WO2000060283A1 - Fossilbeheizter durchlaufdampferzeuger - Google Patents

Fossilbeheizter durchlaufdampferzeuger Download PDF

Info

Publication number
WO2000060283A1
WO2000060283A1 PCT/DE2000/000865 DE0000865W WO0060283A1 WO 2000060283 A1 WO2000060283 A1 WO 2000060283A1 DE 0000865 W DE0000865 W DE 0000865W WO 0060283 A1 WO0060283 A1 WO 0060283A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam generator
combustion chamber
tubes
evaporator
flow medium
Prior art date
Application number
PCT/DE2000/000865
Other languages
English (en)
French (fr)
Inventor
Eberhard Wittchow
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to JP2000609743A priority Critical patent/JP4489307B2/ja
Priority to US09/937,828 priority patent/US6715450B1/en
Priority to CA002368972A priority patent/CA2368972C/en
Priority to AT00922444T priority patent/ATE268882T1/de
Priority to DK00922444T priority patent/DK1166015T3/da
Priority to EP00922444A priority patent/EP1166015B1/de
Priority to DE50006755T priority patent/DE50006755D1/de
Publication of WO2000060283A1 publication Critical patent/WO2000060283A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/34Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes grouped in panel form surrounding the combustion chamber, i.e. radiation boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/34Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes grouped in panel form surrounding the combustion chamber, i.e. radiation boilers
    • F22B21/346Horizontal radiation boilers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S122/00Liquid heaters and vaporizers
    • Y10S122/04Once through boilers

Definitions

  • the invention relates to a once-through steam generator which has a combustion chamber for fossil fuel, which is followed by a vertical gas flue on the hot gas side via a horizontal gas flue, the peripheral walls of the combustion chamber being formed from vertically arranged evaporator tubes welded together in a gastight manner.
  • the energy content of a fuel is used to evaporate a flow medium in the steam generator.
  • the flow medium is usually conducted in an evaporator circuit.
  • the steam provided by the steam generator can in turn be provided, for example, for driving a steam turbine and / or for a connected external process. If the steam drives a steam turbine, a generator or a working machine is usually operated via the turbine shaft of the steam turbine.
  • the current generated by the generator can be provided for feeding into a network and / or island network.
  • the steam generator can be designed as a continuous steam generator.
  • a continuous steam generator is known from the article "Evaporator concepts for Benson steam generators" by J. Franke, W. Köhler and E. ittchow, published in VGB Kraftwerkstechnik 73 (1993), No. 4, pp. 352-360 Pass-through steam generator leads the heating of steam generator pipes provided as evaporator pipes to an evaporation of the flow medium in the steam generator pipes in a single pass.
  • Pass-through steam generators are usually designed with a combustion chamber in a vertical design. This means that the combustion chamber is designed for a flow through the heating medium or heating gas in an approximately vertical direction. On the heating gas side, a horizontal gas flue can be connected downstream of the combustion chamber, with the heating gas flow being deflected into an approximately horizontal flow direction during the transition from the combustion chamber to the horizontal gas flue.
  • combustion chambers generally require a framework on which the combustion chamber is suspended due to the temperature-related changes in length of the combustion chamber. This requires considerable technical effort in the manufacture and assembly of the once-through steam generator, which is greater the greater the overall height of the once-through steam generator. This is particularly the case with continuous steam generators, which are designed for a steam output of more than 80 kg / s at full load.
  • a high live steam pressure promotes high thermal efficiency and thus low CC> 2 emissions from a fossil-fired. Power plant that can be fired with hard coal or with lignite in solid form as fuel, for example.
  • the design of the peripheral wall of the gas flue or combustion chamber of the once-through steam generator poses a particular problem with regard to the pipe wall or material temperatures that occur there.
  • the temperature of the peripheral wall of the combustion chamber essentially depends on the level of the saturation temperature of the water determines, 'when a wetting of the inner surface of the' evaporator tubes can be ensured. This is achieved, for example, by using evaporator tubes which have a surface structure on the inside.
  • evaporator tubes which have a surface structure on the inside.
  • there are in particular ribbed inside Evaporator tubes into consideration the use of which in a once-through steam generator is known, for example, from the article cited above.
  • These so-called finned tubes, ie tubes with a finned inner surface have a particularly good heat transfer from the inner tube wall to the flow medium.
  • the invention is therefore based on the object of specifying a fossil-fired once-through steam generator of the type mentioned above, which requires a particularly low manufacturing and assembly outlay and, during its operation, temperature differences at the connection of the combustion chamber with the horizontal gas flue downstream thereof are kept small. This should be the case in particular for the evaporator tubes of the combustion chamber which are directly or indirectly adjacent to one another and steam generator tubes of the horizontal gas flue downstream of the combustion chamber.
  • the through steam generator ugs having a combustion chamber with a number of in the height of the Horizontalgasz 'arranged burners, where a "plurality of evaporator tubes is respectively paral- lel acted upon by the flow medium, and in the exit region of the combustion chamber, a number of Evaporator tubes that can be acted upon in parallel with flow medium in front of their Entry into the respective peripheral wall of the combustion chamber is guided through the combustion chamber.
  • the invention is based on the consideration that a continuous steam generator that can be produced with particularly low manufacturing and assembly costs should have a suspension construction that can be carried out with simple means.
  • a scaffold for suspending the combustion chamber that can be created with comparatively little technical effort can go hand in hand with a particularly low overall height of the once-through steam generator.
  • a particularly low overall height of the once-through steam generator can be achieved by designing the combustion chamber in a horizontal construction. For this purpose, the burners are arranged at the level of the horizontal gas flue in the combustion chamber wall. Thus, when the continuous steam generator is operating, the heating gas flows through the combustion chamber in an approximately horizontal main flow direction.
  • temperature differences at the connection of the combustion chamber with the horizontal gas flue should also be particularly small in order to reliably avoid premature material fatigue as a result of thermal stresses.
  • These temperature differences should be particularly small, in particular between directly or indirectly adjacent evaporator tubes of the combustion chamber and steam generator tubes of the horizontal gas flue, so that material fatigue as a result of thermal stresses is particularly reliably prevented in the outlet region of the combustion chamber and in the inlet region of the horizontal gas flue.
  • the inlet section of the evaporator tubes charged with flow medium now has a comparatively lower temperature during operation of the once-through steam generator than the inlet section of the steam generator tubes of the horizontal gas flue downstream of the combustion chamber. Comparatively cold flow flows into the evaporator tubes medium in contrast to the hot flow medium that enters the steam generator tubes of the horizontal gas flue.
  • the evaporator tubes are therefore colder in the inlet section when the continuous steam generator is operating than the steam generator tube in the inlet section of the horizontal gas flue. Material fatigue as a result of thermal stresses is therefore to be expected at the connection between the combustion chamber and the horizontal gas flue.
  • the temperature difference between the inlet section of the evaporator pipes and the inlet section of the steam generator pipes will no longer be as great as would be the case if cold flow medium entered the evaporator pipes would be the case.
  • the temperature difference can be reduced even further if the tube in which the flow medium is preheated by heating is connected directly to the evaporator tube connected directly or indirectly to the steam generator tubes of the horizontal gas flue, or is a part of the same.
  • a number of the evaporator tubes are guided through the combustion chamber before they enter the peripheral wall of the combustion chamber. This number of evaporator tubes is assigned to a plurality of evaporator tubes that can be acted upon in parallel with flow medium.
  • the side walls of the horizontal gas flue and / or the vertical gas flue are advantageously formed from steam generator tubes which are welded to one another in a gastight manner and are arranged vertically and in each case can be acted upon in parallel with flow medium.
  • a common inlet manifold system is connected upstream of a number of evaporator tubes connected in parallel to the combustion chamber and a common outlet manifold system for flow medium is connected downstream.
  • a continuous steam generator designed in this embodiment enables reliable pressure equalization between a number of evaporator tubes which can be acted upon in parallel with flow medium, so that in each case all evaporator tubes connected in parallel between the inlet header system and the outlet header system have the same total pressure loss.
  • the evaporator tubes of the end wall of the combustion chamber can advantageously be acted upon in parallel with flow medium and upstream of the evaporator tubes of the surrounding walls, which form the side walls of the combustion chamber, on the flow medium side. This ensures particularly favorable cooling of the strongly heated end wall of the combustion chamber.
  • the inner tube diameter of a number of the evaporator tubes of the combustion chamber is selected as a function of the respective position of the evaporator tubes in the combustion chamber.
  • the evaporator tubes in the combustion chamber can be adapted to a heating profile which can be predetermined on the hot gas side.
  • a number of the evaporator tubes advantageously has ribs forming a multiple thread on the inside thereof.
  • a Pitch angle ⁇ between a plane perpendicular to the pipe axis and the flanks of the ribs arranged on the inside of the pipe is less than 60 °, preferably less than 55 °.
  • a number of the evaporator tubes of the combustion chamber advantageously have means for reducing the flow of the flow medium. It proves to be particularly advantageous if the means are designed as throttle devices. Throttling devices can, for example, be built-in components in the evaporator tubes that reduce the inside diameter of the tube at one point inside the respective evaporator tube. Means for reducing the
  • a line system comprising several parallel lines as advantageous, through which the evaporator tube ren the combustion chamber flow medium can be supplied.
  • the line system can also be connected upstream of an inlet header system of evaporator tubes which can be acted upon in parallel with flow medium. For example, in one line or in several lines of the line system
  • Throttle fittings may be provided. Such means for reducing the flow of the flow medium through the evaporator tubes can be used to adapt the throughput of the flow medium through individual evaporator tubes to their respective heating in the combustion chamber. As a result, additional temperature differences of the flow medium at the outlet of the evaporator tubes are kept particularly low.
  • Adjacent evaporator or steam generator tubes are advantageously gas-tightly welded to one another on their long sides via metal strips, so-called fins. These fins can already be firmly connected to the tubes in the tube manufacturing process and form a unit with them. This unit formed from a tube and fins is also referred to as a fin tube.
  • the fin width influences the heat input into the evaporator or steam generator tubes. Therefore, the fin width is preferably adapted to a heating profile that can be predetermined on the hot gas side, depending on the position of the respective evaporator or steam generator tubes in the continuous steam generator.
  • a typical heating profile determined from empirical values or a rough estimate, such as, for example, a step-shaped heating profile, can be specified as the heating profile.
  • heat input into all evaporator or steam generator tubes can be achieved in such a way that temperature differences of the flow medium at the outlet from the evaporator or steam generator tubes are kept particularly small. In this way, premature material fatigue is a result of Reliably prevents thermal stress. As a result, the once-through steam generator has a particularly long service life.
  • a number of superheater heating surfaces are advantageously arranged in the horizontal gas flue, which are arranged approximately perpendicular to the main flow direction of the heating gas and whose tubes are connected in parallel for a flow through the flow medium.
  • These superheater heating surfaces also known as bulkhead heating surfaces, are predominantly convectively heated and are connected downstream of the evaporator tubes of the combustion chamber on the flow medium side. This ensures a particularly favorable utilization of the heating gas heat.
  • the vertical gas flue advantageously has a number of convection heating surfaces which are formed from tubes arranged approximately perpendicular to the main flow direction of the heating gas. These tubes of a convection heating surface are connected in parallel for a flow through the flow medium. These convection heating surfaces are also predominantly convectively heated.
  • the vertical gas flue advantageously has an economizer.
  • the burners are advantageously arranged on the end wall of the combustion chamber, that is to say on the side wall of the combustion chamber which lies opposite the outflow opening to the horizontal gas flue.
  • a continuous steam generator designed in this way can be adapted in a particularly simple manner to the burnout length of the fossil fuel.
  • the burnup of the fossil fuel-gas velocity in the horizontal direction "at a certain average temperature Bankgastem- is multiplied by the burnup time t A of the flame to understand the fossil fuel.
  • the maximum burnout length for the respective continuous steam generator is at the steam output M at full load of the once-through steam generator, the so-called full load operation.
  • the burnout time t A of the flame of the fossil fuel is in turn the time which, for example, a coal dust grain of medium size takes to completely burn out at a certain mean heating gas temperature.
  • the length of the combustion chamber defined by the distance from the end wall to the inlet area of the horizontal gas flue is advantageously at least equal to the burnout length of the fossil fuel at Full load operation of the continuous steam generator.
  • This horizontal length of the combustion chamber will generally be at least 80% of the height of the combustion chamber, measured from the top edge of the funnel, if the lower region of the combustion chamber is funnel-shaped, up to the combustion chamber ceiling.
  • the length L (specified in m) of the combustion chamber is advantageous for a particularly favorable utilization of the heat of combustion of the fossil fuel as a function of the steam output M (specified in kg / s) of the continuous steam generator at full load, the burnout time t A (specified in s) of the flame of the fossil fuel and the outlet temperature T BRK (specified in ° C) of the heating gas from the combustion chamber.
  • the length L of the combustion chamber approximately applies to the larger value of the two functions (I) and (II):
  • the lower region of the combustion chamber is advantageously designed as a funnel.
  • the ash produced during the operation of the continuous steam generator during the combustion of the fossil fuel can be removed particularly easily, for example into a deashing device arranged under the funnel.
  • the fossil fuel can be solid coal.
  • the advantages achieved by the invention are, in particular, that by guiding some evaporator tubes through the combustion chamber before they enter the peripheral wall of the combustion chamber, temperature differences in the immediate vicinity of the connection between the combustion chamber and the horizontal gas flue are particularly small during operation of the continuous steam generator.
  • the thermal stresses caused by temperature differences between immediately adjacent evaporator tubes of the combustion chamber and steam generator tubes of the horizontal gas flue at the connection of the combustion chamber to the horizontal gas flue therefore remain far below the values when the continuous steam generator is in operation, for example where there is a risk of pipe rips. This enables the use of a horizontal combustion chamber in a once-through steam generator even with a comparatively long service life.
  • the combustion chamber for an approximately horizontal main flow direction of the heating gas, a particularly compact construction of the continuous steam given.
  • this also enables particularly short connecting pipes from the continuous steam generator to the steam turbine.
  • FIG. 1 schematically shows a fossil-fueled continuous steam generator in a two-pass design in side view
  • the fossil-heated continuous steam generator 2 according to FIG. 1 is assigned to a power plant, not shown, which also includes a steam turbine plant.
  • the continuous steam generator 2 is designed for a steam output at full load of at least 80 kg / s.
  • the steam generated in the continuous steam generator 2 is used to drive the steam turbine, which in turn drives a generator to generate electricity.
  • the current generated by the generator is intended for feeding into a network or an island network.
  • the fossil-heated once-through steam generator 2 comprises a combustion chamber 4 which is constructed in a horizontal construction and which a vertical throttle cable 8 is connected downstream on the gas side via a horizontal throttle cable 6.
  • the lower region of the combustion chamber 4 is formed by a funnel 5 with an upper edge corresponding to the auxiliary line with the end points X and Y. Through the funnel 5, when the continuous steam generator is operating, 2 ashes of the fossil fuel B can be discharged into a deashing device 7 arranged underneath.
  • the surrounding walls 9 of the combustion chamber 4 are formed from gas-tightly welded, vertically arranged evaporator tubes 10, of which a number N can be acted upon in parallel with flow medium S.
  • a peripheral wall 9 of the combustion chamber 4 is the end wall 11.
  • the side walls 12 of the horizontal gas flue 6 and 14 of the vertical gas flue 8 are also formed from vertically arranged steam generator tubes 16 and 17 which are welded together in a gastight manner. A number of steam generator tubes 16 and 17 can each be acted upon in parallel with flow medium S.
  • a number of the evaporator tubes 10 of the combustion chamber 4 is an inlet header system 18 for the fluid medium
  • the entry collector system 18 comprises a number of parallel entry collectors.
  • a line system 19 is provided for supplying flow medium S into the inlet inlet system 18 of the evaporator tubes 10.
  • the line system 19 comprises a plurality of lines connected in parallel, each of which is connected to one of the inlet collectors of the inlet collector system 18.
  • the steam generator tubes 16 of the side walls 12 of the horizontal gas flue 6, which can be acted upon in parallel with flow medium S, are preceded by a common inlet collector system 21 and followed by a common outlet collector system 22.
  • a line system 19 is also provided for supplying flow medium S into the inlet header system 21 of the steam generator tubes 16.
  • the line system also includes several lines connected in parallel, which are each connected to one of the entry collectors of the entry collection system 21.
  • This configuration of the continuous-flow steam generator 2 with inlet header systems 18, 21 and outlet header systems 20, 22 enables a particularly reliable pressure compensation between the evaporator tubes 10 of the combustion chamber 4 connected in parallel or the steam generator tubes 16 of the horizontal gas flue 6 connected in parallel in such a way that all of the evaporator or steam generator tubes 10 or 16 connected in parallel have the same total pressure loss.
  • the evaporator tubes 10 have an inner tube diameter D and on their inner side fins 40 which form a kind of multi-start thread and have a fin height C.
  • the pitch angle ⁇ between a plane 42 perpendicular to the pipe axis and the flanks 44 of the ribs 40 arranged on the inside of the pipe is less than 55 °.
  • the inner tube diameter D of the evaporator tubes 10 of the combustion chamber 4 is selected as a function of the respective position of the evaporator tubes 10 in the combustion chamber 4. In this way, the once-through steam generator 2 is adapted to the different degrees of heating of the evaporator tubes 10.
  • This design of the evaporator tubes 10 of the combustion chamber 4 ensures in a particularly reliable manner that temperature differences of the flow medium S are kept particularly small when they emerge from the evaporator tubes 10.
  • part of the evaporator tubes 10 are equipped with throttling devices, which are not shown in the drawing.
  • the throttling devices are designed as perforated diaphragms which reduce the inner tube diameter D at one point and, when the continuous steam generator 2 is operating, bring about a reduction in the throughput of the flow medium S in less heated evaporator tubes 10, as a result of which the throughput of the flow medium S is adapted to the heating.
  • one or more lines of the line system 19 are equipped with throttle devices, in particular throttle fittings.
  • Adjacent evaporator or steam generator tubes 10, 16, 17 are welded together in a gas-tight manner on their longitudinal sides via fins in a manner not shown in the drawing.
  • the heating of the evaporator or steam generator tubes 10, 16, 17 can be influenced by a suitable choice of the fin width.
  • the respective fin width is therefore adapted to a heating profile which can be predetermined on the hot gas side and which depends on the position of the respective evaporator or steam generator tubes 10, 16, 17 in the continuous-flow steam generator 2.
  • the heating profile can be a typical heating profile determined from empirical values or a rough estimate.
  • the inner tube diameter D of the evaporator tubes 10 in the combustion chamber 4 are selected as a function of their respective position in the combustion chamber 4.
  • Evaporator tubes 10, which are exposed to greater heating during operation of the continuous steam generator 2 have a larger inner tube diameter D than evaporator tubes 10, which are heated to a lesser extent during operation of the continuous steam generator 2.
  • Another measure to adapt the flow through the evaporator tubes 10 with the flow medium S to the heating is the installation of throttle devices in a part of the evaporator tubes 10 and / or in the line system 19 provided for the supply of the flow medium S.
  • the heating depends on the throughput of the To adapt flow medium S through the evaporator tubes 10, the fin width can be selected depending on the position of the evaporator tubes 10 in the combustion chamber 4. All of the measures mentioned ken, despite strongly different heating of the individual evaporator tubes 10, approximately the same specific heat absorption of the flow medium S guided in the evaporator tubes 10 during operation of the continuous-flow steam generator 2 and thus only slight temperature differences of the flow medium S at their outlet.
  • the internal fins of the evaporator tubes 10 are designed in such a way that particularly reliable cooling of the evaporator tubes 10 is ensured in spite of different heating and flow through with flow medium S in all load states of the continuous steam generator 2.
  • the horizontal gas flue 6 has a number of superheater heating surfaces 23 designed as bulkhead heating surfaces, which are arranged in a suspended construction approximately perpendicular to the main flow direction 24 of the heating gas G and whose pipes are connected in parallel for a flow through the flow medium S.
  • the superheater heating surfaces 23 are predominantly convectively heated and are connected downstream of the evaporator tubes 10 of the combustion chamber 4 on the flow medium side.
  • the vertical gas flue 8 has a number of convection heating surfaces 26 which can be heated predominantly by convection and which are formed from tubes arranged approximately perpendicular to the main flow direction 24 of the heating gas G. These tubes are each connected in parallel for a flow through the flow medium S.
  • an economizer 28 is arranged in the vertical throttle cable 8.
  • the vertical gas flue 8 opens into a further heat exchanger, for example an air preheater and from there via a dust filter into a chimney.
  • the components downstream of the vertical throttle cable 8 are not shown in the drawing.
  • the once-through steam generator 2 is configured with a horizontal combustion chamber 4 with "extremely low overall height and can therefore be set at a particularly low manufacturing and assembly costs.
  • the combustion chamber 4 of the pass-through steam generator 2 a number of burners 30 for fossil Fuel B, which are arranged on the end wall 11 of the combustion chamber 4 at the level of the horizontal gas flue 6.
  • the fossil fuel B can be solid fuels, especially coal.
  • the length L of the combustion chamber 4 is selected such that it exceeds the burnout length of the fossil fuel B during full-load operation of the continuous steam generator 2.
  • the length L is the distance from the end wall 11 of the combustion chamber 4 to the inlet area 32 of the horizontal gas flue 6.
  • the burnout length of the fossil fuel B is defined as the heating gas speed in the horizontal direction at a specific mean heating gas temperature multiplied by the burnout time t A Flame F of the fossil fuel B.
  • the maximum burn-out length for the respective continuous steam generator 2 results when the respective continuous steam generator 2 is operating at full load.
  • the burn-out time t A of the flame F of the fuel B is in turn the time it takes, for example, a medium-sized coal dust grain to completely burn out at a time certain average heating gas temperature required.
  • the length L (specified in m) of the combustion chamber 4 is "the burnout time" depending on the outlet temperature T BRK (specified in ° C.) of the heating gas G from the combustion chamber 4 t A (given in s) of the flame F of the fossil fuel B and the steam output M
  • This horizontal length L of the combustion chamber 4th is at least 80% of the height H of the combustion chamber 4.
  • the height H is measured from the upper edge of the funnel 5 of the combustion chamber 4, marked in FIG. 1 by the auxiliary line with the end points X and Y, to the ceiling of the combustion chamber.
  • the length L of the combustion chamber 4 is approximately determined by the functions (I) and (II):
  • Ci 8 m / s
  • the evaporator tubes 50 and 52 are guided in a special way in the connecting section Z marked in FIG.
  • This connecting section Z is shown in detail in FIG. 4 and comprises the outlet area 34 of the combustion chamber 4 and the inlet area 32 of the horizontal gas flue 6.
  • the evaporator tube 50 is the evaporator tube 50 of the peripheral wall 9 of the combustion chamber 4 welded directly to the side wall 12 of the horizontal gas flue 6 and that Evaporator tube 52 is the immediately adjacent evaporator tube 52 of the peripheral wall 9 of the combustion chamber 4.
  • both the evaporator tube 50 and 52 emerge from the common inlet header system 18 together with the evaporator tubes 10 connected in parallel. Then, however, both the evaporator tube 50 and the evaporator tube 52 are initially opposed in an approximately horizontal direction led to the main flow direction 24 of the heating gas G outside the combustion chamber 4. Then they enter the combustion chamber 4 and do not immediately become part of the peripheral wall 9 of the combustion chamber 4 when they enter the combustion chamber 4. Namely, they are returned to the area along the main flow direction 24 of the heating gas G in the combustion chamber 4, on which they are branched outside of the combustion chamber 4 from their approximately vertical course in order to run opposite to the main flow direction 24 of the heating gas G. Only after this loop are they welded into the peripheral wall 9 of the combustion chamber 4, so that they are part of the peripheral wall 9 of the combustion chamber 4.
  • the evaporator pipes 50 and 52 are preheated during operation of the once-through steam generator 2 before they enter the peripheral wall 9 of the combustion chamber 4.
  • the flow medium S guided in them is therefore heated and thus preheated during operation of the continuous steam generator 2, so that it enters the peripheral wall 9 of the combustion chamber 4 at a comparatively higher temperature than that in the directly connected to the evaporator tubes 50 and 52 adjacent evaporator tubes 10 of the combustion chamber 4 is the case.
  • the evaporator pipes 50 and 52 in the inlet section E have a comparatively higher temperature when the continuous steam generator 2 is operating than the evaporator pipes 10 directly adjacent to them of the surrounding wall 9 of the combustion chamber 4.
  • the continuous steam generator 4 is in operation 2 temperature differences at the connection 36 between the combustion chamber 4 and the horizontal gas flue 6 kept particularly low particularly reliably.
  • the special pipe routing of the evaporator tubes 50 and 52 in the inlet section E in the peripheral wall 9 of the combustion chamber 4 can significantly reduce the temperature difference from the steam generator tubes 16 of the peripheral wall 12 of the horizontal gas flue.
  • the temperature of the evaporator tubes 50 and 52 in the inlet section E of the evaporator tubes 50 and 52 can be increased by 45 Kelvin.
  • particularly small temperature differences in the inlet section E of the evaporator tubes 50 and 52 and the steam generator tubes 16 of the horizontal gas flue 6 at the connection 36 between the combustion chamber 4 and the horizontal gas flue 6 are ensured during operation of the continuous steam generator 2.
  • the burners 30 are supplied with fossil fuel B, preferably coal in solid form.
  • the flames F of the burner 30 are aligned horizontally. Due to the design of the combustion chamber 4, a flow of the heating gas G generated during the combustion is generated in an approximately horizontal main flow direction 24. This passes through the horizontal gas flue 6 into the vertical gas flue 8 oriented approximately towards the floor and leaves it in the direction of the chimney (not shown in more detail).
  • Flow medium S entering the economizer 28 enters the inlet header system 18 of the evaporator tubes 10 of the combustion chamber 4 of the continuous-flow steam generator 2.
  • the evaporation and possibly a partial overheating of the flow medium S takes place.
  • the resulting steam or a water-steam mixture is collected in the outlet collector system 20 for flow medium S.
  • the steam or the water-steam mixture reaches the superheater heating surfaces 23 of the horizontal gas duct 6 via the walls of the horizontal gas flue 6 and the vertical gas flue 8.
  • the steam is further overheated, which is then used, for example by the drive a steam turbine.
  • the continuous steam generator 2 can be built due to its particularly low overall height and compact design with particularly low manufacturing and assembly costs. A scaffold that can be constructed with comparatively little technical effort can be provided. In a power plant with a steam turbine and a continuous steam generator 2 having such a low overall height, the connecting pipes from the continuous steam generator to the steam turbine can also be designed in a particularly short manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Fats And Perfumes (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

Ein Durchlaufdampferzeuger (2) weist eine Brennkammer (4) mit Verdampferrohren (10) für fossilen Brennstoff (B) auf, der heizgasseitig über einen Horizontalgaszug (6) ein Vertikalgaszug (8) nachgeschaltet ist. Beim Betrieb des Durchlaufdampferzeugers sollen nun Temperaturunterschiede zwischen dem Austrittsbereich (34) der Brennkammer (4) und dem Eintrittsbereich (32) des Horizontalgaszugs (6) besonders gering sein. Hierzu ist von einer Mehrzahl von parallel mit Strömungsmedium (S) beaufschlagbaren Verdampferrohren (10) eine Anzahl der Verdampferrohre (10) vor ihrem Eintritt in die Umfassungswand (9) der Brennkammer (4) durch die Brennkammer (4) geführt.

Description

Beschreibung
Fossilbeheizter Durchlaufdampferzeuger
Die Erfindung bezieht sich auf einen Durchlaufdampferzeuger, der eine Brennkammer für fossilen Brennstoff aufweist, der heizgasseitig über einen Horizontalgaszug ein Vertikalgaszug nachgeschaltet ist, wobei die Umfassungswände der Brennkammer aus gasdicht miteinander verschweißten, vertikal angeordneten Verdampferrohren gebildet sind.
Bei einer Kraftwerksanlage mit einem Dampferzeuger wird der Energiegehalt eines Brennstoffs zur Verdampfung von einem Strömungsmedium im Dampferzeuger genutzt. Dabei wird das Strömungsmedium üblicherweise in einem Verdampferkreislauf geführt. Der durch den Dampferzeuger bereitgestellte Dampf wiederum kann beispielsweise für den Antrieb einer Dampfturbine und/oder für einen angeschlossenen externen Prozeß vorgesehen sein. Treibt der Dampf eine Dampfturbine an, so wird über die Turbinenwelle der Dampfturbine üblicherweise ein Generator oder eine Arbeitsmaschine betrieben. Im Falle eines Generators kann der durch den Generator erzeugte Strom zur Einspeisung in ein Verbund- und/oder Inselnetz vorgesehen sein.
Der Dampferzeuger kann dabei als Durchlaufdampferzeuger ausgebildet sein. Ein Durchlaufdampferzeuger ist aus dem Aufsatz „Verdampferkonzepte für Benson-Dampferzeuger" von J. Franke, W. Köhler und E. ittchow, veröffentlicht in VGB Kraftwerks- technik 73 (1993), Heft 4, S. 352-360, bekannt. Bei einem Durchlaufdampferzeuger führt die Beheizung von als Verdampferrohren vorgesehenen Dampferzeugerrohren zu einer Verdampfung des Strömungsmediums in den Dampferzeugerrohren in einem einmaligen Durchlauf.
Durchlaufdampferzeuger werden üblicherweise mit einer Brennkammer in vertikaler Bauweise ausgeführt. Dies bedeutet, daß die Brennkammer für eine Durchströmung des beheizenden Mediums oder Heizgases in annähernd vertikaler Richtung ausgelegt ist. Heizgasseitig kann der Brennkammer dabei ein Horizontalgaszug nachgeschaltet sein, wobei beim Übergang von der Brennkammer in den Horizontalgaszug eine Umlenkung des Heizgasstroms in eine annähernd horizontale Strömungsrichtung erfolgt. Derartige Brennkammern erfordern jedoch im allgemeinen aufgrund der temperaturbedingten Längenänderungen der Brennkammer ein Gerüst, an dem die Brennkammer aufgehängt wird. Dies bedingt einen erheblichen technischen Aufwand bei der Herstellung und Montage des Durchlaufdampferzeugers, der um so größer ist, je größer die Bauhöhe des Durchlaufdampferzeugers ist. Dies ist insbesondere bei Durchlaufdampferzeugern der Fall, die für eine Dampfleistung von mehr als 80 kg/s bei Vollast ausgelegt sind.
Ein Durchlaufdampferzeuger unterliegt keiner Druckbegrenzung, so daß Frischdampfdrücke weit über dem kritischen Druck von Wasser (picri = 221 bar) - wo es nur noch einen geringen Dich- teunterschied gibt zwischen flüssigkeitsähnlichem und dampfähnlichem Medium - möglich sind. Ein hoher Frischdampfdruck begünstigt einen hohen thermischen Wirkungsgrad und somit niedrige CC>2-Emissionen eines fossilbeheizter. Kraftwerks, das beispielsweise mit Steinkohle oder auch mit Braunkohle in fe- ster Form als Brennstoff befeuert sein kann.
Ein besonderes Problem stellt die Auslegung der Umfassungswand des Gaszuges oder Brennkammer des Durchlaufdampferzeugers im Hinblick auf die dort auftretenden Rohrwand- oder Ma- terialtemperaturen dar. Im unterkritischen Druckbereich bis etwa 200 bar wird die Temperatur der Umfassungswand der Brennkammer im wesentlichen von der Höhe der Sättigungstemperatur des Wassers bestimmt,' wenn eine Benetzung der Innenoberfläche der 'Verdampferrohre sichergestellt werden kann. Dies wird beispielsweise durch die Verwendung von Verdampferrohren erzielt, die auf ihrer Innenseite eine Oberflächenstruktur aufweisen. Dazu kommen insbesondere innenberippte Verdampferrohre in Betracht, deren Einsatz in einem Durchlaufdampferzeuger beispielsweise aus dem oben zitierten Aufsatz bekannt ist. Diese sogenannten Rippenrohre, d.h. Rohre mit einer berippten Innenoberfläche, haben einen besonders guten Wärmeübergang von der Rohrinnenwand zum Strömungsmedium.
Erfahrungsgemäß läßt es sich nicht vermeiden, daß beim Betrieb des Durchlaufdampferzeugers Wärmespannungen zwischen benachbarten Rohrwänden unterschiedlicher Temperatur auftreten, wenn diese miteinander verschweißt sind. Dies ist insbesondere bei dem Verbindungabschnitt der Brennkammer mit dem ihr nachgeschalteten Horizontalgaszug der Fall, also zwischen Verdampferrohren des Austrittsbereichs der Brennkammer und Dampferzeugerrohren des Eintrittsbereichs des Horizontalgaszugs. Durch diese Wärmespannungen kann die Lebensdauer des Durchlaufdampferzeugers deutlich verkürzt werden, und im Extremfall können sogar Rohrreißer entstehen.
Der Erfindung liegt daher die Aufgabe zugrunde, einen fossilbeheizten Durchlaufdampferzeuger der oben genannten Art anzugeben, der einen besonders geringen Herstellungs- und Montageaufwand erfordert, und bei dessen Betrieb außerdem Temperaturunterschiede an der Verbindung der Brennkammer mit dem ihr nachgeschalteten Horizontalgaszug gering gehalten sind. Dies soll insbesondere für die einander unmittelbar oder mittelbar benachbarten Verdampferrohre der Brennkammer und Dampferzeugerrohre des der Brennkammer nachgeschalteten Horizontalgaszugs der Fall sein.
Diese Aufgabe wird erfindungsgemäß gelöst, indem der Durchlaufdampferzeuger eine Brennkammer mit einer Anzahl von in der Höhe des Horizontalgasz'ugs angeordneten Brennern aufweist, wobei eine "Mehrzahl der Verdampferrohre jeweils paral- lel mit Strömungsmedium beaufschlagbar, ist und in dem Austrittsbereich der Brennkammer eine Anzahl der parallel mit Strömungsmedium beaufschlagbaren Verdampferrohre vor ihrem Eintritt in die jeweilige Umfassungswand der Brennkammer durch die Brennkammer geführt ist.
Die Erfindung geht von der Überlegung aus, daß ein mit beson- ders geringem Herstellungs- und Montageaufwand erstellbarer Durchlaufdampferzeuger eine mit einfachen Mitteln ausführbare Aufhängekonstruktion aufweisen sollte. Ein mit vergleichsweise geringem technischem Aufwand zu erstellendes Gerüst für die Aufhängung der Brennkammer kann dabei einhergehen mit ei- ner besonders geringen Bauhöhe des Durchlaufdampferzeugers . Eine besonders geringe Bauhöhe des Durchlaufdampferzeugers ist erzielbar, indem die Brennkammer in horizontaler Bauweise ausgeführt ist. Hierzu sind die Brenner in der Höhe des Horizontalgaszugs in der Brennkammerwand angeordnet. Somit strömt beim Betrieb des Durchlaufdampferzeugers das Heizgas in annähernd horizontaler Hauptströmungsrichtung durch die Brennkammer.
Beim Betrieb des Durchlaufdampferzeugers mit der horizontalen Brennkammer sollten außerdem an der Verbindung der Brennkammer mit dem Horizontalgaszug Temperaturunterschiede besonders gering sein, um vorzeitige Materialermüdungen als Folge von Wärmespannungen zuverlässig zu vermeiden. Diese Temperaturunterschiede sollten insbesondere zwischen einander unmittel- bar oder mittelbar benachbarten Verdampferrohren der Brennkammer und Dampf-erzeugerrohren des Horizontalgaszugs besonders gering sein, damit im Austrittsbereich der Brennkammer und im Eintrittsbereich des Horizontalgaszugs Materialermüdungen als Folge von Wärmespannungen besonders zuverlässig verhindert sind.
Der mit Strömungsmedium beaufschlagte Eintrittsabschnitt der Verdampferrohre weist nun aber beim Betrieb des Durchlaufdampferzeugers eine vergleichsweise geringere Temperatur auf als der Eintrittsabschnitt der Dampferzeugerrohre des der Brennkammer nachgeschalteten Horizontalgaszugs. In die Verdampferrohre tritt nämlich vergleichsweise kaltes Strömungs- medium ein im Gegensatz zu dem heißen Strömungsmedium, das in die Dampferzeugerrohre des Horizontalgaszugs eintritt. Also sind die Verdampferrohre beim Betrieb des Durchlaufdampferzeugers im Eintrittsabschnitt kälter als die Dampferzeuger- röhre im Eintrittsabschnitt des Horizontalgaszugs. Damit sind an der Verbindung zwischen der Brennkammer und dem Horizontalgaszug Materialermüdungen als Folge von Wärmespannungen zu erwarten.
Tritt nun aber in die Verdampferrohre der Brennkammer nicht kaltes sondern vorgewärmtes Strömungsmedium ein, so wird auch der Temperaturunterschied zwischen dem Eintrittsabschnitt der Verdampferrohre und dem Eintrittsabschnitt der Dampferzeugerrohre nicht mehr so groß ausfallen, wie dies bei einem Ein- tritt von kaltem Strömungsmedium in die Verdampferrohre der Fall wäre. Der Temperaturunterschied läßt sich noch weiter verringern, wenn das Rohr, in welchem durch Beheizung die Vorwärmung des Strömungsmediums erfolgt, direkt an das mittelbar oder unmittelbar mit den Dampferzeugerrohren des Hori- zontalgaszugs verbundene Verdampferrohr angeschlossen oder aber ein Teil desselben ist. Hierzu ist eine Anzahl der Verdampferrohre vor ihrem Eintritt in die Umfassungswand der Brennkammer durch die Brennkammer geführt. Dabei ist diese Anzahl der Verdampferrohre einer Mehrzahl von parallel mit Strömungsmedium beaufschlagbaren Verdampferrohren zugeordnet.
Die Seitenwände des Horizontalgaszugs und/oder des Vertikalgaszugs sind vorteilhafterweise aus gasdicht miteinander verschweißten, vertikal angeordneten, jeweils parallel mit Strö- mungsmedium beaufschlagbaren Dampferzeugerrohren gebildet.
Vorteilhafterweise ist jeweils einer Anzahl von parallel geschalteten Verdampferrohren der Brennkammer ein gemeinsames Eintrittssammler-System vorgeschaltet und ein gemeinsames Austrittssammler-System für Strömungsmedium nachgeschaltet.
Ein in dieser Ausgestaltung ausgeführter Durchlaufdampferzeuger ermöglicht nämlich einen zuverlässigen Druckausgleich zwischen einer Anzahl von parallel mit Strömungsmedium beaufschlagbaren Verdampferrohren, so daß jeweils alle parallel geschalteten Verdampferrohre zwischen dem Eintrittssammler- System und dem Austrittssammler-System den gleichen Gesamt- druckverlust aufweisen. Dies bedeutet, daß bei einem mehrbeheizten Ver-dampferrohr im Vergleich zu einem minderbeheizten Verdampfer-rohr der Durchsatz steigen muß. Dies gilt auch für die parallel mit Strömungsmedium beaufschlagbaren Dampferzeugerrohre des Horizontalgaszugs oder des Vertikalgaszugs, de- nen vorteilhafterweise ein gemeinsames Eintrittssammler-System für Strömungsmedium vorgeschaltet und ein gemeinsames Austrittssammler-System für Strömungsmedium nachgeschaltet ist.
Die Verdampferrohre der Stirnwand der Brennkammer sind vorteilhafterweise parallel mit Strömungsmedium beaufschlagbar und den Verdampferrohren der Umfassungswände, die die Seitenwände der Brennkammer bilden, strömungsmediumsseitig vorgeschaltet. Dadurch ist eine besonders günstige Kühlung der stark beheizten Stirnwand der Brennkammer gewährleistet.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist der Rohrinnendurchmesser einer Anzahl der Verdampferrohre der Brennkammer abhängig von der jeweiligen Position der Ver- dampferrohre in der Brennkammer gewählt. Auf diese Weise sind die Verdampferrohre in der Brennkammer an ein heizgasseitig vorgebbares Beheizungsprofil anpaßbar. Mit dem hierdurch bewirkten Einfluß auf die Durchströmung der Verdampferrohre sind besonders zuverlässig Temperaturunterschiede des Strö- mungsmediums am Austritt aus den Verdampferrohren der Brennkammer besonders gering gehalten.
Für eine besonders gute Wärmeübertragung von der Wärme der Brennkammer auf das in den Verdampferrohren geführte Strö- mungsmedium weist vorteilhafterweise eine Anzahl der Verdampferrohre auf ihrer Innenseite jeweils ein mehrgängiges Gewinde bildende Rippen auf. Dabei ist vorteilhafterweise ein Steigungswinkel α zwischen einer zur Rohrachse senkrechten Ebene und den Flanken der auf der Rohrinnenseite angeordneten Rippen kleiner als 60°, vorzugsweise kleiner als 55°.
In einem beheizten, als Verdampferrohr ohne Innenberippung, einem sogenannten Glattrohr, ausgeführten Verdampferrohr kann nämlich von einem bestimmten Dampfgehalt an die für einen besonders guten Wärmeübergang erforderliche Benetzung der Rohrwand nicht mehr aufrechterhalten werden. Bei fehlender Benet- zung kann eine stellenweise trockene Rohrwand vorliegen. Der Übergang zu einer derartigen trockenen Rohrwand führt zu einer sogenannten Wärmeübergangskrise mit verschlechtertem Wärmeübergangsverhalten, so daß im allgemeinen die Rohrwandtemperaturen an dieser Stelle besonders stark ansteigen. In ei- nem innenberippten Verdampferrohr tritt aber nun im Vergleich zu einem Glattrohr diese Krise des Wärmeübergangs erst bei einem Dampfmassengehalt > 0,9, also kurz vor dem Ende der Verdampfung, auf. Das ist auf den Drall zurückzuführen, den die Strömung durch die spiralförmigen Rippen erfährt. Auf- grund der unterschiedlichen Zentrifugalkraft wird der Wasser- vom Dampfanteil separiert und an die Rohrwand transportiert. Dadurch wird die Benetzung der Rohrwand bis zu hohen Dampfgehalten aufrechterhalten, so daß am Ort der Wärmeübergangs- krise bereits hohe Strömungsgeschwindigkeiten vorliegen. Das bewirkt trotz Wärmeübergangskrise einen relativ guten Wärmeübergang und als Folge niedrige Rohrwandtemperaturen.
Eine Anzahl der Verdampferrohre der Brennkammer weist vorteilhafterweise Mittel zum Reduzieren des Durchflusses des Strömungsmediums auf. Dabei erweist es sich als besonders günstig, wenn die Mittel als Drosseleinrichtungen ausgebildet sind. Drosseleinrichtungen können beispielsweise Einbauten in die Verdampferrohre sein, die an einer Stelle im Inneren des jeweiligen Verdampferrohrs den Rohrinnendurchmesser verklei- nern. Dabei erweisen sich auch Mittel zum Reduzieren des
Durchflusses in einem mehrere parallele Leitungen umfassenden Leitungssystem als vorteilhaft, durch das den Verdampferroh- ren der Brennkammer Strömungsmedium zuführbar ist. Dabei kann das Leitungssystem auch einem Eintrittssammler-System von parallel mit Strömungsmedium beaufschlagbaren Verdampferrohren vorgeschaltet sein. In einer Leitung oder in mehreren Leitungen des Leitungssystems können dabei beispielsweise
Drosselarmaturen vorgesehen sein. Mit solchen Mitteln zur Reduzierung des Durchflusses des Strömungsmediums durch die Verdampferrohre läßt sich eine Anpassung des Durchsatzes des Strömungsmediums durch einzelne Verdampferrohre an deren je- weilige Beheizung in der Brennkammer herbeiführen. Dadurch sind zusätzlich Temperaturunterschiede des Strömungsmediums am Austritt der Verdampferrohre besonders zuverlässig besonders gering gehalten.
Benachbarte Verdampfer- bzw. Dampferzeugerrohre sind an ihren Längsseiten vorteilhafterweise über Metallbänder, sogenannte Flossen, gasdicht miteinander verschweißt. Diese Flossen können im Herstellungsverfahren der Rohre bereits fest mit den Rohren verbunden sein und mit diesen eine Einheit bilden. Diese aus einem Rohr und Flossen gebildete Einheit wird auch als Flossenrohr bezeichnet. Die Flossenbreite beeinflußt den Wärmeeintrag in die Verdampfer- bzw. Dampferzeugerrohre. Daher ist die Flossenbreite vorzugsweise abhängig von der Position der jeweiligen Verdampfer- bzw. Dampferzeugerrohre im Durchlaufdampferzeuger an ein heizgasseitig vorgebbares Beheizungsprofil angepaßt. Als Beheizungsprofil kann dabei ein aus Erfahrungswerten ermitteltes typisches Beheizungsprofil oder auch eine grobe Abschätzung, wie beispielsweise ein stufenförmiges Beheizungsprofil, vorgegeben sein. Durch die ge- eignet gewählten Flossenbreiten ist auch bei stark unterschiedlicher Beheizung verschiedener Verdampfer- bzw. Dampferzeugerrohre ein Wärmeeintrag in alle Verdampfer- bzw. Dampferzeugerrohre derart erreichbar, daß Temperaturunterschiede des Strömύngsmediums am Austritt aus den Verdampfer- bzw. Dampferzeugerrohren besonders gering gehalten sind. Auf diese Weise sind vorzeitige Materialermüdungen als Folge von Wärmespannungen zuverlässig verhindert. Dadurch weist der Durchlaufdampferzeuger eine besonders lange Lebensdauer auf.
In dem Horizontalgaszug sind vorteilhafterweise eine Anzahl von Überhitzerheizflächen angeordnet, die annähernd senkrecht zur Hauptströmungsrichtung des Heizgases angeordnet und deren Rohre für eine Durchströmung des Strömungsmediums parallel geschaltet sind. Diese in hängender Bauweise angeordneten, auch als Schottheizflächen bezeichneten Überhitzerheizflächen werden überwiegend konvektiv beheizt und sind strömungsmedi- umsseitig den Verdampferrohren der Brennkammer nachgeschaltet. Hierdurch ist eine besonders günstige Ausnutzung der Heizgaswärme gewährleistet.
Vorteilhafterweise weist der Vertikalgaszug eine Anzahl von Konvektionsheizflächen auf, die aus annähernd senkrecht zur Hauptströmungsrichtung des Heizgases angeordneten Rohren gebildet sind. Diese Rohre einer Konvektionsheizflache sind für eine Durchströmung des Strömungsmediums parallel geschaltet. Auch diese Konvektionsheizflächen werden überwiegend konvektiv beheizt.
Um weiterhin eine besonders vollständige Ausnutzung der Wärme des Heizgases zu gewährleisten, weist der Vertikalgaszug vor- teilhafterweise einen Economizer auf.
Vorteilhafterweise sind die Brenner an der Stirnwand der Brennkammer angeordnet, also an derjenigen Seitenwand der Brennkammer, die der Abströmöffnung zum Horizontalgaszug ge- genüberliegt. Ein derartig ausgebildeter Durchlaufdampferzeuger ist auf besonders einfache Weise an die Ausbrandlänge des fossilen Brennstoffs anpaßbar. Unter Ausbrandlänge des fossilen Brennstoffs ist dabei die Heizgasgeschwindigkeit in horizontaler Richtung 'bei einer bestimmten mittleren Heizgastem- peratur multipliziert mit der Ausbrandzeit tA der Flamme des fossilen Brennstoffs zu verstehen. Die für den jeweiligen Durchlaufdampferzeuger maximale Ausbrandlänge ergibt sich da- bei bei der Dampfleistung M bei Vollast des Durchlaufdampferzeugers, dem sogenannten Vollastbetrieb. Die Ausbrandzeit tA der Flamme des fossilen Brennstoffs wiederum ist die Zeit, die beispielsweise ein Kohlenstaubkorn mittlerer Größe benö- tigt, um bei einer bestimmten mittleren Heizgastemperatur vollständig auszubrennen.
Um Materialschäden und eine unerwünschte Verschmutzung des Horizontalgaszuges, beispielsweise aufgrund des Eintrags von schmelzflüssiger Asche einer hohen Temperatur, besonders gering zu halten, ist die durch den Abstand von der Stirnwand zum Eintrittsbereich des Horizontalgaszuges definierte Länge der Brennkammer vorteilhafterweise mindestens gleich der Ausbrandlänge des fossilen Brennstoffs beim Vollastbetrieb des Durchlaufdampferzeugers . Diese horizontale Länge der Brennkammer wird im allgemeinen mindestens 80 % der Höhe der Brennkammer betragen, gemessen von der Trichteroberkante, wenn der untere Bereich der Brennkammer trichterförmig ausgeführt ist, bis zur Brennkammerdecke.
Die Länge L (angegeben in m) der Brennkammer ist für eine besonders günstige Ausnutzung der Verbrennungswärme des fossilen Brennstoffs vorteilhafterweise als Funktion der Dampfleistung M (angegeben in kg/s) des Durchlaufdampferzeugers bei Vollast, der Ausbrandzeit tA (angegeben in s) der Flamme des fossilen Brennstoffs und der Austrittstemperatur TBRK (angegeben in °C) des Heizgases aus der Brennkammer gewählt. Dabei gilt bei gegebener Dampfleistung M des Durchlaufdampferzeugers bei Vollast für die Länge L der Brennkammer näherungs- weise der größere Wert der beiden Funktionen (I) und (II) :
L (M, tA) = ( Ci + C2 • M) • tA ( I ) und
L ( M, TBRK) = ( C3 '" • TBRK + C4 ) M + C5 ( TBRκ) 2 + Cδ TBRK + C7 ( I I ) mit
Figure imgf000012_0001
C2 = 0 , 0057 m/kg und
C3 = -1 , 905 10"4 ( • s ) / ( kg ! 'O und
C4 = 0 , 286 ( s • m) /kg und
Cs = 3 • 10" ' ' m/ ( °C) 2 und c6 = -0 , 842 m/ °C und
C7 = 603 , 41 m .
Unter „näherungsweise" ist hierbei eine zulässige Abweichung der Länge L der Brennkammer vom durch die jeweilige Funktion definierten Wert um +20%/-10% zu verstehen.
Vorteilhafterweise ist der untere Bereich der Brennkammer als Trichter ausgebildet. Auf diese Weise kann beim Betrieb des Durchlaufdampferzeugers bei der Verbrennung des fossilen Brennstoffs anfallende Asche besonders einfach abgeführt werden, beispielsweise in eine unter dem Trichter angeordnete Entaschungseinrichtung. Bei dem fossilen Brennstoff kann es sich dabei um Kohle in fester Form handeln.
Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß durch die Führung einiger Verdampferrohre durch die Brennkammer vor ihrem Eintritt in die Umfassungswand der Brennkammer, Temperaturunterschiede in der unmittelbaren Umgebung der Verbindung der Brennkammer mit dem Hori- zontalgaszug beim Betrieb des Durchlaufdampferzeugers besonders gering ausfallen. Die durch Temperaturunterschiede zwischen unmittelbar benachbarten Verdampferrohren der Brennkammer und Dampferzeugerrohren des Horizontalgaszugs verursachten Wärmespannungen an der Verbindung der Brennkammer mit dem Horizontalgaszug bleiben daher beim Betrieb des Durchlaufdampferzeugers weit unter den Werten, bei denen beispielsweise die Gefahr von Rohrreißern gegeben ist. Damit ist der Einsatz einer horizontalen Brennkammer in einem Durchlaufdampferzeuger auch mit vergleichsweise langer Lebensdauer möglich. Durch die Auslegung der Brennkammer für eine annähernd horizontale Hauptströmungsrichtung des Heizgases ist außerdem eine besonders kompakte Bauweise des Durchlaufdampf- erzeugers gegeben. Dies ermöglicht bei Einbindung des Durchlaufdampferzeugers in ein Kraftwerk mit einer Dampfturbine auch besonders kurze Verbindungsrohre von dem Durchlaufdampferzeuger zu der Dampfturbine.
Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen:
FIG 1 schematisch einen fossilbeheizten Durchlaufdampfer- zeuger in Zweizugbauart in Seitenansicht und
FIG 2 schematisch einen Längsschnitt durch ein einzelnes Verdampferrohr,
FIG 3 ein Koordinatensystem mit den Kurven Ki bis Kg,
FIG 4 schematisch die Verbindung der Brennkammer mit dem Horizontalgaszug und
FIG 5 ein Koordinatensystem mit den Kurven Ui bis U4.
Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen.
Der fossilbeheizbare Durchlaufdampferzeuger 2 gemäß Figur 1 ist einer nicht näher dargestellten Kraftwerksanlage zugeordnet, die auch eine Dampfturbinenanlage umfaßt. Dabei ist der Durchlaufdampferzeuger 2 für eine Dampfleistung bei Vollast von mindestens 80 kg/s ausgelegt. Der im Durchlaufdampferzeu- ger 2 erzeugte Dampf wird dabei zum Antrieb der Dampfturbine genutzt, die ihrerseits wiederum einen Generator zur Stromerzeugung antreibt. Der durch den Generator erzeugte Strom ist dabei zur Einspeisung in ein Verbund- oder ein Inselnetz vorgesehen.
Der fossilbeheizte Durchlaufdampferzeuger 2 umfaßt eine in horizontaler Bauweise ausgeführte Brennkammer 4, der heiz- gasseitig über einen Horizontalgaszug 6 ein Vertikalgaszug 8 nachgeschaltet ist. Der untere Bereich der Brennkammer 4 ist durch einen Trichter 5 mit einer Oberkante entsprechend der Hilfslinie mit den Endpunkten X und Y gebildet. Durch den Trichter 5 kann beim Betrieb des Durchlaufdampferzeugers 2 Asche des fossilen Brennstoffs B in eine darunter angeordnete Entaschungseinrichtug 7 abgeführt werden. Die Umfassungswände 9 der Brennkammer 4 sind aus gasdicht miteinander verschweißten, vertikal angeordneten Verdampferrohren 10 gebil- det, von denen eine Anzahl N parallel mit Strömungsmedium S beaufschlagbar ist. Dabei ist eine Umfassungswand 9 der Brennkammer 4 die Stirnwand 11. Zusätzlich sind auch die Seitenwände 12 des Horizontalgaszugs 6 bzw. 14 des Vertikalgaszugs 8 aus gasdicht miteinander verschweißten, vertikal ange- ordneten Dampferzeugerrohren 16 bzw. 17 gebildet. Dabei sind eine Anzahl der Dampferzeugerrohre 16 bzw. 17 jeweils parallel mit Strömungsmedium S beaufschlagbar.
Einer Anzahl der Verdampferrohre 10 der Brennkammer 4 ist strömungsmediumsseitig ein Eintrittssammler-System 18 für
Strömungsmedium S vorgeschaltet und ein Austrittssammler-System 20 nachgeschaltet. Das Eintrittssammler-System 18 umfaßt dabei eine Anzahl von parallelen Eintritsssammlern. Dabei ist zum Zuführen von Strömungsmedium S in das Eintrittssam ler- System 18 der Verdampferrohre 10 ein Leitungssystem 19 vorgesehen. Das Leitungssystems 19 umfaßt mehrere parallel geschaltete Leitungen, die jeweils mit einem der Eintrittssammler des Eintrittssammler-Systems 18 verbunden sind.
In gleicher Weise ist den parallel mit Strömungsmedium S beaufschlagbaren Dampferzeugerrohren 16 der Seitenwände 12 des Horizontalgaszugs 6 ein gemeinsames Eintrittssammlersystem 21 vorgeschaltet und ein gemeinsames Austrittssammlersystem 22 nachgeschaltet. Dabei ist zum Zuführen von Strömungsmedium S in das Eintrittssammler-System 21 der Dampferzeugerrohre 16 ebenfalls ein Leitungssystem 19 vorgesehen. Das Leitungssystem umfaßt auch hier mehrere parallel geschaltete Leitungen, die jeweils mit einem der Eintrittssammler des Eintrittssammler-Systems 21 verbunden sind.
Durch diese Ausgestaltung des Durchlaufdampferzeugers 2 mit Eintrittssammler-Systemen 18, 21 und Austrittssammler-Systemen 20, 22 ist ein besonders zuverlässiger Druckausgleich zwischen den parallel geschalteten Verdampferrohren 10 der Brennkammer 4 bzw. den parallel geschalteten Dampferzeugerrohren 16 des Horizontalgaszugs 6 in der Weise möglich, daß jeweils alle parallel geschalteten Verdampfer- bzw. Dampferzeugerrohre 10 bzw. 16 den gleichen Gesamtdruckverlust aufweisen. Dies bedeutet, daß bei einem mehr beheizten Verdampferrohr 10 bzw. Dampferzeugerrohr 16 im Vergleich zu einem minderbeheizten Verdampferrohr 10 bzw. Dampferzeugerrohr 16 der Durchsatz steigen muß.
Die Verdampferrohre 10 weisen - wie in Figur 2 dargestellt - einen Rohrinnendurchmesser D und auf ihrer Innenseite Rippen 40 auf, die eine Art mehrgängiges Gewinde bilden und eine Rippenhöhe C haben. Dabei ist der Steigungswinkel α zwischen einer zur Rohrachse senkrechten Ebene 42 und den Flanken 44 der auf der Rohrinnenseite angeordneten Rippen 40 kleiner als 55°. Dadurch werden ein besonders hoher Wärmeübergang von den Innenwänden der Verdampferrohre 10 an das in den Verdampfer- röhren 10 geführte Strömungsmedium S und gleichzeitig besonders niedrige Temperaturen der Rohrwand erreicht.
Der Rohrinnendurchmesser D der Verdampferrohre 10 der Brennkammer 4 ist abhängig von der jeweiligen Position der Ver- dampferrohre 10 in der Brennkammer 4 gewählt. Auf diese Weise ist der Durchlaufdampferzeuger 2 an die unterschiedlich starke Beheizung der Verdampferrohre 10 angepaßt. Diese Auslegung der Verdampferrohre 10 der Brennkammer 4 gewährleistet besonders zuverlässig, daß Temperaturunterschiede des Strö- mungsmediums S beim Austritt aus den Verdampferrohren 10 besonders gering gehalten sind. Als Mittel zum Reduzieren des Durchflusses des Strömungsmediums S sind ein Teil der Verdampferrohre 10 mit Drosseleinrichtungen ausgestattet, die in der Zeichnung nicht näher dargestellt sind. Die Drosseleinrichtungen sind als den Rohrinnendurchmesser D an einer Stelle verkleinernde Lochblenden ausgeführt und bewirken beim Betrieb des Durchlaufdampferzeugers 2 eine Reduzierung des Durchsatzes des Strömungsmediums S in minderbeheizten Verdampferrohren 10, wodurch der Durchsatz des Strömungsmediums S der Beheizung angepaßt wird.
Weiterhin sind als Mittel zum Reduzieren des Durchsatzes des Strömungsmediums S in den Verdampferrohren 10 eine oder mehrere nicht näher dargestellte Leitungen des Leitungssystems 19 mit Drosseleinrichtungen, insbesondere Drosselarma- turen, ausgestattet.
Benachbarte Verdampfer- bzw. Dampferzeugerrohre 10, 16, 17 sind in nicht näher in der Zeichnung dargestellter Weise an ihren Längsseiten über Flossen gasdicht miteinander ver- schweißt. Durch eine geeignete Wahl der Flossenbreite kann nämlich die Beheizung der Verdampfer- bzw. Dampferzeugerrohre 10, 16, 17 beeinflußt werden. Daher ist die jeweilige Flossenbreite an ein heizgasseitig vorgebbares Beheizungsprofil angepaßt, das von der Position der jeweiligen Verdampfer- bzw. Dampferzeugerrohre 10, 16, 17 im Durchlaufdampferzeuger 2 abhängt. Das Beheizungsprofil kann dabei ein aus Erfahrungswerten ermitteltes typisches Beheizungsprofil oder auch eine grobe Abschätzung sein. Dadurch sind Temperaturunterschiede am Austritt der Verdampfer- bzw. Dampferzeuger- röhre 10, 16, 17 auch bei stark unterschiedlicher Beheizung der Verdampfer- bzw. Dampferzeugerrohre 10, 16, 17 besonders gering gehalten. Auf diese Weise sind Materialermüdungen als Folge von Wärmespannungen zuverlässig verhindert, was eine lange Lebensdauer "des Durchlaufdampferzeugers 2 gewährlei- stet. Bei der Berohrung der horizontalen Brennkammer 4 ist zu berücksichtigen, daß die Beheizung der einzelnen, miteinander gasdicht verschweißten Verdampferrohre 10 beim Betrieb des Durchlaufdampferzeugers 2 sehr unterschiedlich ist. Deswegen wird die Auslegung der Verdampferrohre 10 hinsichtlich ihrer Innenberippung, ihrer Flossenverbindung zu benachbarten Verdampferrohren 10 und ihres Rohrinnendurchmessers D so gewählt, daß alle Verdampferrohre 10 trotz unterschiedlicher Beheizung annähernd gleiche Austrittstemperatureή des Strö- mungsmediums S aufweisen und eine ausreichende- Kühlung aller Verdampferrohre 10 für alle Betriebszustände des Durchlaufdampferzeugers 2 gewährleistet ist. Eine Minderbeheizung einiger Verdampferrohre 10 beim Betrieb des Durchlaufdampferzeugers 2 wird dabei durch den Einbau von Drosseleinrichtun- gen zusätzlich berücksichtigt.
Die Rohrinnendurchmesser D der Verdampferrohre 10 in der Brennkammer 4 sind in Abhängigkeit von ihrer jeweiligen Position in der Brennkammer 4 gewählt. Dabei weisen Verdampfer- röhre 10, die beim Betrieb des Durchlaufdampferzeugers 2 einer stärkeren Beheizung ausgesetzt sind, einen größeren Rohrinnendurchmesser D auf als Verdampferrohre 10, die beim Betrieb des Durchlaufdampferzeugers 2 geringer beheizt werden. Damit wird gegenüber dem Fall mit gleichen Rohrinnendurchmes- sern erreicht, daß sich der Durchsatz des Strömungsmediums S in den Verdampferrohren 10 mit größerem Rohrinnendurchmesser D erhöht und dadurch Temperaturdifferenzen am Austritt der Verdampferrohre 10 infolge unterschiedlicher Beheizung reduziert werden. Eine weitere Maßnahme, die Durchströmung der Verdampferrohre 10 mit Strömungsmedium S an die Beheizung anzupassen, ist der Einbau von Drosseleinrichtungen in einen Teil der Verdampferrohre 10 und/oder in das zur Zuführung von Strömungsmedium S vorgesehene Leitungssystem 19. Um dagegen die Beheizung an den Durchsatz des Strömungsmediums S durch die Verdampferrohre 10 anzupassen, kann die Flossenbreite in Abhängigkeit von der Position der Verdampferrohre 10 in der Brennkammer 4 gewählt werden. Alle genannten Maßnahmen bewir- ken trotz stark unterschiedlicher Beheizung der einzelnen Verdampferrohre 10 eine annähernd gleiche spezifische Wärmeaufnahme des in den Verdampferrohren 10 geführten Strömungsmediums S beim Betrieb des Durchlaufdampferzeugers 2 und so- mit nur geringe Temperaturdifferenzen des Strömungsmediums S an deren Austritt. Die Innenberippung der Verdampferrohre 10 ist dabei derart ausgelegt, daß eine besonders zuverlässige Kühlung der Verdampferrohre 10 trotz unterschiedlicher Beheizung und Durchströmung mit Strömungsmedium S bei allen Last- zuständen des Durchlaufdampferzeugers 2 gewährleistet ist.
Der Horizontalgaszug 6 weist eine Anzahl von als Schottheizflächen ausgebildeten Überhitzerheizflächen 23 auf, die in hängender Bauweise annähernd senkrecht zur Hauptströmungs- richtung 24 des Heizgases G angeordnet und deren Rohre für eine Durchströmung des Strömungsmediums S jeweils parallel geschaltet sind. Die Überhitzerheizflächen 23 werden überwiegend konvektiv beheizt und sind strömungsmediumsseitig den Verdampferrohren 10 der Brennkammer 4 nachgeschaltet.
Der Vertikalgaszug 8 weist eine Anzahl von überwiegend konvektiv beheizbaren Konvektionsheizflächen 26 auf, die aus annähernd senkrecht zur Hauptströmungsrichtung 24 des Heizgases G angeordneten Rohren gebildet sind. Diese Rohre sind für eine Durchströmung des Strömungsmediums S jeweils parallel geschaltet. Außerdem ist in dem Vertikalgaszug 8 ein Economi- zer 28 angeordnet. Ausgangsseitig mündet der Vertikalgaszug 8 in einen weiteren Wärmetauscher, beispielsweise in einen Luftvorwärmer und von dort über einen Staubfilter in einen Kamin. Die dem Vertikalgaszug 8 nachgeschalteten Bauteile sind in der Zeichnung nicht näher dargestellt.
Der Durchlaufdampferzeuger 2 ist mit einer horizontalen Brennkammer 4 mit "besonders niedriger Bauhöhe ausgeführt und somit mit besonders geringem Herstellungs- und Montageaufwand errichtbar. Hierzu weist die Brennkammer 4 des Durchlauf- dampferzeugers 2 eine Anzahl von Brennern 30 für fossilen Brennstoff B auf, die an der Stirnwand 11 der Brennkammer 4 in der Höhe des Horizontalgaszuges 6 angeordnet sind. Bei dem fossilen Brennstoff B kann es sich dabei um feste Brennstoffe, insbesondere Kohle handeln.
Damit der fossile Brennstoff B, beispielsweise Kohle in fester Form, zur Erzielung eines besonders hohen Wirkungsgrads besonders vollständig ausbrennt und Materialschäden der heiz- gasseitig gesehen ersten Überhitzerheizfläche 23 des Horizon- talgaszuges 6 und eine Verschmutzung derselben, beispielsweise durch Eintrag von schmelzflüssiger Asche mit hoher Temperatur, besonders zuverlässig verhindert sind, ist die Länge L der Brennkammer 4 derart gewählt, daß sie die Ausbrandlänge des fossilen Brennstoffs B beim Vollastbetrieb des Durchlaufdampferzeugers 2 übersteigt. Die Länge L ist dabei der Abstand von der Stirnwand 11 der Brennkammer 4 zum Eintrittsbereich 32 des Horizontalgaszugs 6. Die Ausbrandlänge des fossilen Brennstoffs B ist dabei definiert als die Heizgasgeschwindigkeit in horizontaler Richtung bei einer be- stimmten mittleren Heizgastemperatur multipliziert mit der Ausbrandzeit tA der Flamme F des fossilen Brennstoffs B. Die für den jeweiligen Durchlaufdampferzeuger 2 maximale Ausbrandlänge ergibt sich beim Vollastbetrieb des jeweiligen Durchlaufdampferzeugers 2. Die Ausbrandzeit tA der Flamme F des Brennstoffs B wiederum ist die Zeit, die beispielsweise ein Kohlenstaubkorn mittlerer Größe zum vollständigen Ausbrennen bei einer bestimmten mittleren Heizgastemperatur benötigt.
Um eine besonders günstige Ausnutzung der Verbrennungswärme des fossilen Brennstoffs B zu gewährleisten, ist die Länge L (angegeben in m) der Brennkammer 4 in Abhängigkeit von der Austrittstemperatur TBRK (angegeben in °C) des Heizgases G aus der Brennkammer 4," der Ausbrandzeit tA (angegeben in s) der Flamme F des fossilen Brennstoffs B und der Dampfleistung M
(angegeben in kg/s) des Durchlaufdampferzeugers 2 bei Vollast geeignet gewählt. Diese horizontale Länge L der Brennkammer 4 beträgt dabei mindestens 80 % der Höhe H der Brennkammer 4. Die Höhe H wird dabei von der Oberkante des Trichters 5 der Brennkammer 4, in Figur 1 durch die Hilfslinie mit den Endpunkten X und Y markiert, bis zur Brennkammerdecke gemessen. Die Länge L der Brennkammer 4 bestimmt sich näherungsweise über die Funktionen (I) und (II) :
L (M, tA) = (Ci + C2 • M) • tA (I) und L (M, TBRK) = (C3 TBRK + C4 ) M + C5 (TBRK) 2 + C6 TBRK + C7 ( II ) mit
Ci = 8 m/s und
C2 = 0,0057 m/kg und
C3 = -1,905 • 10~4 (m • s)/(kg°C) und C4 = 0,286 (s • m. /kg und
C5 = 3 • 10'4 m/(°C)2 und
C6 = -0,842 m/°C und
C7 = 603,41 m.
Näherungsweise ist hierbei als eine zulässige Abweichung der Länge L der Brennkammer 4 um +20%/-10% vom durch die jeweilige Funktion definierten Wert zu verstehen. Dabei gilt bei der Auslegung des Durchläufdampferzeugers 2 für eine vorgegebene Dampfleistung M des Durchlaufdampferzeugers 2 bei Vol- last der größere Wert aus den Funktionen (I) und (II) für die Länge L der Brennkammer 4.
Als Beispiel für eine mögliche Auslegung des Durchlaufdampferzeugers 2 sind für einige Längen L der Brennkammer 4 in Ab- hängigkeit von der Dampfleistung M des Durchlaufdampferzeugers 2 bei Vollast in das Koordinatensystem gemäß Figur 3 sechs Kurven Ki. bis Ke eingezeichnet. Dabei sind den Kurven jeweils folgende Parameter zugeordnet:
Ki : tA = 3s gemäß (I) , K2: tA = 2,5s gemäß (I), K3: tA = 2s gemäß (I), K4: TBRK = 1200°C gemäß (II), K5: TBRK = 1300°C gemäß (II), K6: TBRK = 1400°C gemäß (II) .
Zur Bestimmung der Länge L der Brennkammer 4 sind somit beispielsweise für die Ausbrandzeit tA = 3s der Flamme F des fossilen Brennstoffs B und die Austrittstemperatur TBRK = 1200 °C des Heizgases G aus der Brennkammer 4 die Kurven Ki und K4 heranzuziehen. Daraus ergibt sich bei einer vorgegebenen Dampfleistung M des Durchlaufdampferzeugers 2 bei Vollast
von M = 80 kg/s eine Länge von L = 29 m gemäß K4/ von M = 160 kg/s eine Länge von L = 34 m gemäß K, von M = 560 kg/s eine Länge von L = 57 m gemäß K4.
Es gilt also stets die als durchgezogene Linie gezeichnete Kurve K .
Für die Ausbrandzeit tA = 2,5s der Flamme F des fossilen
Brennstoffs B und die Austrittstemperatur des Heizgases G aus der Brennkammer TBRκ = 1300 °C sind beispielsweise die Kurven K2 und K5 heranzuziehen. Daraus ergibt sich bei einer vorgegebenen Dampfleistung M des Durchlaufdampferzeugers 2 bei Vollast
von M = 80 kg/s eine Länge von L = 21 m gemäß K2/ von M = 180 kg/s eine Länge von L = 23 m gemäß K2 und K5, von M = 560 kg/s eine Länge von L = 37 m gemäß K5.
Es gilt also bis M = 180 kg/s der Teil der Kurve K2, die als durchgezogene Linie gezeichnet ist und nicht die in diesem Wertebereich von M als gestrichelte Linie gezeichnete Kurve K5. Für Werte von in, die größer als 180 kg/s sind, gilt der Teil der Kurve K5, der als durchgezogene Linie gezeichnet ist und nicht die in diesem Wertebereich von M als gestrichelte Linie gezeichnete Kurve K2. Der Ausbrandzeit tA = 2s der Flamme F des fossilen Brennstoffs B und der Austrittstemperatur TBRκ = 1400 °C des Heizgases G aus der Brennkammer 4 sind beispielsweise die Kurven K3 und Kg zugeordnet. Daraus ergibt sich bei einer vorgegebenen Dampfleistung M des Durchlaufdampferzeugers 2 bei Vollast
von M = 80 kg/s eine Länge von L = 18 m gemäß K, von M = 465 kg/s eine Länge von L = 21 m gemäß K3 und K6, von M = 560 kg/s eine Länge von L = 23 m gemäß Kβ-
Es gilt also für Werte von M bis 465 kg/s die als durchgezogene Linie in diesem Bereich gezeichnete Kurve K3 und nicht die als gestrichelte Linie in diesem Bereich gezeichnete Kurve Kς . Für Werte von M die größer als 465 kg/s sind gilt der Teil der als durchgezogene Linie gezeichneten Kurve KQ und nicht der Teil der als gestrichelte Linie gezeichneten Kurve K.
Damit zwischen dem Austrittsbereich 34 der Brennkammer 4 und dem Eintrittsbereich 32 des Horizontalgaszugs 6 beim Betrieb des Durchlaufdampferzeugers 2 vergleichsweise geringe Temperaturunterschiede auftreten, sind die Verdampferrohre 50 und 52 in dem in Figur 1 markierten Verbindungsabschnitt Z in besonderer Weise geführt. Dieser Verbindungsabschnitt Z ist in Figur 4 im Detail dargestellt und umfaßt den Austrittsbereich 34 der Brennkammer 4 und Eintrittsbereich 32 des Horizontalgaszugs 6. Dabei ist das Verdampferrohr 50 das unmittelbar mit der Seitenwand 12 des Horizontalgaszugs 6 verschweißte Verdampferrohr 50 der Umfassungswand 9 der Brennkammer 4 und das Verdampferrohr 52 das diesem unmittelbar benachbarte Verdampferrohr 52 der Umfassungswand 9 der Brennkammer 4.
Diese beiden Verdampferrohre 50 und 52 treten gemeinsam mit den ihnen parallel geschalteten Verdampferrohren 10 aus dem gemeinsamen Eintrittsammler-System 18 aus. Dann jedoch werden sowohl das Verdampferrohr 50 als auch das Verdampferrohr 52 zunächst in annähernd horizontaler Richtung entgegengesetzt zur Hauptströmungsrichtung 24 des Heizgases G außerhalb der Brennkammer 4 geführt. Dann treten sie in die Brennkammer 4 ein und werden nun nicht unmittelbar bei ihrem Eintritt in die Brennkammer 4 Bestandteil der Umfassungswand 9 der Brenn- kammer 4. Sie werden nämlich entlang der Hauptströmungsrichtung 24 des Heizgases G in der Brennkammer 4 bis zu dem Bereich zurückgeführt, an dem sie außerhalb der Brennkammer 4 von ihrem annähernd senkrechten Verlauf abgezweigt sind, um entgegengesetzt zur Hauptströmungsrichtung 24 des Heizgases G zu verlaufen. Erst nach dieser Schlaufe werden sie in die Umfassungswand 9 der Brennkammer 4 eingeschweißt, so daß sie ein Teil der Umfassungswand 9 der Brennkammer 4 sind.
Durch diese spezielle Rohrführung werden beim Betrieb des Durchlaufdampferzeugers 2 die Verdampferrohre 50 und 52 vor ihrem Eintritt in die Umfassungswand 9 der Brennkammer 4 vorgewärmt. Das in ihnen geführte Strömungsmedium S wird also beim Betrieb des Durchlaufdampferzeugers 2 beheizt und damit vorgewärmt, so daß es mit einer vergleichsweise höheren Tem- peratur in die Umfassungswand 9 der Brennkammer 4 eintritt, als dies bei den in den unmittelbar an die Verdampferrohre 50 und 52 angrenzenden Verdampferrohre 10 der Brennkammer 4 der Fall ist. Durch diese spezielle Rohrführung üer Verdampferrohre 50 und 52 weisen die Verdampferrohre 50 und 52 im Ein- trittsabschnitt E beim Betrieb des Durchlaufdampferzeugers 2 eine vergleichsweise höhere Temperatur auf als die ihnen unmittelbar benachbarten Verdampferrohre 10 der Umfassungswand 9 der Brennkammer 4. Dadurch sind beim Betrieb des Durchlaufdampferzeugers 2 Temperaturunterschiede an der Verbindung 36 zwischen der Brennkammer 4 und dem Horizontalgaszug 6 besonders zuverlässig besonders gering gehalten.
Als Beispiel für mögliche Temperaturen Ts des Strömungsmediums S in den Verdämpf rrohren 10 der Brennkammer 4 bzw. den Dampferzeugerrohren 16 des Horizontalgaszugs 6 sind in das Koordinatensystem gemäß Figur 5 für einige Temperaturen Ts (angeben in °C) in Abhängigkeit von der relativen Rohrlänge R (angegeben in %) die Kurven Ui bis ü4 eingetragen. Uj. beschreibt dabei den Temperaturverlauf eines Dampferzeugerrohrs 16 des Horizontalgaszugs 6. U2 dagegen beschreibt den Temperaturverlauf eines Verdampferrohrs 10 entlang seiner relati- ven Rohrlänge R. U3 beschreibt den Temperaturverlauf des speziell geführten Verdampferrohrs 50 und U4 beschreibt den Temperaturverlauf des Verdampferrohrs 52 der Umfassungswand 9 der Brennkammer 4. Anhand der eingezeichneten Kurven wird deutlich, daß durch die spezielle Rohrführung der Verdampfer- röhre 50 und 52 im Eintrittsabschnitt E in der Umfassungswand 9 der Brennkammer 4 der Temperaturunterschied zu den Dampferzeugerrohren 16 der Umfassungswand 12 des Horizontalgaszugs deutlich verringert werden kann. Im Beispiel läßt sich die Temperatur der Verdampferrohre 50 und 52 im Eintrittsab- schnitt E der Verdampferrohre 50 und 52 um 45 Kelvin erhöhen. Dadurch sind beim Betrieb des Durchlaufdampferzeugers 2 besonders geringe Temperaturunterschiede im Eintrittsabschnitt E der Verdampferrohre 50 und 52 und den Dampferzeugerrohren 16 des Horizontalgaszugs 6 an der Verbindung 36 zwischen der Brennkammer 4 und dem Horizontalgaszugs 6 gewährleistet.
Beim Betrieb des Durchlaufdampferzeugers 2 wird den Brennern 30 fossiler Brennstoff B, vorzugsweise Kohle in fester Form, zugeführt. Die Flammen F der Brenner 30 sind dabei horizontal ausgerichtet. Durch die Bauweise der Brennkammer 4 wird eine Strömung des bei der Verbrennung entstehenden Heizgases G in annähernd horizontaler Hauptströmungsrichtung 24 erzeugt. Dieses gelangt über den Horizontalgaszug 6 in den annähernd zum Boden hin ausgerichteten Vertikalgaszug 8 und verläßt diesen in Richtung des nicht näher dargestellten Kamins .
In den Economizer "28 eintretendes Strömungsmedium S gelangt in das Eintrittssammler-System 18 der Verdampferrohre 10 der Brennkammer 4 des Durchlaufdampferzeugers 2. In den vertikal angeordneten, gasdicht miteinander verschweißten Verdampfer- röhren 10 der Brennkammer 4 des Durchlaufdampferzeugers 2 findet die Verdampfung und gegebenenfalls eine teilweise Überhitzung des Strömungsmediums S statt. Der dabei entstehende Dampf bzw. ein Wasser-Dampf-Gemisch wird in dem Aus- trittssammler-System 20 für Strömungsmedium S gesammelt. Von dort gelangt der Dampf bzw. das Wasser-Dampf-Gemisch über die Wände des Horizontalgaszugs 6 und des Vertikalgaszugs 8 in die Überhitzerheizflächen 23 des Horizontalgaszuges 6. In den Überhitzerheizflächen 23 erfolgt eine weitere Überhitzung des Dampfs, der anschließend einer Nutzung, beispielsweise dem Antrieb einer Dampfturbine, zugeführt wird.
Mit der speziellen Führung der Verdampferrohre 50 und 52 fallen beim Betrieb des Durchlaufdampferzeugers Temperaturunter- schiede zwischen dem Austrittsbereich 34 der Brennkammer 4 und dem Eintrittsbereich 32 des Horizontalgaszugs 6 besonders gering aus. Dabei ist durch eine Wahl der Länge L der Brennkammer 4 in Abhängigkeit von der Dampfleistung M des Durchlaufdampferzeugers 2 bei Vollast sichergestellt, daß die Ver- brennungswärme des fossilen Brennstoffs B besonders zuverlässig ausgenutzt wird. Außerdem läßt sich der Durchlauf ampferzeuger 2 durch seine besonders geringe Bauhöhe und kompakte Bauweise mit besonders geringem Herstellungs- und Montageaufwand errichten. Dabei kann ein mit vergleichsweise geringem technischen Aufwand erstellbares Gerüst vorgesehen sein. Bei einer Kraftwerksanlage mit einer Dampfturbine und einem eine derart geringe Bauhöhe aufweisenden Durchlaufdampferzeuger 2 können außerdem die Verbindungsrohre von dem Durchlaufdampferzeuger zu der Dampfturbine in besonders kurzer Weise ausge- legt sein.

Claims

Patentansprüche
1. Durchlaufdampferzeuger (2) mit einer Brennkammer (4) für fossilen Brennstoff (B) , der heizgasseitig über einen Hori- zontalgaszug (6) ein Vertikalgaszug (8) nachgeschaltet ist, wobei die Brennkammer (4) eine Anzahl von in der Höhe des Horizontalgaszugs (6) angeordneten Brennern (30) umfaßt und die Umfassungswände (9) der Brennkammer (4) aus gasdicht miteinander verschweißten, vertikal angeordneten Verdampferroh- ren (10) gebildet sind, wobei eine Mehrzahl der Verdampferrohre (10) jeweils parallel mit Strömungsmedium (S) beaufschlagbar ist und in dem Austrittsbereich (34) der Brennkammer (4) eine Anzahl der parallel mit Strömungsmedium (S) beaufschlagbaren Verdampferrohre (10) vor ihrem Eintritt in die jeweilige Umfassungswand (9) der Brennkammer (4) durch die Brennkammer (4) geführt ist.
2. Durchlaufdampferzeuger (2) nach Anspruch 1, bei dem die Seitenwände (12) des Horizontalgaszugs (6) aus gasdicht mit- einander verschweißten, vertikal angeordneten, parallel mit Strömungsmedium (S) beaufschlagbaren Dampferzeugerrohren (16) gebildet sind.
3. Durchlaufdampferzeuger (2) nach Anspruch 1 oder 2, bei dem die Seitenwände (14) des Vertikalgaszugs (8) aus gasdicht miteinander verschweißten, vertikal angeordneten, parallel mit Strömungsmedium (S) beaufschlagbaren Dampferzeugerrohren (17) gebildet sind.
4. Durchlaufdampferzeuger (2) nach einem der Ansprüche 1 bis 3, bei dem jeweils einer Mehrzahl von parallel mit Strömungsmedium (S) beaufschlagbaren Verdampferrohren (10) strömungs- mediumsseitig ein gemeinsames Eintrittssammler-System (18) vorgeschaltet und -ein gemeinsames Austrittssammler-Sy- stem (20) nachgeschaltet ist.
5. Durchlaufdampferzeuger (2) nach einem der Ansprüche 1 bis 4, bei dem jeweils einer Anzahl von parallel mit Strömungsmedium (S) beaufschlagbaren Dampferzeugerrohren (16, 17) des Horizontalgaszugs (6) oder des Vertikalgaszugs (8) strömungs- mediumsseitig ein gemeinsames Eintrittssammler-System (21) vorgeschaltet und ein gemeinsames Austrittssammler-System (22) nachgeschaltet ist.
6. Durchlaufdampferzeuger (2) nach einem der Ansprüche 1 bis 5, bei dem eine Umfassungswand (9) der Brennkammer (4) die
Stirnwand (11) ist, wobei die Verdampferrohre (10) der Stirnwand (9) parallel mit Strömungsmedium (S) beaufschlagbar sind.
7. Durchlaufdampferzeuger (2) nach einem der Ansprüche 1 bis
6, bei dem die Verdampferrohre (10) der Stirnwand (11) der Brennkammer (4) strömungsmediumsseitig den anderen Umfassungswänden (9) der Brennkammer (4) vorgeschaltet sind.
8. Durchlaufdampferzeuger (2) nach einem der Ansprüche 1 bis
7, bei dem der Rohrinnendurchmesser (D) einer Anzahl der Verdampferrohre (10) der Brennkammer (4) abhängig von der jeweiligen Position der Verdampferrohre (10) in der Brennkammer (4) gewählt ist.
9. Durchlaufdampferzeuger (2) nach einem der Ansprüche 1 bis 8, bei dem eine Anzahl der Verdampferrohre (10) auf ihrer Innenseite jeweils ein mehrgängiges Gewinde bildende Rippen (40) tragen.
10. Durchlaufdampferzeuger (2) nach Anspruch 9, bei dem ein Steigungswinkel (α) zwischen einer zur Rohrachse senkrechten Ebene (42) und den Flanken '(44) der auf der Rohrinnenseite angeordneten Rippen (40) kleiner als 60°, vorzugsweise klei- ner als 55°, ist.
11. Durchlaufdampferzeuger (2) nach einem der Ansprüche 1 bis
10, bei dem eine Anzahl der Verdampferrohre (10) jeweils eine Drosseleinrichtung aufweist.
12. Durchlaufdampferzeuger (2) nach einem der Ansprüche 1 bis
11, bei dem ein Leitungssystem (19) zur Zuführung von Strömungsmedium (S) in die Verdampferrohre (10) der Brennkammer (4) vorgesehen ist, wobei das Leitungssystem (19) zur Reduzierung des Durchflusses des Strömungsmediums (S) eine An- zahl von Drosseleinrichtungen, insbesondere Drosselarmaturen, aufweist .
13. Durchlaufdampferzeuger (2) nach einem der Ansprüche 1 bis
12, bei dem benachbarte Verdampfer- bzw. Dampferzeuger- röhre (10, 16, 17) über Flossen gasdicht miteinander verschweißt sind, wobei die Flossenbreite abhängig von der jeweiligen Position der Verdampfer- bzw. Dampferzeugerrohre (10, 16, 17) in der Brennkammer (4) , des Horizontalgaszugs (6) und/oder des Vertikalgaszugs (8) gewählt ist.
14. Durchlaufdampferzeuger (2) nach einem der Ansprüche 1 bis
13, bei dem in dem Horizontalgaszug (6) eine Anzahl von Überhitzerheizflächen (23) in hängender Bauweise angeordnet ist.
15. Durchlaufdampferzeuger (2) nach einem der Ansprüche 1 bis
14, bei dem in dem Vertikalgaszug (8) eine Anzahl von Konvektionsheizflächen (26) angeordnet ist.
16. Durchlaufdampferzeuger (2) nach einem der Ansprüche 1 bis 15, bei dem die Brenner (58) an der Stirnwand (11) der Brennkammer (4) angeordnet sind.
17. Durchlaufdampferzeuger '(2) nach einem der Ansprüche 1 bis 16, bei dem die durch den Abstand von der Stirnwand (11) der Brennkammer (4) zum Eintrittsbereich (32) des Horizontalgaszugs (6) definierte Länge (L) der Brennkammer (4) mindestens gleich der Ausbrandlänge des Brennstoffs (B) beim Vollastbetrieb ist.
18. Durchlaufdampferzeuger (2) nach einem der Ansprüche 1 bis 17, bei dem die Länge (L) der Brennkammer (4) als Funktion der Dampfleistung (M) bei Vollast, der Ausbrandzeit (tÄ) , der Flamme (F) des Brennstoffs (B) und/oder der Austrittstemperatur (TBRK) des Heizgases (G) aus der Brennkammer (4) näherungsweise gemäß den beiden Funktionen (I) und (II)
L (M, t A) = (Ci + C2 M) tA (I) und
L (M, T BRK) = (C TBRκ + C4)M + C5(TBRK)2 + c5 :BRK + C7 (II) mit
C_ = 8 m/s und
C2 = 0,0057 m/kg und
C3 = -1,905 • 10"4 (m • • s)/(kg°C) und
C4 = 0,286 (s • m) /kg und
C5 = 3 • 10-4 m/(°C)2 und cs = -0,842 m/°C und c7 = 603,41
gewählt ist, wobei für eine vorgegebene Dampfleistung (M) bei Vollast der jeweils größere Wert der Länge (L) der Brennkam- er (4) gilt.
19. Durchlaufdampferzeuger (2) nach einem der Ansprüche 1 bis 18, bei dem der untere Bereich der Brennkammer (4) als Trichter (5) ausgebildet ist.
PCT/DE2000/000865 1999-03-31 2000-03-20 Fossilbeheizter durchlaufdampferzeuger WO2000060283A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2000609743A JP4489307B2 (ja) 1999-03-31 2000-03-20 化石燃料貫流ボイラ
US09/937,828 US6715450B1 (en) 1999-03-31 2000-03-20 Fossil-fuel fired continuous-flow steam generator
CA002368972A CA2368972C (en) 1999-03-31 2000-03-20 Fossil-fired continuous-flow steam generator
AT00922444T ATE268882T1 (de) 1999-03-31 2000-03-20 Fossilbeheizter durchlaufdampferzeuger
DK00922444T DK1166015T3 (da) 1999-03-31 2000-03-20 Med fossilt brændsel opvarmet gennemströmningsdampgenerator
EP00922444A EP1166015B1 (de) 1999-03-31 2000-03-20 Fossilbeheizter durchlaufdampferzeuger
DE50006755T DE50006755D1 (de) 1999-03-31 2000-03-20 Fossilbeheizter durchlaufdampferzeuger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19914760.4 1999-03-31
DE19914760A DE19914760C1 (de) 1999-03-31 1999-03-31 Fossilbeheizter Durchlaufdampferzeuger

Publications (1)

Publication Number Publication Date
WO2000060283A1 true WO2000060283A1 (de) 2000-10-12

Family

ID=7903177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/000865 WO2000060283A1 (de) 1999-03-31 2000-03-20 Fossilbeheizter durchlaufdampferzeuger

Country Status (12)

Country Link
US (1) US6715450B1 (de)
EP (1) EP1166015B1 (de)
JP (1) JP4489307B2 (de)
KR (1) KR100694356B1 (de)
CN (1) CN1193191C (de)
AT (1) ATE268882T1 (de)
CA (1) CA2368972C (de)
DE (2) DE19914760C1 (de)
DK (1) DK1166015T3 (de)
ES (1) ES2222900T3 (de)
RU (1) RU2224949C2 (de)
WO (1) WO2000060283A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10254780B4 (de) * 2002-11-22 2005-08-18 Alstom Power Boiler Gmbh Durchlaufdampferzeuger mit zirkulierender atmosphärischer Wirbelschichtfeuerung
US7878157B2 (en) * 2004-09-23 2011-02-01 Siemens Aktiengesellschaft Fossil-fuel heated continuous steam generator
EP1701090A1 (de) * 2005-02-16 2006-09-13 Siemens Aktiengesellschaft Dampferzeuger in liegender Bauweise
EP2182278A1 (de) * 2008-09-09 2010-05-05 Siemens Aktiengesellschaft Durchlaufdampferzeuger
EP2180250A1 (de) * 2008-09-09 2010-04-28 Siemens Aktiengesellschaft Durchlaufdampferzeuger
EP2180251A1 (de) * 2008-09-09 2010-04-28 Siemens Aktiengesellschaft Durchlaufdampferzeuger
JP5193007B2 (ja) * 2008-12-03 2013-05-08 三菱重工業株式会社 ボイラ構造
DE102009024587A1 (de) * 2009-06-10 2010-12-16 Siemens Aktiengesellschaft Durchlaufverdampfer
DE102011004268A1 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Solarthermischer Durchlaufverdampfer mit lokaler Querschnittsverengung am Eintritt
CA3021456A1 (en) * 2017-10-20 2019-04-20 Fluor Technologies Corporation Integrated configuration for a steam assisted gravity drainage central processing facility
KR20240093200A (ko) * 2022-12-15 2024-06-24 두산에너빌리티 주식회사 수직 관류형 배열회수 보일러 및 이를 포함하는 복합발전 시스템

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3043279A (en) * 1954-06-18 1962-07-10 Svenska Maskinverken Ab Steam boiler plant
US3527261A (en) * 1968-11-12 1970-09-08 Babcock & Wilcox Co Tube guide apparatus
WO1999064787A1 (de) * 1998-06-10 1999-12-16 Siemens Aktiengesellschaft Fossilbeheizter dampferzeuger

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3003479A (en) * 1952-10-11 1961-10-10 Duerrwerke Ag Steam and air boiler with heating surface of smallest load
EP0349834B1 (de) * 1988-07-04 1996-04-17 Siemens Aktiengesellschaft Durchlaufdampferzeuger
ATE117420T1 (de) * 1991-04-18 1995-02-15 Siemens Ag Durchlaufdampferzeuger mit einem vertikalen gaszug aus im wesentlichen vertikal angeordneten rohren.
US5492689A (en) 1991-11-19 1996-02-20 The Center For Innovative Technology Combined virustatic antimediator (COVAM) treatment of common colds
US5560322A (en) * 1994-08-11 1996-10-01 Foster Wheeler Energy Corporation Continuous vertical-to-angular tube transitions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3043279A (en) * 1954-06-18 1962-07-10 Svenska Maskinverken Ab Steam boiler plant
US3527261A (en) * 1968-11-12 1970-09-08 Babcock & Wilcox Co Tube guide apparatus
WO1999064787A1 (de) * 1998-06-10 1999-12-16 Siemens Aktiengesellschaft Fossilbeheizter dampferzeuger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. FRANKE ; W. KÖHLER ; E. WITTCHOW: "Verdampferkonzepte für Benson-Daampferzeuger", VGB KRAFTWERKSTECNIK, vol. 73, no. 4, 1993, pages 352 - 360

Also Published As

Publication number Publication date
KR100694356B1 (ko) 2007-03-12
DE19914760C1 (de) 2000-04-13
CA2368972A1 (en) 2000-10-12
ATE268882T1 (de) 2004-06-15
CA2368972C (en) 2007-12-11
DK1166015T3 (da) 2004-10-25
KR20010112293A (ko) 2001-12-20
ES2222900T3 (es) 2005-02-16
US6715450B1 (en) 2004-04-06
RU2224949C2 (ru) 2004-02-27
EP1166015A1 (de) 2002-01-02
JP4489307B2 (ja) 2010-06-23
CN1344360A (zh) 2002-04-10
DE50006755D1 (de) 2004-07-15
EP1166015B1 (de) 2004-06-09
CN1193191C (zh) 2005-03-16
JP2002541419A (ja) 2002-12-03

Similar Documents

Publication Publication Date Title
EP0944801B1 (de) Dampferzeuger
EP1188021B1 (de) Fossilbeheizter dampferzeuger mit einer entstickungseinrichtung für heizgas
EP0617778B1 (de) Fossil befeuerter durchlaufdampferzeuger
EP1086339B1 (de) Fossilbeheizter dampferzeuger
EP0349834A1 (de) Durchlaufdampferzeuger
EP1166015B1 (de) Fossilbeheizter durchlaufdampferzeuger
DE19914761C1 (de) Fossilbeheizter Durchlaufdampferzeuger
EP1794495B1 (de) Fossil beheizter durchlaufdampferzeuger
EP1141625B1 (de) Fossilbeheizter durchlaufdampferzeuger
EP2321578B1 (de) Durchlaufdampferzeuger
EP1144910B1 (de) Fossilbeheizter dampferzeuger
EP1144911B1 (de) Fossilbeheizter dampferzeuger
EP2324287B1 (de) Durchlaufdampferzeuger
WO1998020280A1 (de) Verfahren zum betreiben eines durchlaufdampferzeugers und durchlaufdampferzeuger zur durchführung des verfahrens
EP1554522B1 (de) Verfahren zum betreiben eines dampferzeugers in liegender bauweise
WO2011138116A2 (de) Verfahren zum betreiben eines dampferzeugers
EP1533565A1 (de) Durchlaufdampferzeuger
DE19851809A1 (de) Fossilbeheizter Dampferzeuger
DE19825800A1 (de) Fossilbeheizter Dampferzeuger

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00805448.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN IN JP KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000922444

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020017011008

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2001/959/KOL

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2000 609743

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2368972

Country of ref document: CA

Ref document number: 2368972

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09937828

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020017011008

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000922444

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000922444

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017011008

Country of ref document: KR