WO2000065885A1 - Feeding device for discharge lamp - Google Patents

Feeding device for discharge lamp Download PDF

Info

Publication number
WO2000065885A1
WO2000065885A1 PCT/JP2000/002537 JP0002537W WO0065885A1 WO 2000065885 A1 WO2000065885 A1 WO 2000065885A1 JP 0002537 W JP0002537 W JP 0002537W WO 0065885 A1 WO0065885 A1 WO 0065885A1
Authority
WO
WIPO (PCT)
Prior art keywords
lamp
discharge
pseudo
current
power supply
Prior art date
Application number
PCT/JP2000/002537
Other languages
French (fr)
Japanese (ja)
Inventor
Masashi Okamoto
Tomohiro Yamamoto
Tomoyoshi Arimoto
Yoshiteru Kondo
Original Assignee
Ushio Denki Kabushiki Kaisya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki Kabushiki Kaisya filed Critical Ushio Denki Kabushiki Kaisya
Priority to EP20000917356 priority Critical patent/EP1139700A4/en
Priority to US09/720,092 priority patent/US6376998B1/en
Publication of WO2000065885A1 publication Critical patent/WO2000065885A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/292Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2928Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the lamp against abnormal operating conditions

Definitions

  • the present invention relates to a power supply device for a discharge lamp, and for example, to a power supply device for a discharge lamp for lighting a high-intensity high-pressure mercury vapor lamp used as a light source for a projector.
  • metal halide lamps and high-pressure mercury vapor lamps have been used as high-intensity light sources.
  • high-pressure mercury vapor lamps that increase the vapor pressure of mercury to obtain desired brightness have become effective as light sources for projectors used in light flux control devices such as liquid crystals, increasing the amount of mercury enclosed in the lamp. Tend to.
  • the amount of mercury charged into the lamp is increased, there is a problem that even if the igniter succeeds in starting the lamp, the lamp will go out after a lapse of several seconds to several tens of seconds. There was found.
  • the present inventors have conducted experimental observations under a number of conditions and found that this problem was caused by mercury condensing and adhering to the cathode during the cooling period while the lamp was turned off. To explain this phenomenon simply, it is well known that liquid mercury tends to emit electrons, and therefore the presence of liquid mercury on the cathode results in a very low interelectrode voltage, for example, 15 Arc discharge can be realized from about 20 volts to about 20 volts. If discharge is started with liquid mercury deposited on the cathode, arc discharge first appears, but the mercury on the cathode evaporates quickly.
  • the mercury on the cathode, the part of the mercury facing the anode evaporates first, and the discharge site gradually moves toward the base of the cathode.
  • the mercury, including the one at the base of the cathode completely evaporates from above the cathode, the arc discharge at the low interelectrode voltage is terminated, and a transition is made to a glow discharge.
  • the impedance between the electrodes is low in the state of arc discharge, but high in the state of glow-discharge, so it is necessary to supply a relatively high electrode voltage to maintain glow discharge. If the voltage output from the power supply device rises sharply and cannot cope with the voltage between the electrodes, the ramp goes out at the moment of transition to the glow discharge.
  • the vertical arrangement of the lamp is advantageous in that the location of the devitrification phenomenon that may occur in the lamp envelope can be limited to a portion harmless to light extraction. It is advantageous to install the lamp so that the bottom and the anode are on the top, because it does not cause flicker, and it is important depending on the lamp operating conditions.
  • the problem to be solved by the present invention is to provide a high-pressure mercury vapor lamp having a relatively large amount of sealed mercury, in which the lamp disappears completely when mercury completely evaporates from above the cathode in view of the various problems described above.
  • An electrical device is provided for discharge lamps.
  • the present invention employs the following means in order to solve the above problems.
  • First means is provided a cathode and an anode in a discharge space surrounded by the sealing member, in the discharge space, and a rare gas, 0. 1 5 mg of mercury per 1 mm 3 of the discharge space enclosed
  • a pseudo-glow discharge current in the transient state where the pseudo-glow discharge current is switched from the state where the pseudo-glow discharge current is connected to the pseudo-glow discharge resistance is 30% or less of the pseudo-arc discharge current did During is less 1 0 / s, and the time to recover to at least 70% of the pseudo arc discharge current and having a characteristic equal to or less than 1 ⁇ 0 S.
  • the second means is the first means, wherein the discharge lamp power supply device has a function of controlling a lamp current so that the lamp power becomes a predetermined rated power value, and a function of controlling the lamp current to a predetermined limit.
  • the control function has a priority function, and when switching to the pseudo-glow discharge resistance, the period during which control is performed so that the pseudo arc discharge current recovers to at least 70% is 50 ms or more. There is a function that is controlled so as to allow the period in parentheses to exceed the rated power value.
  • the third means is to install a cathode and an anode in a discharge space surrounded by an envelope, In the discharge space, and a rare gas, the high pressure mercury vapor lamp 1 X 1 0- 7 moles of halogen per 1 mm 3 per 0. 1 5 mg of mercury and 1 mm 3 of discharge space is sealed lighted
  • a discharge lamp power supply device for connecting the pseudo high-pressure mercury vapor lamp to an output end of the discharge lamp power supply device, wherein the pseudo high-pressure mercury vapor lamp is connected to a pseudo arc discharge resistance substantially equal to the arc discharge resistance of the high-pressure mercury vapor lamp during arc discharge.
  • a pseudo glow discharge resistor is provided that can be switched to a pseudo glow discharge resistance substantially equal to the glow discharge resistance at the time of glow discharge of the lamp, and the pseudo arc discharge current is connected to the discharge lamp power supply device to reduce the pseudo arc discharge current.
  • the pseudo glow discharge current lag 'when switching from the flowing state to the pseudo glow discharge resistance and the output voltage V ag of the discharge lamp power supply device are assumed to be S c (mm 2 ) If
  • a fourth means is the device according to any one of the first means to the third means, wherein the discharge lamp power supply device receives a DC voltage, and variably controls an output voltage via a smoothing capacitor. It has a variable output DC power supply to be applied to a high-pressure mercury vapor lamp, and the smoothing capacitor increases the capacity of the smoothing capacitor at the time of transition to arc discharge after the completion of glow discharge.
  • FIG. 1 is a diagram showing a temporal change in discharge current at the time of transition from arc discharge to glow discharge and from glow discharge to arc discharge at the start of a high-pressure mercury vapor lamp.
  • FIG. 2 is a diagram showing a test circuit for finding a discharge lamp power supply device used for the high-pressure mercury vapor lamp according to the first embodiment.
  • Fig. 3 shows the simulated lamp current I 'and the simulated lamp voltage in a discharge lamp power supply unit that does not cause extinguishing under the specified conditions in the test circuit shown in Fig. 2.
  • FIG. 3 shows the simulated lamp current I 'and the simulated lamp voltage in a discharge lamp power supply unit that does not cause extinguishing under the specified conditions in the test circuit shown in Fig. 2.
  • Fig. 4 is a diagram showing the pseudo lamp current I, and the pseudo lamp voltage V, in the discharge lamp power supply device in which the predetermined condition is not satisfied and the lamp extinguishes in the test circuit shown in Fig. 2.
  • FIG. 5 is a diagram showing an example of the configuration of the power supply device for a discharge lamp according to the first and second embodiments.
  • FIG. 6 is a diagram illustrating an example of the configuration of the power supply device control circuit 24 illustrated in FIG.
  • FIG. 7 is a diagram showing characteristics of a lamp current Ia and a lamp voltage Va of a high-pressure mercury vapor lamp.
  • FIG. 8 is a diagram showing the time course of the lamp current Ia, the lamp voltage Va, and the lamp power Pa of the high-pressure mercury vapor lamp.
  • FIG. 9 is a diagram showing characteristics of a pseudo lamp current Ia 'and a pseudo lamp voltage Va' of the high-pressure mercury vapor lamp according to the second embodiment.
  • FIG. 10 is a diagram showing the lapse of time of the simulated lamp current Ia lamp voltage Va ′ and lamp power Pa ′ of the high-pressure mercury vapor lamp according to the second embodiment.
  • FIG. 11 is a diagram showing a test circuit for finding a power supply device for a discharge lamp used in the high-pressure mercury vapor lamp according to the third embodiment.
  • Fig. 12 is a graph showing the characteristics of the pseudo lamp current Ia 'and the pseudo lamp voltage Va' in the discharge lamp power supply device which does not cause extinguishing under the predetermined conditions in the test circuit shown in Fig. 11. is there.
  • FIG. 13 is a diagram illustrating a configuration of a discharge lamp power supply device according to the fourth embodiment.
  • FIG. 14 is a diagram showing the time history of the lamp voltage Va of the high-pressure mercury vapor lamp according to the fourth embodiment.
  • FIGS. Fig. 1 shows the change over time in the discharge current from the arc discharge to the glow discharge at the start of the high-pressure mercury vapor lamp and from the glow discharge to the arc discharge. It is.
  • the principle of preventing the lamp from going out according to the present invention will be described with reference to FIG.
  • FIG. 3 is a diagram illustrating a test circuit for finding a power supply device.
  • the above-described high-pressure mercury vapor lamp used in the present embodiment will be described with respect to a case in which the arc discharge resistance during arc discharge is 5 ⁇ and the glow discharge resistance during glow discharge is 300 ⁇ . I do.
  • reference numeral 2 denotes a discharge lamp power supply device to be evaluated for evaluating whether or not the lamp extinguishment can be effectively prevented.
  • 59 and 60 are output terminals of the discharge lamp power supply device 2.
  • 5 ⁇ and 38 ⁇ resistors connected in series, 57 is a FET that shorts and opens the resistor 60, and 58 is a gate drive circuit for switching the FET 57.
  • the resistance 59 is set so that a current almost equal to the current flowing during the arc discharge when liquid mercury exists on the cathode of the actual high-pressure mercury vapor lamp flows through the resistor 59 so as to flow.
  • the arc discharge resistance is set approximately equal to 5 ⁇
  • the resistance 59 + resistance 60 is set to a value approximately equal to 1/7 of the glow discharge resistance 300 ⁇ at the time of glow discharge of the high-pressure mercury vapor lamp.
  • setting the resistance 59 + resistance 60 to a value approximately equal to 1/7 of the glow discharge resistance makes it clear whether or not the discharge lamp power supply to be evaluated satisfies the predetermined conditions. This is to determine
  • the operation of this test circuit is as follows. First, the FET 57 is turned on, and only the resistor 59 is connected, simulating arc discharge when liquid mercury is present on the cathode of a high-pressure mercury vapor lamp.
  • the pseudo-glow lamp current when the impedance of the high-pressure mercury vapor lamp suddenly increases is 30% or less of the pseudo-lamp current I ao 'immediately before the rapid increase. Or that they existed
  • the pseudo-glow lamp current at the time of the rapid increase of the impedance of the high-pressure mercury vapor lamp is at least 7 seconds of the pseudo-lamp current Ia0, immediately before the rapid increase. This is to control the time T r until it recovers to 0% so as to be 100 s or less.
  • the lamp could not be extinguished even in the worst case where the lamp was installed vertically with the cathode down and the anode up. This is because when the lamp current is cut or reduced, the discharge plasma decreases and eventually disappears.However, if the lamp current is restored to a predetermined value before the discharge plasma disappears, the discharge plasma can be avoided.
  • the pseudo-glow lamp current at the time of sudden increase in the impedance of the high-pressure mercury vapor lamp must be equal to the pseudo lamp current I ao 'immediately before the sudden increase.
  • the period T d that is 30% or less does not exist at all, or even if it exists, it is continuously set to 10 zs or less. Even if there are multiple periods Td during which the pseudo-glow ramp current of the high-pressure mercury vapor lamp when the impedance suddenly increases is 30% or less of the pseudo-lamp current Ia0, immediately before the rapid increase of the impedance, even if there are multiple If is less than 10 ⁇ s, it does not matter if the sum of the periods exceeds that. Naturally, it is ideal that the period Td that is 30% or less does not exist. However, if the period Td is 8 s or less, the above problem can be achieved with a margin. It is more desirable if it is 5 s or less.
  • the time T r required for the pseudo-glow lamp current when the impedance of the high-pressure mercury vapor lamp suddenly increases to recover to at least 70% of the pseudo lamp current I a 0 ′ immediately before the rapid increase is 100 ⁇ . s or less, the thermoelectron emission to shift to arc discharge immediately after transition to glow discharge is quickly activated. Can be fired.
  • the pseudo-glow lamp current when the impedance of the high-pressure mercury vapor lamp rapidly increases is the pseudo-lamp current immediately before the rapid increase in the impedance of the high-pressure mercury vapor lamp.
  • the time T r before I a 0 ′ recovers to at least 70% is preferably as short as possible, but if it is set to 80 s or less, the above-mentioned problem can be achieved with a margin. It is more desirable that the value be 60 ⁇ s or less. In terms of the degree of recovery of the lamp current, if the pseudo lamp current I a 0 ′ immediately before the rapid increase in the impedance of the high-pressure mercury vapor lamp is restored to at least 85%, the task can be achieved with ample margin. it can.
  • the reason for specifying the discharge lamp power supply device of the present invention using a test circuit is that various elements of the components constituting the discharge lamp power supply device are variously adjusted in order to prevent the high pressure mercury vapor lamp from disappearing.
  • FIG. 3 is a diagram showing the pseudo lamp current I a ′ and the pseudo lamp voltage Va in the power supply device for a discharge lamp that does not extinguish under the predetermined conditions in the test circuit shown in FIG.
  • Fig. 3 (a) and Fig. 3 (b) show the same phenomenon, but the time scale is different.
  • Figure 4 shows the relationship between the simulated lamp current Ia, and the simulated lamp voltage Va, in the test circuit shown in Fig. 2, in a discharge lamp power supply device in which the predetermined conditions are not satisfied and the extinguishment occurs.
  • FIGS. 3 and 4 show the same phenomenon, but the time scale is different. Note that FIGS. 3 and 4 are subjected to smoothing processing of the oscilloscope to facilitate comparison with FIGS. 8 and 10 described later. As described above, by using the test circuit shown in Fig. 2 to test the discharge lamp power supply device to be evaluated, various improvements were made based on the test results shown in Figs. 3 and 4. From the power supply device for electric lamps, a power supply device for discharge lamps that does not cause the lamp to go out can be found.
  • the actual arc discharge resistance of the high-pressure mercury vapor lamp during arc discharge is Ra
  • the glow discharge resistance during glow discharge is Rb
  • the discharge lamp to be evaluated is When a resistance 59 almost equal to the arc discharge resistance Ra is connected to the output end of the power supply device for use, the resistance of the glow discharge resistance Rb is almost 1/7 (5
  • the resistor 59 When the connection is switched to 9 + 60), the resistor 59 is connected to the discharge lamp power supply device to be evaluated, and the pseudo lamp current Ia0, flows through the resistor (59 + 60).
  • the continuous period in which the pseudo-glow lamp current is 30% or less of the pseudo-lamb current Ia0, in the transient state switched to is less than 10 ⁇ s, and the pseudo-lamp current Iao ' Time to recover to 70%
  • FIG. 5 is a diagram illustrating an example of a configuration of a power supply device for a discharge lamp.
  • reference numeral 17 denotes a DC power supply
  • the voltage from the DC power supply 17 is supplied to the step-down chopper 16.
  • the step-down chopper 16 mainly includes a switch element 11, a gate drive circuit 12, a diode 13, an inductor 14, and a smoothing capacitor 15.
  • Reference numeral 1 denotes a high-pressure mercury vapor discharge lamp, in which a relatively large amount of mercury is sealed in the discharge space 6 of the lamp envelope 3, and a cathode 4 and an anode 5 are arranged to face each other.
  • Reference numeral 18 denotes a voltage detector configured using a partial pressure resistor or the like to detect an applied voltage Va applied to the high-pressure mercury vapor lamp 1.19 denotes a high-pressure mercury configured by a shunt resistor, CT, or the like. This is a current detector for detecting the current Ia flowing through the steam lamp 1.
  • Reference numeral 7 denotes a igniter inserted between the step-down chopper 16 and the high-pressure mercury vapor lamp 1 to cause discharge breakdown of the enclosed gas between the cathode 4 and the anode 5 when the high-pressure mercury vapor lamp 1 starts operating.
  • the igniter 7 is basically composed of a transformer 8 having a large primary-to-secondary turns ratio, and generates a high-voltage pulse train of several kilovolts to several tens of kilovolts.
  • Reference numeral 9 denotes a coil inserted between the step-down chopper 16 and the discharge lamp 1.
  • a power supply control circuit 24 supplies a gate drive signal 23 to the gate drive circuit 10 of the igniter 7, a lamp voltage signal 20 detected by the voltage detector 18 and a current detector.
  • the lamp current signal 21 detected by the switch 19 is input, and based on the lamp voltage signal 20 and the lamp current signal 21, the gate drive signal 2 is supplied to the gate drive circuit 12 of the switch element 11. 2 is supplied to control the opening and closing of the switch element 11.
  • FIG. 2 shows an example in which the gate drive signal 23 is supplied from the power supply control circuit 24 to the gate drive circuit 10, the igniter control signal 23 is unnecessary depending on the type of the igniter 7.
  • FIG. 6 is a diagram illustrating an example of the configuration of the power supply device control circuit 24 illustrated in FIG.
  • the detected lamp current signal 21 and the detected lamp voltage signal 20 are assumed to have a positive polarity, and are supplied with the power via the buffer 25 and the buffer 38 as necessary.
  • Device control circuit 24 4 input.
  • the lamp current signal 21 is input to an error integrator 31 composed of an operational amplifier 27 and a capacitor 30 via a resistor 26.
  • the output of the limiting current value signal generator 29 assumed to be negative polarity is input to the operational amplifier 27 via the resistor 28, and the lamp current signal 21 and the lamp current signal 21 are supplied from the error integrator 31.
  • the difference of the current value specified by the limit current value signal generator 29 is integrated by the capacitor 30 and output.
  • the output of the error integrator 31 is output as a current excess signal 36 through an inverter 35 composed of a resistor 32, a resistor 33, and an operational amplifier 34.
  • the lamp current signal 21 is multiplied by the lamp voltage signal 20 by the multiplier 39 to generate the power signal 40, which is composed of the operational amplifier 42 and the capacitor 45 via the resistor 41.
  • the output of the rated power signal generator 44 which assumes negative polarity, is input to the operational amplifier 42 via the resistor 43, and the power signal 40 and the rated power are output from the error integrator 46.
  • the power value difference specified by the value signal generator 44 is integrated by the capacitor 45 and output.
  • the output of the error integrator 46 is output as a power excess signal 51 via an inverter 50 composed of a resistor 47, a resistor 48, and an operational amplifier 49.
  • the over-current signal 36 and the over-power signal 51 are respectively pulled down by the resistor 53 via the diode 37 and the diode 52, so that the over-current signal 36 and the over-power signal 51
  • the higher signal is output to the resistor 53 as the step-down chopper control signal 54.
  • the over current signal 36 is a signal that goes high when the current value is larger than the lamp current signal 21 1 power limit current value signal generator 29, and the over power signal 51 is the power signal 40 Is higher than the power value defined by the rated power bond signal generator 44. Therefore, the larger of the over current signal 36 and the over power signal appears preferentially on the resistor 53. Will be.
  • the step-down chopper control signal 54 is compared with the output signal of the saw-tooth wave generator 55 by the comparator 56, and is high when the step-down chopper control signal 54 is smaller than the output signal of the saw-tooth wave generator 55.
  • the level and step-down chopper control signal 54 is larger than the output signal of the sawtooth wave generator 55, the one-level signal is sent to the gate drive circuit 12 of the switch element 11 as the gate drive signal 22. Is output.
  • the step-down chopper control signal 54 becomes higher, the period during which the gate drive signal 22 is at the high level becomes shorter. Therefore, when the gate drive signal 22 is at the high level, the switch element 11 is turned on.
  • the higher of the overcurrent signal 36 and the overpower signal 51 if it is the overcurrent signal 36, the lamp current signal 21 will be the limit current. Conversely, if it is an overpower signal 51, the power signal 40 is defined by the rated power signal generator 44, so that it matches the current value specified by the value signal generator 29. The feed pack is controlled to match the power value.
  • the limit current value I as What is necessary is just to design so that the response of the error integrator 31 for control becomes fast. If this does not provide sufficient results, either increase the secondary inductance of transformer 8 in igniter 7, add coil 9, or both.
  • the operating frequency of the chopper 16, that is, the oscillation frequency of the sawtooth wave generator 55 needs to be high enough to support the required high-speed control of the limit current value I as. Further, it is advantageous to reduce the capacitance of the smoothing capacitor 15 as long as the ripple of the step-down chopper 16 does not become excessive.
  • FIGS. 5 and 6 are described for the purpose of explaining the basic configuration of the power supply device for a discharge lamp according to the present invention, in order to actually realize it.
  • additional components and circuits such as protection circuits and noise filters, or conversely, to simplify the circuit.
  • the inverters 35 and 50 are daringly added to simplify the explanation, and can be omitted.
  • FIGS. 5 and 6 a second embodiment of the present invention will be described with reference to FIGS.
  • the present embodiment relates to a discharge lamp power supply device to which a function for more reliably preventing the discharge lamp power supply device obtained in the first embodiment from turning off is added. In general, as shown in Fig.
  • the lamp power Pa is set to a predetermined rated power value.
  • the lamp current Ia is controlled so as to be Pas. At that time, if the lamp voltage Va is very low, it is necessary to flow a very large lamp current Ia in order to achieve the rated power value Pas. In order to prevent the destruction of the element, the lamp current Ia is controlled so that the lamp current Ia does not exceed a predetermined limit current value Ias. This control is performed prior to the control of the lamp current Ia so that the rated power value Pas is obtained.
  • FIGS. 8 (a), (b) and (c) are diagrams showing the time course of the lamp current Ia, the lamp voltage Va and the lamp power Pa during this time.
  • the voltage does not follow the voltage-current characteristic curve H in FIG. 7 but passes through a region above the voltage-current characteristic curve H, that is, an overpower region.
  • the test circuit of FIG. 2 is used, that is, the resistance value approximately equal to the lamp impedance during arc discharge, and the ramp value during glow discharge. It can be specified using a test circuit that switches between a resistance value approximately equal to 1/7 of the impedance.
  • FIG. 9 is a diagram showing voltage-current characteristics intended by the invention according to the present embodiment.
  • the transition from point A to point B does not follow the voltage-current characteristic curve H, but the area of at least 70% of the pseudo lamp current Ia0 'at point A.
  • FIG. 10 (a), (b) and (G) show the time course of the pseudo lamp current Ia, the pseudo lamp voltage Va 'and the pseudo lamp power Pa' during this time.
  • the pseudo lamp current I ao ′ at the point A has a function of making the time during which the pseudo lamp current I ao ′ stays in the area U of at least 70% at least 50 ms or more. Issues can be more reliably realized.
  • the pseudo lamp current Ia0 in order to maintain the discharge, thermionic emission must be activated quickly, but for that purpose, the pseudo lamp current Ia0 'immediately before the impedance of the high-pressure mercury vapor lamp sharply increases,
  • the longer the period Tu for controlling to recover to at least 70% is advantageous in that the lamp can be prevented from going out, but if it is 70 ms or more, the object of the present invention can be achieved with a margin. Further, it is more desirable that the time is 100 ms or more.
  • at least 70% of the region U of the pseudo lamp current I a 0 ′ at the point A is an overpower operation, and in order to realize this, a predetermined rated power value originally included in the power supply device.
  • the function of controlling the pseudo lamp current I a ′ so as to be P as may be added to the function of controlling the pseudo lamp current I a 0 ′ at the point A for at least 70% of the area U. .
  • this overpower operation should not be continued for an unnecessarily long time because it is inherently inconvenient for the safe operation of lamps and power supply devices.In fact, 300 ms is sufficient.
  • the pseudo lamp current la ′ is set using the discharge lamp power supply device shown in FIGS. 5 and 6 so as not to exceed the limit current value I as.
  • FIG. Figure 1 1 is a high-pressure volume 1 mm 3 per 0 mercury vapor lamp in the discharge space.
  • FIG. 2 is a diagram showing a test circuit used for a high-pressure mercury vapor lamp having a large volume and for finding a power supply device for a discharge lamp in which lamp extinguishing does not occur.
  • the inventors of the present invention have found that when the power supply device for a discharge lamp satisfies the conditions described below by this test circuit, the power supply device for a discharge lamp can effectively prevent the lamp from going out.
  • the high-pressure mercury vapor lamp used in this embodiment also has an arc discharge resistance Ra of about 5 ⁇ during arc discharge and a glow discharge resistance during glow discharge, as in the first embodiment.
  • Ra arc discharge resistance
  • Rb glow discharge resistance during glow discharge
  • the explanation is given on the assumption that Rb having a value of approximately 300 ⁇ is used.
  • reference numerals 70 and 71 denote resistances of 5 ⁇ and 300 ⁇ , respectively, which are connected in series to the output terminal of the discharge lamp power supply device 2, and other configurations are shown in FIG. 2. Since the configuration is the same as that of the same reference numeral, the description is omitted.
  • the resistance 70 is an arc discharge during arc discharge such that a current approximately equal to the current flowing during arc discharge when liquid mercury is present on the cathode of the actual high-pressure mercury vapor lamp flows through the resistance 70.
  • the resistor 71 is set to a value equal to the glow discharge resistance Rb so that a current approximately equal to the current flowing during glow discharge of the high-pressure mercury vapor lamp flows through the resistors 70 and 71.
  • FIG. 12 is a diagram showing a temporal change of the pseudo lamp current Ia 'and the pseudo lamp voltage Va' when the connection is switched from the state of only the resistor 70 to the series resistor of the resistor 70 and the resistor 71.
  • the discharge lamp power supply device 2 prevents the occurrence of extinguishing even when the high-pressure mercury vapor lamp is used.
  • the surface area of the cathode refers to the surface area of the entire electrode having a cathode function exposed to the discharge space.
  • the supply capability of the pseudo-glow discharge current is lag ' ⁇ 0.016 x Sc It is even more desirable.
  • a supply capacity of 180 V or more as a pseudo-glow voltage Vag 'in a steady state is required because a discharge lamp in which a rare gas such as mercury or argon and a halogen such as bromine are sealed is used.
  • the amount of halogen is 1 X 1 0- 7 mol or more per 1 mm 3, inter-electrode distance between the cathode and the anode, regardless ho Tondo in gas pressure, glow one discharge, 1 8 This is because a voltage of 0 V or more is required. It is more desirable that the output voltage V ag 'supply capability be V ag' ⁇ 200 V.
  • FIG. 13 is a diagram showing a configuration of a power supply device for a discharge lamp according to the present embodiment.
  • 72 is a smoothing capacitor that can be connected in parallel with the smoothing capacitor 15
  • 73 is an FET that switches the connection of the smoothing capacitor 72
  • 74 is a gate drive for switching the FET 73 Circuit.
  • the other configuration is the same as the configuration of the same reference numeral shown in FIG. FIG.
  • FIG. 14 is a diagram showing a time course of the lamp voltage when the high-pressure mercury vapor lamp is started and lit using the power supply device for a discharge lamp according to the present embodiment.
  • the FET 73 is turned on in parallel with the smoothing capacitor 15 and the smoothing capacitor 72 is inserted. In this way, the capacity of the smoothing capacitor is increased.
  • the discharge lamp power supply device shown in FIG. 5 it has been explained that it is advantageous to reduce the capacitance of the smoothing capacitor 15 as long as the ripple of the smoothing capacitor 15 does not become excessive.
  • the smoothing capacitor 16 is connected in parallel with the smoothing capacitor 15 to increase the capacity of the smoothing capacitor to prevent the lamp from flickering or going out due to the above-described acoustic resonance phenomenon.
  • a high-pressure mercury vapor vapor containing a relatively large amount of mercury is included.
  • the present invention is applicable to a discharge lamp power supply device for lighting a high-brightness high-pressure mercury vapor lamp used as a light source for a projector, for example.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Projection Apparatus (AREA)

Abstract

A feeding device for a discharge lamp for completely preventing discharge failure of a high-pressure mercury vapor lamp in which a large amount of mercury is sealed. The feeding device (2) comprises a pseudo arc discharge resistor (59), provided between the output terminals of the feeding device (2) and the resistance of which is approximately equal to the arc discharge resistance of a high-pressure mercury vapor lamp, is connected in such a way that the pseudo arc discharge resistor (59) can be changed to pseudo glow discharge resistors (59, 60) the resistance of which is approximately 1/7 of the glow discharge resistance. Said feeding device (2) is having characteristics such that, in a transition state where the pseudo arc discharge resistor is changed to the pseudo glow discharge resistors from the state where the pseudo arc discharge resistor is connected to the feeding device, the duration of the pseudo glow discharge current continues to be not greater than 30% of the pseudo arc discharge current is not longer than 10 νs, and the time taken for the pseudo glow discharge current to recover to at least 70% of the pseudo arc discharge current is not longer than 100 νs.

Description

明 細 書  Specification
放電灯用給電装置 技術分野 Power supply device for discharge lamp
本発明は、 放電灯用給電装置に係わり、 例えば、 プロジェクタ用の光源と して使用される高輝度の高圧水銀蒸気ランブを点灯させるための放電灯用給 電装置に関する。 背景技術  The present invention relates to a power supply device for a discharge lamp, and for example, to a power supply device for a discharge lamp for lighting a high-intensity high-pressure mercury vapor lamp used as a light source for a projector. Background art
従来から、 メタルハライ ドランプや、 高圧水銀蒸気ランプは高輝度の光源 として使用されてきた。 近年、 液晶等の光束制御デバィスに用いられるプロジェクタ用の光源とし て、 所望の輝度を得るために水銀の蒸気圧を高めた高圧水銀蒸気ランプが有 効であり、 ランプへの水銀封入量を増加する傾向にある。 ところが、 ランプへの水銀封入量を増加させるに従い、 ランプの始動時に、 ィグナイタによる始動が成功しても、 その後数秒から数十秒程度の時間経過 後に、 ランプの立ち消えが生じてしまう問題があることが判明した。 発明者らは、 数多くの条件下で実験観察を行った結果、 この問題は、 ラン プ消灯中の冷却期間に、 陰極上に水銀が凝結して付着することに起因するこ とを見出した。 この現象を簡単に説明すると、 よく知られているように、 液体の水銀から は電子が放出され易く、 従って、 陰極上に液体水銀が存在すると、 非常に低 い極間電圧、 例えば、 1 5ボルトから 2 0ボルト程度でアーク放電を実現す ることができる。 もし、 陰極上に液体水銀が付着した状態で放電を開始した場合は、 まずァ ーク放電が現れるが、 陰極上の水銀は速やかに蒸発して行く。 その際、 陰極 上の水銀は、陽極に対向した部分の水銀が先に蒸発して行き、放電場所が除々 に陰極の根元部に向かって移動して行く。陰極の根元部にあったものも含め、 水銀が陰極上から完全に蒸発した時点で、 前記の低い極間電圧でのアーク放 電が終了し、 グロ一放電に移行する。 この時、 電極間のインピーダンスは、 アーク放電の状態では低いが、 グロ —放電の状態では高くなるため、 グロ一放電を維持するには、 比較的高い極 間電圧を供給する必要があるが、 給電装置から出力される電圧が急上昇する 極間電圧に対応出来ない時は、 グロ一放電への移行の瞬間にランブが立ち消 えてしまう。 従って、 グロ一放電が立ち消えることなく維持することができれば、 陰極 先端の温度が上昇して、 やがて熱電子の供給が可能となり、 アーク放電に移 行して放電ランプの定常的な点灯状態を維持することができる。 従来、 このランプの立ち消えの問題が顕在化することがあまりなかったの は、 水銀量が少なかったために、 ィグナイタの動作期間内で陰極上の液体水 銀を飛散させることができ、 そのため低い極間電圧でのアーク放電の終了後 に、 ィグナイタによって発生する高電圧によ り、 強力にグロ一放電を維持す ることができたからであった。 従ってィグナイタの動作により、 陰極上の液体水銀を飛散させた後もィグ ナイタを連続的に作動させてグロ一放電を維持させることも考えられるが、 このような方法では、 電極が消耗し発光管が黒化する等、 実用的な方法では なかった。 従来、 高圧水銀蒸気ランブの電極への水銀の付着に起因する問題を解決す るための一手段が、 特開平 1 0— 1 1 6 5 9 0号公報に提案されている。 これは、 陰極またはその付近の熱容量を高めることにより、 ランプの消灯 後、 ランプが徐々に冷却して行く過程において陰極の冷却速度を遅くするも のであり、 その結果、 陰極以外の場所、 例えば、 陽極や封体の内面から先に 水銀の凝結が開始され、 陰極に水銀が凝結付着することが防止されるもので ある。 そして、 次のランプの点灯始動時に、 陽極に多くの液体水銀が残って いても、 陰極に液体水銀が付着してさえいなければ、 グロ一放電に容易に移 行することができるようにしたものである。 しかし、 上記公報に提案されているような陰極付近の熱容量を高める方法 では、 水銀封入量を増加させた場合には、 陰極上への水銀の凝結付着を防止 することが困難であり、 とりわけ、 陰極が下、 陽極が上になるように、 ラン プを垂直に設置したような場合には、 陰極への水銀の付着を防ぐことは、 全 く不可能であった。 即ち、 この方法では、 ィグナイ夕の動作期間内で、 低い 極間電圧でのアーク放電を終了させることができなくなり、 しかも、 水銀封 入量が多いため、 水銀が陰極上から完全に枯渴した後のグロ一放電に必要な 極間電圧はますます高くなり、 ランプの立ち消えの発生確率が高くなってし まう間題があった。 因みに、 前記のランプの垂直配置は、 ランプ封体に発生する可能性のある 失透現象の発生場所を、 光取出しにとって無害な部位に限定できる点で有利 であり、 また、 その際、 陰極が下、 陽極が上になるように設置することは、 フリ ッカを発生させない点で有利であり、 ランプの使用条件によっては重要 な事項である。 本発明が解決しょう とする課題は、 上記の種々の問題点に鑑みて、 水銀封 入量が比較的多い高圧水銀蒸気ランプにおいて、 水銀が陰極上から完全に蒸 発する時のランプの立ち消えを完全に防止することを可能にした放電灯用給 電装置を提供することにある。 発明の鬨示 Conventionally, metal halide lamps and high-pressure mercury vapor lamps have been used as high-intensity light sources. In recent years, high-pressure mercury vapor lamps that increase the vapor pressure of mercury to obtain desired brightness have become effective as light sources for projectors used in light flux control devices such as liquid crystals, increasing the amount of mercury enclosed in the lamp. Tend to. However, as the amount of mercury charged into the lamp is increased, there is a problem that even if the igniter succeeds in starting the lamp, the lamp will go out after a lapse of several seconds to several tens of seconds. There was found. The present inventors have conducted experimental observations under a number of conditions and found that this problem was caused by mercury condensing and adhering to the cathode during the cooling period while the lamp was turned off. To explain this phenomenon simply, it is well known that liquid mercury tends to emit electrons, and therefore the presence of liquid mercury on the cathode results in a very low interelectrode voltage, for example, 15 Arc discharge can be realized from about 20 volts to about 20 volts. If discharge is started with liquid mercury deposited on the cathode, arc discharge first appears, but the mercury on the cathode evaporates quickly. At that time, the mercury on the cathode, the part of the mercury facing the anode evaporates first, and the discharge site gradually moves toward the base of the cathode. When the mercury, including the one at the base of the cathode, completely evaporates from above the cathode, the arc discharge at the low interelectrode voltage is terminated, and a transition is made to a glow discharge. At this time, the impedance between the electrodes is low in the state of arc discharge, but high in the state of glow-discharge, so it is necessary to supply a relatively high electrode voltage to maintain glow discharge. If the voltage output from the power supply device rises sharply and cannot cope with the voltage between the electrodes, the ramp goes out at the moment of transition to the glow discharge. Therefore, if the glow discharge can be maintained without extinguishing, the temperature of the tip of the cathode will increase, and the supply of thermoelectrons will be possible soon. Can be maintained. In the past, this problem of lamp extinguishing rarely became apparent because the amount of mercury was so small that liquid mercury on the cathode could be scattered during the operation of the igniter, and as a result the low gap This is because the glow discharge could be maintained strongly by the high voltage generated by the igniter after the end of the arc discharge at the voltage. Therefore, it is conceivable to operate the igniter continuously to maintain the glow discharge even after the liquid mercury on the cathode is scattered by the operation of the igniter.However, in such a method, the electrode is worn out and emits light. It was not a practical method, such as blackening of the tube. Conventionally, the problem caused by the adhesion of mercury to the electrode of the high-pressure mercury vapor lamp was solved. One means for achieving this has been proposed in Japanese Patent Application Laid-Open No. H10-116590. This is to increase the heat capacity at or near the cathode, thereby slowing down the cooling of the cathode as the lamp gradually cools down after the lamp has been turned off, and as a result, places other than the cathode, for example, The mercury starts to coagulate from the anode and the inner surface of the envelope first, preventing the mercury from condensing and adhering to the cathode. At the start of the next lamp operation, even if a large amount of liquid mercury remains on the anode, if the liquid mercury does not adhere to the cathode, it is possible to easily transition to glow discharge. Things. However, in the method of increasing the heat capacity near the cathode as proposed in the above publication, it is difficult to prevent the mercury from condensing and adhering to the cathode when the amount of enclosed mercury is increased. In the case where the lamp was installed vertically with the cathode at the bottom and the anode at the top, it was completely impossible to prevent mercury from adhering to the cathode. That is, in this method, the arc discharge at a low gap voltage cannot be terminated within the operating period of ignition, and the amount of mercury enclosed is large, so that mercury completely depletes from above the cathode. The gap voltage required for the subsequent glow discharge has become increasingly higher, and the probability of the lamp going out has increased. Incidentally, the vertical arrangement of the lamp is advantageous in that the location of the devitrification phenomenon that may occur in the lamp envelope can be limited to a portion harmless to light extraction. It is advantageous to install the lamp so that the bottom and the anode are on the top, because it does not cause flicker, and it is important depending on the lamp operating conditions. The problem to be solved by the present invention is to provide a high-pressure mercury vapor lamp having a relatively large amount of sealed mercury, in which the lamp disappears completely when mercury completely evaporates from above the cathode in view of the various problems described above. For discharge lamps An electrical device is provided. Invent invention
本発明は、 上記の課題を解決するために、 次のような手段を採用した。 第 1の手段は、 封体によって囲まれた放電空間に陰極と陽極が設置され、 前記放電空間内に、 希ガスと、 前記放電空間の 1 m m 3当たり 0 . 1 5 m g 以上の水銀が封入さた高圧水銀蒸気ランプを点灯するための放電灯用給電装 置において、 当該放電灯用給電装置の出力端に、 前記高圧水銀蒸気ランプの アーク放電時のアーク放電抵抗にほぼ等しい疑似アーク放電抵抗を接続した 状態から前記高圧水銀蒸気ランブのグ口一放電時のグロ一放電抵抗のほぼ 1 / 7の疑似グロ一放電抵抗に切り換え接続可能に設け、 当該放電灯用給電装 置に前記疑似アーク放電抵抗を接続して疑似アーク放電電流が流れている状 態から前記疑似グロ一放電抵抗に切り換えた過渡状態における疑似グロ一放 電電流が、 前記疑似アーク放電電流の 3 0 %以下である連続した期間が 1 0 / s以下であり、 かつ、 前記疑似アーク放電電流の少なく とも 7 0 %に回復 するまでの時間が 1 ◦ 0 S以下となる特性を有することを特徴とする。 第 2の手段は、 第 1の手段において、 前記放電灯用給電装置は、 ランプ電 力が予め定めた定格電力値になるようにランプ電流を制御する機能と、 ラン ブ電流が予め定めた限界電流値を超えないようにランプ電流を制御する機能 とを有し、 かつ、 前記定格電力値になるようにランプ電流を制御する機能よ りも、 前記限界電流値を超えないようにランプ電流を制御する機能が優先し た機能を有すると共に、 前記擬似グロ一放電抵抗に切り換えた時に、 前記疑 似アーク放電電流の少なく とも 7 0 %に回復するように制御している期間が 5 0 m s以上あり、 かっこの期間は前記定格電力値を超えることを容認する ように制御される機能を有することを特徴とする。 第 3の手段は、 封体によって囲まれた放電空間に陰極と陽極が設置され、 前記放電空間内に、 希ガスと、 前記放電空間の 1 mm3当たり 0. 1 5 mg 以上の水銀と 1 mm3当たり 1 X 1 0— 7モルのハロゲンが封入さた高圧水銀 蒸気ランプを点灯するための放電灯用給電装置において、 当該放電灯用給電 装置の出力端に、 前記高圧水銀蒸気ランプのアーク放電時のアーク放電抵抗 にほぼ等しい疑似アーク放電抵抗を接続した状態から前記高圧水銀蒸気ラン ブのグロ一放電時のグロ一放電抵抗にほぼ等しい疑似グロ一放電抵抗に切り 換え接続可能に設け、 当該放電灯用給電装置に前記疑似アーク放電抵抗を接 続して疑似アーク放電電流が流れている状態から前記疑似グロ一放電抵抗に 切り換えた時の疑似グロ一放電電流 l a g' および放電灯用給電装置の出力 電圧 V a g, とする時、 陰極の表面積を S c (mm2) すれば、 The present invention employs the following means in order to solve the above problems. First means, is provided a cathode and an anode in a discharge space surrounded by the sealing member, in the discharge space, and a rare gas, 0. 1 5 mg of mercury per 1 mm 3 of the discharge space enclosed A discharge lamp power supply device for lighting the high-pressure mercury vapor lamp, a pseudo-arc discharge resistance substantially equal to the arc discharge resistance of the high-pressure mercury vapor lamp during arc discharge at the output end of the discharge lamp power supply device. Is connected to a pseudo glow discharge resistance that is approximately 1/7 of the glow discharge resistance of the high-pressure mercury vapor lamp at the time of a glow discharge, and is provided so as to be connectable. A pseudo-glow discharge current in the transient state where the pseudo-glow discharge current is switched from the state where the pseudo-glow discharge current is connected to the pseudo-glow discharge resistance is 30% or less of the pseudo-arc discharge current did During is less 1 0 / s, and the time to recover to at least 70% of the pseudo arc discharge current and having a characteristic equal to or less than 1 ◦ 0 S. The second means is the first means, wherein the discharge lamp power supply device has a function of controlling a lamp current so that the lamp power becomes a predetermined rated power value, and a function of controlling the lamp current to a predetermined limit. A function of controlling the lamp current so as not to exceed the current value, and a function of controlling the lamp current so as not to exceed the limit current value, rather than a function of controlling the lamp current so as to reach the rated power value. The control function has a priority function, and when switching to the pseudo-glow discharge resistance, the period during which control is performed so that the pseudo arc discharge current recovers to at least 70% is 50 ms or more. There is a function that is controlled so as to allow the period in parentheses to exceed the rated power value. The third means is to install a cathode and an anode in a discharge space surrounded by an envelope, In the discharge space, and a rare gas, the high pressure mercury vapor lamp 1 X 1 0- 7 moles of halogen per 1 mm 3 per 0. 1 5 mg of mercury and 1 mm 3 of discharge space is sealed lighted A discharge lamp power supply device for connecting the pseudo high-pressure mercury vapor lamp to an output end of the discharge lamp power supply device, wherein the pseudo high-pressure mercury vapor lamp is connected to a pseudo arc discharge resistance substantially equal to the arc discharge resistance of the high-pressure mercury vapor lamp during arc discharge. A pseudo glow discharge resistor is provided that can be switched to a pseudo glow discharge resistance substantially equal to the glow discharge resistance at the time of glow discharge of the lamp, and the pseudo arc discharge current is connected to the discharge lamp power supply device to reduce the pseudo arc discharge current. When the pseudo glow discharge current lag 'when switching from the flowing state to the pseudo glow discharge resistance and the output voltage V ag of the discharge lamp power supply device are assumed to be S c (mm 2 ) If
( 1 ) 定常状態における疑似グロ一放電電流 I a g, ≥ 0. 1 4 X S c (八)、 ( 2 ) 定常状態における出力電圧 V a g ' ≥ 1 8 0 ( V)、  (1) Pseudo-global discharge current I ag in the steady state, ≥ 0.14 X S c (8), (2) Output voltage V ag '≥ 180 (V) in the steady state,
( 3 ) 出力電圧 V a g, が定常状態における電圧の 9 0 %の電圧に達するの に要する時間 r≤ 1 7 0 ( ju s ),  (3) The time required for the output voltage V ag, to reach 90% of the voltage in the steady state, r ≤ 17 0 (ju s),
となる特性を有することを特徴とする。. 第 4の手段は、 第 1の手段ないし第 3の手段のいずれか 1つの手段におい て 前記放電灯用給電装置は、 直流電圧を入力し可変制御された出力電圧を 平滑コンデンサを介して前記高圧水銀蒸気ランプに印加する出力可変直流電 源を有し、前記平滑コンデンサは、 グロ一放電終了後のアーク放電移行時に、 前記平滑コンデンサの容量を増大させるようにしたことを特徴とする。 図面の簡単な説明  It is characterized by having the following characteristics. A fourth means is the device according to any one of the first means to the third means, wherein the discharge lamp power supply device receives a DC voltage, and variably controls an output voltage via a smoothing capacitor. It has a variable output DC power supply to be applied to a high-pressure mercury vapor lamp, and the smoothing capacitor increases the capacity of the smoothing capacitor at the time of transition to arc discharge after the completion of glow discharge. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 高圧水銀蒸気ランプの始動時のアーク放電からグロ一放電、 グロ一 放電からアーク放電への移行時の放電電流の時間的変化を示す図である。 図 2は、 第 1の実施形態に係る高圧水銀蒸気ランプに用いられる放電灯用給 電装置を見出すための試験回路を示す図である。 FIG. 1 is a diagram showing a temporal change in discharge current at the time of transition from arc discharge to glow discharge and from glow discharge to arc discharge at the start of a high-pressure mercury vapor lamp. FIG. 2 is a diagram showing a test circuit for finding a discharge lamp power supply device used for the high-pressure mercury vapor lamp according to the first embodiment.
図 3は、 図 2に示す試験回路において、 所定の条件を満足して立ち消えが発 生しない放電灯用給電装置における疑似ランプ電流 I ' と疑似ランプ電圧 V を示す図である。 Fig. 3 shows the simulated lamp current I 'and the simulated lamp voltage in a discharge lamp power supply unit that does not cause extinguishing under the specified conditions in the test circuit shown in Fig. 2. FIG.
図 4は、 図 2に示す試験回路において、 所定の条件を満足せず立ち消えが発 生する放電灯用給電装置における疑似ランプ電流 I, と疑似ランプ電圧 V, を示す図である。 Fig. 4 is a diagram showing the pseudo lamp current I, and the pseudo lamp voltage V, in the discharge lamp power supply device in which the predetermined condition is not satisfied and the lamp extinguishes in the test circuit shown in Fig. 2.
図 5は、 第 1および第 2の実施形態に係る放電灯用給電装置の構成の一例を 示す図である。 FIG. 5 is a diagram showing an example of the configuration of the power supply device for a discharge lamp according to the first and second embodiments.
図 6は、 図 5に示す給電装置制御回路 2 4の構成の一例を示す図である。 図 7は、 高圧水銀蒸気ランプのランプ電流 I a、 ランプ電圧 V aの特性を示 す図である。 FIG. 6 is a diagram illustrating an example of the configuration of the power supply device control circuit 24 illustrated in FIG. FIG. 7 is a diagram showing characteristics of a lamp current Ia and a lamp voltage Va of a high-pressure mercury vapor lamp.
図 8は、 高圧水銀蒸気ランプのランプ電流 I a、 ランプ電圧 V a、 ランブ電 力 P aの時間的経過を示す図である。 FIG. 8 is a diagram showing the time course of the lamp current Ia, the lamp voltage Va, and the lamp power Pa of the high-pressure mercury vapor lamp.
図 9は、第 2の実施形態に係る高圧水銀蒸気ランプの擬似ランプ電流 I a '、 擬似ランプ電圧 V a ' の特性を示す図である。 FIG. 9 is a diagram showing characteristics of a pseudo lamp current Ia 'and a pseudo lamp voltage Va' of the high-pressure mercury vapor lamp according to the second embodiment.
図 1 0は、 第 2の実施形態に係る高圧水銀蒸気ランプの擬似ランプ電流 I a ランプ電圧 V a '、 ランプ電力 P a ' の時間的経過を示す図である。 図 1 1は、 第 3の実施形態に係る高圧水銀蒸気ランプに用いられる放電灯用 給電装置を見出すための試験回路を示す図である。 FIG. 10 is a diagram showing the lapse of time of the simulated lamp current Ia lamp voltage Va ′ and lamp power Pa ′ of the high-pressure mercury vapor lamp according to the second embodiment. FIG. 11 is a diagram showing a test circuit for finding a power supply device for a discharge lamp used in the high-pressure mercury vapor lamp according to the third embodiment.
図 1 2は、 図 1 1に示す試験回路において、 所定の条件を満足して立ち消え が発生しない放電灯用給電装置における疑似ランプ電流 I a '、 疑似ランプ 電圧 V a ' の特性を示す図である。 Fig. 12 is a graph showing the characteristics of the pseudo lamp current Ia 'and the pseudo lamp voltage Va' in the discharge lamp power supply device which does not cause extinguishing under the predetermined conditions in the test circuit shown in Fig. 11. is there.
図 1 3は、 第 4の実施形態に係る放電灯用給電装置の構成を示す図である。 図 1 4は、 第 4の実施形態に係る高圧水銀蒸気ランプのランプ電圧 V aの時 間的経緯を示す図である。 発明を実施するための最良の形態 FIG. 13 is a diagram illustrating a configuration of a discharge lamp power supply device according to the fourth embodiment. FIG. 14 is a diagram showing the time history of the lamp voltage Va of the high-pressure mercury vapor lamp according to the fourth embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
はじめに、 本願発明の第 1の実施形態を図 1乃至図 6を用いて説明する。 図 1は、 高圧水銀蒸気ランプの始動時のアーク放電からグロ一放電、 さら にはグロ一放電からアーク放電への移行時の放電電流の時間的変化を示す図 である。 はじめに、 同図を用いて本発明のランプの立ち消え防止の原理について説 明する。 水銀封入量が比較的多い高圧水銀蒸気ランプにおいては、 陰極上に液体水 銀が付着した状態で放電を開始した場合は、 まずアーク放電が現れ、 陰極上 の水銀は速やかに蒸発して行き、 同図の時点 t gにおいて、 水銀が陰極上か ら完全に枯渴した時点で低い極間電圧でのアーク放電が終了し、 グロ一放電 に移行する。 しかし、 時点 t gで電極間のイ ンビーダンスが急激に上昇する ため、 ランプ電流 I aは急激に減少しようとし、 このときランプの立ち消え が発生してしまう。 発明者等は、 給電装置に様々な工夫改良を加えることにより、 立ち消えが 発生しない給電装置を作り上げることができた。 そして、 給電装置が立ち消えを発生しないようにするためには、 次に述べ る試験回路で試験した結果、 所定の条件を満足する必要があることを見出し た。 まず、 試験回路について説明する。 図 2は、 高圧水銀蒸気ランプの放電空 間の体積 1 m m 3当り 0 . 1 5 m g以上の水銀が封入されたような比較的水 銀封入量が多い高圧水銀蒸気ランブに用いられる放電灯用給電装置を見出す ための試験回路を示す図である。 なお、 本実施形態で用いられる上記の高圧水銀蒸気ランプは、 アーク放電 時のアーク放電抵抗は 5 Ω、 及びグロ一放電時のグロ一放電抵抗は 3 0 0 Ω を呈するものを用いる場合について説明する。 同図において、 2はランプの立ち消えを有効に防止し得るか否かを評価す るための評価対象となる放電灯用給電装置、 5 9, 6 0は放電灯用給電装置 2の出力端に直列に接続されるそれそれ抵抗値 5 Ω、 3 8 Ωの抵抗、 5 7は 抵抗 6 0を短絡、 開放する F E T、 5 8は F E T 5 7をスイ ッチングするた めのゲート駆動回路である。 ここで、 抵抗 5 9は、 実際の高圧水銀蒸気ランプの陰極上に液体水銀が存 在するときのアーク放電時に流れる電流値と概ね同じ電流が抵抗 5 9に流れ るように上記アーク放電時のアーク放電抵抗 5 Ωに略等しく設定し、 抵抗 5 9 +抵抗 6 0は、 上記高圧水銀蒸気ランプのグロ一放電時のグロ一放電抵抗 3 0 0 Ωの略 1 / 7に等しい値に設定する。 ここで、 抵抗 5 9 +抵抗 6 0を グロ一放電抵抗の略 1 / 7に等しい値に設定するのは、 評価対象とする放電 灯用給電装置が所定の条件を満足するか否かを明確に判別するためである。 この試験回路の動作は、 最初、 F E T 5 7をオン状態として、 抵抗 5 9の みが接続された状態は、 高圧水銀蒸気ランプの陰極上に液体水銀が存在する ときのアーク放電を模擬し、 次に、 ゲート駆動回路 5 8を操作して、 急峻に F E T 5 7をオフ状態として、 抵抗 5 9 と抵抗 6 0が直列に接続された状態 に遷移させることにより、 水銀が陰極上から完全に枯渴してグロ一放電に移 行した状態を模擬すものである。 これらの 2つの状態の応答を観察すること により、 実際に製作した放電灯用給電装置の性能が、 本発明によって推奨さ れる条件を満足するか否かを判定することができる。 次に、 立ち消えが発生しない給電装置が、 この試験回路で試験したときに 満足すべき条件について説明する。 その条件は、 図 1 において説明すると、 高圧水銀蒸気ランプのインピーダ ンスの急増時の擬似グローランプ電流が、 急増直前の擬似ランプ電流 I a o ' の 3 0 %以下である期間 T dが全く存在しないか、 も しくは存在したと しても、 連続して 1 0 s以下であり、 かつ、 高圧水銀蒸気ランプのィ ンピ 一ダンスの急増時の擬似グローランプ電流が、 急増直前の擬似ランプ電流 I a 0, の、 少なく とも 7 0 %に回復するまでの時間 T rが 1 0 0 s以下に なるように制御することであり、 給電装置がこの条件を満足するとき、 ラン ブの立ち消えが防止できることを実験的に見出した。 またこのような条件下 で点灯始動する場合は、 陰極が下、 陽極が上になるような、 ランプを垂直に 設置した最悪の状態においてもランプの立ち消えを防止できることが明らか となった。 これは、 ランプ電流が切断もしくは減少すると、 放電プラズマは減少して 行き、 やがて消滅してしまうが、 放電プラズマの消滅前にランプ電流を所定 の大きさに回復すれば、 放電プラズマの消滅を免れることができるので、 グ ロー放電への移行時にランプが立ち消えないようにするためには、 高圧水銀 蒸気ランプのィンビーダンスの急增時の擬似グローランプ電流が、 急増直前 の擬似ランプ電流 I a o 'の 3 0 %以下である期間 T dが全く存在しないか、 もしくは存在したとしても、 連続して 1 0 z s以下とすることを要する。 なお、 高圧水銀蒸気ランプのィ ンビーダンスの急増時の擬似グローランブ 電流が、 イ ンビーダンスの急増直前の擬似ランプ電流 I a 0, の 3 0 %以下 である期間 T dが複数あっても、 個々の期間が 1 0〃 s以下であれば、 期間 の総和がそれを超えても問題ではない。 当然ながら、 上記 3 0 %以下である 期間 T dは存在しないことが理想的であるが、 期間 T dが 8 s以下であれ ば、 余裕をもって上記の課題を達成することができ、 さらには、 5 s以下 であればよ り望ましい。 また、 高圧水銀蒸気ランプのィ ンビーダンスの急増時の擬似グローランプ 電流が、 急増直前の擬似ランプ電流 I a 0 ' の、 少なく とも 7 0 %に回復す るまでの時間 T rが 1 0 0〃 s以下になるように制御することにより、 グロ 一放電に移行後、 速やかにアーク放電に移行するための熱電子放出を早く活 発化することができる。 また、 高圧水銀蒸気ランプのィ ンビ一ダンスの急増時の擬似グローランプ 電流は、 高圧水銀蒸気ランプのィンビーダンスの急増直前の擬似ランプ電流First, a first embodiment of the present invention will be described with reference to FIGS. Fig. 1 shows the change over time in the discharge current from the arc discharge to the glow discharge at the start of the high-pressure mercury vapor lamp and from the glow discharge to the arc discharge. It is. First, the principle of preventing the lamp from going out according to the present invention will be described with reference to FIG. In a high-pressure mercury vapor lamp with a relatively large amount of mercury, if discharge starts with liquid mercury deposited on the cathode, an arc discharge first appears, and the mercury on the cathode evaporates quickly, At time tg in the figure, when mercury completely dies from above the cathode, the arc discharge at a low voltage between the electrodes is terminated, and a transition is made to glow discharge. However, at time tg, the impedance between the electrodes sharply rises, so that the lamp current Ia tries to sharply decrease, and at this time, the lamp goes out. The inventors have been able to create a power supply device that does not go out by making various improvements to the power supply device. Then, in order to prevent the power feeding device from going out, it was found that it was necessary to satisfy predetermined conditions as a result of a test using a test circuit described below. First, the test circuit will be described. Figure 2 is a discharge lamp used in the high-pressure mercury volume 1 mm 3 per 0 between the discharge empty vapor lamp. 1 5 mg or more relatively mercury filling quantity as mercury is sealed is often a high-pressure mercury vapor Ranbu FIG. 3 is a diagram illustrating a test circuit for finding a power supply device. The above-described high-pressure mercury vapor lamp used in the present embodiment will be described with respect to a case in which the arc discharge resistance during arc discharge is 5 Ω and the glow discharge resistance during glow discharge is 300 Ω. I do. In the figure, reference numeral 2 denotes a discharge lamp power supply device to be evaluated for evaluating whether or not the lamp extinguishment can be effectively prevented. 59 and 60 are output terminals of the discharge lamp power supply device 2. 5 Ω and 38 Ω resistors connected in series, 57 is a FET that shorts and opens the resistor 60, and 58 is a gate drive circuit for switching the FET 57. Here, the resistance 59 is set so that a current almost equal to the current flowing during the arc discharge when liquid mercury exists on the cathode of the actual high-pressure mercury vapor lamp flows through the resistor 59 so as to flow. The arc discharge resistance is set approximately equal to 5 Ω, and the resistance 59 + resistance 60 is set to a value approximately equal to 1/7 of the glow discharge resistance 300 Ω at the time of glow discharge of the high-pressure mercury vapor lamp. . Here, setting the resistance 59 + resistance 60 to a value approximately equal to 1/7 of the glow discharge resistance makes it clear whether or not the discharge lamp power supply to be evaluated satisfies the predetermined conditions. This is to determine The operation of this test circuit is as follows. First, the FET 57 is turned on, and only the resistor 59 is connected, simulating arc discharge when liquid mercury is present on the cathode of a high-pressure mercury vapor lamp. Next, by operating the gate drive circuit 58 to rapidly turn off the FET 57 and make a transition to a state in which the resistors 59 and 60 are connected in series, mercury is completely removed from above the cathode. It simulates the state of withering and shifting to glow discharge. By observing the responses in these two states, it can be determined whether or not the performance of the actually manufactured discharge lamp power supply device satisfies the conditions recommended by the present invention. Next, the conditions that should be satisfied when a power supply device that does not cause a disappearance to be tested with this test circuit will be described. The conditions are explained in Fig. 1.The pseudo-glow lamp current when the impedance of the high-pressure mercury vapor lamp suddenly increases is 30% or less of the pseudo-lamp current I ao 'immediately before the rapid increase. Or that they existed However, the pseudo-glow lamp current at the time of the rapid increase of the impedance of the high-pressure mercury vapor lamp is at least 7 seconds of the pseudo-lamp current Ia0, immediately before the rapid increase. This is to control the time T r until it recovers to 0% so as to be 100 s or less. When the power supply device satisfies this condition, it has been experimentally found that the lamp can be prevented from disappearing. In addition, when starting lighting under such conditions, it was clarified that the lamp could not be extinguished even in the worst case where the lamp was installed vertically with the cathode down and the anode up. This is because when the lamp current is cut or reduced, the discharge plasma decreases and eventually disappears.However, if the lamp current is restored to a predetermined value before the discharge plasma disappears, the discharge plasma can be avoided. In order to prevent the lamp from going out during the transition to the glow discharge, the pseudo-glow lamp current at the time of sudden increase in the impedance of the high-pressure mercury vapor lamp must be equal to the pseudo lamp current I ao 'immediately before the sudden increase. It is necessary that the period T d that is 30% or less does not exist at all, or even if it exists, it is continuously set to 10 zs or less. Even if there are multiple periods Td during which the pseudo-glow ramp current of the high-pressure mercury vapor lamp when the impedance suddenly increases is 30% or less of the pseudo-lamp current Ia0, immediately before the rapid increase of the impedance, even if there are multiple If is less than 10〃s, it does not matter if the sum of the periods exceeds that. Naturally, it is ideal that the period Td that is 30% or less does not exist. However, if the period Td is 8 s or less, the above problem can be achieved with a margin. It is more desirable if it is 5 s or less. In addition, the time T r required for the pseudo-glow lamp current when the impedance of the high-pressure mercury vapor lamp suddenly increases to recover to at least 70% of the pseudo lamp current I a 0 ′ immediately before the rapid increase is 100〃. s or less, the thermoelectron emission to shift to arc discharge immediately after transition to glow discharge is quickly activated. Can be fired. In addition, the pseudo-glow lamp current when the impedance of the high-pressure mercury vapor lamp rapidly increases is the pseudo-lamp current immediately before the rapid increase in the impedance of the high-pressure mercury vapor lamp.
I a 0 ' の少なく とも 7 0 %に回復するまでの時間 T rは、 短いほど好まし いが、 8 0 s秒以下とすれば、 余裕をもって上記の課題を達成することが できるが、 さらに 6 0〃 s以下であればより望ましい。 また、 ランプ電流の 回復の程度で云えば、 高圧水銀蒸気ランプのィンビーダンスの急増が発生す る直前の擬似ランプ電流 I a 0 ' の、 少なく とも 8 5 %に回復すれば、 余裕 をもって課題が達成できる。 ここで、 試験回路を用いて本願発明の放電灯用給電装置を特定するのは、 高圧水銀蒸気ランブの立ち消えを防止するためには、 放電灯用給電装置の構 成する各部の要素を種々調整、 変更し得るものであり、 そのため、 最終的に 変更された放電灯用給電装置が前記の所定の条件を満足しているか否かが重 要だからである。 図 3は、 図 2に示す試験回路において、 所定の条件を満足して立ち消えが 発生しない放電灯用給電装置における疑似ランブ電流 I a ' と疑似ランプ電 圧 V a, を示す図である。 ここで、 図 3 ( a ) と図 3 ( b ) は同一現象を示 すものであるが、 時間スケールが異なる。 図 4は、 図 2に示す試験回路において、 所定の条件を満足せず立ち消えが 発生してしまうような放電灯用給電装置における疑似ランプ電流 I a, と疑 似ランプ電圧 V a, の関係を示す図である。 ここで、 図 4 ( a ) と図 4 ( b ) も同一現象を示すものであるが、 時間スケールが異なる。 なお、 図 3、 図 4は、 後述する図 8、 図 1 0のとの対比を容易にするため にオシロスコ一ブのスム一ジング処理を施してある。 上記のごとく、 図 2に示すような試験回路を用いて評価対象となる放電灯 用給電装置を試験することにより、 図 3ないし図 4に示すような試験結果に 基づいて、 種々改良された放電灯用給電装置からランプの立ち消えの発生し ない放電灯用給電装置を見出すことができる。 このように、 本実施形態によれば、 実際の高圧水銀蒸気ランプのアーク放 電時のアーク放電抵抗を R a、 グロ一放電時のグロ一放電抵抗を R bとし、 評価対象とする放電灯用給電装置の出力端にアーク放電抵抗 R aにほぼ等し い抵抗 5 9を接続した状態からグロ一放電抵抗 R bのほぼ 1 / 7の抵抗 ( 5The time T r before I a 0 ′ recovers to at least 70% is preferably as short as possible, but if it is set to 80 s or less, the above-mentioned problem can be achieved with a margin. It is more desirable that the value be 60〃s or less. In terms of the degree of recovery of the lamp current, if the pseudo lamp current I a 0 ′ immediately before the rapid increase in the impedance of the high-pressure mercury vapor lamp is restored to at least 85%, the task can be achieved with ample margin. it can. The reason for specifying the discharge lamp power supply device of the present invention using a test circuit is that various elements of the components constituting the discharge lamp power supply device are variously adjusted in order to prevent the high pressure mercury vapor lamp from disappearing. This is because it is important that the finally changed discharge lamp power supply device satisfies the above-mentioned predetermined condition. FIG. 3 is a diagram showing the pseudo lamp current I a ′ and the pseudo lamp voltage Va in the power supply device for a discharge lamp that does not extinguish under the predetermined conditions in the test circuit shown in FIG. Here, Fig. 3 (a) and Fig. 3 (b) show the same phenomenon, but the time scale is different. Figure 4 shows the relationship between the simulated lamp current Ia, and the simulated lamp voltage Va, in the test circuit shown in Fig. 2, in a discharge lamp power supply device in which the predetermined conditions are not satisfied and the extinguishment occurs. FIG. Here, Fig. 4 (a) and Fig. 4 (b) show the same phenomenon, but the time scale is different. Note that FIGS. 3 and 4 are subjected to smoothing processing of the oscilloscope to facilitate comparison with FIGS. 8 and 10 described later. As described above, by using the test circuit shown in Fig. 2 to test the discharge lamp power supply device to be evaluated, various improvements were made based on the test results shown in Figs. 3 and 4. From the power supply device for electric lamps, a power supply device for discharge lamps that does not cause the lamp to go out can be found. As described above, according to the present embodiment, the actual arc discharge resistance of the high-pressure mercury vapor lamp during arc discharge is Ra, the glow discharge resistance during glow discharge is Rb, and the discharge lamp to be evaluated is When a resistance 59 almost equal to the arc discharge resistance Ra is connected to the output end of the power supply device for use, the resistance of the glow discharge resistance Rb is almost 1/7 (5
9 + 6 0 ) に切り換え接続したとき、 評価対象とする放電灯用給電装置に抵 抗 5 9を接続して擬似ランプ電流 I a 0, が流している状態から抵抗 ( 5 9 + 6 0 ) に切り換えた過渡状態における擬似グローランプ電流が、 擬似ラン ブ電流 I a 0, の 3 0 %以下である連続した期間が 1 0〃 s以下であり、 か つ、 擬似ランプ電流 I a o ' の少なく とも 7 0 %に回復するまでの時間が、When the connection is switched to 9 + 60), the resistor 59 is connected to the discharge lamp power supply device to be evaluated, and the pseudo lamp current Ia0, flows through the resistor (59 + 60). The continuous period in which the pseudo-glow lamp current is 30% or less of the pseudo-lamb current Ia0, in the transient state switched to is less than 10〃s, and the pseudo-lamp current Iao ' Time to recover to 70%
1 0 0 s以下となるような条件を満足する放電灯用給電装置を前記高圧水 銀蒸気ランプの放電灯用給電装置として用いることにより、 ランプの立ち消 えを有効に防止することができるものである。 次に、 本実施形態に係る放電灯用給電装置について図 5及び図 6を用いて 説明する。 図 5は、 放電灯用給電装置の構成の一例を示す図である。 同図において、 1 7は D C電源であり、 D C電源 1 7からの電圧が降圧チヨッパ 1 6に供給 される。 降圧チヨ ッパ 1 6は、 主として、 スィ ヅチ素子 1 1、 ゲート駆動回 路 1 2、 ダイオード 1 3、 イ ンダクタ 1 4、 平滑コンデンサ 1 5により構成 される。 D C電源 1 7は図示していないが、 商用の A C電源を整流ダイォ一 ドゃダイォ一ドブリ ッジと平滑コンデンサを用いて直流に変換するものや、 高調波電流抑制機能を持った電源モジュールや、 電池等が使用できる。 1は高圧水銀蒸気放電ランブであり、 ランプ封体 3の放電空間 6には水銀 が比較的多量に封入されると共に、 陰極 4と陽極 5が対向して配置されてい る。 1 8は分圧抵抗等を用いて構成され、 高圧水銀蒸気ランプ 1に印加され る印加電圧 V aを検出するための電圧検出器であり、 1 9はシャント抵抗や C T等で構成され高圧水銀蒸気ランプ 1に流れる電流 I aを検出するための 電流検出器である。 7は降圧チヨッパ 1 6と高圧水銀蒸気ランプ 1間に挿入 され、 高圧水銀蒸気ランプ 1の点灯始動時に、 陰極 4と陽極 5間で、 封入ガ スの放電破壊を生じせしめるためのィグナイ夕であり、 ィグナイタ 7は基本 的には、 1次対 2次の巻き数比の大きなトランス 8によって構成され、 数キ 口ボルトから数十キロボルトの高電圧パルス列を発生する。 9は降圧チョヅ パ 1 6と放電ランプ 1間に挿入されるコイルである。 2 4は給電制御回路で あり、 ィグナイタ 7のゲー卜駆動回路 1 0にゲ一ト駆動信号 2 3を供給する と共に、 電圧検出器 1 8によって検出されたランプ電圧信号 2 0、 及び電流 検出器 1 9によって検出されたランプ電流信号 2 1を入力し、 これらのラン ブ電圧信号 2 0及びランプ電流信号 2 1に基づいて、 スィツチ素子 1 1のゲ ―ト駆動回路 1 2にゲート駆動信号 2 2を供給してスィツチ素子 1 1の開閉 を制御する。 なお、 同図においては、 給電制御回路 2 4からゲート駆動回路 1 0にゲー ト駆動信号 2 3を供給する例を示したが、 ィグナイタ 7の形式によってはィ グナイ夕制御信号 2 3が不要の場合もある。 図 6は、 図 5に示す給電装置制御回路 2 4の構成の一例を示す図である。 同図において、検出されたランブ電流信号 2 1及びランブ電圧信号 2 0は、 それらの極性を正極性と仮定し、 必要に応じてそれそれバッファ 2 5 、 バ ヅ ファ 3 8を介して当該給電装置制御回路 2 4入力される。 ランプ電流信号 2 1は、 抵抗 2 6を介して演算増幅器 2 7 とコンデンサ 3 0で構成される誤差積分器 3 1に入力される。 一方、 演算増幅器 2 7には抵 抗 2 8を介して負極性と仮定する限界電流値信号発生器 2 9よりの出力が入 力されており、 誤差積分器 3 1からランプ電流信号 2 1 と限界電流値信号発 生器 2 9によって規定される電流値の差がコンデンサ 3 0により積分されて 出力する。 誤差積分器 3 1の出力は、 抵抗 3 2、 抵抗 3 3、 演算増幅器 3 4 より構成される反転器 3 5を介して、 電流超過信号 3 6として出力される。 By using a discharge lamp power supply device satisfying the condition of 100 s or less as the discharge lamp power supply device of the high-pressure mercury vapor lamp, it is possible to effectively prevent the lamp from extinguishing. It is. Next, a power supply device for a discharge lamp according to the present embodiment will be described with reference to FIGS. FIG. 5 is a diagram illustrating an example of a configuration of a power supply device for a discharge lamp. In the figure, reference numeral 17 denotes a DC power supply, and the voltage from the DC power supply 17 is supplied to the step-down chopper 16. The step-down chopper 16 mainly includes a switch element 11, a gate drive circuit 12, a diode 13, an inductor 14, and a smoothing capacitor 15. Although a DC power supply 17 is not shown, a commercial AC power supply is converted to DC using a rectifier diode-diode bridge and a smoothing capacitor, and a power supply module having a harmonic current suppression function or the like. , Batteries etc. can be used. Reference numeral 1 denotes a high-pressure mercury vapor discharge lamp, in which a relatively large amount of mercury is sealed in the discharge space 6 of the lamp envelope 3, and a cathode 4 and an anode 5 are arranged to face each other. Reference numeral 18 denotes a voltage detector configured using a partial pressure resistor or the like to detect an applied voltage Va applied to the high-pressure mercury vapor lamp 1.19 denotes a high-pressure mercury configured by a shunt resistor, CT, or the like. This is a current detector for detecting the current Ia flowing through the steam lamp 1. Reference numeral 7 denotes a igniter inserted between the step-down chopper 16 and the high-pressure mercury vapor lamp 1 to cause discharge breakdown of the enclosed gas between the cathode 4 and the anode 5 when the high-pressure mercury vapor lamp 1 starts operating. The igniter 7 is basically composed of a transformer 8 having a large primary-to-secondary turns ratio, and generates a high-voltage pulse train of several kilovolts to several tens of kilovolts. Reference numeral 9 denotes a coil inserted between the step-down chopper 16 and the discharge lamp 1. A power supply control circuit 24 supplies a gate drive signal 23 to the gate drive circuit 10 of the igniter 7, a lamp voltage signal 20 detected by the voltage detector 18 and a current detector. The lamp current signal 21 detected by the switch 19 is input, and based on the lamp voltage signal 20 and the lamp current signal 21, the gate drive signal 2 is supplied to the gate drive circuit 12 of the switch element 11. 2 is supplied to control the opening and closing of the switch element 11. Although FIG. 2 shows an example in which the gate drive signal 23 is supplied from the power supply control circuit 24 to the gate drive circuit 10, the igniter control signal 23 is unnecessary depending on the type of the igniter 7. In some cases. FIG. 6 is a diagram illustrating an example of the configuration of the power supply device control circuit 24 illustrated in FIG. In the figure, the detected lamp current signal 21 and the detected lamp voltage signal 20 are assumed to have a positive polarity, and are supplied with the power via the buffer 25 and the buffer 38 as necessary. Device control circuit 24 4 input. The lamp current signal 21 is input to an error integrator 31 composed of an operational amplifier 27 and a capacitor 30 via a resistor 26. On the other hand, the output of the limiting current value signal generator 29 assumed to be negative polarity is input to the operational amplifier 27 via the resistor 28, and the lamp current signal 21 and the lamp current signal 21 are supplied from the error integrator 31. The difference of the current value specified by the limit current value signal generator 29 is integrated by the capacitor 30 and output. The output of the error integrator 31 is output as a current excess signal 36 through an inverter 35 composed of a resistor 32, a resistor 33, and an operational amplifier 34.
—方、 ランプ電流信号 2 1は、 乗算器 3 9によってランプ電圧信号 2 0と 掛け合わされて電力信号 4 0が生成され、 抵抗 4 1 を介して、 演算増幅器 4 2 とコンデンサ 4 5で構成される誤差積分器 4 6に入力される。 また、 演算 増幅器 4 2には抵抗 4 3を介して負極性と仮定する定格電力値信号発生器 4 4よりの出力が入力されており、 誤差積分器 4 6から電力信号 4 0と定格電 力値信号発生器 4 4によって規定される電力値の差がコンデンサ 4 5により 積分されて出力する。 誤差積分器 4 6の出力は、 抵抗 4 7、 抵抗 4 8、 演算増幅器 4 9より構成 される反転器 5 0を介して、 電力超過信号 5 1 として出力される。 電流超過信号 3 6、 電力超過信号 5 1は、 それそれダイオード 3 7、 ダイ オード 5 2を介して、 抵抗 5 3によってプルダウンされるので、 電流超過信 号 3 6と電力超過信号 5 1のうちの、 いずれか高い方の信号が降圧チヨ ッパ 制御信号 5 4として抵抗 5 3に出力される。 電流超過信号 3 6は、 ランプ電流信号 2 1 力 限界電流値信号発生器 2 9 によって規定される電流値より大きい場合に、 高くなる信号であり、 電力超 過信号 5 1は、 電力信号 4 0が、 定格電力債信号発生器 4 4によって規定さ れる電力値より大きい場合に、 高くなる信号である。 従って、 電流超過信号 3 6 と電力超過信号のうち何れかの大きい信号が、 優先的に抵抗 5 3に現れ ることになる。 降圧チヨッパ制御信号 5 4は、 比較器 5 6によって鋸歯状波 発生器 5 5の出力信号と比較され、 降圧チヨッパ制御信号 5 4が鋸歯状波発 生器 5 5の出力信号より小さい場合にハイ レベル、 降圧チヨッパ制御信号 5 4が鋸歯状波発生器 5 5の出力信号より大きい場合には口一レベルの信号が、 ゲート駆動信号 2 2 として、 スィ ツチ素子 1 1のゲート駆動回路 1 2に出力 される。 ここで、 降圧チヨッパ制御信号 5 4が高くなるほど、 ゲート駆動信号 2 2 がハイ レベルである期間は短くなるため、 ゲート駆動信号 2 2がハイ レベル のときに、 スィ ツチ素子 1 1がオンになるよう、 ゲート駆動回路 1 2の論理 を設計すれば、 電流超過信号 3 6、 電力超過信号 5 1の何れか高い方、 それ が電流超過信号 3 6の場合は、 ランプ電流信号 2 1が限界電流値信号発生器 2 9によって規定される電流値に一致するように、 逆に、 それが電力超過信 号 5 1の場合は、 電力信号 4 0が定格電力値信号発生器 4 4によって規定さ れる電力値に一致するように、 フィードパック制御されることになる。 その結果、 ランプ電力 P aが予め定めた定格電力値 P a sになるようにラ ンブ電流 l aを制御する機能と、 ランプ電流 l aが予め定めた限界電流値 I a sをほぼ超えないようにランプ電流 I aを制御する機能とを有し、 かつ、 前記定格電力値 P a sになるようにランプ電流 I aを制御する機能よりも、 前記限界電流値 I a sを超えないようにランプ電流 l aを制御する機能を優 先される放電灯用給電装置 2を実現することができる。 具体的に、 本実施形態に係る発明を実現するためには、 例えば、 抵抗 2 6 を小さな抵抗値、 かつ/またはコンデンサ 3 0を小さな静電容量値に設定し て、 限界電流値 I a sを制御するための誤差積分器 3 1の応答が高速になる ように設計すればよい。 これのみによって、 十分な結果か得られない場合は、 ィグナイ夕 7の トランス 8の 2次側ィ ンダクタンスを大き くするか、 コイル 9を追加するか、 あるいはそれらの両方を行えばよい。 当然ながら、 降圧チ ョッパ 1 6の動作周波数、 即ち、 鋸歯状波発生器 5 5の発振周波数は、 限界 電流値 I a sについての必要な制御の高速性を支えるに足る高さが必要であ る。 また、 降圧チヨヅパ 1 6のリプルが過大にならない範囲において、 平滑 コンデンサ 1 5の静電容量は小さ くすることが有利である。 なお、 図 5、 図 6は、 本発明に係る放電灯用給電装置の基本構成を説明す ることを目的として記載したものであるが、実際にそれを実現するためには、 必要に応じて、 回路の安定動作や安全動作等のために、 保護回路やノイズフ ィルタ等の付加部品や付加回路の追加、 あるいは逆に、 回路の簡素化等のェ 夫が必要である。 とりわけ、 反転器 3 5、 5 0は、 説明を単純化するために 敢えて追加したもので、 これを省略することも可能である。 次に、 本願発明の第 2の実施形態を図 5乃至図 1 0を用いて説明する。 本実施形態は、 第 1の実施形態において得られた放電灯用給電装置の立ち 消えをより確実に防止するための機能を付加した放電灯用給電装置に関する。 一般に、 図 7に示すように、 水銀蒸気ランプ用給電装置では、 電極間のィ ンビーダンスの変化に伴い、 ランプ電圧 V aの変動が生じても、 ランプ電力 P aは予め定められた定格電力値 P a sになるようにランプ電流 I aを制御 することが行われる。 その際、 ランプ電圧 V aが非常に低い場合、 定格電力 値 P a sを達成するためには、 非常に大きなランプ電流 I aを流す必要が生 じるが、 実際には給電装置に設けられる回路素子の破壊を防止するために、 ランプ電流 I aが予め定められた限界電流値 I a sを超えないようにランプ 電流 I aを制御することが行われる。 この制御は、 定格電力値 P a sになる ようにランプ電流 I aの制御より も優先的に行われる。 また、 同図に示すよ うに、 最大電圧値 V a sが規定されているが、 これは、 無負荷開放時に、 安 全のために必要な最大限度の電圧を超えないための制限である。 従って、 以 上の結果を踏まえた一般的な放電灯用給電装置の電圧電流特性は、 図 7に示 すような双曲線 Hを基本としたものになる。 図 8 ( a )、 (b )、 ( c ) は、 この間のランプ電流 I a、 ランプ電圧 V a、 ランプ電力 P aの時間的経過を示す図である。 本発明に関連する、 水銀封入量が比較的多い高圧水銀蒸気ランプを一般的 な放電灯用給電装置で点灯する場合、 点灯直後の陰極上に液体水銀が存在す るときのアーク放電の状態は、 電極間のィ ンビーダンスが十分に低いため、 図 7の点 Aにあると考えられる。 これは、 前記のランプ電流 I aが予め定め た限界電流値 I a sを超えないように制御された状態であり、 この状態は定 格電力値は達成されていない。 次に、 水銀が陰極上から完全に蒸発してグロ —放電に移行すると、 電極間のイ ンビーダンスが高くなつて、 ランプ電圧 V aが急激に上昇するため、 図 7の電圧電流特性曲線 Hに沿って点 Aから点 B に移行しょうとするが、 図 8 ( a ) に示すように、 ランプ電流 I aは高圧水 銀蒸気ランプのィ ンビーダンスの急増が発生する直前のランプ電流 I a 0よ り大きく低下してしまい、 ランプが立ち消えてしまう可能性がある。 そこで、 このような状態を回避するために、 図 7の電圧電流特性曲線 Hに 沿うのではなく、 電圧電流特性曲線 Hより上側の領域、 即ち、 過電力領域を 通過するようにする。 ここで、 過電力領域の通過の仕方に関する条件につい ては、 前記と同様に、 図 2の試験回路、 即ち、 アーク放電時のランプイ ンビ 一ダンスに略等しい抵抗値と、 グロ一放電時のランブインビーダンスの略 1 / 7に等しい抵抗値とを切り換える試験回路を用いて規定することができる。 図 9は、 本実施形態に係る発明が意図する電圧電流特性を示す図である。 同図の電圧電流特性に示すように、 点 Aから点 Bに移行するに際し、 電圧 電流特性曲線 Hに沿うのではなく、 点 Aにおける擬似ランプ電流 I a 0 ' の 少なく とも 7 0 %の領域 Uに、 所定時間滞在した後、 点 Bに移行するように する 図 1 0 (a)、 (b)、 ( G ) は、 この間の擬似ランプ電流 I a,、 擬似ラン ブ電圧 Va'、 擬似ランプ電力 P a' の時間的経過をに示す図である。 本実施形態に係る放電灯用給電装置では、 点 Aにおける擬似ランプ電流 I a o' の、 少なく とも 70 %の領域 Uに滞在する時間を 50 ms以上とする 機能を付加することにより、 本発明の課題をより確実に実現することができ る。 ここで、 放電を維持するためには、 熱電子放出を早く活発化しなければな らないが、 そのためには、 高圧水銀蒸気ランプのイ ンピーダンスが急増する 直前の擬似ランプ電流 I a 0 ' の、 少なく とも 7 0 %に回復するように制御 する期間 T uは長いほど、 ランプの立ち消えを防止できる点では有利である が、 70ms以上であれば、 余裕をもつて本発明の課題を達成でき、 さらに、 1 00ms以上あればより望ましい。 また、 点 Aにおける擬似ランプ電流 I a 0 ' の、 少なく とも 70%の領域 Uは、 過電力動作であるため、 これを実現するためには給電装置が元々有す る予め定めた定格電力値 P a sになるように擬似ランプ電流 I a' を制御す る機能を、 点 Aにおける擬似ランプ電流 I a 0 ' の少なく とも 70%の領域 Uに滞在する時間だけ制御する機能を付加すればよい。 なお、 この過電力動 作は、 本来、 ランプや給電装置の安全な動作にとって不都合なものであるか ら、 必要以上に長時間継続すべきではなく、 実際は、 300 msとれすば十 分である。 具体的に、 本実施形態に係る発明を実現するためには、 図 5及び図 6に示 す放電灯用給電装置を用いて、 限界電流値 I a sを超えないように擬似ラン ブ電流 l a' を制御する動作状態で、 高圧水銀蒸気ランプ 1のイ ンピーダン スの急増が発生した場合に、 高圧水銀蒸気ランプ 1のィンピ一ダンスの急増 が発生する直前の擬似ランプ電流 I a 0, の、 少なくとも 7 0 %に回復する ように制御している期間 T uが、 5 0 m s以上となるように、 例えば、 抵抗 4 1を大きな抵抗値、 かつ/またはコンデンサ 4 5を大きな静電容量値に設 定して、 定格電力値 P a sについての制御のための、 誤差積分器 4 6の応答 が低速になるように設計することによって行う。 次に、 本願発明の第 3の実施形態を図 1 1及び図 1 2を用いて説明する。 図 1 1は、 高圧水銀蒸気ランプの放電空間の体積 1 m m 3当り 0 . 1 5 m g以上の水銀および 1 mm 3当たり 1 X 1 0— 7モルのハロゲンが封入された ような比較的水銀封入量が多い高圧水銀蒸気ランプに用いられ、 ランプ立ち 消えが発生しない放電灯用給電装置を見出すための試験回路を示す図である。 本発明の発明者等は、 この試験回路によって放電灯用給電装置が後述する 条件を満足する時、 この放電灯用給電装置がランプの立ち消えを有効に防止 し得るものであることを見出した On the other hand, the lamp current signal 21 is multiplied by the lamp voltage signal 20 by the multiplier 39 to generate the power signal 40, which is composed of the operational amplifier 42 and the capacitor 45 via the resistor 41. Input to the error integrator 46. The output of the rated power signal generator 44, which assumes negative polarity, is input to the operational amplifier 42 via the resistor 43, and the power signal 40 and the rated power are output from the error integrator 46. The power value difference specified by the value signal generator 44 is integrated by the capacitor 45 and output. The output of the error integrator 46 is output as a power excess signal 51 via an inverter 50 composed of a resistor 47, a resistor 48, and an operational amplifier 49. The over-current signal 36 and the over-power signal 51 are respectively pulled down by the resistor 53 via the diode 37 and the diode 52, so that the over-current signal 36 and the over-power signal 51 The higher signal is output to the resistor 53 as the step-down chopper control signal 54. The over current signal 36 is a signal that goes high when the current value is larger than the lamp current signal 21 1 power limit current value signal generator 29, and the over power signal 51 is the power signal 40 Is higher than the power value defined by the rated power bond signal generator 44. Therefore, the larger of the over current signal 36 and the over power signal appears preferentially on the resistor 53. Will be. The step-down chopper control signal 54 is compared with the output signal of the saw-tooth wave generator 55 by the comparator 56, and is high when the step-down chopper control signal 54 is smaller than the output signal of the saw-tooth wave generator 55. When the level and step-down chopper control signal 54 is larger than the output signal of the sawtooth wave generator 55, the one-level signal is sent to the gate drive circuit 12 of the switch element 11 as the gate drive signal 22. Is output. Here, as the step-down chopper control signal 54 becomes higher, the period during which the gate drive signal 22 is at the high level becomes shorter. Therefore, when the gate drive signal 22 is at the high level, the switch element 11 is turned on. If the logic of the gate drive circuit 12 is designed, the higher of the overcurrent signal 36 and the overpower signal 51, if it is the overcurrent signal 36, the lamp current signal 21 will be the limit current. Conversely, if it is an overpower signal 51, the power signal 40 is defined by the rated power signal generator 44, so that it matches the current value specified by the value signal generator 29. The feed pack is controlled to match the power value. As a result, the function of controlling the lamp current la so that the lamp power Pa becomes a predetermined rated power value P as, and the function of controlling the lamp current la so that the lamp current la does not substantially exceed the predetermined limit current value I as A function of controlling the lamp current la and controlling the lamp current la so as not to exceed the limit current value I as a function of controlling the lamp current I a so that the rated power value P as is obtained. It is possible to realize the discharge lamp power supply device 2 in which the function to perform the operation is prioritized. Specifically, in order to realize the invention according to the present embodiment, for example, by setting the resistor 26 to a small resistance value and / or setting the capacitor 30 to a small capacitance value, the limit current value I as What is necessary is just to design so that the response of the error integrator 31 for control becomes fast. If this does not provide sufficient results, either increase the secondary inductance of transformer 8 in igniter 7, add coil 9, or both. Of course, The operating frequency of the chopper 16, that is, the oscillation frequency of the sawtooth wave generator 55 needs to be high enough to support the required high-speed control of the limit current value I as. Further, it is advantageous to reduce the capacitance of the smoothing capacitor 15 as long as the ripple of the step-down chopper 16 does not become excessive. Although FIGS. 5 and 6 are described for the purpose of explaining the basic configuration of the power supply device for a discharge lamp according to the present invention, in order to actually realize it, In order to ensure stable and safe operation of the circuit, it is necessary to add additional components and circuits such as protection circuits and noise filters, or conversely, to simplify the circuit. In particular, the inverters 35 and 50 are daringly added to simplify the explanation, and can be omitted. Next, a second embodiment of the present invention will be described with reference to FIGS. The present embodiment relates to a discharge lamp power supply device to which a function for more reliably preventing the discharge lamp power supply device obtained in the first embodiment from turning off is added. In general, as shown in Fig. 7, in a power supply device for a mercury vapor lamp, even if the lamp voltage Va fluctuates due to a change in the impedance between the electrodes, the lamp power Pa is set to a predetermined rated power value. The lamp current Ia is controlled so as to be Pas. At that time, if the lamp voltage Va is very low, it is necessary to flow a very large lamp current Ia in order to achieve the rated power value Pas. In order to prevent the destruction of the element, the lamp current Ia is controlled so that the lamp current Ia does not exceed a predetermined limit current value Ias. This control is performed prior to the control of the lamp current Ia so that the rated power value Pas is obtained. In addition, as shown in the figure, the maximum voltage value V as is specified, but this is a restriction to prevent the maximum voltage required for safety from being exceeded when no load is released. Therefore, the voltage-current characteristics of a general discharge lamp power supply device based on the above results are shown in Fig. 7. Such a hyperbola is based on H. FIGS. 8 (a), (b) and (c) are diagrams showing the time course of the lamp current Ia, the lamp voltage Va and the lamp power Pa during this time. When lighting a high-pressure mercury vapor lamp with a relatively large amount of mercury in relation to the present invention using a general discharge lamp power supply, the state of arc discharge when liquid mercury is present on the cathode immediately after lighting is as follows. However, since the impedance between the electrodes is sufficiently low, it is considered to be at point A in FIG. This is a state in which the lamp current Ia is controlled so as not to exceed a predetermined limit current value Ias, and in this state, the rated power value has not been achieved. Next, when mercury completely evaporates from the cathode and shifts to glow discharge, the lamp voltage Va sharply rises due to the increase in the impedance between the electrodes. As shown in Fig. 8 (a), the lamp current Ia is higher than the lamp current Ia0 immediately before the sudden increase in the impedance of the high-pressure mercury vapor lamp. The lamp may go out and the lamp may go out. Therefore, in order to avoid such a state, the voltage does not follow the voltage-current characteristic curve H in FIG. 7 but passes through a region above the voltage-current characteristic curve H, that is, an overpower region. Here, as for the conditions regarding the way of passing through the overpower region, the test circuit of FIG. 2 is used, that is, the resistance value approximately equal to the lamp impedance during arc discharge, and the ramp value during glow discharge. It can be specified using a test circuit that switches between a resistance value approximately equal to 1/7 of the impedance. FIG. 9 is a diagram showing voltage-current characteristics intended by the invention according to the present embodiment. As shown in the voltage-current characteristics in the figure, the transition from point A to point B does not follow the voltage-current characteristic curve H, but the area of at least 70% of the pseudo lamp current Ia0 'at point A. Move to point B after staying at U for a predetermined time FIG. 10 (a), (b) and (G) show the time course of the pseudo lamp current Ia, the pseudo lamp voltage Va 'and the pseudo lamp power Pa' during this time. In the discharge lamp power supply device according to the present embodiment, the pseudo lamp current I ao ′ at the point A has a function of making the time during which the pseudo lamp current I ao ′ stays in the area U of at least 70% at least 50 ms or more. Issues can be more reliably realized. Here, in order to maintain the discharge, thermionic emission must be activated quickly, but for that purpose, the pseudo lamp current Ia0 'immediately before the impedance of the high-pressure mercury vapor lamp sharply increases, The longer the period Tu for controlling to recover to at least 70% is advantageous in that the lamp can be prevented from going out, but if it is 70 ms or more, the object of the present invention can be achieved with a margin. Further, it is more desirable that the time is 100 ms or more. In addition, at least 70% of the region U of the pseudo lamp current I a 0 ′ at the point A is an overpower operation, and in order to realize this, a predetermined rated power value originally included in the power supply device. The function of controlling the pseudo lamp current I a ′ so as to be P as may be added to the function of controlling the pseudo lamp current I a 0 ′ at the point A for at least 70% of the area U. . Note that this overpower operation should not be continued for an unnecessarily long time because it is inherently inconvenient for the safe operation of lamps and power supply devices.In fact, 300 ms is sufficient. . Specifically, in order to realize the invention according to the present embodiment, the pseudo lamp current la ′ is set using the discharge lamp power supply device shown in FIGS. 5 and 6 so as not to exceed the limit current value I as. Operation of the high-pressure mercury vapor lamp 1 During the period of control during which control is performed to recover at least 70% of the pseudo lamp current I a 0, immediately before the sudden increase in the impedance of the high-pressure mercury vapor lamp 1 For example, by setting the resistor 41 to a large resistance value and / or setting the capacitor 45 to a large capacitance value so that the time becomes 50 ms or more, the control for the rated power value P as is performed. This is done by designing the response of the error integrator 46 to be slow. Next, a third embodiment of the present invention will be described with reference to FIGS. 11 and 12. FIG. Figure 1 1 is a high-pressure volume 1 mm 3 per 0 mercury vapor lamp in the discharge space. 1 5 mg of mercury and 1 mm 3 per 1 X 1 0- 7 mol of silver is relatively enclosed mercury as encapsulated FIG. 2 is a diagram showing a test circuit used for a high-pressure mercury vapor lamp having a large volume and for finding a power supply device for a discharge lamp in which lamp extinguishing does not occur. The inventors of the present invention have found that when the power supply device for a discharge lamp satisfies the conditions described below by this test circuit, the power supply device for a discharge lamp can effectively prevent the lamp from going out.
なお、 本実施形態で用いられる高圧水銀蒸気ランプも、 第 1の実施形態の 場合と同様に、 アーク放電時のアーク放電抵抗 R aは略 5 Ω、 及びグロ一放 電時のグロ一放電抵抗 R bは略 3 0 0 Ωを呈するものを用いることを前提と して説明する。 同図において、 7 0 , 7 1は放電灯用給電装置 2の出力端に直列に接続さ れるそれそれ抵抗値 5 Ω、 3 0 0 Ωの抵抗であり、 その他の構成は図 2に示 す同符号の構成と同一であるので説明を省略する。 ここで、 抵抗 7 0は、 実際の高圧水銀蒸気ランプの陰極上に液体水銀が存 在するときのアーク放電時に流れる電流値と概ね同じ電流が抵抗 7 0に流れ るようにアーク放電時のアーク放電抵抗 R aに略等しく設定し、 抵抗 7 0 + 抵抗 7 1は、 高圧水銀蒸気ランプのグロ一放電時に流れる電流値と概ね同じ 電流が抵抗 70、 7 1に流れるようにグロ一放電抵抗 Rbに等しい値に設定 する。 図 1 2は、 抵抗 70のみの状態から抵抗 70と抵抗 7 1の直列抵抗に接続 切り換えされた時の疑似ランプ電流 I a' 及び疑似ランプ電圧 Va' の時間 的変化を示す図である。 本実施形態では、 陰極の表面積を S c (mm2) として、 評価対象とされ る放電灯用給電装置 2の出力端に抵抗 70のみが接続されているときに抵抗 70に擬似アーク電流を流している状態において、 The high-pressure mercury vapor lamp used in this embodiment also has an arc discharge resistance Ra of about 5 Ω during arc discharge and a glow discharge resistance during glow discharge, as in the first embodiment. The explanation is given on the assumption that Rb having a value of approximately 300 Ω is used. In the figure, reference numerals 70 and 71 denote resistances of 5 Ω and 300 Ω, respectively, which are connected in series to the output terminal of the discharge lamp power supply device 2, and other configurations are shown in FIG. 2. Since the configuration is the same as that of the same reference numeral, the description is omitted. Here, the resistance 70 is an arc discharge during arc discharge such that a current approximately equal to the current flowing during arc discharge when liquid mercury is present on the cathode of the actual high-pressure mercury vapor lamp flows through the resistance 70. Set approximately equal to the discharge resistance Ra, and set the resistance to 70 + The resistor 71 is set to a value equal to the glow discharge resistance Rb so that a current approximately equal to the current flowing during glow discharge of the high-pressure mercury vapor lamp flows through the resistors 70 and 71. FIG. 12 is a diagram showing a temporal change of the pseudo lamp current Ia 'and the pseudo lamp voltage Va' when the connection is switched from the state of only the resistor 70 to the series resistor of the resistor 70 and the resistor 71. In the present embodiment, when the surface area of the cathode is S c (mm 2 ), a pseudo arc current flows through the resistor 70 when only the resistor 70 is connected to the output terminal of the discharge lamp power supply device 2 to be evaluated. In the state where
( 1 ) 抵抗 70から抵抗 70 +抵抗 7 1への切り換え後の定常状態におけ る擬似グロ一放電電流 I a g, ≥ 0. 1 4 X S c (A)、  (1) Pseudo glow discharge current I ag, ≥ 0.14 X S c (A) in the steady state after switching from resistor 70 to resistor 70 + resistor 71
(2 ) 抵抗 70から抵抗 70 +抵抗 7 1への切り換え後の定常状態におけ る放電灯用給電装置の出力電圧 V a g, ≥ 1 80 (V)、  (2) The output voltage V ag of the discharge lamp power supply in the steady state after switching from the resistor 70 to the resistor 70 + the resistor 71, V ag, ≥180 (V),
( 3 ) 抵抗 70から抵抗 70 +抵抗 7 1への切り換え後の定常状態におけ る出力電圧 Vga' が定常状態における電圧の 9 0%の電圧に達するのに要 する時間 r≤ 1 70 ( s )、  (3) Time required for the output voltage Vga 'in the steady state after switching from the resistor 70 to the resistor 70 + the resistor 71 to reach 90% of the voltage in the steady state r≤ 1 70 (s ),
の各条件を満足する時、 放電灯用給電装置 2は上記の高圧水銀蒸気ランプ を用いても立ち消えの発生を防止することを見出したものである。 なお、 ここで陰極の表面積とは、 放電空間に露出している陰極作用を有す る電極全体の表面積である、  When each of the above conditions is satisfied, it has been found that the discharge lamp power supply device 2 prevents the occurrence of extinguishing even when the high-pressure mercury vapor lamp is used. Here, the surface area of the cathode refers to the surface area of the entire electrode having a cathode function exposed to the discharge space.
定常状態における擬似グロ一放電電流 I a g ' の供給能力が、 陰極の表面 積 S cに比例して大きくなるべき理由は、 アーク放電の場合と異なり、 グロ 一放電においては、 放電が陰極表面全体で生じ、 このとき、 陰極表面積に相 応した大きさの電流を供給する能力を持たなければ、 熱電子放出によるァー ク放電に移行可能なように、電極表面を加熱することができないからである。 擬似グロ一放電電流の供給能力としては、 l a g ' ≥ 0. 0 1 6 x S cであ れば、 さらに望ましい。 このとき、 定常状態における擬似グロ一電圧 V a g' として 1 8 0 V以上 の供給能力が必要である理由は、 水銀、 アルゴン等の希ガス、 および臭素等 のハロゲンが封入される放電灯の場合、 ハロゲンの封入量が 1 mm3当たり 1 X 1 0— 7モル以上であれば、 陰極と陽極との極間距離、 ガス圧等にはほ とんどよらず、 グロ一放電は、 1 8 0 V以上の電圧が必要であるからである。 出力電圧 V a g ' の供給能力としては、 V a g ' ≥ 2 0 0 Vであれば、 さ らに望ましい。 出力電圧 V a g ' が定常状態における電圧の 9 0 %の電圧に達するのに要 する時間てが 1 7 0〃 s以下であるべき理由は、 これにより長い時間がかか る場合は、 グロ一放電が維持できずに放電停止が生じ、 その後電圧が十分に 上昇した時点では、 既に電極が冷えてしまって、 結局立ち消えになってしま う確率が高まる。 なお、 r≤ 1 0 0 sであれば、 さらに望ましい。 発明者等の実験では、 V a g, = 2 0 0 V、 τ = 1 0 0 ju sの条件で、 約 2 5 mm2の表面積を有する陰極を用いたランプの場合、 l a g ' = 0 . 4 Aとすることにより、 立ち消え率は完全に 0 %となった。 これを、 V a g ' = 1 8 0 V、 て = 1 7 0〃 s、 l a g ' = 0. 3 5 A程 度まで性能を低下させても、 立ち消え率は 1 %以下であり、 十分実用的であ つた。 次に、 本願発明の第 4の実施形態を図 1 3及び図 1 4を用いて説明する。 図 1 3は、 本実施形態に係る放電灯用給電装置の構成を示す図である。 同図において、 7 2は平滑コンデンサ 1 5 と並列に接続可能に設けられる 平滑コンデンサ、 7 3は平滑コンデンサ 7 2の揷脱を切り換える F E T、 7 4は F E T 7 3をスイ ッチングするためのゲート駆動回路である。 なお、 そ の他の構成は図 5に示す同符号の構成と同一であるので説明を省略する。 図 1 4は、 本実施形態に係る放電灯用給電装置を用いて高圧水銀蒸気ラン ブを始動点灯したときのランブ電圧の時間的経過を示す図である。 本実施形態は、 図 1 3に示すように、 ランプのグロ一放電時のインビーン スが大きい期間の経過後は、 平滑コンデンサ 1 5 と並列に F E T 7 3をオン して平滑コンデンサ 7 2を挿入するようにして、 平滑コンデンサの容量を増 加させるものである。 先に図 5に示す放電灯用給電装置の説明において、 平滑コンデンサ 1 5の リプルが過大とならない範囲において、 平滑コンデンサ 1 5の静電容量を小 さくすることが有利であることを説明したが、 さらに、 熱アーク放電に移行 するまでは平滑コンデンサの容量を小さ く維持することにより、 グロ一放電 時等において瞬時的なアーク放電移行時に平滑コンデンザからランプに放出 される電荷量を抑えてランプのダメージを防ぐことができる。 一方、 平滑コ ンデンザが小さいとリブルが発生し易く、それにより音響共鳴現象が発生し、 ランプがチラついたり立ち消えたりする。 上記の問題に鑑み、 本実施形態の発明では、 図 1 4に示すように、 グロ一 放電時のィ ンビーンスが高い期間の経過後の熱アーク放電移行後は、 F E T 7 3をオンして、 平滑コンデンサ 1 5 と並列に平滑コンデンサ 1 6を接続し て平滑コンデンサの容量を増加し、 上記の音響共鳴現象等によるランプのチ ラツキや立ち消えを防止するものである。 本願請求項 1 に記載の発明によれば、 水銀封入量が比較的多い高圧水銀蒸 気ランプを用いる際に、 ランプの点灯初期における水銀が陰極上から完全に 蒸発する時のランプの立ち消えを防止することができる。 本願請求項 2に記載の発明によれば、 請求項 1 に記載の発明の効果に加え てより確実にランプの立ち消えを防止することができる。 本願請求項 3に記載の発明によれば、 水銀封入量が比較的多い高圧水銀蒸 気ランプを用いる際に、 ランプの点灯初期における水銀が陰極上から完全に 蒸発する時のランプの立ち消えを防止することができる。 本願請求項 4に記載の発明によれば、 請求項 1 ないし請求項 3に記載の発 明の効果に加えて、 ランプのイ ンビーンスが高い期間の経過後の熱アーク放 電移行後の音響共鳴現象等によるランプのチラツキや立ち消えを防止するこ とができる。 産業上の利用分野 The reason why the supply capacity of the pseudo-glow discharge current I ag ′ in the steady state should be increased in proportion to the surface area Sc of the cathode is different from the case of arc discharge, in the case of glow discharge, the discharge is the entire cathode surface. At this time, the electrode surface cannot be heated so that it can transition to arc discharge by thermionic emission unless it has the ability to supply a current corresponding to the cathode surface area. is there. The supply capability of the pseudo-glow discharge current is lag '≥ 0.016 x Sc It is even more desirable. At this time, a supply capacity of 180 V or more as a pseudo-glow voltage Vag 'in a steady state is required because a discharge lamp in which a rare gas such as mercury or argon and a halogen such as bromine are sealed is used. , if the amount of halogen is 1 X 1 0- 7 mol or more per 1 mm 3, inter-electrode distance between the cathode and the anode, regardless ho Tondo in gas pressure, glow one discharge, 1 8 This is because a voltage of 0 V or more is required. It is more desirable that the output voltage V ag 'supply capability be V ag' ≥ 200 V. The reason why the time required for the output voltage V ag ′ to reach 90% of the steady state voltage should be no more than 170 1s is that if this takes a long time, When the discharge stops because the discharge cannot be maintained and the voltage rises sufficiently thereafter, the probability that the electrode has already cooled and eventually disappears increases. It is more desirable that r≤100 s. According to the experiments performed by the present inventors, in the case of a lamp using a cathode having a surface area of about 25 mm 2 under the conditions of V ag, = 200 V and τ = 100 jus, lag '= 0.4. By setting to A, the disappearance rate was completely 0%. Even if the performance is reduced to about V Ag '= 180 V, て = 170 〃 s, lag' = 0.35 A, the extinguishing rate is 1% or less, which is sufficiently practical. It was. Next, a fourth embodiment of the present invention will be described with reference to FIGS. FIG. 13 is a diagram showing a configuration of a power supply device for a discharge lamp according to the present embodiment. In the figure, 72 is a smoothing capacitor that can be connected in parallel with the smoothing capacitor 15, 73 is an FET that switches the connection of the smoothing capacitor 72, 74 is a gate drive for switching the FET 73 Circuit. The other configuration is the same as the configuration of the same reference numeral shown in FIG. FIG. 14 is a diagram showing a time course of the lamp voltage when the high-pressure mercury vapor lamp is started and lit using the power supply device for a discharge lamp according to the present embodiment. In this embodiment, as shown in FIG. 13, after a period in which the in-vehence at the time of lamp glow discharge is large, the FET 73 is turned on in parallel with the smoothing capacitor 15 and the smoothing capacitor 72 is inserted. In this way, the capacity of the smoothing capacitor is increased. In the description of the discharge lamp power supply device shown in FIG. 5, it has been explained that it is advantageous to reduce the capacitance of the smoothing capacitor 15 as long as the ripple of the smoothing capacitor 15 does not become excessive. In addition, by keeping the capacity of the smoothing capacitor small until the transition to the thermal arc discharge, the amount of charge released from the smoothing condenser to the lamp during the instantaneous transition to the arc discharge during glow discharge is reduced. Damage can be prevented. On the other hand, if the smoothing capacitor is small, ribbles are likely to occur, causing acoustic resonance phenomena, and the lamp will flicker or go out. In view of the above problems, in the invention of the present embodiment, as shown in FIG. 14, after the transition to the thermal arc discharge after the elapse of the high period during the glow discharge, the FET 73 is turned on, The smoothing capacitor 16 is connected in parallel with the smoothing capacitor 15 to increase the capacity of the smoothing capacitor to prevent the lamp from flickering or going out due to the above-described acoustic resonance phenomenon. According to the invention described in claim 1 of the present application, a high-pressure mercury vapor vapor containing a relatively large amount of mercury is included. When a gas lamp is used, it is possible to prevent the lamp from going out when mercury completely evaporates from above the cathode in the initial operation of the lamp. According to the invention described in claim 2 of the present application, in addition to the effects of the invention described in claim 1, it is possible to more reliably prevent the lamp from going out. According to the invention described in claim 3 of the present application, when a high-pressure mercury vapor lamp with a relatively large amount of mercury is used, the lamp does not go out when mercury completely evaporates from above the cathode in the initial stage of lamp operation. can do. According to the invention described in claim 4 of the present application, in addition to the effects of the inventions described in claims 1 to 3, acoustic resonance after transition to thermal arc discharge after a long period of time during which the lamp has a high ambient temperature. It is possible to prevent the lamp from flickering or going out due to a phenomenon or the like. Industrial applications
本発明は、 放電灯用給電装置であって、 例えば、 プロジェクタ用の光源と して使用される高輝度の高圧水銀蒸気ランプを点灯させるための放電灯用給 電装置に利用できる。  INDUSTRIAL APPLICABILITY The present invention is applicable to a discharge lamp power supply device for lighting a high-brightness high-pressure mercury vapor lamp used as a light source for a projector, for example.

Claims

請 求 の 範 囲 The scope of the claims
1 . 封体によって囲まれた放電空間に陰極と陽極が設置され、 前記放電空 間内に、 希ガスと、 前記放電空間の 1 m m 3当たり 0 . 1 5 m g以上の水銀 が封入さた高圧水銀蒸気ランプを点灯するための放電灯用給電装置において、 当該放電灯用給電装置の出力端に、 前記高圧水銀蒸気ランプのアーク放電 時のアーク放電抵抗にほほ等しい疑似アーク放電抵抗を接続した状態から前 記高圧水銀蒸気ランプのグロ一放電時のグロ一放電抵抗のほぼ 1 / 7の疑似 グロ一放電抵抗に切り換え接続可能に設け、 1. Cathode and the anode in a discharge space surrounded by the sealing member is installed, the high pressure the discharge spatial within, rare gas, 0. 1 5 mg of mercury per 1 mm 3 of the discharge space is sealed In a power supply device for a discharge lamp for lighting a mercury vapor lamp, a state where a pseudo arc discharge resistance almost equal to the arc discharge resistance at the time of arc discharge of the high-pressure mercury vapor lamp is connected to an output end of the power supply device for the discharge lamp. From the above-mentioned high-pressure mercury vapor lamp to a pseudo glow discharge resistance that is approximately 1/7 of the glow discharge resistance during glow discharge.
当該放電灯用給電装置に前記疑似アーク放電抵抗を接続して疑似アーク放 電電流が流れている状態から前記疑似グロ一放電抵抗に切り換えた過渡状態 における疑似グロ一放電電流が、 前記疑似アーク放電電流の 3 0 %以下であ る連続した期間が 1 0 s以下であり、 かつ、 前記疑似アーク放電電流の少 なくとも 7 0 %に回復するまでの時間が 1 0 0〃 s以下となる特性を有する ことを特徴とする放電灯用給電装置。  The pseudo-glow discharge current in the transient state where the pseudo-arc discharge resistance is connected to the power supply device for a discharge lamp and the pseudo-glow discharge current is switched to the pseudo-global discharge resistance is obtained by the pseudo-arc discharge. A characteristic in which a continuous period of 30% or less of the current is 10 s or less, and the time required for the pseudo arc discharge current to recover to at least 70% is 100 〃 s or less. A power supply device for a discharge lamp, comprising:
2 . 請求項 1において、  2. In Claim 1,
前記放電灯用給電装置は、 ランプ電力が予め定めた定格電力値になるよう にランプ電流を制御する機能と、  The discharge lamp power supply device has a function of controlling a lamp current so that the lamp power has a predetermined rated power value;
ランプ電流が予め定めた限界電流値を超えないようにランプ電流を制御する 機能とを有し、 Having a function of controlling the lamp current so that the lamp current does not exceed a predetermined limit current value,
かつ、 前記定格電力値になるようにランプ電流を制御する機能よりも、 前記 限界電流値を超えないようにランプ電流を制御する機能が優先した機能を有 すると共に、 前記擬似グロ一放電抵抗に切り換えた時に、 前記疑似アーク放 電電流の少なくとも 7 0 %に回復するように制御している期間が 5 0 m s以 上あり、 かっこの期間は前記定格電力値を超えることを容認するように制御 される機能を有することを特徴とする放電灯用給電装置。 In addition, the function of controlling the lamp current so as not to exceed the limit current value has a function with priority over the function of controlling the lamp current so as to be the rated power value, and the pseudo-global discharge resistor has At the time of switching, there is a period of 50 ms or more during which control is performed to recover at least 70% of the pseudo arc discharge current, and control is performed to allow the parenthesis to exceed the rated power value during this period. Power supply device for a discharge lamp, characterized in that the power supply device for a discharge lamp has a function to be performed.
3 . 封体によって囲まれた放電空間に陰極と陽極が設置され、 前記放電空 間内に、 希ガスと、 前記放電空間の 1 m m '"5当たり 0 . 1 5 m g以上の水銀 と 1 m m 3当たり 1 X 1 0一7モルのハロゲンが封入さた高圧水銀蒸気ランプ を点灯するための放電灯用給電装置において、 当該放電灯用給電装置の出力端に、 前記高圧水銀蒸気ランプのアーク放電 時のアーク放電抵抗にほぼ等しい疑似アーク放電抵抗を接続した状態から前 記高圧水銀蒸気ランプのグロ一放電時のグロ一放電抵抗にほぼ等しい疑似グ ロー放電抵抗に切り換え接続可能に設け、 3. Is provided a cathode and an anode in a discharge space surrounded by the sealing member, wherein the discharge space between the, a rare gas, 1 mm '"5 per of the discharge spaces 0. 1 5 mg of mercury and 1 mm In a power supply unit for discharge lamps for lighting high-pressure mercury vapor lamps filled with 1 X 10 17 moles of halogen per 3 The state in which a pseudo arc discharge resistance substantially equal to the arc discharge resistance of the high-pressure mercury vapor lamp at the time of arc discharge is connected to the output end of the power supply device for a discharge lamp, Switchable and connectable to pseudo-glow discharge resistance almost equal to discharge resistance,
当該放電灯用給電装置に前記疑似アーク放電抵抗を接続して疑似アーク放 電電流が流れている状態から前記疑似グロ一放電抵抗に切り換えた時の疑似 グロ一放電電流 l a g' および放電灯用給電装置の出力電圧 V a g' とする 時、 陰極の表面積を S c (mm2) とすれば、 The pseudo arc discharge current lag 'and the power supply for the discharge lamp when the pseudo arc discharge current is connected to the discharge lamp power supply device and the pseudo arc discharge current is switched to the pseudo global discharge resistor. When the output voltage of the device is Vag ', if the surface area of the cathode is S c (mm 2 ),
( 1 ) 定常状態における疑似グロ一放電電流 l a g ' ≥ 0. 1 4 X S c (A)、 ( 2 ) 定常状態における出力電圧 V a g ' ≥ 1 8 0 (V)、  (1) Pseudo glow discharge current l ag '≥ 0.1 in steady state.14 X S c (A), (2) Output voltage V ag' ≥ 180 (V) in steady state,
( 3 ) 出力電圧 V a g, が定常状態における電圧の 9 0 %の電圧に達するの に要する時間て≤ 1 7 0 ( j s ),  (3) The time required for the output voltage V ag, to reach 90% of the steady state voltage, is ≤ 17 0 (j s),
となる特性を有することを特徴とする放電灯用給電装置。  A power supply device for a discharge lamp, characterized by having the following characteristics.
4. 請求項 1ないし請求項 3のいずれか 1つの請求項において、  4. In any one of claims 1 to 3,
前記放電灯用給電装置は、 直流電圧を入力し可変制御された出力電圧を平 滑コンデンサを介して前記高圧水銀蒸気ランブに印加する出力可変直流電源 を有し、  The discharge lamp power supply device includes an output variable DC power supply that inputs a DC voltage and applies an output voltage variably controlled to the high-pressure mercury vapor lamp via a smoothing capacitor,
前記平滑コンデンサは、 グロ一放電終了後のアーク放電移行時に、 前記平 滑コンデンサの容量を増大させるようにしたことを特徴とする放電灯用給電 装置。  The power supply device for a discharge lamp, wherein the smoothing capacitor increases the capacity of the smoothing capacitor at the time of transition to arc discharge after completion of the glow discharge.
PCT/JP2000/002537 1999-04-21 2000-04-19 Feeding device for discharge lamp WO2000065885A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20000917356 EP1139700A4 (en) 1999-04-21 2000-04-19 Feeding device for discharge lamp
US09/720,092 US6376998B1 (en) 1999-04-21 2000-04-19 Feeding device for discharge lamp

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11426999 1999-04-21
JP11/114269 1999-04-21
JP2000105274A JP3823680B2 (en) 1999-04-21 2000-04-06 Power supply device for discharge lamp
JP2000/105274 2000-04-06

Publications (1)

Publication Number Publication Date
WO2000065885A1 true WO2000065885A1 (en) 2000-11-02

Family

ID=26453059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002537 WO2000065885A1 (en) 1999-04-21 2000-04-19 Feeding device for discharge lamp

Country Status (3)

Country Link
EP (1) EP1139700A4 (en)
JP (1) JP3823680B2 (en)
WO (1) WO2000065885A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005108889A1 (en) * 2004-05-04 2005-11-17 BSH Bosch und Siemens Hausgeräte GmbH Household appliance comprising an interior light, and lighting subunit therefor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3852299B2 (en) * 2001-05-11 2006-11-29 ウシオ電機株式会社 Light source device
US6552498B1 (en) * 2001-09-28 2003-04-22 Osram Sylvania Inc. Method and circuit for controlling current in a high pressure discharge lamp
EP1836884B1 (en) * 2005-01-03 2011-02-23 Philips Intellectual Property & Standards GmbH A method of and a monitoring arrangement for monitoring the mercury condensation in an arc tube
JP2006344495A (en) 2005-06-09 2006-12-21 Ushio Inc Discharge lamp lighting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288295A (en) * 1985-10-15 1987-04-22 東芝ライテック株式会社 Burning apparatus of discharge lamp
JPH01159396U (en) * 1988-04-25 1989-11-06
JPH07176391A (en) * 1993-03-03 1995-07-14 Ushio Inc Method for lighting electric discharge lamp

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332970A (en) * 1992-06-25 1994-07-26 General Electric Company Method for measuring the impedance of an electrodeless arc discharge lamp

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288295A (en) * 1985-10-15 1987-04-22 東芝ライテック株式会社 Burning apparatus of discharge lamp
JPH01159396U (en) * 1988-04-25 1989-11-06
JPH07176391A (en) * 1993-03-03 1995-07-14 Ushio Inc Method for lighting electric discharge lamp

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1139700A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005108889A1 (en) * 2004-05-04 2005-11-17 BSH Bosch und Siemens Hausgeräte GmbH Household appliance comprising an interior light, and lighting subunit therefor

Also Published As

Publication number Publication date
EP1139700A4 (en) 2002-03-28
EP1139700A9 (en) 2002-04-03
JP3823680B2 (en) 2006-09-20
EP1139700A1 (en) 2001-10-04
JP2001006895A (en) 2001-01-12

Similar Documents

Publication Publication Date Title
US8395327B2 (en) High-pressure discharge lamp lighting device and lighting fixture using the same
KR950013272B1 (en) Start hot restart and operating lamp circuit
US7239089B2 (en) Power supply apparatus for high pressure discharge lamp
JP2004158273A (en) Lighting method and lighting device of high-pressure discharge lamp
NL8203719A (en) LIGHTING UNIT.
US8198824B2 (en) Electronic ballast for restarting high-pressure discharge lamps in various states of operation
US6376998B1 (en) Feeding device for discharge lamp
WO2000065885A1 (en) Feeding device for discharge lamp
JP4650795B2 (en) High pressure discharge lamp lighting device
JP3188873B2 (en) Lighting device for discharge lamp
JPS59117094A (en) High voltage gas discharge lamp starting and firing circuit
US4555647A (en) Ballast circuit for gas discharge tubes utilizing time-pulse additions
US20110204806A1 (en) Circuit arrangement for operating a discharge lamp
JP4752136B2 (en) Discharge lamp lighting device
JP4358457B2 (en) Discharge lamp lighting device
JP4639636B2 (en) High pressure discharge lamp lighting device
JP5348497B2 (en) High pressure discharge lamp lighting device, projector, and high pressure discharge lamp starting method
JP2004119166A (en) Discharge lamp lighting device
JP4088049B2 (en) Discharge lamp lighting device
JP2006049061A (en) Power feeding device for high-pressure discharge lamp
JP2002117990A (en) Feeder system for discharge lamp
JPS6110899A (en) Device for firing discharge lamp
JPH07220886A (en) Discharge lamp lighting device with good lighting property
JP2705010B2 (en) Discharge lamp lighting device
JP2003234090A (en) High-pressure discharge lamp

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2000917356

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09720092

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000917356

Country of ref document: EP