N—モノメ トキシポリエチレングリコールカルボ二 ルホスファチジルエタノールァミン類、  (3) monomethoxy polyethylene glycol succinyl distearoyl phosphatidylethanolamine or N-monomethoxy polyethylene glycol carboxyphosphatidylethanolamine;
(4) ホスファチジルグリセロール類である、  (4) phosphatidyl glycerols,
< 1 >乃至ぐ 1 5〉のいずれか 1つに記載のリボソーム製剤、  <1> or ribosome formulation according to any one of 1 to 5>,
< 25 >リボソームを構成する総脂質量に対して、  <25> With respect to the total amount of lipids constituting the ribosome,
(1) 1一 (2, 一シァノ一 2' —デォキシ一 jS—D—ァラビノ一ペントフラノシ ル) — N4—パルミ トイルシトシンの組成比が、 3 mo I %乃至 5 Omo 1 %であ り、 (1) 1 i (2, single Shiano one 2 '- Dokishi one jS-D-Arabino one Pentofuranoshi Le) - N 4 - the composition ratio of Palmi Toirushitoshin is, Ri 3 mo I% to 5 Omo 1% der,
(2) ホスファチジルコリン類の組成比が、 1 Omo 1 %乃至 7 Omo 1 %であり、 (2) the composition ratio of phosphatidylcholines is 1 Omo 1% to 7 Omo 1%,
(3)モノメ トキシポリエチレングリコールサクシ二ルジステアロイルホスファチ ジルェタノ一ルァミン類又は N—モノメ トキシポリエチレングリコ一ルカルボ- ルホスファチジルエタノールァミン類の組成比が、 0. 5mo l %乃至 l Omo(3) The composition ratio of monomethoxy polyethylene glycol succinyl distearoyl phosphatidyl ethanolamines or N-monomethoxy polyethylene glycol carboxy phosphatidyl ethanolamines is 0.5 mol% to l Omo.
10/0であり、 Is 1 0/0,
(4) ホスファチジルグリセロール類の組成比が、 l mo 1 。/。乃至 1 Omo 1 %で ある、  (4) The composition ratio of phosphatidylglycerols is l mo 1. /. ~ 1 Omo 1%
< 24 >に記載のリポソーム製剤、  The liposome preparation according to <24>,
< 26 >リポソームを構成する脂質成分が、  <26> The lipid component constituting the liposome is
(1) 1— (2, 一シァノ一 2 ' —デォキシー j3—D—ァラビノ一ペントフラノシ ル) 一 N4—パルミ トイルシトシン、 (1) 1— (2, 1 cyano 1 2 '—doxy j3—D—arabino-pentofuranosyl) 1 N 4 —palmitoylcytosine,
(2) ホスファチジルコリン類、 (3) ステロール類、 (2) phosphatidylcholines, (3) sterols,
(4)モノメ トキシポリエチレングリコールサクシェルジステアロイルホスファチ ジルエタノールァミン類又は N—モノメ トキシポリエチレングリ コールカルボ二 ルホスファチジルエタノールァミン類、  (4) Monomethoxypolyethylene glycol sacshell distearoyl phosphatidylethanolamines or N-monomethoxypolyethylene glycol carboxyphosphatidylethanolamines,
(5) ホスファチジルグリセロール類である、  (5) phosphatidyl glycerols,
< 1 >乃至く 1 5〉のいずれか 1つに記載のリボソーム製剤、  <1> to ribosome formulation according to any one of 1 to 5>,
< 27 >リポソ一ムを構成する総脂質量に対して、  <27> With respect to the total lipid content of the liposome,
(1) 1— (2, 一シァノー 2, 一デォキシ一 ]S—D—ァラビノ一ペントフラノシ ル) —N4—パルミ トイルシトシンの組成比が、 3 mo 1。/。乃至 5 Omo 1。/。であ り、 (1) 1— (2, 1 cyano 2, 1 deoxy-1) S—D—arabino-pentofuranosyl) —N 4 —composition ratio of palmitoylcytosine is 3 mo 1. /. To 5 Omo 1. /. And
(2) ホスファチジルコリン類の組成比が、 1 0 m o 1 %乃至 70 m o 1 %であり、 (2) the composition ratio of the phosphatidylcholines is 10 mol 1% to 70 mol 1%,
(3) ステロ一ル類の組成比が、 1 0 m o 1 %乃至 60 m o 1 %であり、 (3) The composition ratio of the sterols is 10 mO 1% to 60 mO 1%,
(4)モノメ トキシポリエチレングリコ一ルサクシユルジステアロイルホスファチ ジルェタノ一ルァミン類又は N—モノメ トキシポリエチレングリ コールカルボ二 ルホスファチジルェタノ一ルァミン類の,組成比が、 0. 5mo l %乃至 l Omo 1 %であり、  (4) The composition ratio of monomethoxypolyethylene glycol succidyl distearoyl phosphatidyl hetanolamines or N-monomethoxy polyethylene glycol carboxy phosphatidyl hetamines is 0.5 mol% to l Omo. 1%,
(5) ホスファチジルグリセロール類の,袓成比が、 lmo 1。/。乃至 1 Omo 1 %で ある、  (5) The composition ratio of phosphatidylglycerols is lmo 1. /. ~ 1 Omo 1%
< 26〉に記載のリボソーム製剤である。 通常、 「リボソーム」 とは、 膜状に集合した脂質及び内部の水相から構成される 閉鎖小胞を意味する力 (D.D.Lasic、 「uposomes: irom basic to applications」、 Elsevier Science Publishersゝ pp.1-171 (1993) 参照。)、 本発明においては、 特に 内水相を有しているか否かに関わらず、脂質が集合化した微粒子全体を意味する。 本発明の 「リボソーム製剤」 は、 好適には、 1— (2, 一シァノ一2' —デォキ シ一 ] 3— D—ァラビノーペントフラノシル) 一N4—パルミ トイルシトシンを、 リ ポソ一ムを構成する総脂質量(PAL-CNDACも含む)に対し、下限として 3 mo 1 %、 (好適には、 下限として 2 5 m o 1 %)、 上限として 6 5 m o 1 % (好適には、 上 限として 5 O m o 1 %) 含有する。 本発明の 「リボソーム製剤」 は、 好適には、 「ポリエ リコール類で化学 修飾された脂質」、 「ホスファチジルコリン類」、 「ホス '、、リセ口ール類」、 「ステロール類」 又は 「カチオン性脂質」 を含有する 上記 「ポリエチレングリコール類で化学修飾された脂質」 とは、 種々の分子量を 有するポリエチレンダリコール類と脂質と力 共有結合している脂質を意味し、好 適には、 その脂質は、 ホスファチジルエタノールアミン類であり、 例えば、 一般式 <26> The ribosome preparation according to <26>. Normally, the “ribosome” is a force that means a closed vesicle composed of a lipid assembled in a membrane and an internal aqueous phase (DDLasic, “uposomes: irom basic to applications”, Elsevier Science Publishers ゝ pp.1- 171 (1993)). In the present invention, it means the whole fine particles in which lipids are aggregated, irrespective of whether or not they have an internal aqueous phase. The “ribosome preparation” of the present invention preferably comprises 1- (2,1-cyano-12′-doxy-1) 3-D-arabinopentofuranosyl) 1-N 4 -palmitoylcytosine, The lower limit is 3 mo 1% based on the total lipid content (including PAL-CNDAC) (Preferably 25 mo 1% as a lower limit) and 65 mo 1% as an upper limit (preferably 5 O mo 1% as an upper limit). The “ribosome preparation” of the present invention is preferably a “lipid chemically modified with polyericols”, “phosphatidylcholines”, “phos ′, lysethols”, “sterols”, or “cationic”. The above-mentioned “lipid chemically modified with polyethylene glycols” containing “lipid” means a lipid covalently bonded to a polyethylene dalicol having various molecular weights and a lipid, and preferably the lipid Are phosphatidylethanolamines, for example, of the general formula
0 0 0 0
CH30— (CH2CH20)-C— CH2CH2- -C—— NH一 PE CH 3 0— (CH 2 CH 2 0) -C— CH 2 CH 2 --C—— NH-1 PE
n  n
(式中、 nは、 1 0乃至 1 0 0を示し、 一 N H _ P Eはホスファチジルエタノール アミンを示す。) で表される N—モノメ トキシポリエチレングリコ一ルサクシニル ホスファチジルエタノールァミン類、 (In the formula, n represents 10 to 100, and 1 NH_PE represents phosphatidylethanolamine.) N-monomethoxypolyethyleneglycol-l-succinylphosphatidylethanolamines represented by the following formula:
一般式General formula
NH PE  NH PE
Figure imgf000011_0001
Figure imgf000011_0001
(式中、 nは、 1 0乃至 1 0 0を示し、 一N H _ P Eはホスファチジルエタノール アミンを示す。) で表される N—モノメ トキシポリエチレングリコ一ル (2—クロ 口一 1, 3, 5—トリアジン一 4, 6—ジィル) サクシニルホスファチジノレェタノ ールァミン類、 一般式 (In the formula, n represents 10 to 100, and 1 NH_PE represents phosphatidylethanolamine.) N-monomethoxypolyethylene glycol (2-chloro-1,3-, 1- 5-triazine-1,4,6-diyl) succinylphosphatidinolethanolamines, General formula
o  o
CH30— (CH2CH20)- -NH— PE CH 3 0— (CH 2 CH 2 0)--NH— PE
n  n
(式中、 nは、 1 0乃至 1 0 0を示し、 一 N H— P Eはホスファチジルエタノール アミンを示す。) で表される N—モノメ トキシポリエチレングリコールカルボニル ホスファチジルェタノ一ルァミン類又は (In the formula, n represents 10 to 100, and 1 NH—PE represents phosphatidylethanolamine.) N-monomethoxypolyethylene glycol carbonyl phosphatidylethanolamine represented by the formula:
一般式 General formula
CH30—— fCH2CH20) CH2CH2 NH— PE CH 3 0—— fCH 2 CH 2 0) CH 2 CH 2 NH—PE
n-1  n-1
(式中、 nは、 1 0乃至 1 0 0を示し、 一 N H— P Eはホスファチジルエタノール アミンを示す。) で表される N—モノメ トキシポリエチレングリコールエチレンホ スファチジルエタノールアミン類であり、 さらに好適には、 N—モノメ トキシポリ エチレングリコールエチレンホスファチジノレエタノールァミン類又は N—モノメ トキシポリエチレングリコ一ルカルボニルホスファチジルェタノ一/レアミン類で あり、 より好適には、 ポリエチレングリコール部分の分子量が約 1 0 0 0乃至約1 0 0 0 0の N—モノメ トキシポリエチレングリコールエチレンホスファチジ/レエ タノ一ルァミン類又は N—モノメ トキシポリエチレングリコールカルボエルホス ファチジルェタノ一ルァミン類である (D. D. Lasic、 「Liposomes : from basic to appl icationsj、 El sevier Science Publ ishers^ pp. 294-296 ( 1993) ) 0 (In the formula, n represents 10 to 100, and 1 NH-PE represents phosphatidylethanolamine.) N-monomethoxypolyethyleneglycolethylenephosphatidylethanolamines represented by the following formula: Preferably, it is N-monomethoxypolyethylene glycol ethylene phosphatidinoleethanolamines or N-monomethoxy polyethylene glycol carbonyl phosphatidyl ethanol / reamines. More preferably, the molecular weight of the polyethylene glycol moiety is About 1000 to about 100000 N-monomethoxypolyethylene glycol ethylene phosphatidyl / reethanolamines or N-monomethoxypolyethylene glycol carbuel phosphatidylethanolamines (DD Lasic, " Liposomes: from basic to appl icationsj, El sevier Science Publ ishers ^ pp. 294-296 (1993)) 0
また、 N—モノメ トキシポリエチレングリコールエチレンホスファチジルェタノ —ルァミン類又は N—モノメ トキシポリエチレングリコールカルボニルホスファ チジルエタノールアミン類は、 リボソームを構成する総脂質量 (PAL-CNDACも含 む) に対して、 好適には、 0 . 5乃至 1 0 m o l %、 リポソ一ムに含有される。 上記 「ホスファチジルコリン類」 としては、 例えば、 ジラウロイルホスファチジ ルコリン、 ジミ リストイルホスファチジルコリン、 ジパルミ トイルホスファチジル コリン又はジステアロイルホスファチジルコリン等があげられ、 好適には、 ジミ リ ス トイルホスファチジルコリン、ジパノレミ トイルホスファチジルコリン又はジステ ァロイルホスファチジルコリンである。 In addition, N-monomethoxypolyethylene glycol ethylene phosphatidylethanolamine or N-monomethoxypolyethylene glycol carbonyl phosphatidylethanolamine can reduce the total amount of liposomal lipids (including PAL-CNDAC). , Preferably 0.5 to 10 mol% in the liposome. The “phosphatidylcholines” include, for example, dilauroylphosphatidylcholine, dimyristoylphosphatidylcholine, dipalmitoylphosphatidyl Choline or distearoyl phosphatidylcholine and the like are preferable, and preferred are dimyristyl phosphatidylcholine, dipanolemityl phosphatidylcholine, and distearoylphosphatidylcholine.
また、 該ホスファチジルコリン類は、 リボソームを構成する総脂質量 (PAL- CNDAC も含む) に対して、 好適には、 下限として 1 0mo 1。/o、 (好適には、 下 限として 30 m o 1 %)、 上限として 95 m o 1 % (好適には、 上限として 70 m o l %)、 リボソームに含有される。 上記 「ホスファチジルグリセロール類」 としては、 例えば、 ジラウロイルホスフ ァチジルグリセロール、 ジミ リス トイルホスファチジルグリセロール、 ジノ ノレミ ト ィルホスファチジルグリセ口ール又はジステア口ィルホスファチジルグリセロー ル等があげられ、 好適には、 ジミ リストイルホスファチジルグリセロール、 ジパル ミ トイルホスファチジルグリセロール又はジステアロイルホスファチジルグリセ ローノレである。  In addition, the phosphatidylcholine is preferably 10 mol 1 as a lower limit with respect to the total lipid amount (including PAL-CNDAC) constituting the ribosome. / o, (preferably 30 mol 1% as the lower limit), 95 mol 1% (preferably as 70 mol% as the upper limit) as the upper limit, and contained in the ribosome. Examples of the above-mentioned "phosphatidylglycerols" include, for example, dilauroylphosphatidylglycerol, dimyristoylphosphatidylglycerol, dinonoremitolylphosphatidylglycerol, and distearylphosphatidylglycerol. Are dimyristoyl phosphatidyl glycerol, dipalmitoyl phosphatidyl glycerol or distearoyl phosphatidyl glycerol.
また、 該ホスファチジルグリセ口一ル類は、 リボソームを構成する総脂質量 (PAL-CNDACも含む) に対して、 好適には、 1乃至 l Omo 1。/o、 リボソームに 含有される。 上記 「ステロ一ル類」 としては、 例えば、 コレステロール、 コレステロールへミ サクシネ一ト、 3 /3— [N- (N', N' 一ジメチノレアミノエタン) 力ルバモイル] コレステロール、 エルゴステロ一ル、 ラノステロール等があげられ、 好適には、 コ レステロールである。  Further, the phosphatidylglycerol is preferably 1 to 1 Omo 1 with respect to the total lipid amount (including PAL-CNDAC) constituting the ribosome. / o, contained in ribosome. Examples of the above-mentioned “sterols” include cholesterol, cholesterol hemi-succinate, 3 / 3— [N- (N ′, N′-dimethinoleaminoethane) rubamoyl] cholesterol, ergosterol, lanosterol And cholesterol is preferred.
また、該ステロ一ル類は、 リポソ一ムを構成する総脂質量(PAL-CNDACも含む) に対して、 好適には、 下限として 1 0mo l %、 (好適には、 下限として 40mo 1 %)、 上限として 70 mo 1 % (好適には、 上限として 6 Omo 1 %)、 リポソ一 ムに含有される。 上記 「カチオン性脂質」 としては、 例えば、 N— [1— (2、 3—ジォレイルォ キシ) プロピル] 一 N、 N、 N— トリメチルアンモェゥムク口ライ ド、 Ν—α—ト リメチルアンモニオアセチルジドデシルー D—グルタメ一トク口ライ ド等があげ られ、 好適には、 Ν— α— トリメチルアンモニオアセチルジドデシル— D—グルタ メ一トク口ライ ドである。 本発明のリボソーム製剤には、 上記 「非イオン化性高分子で修飾された脂質」、 「ホスファチジルコリン類」、 「ホスファチジルグリセロール類」、 「コレステロ一 ル類」 及び 「カチオン性脂質」 の他、 通常、 リポソ一ム製剤に使用し得る脂質を含 有していてもよく、 例えば、 ジラウロイルホスファチジルイノシトール、 ジミ リス トイルホスファチジルイノシトール、ジパルミ トイルホスファチジルイノシトール 又はジステアロイルホスファチジルイノシトールのようなホスファチジルイノシ トール類;ジラウロイルホスファチジルセリン、 ジミ リス トイルホスファチジルセ リン、ジパルミ トイルホスファチジルセリン又はジステアロイルホスファチジルセ リンのようなホスファチジルセリン類;ジラウロイルホスファチジルェタノ一ルァ ミン、 ジミ リス トイルホスファチジルエタノールァミン、 ジパルミ トイルホスファ チジルエタノールアミン又はジステアロイルホスファチジルエタノールアミンの ようなホスファチジルエタノールアミン類等のグリセロリン脂質:ジガラタ トシル ジラウロイルグリセリ ド、 ジガラク トシルジミ リス トイルグリセリ ド、 ジガラク ト シルジパルミ トイルグリセリ ド、ジガラク トシルジステアロイルグリセリ ドのよう なジガラク トシルジグリセリ ド類;ガラク トシルジラウロイルグリセリ ド、 ガラク トシルジミ リストイルグリセリ ド、 ガラク トシルジパルミ トイルグリセリ ド、 ガラ ク トシルジステアロイルグリセリ ドのようなガラク トシルジグリセリ ド類等のグ リセ口糖脂質:セラミ ドシリアチン、 スフィンゴミエリン等のスフインゴリン脂 質:セレブ口シド、 ガングリオシド等のスフィンゴ糖脂質:のステロ一ル類:テト ラデシルァミン、 へキサデシルァミン、 ステアリルァミン等の長鎖アルキルァミン 類: ミ リスチン酸ヒ ドラジド、 パルミチン酸ヒ ドラジド、 ステアリン酸ヒ ドラジド 等の長鎖脂肪酸ヒ ドラジド類等を挙げることができる。 前述した、 ホスファチジルコリン類、 ホスファチジルグリセロール類、 ホスファ チジルイノシトール類、 ホスファチジルセリン類、 ホスファチジルェタノ一ルアミ ン類、 ジガラク トシルジグリセリ ド類、 ガラク トシルジグリセリ ド類、 スフインゴ ミエリン類、 セレブロシド類、 ガングリオシド類、 N—モノメ トキシポリエチレン グリコ一ルサクシニノレホスファチジ エタノーノレアミン類、 N—モノメ トキシポリ エチレングリコ一ル (2 —クロ口一 1, 3, 5— トリアジン一 4, 6—ジィル) サ クシェルホスファチジルエタノールァミン類、 N—モノメ トキシポリエチレングリ コールカルボニルホスファチジルエタノールァミン類、 N—モノメ トキシポリエチ レングリコ一ルェチレンホスファチジルェタノ一ルァミン類は、それぞれ二本の飽 和又は不飽和の炭素鎖を有するものがあるが、 その鎖の炭素数としては、 1 0乃至 1 8が好適であり、 さらに好適には、 1 4、 1 6又は 1 8のものであり、 最も好適 には、 1 6又は 1 8である。 本発明において、 リボソームの体積平均粒子径としては、静脈投与後の血中滞留 性及び Z又は腫瘍組織への集積性が高い、 2 5乃至 4 0 0 n mが好ましく、 さらに 好ましくは、 5 0乃至 2 0 0 n mであり(A丄. Klibanovら、 Biochim. Biophys. Acta 1062, 142-148 (1991J /D.D.Lasic, 「Liposomes: from basic to applications」、 Elsevier Science Publishers , pp.261-471 (1993) 参照。)、 また、 リボソームの体 積平均粒子径は、動的光散乱法等の原理に基づき求めることができる ( D.D丄 asic、The sterols preferably have a lower limit of 10 mol%, preferably a lower limit of 40 mol% based on the total lipid amount (including PAL-CNDAC) constituting the liposome. ), The upper limit being 70 mo 1% (preferably the upper limit is 6 Omo 1%), which is contained in the liposome. As the above “cationic lipid”, for example, N— [1— (2,3—Gioreiro) Xy) propyl] -N, N, N-trimethylammonium mouth ride, Ν-α-trimethylammonioacetyldidodecyl-D-glutamate mouth ride, and the like. Ν-α-trimethylammonioacetyldidodecyl-D-glutamate. In addition to the above-mentioned "lipids modified with non-ionizable polymers", "phosphatidylcholines", "phosphatidylglycerols", "cholesterols" and "cationic lipids", the ribosome preparation of the present invention usually comprises Liposomes may contain lipids which can be used, for example, phosphatidylinositols such as dilauroylphosphatidylinositol, dimyristoylphosphatidylinositol, dipalmitoylphosphatidylinositol or distearoylphosphatidylinositol; dilauroyl Phosphatidylserines such as phosphatidylserine, dimyristoylphosphatidylserine, dipalmitoylphosphatidylserine or distearoylphosphatidylserine; dilauroylphosphatids Glycerophospholipids such as phosphatidylethanolamines such as luetanoylamine, dimyristoylphosphatidylethanolamine, dipalmitoylphosphatidylethanolamine or distearoylphosphatidylethanolamine: digalatatosyl dilauroyl glyceride, digalactosyl dimyris toyl glyceride Digalactosyl diglycerides, such as digalactosyl dipalmitoyl glyceride and digalactosyl distearoyl glyceride; galactosyl dilauroyl glycerides, galactosyl dimyristoyl glycerides, galactosyl dipalmi toyl glycerides, and galactosyl glycerides, such as galactosyl ditolyl glycerides Glycemic glycolipids such as tosyl diglycerides: ceramide dosilatin, Sphingoline lipids such as sphingomyelin: Glycosphingolipids such as celeb mouthside and ganglioside: Sterols: Tetradecylamine, hexadecylamine, long-chain alkylamines such as stearylamine: Myristate hydrazide, palmitate Long chain fatty acid hydrazides such as drazide and stearic hydrazide can be exemplified. As described above, phosphatidylcholines, phosphatidylglycerols, phosphatidylinositols, phosphatidylserines, phosphatidylethanolamines, digalactosyldiglycerides, galactosyldiglycerides, sphingomyelins, gangliosides, N-gangliosides Monomethoxypolyethylene glycol succininolephosphatidyl ethanolamines, N-monomethoxypolyethylene glycol (2-1,3,5-triazine-1,4,6-diyl) saxchelphosphatidylethanola Amines, N-monomethoxypolyethylene glycol carbonyl phosphatidylethanolamines, and N-monomethoxypolyethyleneglycol-l-ethylene phosphatidylethanolamines. Some have two saturated or unsaturated carbon chains, respectively, and the number of carbon atoms in the chain is preferably from 10 to 18, more preferably from 14, 16 or 1 to 4. 8 and most preferably 16 or 18. In the present invention, the volume average particle diameter of the ribosome is preferably from 25 to 400 nm, more preferably from 50 to 400 nm, which has high retentivity in blood and high accumulation in Z or tumor tissue after intravenous administration. 200 nm (see A 丄. Klibanov et al., Biochim. Biophys. Acta 1062, 142-148 (1991J / DDLasic, `` Liposomes: from basic to applications '', Elsevier Science Publishers, pp.261-471 (1993)). ), And the volume average particle size of the ribosome can be determined based on principles such as dynamic light scattering (DD 丄 asic,
「Liposomes: irom basic to applicationsj、 Elsevier science Publishers Λ pp.1-17丄`` Liposomes: irom basic to applicationsj, Elsevier science Publishers Λ pp.1-17 丄
(1993) 参照)。 本発明の PAL-CNDAC含有リボソーム製剤は、 当業者に周知の方法に従い、 製 造することができ、 また、 その体積平均粒子径を調節することもできる。 すなわち、 上記脂質及び水相を使用し、 薄膜法、 逆相蒸発法、 エタノール注入法、 エーテル注 入法、 脱水一再水和法等により、 リボソームを製造することができ、 超音波照射法、 凍結融解後の超音波照射法、 ェクス トル一ジョン法、 フレンチプレス法、 ホモジナ ィゼ一ショ ン法等の方法により、 体積平均粒子径を調節することができる ( D.D丄 asic、 「 Liposomes: from basic to applications」、 Elsevier Science Publishers, pp.1-171 ( 1993) 参照。)。 ここで、 「水相」 とは、 リボソーム内部を 構成する水溶液を意味し、 本技術分野において、 通常使用されるものであれば、 特 に制限はないが、 塩化ナトリゥム水溶液、 リン酸緩衝液、 酢酸緩衝液等の緩衝液、 グルコース水溶液、 トレハロース等の糖水溶液及びこれらの混合水溶液が好適であ る。 一般に、生体内に投与されたリボソームの構造を安定に保っため、 リボソームの 製造に使用される内水相を構成する水相は、 リボソーム外、 すなわち、 体液に対し て等張に近く、 リポソーム内外にかかる浸透圧が小さいことが望ましい。 本発明のリボソーム製剤を製造するのに使用する上記 「脂質」 は、 市販のものを 使用することができ、また、卵黄レシチン及び大豆レシチン等のように、通常、種々 の炭素数及び Z又は不飽和度を有する脂質が混合した状態で入手できるものも、こ れらを単一成分に分離精製することなく使用することができる。 本発明のリボソーム製剤においては、必要に応じて、抗酸化作用等を目的として、 ひ一トコフニ口ール等の抗酸化剤を添加することもできる。 本発明のリボソーム製剤をヒ トに投与する場合、配合時の組成から計算されるリ ポソ一ムを構成する脂質の濃度を 1乃至 3 0 O mMとなるよう、 各種水溶液を用い て希釈するか、 又は、 遠心分離法により濃縮して使用する。 希釈に使用する水溶液 としては、 通常、 使用されるものであれば、 特に限定はないが、 例えば、 リン酸緩 衝液、 グルコース、 トレハロース等の糖水溶液、 塩化ナトリウム等の塩水溶液、 生 理食塩水等を挙げることができ、 通常、 最終液量が、 1乃至 1 0 O m 1 の場合には、 静脈内注射により、 1 0 0 m l乃至 1 0 0 0 m l の場合には、静脈内点滴により投 与する。 本発明のリボソーム製剤の保存安定性、すなわち、 リポソ一ム自体の物理的安定 性並びに包含した薬物及びリボソームを形成する脂質の化学的安定性は、使用され た脂質等によって変化することがあるので、一般に、冷蔵庫中などの冷所において 保存するか、 又は、 通常の用時溶解型の注射製剤等と同様、 文献 (D. D. Lasi 「し iposomes : from basic to appl i cations」、 Elsevier Science Publ ishers pp. 529-532 ( 1993) 参照。) に記載の方法で凍結乾燥し、 その状態で保存するのが よレ、。 凍結乾燥製剤の場合には、 用時に蒸留水等を加えることによって、 所望の注 射製剤を再構成することができる。 発明を実施するための最良の形態 以下に、 実施例及び試験例をあげて、 本発明をさらに詳細に説明する。 但し、 本 発明は、 これら実施例に限定されるものではない。 (1993)). The PAL-CNDAC-containing ribosome preparation of the present invention can be produced according to a method well known to those skilled in the art, and the volume average particle diameter can also be adjusted. That is, ribosomes can be produced using the above lipids and aqueous phase by thin film method, reverse phase evaporation method, ethanol injection method, ether injection method, dehydration monorehydration method, etc., ultrasonic irradiation method, freezing The volume average particle diameter can be adjusted by methods such as ultrasonic irradiation after melting, extrusion, French press, and homogenization. (See DD @ asic, "Liposomes: from basic to applications," Elsevier Science Publishers, pp. 1-171 (1993).) Here, the “aqueous phase” means an aqueous solution constituting the inside of the ribosome, and is not particularly limited as long as it is commonly used in this technical field. However, sodium chloride aqueous solution, phosphate buffer, A buffer such as an acetate buffer, a glucose aqueous solution, a saccharide aqueous solution such as trehalose, and a mixed aqueous solution thereof are preferable. Generally, in order to maintain the structure of ribosomes administered in vivo in a stable manner, the aqueous phase constituting the internal aqueous phase used for the production of ribosomes is extra-ribosomal, that is, it is nearly isotonic with body fluids, It is desirable that the osmotic pressure applied to the substrate be low. As the above-mentioned “lipid” used for producing the ribosome preparation of the present invention, a commercially available product can be used, and usually, various kinds of carbon atoms and Z or non-Z, such as egg yolk lecithin and soybean lecithin, are used. Those that can be obtained in a mixed state of lipids having a degree of saturation can also be used without separating and purifying them into a single component. In the ribosome preparation of the present invention, if necessary, an antioxidant such as sodium tocofunniol may be added for the purpose of antioxidant action and the like. When the ribosome preparation of the present invention is administered to humans, it is diluted with various aqueous solutions so that the concentration of the lipid constituting the liposome calculated from the composition at the time of formulation is 1 to 30 OmM. Or, use by concentrating by centrifugation. The aqueous solution used for the dilution is not particularly limited as long as it is usually used.For example, a phosphate buffer solution, a sugar aqueous solution such as glucose and trehalose, a salt aqueous solution such as sodium chloride, and a physiological saline solution In general, when the final liquid volume is 1 to 100 Om1, intravenous injection is used, and when the final liquid volume is 100 to 100 ml, intravenous infusion is used. Administer. Storage stability of the ribosome preparation of the present invention, that is, physical stability of the liposome itself Since the chemical properties and chemical stability of the lipids forming the ribosome and the drug included therein may vary depending on the lipid used, etc., they should generally be stored in a cold place such as a refrigerator or used at normal use. Similar to the dissolvable injection preparations, etc., freeze-dried according to the method described in the literature (see DD Lasi "Shi iposomes: from basic to applications", Elsevier Science Publishers pp. 529-532 (1993)). It is better to save it in a state. In the case of a freeze-dried preparation, a desired injection preparation can be reconstituted by adding distilled water or the like at the time of use. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to Examples and Test Examples. However, the present invention is not limited to these examples.
なお、 下記の実施例及び試験例で使用した脂質は、 コレステロール以外のものは、 日本油脂 (株) より購入して使用し、 また、 コレステロールは、 東京化成工業 (株) より購入し、 当業者に周知の方法に従レ、、熱エタノールより再結晶して使用した。 さらにまた、 PAL-CNDAC の分子量は、 4 9 0 . 6 5であり、 その製造方法は、 特開平 5— 1 9 4 4 9 7号に記載された方法に従って行った。  The lipids used in the following Examples and Test Examples, other than cholesterol, were purchased and used from Nippon Oil & Fats Co., Ltd. Cholesterol was purchased from Tokyo Chemical Industry Co., Ltd. And recrystallized from hot ethanol. Furthermore, the molecular weight of PAL-CNDAC was 490.65, and the production method was according to the method described in JP-A-5-194497.
(実施例 1 ) PAL-CNDACを包含したリボソームの製造 (Example 1) Production of ribosome containing PAL-CNDAC
ジステアロイルホスファチジルコリン (distearoylphosphatidylcholine。 以下、 D S P C と す る 。 ) 、 ジ ノヽ。 ル ミ ト イ ル ホ ス フ ァ チ ジル コ リ ン (dipalmitoylphosphatidylcholine c 以下、 D P P Cとする。)、 ジミリストイルホ スファチジルコリン (dimirystoylphosphatidylcholine。 以下、 DM P Cとする。)、 ジラウロイルホスファチジルコリン (dilauroylphosphatidylcholine。 以下、 D L P Cとする。)、 卵黄レシチン (egg yolk phosphatidylcholine。 以下、 E P Cとす る。)、 コ レステロ一ノレ、 ジステアロイノレホスファチジノレグリ セ口 一ノレDistearoylphosphatidylcholine (hereinafter referred to as DSPC), dino. Le Mi DOO Lee Le host scan off § Chi Jill co Li emissions (dipalmitoylphosphatidylcholine c hereinafter referred to as DPPC.), Jimirisutoiruho scan choline (dimirystoylphosphatidylcholine. Hereinafter referred to as DM PC.), Dilauroyl phosphatidylcholine (dilauroylphosphatidylcholine. DLPC), egg yolk phosphatidylcholine (hereinafter EPC), cholesterol, distearoneole phosphatidylcholine, mouth
(distearoylphosphatidylglycerol 0 以下、 D S P Gとする。)、 ジパルミ トイルホ スファチジルグリセ口ール (dipalmitoylphosphatidylglycerol。 以下、 D P P Gと す る 。 ) 、 ジ ミ リ ス ト ィ ル ホ ス フ ァ チ ジ ノレ グ リ セ ロ ー ル ( dimirystoylphosphatidylglycerol c 以下、 DMPGとする。)、 ジラウロイルホス ファチジルグリセ口一ル(dilauroylphosphatidylglycerol。以下、 D L P Gとする。)、 ポリエチレングリコ—ル部分の分子量が約 2000の N—モノメ トキシポリェチ レングリコールサクシニルージステアロイルホスファチジルェタノ一ルァミン (N- monom ethoxyp oiy ^ethylene gly coi) succinyl- distearoylphosphatidylethanolamine。 以下、 PEG 2000— S S— DS PEと する。)、ポリエチレングリコール部分の分子量が約 5000の N—モノメ トキシポ リエチレングリコ一ルカルボ二ルージステアロイルホスファチジルエタノ一ルァ ^ン (N-monomethoxypoly(ethyleneglvcol)carbonyldistearoyiphosphatidvlethanolamine0 以下、 P EG 5000— S C— DS P Eとする。) 及び/又は N—ひ一トリメチル ァンモニオアセチルジ ドデシルー D -グルタメー トク ロ ライ ド (N-ひ 一 trimethylammonioacetyldodecyl-D-glutamate chloride。 以下、 TMAGとする。ノ 並びに PAL-CNDACを脂質成分とし、 5重量%グルコース水溶液又は 10重量% トレハ口一ス水溶液及び p H 4の 0. 1 M酢酸緩衝液 ( 0. 1 M酢酸水溶液と 0. 1M酢酸ナトリウム水溶液を 5 : 1の体積比で混合することによって調製した。) の混合液 (体積比 9 : 1で混合) を水相として、 Bangham ら (J. Mol. Biol., 8, 660-668 (1964) 参照。) の方法に従い、 リボソームの粗分散液を得た。 (distearoylphosphatidylglycerol 0 or less, referred to as DSPG), dipalmitoylphosphatidylglycerol (dipalmitoylphosphatidylglycerol; hereinafter referred to as DPPG) You ), Di-myristoyl list I Le host scan off § Chi di Honoré grayed Li cell B Lumpur (dimirystoylphosphatidylglycerol c hereinafter referred to as DMPG.) Jirauroiruhosu Fachijirugurise port Ichiru (dilauroylphosphatidylglycerol. Hereinafter referred to as DLPG.) N-monomethylethoxypolyethylene glycol succinyl-distearoylphosphatidylethanolamine having a molecular weight of about 2,000, and N-monomethoxyethoxyethylene glycol succinyl distearoyl phosphatidyl ethanoylamine. Hereinafter, PEG 2000—SS—DSPE. ), N-monomethoxypoly (ethyleneglvcol) carbonyldistearoyiphosphatidvlethanolamine (N-monomethoxypoly (ethyleneglvcol) carbonyldistearoyiphosphatidvlethanolamine 0 or less) with a molecular weight of polyethylene glycol of about 5,000, and PEG5000-SC-DSPE. ) And / or N-H-trimethylammonioacetyldodecyl-D-glutamate chloride (N-H-trimethylammonioacetyldodecyl-D-glutamate chloride; hereinafter referred to as TMAG.) 5% by weight aqueous glucose solution or 10% by weight aqueous solution of Treha ore and 0.1 M acetate buffer at pH 4 (0.1 M aqueous acetic acid solution and 0.1 M aqueous sodium acetate solution are mixed in a volume ratio of 5: 1) (Mixed at a volume ratio of 9: 1) as an aqueous phase, using Bangham et al. (See J. Mol. Biol., 8, 660-668 (1964)). According to the method, to obtain a crude dispersion of the ribosome.
すなわち、表 1に示す所定量の種々の脂質を 25 mLナス型フラスコに測りとり、 総脂質量 1 Ο Ο μπιο 1当たり 5mLのクロ口ホルムを加えて、 40 °Cで加温溶解 した。 エバポレーターを使用し、 40°Cで、 1 0乃至 55 OmmHgの減圧下、 ク 口口ホルムを留去することにより、該ナス型フラスコ内壁に脂質の薄層を形成させ た。 この脂質の薄層に、 リボソーム分散液が所定の体積となるように水相を加え、 ボルテックスミキサーを使用して振とうすることにより、リボソームの粗分散液を 得た。 こうして得られたリポソ一ムを、 以下、 PAL-CNDAC リボソームという。 下記表 1中、 ?じ及び 0とは、 それぞれ、 ホスファチジルコリン類及びホスフ ァチジルグリセロール類を意味し、 数字の括弧内に、 これらのァシル鎖を S (ステ ァロイル)、 p (パルミ トイル) 及び M (ミ リストイル) の略号で示した。 但し、 P Cとして、 卵黄レシチンを使用した場合には、 括弧内に Eの略号を示した。 That is, predetermined amounts of various lipids shown in Table 1 were measured in a 25 mL eggplant-shaped flask, and 5 mL of cloper form was added per 1 μm of total lipid, and the mixture was heated and dissolved at 40 ° C. By using an evaporator at 40 ° C. under a reduced pressure of 10 to 55 OmmHg, the mouth form was distilled off to form a thin layer of lipid on the inner wall of the eggplant-shaped flask. An aqueous phase was added to the lipid thin layer so that the ribosome dispersion had a predetermined volume, and the mixture was shaken using a vortex mixer to obtain a crude ribosome dispersion. The liposome thus obtained is hereinafter referred to as PAL-CNDAC ribosome. In Table 1 below,? The letters “0” and “0” mean phosphatidylcholines and phosphatidylglycerols, respectively. In the parentheses of numbers, these acyl chains are represented by S (steroyl), p (palmitoyl) and M (myristoyl). The abbreviation of is shown. However, When egg yolk lecithin was used as PC, the abbreviation of E was shown in parentheses.
処方例 1乃至 1 6、 4 0及び 4 1においては、 水相として 5重量%グルコース水 溶液を使用し、 総脂質濃度を 5 5乃至 1 1 O mMとした。 また、 処方例 1 7乃至 3 9においては、 水相として 1 0重量0 /0トレハロース及び p H 4の◦ · 1 M酢酸緩衝 液の混合液 (体積比 9 : 1 ) を使用し、 総脂質濃度を 1 0 0乃至 1 1 0 mMとした。 In Formulation Examples 1 to 16, 40, and 41, a 5% by weight aqueous glucose solution was used as the aqueous phase, and the total lipid concentration was 55 to 11 O mM. In the Formulation Examples 1 7 to 3 9, as an aqueous phase 1 0 wt 0/0 ◦ · 1 M acetic acid buffer mixture of trehalose and p H 4 (volume ratio 9: 1) was used, the total lipid The concentration was between 100 and 110 mM.
(表 1 ) (table 1 )
リポソ一ム分散液 1 m Lあたりの脂質成分の処方量 ( m o 1 ) 処方例 PC コレステロ一ノレ PG PEG2000-SS-DSPE PAL-CNDAC  Prescription amount of lipid component per 1 mL of liposome dispersion liquid (m o 1) Prescription example PC Cholesterol PG PEG2000-SS-DSPE PAL-CNDAC
1 15.0(P) 20.0 12.5(P) 2.5 5.11 15.0 (P) 20.0 12.5 (P) 2.5 5.1
2 15.0(E) 20.0 12.5(L) 2.5 5.12 15.0 (E) 20.0 12.5 (L) 2.5 5.1
3 15.0(P) 20.0 12.5(P) 2.5 10.23 15.0 (P) 20.0 12.5 (P) 2.5 10.2
4 15.0(P) 20.0 12.5(P) 2.5 15.34 15.0 (P) 20.0 12.5 (P) 2.5 15.3
5 32.5(M) 0 15.0(M) 2.5 5.15 32.5 (M) 0 15.0 (M) 2.5 5.1
6 15.0(P) 20.0 15.0(P) 0 5.16 15.0 (P) 20.0 15.0 (P) 0 5.1
7 15.0(M) 20.0 15.0(M) 0 5.17 15.0 (M) 20.0 15.0 (M) 0 5.1
8 15.0(L) 20.0 15.0(L) 0 5.18 15.0 (L) 20.0 15.0 (L) 0 5.1
9 15.0(E) 20.0 15.0(L) 0 5.19 15.0 (E) 20.0 15.0 (L) 0 5.1
10 35.0(E) 0 12.5(L) 2.5 5.110 35.0 (E) 0 12.5 (L) 2.5 5.1
11 35.0(P) 0 15.0(P) 0 5.111 35.0 (P) 0 15.0 (P) 0 5.1
12 35.0(M) 0 15.0(M) 0 5.112 35.0 (M) 0 15.0 (M) 0 5.1
13 35.0(L) 0 15.0(L) 0 5.113 35.0 (L) 0 15.0 (L) 0 5.1
14 35.0(E) 0 15.0(L) 0 5.114 35.0 (E) 0 15.0 (L) 0 5.1
15 7-5(P) 20.0 22.5(P) 0 5.115 7-5 (P) 20.0 22.5 (P) 0 5.1
16 27.5(P) 0 22.5(P) 0 5.116 27.5 (P) 0 22.5 (P) 0 5.1
17 O(-) 47.5 O(-) 5.0 47.517 O (-) 47.5 O (-) 5.0 47.5
18 10.0(P) 42.5 O(-) 5.0 42.518 10.0 (P) 42.5 O (-) 5.0 42.5
19 20.0(P) 37.5 O(-) 5.0 37.5 19 20.0 (P) 37.5 O (-) 5.0 37.5
Figure imgf000020_0001
Figure imgf000020_0001
42 55.0(S) 40.0 5.0 10.2 42 55.0 (S) 40.0 5.0 10.2
43 50.0(S) 40.0 10.0 10.2  43 50.0 (S) 40.0 10.0 10.2
44 31.7(S) 31.7 5.0 31.7  44 31.7 (S) 31.7 5.0 31.7
45 30.0(S) 30.0 10.0 30.0  45 30.0 (S) 30.0 10.0 30.0
リポソームの平均体積粒子径の調節は、ェクストル一ジョン法又は超音波照射法に より行なった。 すなわち、 ェクス トルージョン法においては、 孔径 5 0乃至 2 0 0 n mのポリカーボネート製メンブランフィルタ (野村マイクロサイエンス社) を装 着したェクス トル一ダ(Liposofast-Basic、 AVESTIN社製) を用い、 PAL-CNDAC リボソームの粗分散液を該メンブランを通過させる (以下、所定サイズの孔径のポ リ力一ボネ一ト製メンブランフィルタを装着したェクストル一ダを用いたリポソ —ムのメンブラン通過を、 所定サイズのェクストル一ジョンという。) ことにより 行った。 また、 超音波照射法においては、 超音波破砕装置 (Model 7 6 0 0、 セ ィコー電子工業(株)社製。)使用し、 出力 2 5 Wで 1乃至 6 0分間、 PAL-CNDAC リボソームの粗分散液に超音波を照射することにより行った。 The average volume particle diameter of the liposome was adjusted by the extrusion method or the ultrasonic irradiation method. In other words, in the extrusion method, an extruder (Liposofast-Basic, manufactured by AVESTIN) equipped with a polycarbonate membrane filter (Nomura Microscience) having a pore size of 50 to 200 nm is used. Pass the coarse dispersion of CNDAC ribosome through the membrane (hereinafter, passing the liposome through the membrane using an extruder equipped with a pore size membrane filter of a predetermined size). It was called "Extreme John".) In the ultrasonic irradiation method, an ultrasonic crusher (Model 760, manufactured by SEIKO ELECTRONICS CO., LTD.) Was used, and the power of the PAL-CNDAC ribosome was 25 to 150 W for 1 to 60 minutes. This was performed by irradiating the coarse dispersion with ultrasonic waves.
粒子径調節後のリポソ一ムの体積平均粒子径を表 2に示す。いずれの製造例にお いても析出物の生成は認められなかった。 また、 これらのリボソーム分散液はいず れも均一な半澄明の乳濁液であり、 2 5 °Cにおいて、少なくとも 1 日間は外観上の 変化は認められず、 安定な分散液であった。  Table 2 shows the volume average particle diameter of the liposome after particle diameter adjustment. No precipitate was found in any of the production examples. In addition, each of these ribosome dispersions was a homogeneous semi-clear emulsion, and at 25 ° C, no change in appearance was observed for at least one day, and was a stable dispersion.
リボソームの粒子径は、 以下のようにして測定した。 すなわち、 粒子径調節を行 なった後の PAL-CNDAC リボソームの分散液を 1 5 0 mM塩化ナトリゥム水溶液 で希釈することにより、 脂質濃度を約 0 . I mMとし、 粒子径測定機 (Nicomp Particle Sizer Model 370 , Nicomp Particle Sizing Systems社製) を使用して体 積平均粒子径 (volume-weighted diameter。 以下、 D vとする。) を測定した。 こ うして求められた D vの値を表 2に示す。 いずれのリボソームも、 平均粒子径が十 分に小さく、 静脈内投与が可能な粒子径となった。 なお、 5 0 n mのェクス トルー ジョンを行なった処方例 1乃至 1 6の試料については、粒子径を測定しなかったが、 超音波照射によるサイズ調節法を採用した他の試料と澄明性等の外観上の相違は なく、 200 nmのェクストルージョンを行なった試料よりは高い澄明性を有して いた- これらの観察より、 50 n mのェクストルージョンを行なった場合には、 少 なく とも超音波照射法で得られた 60 n m乃至 200 n mと同程度の体積平均粒 子径を有していることが明らかである。 The particle size of the ribosome was measured as follows. That is, by diluting the PAL-CNDAC ribosome dispersion after particle size adjustment with 150 mM aqueous sodium chloride solution, the lipid concentration was reduced to approximately 0.1 mM, and the particle size measurement device (Nicomp Particle Sizer) was used. Model 370, Nicomp particle Sizing body volume average particle diameter using Systems Corp.,) (volume-weighted diameter. below were measured to.) and D v. Table 2 shows the values of D v obtained in this way. Both ribosomes had a sufficiently small average particle size, and were of a particle size that could be administered intravenously. In addition, for the samples of Formulation Examples 1 to 16 in which 50 nm extrusion was performed, the particle diameter was not measured. There was no difference in appearance such as clarity from other samples that adopted the size adjustment method by ultrasonic irradiation, and the sample had higher clarity than the sample subjected to 200 nm extrusion-From these observations When the extrusion was performed at 50 nm, it was apparent that the particles had at least the same volume average particle diameter as 60 to 200 nm obtained by the ultrasonic irradiation method.
下記表 2中、脂質成分の処方欄の数字は表 1の処方例番号を示し、サイズ調節法 欄の番号は各々のサイズ調節法を表す(1は超音波照射法、 2はェクストル一ジョ ン (200 nm)、 3はェクストル一ジョン (1 00 nm)、 4はェクス トルージョ ン ( 50 n m))。  In Table 2 below, the numbers in the prescription column for lipid components indicate the prescription example numbers in Table 1, and the numbers in the size adjustment column indicate the respective size adjustment methods (1 is the ultrasonic irradiation method, 2 is the extinction zone). (200 nm), 3 is the extension (100 nm), and 4 is the extension (50 nm).
(表 2) (Table 2)
PAL-CNDACリポソ一ムの体積平均粒子径 製造例 脂質成分の処方 粒子径調節法 Dv (nm)  Volume average particle size of PAL-CNDAC liposome Production example Formulation of lipid components Particle size adjustment method Dv (nm)
平均土 S D)  Average soil S D)
4 (測定せず。) 4 (not measured)
2 2 4 (測定せず。)  2 2 4 (not measured)
3 3 2 195.6 ±103.2  3 3 2 195.6 ± 103.2
4 3 3 187.3土 63.7  4 3 3 187.3 Sat 63.7
5 3 4 (測定せず。)  5 3 4 (not measured)
6 4 4 (測定せず。)  6 4 4 (not measured)
7 5 4 (測定せず。)  7 5 4 (not measured)
8 6 4 (測定せず。)  8 6 4 (not measured)
9 7 4 (測定せず。)  9 7 4 (not measured)
10 8 4 (測定せず。)  10 8 4 (not measured)
11 9 4 (測定せず。)  11 9 4 (not measured)
12 10 4 (測定せず。) 11 4 (測定せず。)12 10 4 (not measured) 11 4 (not measured)
12 4 (測定せず。)12 4 (not measured)
13 4 (測定せず。)13 4 (not measured)
14 4 (測定せず。)14 4 (not measured)
15 4 (測定せず。)15 4 (not measured)
16 4 (測定せず。)16 4 (not measured)
17 195.6 ± 103.217 195.6 ± 103.2
18 148.9 ± 66.018 148.9 ± 66.0
19 134.6土 47.419 134.6 Sat 47.4
20 135.7土 52.320 135.7 Sat 52.3
21 136.0土 38.921 136.0 Sat 38.9
22 100.9土 46.422 100.9 Sat 46.4
22 228.3 ± 109.022 228.3 ± 109.0
23 98.1土 37.423 98.1 Sat 37.4
23 189.4土 74.023 189.4 Sat 74.0
24 94.1士 32.424 94.1 32.4
24 196.7土 85.624 196.7 Sat 85.6
25 101.7士 34.325 101.7 34.3
26 62.5土 29.126 62.5 Sat 29.1
27 136.0土 38.927 136.0 Sat 38.9
28 109.2土 43.028 109.2 Sat 43.0
29 127.5士 78.829 127.5 78.8
30 132.3土 34.930 132.3 Sat 34.9
31 140.6 ± 64.331 140.6 ± 64.3
32 132.4土 48.532 132.4 Sat 48.5
33 122.2 ± 59.633 122.2 ± 59.6
34 102.4土 27.034 102.4 Sat 27.0
35 88.4土 45.0 1 36 1 98.4土 35.835 88.4 Sat 45.0 1 36 1 98.4 Sat 35.8
2 37 1 94.8土 31.1 2 37 1 94.8 Sat 31.1
3 38 1 100.1土 41.7 3 38 1 100.1 Sat 41.7
4 39 1 100.6土 53.1 4 39 1 100.6 Sat 53.1
5 40 1 115.1土 45.5 5 40 1 115.1 Sat 45.5
6 41 1 65.9士 20.7 6 41 1 65.9 Person 20.7
7 42 1 127.5土 39.5 7 42 1 127.5 Sat 39.5
8 43 1 101.1土 31.5  8 43 1 101.1 Sat 31.5
49 44 1 107.0土 28.2  49 44 1 107.0 Sat 28.2
50 45 1 85.5土 32.1  50 45 1 85.5 Sat 32.1
(比較例 1 ) 中性界面活性剤による PAL-CNDACの可溶化 (Comparative Example 1) Solubilization of PAL-CNDAC by neutral surfactant
医薬品添加物として、静脈内投与可能な中性界面活性剤及び有機溶媒である、 ポ リオキシエチレン硬化ヒマシ油 6 0及びジメチルスルホキシドを使用し、 PAL- CNDACの水溶液中での溶解性改善を試みた。  Trials to improve the solubility of PAL-CNDAC in aqueous solution using a neutral surfactant that can be administered intravenously and an organic solvent, polyoxyethylene hydrogenated castor oil 60 and dimethyl sulfoxide, as pharmaceutical additives Was.
まず、表 3の比較製造例 1及び 2に示すように、 可溶化液の最終体積 1 m Lあた り、 1 0又は 6 . 7 m gの PAL-CNDACをジメチルスルホキシド 5 0 // Lに溶解 しポリオキシエチレン硬化ヒマシ油 6 0を 5 0 ^1 §カ[]ぇ、 4 0 °Cに加温溶解した。 この溶液に 4 0 °Cに加温した 1 5 0 mM塩化ナトリゥム水溶液を所定体積となる ように加えることにより、 最終 PAL-CNDAC濃度が 1 0又は 6 . 7 m g Zm Lの 可溶化液を得た。  First, as shown in Comparative Production Examples 1 and 2 in Table 3, 10 or 6.7 mg of PAL-CNDAC was dissolved in 50 // L of dimethyl sulfoxide per 1 mL of the final volume of the lysate. Polyoxyethylene hydrogenated castor oil 60 was dissolved by heating at 50 ° C and 50 ° C at 40 ° C. To this solution, a 150 mM aqueous sodium chloride solution heated to 40 ° C was added to a predetermined volume to obtain a solubilized solution having a final PAL-CNDAC concentration of 10 or 6.7 mg ZmL. Was.
しかし、 これらの可溶化液は、 2 5 °Cにおいて、 それぞれ少なくとも約 1 0分及 び 3 0分後にはゲル化し、 3 0分及び 6 0分後には析出物が生じた。 PAL-CNDAC を含まない溶液 (表 3の比較製造例 3 ) では、 このような析出物は生成しなかった ことから、 PAL-CNDACの可溶化液から生じた析出物は PAL-CNDACを含むと考 えられる。  However, at 25 ° C., these lysates gelled after at least about 10 and 30 minutes, respectively, and formed precipitates after 30 and 60 minutes. Since no such precipitate was formed in the solution containing no PAL-CNDAC (Comparative Production Example 3 in Table 3), the precipitate formed from the lysate of PAL-CNDAC was considered Conceivable.
このように、 界面活性剤等を使用した一般的な可溶化法によっても PAL- CNDAC の静脈内投与を可能とすることができるが、 該可溶化液においては、 PAL-CNDACの可溶化状態を安定に保つのは、著しく困難であることがわかった (表 3) Thus, intravenous administration of PAL-CNDAC can be made possible by a general solubilization method using a surfactant or the like. Maintaining a stable solubilized state of PAL-CNDAC proved to be extremely difficult (Table 3).
PAL-CNDAC可溶化液 1 m Lあたりの各成分の処方量  Formulation amount of each component per 1 mL of PAL-CNDAC lysate
(1 50 mM塩化ナトリゥム水溶液を加えて所定体積とした。) 比較 ド H C Ο— 60 PAL-CNDAC  (1 50 mM aqueous sodium chloride solution was added to bring the volume to the specified volume.) Comparison H C Ο— 60 PAL-CNDAC
製造例 (β L) (m g ) m g ) Production example (β L) (mg) mg)
50 50 10.0 50 50 10.0
2 50 50 6.7  2 50 50 6.7
3 50 50 0  3 50 50 0
*ポリオキシエチレン硬化ヒマシ油 60 * Polyoxyethylene hydrogenated castor oil 60
(試験例 1) PAL-CNDACの回収率の決定 (Test Example 1) Determination of recovery rate of PAL-CNDAC
リボソームの分散液を生理食塩水で希釈し、製造時の処方から計算される分散液 中の総脂質濃度を 0. 5mMとした。 このリボソームの分散液 1 00 μ Lに、 ρΗ 4の酢酸緩衝液 (0. 83Μの酢酸と 0. 1 7Μの酢酸ナトリウムからなる。) 1 0 0 μ L及びメタノール 800 μ Lを加え、ボルテックスミキサーを使用して 10 分間振とうし、 遠心分離 (1 000 g X 5m i η.) 後の上清を、 表 4に示す条件 で逆相高速液体クロマトグラフィーにより分析し、 7. 2乃至 8. 0分で溶出され る PAL-CNDACの濃度を測定した。  The ribosome dispersion was diluted with physiological saline, and the total lipid concentration in the dispersion calculated from the formulation at the time of production was 0.5 mM. To 100 μL of this ribosome dispersion, add 100 μL of ρΗ4 acetate buffer (consisting of 0.83Μ acetic acid and 0.17Μ sodium acetate) and 800 μL of methanol, and mix with a vortex mixer. The mixture was centrifuged (1 000 g x 5 mi η.), And the supernatant was analyzed by reversed-phase high-performance liquid chromatography under the conditions shown in Table 4. The concentration of PAL-CNDAC eluted at 0 minutes was measured.
(表 4) 測定機 LC- 10 A (島津製作所社製) (Table 4) Measuring machine LC-10A (manufactured by Shimadzu Corporation)
カラム YMC-A 3 1 2 (YMC社製) カラム温度 40°C Column YMC-A 3 1 2 (YMC) Column temperature 40 ° C
検出波長 247 n m  Detection wavelength 247 nm
移動相 ァセトニトリルと蒸留水の混合液  Mobile phase Mixture of acetonitrile and distilled water
(体積比: 1 / 9 )  (Volume ratio: 1/9)
流速 1 m L/ m i n .  Flow rate 1 mL / min.
ェクシヨン体積 20 μ L  Excitation volume 20 μL
PAL-CNDAC の回収率は、 リボソームの製造時の処方から計算される分散液中 の PAL-CNDAC濃度に対する、 分散液中の実際の PAL-CNDAC の濃度の割合と して算出した。 The recovery of PAL-CNDAC was calculated as the ratio of the actual concentration of PAL-CNDAC in the dispersion to the concentration of PAL-CNDAC in the dispersion, calculated from the formulation at the time of ribosome production.
こうして求められた PAL-CNDACの回収率は、 表 5に示すように、 いずれも高 く、 実施例 1に示された PAL-CNDACのリポソ一ム化製剤について、 粒子径調節 を含む製造工程における薬物の損失は十分に許容可能な量であった。  As shown in Table 5, the recovery rates of PAL-CNDAC thus obtained were all high, and the liposomal preparation of PAL-CNDAC shown in Example 1 was used in the production process including particle size control. The loss of drug was well tolerated.
なお、 リボソーム分散液中の薬物濃度は、 サイズ調節後に超遠心分離等で濃縮す ること等により、 さらに高められ、 一般的には、 総脂質濃度が 30 OmM程度まで 濃縮可能である (D.D.Lasic、 「 Liposomes: irom basic to applications」、 Elsevier Science Publishersゝ p.68 (1993) 参照。) ことから、 例えば、 総脂質濃度を 1 0 OmMとした製造例 1 9乃至 45のリボソーム化製剤では、 3倍程度の濃縮が可能 であり、 PAL-CNDAC 濃度が 84 mg/mLの製剤が得られる。 一方、 電解質や 糖類の水溶液等を使用して希釈することにより、薬物濃度を低下させることもでき る。  The drug concentration in the ribosome dispersion can be further increased, for example, by concentrating by ultracentrifugation etc. after adjusting the size, and in general, it can be concentrated to a total lipid concentration of about 30 OmM (DDLasic For example, see Liposomes: irom basic to applications, Elsevier Science Publishers ゝ p.68 (1993).) It can be concentrated about 1-fold, and a product with a PAL-CNDAC concentration of 84 mg / mL can be obtained. On the other hand, the drug concentration can be reduced by diluting with an aqueous solution of an electrolyte or a saccharide.
(表 5) 製造例 総脂質濃度 処方時 サイズ調節後 (Table 5) Production example Total lipid concentration At prescription After size adjustment
PAL-CNDAC濃度 PAL-CNDAC濃度 回収率  PAL-CNDAC concentration PAL-CNDAC concentration Recovery
(mM) (mg/mL) (mg/mL) (%) 9L 8Έ OS OTT τε Z6 9 OS OTT οε zs Vf OS οττ (mM) (mg / mL) (mg / mL) (%) 9L 8Έ OS OTT τε Z6 9 OS OTT οε zs Vf OS οττ
88 Z'V OS OTT sz 6 09 on LZ 88 Z'V OS OTT sz 6 09 on LZ
06 ' OS on 9Z06 'OS on 9Z
£6 ff OS οττ Z£ 6 ff OS οττ Z
LS ε OS OTT fZLS ε OS OTT fZ
TOT 8ST 9ST OOT 2ZTOT 8ST 9ST OOT 2Z
68 6ΈΙ 9QT OOT ZZ68 6ΈΙ 9QT OOT ZZ
OOT V91 VSl 001 IZOOT V91 VSl 001 IZ
OA ~n 603 OOT OZOA ~ n 603 OOT OZ
^OI Z' Z £ £Z οοτ 61 f6 YZ Z 99 81^ OI Z 'Z £ £ Z οοτ 61 f6 YZ Z 99 81
Z vz 9 Z 9 LIZ vz 9 Z 9 LI
Oil Z 99 9TOil Z 99 9T
80T uz Z 99 ST80T uz Z 99 ST
96 YZ S'2 99 fl fQl 9 Z Z £196 YZ S'2 99 fl fQl 9 Z Z £ 1
OOT Z 'Z 9 ZlOOT Z 'Z 9 Zl
LOT UZ Z SS IT LOT UZ Z SS IT
86 Z Z SS OT 86 Z Z SS OT
KH 9 Z Z SS 6KH 9 Z Z SS 6
OOT Z 9 Z SS 8OOT Z 9 Z SS 8
86 VI S 'ん S9 986 VI S 'n S9 9
OOT OS 09 09 2OOT OS 09 09 2
SL 6Έ O S 09 SL 6Έ O S 09
ZL 9·ε O S 09 ε on 9 Z SS z ZL 9ε O S 09 ε on 9 Z SS z
OOT Z Z 99 OOT Z Z 99
s z s z
£66Z0/00di7丄:) d 09"9/00 OW 32 100 19.6 18.6 95 £ 66Z0 / 00di7 丄 :) d 09 "9/00 OW 32 100 19.6 18.6 95
33 100 24.5 21.3 87 33 100 24.5 21.3 87
34 100 31.1 26.1 84 34 100 31.1 26.1 84
35 100 15.6 13.3 85 35 100 15.6 13.3 85
36 100 15.6 13.7 88 36 100 15.6 13.7 88
37 100 15.6 16.7 107 37 100 15.6 16.7 107
38 100 19.6 18.2 93 38 100 19.6 18.2 93
39 100 23.3 17.2 74 39 100 23.3 17.2 74
40 100 23.3 19.6 84 40 100 23.3 19.6 84
41 100 27.0 18.0 67 41 100 27.0 18.0 67
42 100 31.1 28.0 90 42 100 31.1 28.0 90
43 100 23.3 19.8 85 43 100 23.3 19.8 85
44 100 23.3 22.4 96 44 100 23.3 22.4 96
45 100 23.3 22.1 95 45 100 23.3 22.1 95
46 110 5.0 3.6 73 46 110 5.0 3.6 73
47 110 5.0 4.0 81 47 110 5.0 4.0 81
48 110 5.0 3.5 70 48 110 5.0 3.5 70
49 100 15.6 9.8 63 49 100 15.6 9.8 63
50 100 14.7 9.4 63 50 100 14.7 9.4 63
(試験例 2 ) 各種の PAL-CNDAC製剤の静脈内投与の適否 (Test Example 2) Suitability of intravenous administration of various PAL-CNDAC preparations
PAL-CNDAC の各種製剤をマウスに対して単回静脈内投与し、 静脈内投与の適 否を調べた。  A single intravenous administration of various formulations of PAL-CNDAC was performed in mice, and the adequacy of intravenous administration was examined.
実施例 1で製造した PAL-CNDACの各種のリポソ一ム化製剤及び比較例 1で製 造した PAL-CNDACの可溶化製剤を 1 . 5倍間隔で適宜希釈し (リポソ一ム化製 剤の希釈液には、 リボソーム製造時の水相を使用した。 可溶化製剤の希釈液には、 1 5 0 mM塩化ナトリゥム水溶液を使用した。)、体重 2 0乃至 3 0 gの雌性 C D F 1 ( 本チャールズリバ一社より購入。) に対して、 体重 1 k g当たり 2 O m L尾 静脈より投与した。 マウスの生死を投与後 1時間にわたり観察することにより、各 種製剤における PAL-CNDACの最大投与可能濃度、 すなわち、 マウスが生存した 薬物濃度のうち最も高い濃度を決定した。最大投与可能濃度の決定に際しては、少 なくとも 6匹のマウスに投与して再現性を調べ、 1匹の死亡例もないことを確認し た。 The various liposomal preparations of PAL-CNDAC prepared in Example 1 and the solubilized preparation of PAL-CNDAC prepared in Comparative Example 1 were appropriately diluted at 1.5-fold intervals (the liposomal preparation was The aqueous phase used in the production of ribosomes was used as the diluting solution, and a 150 mM aqueous sodium chloride solution was used as the diluting solution for the solubilized preparation.) A female CDF 1 (body weight: 20 to 30 g) was used. Was administered from Charles River Co., Ltd.) via the tail vein at 2 OmL per kg of body weight. By observing the survival of mice for 1 hour after administration, The maximum dose that could be administered for PAL-CNDAC in the seed formulation, ie, the highest drug concentration at which the mice survived, was determined. In determining the maximum dose that could be administered, at least 6 mice were administered and the reproducibility was examined, confirming that no single animal died.
最大耐量 (Maximum Tolerated Dosec 以下、 MTDという。) は次式: MTD (mg/k g) = [投与体積 (mLZk g) X最大投与可能濃度 (mgZmL)] /マウスの体重 (k g) により算出した (投与体積は、 2 OmLZk gである。)。 このようにして得られた各種製剤の MTDを表 6に示す。いずれのリボソーム化 製剤も 20 Omg/k gの投与が可能であり、 20 Omg/k g以上の MTDを有 していた。 これに対し、 比較製造例 1及び 2の可溶化製剤では、 それぞれ 1 O Om g/k g及び 1 50 mg/k gで死亡例があったことから、 MTDはそれぞれ 67 mg/k g及び 10 Omg/k gであり、明らかにリボソーム製剤より MT Dが低 力つた。 Maximum tolerated dose (. Maximum Tolerated Dose c hereinafter, referred MTD) following formula: was calculated by MTD (mg / kg) = [volume administered (mLZk g) X Maximum administrable concentration (mgZmL)] / mice weighing (kg) (Dosage volume is 2 OmLZkg.). Table 6 shows the MTDs of the various formulations thus obtained. All of the ribosomerized products could be administered at 20 Omg / kg and had an MTD of 20 Omg / kg or more. In contrast, in the solubilized preparations of Comparative Production Examples 1 and 2, there were deaths at 1 O Omg / kg and 150 mg / kg, respectively, so the MTD was 67 mg / kg and 10 Omg / kg, respectively. The MTD was clearly lower than that of the ribosome preparation.
(表 6) (Table 6)
単回静脈内投与における PAL-CNDACの PAL-CNDAC in single intravenous administration
各種製剤の MTD 製造例 MTD (mg/k g) MTD production examples of various formulations MTD (mg / kg)
1 9 ≥ 2 O O 1 9 ≥ 2 O O
2 O ≥ 20 O  2 O ≥ 20 O
21 ≥ 20 O  21 ≥ 20 O
22 ≥ 500  22 ≥ 500
23 ≥ 2 O 0  23 ≥ 2 O 0
24 ≥ 203  24 ≥ 203
25 ≥ 2 O 0  25 ≥ 2 O 0
26 ≥ 235 2 7 ≥ 2 1 5 26 ≥ 235 2 7 ≥ 2 1 5
2 8 ≥ 2 1 7  2 8 ≥ 2 1 7
2 9 ≥ 2 0 0  2 9 ≥ 2 0 0
3 0 ≥ 2 0 0  3 0 ≥ 2 0 0
3 2 ≥ 2 0 0 3 2 ≥ 2 0 0
3 3 ≥ 2 0 0 3 3 ≥ 2 0 0
3 4 ≥ 2 0 0 3 4 ≥ 2 0 0
3 5 ≥ 2 0 0 3 5 ≥ 2 0 0
3 6 ≥ 2 0 0 3 6 ≥ 2 0 0
3 7 ≥ 2 0 0 3 7 ≥ 2 0 0
3 8 ≥ 2 0 0 3 8 ≥ 2 0 0
3 9 ≥ 2 0 0  3 9 ≥ 2 0 0
4 0 ≥ 2 0 0  4 0 ≥ 2 0 0
4 1 ≥ 2 0 0 4 1 ≥ 2 0 0
4 2 ≥ 2 0 0 4 2 ≥ 2 0 0
4 3 ≥ 2 0 0 4 3 ≥ 2 0 0
4 4 ≥ 2 0 0 4 4 ≥ 2 0 0
4 5 ≥ 2 0 0 4 5 ≥ 2 0 0
4 6 ≥ 2 7 3 4 6 ≥ 2 7 3
比較 1 (可溶化製剤) 6 7 Comparative 1 (Solubilized formulation) 6 7
比較 2 (可溶化製剤) 1 0 0 Comparative 2 (Solubilized formulation) 1 0 0
以上の結果より、本発明のリボソーム製剤は、界面活性剤等を使用した可溶化製 剤より安全に大量の PAL-CNDACの投与が可能であることが示された。 From the above results, it was shown that the ribosome preparation of the present invention can safely administer a larger amount of PAL-CNDAC than a solubilized preparation using a surfactant or the like.
(試験例 3 ) 抗腫瘍活性  (Test Example 3) Antitumor activity
実施例 1に示した PAL-CNDACの各種製剤又は該製剤と同様にして新たに製造 した PAL-CNDACの製剤 (試験を行なった製剤の薬物回収率及び体積平均粒子径 を表 7及び表 9に示す。) の抗腫瘍活性を調べた。 投与スケジュールは、 3日おき の間歇 4回投与とした。 抗腫瘍活性は、腫瘍増殖抑制効果及び延命率を尺度として 評価した。 Formulations of PAL-CNDAC shown in Example 1 or formulations of PAL-CNDAC newly produced in the same manner as above (Drug recovery and volume average particle size of tested formulations) Are shown in Tables 7 and 9. ) Was tested for antitumor activity. The dosing schedule was four intermittent doses every three days. The antitumor activity was evaluated using the tumor growth inhibitory effect and the survival rate as scales.
なお、 試験例 3 (1 ) 及び 3 (2) は、 同一の条件で、 異なる日に行った実験で める  Test examples 3 (1) and 3 (2) were obtained from experiments performed on different days under the same conditions.
(表 7) (Table 7)
試験例 3 (1) で抗腫瘍活性を調べた: PAL-CNDACの製剤 製造例 製造後の薬物回収率 (%) 体積平均粒子径 (nm) Antitumor activity was examined in Test Example 3 (1): Preparation of PAL-CNDAC Preparation Example Drug recovery rate after production (%) Volume average particle size (nm)
24 73 143. 4土 3 7. 5 24 73 143.4 Sat 3 7.5
比較 1 (可溶化製剤) 100  Comparative 1 (Solubilized formulation) 100
比較 4 (懸濁液) * 1 00  Comparison 4 (suspension) * 100
'比較製造例 4の懸濁液は、 表 8に示す処方で製造した。 (表 8) 'The suspension of Comparative Production Example 4 was produced according to the formulation shown in Table 8. (Table 8)
経口投与した PAL-CNDACの懸濁液 1 m Lあたりの処方 製造例 ジメチルァセトアミ ド 中性界面活性剤' PAL-CNDAC Formulation per 1 mL of orally administered suspension of PAL-CNDAC Preparation Example Dimethylacetamide Neutral surfactant 'PAL-CNDAC
(β L) \m g (m g ) 比較 4 50 約 100 5  (β L) \ mg (mg) Comparison 4 50 Approx. 100 5
比較 5 50 約 100 7. 5 Comparison 5 50 Approx. 100 7.5
比較 6 50 約 100 2 製造後の懸濁液 1 mL当たり 2乃至 7. 5 m gの PAL-CNDACをジメチルァセ トアミ ド 50 μ Lに溶解し、 1 0 w/w。/。の中性界面活性剤 (Emulphor EL-620。 ローヌプーラン 'ジャパン (株) 社製) を含む 1 50 mM塩化ナトリゥム水溶液を 加えて所定体積とした。 Comparison 6 50 Approx. 100 2 2 to 7.5 mg of PAL-CNDAC / mL Dissolve in 50 μL of toamide, 10 w / w. /. A 150 mM aqueous sodium chloride solution containing a neutral surfactant (Emulphor EL-620; manufactured by Rhone Poulin 'Japan Co., Ltd.) was added to a predetermined volume.
(表 9) (Table 9)
試験例 3 (2) で抗腫瘍活性を調べた PAL-CNDACの製剤 製造例 製造後の薬物回収率 (%) 体積平均粒子径 (nm) Preparation of PAL-CNDAC for which antitumor activity was examined in Test Example 3 (2) Production Example Drug recovery after production (%) Volume average particle size (nm)
24 93 1 00. 9± 46. 4 24 93 1 00.9 ± 46.4
27 90 1 89. 4± 74. 0  27 90 1 89.4 ± 74.0
比較 5 (懸濁液) 1 00 —  Comparison 5 (Suspension) 1 00 —
5乃至 6週齢の雌性 CD F 1マウスの皮下にマウス結腸ガン c o 1 o n 26を 移植し、 腫瘍組織を生着し増殖させた。 移植後第 7日目に、 1群 6匹に無作為に群 分けをし、 初回投与を行なった。 静脈内投与用の各種製剤は、試験例 2と同様に体 積 2 OmLZk gを静脈内投与した。 Mouse colon cancer co1on26 was implanted subcutaneously into 5- to 6-week-old female CDF1 mice to engraft and grow tumor tissue. On the 7th day after transplantation, 6 animals per group were randomly divided into groups and administered the first dose. As for various preparations for intravenous administration, a volume of 2 OmLZkg was intravenously administered in the same manner as in Test Example 2.
また、 比較として調べた経口懸濁製剤は、 2 OmLZk gの体積を投与した。 同 様にして、 移植後第 1 0、 1 3、 1 6日目に、 それぞれ同一の製剤を同体積投与し、 合計 4回投与した。  In addition, the oral suspension preparation examined as a comparison was administered in a volume of 2 OmLZkg. Similarly, on the 10th, 13th, and 16th days after transplantation, the same preparation was administered in the same volume, for a total of four administrations.
この投与スケジュールにおける MTDについても、試験例 2と同様にして求めた c 但し、 最大投与可能濃度は、 移植第 20日目の時点において、 薬物の副作用による 死亡例がなく、 かつ、移植第 7日目に対する体重減少率が平均で 20 %以下である 最大の製剤中薬物濃度とした。  The MTD in this dosing schedule was also determined in the same manner as in Test Example 2.c However, the maximum dose that could be administered was as follows: on Day 20 of the transplant, there were no deaths due to adverse drug reactions, and on the seventh day of the transplant. The maximum drug concentration in the drug product with an average weight loss of 20% or less for the eyes was determined.
移植第 7日目、すなわち、初回投与当日及び第 20日目に皮膚上から腫瘍組織の 長径及び短径を測定し、 腫瘍体積を次式:腫瘍体積 (mm3) =長径 (mm) X短 径 2 (mm2) Z2により算出した c 相対腫瘍体積は、 初回投与当日の腫瘍体積を 1 とした腫瘍体積の相対値として算出した。この値が小さいほど腫瘍増殖抑制効果 が強いことを意味する。 ここでは、移植第 20日目における相対腫瘍体積を腫瘍增 殖抑制効果の尺度として算出した。 On the 7th day of transplantation, ie, on the day of the first administration and on the 20th day, the major axis and minor axis of the tumor tissue were measured from the skin, and the tumor volume was calculated by the following formula: tumor volume (mm 3 ) = major axis (mm) X minor C2 The relative tumor volume calculated from the diameter 2 (mm 2 ) Z2 is the tumor volume on the day of the first administration. It was calculated as a relative value of the tumor volume set to 1. The smaller this value is, the stronger the tumor growth inhibitory effect is. Here, the relative tumor volume on the 20th day of transplantation was calculated as a measure of the tumor growth inhibitory effect.
また、 各種製剤を投与した後、 マウスを飼育し各マウスの生存日数を求めた。 各 治療群の延命率は、 次式: (a— b) /b X 1 00 (%) により算出した。 ここで、 a及び bはそれぞれ治療群及び無治療群における生存日数の中間値を意味する。 各製剤の MTD付近における抗腫瘍活性の評価結果を表 1 0乃至表 1 1に示す。  After the administration of the various preparations, the mice were bred and the survival days of each mouse were determined. The survival rate of each treatment group was calculated by the following equation: (a−b) / b × 100 (%). Here, a and b mean the median value of the number of days alive in the treated group and the untreated group, respectively. Tables 10 to 11 show the evaluation results of the antitumor activity near the MTD of each preparation.
(表 1 0) (Table 10)
試験例 3 (1) の抗腫瘍活性の試験結果 製造例 腫瘍移植第 20日目における 延命率 (%) Test example 3 Antitumor activity test results of (1) Production example Survival rate on day 20 of tumor implantation (%)
(投与量) 相対腫瘍体積 無治療群 20. 25 0  (Dose) Relative tumor volume No treatment group 20.25 0
24  twenty four
( 44 m gZk g、 MTD) 0 56 90  (44 m gZk g, MTD) 0 56 90
比較 1 (可溶化製剤)  Comparative 1 (Solubilized formulation)
( 67 m gZk g、 MTD) 14 53 2  (67 m gZk g, MTD) 14 53 2
比較 4 (懸濁液の経口投与)  Comparative 4 (oral administration of suspension)
( 1 00 m gZk g、 MTD) 1 03 60  (100 m gZk g, MTD) 1 03 60
*無治療群では、 腫瘍移植後第 20日以前に 6匹中 3匹が死亡したため、 生存した 3匹のマウスについて腫瘍体積の測定を行ない相対腫瘍体積を算出した。 * In the untreated group, three out of six mice died before the 20th day after tumor implantation, so the tumor volume of three surviving mice was measured to calculate the relative tumor volume.
(表 1 1) (Table 11)
試験例 3 (2) の抗腫瘍活性の試験結果 製造例 腫瘍移植第 20日目における 延命率 (%) Test result of antitumor activity of test example 3 (2) Production example Survival rate on the 20th day of tumor implantation (%)
(投与量) 相対腫瘍体積 無治療群 1 7. 69' 0  (Dose) Relative tumor volume No treatment group 1 7. 69 '0
24  twenty four
( 44 m g/k g、 MTD) 0. 93 93  (44 mg / kg, MTD) 0.93 93
27  27
( 44 m g/k g、 MTD) 0. 42 05  (44 mg / kg, MTD) 0.442 05
比較 5 (懸濁液の経口投与)  Comparison 5 (oral administration of suspension)
( 1 50 m gZk g、 MTD) 3. 0 1 6 1  (1 50 m gZk g, MTD) 3.0 1 6 1
'無治療群では、 腫瘍移植後第 200以前に 6匹中 2匹が死亡したため、 生存した 4匹のマウスについて腫瘍体積の測定を行ない相対腫瘍体積を算出した。 以下、 各種製剤間の比較は、 MTDにおける抗腫瘍活性で行なった。 In the 'untreated group', two out of six mice died before the 200th day after tumor implantation, and the tumor volume was measured for the four surviving mice to calculate the relative tumor volume. Hereinafter, comparison between various preparations was performed based on the antitumor activity in MTD.
表 1 0の試験例 3 (1) に示すように、 ポリオキシエチレン硬化ヒマシ油 60及 びジメチルスルホキシドを使用し、 PAL-CNDAC を可溶化した製剤 (比較製造例 1) を静脈内投与した場合には、 該薬物の懸濁液 (比較製造例 4) を経口投与した 場合に比べて、 相対腫瘍体積が増大し延命率は減少した。 従って、 経口投与時の優 れた抗腫瘍活性に匹敵する抗腫瘍活性は該可溶化製剤の静脈内投与では得ること ができず、 PAL-CNDAC の静脈内投与は経口投与に比べて、 不利な投与経路であ ることがわかった。  As shown in Test Example 3 (1) in Table 10, when a formulation prepared by solubilizing PAL-CNDAC using polyoxyethylene hydrogenated castor oil 60 and dimethyl sulfoxide (Comparative Production Example 1) was administered intravenously. In comparison, the relative tumor volume was increased and the survival rate was reduced as compared with the case where the suspension of the drug (Comparative Production Example 4) was orally administered. Therefore, an antitumor activity comparable to the excellent antitumor activity at the time of oral administration cannot be obtained by intravenous administration of the solubilized preparation, and intravenous administration of PAL-CNDAC is disadvantageous compared to oral administration. This was found to be the administration route.
これに対し、表 1 0に示すように、本発明のリボソーム製剤を静脈内投与した場 合には、 可溶化製剤を静脈内投与と比較して高い抗腫瘍活性が得られた。 また、 本 発明のリボソームは、 表 1 1の試験例 3 (2) に示すように、 静脈内投与で、 懸濁 液の経口投与に比し、 顕著に優れた抗腫瘍活性を有していた。  In contrast, as shown in Table 10, when the ribosome preparation of the present invention was intravenously administered, a higher antitumor activity was obtained as compared with the case where the solubilized preparation was intravenously administered. Further, as shown in Test Example 3 (2) in Table 11, the ribosome of the present invention had remarkably excellent antitumor activity by intravenous administration as compared to oral administration of a suspension. .
(試験例 4) 抗腫瘍活性 実施例 1に示した PAL-CNDACの各種製剤又は該製剤と同様にして新たに製造 した PAL-CNDACの製剤 (試験を行った製剤の薬物回収率および体積平均粒子径 を表 1 2及び表 14に示す。) の、 試験例 3で用いたものと異なる癌種における抗 腫瘍活性を調べた。 投与スケジュールは、 試験例 4 (1) ではリボソームの静脈内 投与及び懸濁液の経口投与とも単回投与とし、 試験例 4の (2) では懸濁液は連続 5日投与後 2ョ休薬、 リボソーム製剤は 7日おきというように、各種製剤に好適と 考えられる投与スケジュールで 6週間の投与を行った。 (Test Example 4) Antitumor activity Various formulations of PAL-CNDAC shown in Example 1 or a formulation of PAL-CNDAC newly produced in the same manner as the formulation (The drug recovery and volume average particle size of the tested formulations are shown in Tables 12 and 14). The antitumor activity of a different cancer type from that used in Test Example 3 was examined. In Test Example 4 (1), the intravenous administration of ribosomes and oral administration of the suspension were single doses, and in Test Example 4 (2), the suspension was administered for 5 consecutive days and then suspended. The ribosome preparation was administered for 6 weeks on an administration schedule considered to be suitable for various preparations, such as every 7 days.
(表 1 2) (Table 1 2)
試験例 4 (1) で抗腫瘍活性を調べた PAL-CNDACの製剤 製造例 製造後の薬物回収率 (%) 体積平均粒子径 (nm) Preparation of PAL-CNDAC for which antitumor activity was examined in Test Example 4 (1) Production Example Drug recovery after production (%) Volume average particle size (nm)
22 82 1 09. 5 ±43. 0 22 82 1 09.5 ± 43.0
比較 7 (懸濁液) * 1 00 — Comparison 7 (suspension) * 1 00 —
*比較製造例 7の懸濁液は、 表 1 3に示す方法で製造した。 (表 1 3) * The suspension of Comparative Production Example 7 was produced by the method shown in Table 13. (Table 13)
経口投与した PAL-CNDACの懸濁液 1 m 1あたりの処方 製造例 カルボキシメチルセルロース * PAL-CNDAC Formulation per 1 ml of PAL-CNDAC suspension administered orally Production example Carboxymethylcellulose * PAL-CNDAC
(m g ) (m g ) 比較 7 約 5 100  (mg) (mg) Comparison 7 Approx. 5 100
*製造後の懸濁液 lmLあたり l O Omgの PAL-CNDACに 0. 5重量。 /0カルボキ シメチルセル口一ス溶液を加えて所定体積とした。 (表 14) * 0.5% by weight of P O-mg DAC per mL of suspension after production. / 0 Carboxymethylcell mouth solution was added to make a predetermined volume. (Table 14)
試験例 4 (2) で抗腫瘍活性を調べた PAL-CNDACの製剤 製造例 製造後の薬物回収率 (%) 体積平均粒子径 (nm) Formulation of PAL-CNDAC for which antitumor activity was examined in Test Example 4 (2) Production Example Drug recovery after production (%) Volume average particle size (nm)
22 90 1 06. 3 ±3 9. 4 22 90 1 06.3 ± 3 9.4
比較 6 (懸濁液) 1 00 — Comparison 6 (suspension) 1 00 —
5乃至 6週齢の雌性 CD F 1マウスの皮下にマウス繊維肉腫 Me t h Aを移植 し、 腫瘍組織を生着し増殖させた。 移植第 7日目に、 1群 6匹になるように無作為 に群分けをし、 試験例 4 (1) では単回投与、 試験例 4 (2) では初回の投与を行 つた。 静脈内投与用製剤は、試験例 2及び 3と同様に 20 m LZ k gの体積を静脈 内投与した。 また、 比較用として調べた経口懸濁製剤は、 試験例 4 (1) では 20mLZk g を、 試験例 4 (2) では 1 OmLZk gを投与した。 試験例 4における MTDについても、試験例 2及び 3と同様にして求めた。但し、 最大投与可能濃度は、 試験例 4 (1) の単回投与では薬物の副作用が最大になる投 与 6日後 (移植第 1 3日後) において、 薬物の副作用による死亡例がなく、 かつ、 移植第 7日目に対する体重減少率が平均で 20%以下である最大の製剤中薬物濃 度とした。 また、 試験例 4 (2) の各製剤に好適な投与スケジュールにおいては、 最終投与 3日後 (移植第 45日目) まで薬物の副作用による死亡例がなく、 かつ移 植第 7日目に対する体重減少率が平均で 20%以下である最大の薬物濃度とした。 試験例 4 (1) では、 移植第 7日目、 すなわち、 初回投与当日及び第 20日、 試 験例 4 (2) では、 移植第 73目、 すなわち、 初回投与当日及び第 21 日目、 第 3 1日目に皮膚上から腫瘍組織の長径及び短径を測定し、試験例 3と同様に相対腫瘍 体積を算出した。 試験例 4 ( 1 ) では移植第 2 0曰目、 試験例 4 (2) では移植第 2 1 日目及び第 3 1 日目における相対腫瘍体積を腫瘍増殖抑制効果の尺度として 算出した。 各種製剤を投与した後、 マウスを飼育し、 試験例 3同様に延命率を算出した。 各製剤の MTD付近における抗腫瘍活性の評価結果を表 1 5及び表 1 6に示す。 (表 1 5) Mouse fibrosarcoma Meth A was implanted subcutaneously into 5- to 6-week-old female CDF1 mice to engraft and grow tumor tissue. On the 7th day of transplantation, the animals were randomly divided into groups, each group consisting of 6 animals. In Test Example 4 (1), a single dose was administered, and in Test Example 4 (2), the first dose was administered. As for the preparation for intravenous administration, a volume of 20 mLZZ kg was intravenously administered in the same manner as in Test Examples 2 and 3. In addition, the oral suspension preparations tested for comparison received 20 mLZkg in Test Example 4 (1) and 1 OmLZkg in Test Example 4 (2). The MTD in Test Example 4 was determined in the same manner as in Test Examples 2 and 3. However, the maximum concentration that can be administered is that no death occurred due to the side effects of the drug 6 days after administration (13 days after transplantation), when the single administration in Test Example 4 (1) maximized the side effects of the drug, and The maximum drug concentration in the drug product with an average weight loss of 20% or less on the 7th day of transplantation was determined. In addition, in the administration schedule suitable for each of the preparations in Test Example 4 (2), there were no deaths due to adverse drug reactions until 3 days after the last administration (day 45 of transplantation) and weight loss relative to day 7 of transplantation The maximum drug concentration with an average rate of 20% or less was determined. In Test Example 4 (1), on the 7th day of transplantation, that is, on the day of the first administration and on the 20th day, in Test Example 4 (2), on the 73rd transplantation, that is, on the day of the first administration and on the 21st, 3 On day 1, the major axis and minor axis of the tumor tissue were measured from above the skin, and the relative tumor was measured in the same manner as in Test Example 3. The volume was calculated. In Test Example 4 (1), the relative tumor volume on the 20th day of transplantation and in Test Example 4 (2) on the 2nd and 31st days of transplantation were calculated as a measure of the tumor growth inhibitory effect. After administration of the various preparations, the mice were bred, and the survival rate was calculated as in Test Example 3. Tables 15 and 16 show the evaluation results of the antitumor activity near the MTD of each preparation. (Table 15)
試験例 4 ( 1 ) の抗腫瘍活性の試験結果 製造例 腫瘍移植第 2 0日目における 延命率 (%) Test result of antitumor activity of test example 4 (1) Production example Survival rate on the 20th day of tumor implantation (%)
(投与量) 相対腫瘍体積 無治療群 8. 2 2 0  (Dose) Relative tumor volume Untreated group 8.22 0
2 2 3. 3 9 3. 9  2 2 3.3 9 3.9
(3 0 O m g/k g、 MTD)  (30 O mg / kg, MTD)
比較 7 (懸濁液の経口投与) 6. 6 2. 6  Comparison 7 (oral administration of suspension) 6.6.2.6
( 2 0 0 0 m g/k g , MTD)  (2000 m / kg, MTD)
(表 1 6) (Table 16)
試験例 4 (2) の抗腫瘍活性の試験結果 製造例 相対腫瘍体積 延命率 (%) Test Example 4 Test result of antitumor activity of (2) Production example Relative tumor volume Prolonged survival rate (%)
(投与量) 第 2 1 日目 第 3 1 日目 無治療群 1 1. 82 — * 〇 (Dose) Day 2 Day 3 Day 1 No treatment group 1.82 — * 〇
22 3. 24 7. 26 48  22 3.24 7.26 48
(225mgZk g、 MTD)  (225mgZk g, MTD)
比較 6 (懸濁液の経口投与)  Comparative 6 (oral administration of suspension)
( 20 m gZk g、 MTD)  (20 m gZk g, MTD)
6. 78 1 8. 64  6.78 1 8.64
*無治療群では、 腫瘍移植第 3 1 日目以前に 6匹すべてが死亡した。 各種製剤間の比較は、 M T Dにおける抗腫瘍活性で行つた。 マウス繊維肉腫 Me t h Aにおいても、製造例 22のリポソ一ム製剤を静脈内投 与した場合には、懸濁液の経口投与に比し、優れた抗腫瘍活性を有することが判明 した。 * In the untreated group, all six died before day 3 of tumor implantation. Comparisons between the various formulations were made for anti-tumor activity in MTD. Even in mouse fibrosarcoma MethA, it was found that when the liposomal preparation of Production Example 22 was intravenously administered, it had an excellent antitumor activity as compared to the oral administration of the suspension.
(試験例 5) 各種の PAL-CNDAC製剤投与後の腫瘍中 PAL-CNDAC濃度 (Test Example 5) PAL-CNDAC concentration in tumor after administration of various PAL-CNDAC preparations
リボソーム化による PAL-CNDACの腫瘍集積性及び滞留性の変化を調べるため、 PAL-CNDACの各種製剤を投与した後の腫瘍中 PAL-CNDAC濃度を測定した。表 1 7及び表 1 8に示すように、投与経路については、抗腫瘍活性評価時と同様に、 リポソ一ム化製剤及び可溶化製剤は静脈内投与、 懸濁液は経口投与とした。  In order to examine changes in tumor accumulation and retention of PAL-CNDAC due to ribosome formation, PAL-CNDAC concentrations in tumors after administration of various preparations of PAL-CNDAC were measured. As shown in Tables 17 and 18, as for the administration route, the liposomal preparation and the solubilized preparation were intravenously administered, and the suspension was oral administration, as in the evaluation of antitumor activity.
6週齢の CD F 1マウスの皮下にマウス結腸ガン c o 1 o n 26又はマウス繊 維肉腫 MethAを移植し、 1 0乃至 1 4日後に、 表 1 7及び表 1 8に示す製剤を単 回投与した。 PAL-CNDAC の投与量は、 c o 1 o n 26担癌マウスに対しては試 験例 3で、 Me t h A担癌マウスに対しては試験例 4 (1) で決定した MTDに近 い量とした。  A 6-week-old CDF1 mouse was transplanted subcutaneously with mouse colon cancer co1on26 or mouse fibrosarcoma MethA, and a single dose of the formulation shown in Tables 17 and 18 was given 10 to 14 days later did. The dose of PAL-CNDAC was close to the MTD determined in Test Example 3 for co 1 on 26 tumor-bearing mice and Test 4 (1) for Meth A tumor-bearing mice. did.
(表 1 7) (Table 17)
Colon26腫瘍内 PAL-CNDAC濃度を調べた PAL-CNDACの製剤の投与経路及び投 与 製造例 投与経路 投与量 (mgZk g) The administration route and administration of PAL-CNDAC preparations were examined for PAL-CNDAC concentration in Colon26 tumor. Production example Administration route Dose (mgZkg)
24* 静脈内 20 24 * Intravenous 20
27* 静脈内 44 27 * IV 44
比較 1 (可溶化液) 静脈内 44 Comparative 1 (lysate) IV 44
比較 4 (懸濁液) 経口 1 00 Comparative 4 (suspension) Oral 100
*製造後の薬物回収率及び体積平均粒子径は、 表 9に示した。 (表 1 8) * Table 9 shows the drug recovery and volume average particle size after production. (Table 18)
MethA腫瘍内 PAL-CNDAC濃度を調べた PAL-CNDACの製剤の投与経路及び投  The PAL-CNDAC concentration in MethA tumors was investigated.
製造例 投与経路 投与量 (mgZk g) Production example Administration route Dose (mgZkg)
22* 静脈内 300 22 * Intravenous 300
比較 7 (懸濁液) 経口 2000 Comparative 7 (suspension) Oral 2000
'製造後の薬物回収率及び体積平均粒子径は、 表 1 9に示した c (表 1 9) 製造例 製造後の薬物回収率 (%) 体積平均粒子径 (nm) 'The drug recovery and volume average particle size after production are shown in Table 19 c (Table 19) Production Example Drug recovery after production (%) Volume average particle size ( nm )
22 103 10 1. 8±4 1. 5 C o 1 o n 26担癌マウスは、 各製剤を投与して、 5、 24、 48及び 72時間 後、 Me t h A担癌マウスは各製剤を投与して 24時間後に、 脱血死させ、 腫瘍組 織を摘出し、 その重量を測定した。 この腫瘍組織に 0. 5乃至 3mLの 1 50mL 塩化ナトリゥム水溶液を加え、 ホモジナイゼ一ションした。 22 103 10 1.8 ± 4 1.5 C o 1 on 26 tumor-bearing mice were treated with each formulation at 5, 24, 48 and 72 hours later, and Meth A tumor-bearing mice were bled to death 24 hours after administration of each formulation and tumor The tissue was excised and its weight was measured. To this tumor tissue, 0.5 to 3 mL of a 150 mL aqueous sodium chloride solution was added and homogenized.
試験例 1と同様にして、測定した各ホモジネート中の PAL-CNDAC濃度、及び、 腫瘍組織と添加した塩化ナトリゥム水溶液との重量比から算出した希釈度から腫 瘍組織中の PAL-CNDAC濃度を求めた。  In the same manner as in Test Example 1, the PAL-CNDAC concentration in each tumor homogenate and the PAL-CNDAC concentration in the tumor tissue were determined from the dilution calculated from the weight ratio of the tumor tissue to the added aqueous sodium chloride solution. Was.
その結果、 マウス結腸ガン c o 1 o n 26担癌マウスでは、 図 1に示すように、 リボソーム製剤投与後には、 PAL-CNDAC が 48時間乃至 72時間まで検出され た。 これに対し、 可溶化製剤の静脈内投与及び懸濁液の経口投与後には、 PAL- CNDACを検出することはできなかった。 また、 マウス繊維肉腫 Me t hA担癌マ ウスにおいても、 表 20に示すように、 各種製剤投与 24時間後において、 リポソ —ム製剤投与後には、 腫瘍から PAL-CNDACが検出されたが、 懸濁液の経口投与 後には、 検出することは出来なかった。  As a result, as shown in FIG. 1, PAL-CNDAC was detected for 48 to 72 hours after administration of the ribosome preparation in mouse colon cancer co 1 on 26 tumor-bearing mice. In contrast, PAL-CNDAC could not be detected after intravenous administration of the solubilized preparation and oral administration of the suspension. As shown in Table 20, in the mouse fibrosarcoma MethA tumor-bearing mouse, PAL-CNDAC was detected in the tumor after administration of the liposomal preparation 24 hours after administration of the various preparations. After oral administration of the suspension, no detection was possible.
(表 20) 製造例 投与 24時間後の腫瘍 (Me t hA) 中 (Table 20) Production example Medium in tumor (Me thA) 24 hours after administration
(投与量) PAL-CNDAC濃度  (Dose) PAL-CNDAC concentration
22 7. 81 ± 1. 82 22 7.81 ± 1.82
(30 Omg/k g)  (30 Omg / kg)
比較 7 (懸濁液の経口投与) 0.  Comparative 7 (oral administration of suspension) 0.
(200 Omg/k g) このように、 リポソ一ム化によって PAL-CNDACの腫瘍組織への蓄積効率が高 まることが示された。 本発明により、 全脂質量に対する PAL-CNDACの組成比が高いリボソームを製 造することができ、 毒性の強い中性の水溶性界面活性剤を使用することなく、 PAL-CNDACの静脈内投与を可能とすることができた。 (200 Omg / kg) Thus, it was shown that liposomeation increases the efficiency of PAL-CNDAC accumulation in tumor tissue. According to the present invention, a ribosome having a high composition ratio of PAL-CNDAC to the total lipid amount can be produced, and intravenous administration of PAL-CNDAC can be performed without using a highly toxic neutral water-soluble surfactant. Could be possible.
また、 PAL-CNDAC の腫瘍組織への集積性及び該組織での滞留性を高め、 経口 投与と同等又はそれ以上の抗腫瘍活性を有するリボソーム製剤を製造することが できた。 産業上の利用の可能性 本発明の PAL-CNDACのリポソ一ム製剤は、 PAL-CNDACの安全な静脈内投与、 腫瘍組織へのターゲッティング、 腫瘍組織での滞留性付与、 及び、 抗腫瘍活性の増 強を可能とする製剤として有用である。 図面の簡単な説明 図 1は、 PAL-CNDAC のリポソ一ム製剤投与後の腫瘍 (C o 1 o n 26) 中 PAL-CNDAC濃度の経時変化を示す。  In addition, the accumulation and retention of PAL-CNDAC in tumor tissue were enhanced, and a ribosome preparation having an antitumor activity equal to or higher than that of oral administration could be produced. INDUSTRIAL APPLICABILITY The liposomal preparation of PAL-CNDAC of the present invention provides safe intravenous administration of PAL-CNDAC, targeting to tumor tissue, imparting retention to tumor tissue, and anti-tumor activity. It is useful as a formulation that allows for enhancement. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 shows the time course of PAL-CNDAC concentration in tumor (Co 1 on 26) after administration of liposomal formulation of PAL-CNDAC.
(図中、 口、 製造例 27 (44mg/k g) ;〇、 製造例 24 (2 Omg/k g)) 比較例 4の 濁液の経口投与(l O OmgZk g)及び比較例 1の可溶化製剤( 4 4mg/k g) の静脈內投与後、 5、 24及び 48時間においては、 腫瘍中に PAL-CNDACは検出されなかった (検出限界 0. l /z g/mL)。  (In the figure, mouth, mouth, Production Example 27 (44 mg / kg); 〇, Production Example 24 (2 Omg / kg)) Oral administration of the suspension of Comparative Example 4 (100 mg / kg) and solubilized preparation of Comparative Example 1 At 4, 24 and 48 hours after intravenous administration of (44 mg / kg), PAL-CNDAC was not detected in the tumor (detection limit: 0.1 / zg / mL).

Claims

請求の範囲 The scope of the claims
1 . 1 - ( 2 ' —シァノ一 2 ' —デォキシー ]3— D—ァラビノーベントフラノシ ル) — N 4—パルミ トイルシトシン含有リボソーム製剤。 . 1 1 - (2 '- Shiano one 2' - Dokishi] 3- D-§ Rabbi no vent furano sheet le) - N 4 - palmitic Toirushitoshin containing ribosome preparations.
2 . リボソームを構成する脂質成分として、 ポリエチレングリコール類で化学修 飾された脂質又はホスファチジルコリン類を含有することを特徴とする、請求項 1 に記載のリボソーム製剤。 2. The ribosome preparation according to claim 1, wherein the liposome preparation contains lipids chemically modified with polyethylene glycols or phosphatidylcholines as lipid components constituting ribosomes.
3 . リボソームを構成する脂質成分であるポリエチレンダリコール類で化学修飾 された脂質が、 N—モノメ トキシポリエチレングリコールサクシニルホスファチジ ルェタノ一ルアミン類、 N—モノメ トキシポリエチレングリコール (2—クロ口一 1, 3, 5—トリアジンー4, 6—ジィル) サクシェルホスファチジルエタノール ァミン類、 N—モノメ トキシポリエチレングリコ一ルカ/レポニルホスファチジ /レエ タノールアミン類又は N—モノメ トキシポリエチレングリコ一ルエチレンホスフ ァチジルエタノールァミン類であることを特徴とする、請求項 2に記載のリポソ一 ム製剤。 3. Lipids chemically modified with polyethylene daricols, a lipid component of ribosomes, are N-monomethoxypolyethylene glycol succinylphosphatidyl luteanolamines, N-monomethoxypolyethylene glycol (2-chloroethylene glycol 1). , 3,5-Triazine-4,6-diyl) Sacshell phosphatidylethanolamines, N-monomethoxypolyethyleneglycolca / levonylphosphatidyl / leethanolamines or N-monomethoxypolyethyleneglycolethylenephosphine 3. The liposome preparation according to claim 2, which is a tidylethanolamine.
4 . リボソームを構成する脂質成分であるポリエチレングリコール類で化学修飾 された脂質が、 N—モノメ トキシポリエチレングリコ一ルサクシニルホスファチジ ルエタノールアミン類又は N—モノメ トキシポリエチレングリコールカルボニル ホスファチジルェタノ一ルァミン類であることを特徴とする、請求項 2又は 3に記 載のリボソーム製剤。 4. N-monomethoxypolyethyleneglycolsuccinylphosphatidylethanolamines or N-monomethoxypolyethyleneglycol carbonyl phosphatidylethanolamine is chemically modified with polyethylene glycols, which are lipid components of ribosomes. 4. The ribosome preparation according to claim 2, wherein the preparation is a ribosome preparation.
5 . リポソ一ムを構成する脂質成分であるホスファチジルコリン類が、 ジミリス トイルホスファチジルコリン、ジパルミ トイルホスファチジルコリン又はジステア ロイルホスファチジルコリンのいずれかであることを特徴とする、請求項 2に記載 のリポソ一ム製剤。 5. The liposome preparation according to claim 2, wherein the phosphatidylcholine, which is a lipid component constituting the liposome, is any of dimyristoylphosphatidylcholine, dipalmitoylphosphatidylcholine, or distearoylphosphatidylcholine.
6 . リボソームを構成する脂質成分であるホスファチジルコリン類が、 ジパルミ トイルホスファチジルコリン又はジステアロイルホスファチジルコリンのいずれ かであることを特徴とする、 請求項 2又は 5に記載のリポソーム製剤。 6. The liposome preparation according to claim 2, wherein the phosphatidylcholines that are liposomal lipid components are either dipalmitoyl phosphatidylcholine or distearoylphosphatidylcholine.
7 . リボソームを構成する脂質成分として、 さらに、 ステロール類を含有するこ とを特徴とする、 請求項 2乃至 6のいずれかの 1に記載のリポソーム製剤。 7. The liposome preparation according to any one of claims 2 to 6, further comprising a sterol as a lipid component constituting the ribosome.
8 . リボソームを構成する脂質成分であるステロール類が、 コレステロールであ ることを特徴とする、 請求項 7に記載のリボソーム製剤。 8. The ribosome preparation according to claim 7, wherein the sterols, which are lipid components constituting the ribosome, are cholesterol.
9 . リボソームを構成する脂質成分として、 さらに、 ホスファチジルグリセ口一 ル類を含有することを特徴とする、請求項 2乃至 8のいずれかの 1に記載のリポソ ーム製剤。 9. The liposome preparation according to any one of claims 2 to 8, further comprising a phosphatidylglycerol as a lipid component constituting the ribosome.
1 0 . リボソームを構成する脂質成分であるホスファチジルグリセロール類が、 ジミリストイルホスファチジルグリセロール、ジパルミ トイルホスファチジルグリ セ口一ル又はジステア口ィルホスファチジルグリセ口一ルであることを特徴とす る、 請求項 9に記載のリボソーム製剤。 10. The phosphatidylglycerols, which are lipid components constituting ribosomes, are dimyristoylphosphatidylglycerol, dipalmitoylphosphatidylglycerol, or distearyl phosphatidylglycerol. 10. The ribosome preparation according to 9.
1 1 . リボソームを構成する脂質成分であるホスファチジルグリセロール類が、 ジパルミ トイルホスファチジルグリセ口一ル又はジステアロイルホスファチジル グリセロールであることを特徴とする、請求項 9又は 1 0に記載のリポソーム製剤。 11. The liposome preparation according to claim 9 or 10, wherein the phosphatidylglycerols, which are lipid components constituting ribosomes, are dipalmitoylphosphatidylglycerol or distearoylphosphatidylglycerol.
1 2 . リボソームを構成する脂質成分として、 さらに、 カチオン性脂質を含有す ることを特徴とする、 請求項 2乃至 1 1のいずれか 1に記載のリボソーム製剤。 12. The ribosome preparation according to any one of claims 2 to 11, further comprising a cationic lipid as a lipid component constituting the ribosome.
1 3 . リボソームを構成する脂質成分であるカチオン性脂質が、 N—ひ—トリメ チルアンモニオアセチルジドデシル一 D—グルタメ一トク口ライ ドであることを 特徴とする、 請求項 1 2に記載のリボソーム製剤。 13. The cationic lipid which is a lipid component constituting the ribosome is N-hydroxytriammonioammonioacetyldidodecyl-1-D-glutamate tobacco, according to claim 12, characterized in that: Ribosome preparations.
14. リボソームの体積平均粒子径が、 25 nm乃至 400 nmであることを特 徴とする、 請求項 2乃至 1 3のいずれか 1に記載のリポソ一ム製剤。 14. The liposome preparation according to any one of claims 2 to 13, wherein the ribosome has a volume average particle diameter of 25 nm to 400 nm.
1 5. リポソームの体積平均粒子径が、 50 n m乃至 200 n mであることを特 徴とする、 請求項 2乃至 1 4のいずれか 1に記載のリボソーム製剤。 1 5. The ribosome preparation according to any one of claims 2 to 14, wherein the liposome has a volume average particle diameter of 50 nm to 200 nm.
1 6. リボソームを構成する脂質成分が、 1 6. The lipid component of the ribosome is
(1) 1 - (2' —シァノ一 2' —デォキシ一 ]3—D—ァラビノーペントフラノシ ル) — N4—パルミ トイルシトシン、 (1) 1-(2'-cyanone 2'-doxy-1) 3-D-arabinopentofuranosyl) — N 4 —palmitoylcytosine,
(2)モノメ トキシポリエチレングリコールサクシ-ルジステアロイルホスファチ ジルエタノールアミン類又は N—モノメ トキシポリエチレングリコールカルボ二 ルホスファチジルエタノールアミン類、 及び、  (2) Monomethoxy polyethylene glycol succil-distearoyl phosphatidylethanolamines or N-monomethoxy polyethylene glycol carboxyphosphatidylethanolamines, and
(3) ホスファチジルコリン類である、  (3) phosphatidylcholines,
請求項 1乃至 1 5のいずれか 1に記載のリボソーム製剤。 The ribosome preparation according to any one of claims 1 to 15.
1 7. リボソームを構成する総脂質量に対して、 1 7. Based on the total lipid content of the ribosome,
(1) 1一 (2, 一シァノ一 2' —デォキシ一 一 D—ァラビノーペントフラノシ ル) — N4—パルミ トイルシトシンの組成比が、 3mo 1 %乃至 65mo 1。/。であ り、 (1) 1 (2, 1 cyano 2'-doxy 11 D-arabinopentofuranosyl)-N 4- palmitoylcytosine composition ratio is 3mo 1% to 65mo 1. /. And
(2)モノメ トキシポリエチレングリコールサクシユルジステアロイルホスファチ ジルェタノ一ルァミン類又は N—モノメ トキシポリエチレングリコールカルボ二 ルホスファチジルエタノールァミン類の組成比が、 0. 5mo 1。/0乃至 1 Omo(2) The composition ratio of monomethoxypolyethylene glycol succinyl distearoyl phosphatidyl ethanolamines or N-monomethoxy polyethylene glycol carboxy phosphatidyl ethanolamines is 0.5 mol. / 0 to 1 Omo
1 %であり、 1%,
(3) ホスファチジルコリン類の組成比が、 3 Omo 1 %乃至 95 mo 1。/0である、 請求項 16に記載のリボソーム製剤。 (3) The composition ratio of phosphatidylcholines is 3 Omo 1% to 95 mo 1. 17. The ribosome preparation according to claim 16, which is / 0 .
1 8. リボソームを構成する脂質成分が、 1 8. The lipid component of the ribosome is
(1) 1 - (2 ' —シァノ一 2' —デォキシ一 —D—ァラビノーペントフラノシ ル) 一N 4—ノヽ"ノレミ トイノレシトシン、 (1) 1-(2'-cyan-1'-doxy-1D-arabinopentfuranosi Le) I N 4 —No ヽ "Noremi toinorecytosine,
( 2)モノメ トキシポリエチレングリコールサクシユルジステアロイルホスファチ ジルエタノ一ルァミン類又は N—モノメ トキシポリエチレングリコールカルボ二 ルホスファチジルエタノールアミン類、 及び、  (2) Monomethoxy polyethylene glycol succinyl distearoyl phosphatidylethanolamine or N-monomethoxy polyethylene glycol carboxyphosphatidylethanolamine, and
(3 ) ステロール類である、  (3) sterols,
請求項 1乃至 1 5のいずれか 1に記載のリボソーム製剤。 The ribosome preparation according to any one of claims 1 to 15.
1 9. リボソームを構成する総脂質量に対して、 1 9. With respect to the total lipid content of the ribosome,
( 1 ) 1 — ( 2 ' —シァノー 2 ' —デォキシ一 i3—D—ァラビノ一ぺントフラノシ ル) 一 N4—パルミ トイルシトシンの組成比が、 2 5 m o 1 %乃至 5 O m o 1 %で あり、 (1) 1 — (2 ′ —Cyanaw 2 ′ —Doxy-i3-D-arabino-to-furanosyl) -N 4 —Palmitoylcytosine The composition ratio is 25 mo 1% to 5 O mo 1%,
( 2)モノメ トキシポリエチレングリコ一ルサクシニルジステアロイノレホスファチ ジルエタノールァミン類又は N—モノメ トキシポリエチレングリコールカルボ二 ルホスファチジルエタノールァミン類の組成比が、 0. 5 mo 1 %乃至 1 O m o (2) The composition ratio of monomethoxypolyethyleneglycolsuccinyldistearonolelephosphatidylethanolamines or N-monomethoxypolyethyleneglycolcarbonylphosphatidylethanolamine is 0.5 mo 1% to 1 O. mo
1 %であり、 1%,
(3) ステロ一ル類の組成比が、 4 O m o 1 %乃至 7 O m o 1 %である、 請求項 1 8に記載のリボソーム製剤。  (3) The ribosome preparation according to claim 18, wherein the composition ratio of the sterols is 4Omo1% to 7Omo1%.
2 0. リボソームを構成する脂質成分が、 20. The lipid component of the ribosome is
( 1 ) 1 - (2 ' —シァノー 2 ' —デォキシ一 /3—D—ァラビノーペントフラノシ ル) —N4—パルミ トイルシトシン、 (1) 1 - (2 '- Shiano 2' - Dokishi one / 3-D-§ Lavi no pent furano Shi Le) -N 4 - Palmi Toirushitoshin,
(2)モノメ トキシポリエチレングリコールサクシニルジステアロイルホスファチ ジルエタノールアミン類又は N—モノメ トキシポリエチレングリコールカルボ二 ルホスファチジルエタノールァミン類、  (2) monomethoxy polyethylene glycol succinyl distearoyl phosphatidyl ethanolamines or N-mono methoxy polyethylene glycol carbon phosphatidyl ethanolamines;
(3) ホスファチジルコリン類、 及び、  (3) phosphatidylcholines, and
(4) ステロール類である、  (4) sterols,
請求項 1乃至 1 5のいずれか 1に記載のリボソーム製剤。 The ribosome preparation according to any one of claims 1 to 15.
21. リボソームを構成する総脂質量に対して、 (1) 1 - (2' —シァノー 2' —デォキシー |3— D—ァラビノーペントフラノシ ル) 一 パノレミ トイルシトシンの組成比が、 3 mo 1 %乃至 5 Omo 1 %であ り、 21. For the total amount of lipids that make up the ribosome, (1) 1-(2 '-Cyanau 2' -Doxy) | 3-D-arabinopentofuranosyl) The composition ratio of panoremi toylcytosine is 3 mo 1% to 5 Omo 1%,
(2)モノメ トキシポリエチレングリコールサクシニルジステアロイルホスファチ ジルエタノールァミン類又は N—モノメ トキシポリエチレングリコールカルボ- ルホスファチジルエタノールァミン類の組成比が、 0. 5mo l %乃至 1 0mo (2) The composition ratio of monomethoxy polyethylene glycol succinyl distearoyl phosphatidyl ethanolamines or N-mono methoxy polyethylene glycol carbo phosphatidyl ethanolamines is 0.5 mol% to 10 mol.
1 %であり、 1%,
(3 ) ホスファチジルコリン類の組成比が、 1 0 m o 1 %乃至 70 m o 1 %であり、 (4) ステロ一ル類の組成比が、 1 Omo 1 %乃至 6 Omo 1 %である、 請求項 20に記載のリポソ一ム製剤。  (3) The composition ratio of phosphatidylcholines is 10 mo 1% to 70 mo 1%, and (4) the composition ratio of sterols is 1 Omo 1% to 6 Omo 1%. A liposomal preparation according to item 1.
22. リボソームを構成する脂質成分が、 22. The lipid component of the ribosome is
(1) 1— (2, 一シァノー 2' —デォキシ一 ]3—D—ァラビノーペントフラノシ ル) 一 N4—パルミ トイルシトシン、 (1) 1— (2, 1 cyano 2 '—doxy 1) 3—D—arabinopentfuranosyl) 1 N 4 —palmitoylcytosine,
(2) ホスファチジルコリン類、  (2) phosphatidylcholines,
(3) ステロール類、  (3) sterols,
(4) ホスファチジルグリセ口一ル類である、  (4) phosphatidylglycerols,
請求項 1乃至 1 5のいずれか 1に記載のリポソ一ム製剤。 A liposomal preparation according to any one of claims 1 to 15.
23. リボソームを構成する総脂質量に対して、 23. With respect to the total lipid content of the ribosome,
(1) 1— (2, 一シァノー 2' —デォキシ一 jS—D—ァラビノーベントフラノシ ル) —N4—パルミ トイルシトシンの組成比が、 3 mo 1 %乃至 5 Omo 1 %であ り、 (1) 1— (2, 1 cyano 2'-doxy-1 jS—D—arabinobentfuranosyl) —N 4 —composition ratio of palmitoylcytosine is 3 mo 1% to 5 Omo 1%,
(2) ホスファチジルコリン類の組成比が、 1 Omo 1 %乃至 7 Omo 1 %であり、 (2) the composition ratio of phosphatidylcholines is 1 Omo 1% to 7 Omo 1%,
(3) ステロール類の組成比が、 1 Omo 1 %乃至 6 Omo 1 %であり、 (3) The composition ratio of sterols is 1 Omo 1% to 6 Omo 1%,
(4) ホスファチジルグリセロール類の組成比が、 lmo 1 %乃至 1 Omo 1 %で ある、  (4) The composition ratio of phosphatidylglycerols is 1% to 1% Omo 1%,
請求項 22に記載のリポソ一ム製剤。 A liposomal preparation according to claim 22.
24. リボソームを構成する脂質成分が、 24. The lipid component of the ribosome is
(1) 1— (2 ' —シァノ一 2' —デォキシ一 — D—ァラビノーペントフラノシ ル) 一 —パルミ トイノレシトシン、  (1) 1— (2'—cyanone 2'—doxy—D—arabinopentofuranosyl) one—palmi toinoresitosine,
(2) ホスファチジルコリン類、  (2) phosphatidylcholines,
(3)モノメ トキシポリエチレングリコールサクシニルジステアロイルホスファチ ジルェタノ一ルァミン類又は Ν—モノメ トキシポリエチレングリ コールカルボ- ルホスファチジルエタノールァミン類、  (3) monomethoxy polyethylene glycol succinyl distearoyl phosphatidyl ethanolamines or Ν-monomethoxy polyethylene glycol carboxyl phosphatidyl ethanolamines;
(4) ホスファチジルグリセロール類である、  (4) phosphatidyl glycerols,
請求項 1乃至 1 5のいずれか 1に記載のリボソーム製剤。 The ribosome preparation according to any one of claims 1 to 15.
25. リポソ一ムを構成する総脂質量に対して、 25. With respect to the total lipid content of the liposome,
(1) 1 - (2 ' —シァノー 2' —デォキシ一]3— D—ァラビノ一ペントフラノシ ル) —Ν4—パルミ トイルシトシンの組成比が、 3 m ο 1。/。乃至 50 m ο 1 %であ り、 (1) 1-(2 '-Cyanau 2' -Doxy-1) 3-D-arabino-pentofuranosyl) -Ν 4 -The composition ratio of palmitoylcytosine is 3mο1. /. ~ 50 m ο 1%
(2) ホスファチジルコリン類の組成比が、 10 m o 1 %乃至 70 m o 1 ° /。であり、 (2) The composition ratio of phosphatidylcholines is from 10 mol 1% to 70 mol 1 ° /. And
(3)モノメ トキシポリエチレングリコールサクシユルジステアロイルホスファチ ジルェタノ一ルァミン類又は N—モノメ トキシポリエチレングリコールカルボ二 ルホスファチジルエタノールァミン類の組成比が、 0. 5mo l %乃至 1 0mo(3) The composition ratio of monomethoxypolyethylene glycol succinyl distearoyl phosphatidyl ethanolamines or N-monomethoxy polyethylene glycol carbonyl phosphatidyl ethanolamines is 0.5 mol% to 10 mol.
1 %であり、 1%,
(4) ホスファチジルグリセ口一ル類の組成比が、 1 m o 1。/。乃至 1 0 m o 1 %で ある、  (4) The composition ratio of phosphatidylglycerol is 1 mol 1. /. From 1 to 10 m o 1%,
請求項 24に記載のリボソーム製剤。 25. The ribosome preparation according to claim 24.
26. リボソームを構成する脂質成分が、 26. The lipid component of the ribosome is
(1) 1— (2, 一シァノ一 2' —デォキシ一|S—D—ァラビノーペントフラノシ ル) 一N4—パルミ トイルシトシン、 (1) 1— (2, 1-cyanone 2 '—doxy-1 | S—D—arabinopentfuranosyl) 1 N 4 —palmitoylcytosine,
(2) ホスファチジルコリン類、 (3) ステロール類、 (2) phosphatidylcholines, (3) sterols,
(4)モノメ トキシポリエチレングリコールサグシニルジステアロイルホスファチ ジルエタノールァミン類又は N—モノメ トキシポリエチレングリコールカルボ- ルホスファチジルェタノ一ルァミン類、  (4) monomethoxypolyethylene glycol sagsinyl distearoyl phosphatidylethanolamines or N-monomethoxypolyethylene glycol carboxyphosphatidylethanolamines;
(5) ホスファチジルグリセロール類である、  (5) phosphatidyl glycerols,
請求項 1乃至 1 5のいずれか 1に記載のリポソーム製剤。 The liposome preparation according to any one of claims 1 to 15.
27. リボソームを構成する総脂質量に対して、 27. With respect to the total amount of lipids that make up the ribosome,
(1) 1— (2' —シァノー 2' —デォキシ一 3—D—ァラビノーペントフラノシ ル) —N4—パルミ トイルシトシンの組成比が、 3 mo 1 %乃至 5 Omo 1。/。であ り、 (1) 1— (2′—Cyannow 2′—Doxy-1-3-D—arabinopentofuranosyl) —N 4 —Palmitoylcytosine composition ratio: 3 mo 1% to 5 Omo 1. /. And
(2) ホスファチジルコリン類の組成比が、 10 m o 1。/。乃至 70 m o 1 %であり、 (2) The composition ratio of phosphatidylcholines is 10 mol. /. ~ 70 m o 1%,
(3) ステロール類の組成比が、 10 m o 1 %乃至 60 m o 1 %であり、 (3) The composition ratio of sterols is 10 mO 1% to 60 mO 1%,
(4)モゾメ トキシポリエチレングリコールサクシ二ルジステアロイルホスファチ ジルェタノールァミン類又は N—モノメ トキシポリエチレングリコールカルボ二 ルホスファチジルエタノールアミン類 組成比が、 0. 5mo l %乃至 1 0mo (4) Mosomethoxy polyethylene glycol succinyl distearoyl phosphatidyl ethanolamines or N-monomethoxy polyethylene glycol carboxy phosphatidyl ethanolamines The composition ratio is 0.5 mol% to 10 mol.
"/0であり、 "/ 0 ,
(5) ホスファチジルグリセロール類の組成比が、 l mo 1 %乃至 1 Omo 1。/oで ある、  (5) The composition ratio of the phosphatidylglycerols is lmo 1% to 1 Omo1. / o
請求項 26に記載のリボソーム製剤。 The ribosome preparation according to claim 26.
PCT/JP2000/002993 1999-05-11 2000-05-10 Liposome preparation of fat-soluble antitumor drug WO2000067760A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU44302/00A AU4430200A (en) 1999-05-11 2000-05-10 Liposome preparation of fat-soluble antitumor drug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP12963999 1999-05-11
JP11/129639 1999-05-11

Publications (1)

Publication Number Publication Date
WO2000067760A1 true WO2000067760A1 (en) 2000-11-16

Family

ID=15014488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002993 WO2000067760A1 (en) 1999-05-11 2000-05-10 Liposome preparation of fat-soluble antitumor drug

Country Status (2)

Country Link
AU (1) AU4430200A (en)
WO (1) WO2000067760A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007054731A1 (en) * 2005-11-11 2007-05-18 Cyclacel Limited Antiproliferative combination comprising cyc-682 and a cytotoxic agent
US8349792B2 (en) 2006-12-19 2013-01-08 Cyclacel Limited Combination comprising CNDAC (2′-cyano-2′-deoxy-N4-palmitoyl-1-beta-D-arabinofuranosyl-cytosine) and a cytotoxic agent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185716A (en) * 1984-03-05 1985-09-21 Mitsui Pharmaceut Inc Carcinostatic agent of lipid dispersion
WO1991005546A1 (en) * 1989-10-20 1991-05-02 Liposome Technology, Inc. Solid tumor treatment method and composition
EP0536936A1 (en) * 1991-09-30 1993-04-14 Sankyo Company Limited Pyrimidine nucleoside derivatives having anti-tumor activity, their preparation and use
WO1995013053A1 (en) * 1993-11-12 1995-05-18 The Research Foundation Of State University Of New York Taxol formulation
JPH08151333A (en) * 1994-09-29 1996-06-11 Ryuichi Kamioka Hybrid type liposome preparation for treating brain tumor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185716A (en) * 1984-03-05 1985-09-21 Mitsui Pharmaceut Inc Carcinostatic agent of lipid dispersion
WO1991005546A1 (en) * 1989-10-20 1991-05-02 Liposome Technology, Inc. Solid tumor treatment method and composition
EP0536936A1 (en) * 1991-09-30 1993-04-14 Sankyo Company Limited Pyrimidine nucleoside derivatives having anti-tumor activity, their preparation and use
WO1995013053A1 (en) * 1993-11-12 1995-05-18 The Research Foundation Of State University Of New York Taxol formulation
JPH08151333A (en) * 1994-09-29 1996-06-11 Ryuichi Kamioka Hybrid type liposome preparation for treating brain tumor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007054731A1 (en) * 2005-11-11 2007-05-18 Cyclacel Limited Antiproliferative combination comprising cyc-682 and a cytotoxic agent
US8349792B2 (en) 2006-12-19 2013-01-08 Cyclacel Limited Combination comprising CNDAC (2′-cyano-2′-deoxy-N4-palmitoyl-1-beta-D-arabinofuranosyl-cytosine) and a cytotoxic agent

Also Published As

Publication number Publication date
AU4430200A (en) 2000-11-21

Similar Documents

Publication Publication Date Title
CA1339008C (en) Amphotericin b liposome preparation
US4844904A (en) Liposome composition
TWI362931B (en) Irinotecan formulation
Namdeo et al. Niosomal delivery of 5-fluorouracil
WO2011066684A1 (en) Liposome of irinotecan or its hydrochloride and preparation method thereof
EP1545459A2 (en) Platinum aggregates and process for producing the same
JPS60155109A (en) Liposome pharmaceutical
JP2006513984A (en) Pharmaceutically active, lipid-based SN38 formulation
CA2376849C (en) Method of inhibiting leakage of drug encapsulated in liposomes
US4863739A (en) Liposome compositions of anthracycline derivatives
JPH0714865B2 (en) Liposome preparation and method for producing the same
JPH04506207A (en) Preparation of liposome and lipid complex compositions
US20110020428A1 (en) Gel-stabilized liposome compositions, methods for their preparation and uses thereof
JP2677576B2 (en) Phospholipid transport vehicle for water-insoluble active ingredients
EP1759699B1 (en) Liposome preparation containing slightly water-soluble camptothecin
US20050008664A1 (en) Compositions and methods related to lipid:emodin formulations
CA2132347C (en) Liposomes with a negative excess charge
CN102138927A (en) Chloroquine and adriamycin co-supported liposome and preparation method thereof
JP2653245B2 (en) Fat emulsion
WO2000067760A1 (en) Liposome preparation of fat-soluble antitumor drug
JP2001026544A (en) Liposome formulation of oil-soluble antitumor agent
CN114306240A (en) Gemcitabine or liposome of salt thereof, preparation method and application thereof
CN112603890A (en) Levatinib liposome and pharmaceutical composition thereof, preparation method thereof and prescription process optimization method
CN111588697A (en) Preparation of long-circulating epirubicin liposome and industrialized production method thereof
JP2000302685A (en) Liposome preparation containing anti-tumor agent

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN CZ HU ID IL IN KR MX NO NZ PL RU TR US ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase