EP1166015B1 - Fossilbeheizter durchlaufdampferzeuger - Google Patents

Fossilbeheizter durchlaufdampferzeuger Download PDF

Info

Publication number
EP1166015B1
EP1166015B1 EP00922444A EP00922444A EP1166015B1 EP 1166015 B1 EP1166015 B1 EP 1166015B1 EP 00922444 A EP00922444 A EP 00922444A EP 00922444 A EP00922444 A EP 00922444A EP 1166015 B1 EP1166015 B1 EP 1166015B1
Authority
EP
European Patent Office
Prior art keywords
steam generator
combustion chamber
flow
continuous
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00922444A
Other languages
English (en)
French (fr)
Other versions
EP1166015A1 (de
Inventor
Eberhard Wittchow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DK00922444T priority Critical patent/DK1166015T3/da
Publication of EP1166015A1 publication Critical patent/EP1166015A1/de
Application granted granted Critical
Publication of EP1166015B1 publication Critical patent/EP1166015B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/34Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes grouped in panel form surrounding the combustion chamber, i.e. radiation boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/34Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes grouped in panel form surrounding the combustion chamber, i.e. radiation boilers
    • F22B21/346Horizontal radiation boilers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S122/00Liquid heaters and vaporizers
    • Y10S122/04Once through boilers

Definitions

  • the invention relates to a once-through steam generator, which has a combustion chamber for fossil fuel, which a vertical gas flue on the heating gas side via a horizontal gas flue is connected downstream, the peripheral walls of the combustion chamber made of gas-tightly welded, vertically arranged Evaporator tubes are formed.
  • the Energy content of a fuel to vaporize one Flow medium used in the steam generator In a power plant with a steam generator, the Energy content of a fuel to vaporize one Flow medium used in the steam generator. It will Flow medium usually in an evaporator circuit guided.
  • the steam provided by the steam generator in turn can be used, for example, to drive a steam turbine and / or provided for a connected external process his. If the steam drives a steam turbine, then usually a generator via the turbine shaft of the steam turbine or operated a work machine. in case of a Generator can the current generated by the generator for Infeed into a network and / or island network provided his.
  • the steam generator can be designed as a continuous steam generator his.
  • a continuous steam generator is from the top "Evaporator concepts for Benson steam generators” by J. Franke, W. Köhler and E. Wittchow, published in VGB Kraftwerkstechnik 73 (1993), No. 4, pp. 352-360.
  • At a Pass-through steam generator conducts the heating of evaporator tubes provided steam generator pipes for evaporation of the flow medium in the steam generator tubes in one one-time run.
  • Continuous steam generators are usually equipped with a combustion chamber executed in vertical construction. This means that the combustion chamber for a flow of the heating medium or heating gas designed in an approximately vertical direction is. On the heating gas side, the combustion chamber can use a horizontal gas flue be connected downstream, the transition from Combustion chamber in the horizontal gas flue a redirection of the heating gas flow takes place in an approximately horizontal flow direction.
  • such combustors generally require due to the temperature-related changes in length of the combustion chamber a scaffold on which the combustion chamber is suspended. This requires considerable technical effort in the Manufacture and assembly of the once-through steam generator, the order the greater the overall height of the once-through steam generator is. This is particularly the case with continuous steam generators the case for a steam output of more than 80 kg / s Are designed for full load.
  • a high live steam pressure promotes high thermal efficiency and thus low CO 2 emissions from a fossil-fired power plant, which can be fired with hard coal or lignite as a fuel, for example.
  • the design of the surrounding wall poses a particular problem the throttle cable or combustion chamber of the once-through steam generator with regard to the pipe wall or material temperatures occurring there in the subcritical pressure range up to the temperature of the surrounding wall of the Combustion chamber essentially on the level of the saturation temperature of water determined; when wetting the inner surface the evaporator tubes can be ensured.
  • This is done, for example, by using evaporator tubes achieved a surface structure on the inside exhibit.
  • ribbed inside Evaporator tubes into consideration, their use in a once-through steam generator for example from the article cited above is known.
  • These so-called finned tubes i.e. Tube with a ribbed inner surface, have a special good heat transfer from the inner pipe wall to the flow medium.
  • the invention is therefore based on the object of a fossil-fired To specify continuous steam generators of the type mentioned above, a particularly low manufacturing and assembly cost requires, and temperature differences during its operation at the connection of the combustion chamber with yours downstream horizontal throttle cable are kept low. This is intended in particular for each other directly or indirectly adjacent evaporator tubes of the combustion chamber and steam generator tubes of the horizontal gas flue downstream of the combustion chamber be the case.
  • the continuous steam generator a combustion chamber with a number of in the height of the horizontal gas flue arranged burners, a plurality of the evaporator tubes each in parallel can be acted upon with flow medium and in the outlet area the combustion chamber using a number of in parallel Evaporator tubes acted upon by the flow medium in front of their Entry into the respective surrounding wall of the combustion chamber is guided through the combustion chamber.
  • the invention is based on the consideration that one with special low manufacturing and assembly costs Pass-through steam generator one that can be carried out with simple means Should have suspension structure.
  • One with comparative low technical effort for scaffolding the suspension of the combustion chamber can be accompanied by a particularly low overall height of the once-through steam generator.
  • a particularly low overall height of the once-through steam generator can be achieved by using the combustion chamber in a horizontal design is executed.
  • the burners are at the level of the horizontal gas flue arranged in the combustion chamber wall.
  • the heating gas in approximately horizontal main flow direction through the combustion chamber.
  • the combustion chamber should also join the combustion chamber with the horizontal throttle cable temperature differences in particular be low to premature material fatigue as a result of Avoid thermal stresses reliably. These temperature differences should be in particular between each other immediately or indirectly adjacent evaporator tubes of the combustion chamber and steam generator tubes of the horizontal throttle cable especially be small, so in the exit area of the combustion chamber and material fatigue in the entry area of the horizontal throttle cable particularly reliable as a result of thermal stresses are prevented.
  • the inlet section of the flow medium Evaporator tubes now point to the operation of the once-through steam generator a comparatively lower temperature than the inlet section of the steam generator tubes of the Horizontal gas flue downstream of the combustion chamber.
  • comparatively cold flow medium occurs a in contrast to the hot flow medium that in the steam generator tubes of the horizontal throttle cable enters. So are the evaporator tubes when operating the once-through steam generator colder than the steam generator tubes in the inlet section in the inlet section of the horizontal throttle cable. With that at the connection between the combustion chamber and the horizontal gas flue Material fatigue as a result of thermal stresses expect.
  • the side walls of the horizontal throttle cable and / or the vertical throttle cable are advantageously made of gas-tight welded together, vertically arranged, each parallel to the flow medium actable steam generator tubes formed.
  • a number of each connected in parallel Evaporator tubes of the combustion chamber a common one Entry collector system upstream and a common one Outlet collector system for flow medium downstream.
  • a continuous steam generator designed in this embodiment namely enables reliable pressure equalization between a number of flow media that can be acted upon in parallel Evaporator tubes so that they are all parallel connected evaporator pipes between the inlet header system and the outlet header system have the same total pressure drop exhibit. This means that with a more heated one Evaporator tube compared to a less heated one Evaporator tube the throughput must increase.
  • the steam generator tubes which can be acted upon in parallel with flow medium the horizontal throttle cable or the vertical throttle cable, to which advantageously a common entry collector system upstream for flow medium and a common Outlet collector system for flow medium downstream is.
  • the evaporator tubes of the end wall of the combustion chamber are advantageous Flow medium can be applied in parallel and the evaporator tubes of the surrounding walls that form the side walls form the combustion chamber, upstream of the fluid medium. As a result, cooling is particularly favorable strongly heated end wall of the combustion chamber guaranteed.
  • a further advantageous embodiment of the invention is the inside diameter of a number of evaporator tubes the combustion chamber depending on the respective position of the evaporator tubes selected in the combustion chamber. That way the evaporator tubes in the combustion chamber to a hot gas side predeterminable heating profile adaptable. With the resultant Influence on the flow through the evaporator tubes are particularly reliable temperature differences of the flow medium at the outlet from the evaporator tubes of the combustion chamber kept particularly low.
  • a multi-start thread on the inside forming ribs advantageously has a number of evaporator tubes a multi-start thread on the inside forming ribs.
  • This is advantageously a Pitch angle ⁇ between a perpendicular to the pipe axis Level and the flanks of those arranged on the inside of the pipe Ribs less than 60 °, preferably less than 55 °.
  • a so-called smooth tube, executed evaporator tube can namely from a certain steam content to that for someone special good heat transfer required wetting of the pipe wall can no longer be maintained. If there is no wetting there may be a dry pipe wall in places.
  • the Transition to such a dry pipe wall leads to a so-called heat transfer crisis with deteriorated heat transfer behavior, so that generally the tube wall temperatures rise particularly sharply at this point.
  • this crisis of heat transfer only contributes to a smooth tube a steam mass content> 0.9, i.e. shortly before the end of the Evaporation, on.
  • a number of the evaporator tubes of the combustion chamber advantageously has Means for reducing the flow of the Flow medium. It turns out to be special favorable if the means are designed as throttle devices are. Throttle devices can, for example, internals in the evaporator tubes, which are in one place inside the Reduce the inner tube diameter of the respective evaporator tube. Means to reduce the Flow in a multi-parallel lines Pipe system as advantageous, through which the evaporator tubes flow medium can be supplied to the combustion chamber. It can the pipe system also an entry collector system from Evaporator tubes that can be acted upon in parallel with flow medium be upstream. In one line or in several Lines of the line system can, for example Throttle fittings may be provided.
  • the flow of the flow medium through the Evaporator tubes can be adapted to the throughput of Flow medium through individual evaporator tubes at their respective Bring heating to the combustion chamber. Thereby are additional temperature differences of the flow medium particularly reliable at the outlet of the evaporator tubes kept low.
  • Adjacent evaporator or steam generator tubes are on their Long sides advantageously via metal strips, so-called Fins, welded together gastight. These fins can already in the manufacturing process of the pipes with the Connected pipes and form a unit with them. This unit, formed from a tube and fins, will also referred to as fin tube.
  • the fin width affects the Heat input into the evaporator or steam generator tubes. Therefore the fin width is preferably dependent on the position of the respective evaporator or steam generator tubes in the Continuous steam generator to a heating profile that can be specified on the hot gas side customized.
  • a heating profile can be a Typical heating profile determined from experience or a rough estimate, such as a step-like one Heating profile.
  • the suitable selected fin widths is also very different Heating various evaporator or steam generator tubes a heat input in all evaporator or Steam generator pipes can be reached in such a way that temperature differences of the flow medium at the outlet from the evaporator or steam generator tubes are kept particularly low. On this way premature material fatigue is a result of Reliably prevents thermal stress. As a result, the Continuous steam generators have a particularly long service life.
  • the vertical throttle cable advantageously has a number of Convection heating surfaces, which are approximately perpendicular to the Main flow direction of the heating gas arranged tubes formed are. These pipes of a convection heating surface are for a flow of the flow medium connected in parallel. These convection heating surfaces also become predominantly convective heated.
  • the vertical throttle cable advantageously has an economizer.
  • the burners are advantageously arranged on the end wall of the combustion chamber, that is to say on the side wall of the combustion chamber which lies opposite the outflow opening to the horizontal gas flue.
  • a continuous steam generator designed in this way can be adapted in a particularly simple manner to the burnout length of the fossil fuel.
  • the burnout length of the fossil fuel is to be understood as the heating gas velocity in the horizontal direction at a specific mean heating gas temperature multiplied by the burnout time t A of the flame of the fossil fuel.
  • the maximum burnout length for the respective continuous steam generator results from the steam output M at full load of the continuous steam generator, the so-called full load operation.
  • the burn-out time t A of the flame of the fossil fuel is in turn the time that, for example, a medium-sized coal dust particle takes to completely burn out at a certain average heating gas temperature.
  • the combustion chamber advantageously at least equal to the burnout length of the fossil fuel at full load operation of the Through steam generator.
  • This horizontal length of the combustion chamber will generally be at least 80% of the amount Combustion chamber, measured from the top of the funnel, if the lower part of the combustion chamber is funnel-shaped is up to the combustion chamber ceiling.
  • the length L (specified in m) of the combustion chamber is advantageously a function of the steam output M (specified in kg / s) of the continuous steam generator at full load, the burnout time t A (specified in s) of the flame of the fossil fuel and the outlet temperature T BRK (specified in ° C) of the heating gas from the combustion chamber.
  • the lower region of the combustion chamber is advantageously as Funnel formed. In this way, when operating the Continuous steam generator in the combustion of the fossil Ashes are easily removed, for example, one located under the funnel Ash removal. With fossil fuel it can are coal in solid form.
  • the advantages achieved with the invention are in particular in that by guiding some evaporator tubes through the combustion chamber before it enters the surrounding wall the combustion chamber, temperature differences in the immediate Surrounding the connection of the combustion chamber with the horizontal gas flue especially when operating the continuous steam generator turn out small.
  • the difference in temperature between immediately adjacent evaporator tubes of the combustion chamber and steam generator tubes of the horizontal throttle cable Thermal stresses at the connection of the combustion chamber with the Horizontal gas flues therefore remain in operation of the once-through steam generator far below the values where, for example there is a risk of pipe rips. So that's the Use of a horizontal combustion chamber in a once-through steam generator even with a comparatively long service life possible.
  • the combustion chamber for approximately horizontal main flow direction of the heating gas also a particularly compact design of the once-through steam generator given. This enables the continuous steam generator to be integrated in a power plant with a steam turbine also particularly short connecting pipes from the once-through steam generator to the steam turbine.
  • the fossil-heated continuous steam generator 2 according to FIG. 1 is assigned to a power plant, not shown, which also includes a steam turbine plant.
  • the Continuous steam generator 2 for a steam output at full load of at least 80 kg / s.
  • the one in the once-through steam generator 2 generated steam is used to drive the steam turbine used, which in turn a generator for power generation drives.
  • the electricity generated by the generator is provided for feeding into a network or an island network.
  • the fossil-fueled continuous steam generator 2 comprises an in horizontal design combustion chamber 4, the hot gas side a vertical throttle cable 8 via a horizontal throttle cable 6 is connected downstream.
  • the lower area of the combustion chamber 4 is through a funnel 5 with an upper edge corresponding to the Auxiliary line with the end points X and Y formed.
  • the Funnel 5 can operate the continuous steam generator 2 Ashes of the fossil fuel B in an arranged below Deashing device 7 are removed.
  • the surrounding walls 9 of the combustion chamber 4 are welded together gas-tight, vertically arranged evaporator tubes 10 are formed, a number of which are N in parallel with flow medium S is acted upon.
  • a surrounding wall 9 is the Combustion chamber 4 the front wall 11.
  • a number of the evaporator tubes 10 of the combustion chamber 4 an inlet header system 18 for Flow medium S upstream and an outlet collector system 20 downstream.
  • Entry collector system 18 includes a number of parallel entry collectors. It is for supplying flow medium S into the inlet header system 18 of the evaporator tubes 10, a line system 19 is provided.
  • the line system 19 comprises several connected in parallel Lines, each with one of the entry collectors of the entry collector system 18 are connected.
  • the flow medium S can be acted upon in parallel Steam generator tubes 16 of the side walls 12 of the Horizontal throttle cable 6 a common inlet collector system 21 upstream and a common outlet collector system 22 downstream. S is for supplying flow medium into the inlet header system 21 of the steam generator tubes 16 a line system 19 is also provided.
  • the pipe system also includes several lines connected in parallel, each with one of the entry collectors of the entry collection system 21 are connected.
  • the evaporator tubes 10 have - as shown in Figure 2 - an inner tube diameter D and ribs on the inside 40, which form a kind of multi-start thread and one Have rib height C.
  • the pitch angle ⁇ is between a plane 42 perpendicular to the pipe axis and the flanks 44 of the ribs 40 arranged on the inside of the tube are smaller than 55 °. This results in a particularly high heat transfer from the Inner walls of the evaporator tubes 10 to that in the evaporator tubes 10 guided flow medium S and at the same time special low pipe wall temperatures reached.
  • the inner tube diameter D of the evaporator tubes 10 of the combustion chamber 4 depends on the respective position of the evaporator tubes 10 selected in the combustion chamber 4. In this way the continuous steam generator 2 is different strong heating of the evaporator tubes 10 adapted. This interpretation the evaporator tubes 10 ensures the combustion chamber 4 particularly reliable that temperature differences in the flow medium S particularly when leaving the evaporator tubes 10 are kept low.
  • throttling devices are called the inner pipe diameter D perforated shutters at one point executed and cause the operation of the continuous steam generator 2 a reduction in the throughput of the flow medium S in less heated evaporator tubes 10, whereby the Throughput of the flow medium S is adapted to the heating.
  • Adjacent evaporator or steam generator tubes 10, 16, 17 are in a manner not shown in the drawing their long sides welded together gas-tight over fins. With a suitable choice of fin width namely the heating of the evaporator or steam generator tubes 10, 16, 17 are influenced. Therefore, the respective one Fin width on a heating profile that can be specified on the hot gas side adapted from the position of the respective evaporator or steam generator tubes 10, 16, 17 in the continuous steam generator 2 depends.
  • the heating profile can be based on empirical values determined typical heating profile or be a rough estimate. This means temperature differences at the outlet of the evaporator or steam generator tubes 10, 16, 17 even with very different heating the evaporator or steam generator tubes 10, 16, 17 particularly kept low. In this way, material fatigue is considered Consequences of thermal stress reliably prevented what a long life of the continuous steam generator 2 guaranteed.
  • each other gas-tight welded evaporator tubes 10 when operating the Pass-through steam generator 2 is very different. therefore is the design of the evaporator tubes 10 in terms of their Internal fins, their fin connection to neighboring evaporator tubes 10 and their inner pipe diameter D are selected that all evaporator tubes 10 despite different Heating approximately the same outlet temperatures of the flow medium S have and sufficient cooling of all Evaporator tubes 10 for all operating states of the continuous steam generator 2 is guaranteed. A minor heating of some Evaporator tubes 10 during operation of the continuous steam generator 2 is achieved by installing throttling devices additionally considered.
  • the inner tube diameter D of the evaporator tubes 10 in the Combustion chamber 4 are dependent on their respective position selected in the combustion chamber 4.
  • Evaporator tubes show 10 one in the operation of the once-through steam generator 2 exposed to greater heating, a larger pipe inside diameter D on as evaporator tubes 10, which are in operation of the continuous steam generator 2 are heated less. This is compared to the case with the same inner pipe diameters achieved that the flow rate of the flow medium S in the evaporator tubes 10 with a larger inner tube diameter D increases and thus temperature differences at the outlet the evaporator tubes 10 due to different heating be reduced.
  • the flow the evaporator tubes 10 with flow medium S to the heating to adapt the installation of throttle devices in one Part of the evaporator tubes 10 and / or for the supply of Flow medium S provided line system 19.
  • the heating to the throughput of the flow medium S. to adjust the evaporator tubes 10
  • the fin width in Depending on the position of the evaporator tubes 10 in the Combustion chamber 4 can be selected. Effect all of the above measures despite strongly different heating of the individual Evaporator tubes 10 have approximately the same specific heat absorption of the flow medium guided in the evaporator tubes 10 S during the operation of the continuous steam generator 2 and thus only slight temperature differences of the flow medium S at their exit.
  • the internal fins of the evaporator tubes 10 is designed so that a particularly reliable Cooling of the evaporator tubes 10 despite different heating and flow through with flow medium S in all load conditions of the continuous steam generator 2 is guaranteed.
  • the horizontal throttle cable 6 has a number of bulkhead heating surfaces trained superheater heating surfaces 23, which in hanging construction approximately perpendicular to the main flow direction 24 of the heating gas G arranged and their tubes for a flow through the flow medium S in parallel are switched.
  • the superheater heating surfaces 23 are predominant heated by convection and are on the flow medium side Evaporator tubes 10 downstream of the combustion chamber 4.
  • the vertical throttle cable 8 has a number of predominantly convective heatable convection heating surfaces 26, which come from approximately perpendicular to the main flow direction 24 of the heating gas G arranged tubes are formed. These pipes are for a flow through the flow medium S in parallel connected. There is also an economizer in the vertical throttle cable 8 28 arranged.
  • the vertical throttle cable 8 opens on the output side in another heat exchanger, for example in one Air preheater and from there via a dust filter into one Stack. The components downstream of the vertical throttle cable 8 are not shown in the drawing.
  • the continuous steam generator 2 is horizontal Combustion chamber 4 with a particularly low overall height and thus with particularly low manufacturing and assembly costs be set up at.
  • the combustion chamber 4 of the once-through steam generator 2 a number of burners 30 for fossil Fuel B on the end wall 11 of the combustion chamber 4th are arranged at the level of the horizontal throttle cable 6.
  • fossil fuel B can be solid fuels, trade coal in particular.
  • the length L of the combustion chamber 4 is selected such that it exceeds the burnout length of the fossil fuel B when the continuous steam generator 2 is operating at full load.
  • the length L is the distance from the end wall 11 of the combustion chamber 4 to the inlet area 32 of the horizontal gas flue 6.
  • the burnout length of the fossil fuel B is defined as the heating gas velocity in the horizontal direction at a specific mean heating gas temperature multiplied by the burnout time t A of the flame F.
  • the maximum burn-out length for the respective continuous steam generator 2 results when the respective continuous steam generator 2 is operating at full load.
  • the burn-out time t A of the flame F of the fuel B is in turn the time it takes, for example, a medium-sized coal dust grain to completely burn out at a specific medium Heating gas temperature required.
  • the length L (specified in m) of the combustion chamber 4 is dependent on the outlet temperature T BRK (specified in ° C.) of the heating gas G from the combustion chamber 4; the burnout time t A (specified in s) of the flame F of the fossil fuel B and the steam output M (specified in kg / s) of the continuous steam generator 2 at full load are selected appropriately.
  • This horizontal length L of the combustion chamber 4 is at least 80% of the height H of the combustion chamber 4.
  • the height H is marked from the top edge of the funnel 5 of the combustion chamber 4, in FIG. 1 by the auxiliary line with the end points X and Y, to Combustion chamber ceiling measured.
  • the curves K 2 and K 5 are to be used, for example.
  • the evaporator tubes 50 and 52 in the connection section Z marked in FIG. 1 in particular Led way is in Figure 4 shown in detail and includes the exit area 34 of the combustion chamber 4 and inlet area 32 of the horizontal gas flue 6.
  • the evaporator tube 50 is the immediate one welded to the side wall 12 of the horizontal throttle cable 6
  • Evaporator tube 50 of the peripheral wall 9 of the combustion chamber 4 and the evaporator tube 52 is the evaporator tube immediately adjacent to this 52 of the peripheral wall 9 of the combustion chamber 4.
  • the Continuous steam generator 2 Due to this special pipe routing, the Continuous steam generator 2, the evaporator tubes 50 and 52 in front preheated their entry into the peripheral wall 9 of the combustion chamber 4.
  • the flow medium S carried in them becomes heated during operation of the once-through steam generator 2 and thus preheated so that it has a comparatively higher temperature enters the peripheral wall 9 of the combustion chamber 4, than this in the in the directly to the evaporator tubes 50th and 52 adjacent evaporator tubes 10 of the combustion chamber 4 of the Case is.
  • the evaporator pipes 50 and 52 have the evaporator tubes 50 and 52 in the inlet section E when operating the continuous steam generator 2 a comparatively higher temperature than that of them directly adjacent evaporator tubes 10 of the surrounding wall 9 of the combustion chamber 4.
  • the continuous steam generator is in operation 2 Temperature differences at connection 36 between the combustion chamber 4 and the horizontal gas flue 6 particularly reliably kept particularly low.
  • the special pipe routing of the evaporator pipes 50 and 52 in the inlet section E in the peripheral wall 9 of the combustion chamber 4 allows the temperature difference to the steam generator pipes 16 of the peripheral wall 12 of the horizontal gas flue to be significantly reduced.
  • the temperature of the evaporator tubes 50 and 52 in the inlet section E of the evaporator tubes 50 and 52 can be increased by 45 Kelvin.
  • particularly small temperature differences in the inlet section E of the evaporator tubes 50 and 52 and the steam generator tubes 16 of the horizontal gas flue 6 are ensured at the connection 36 between the combustion chamber 4 and the horizontal gas flue 6 during the operation of the continuous steam generator 2.
  • the burners 30 During operation of the continuous steam generator 2, the burners 30 fossil fuel B, preferably coal in solid Shape, fed.
  • the flames F of the burner 30 are horizontal aligned. Due to the design of the combustion chamber 4 becomes a flow of the heating gas generated during combustion G in approximately horizontal main flow direction 24 generated. This reaches the horizontal throttle cable 6 in the vertical throttle cable 8 and approximately aligned with the floor leaves this in the direction of the fireplace, not shown.
  • Flow medium S entering the economizer 28 arrives in the inlet header system 18 of the evaporator tubes 10 of the Combustion chamber 4 of the once-through steam generator 2.
  • gastight welded evaporator tubes 10 of the combustion chamber 4 of the once-through steam generator 2 finds the evaporation and possibly a partial one Overheating of the flow medium S instead.
  • the resulting one Steam or a water-steam mixture is in the outlet collector system 20 collected for flow medium S. Of there the steam or the water-steam mixture passes through the Walls of the horizontal throttle cable 6 and the vertical gas cable 8 in the superheater heating surfaces 23 of the horizontal throttle cable 6. In the Superheater heating surfaces 23 further overheat the Steam, which is subsequently used, for example by the Drive a steam turbine, is supplied.
  • the continuous steam generator can also be used 2 due to its particularly low height and compact Construction with particularly low manufacturing and assembly costs build. It can be a comparatively small
  • the technical complexity of the scaffold can be provided. at a power plant with a steam turbine and a continuous steam generator 2 having such a low overall height can also connect the connecting pipes from the once-through steam generator designed for the steam turbine in a particularly short manner his.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Fats And Perfumes (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

Die Erfindung bezieht sich auf einen Durchlaufdampferzeuger, der eine Brennkammer für fossilen Brennstoff aufweist, der heizgasseitig über einen Horizontalgaszug ein Vertikalgaszug nachgeschaltet ist, wobei die Umfassungswände der Brennkammer aus gasdicht miteinander verschweißten, vertikal angeordneten Verdampferrohren gebildet sind.
Bei einer Kraftwerksanlage mit einem Dampferzeuger wird der Energiegehalt eines Brennstoffs zur Verdampfung von einem Strömungsmedium im Dampferzeuger genutzt. Dabei wird das Strömungsmedium üblicherweise in einem Verdampferkreislauf geführt. Der durch den Dampferzeuger bereitgestellte Dampf wiederum kann beispielsweise für den Antrieb einer Dampfturbine und/oder für einen angeschlossenen externen Prozeß vorgesehen sein. Treibt der Dampf eine Dampfturbine an, so wird über die Turbinenwelle der Dampfturbine üblicherweise ein Generator oder eine Arbeitsmaschine betrieben. Im Falle eines Generators kann der durch den Generator erzeugte Strom zur Einspeisung in ein Verbund- und/oder Inselnetz vorgesehen sein.
Der Dampferzeuger kann dabei als Durchlaufdampferzeuger ausgebildet sein. Ein Durchlaufdampferzeuger ist aus dem Aufsatz "Verdampferkonzepte für Benson-Dampferzeuger" von J. Franke, W. Köhler und E. Wittchow, veröffentlicht in VGB Kraftwerkstechnik 73 (1993), Heft 4, S. 352-360, bekannt. Bei einem Durchlaufdampferzeuger führt die Beheizung von als Verdampferrohren vorgesehenen Dampferzeugerrohren zu einer Verdampfung des Strömungsmediums in den Dampferzeugerrohren in einem einmaligen Durchlauf.
Durchlaufdampferzeuger werden üblicherweise mit einer Brennkammer in vertikaler Bauweise ausgeführt. Dies bedeutet, daß die Brennkammer für eine Durchströmung des beheizenden Mediums oder Heizgases in annähernd vertikaler Richtung ausgelegt ist. Heizgasseitig kann der Brennkammer dabei ein Horizontalgaszug nachgeschaltet sein, wobei beim Übergang von der Brennkammer in den Horizontalgaszug eine Umlenkung des Heizgasstroms in eine annähernd horizontale Strömungsrichtung erfolgt. Derartige Brennkammern erfordern jedoch im allgemeinen aufgrund der temperaturbedingten Längenänderungen der Brennkammer ein Gerüst, an dem die Brennkammer aufgehängt wird. Dies bedingt einen erheblichen technischen Aufwand bei der Herstellung und Montage des Durchlaufdampferzeugers, der um so größer ist, je größer die Bauhöhe des Durchlaufdampferzeugers ist. Dies ist insbesondere bei Durchlaufdampferzeugern der Fall, die für eine Dampfleistung von mehr als 80 kg/s bei Vollast ausgelegt sind.
Ein Durchlaufdampferzeuger unterliegt keiner Druckbegrenzung, so daß Frischdampfdrücke weit über dem kritischen Druck von Wasser (pkri = 221 bar) - wo es nur noch einen geringen Dichteunterschied gibt zwischen flüssigkeitsähnlichem und dampfähnlichem Medium - möglich sind. Ein hoher Frischdampfdruck begünstigt einen hohen thermischen Wirkungsgrad und somit niedrige CO2-Emissionen eines fossilbeheizten Kraftwerks, das beispielsweise mit Steinkohle oder auch mit Braunkohle in fester Form als Brennstoff befeuert sein kann.
Ein besonderes Problem stellt die Auslegung der Umfassungswand des Gaszuges oder Brennkammer des Durchlaufdampferzeugers im Hinblick auf die dort auftretenden Rohrwand- oder Materialtemperaturen dar. Im unterkritischen Druckbereich bis etwa 200 bar wird die Temperatur der Umfassungswand der Brennkammer im wesentlichen von der Höhe der Sättigungstemperatur des Wassers bestimmt; wenn eine Benetzung der Innenoberfläche der Verdampferrohre sichergestellt werden kann. Dies wird beispielsweise durch die Verwendung von Verdampferrohren erzielt, die auf ihrer Innenseite eine Oberflächenstruktur aufweisen. Dazu kommen insbesondere innenberippte Verdampferrohre in Betracht, deren Einsatz in einem Durchlaufdampferzeuger beispielsweise aus dem oben zitierten Aufsatz bekannt ist. Diese sogenannten Rippenrohre, d.h. Rohre mit einer berippten Innenoberfläche, haben einen besonders guten Wärmeübergang von der Rohrinnenwand zum Strömungsmedium.
Erfahrungsgemäß läßt es sich nicht vermeiden, daß beim Betrieb des Durchlaufdampferzeugers Wärmespannungen zwischen benachbarten Rohrwänden unterschiedlicher Temperatur auftreten, wenn diese miteinander verschweißt sind. Dies ist insbesondere bei dem Verbindungabschnitt der Brennkammer mit dem ihr nachgeschalteten Horizontalgaszug der Fall, also zwischen Verdampferrohren des Austrittsbereichs der Brennkammer und Dampferzeugerrohren des Eintrittsbereichs des Horizontalgaszugs. Durch diese Wärmespannungen kann die Lebensdauer des Durchlaufdampferzeugers deutlich verkürzt werden, und im Extremfall können sogar Rohrreißer entstehen.
Der Erfindung liegt daher die Aufgabe zugrunde, einen fossilbeheizten Durchlaufdampferzeuger der oben genannten Art anzugeben, der einen besonders geringen Herstellungs- und Montageaufwand erfordert, und bei dessen Betrieb außerdem Temperaturunterschiede an der Verbindung der Brennkammer mit dem ihr nachgeschalteten Horizontalgaszug gering gehalten sind. Dies soll insbesondere für die einander unmittelbar oder mittelbar benachbarten Verdampferrohre der Brennkammer und Dampferzeugerrohre des der Brennkammer nachgeschalteten Horizontalgaszugs der Fall sein.
Diese Aufgabe wird erfindungsgemäß gelöst, indem der Durchlaufdampferzeuger eine Brennkammer mit einer Anzahl von in der Höhe des Horizontalgaszugs angeordneten Brennern aufweist, wobei eine Mehrzahl der Verdampferrohre jeweils parallel mit Strömungsmedium beaufschlagbar ist und in dem Austrittsbereich der Brennkammer eine Anzahl der parallel mit Strömungsmedium beaufschlagbaren Verdampferrohre vor ihrem Eintritt in die jeweilige Umfassungswand der Brennkammer durch die Brennkammer geführt ist.
Die Erfindung geht von der Überlegung aus, daß ein mit besonders geringem Herstellungs- und Montageaufwand erstellbarer Durchlaufdampferzeuger eine mit einfachen Mitteln ausführbare Aufhängekonstruktion aufweisen sollte. Ein mit vergleichsweise geringem technischem Aufwand zu erstellendes Gerüst für die Aufhängung der Brennkammer kann dabei einhergehen mit einer besonders geringen Bauhöhe des Durchlaufdampferzeugers. Eine besonders geringe Bauhöhe des Durchlaufdampferzeugers ist erzielbar, indem die Brennkammer in horizontaler Bauweise ausgeführt ist. Hierzu sind die Brenner in der Höhe des Horizontalgaszugs in der Brennkammerwand angeordnet. Somit strömt beim Betrieb des Durchlaufdampferzeugers das Heizgas in annähernd horizontaler Hauptströmungsrichtung durch die Brennkammer.
Beim Betrieb des Durchlaufdampferzeugers mit der horizontalen Brennkammer sollten außerdem an der Verbindung der Brennkammer mit dem Horizontalgaszug Temperaturunterschiede besonders gering sein, um vorzeitige Materialermüdungen als Folge von Wärmespannungen zuverlässig zu vermeiden. Diese Temperaturunterschiede sollten insbesondere zwischen einander unmittelbar oder mittelbar benachbarten Verdampferrohren der Brennkammer und Dampf-erzeugerrohren des Horizontalgaszugs besonders gering sein, damit im Austrittsbereich der Brennkammer und im Eintrittsbereich des Horizontalgaszugs Materialermüdungen als Folge von Wärmespannungen besonders zuverlässig verhindert sind.
Der mit Strömungsmedium beaufschlagte Eintrittsabschnitt der Verdampferrohre weist nun aber beim Betrieb des Durchlaufdampferzeugers eine vergleichsweise geringere Temperatur auf als der Eintrittsabschnitt der Dampferzeugerrohre des der Brennkammer nachgeschalteten Horizontalgaszugs. In die Verdampferrohre tritt nämlich vergleichsweise kaltes Strömungsmedium ein im Gegensatz zu dem heißen Strömungsmedium, das in die Dampferzeugerrohre des Horizontalgaszugs eintritt. Also sind die Verdampferrohre beim Betrieb des Durchlaufdampferzeugers im Eintrittsabschnitt kälter als die Dampferzeugerrohre im Eintrittsabschnitt des Horizontalgaszugs. Damit sind an der Verbindung zwischen der Brennkammer und dem Horizontalgaszug Materialermüdungen als Folge von Wärmespannungen zu erwarten.
Tritt nun aber in die Verdampferrohre der Brennkammer nicht kaltes sondern vorgewärmtes Strömungsmedium ein, so wird auch der Temperaturunterschied zwischen dem Eintrittsabschnitt der Verdampferrohre und dem Eintrittsabschnitt der Dampferzeugerrohre nicht mehr so groß ausfallen, wie dies bei einem Eintritt von kaltem Strömungsmedium in die Verdampferrohre der Fall wäre. Der Temperaturunterschied läßt sich noch weiter verringern, wenn das Rohr, in welchem durch Beheizung die Vorwärmung des Strömungsmediums erfolgt, direkt an das mittelbar oder unmittelbar mit den Dampferzeugerrohren des Horizontalgaszugs verbundene Verdampferrohr angeschlossen oder aber ein Teil desselben ist. Hierzu ist eine Anzahl der Verdampferrohre vor ihrem Eintritt in die Umfassungswand der Brennkammer durch die Brennkammer geführt. Dabei ist diese Anzahl der Verdampferrohre einer Mehrzahl von parallel mit Strömungsmedium beaufschlagbaren Verdampferrohren zugeordnet.
Die Seitenwände des Horizontalgaszugs und/oder des Vertikalgaszugs sind vorteilhafterweise aus gasdicht miteinander verschweißten, vertikal angeordneten, jeweils parallel mit Strömungsmedium beaufschlagbaren Dampferzeugerrohren gebildet.
Vorteilhafterweise ist jeweils einer Anzahl von parallel geschalteten Verdampferrohren der Brennkammer ein gemeinsames Eintrittssammler-System vorgeschaltet und ein gemeinsames Austrittssammler-System für Strömungsmedium nachgeschaltet. Ein in dieser Ausgestaltung ausgeführter Durchlaufdampferzeuger ermöglicht nämlich einen zuverlässigen Druckausgleich zwischen einer Anzahl von parallel mit Strömungsmedium beaufschlagbaren Verdampferrohren, so daß jeweils alle parallel geschalteten Verdampferrohre zwischen dem Eintrittssammler-System und dem Austrittssammler-System den gleichen Gesamtdruckverlust aufweisen. Dies bedeutet, daß bei einem mehrbeheizten Ver-dampferrohr im Vergleich zu einem minderbeheizten Verdampfer-rohr der Durchsatz steigen muß. Dies gilt auch für die parallel mit Strömungsmedium beaufschlagbaren Dampferzeugerrohre des Horizontalgaszugs oder des Vertikalgaszugs, denen vorteilhafterweise ein gemeinsames Eintrittssammler-System für Strömungsmedium vorgeschaltet und ein gemeinsames Austrittssammler-System für Strömungsmedium nachgeschaltet ist.
Die Verdampferrohre der Stirnwand der Brennkammer sind vorteilhafterweise parallel mit Strömungsmedium beaufschlagbar und den Verdampferrohren der Umfassungswände, die die Seitenwände der Brennkammer bilden, strömungsmediumsseitig vorgeschaltet. Dadurch ist eine besonders günstige Kühlung der stark beheizten Stirnwand der Brennkammer gewährleistet.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist der Rohrinnendurchmesser einer Anzahl der Verdampferrohre der Brennkammer abhängig von der jeweiligen Position der Verdampferrohre in der Brennkammer gewählt. Auf diese Weise sind die Verdampferrohre in der Brennkammer an ein heizgasseitig vorgebbares Beheizungsprofil anpaßbar. Mit dem hierdurch bewirkten Einfluß auf die Durchströmung der Verdampferrohre sind besonders zuverlässig Temperaturunterschiede des Strömungsmediums am Austritt aus den Verdampferrohren der Brennkammer besonders gering gehalten.
Für eine besonders gute Wärmeübertragung von der Wärme der Brennkammer auf das in den Verdampferrohren geführte Strömungsmedium weist vorteilhafterweise eine Anzahl der Verdampferrohre auf ihrer Innenseite jeweils ein mehrgängiges Gewinde bildende Rippen auf. Dabei ist vorteilhafterweise ein Steigungswinkel α zwischen einer zur Rohrachse senkrechten Ebene und den Flanken der auf der Rohrinnenseite angeordneten Rippen kleiner als 60°, vorzugsweise kleiner als 55°.
In einem beheizten, als Verdampferrohr ohne Innenberippung, einem sogenannten Glattrohr, ausgeführten Verdampferrohr kann nämlich von einem bestimmten Dampfgehalt an die für einen besonders guten Wärmeübergang erforderliche Benetzung der Rohrwand nicht mehr aufrechterhalten werden. Bei fehlender Benetzung kann eine stellenweise trockene Rohrwand vorliegen. Der Übergang zu einer derartigen trockenen Rohrwand führt zu einer sogenannten Wärmeübergangskrise mit verschlechtertem Wärmeübergangsverhalten, so daß im allgemeinen die Rohrwandtemperaturen an dieser Stelle besonders stark ansteigen. In einem innenberippten Verdampferrohr tritt aber nun im Vergleich zu einem Glattrohr diese Krise des Wärmeübergangs erst bei einem Dampfmassengehalt > 0,9, also kurz vor dem Ende der Verdampfung, auf. Das ist auf den Drall zurückzuführen, den die Strömung durch die spiralförmigen Rippen erfährt. Aufgrund der unterschiedlichen Zentrifugalkraft wird der Wasservom Dampfanteil separiert und an die Rohrwand transportiert. Dadurch wird die Benetzung der Rohrwand bis zu hohen Dampfgehalten aufrechterhalten, so daß am Ort der Wärmeübergangskrise bereits hohe Strömungsgeschwindigkeiten vorliegen. Das bewirkt trotz Wärmeübergangskrise einen relativ guten Wärmeübergang und als Folge niedrige Rohrwandtemperaturen.
Eine Anzahl der Verdampferrohre der Brennkammer weist vorteilhafterweise Mittel zum Reduzieren des Durchflusses des Strömungsmediums auf. Dabei erweist es sich als besonders günstig, wenn die Mittel als Drosseleinrichtungen ausgebildet sind. Drosseleinrichtungen können beispielsweise Einbauten in die Verdampferrohre sein, die an einer Stelle im Inneren des jeweiligen Verdampferrohrs den Rohrinnendurchmesser verkleinern. Dabei erweisen sich auch Mittel zum Reduzieren des Durchflusses in einem mehrere parallele Leitungen umfassenden Leitungssystem als vorteilhaft, durch das den Verdampferrohren der Brennkammer Strömungsmedium zuführbar ist. Dabei kann das Leitungssystem auch einem Eintrittssammler-System von parallel mit Strömungsmedium beaufschlagbaren Verdampferrohren vorgeschaltet sein. In einer Leitung oder in mehreren Leitungen des Leitungssystems können dabei beispielsweise Drosselarmaturen vorgesehen sein. Mit solchen Mitteln zur Reduzierung des Durchflusses des Strömungsmediums durch die Verdampferrohre läßt sich eine Anpassung des Durchsatzes des Strömungsmediums durch einzelne Verdampferrohre an deren jeweilige Beheizung in der Brennkammer herbeiführen. Dadurch sind zusätzlich Temperaturunterschiede des Strömungsmediums am Austritt der Verdampferrohre besonders zuverlässig besonders gering gehalten.
Benachbarte Verdampfer- bzw. Dampferzeugerrohre sind an ihren Längsseiten vorteilhafterweise über Metallbänder, sogenannte Flossen, gasdicht miteinander verschweißt. Diese Flossen können im Herstellungsverfahren der Rohre bereits fest mit den Rohren verbunden sein und mit diesen eine Einheit bilden. Diese aus einem Rohr und Flossen gebildete Einheit wird auch als Flossenrohr bezeichnet. Die Flossenbreite beeinflußt den Wärmeeintrag in die Verdampfer- bzw. Dampferzeugerrohre. Daher ist die Flossenbreite vorzugsweise abhängig von der Position der jeweiligen Verdampfer- bzw. Dampferzeugerrohre im Durchlaufdampferzeuger an ein heizgasseitig vorgebbares Beheizungsprofil angepaßt. Als Beheizungsprofil kann dabei ein aus Erfahrungswerten ermitteltes typisches Beheizungsprofil oder auch eine grobe Abschätzung, wie beispielsweise ein stufenförmiges Beheizungsprofil, vorgegeben sein. Durch die geeignet gewählten Flossenbreiten ist auch bei stark unterschiedlicher Beheizung verschiedener Verdampfer- bzw. Dampferzeugerrohre ein Wärmeeintrag in alle Verdampfer- bzw. Dampferzeugerrohre derart erreichbar, daß Temperaturunterschiede des Strömungsmediums am Austritt aus den Verdampfer- bzw. Dampferzeugerrohren besonders gering gehalten sind. Auf diese Weise sind vorzeitige Materialermüdungen als Folge von Wärmespannungen zuverlässig verhindert. Dadurch weist der Durchlaufdampferzeuger eine besonders lange Lebensdauer auf.
In dem Horizontalgaszug sind vorteilhafterweise eine Anzahl von Überhitzerheizflächen angeordnet, die annähernd senkrecht zur Hauptströmungsrichtung des Heizgases angeordnet und deren Rohre für eine Durchströmung des Strömungsmediums parallel geschaltet sind. Diese in hängender Bauweise angeordneten, auch als Schottheizflächen bezeichneten Überhitzerheizflächen werden überwiegend konvektiv beheizt und sind strömungsmediumsseitig den Verdampferrohren der Brennkammer nachgeschaltet. Hierdurch ist eine besonders günstige Ausnutzung der Heizgaswärme gewährleistet.
Vorteilhafterweise weist der Vertikalgaszug eine Anzahl von Konvektionsheizflächen auf, die aus annähernd senkrecht zur Hauptströmungsrichtung des Heizgases angeordneten Rohren gebildet sind. Diese Rohre einer Konvektionsheizfläche sind für eine Durchströmung des Strömungsmediums parallel geschaltet. Auch diese Konvektionsheizflächen werden überwiegend konvektiv beheizt.
Um weiterhin eine besonders vollständige Ausnutzung der Wärme des Heizgases zu gewährleisten, weist der Vertikalgaszug vorteilhafterweise einen Economizer auf.
Vorteilhafterweise sind die Brenner an der Stirnwand der Brennkammer angeordnet, also an derjenigen Seitenwand der Brennkammer, die der Abströmöffnung zum Horizontalgaszug gegenüberliegt. Ein derartig ausgebildeter Durchlaufdampferzeuger ist auf besonders einfache Weise an die Ausbrandlänge des fossilen Brennstoffs anpaßbar. Unter Ausbrandlänge des fossilen Brennstoffs ist dabei die Heizgasgeschwindigkeit in horizontaler Richtung bei einer bestimmten mittleren Heizgastemperatur multipliziert mit der Ausbrandzeit tA der Flamme des fossilen Brennstoffs zu verstehen. Die für den jeweiligen Durchlaufdampferzeuger maximale Ausbrandlänge ergibt sich dabei bei der Dampfleistung M bei Vollast des Durchlaufdampferzeugers, dem sogenannten Vollastbetrieb. Die Ausbrandzeit tA der Flamme des fossilen Brennstoffs wiederum ist die Zeit, die beispielsweise ein Kohlenstaubkorn mittlerer Größe benötigt, um bei einer bestimmten mittleren Heizgastemperatur vollständig auszubrennen.
Um Materialschäden und eine unerwünschte Verschmutzung des Horizontalgaszuges, beispielsweise aufgrund des Eintrags von schmelzflüssiger Asche einer hohen Temperatur, besonders gering zu halten, ist die durch den Abstand von der Stirnwand zum Eintrittsbereich des Horizontalgaszuges definierte Länge der Brennkammer vorteilhafterweise mindestens gleich der Ausbrandlänge des fossilen Brennstoffs beim Vollastbetrieb des Durchlaufdampferzeugers. Diese horizontale Länge der Brennkammer wird im allgemeinen mindestens 80 % der Höhe der Brennkammer betragen, gemessen von der Trichteroberkante, wenn der untere Bereich der Brennkammer trichterförmig ausgeführt ist, bis zur Brennkammerdecke.
Die Länge L (angegeben in m) der Brennkammer ist für eine besonders günstige Ausnutzung der Verbrennungswärme des fossilen Brennstoffs vorteilhafterweise als Funktion der Dampfleistung M (angegeben in kg/s) des Durchlaufdampferzeugers bei Vollast, der Ausbrandzeit tA (angegeben in s) der Flamme des fossilen Brennstoffs und der Austrittstemperatur TBRK (angegeben in °C) des Heizgases aus der Brennkammer gewählt. Dabei gilt bei gegebener Dampfleistung M des Durchlaufdampferzeugers bei Vollast für die Länge L der Brennkammer näherungsweise der größere Wert der beiden Funktionen (I) und (II): L (M, tA) = (C1 + C2 · M) · tA und L (M, TBRK) = (C3 · TBRK + C4) M + C5 (TBRk)2 + C6 · TBRK + C7 mit
   C1 = 8 m/s   und
   C2 = 0,0057 m/kg   und
   C3 = -1,905 · 10-4 (m · s)/(kg°C)   und
   C4 = 0,286 (s · m)/kg   und
   C5 = 3 · 10-4 m/(°C)2   und
   C6 = -0,842 m/°C   und
C7 = 603,41 m.
Unter "näherungsweise" ist hierbei eine zulässige Abweichung der Länge L der Brennkammer vom durch die jeweilige Funktion definierten Wert um +20%/-10% zu verstehen.
Vorteilhafterweise ist der untere Bereich der Brennkammer als Trichter ausgebildet. Auf diese Weise kann beim Betrieb des Durchlaufdampferzeugers bei der Verbrennung des fossilen Brennstoffs anfallende Asche besonders einfach abgeführt werden, beispielsweise in eine unter dem Trichter angeordnete Entaschungseinrichtung. Bei dem fossilen Brennstoff kann es sich dabei um Kohle in fester Form handeln.
Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß durch die Führung einiger Verdampferrohre durch die Brennkammer vor ihrem Eintritt in die Umfassungswand der Brennkammer, Temperaturunterschiede in der unmittelbaren Umgebung der Verbindung der Brennkammer mit dem Horizontalgaszug beim Betrieb des Durchlaufdampferzeugers besonders gering ausfallen. Die durch Temperaturunterschiede zwischen unmittelbar benachbarten Verdampferrohren der Brennkammer und Dampferzeugerrohren des Horizontalgaszugs verursachten Wärmespannungen an der Verbindung der Brennkammer mit dem Horizontalgaszug bleiben daher beim Betrieb des Durchlaufdampferzeugers weit unter den Werten, bei denen beispielsweise die Gefahr von Rohrreißern gegeben ist. Damit ist der Einsatz einer horizontalen Brennkammer in einem Durchlaufdampferzeuger auch mit vergleichsweise langer Lebensdauer möglich. Durch die Auslegung der Brennkammer für eine annähernd horizontale Hauptströmungsrichtung des Heizgases ist außerdem eine besonders kompakte Bauweise des Durchlaufdampferzeugers gegeben. Dies ermöglicht bei Einbindung des Durchlaufdampferzeugers in ein Kraftwerk mit einer Dampfturbine auch besonders kurze Verbindungsrohre von dem Durchlaufdampferzeuger zu der Dampfturbine.
Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen:
FIG 1
schematisch einen fossilbeheizten Durchlaufdampferzeuger in Zweizugbauart in Seitenansicht und
FIG 2
schematisch einen Längsschnitt durch ein einzelnes Verdampferrohr,
FIG 3
ein Koordinatensystem mit den Kurven K1 bis K6,
FIG 4
schematisch die Verbindung der Brennkammer mit dem Horizontalgaszug und
FIG 5
ein Koordinatensystem mit den Kurven U1 bis U4.
Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen.
Der fossilbeheizbare Durchlaufdampferzeuger 2 gemäß Figur 1 ist einer nicht näher dargestellten Kraftwerksanlage zugeordnet, die auch eine Dampfturbinenanlage umfaßt. Dabei ist der Durchlaufdampferzeuger 2 für eine Dampfleistung bei Vollast von mindestens 80 kg/s ausgelegt. Der im Durchlaufdampferzeuger 2 erzeugte Dampf wird dabei zum Antrieb der Dampfturbine genutzt, die ihrerseits wiederum einen Generator zur Stromerzeugung antreibt. Der durch den Generator erzeugte Strom ist dabei zur Einspeisung in ein Verbund- oder ein Inselnetz vorgesehen.
Der fossilbeheizte Durchlaufdampferzeuger 2 umfaßt eine in horizontaler Bauweise ausgeführte Brennkammer 4, der heizgasseitig über einen Horizontalgaszug 6 ein Vertikalgaszug 8 nachgeschaltet ist. Der untere Bereich der Brennkammer 4 ist durch einen Trichter 5 mit einer Oberkante entsprechend der Hilfslinie mit den Endpunkten X und Y gebildet. Durch den Trichter 5 kann beim Betrieb des Durchlaufdampferzeugers 2 Asche des fossilen Brennstoffs B in eine darunter angeordnete Entaschungseinrichtug 7 abgeführt werden. Die Umfassungswände 9 der Brennkammer 4 sind aus gasdicht miteinander verschweißten, vertikal angeordneten Verdampferrohren 10 gebildet, von denen eine Anzahl N parallel mit Strömungsmedium S beaufschlagbar ist. Dabei ist eine Umfassungswand 9 der Brennkammer 4 die Stirnwand 11. Zusätzlich sind auch die Seitenwände 12 des Horizontalgaszugs 6 bzw. 14 des Vertikalgaszugs 8 aus gasdicht miteinander verschweißten, vertikal angeordneten Dampferzeugerrohren 16 bzw. 17 gebildet. Dabei sind eine Anzahl der Dampferzeugerrohre 16 bzw. 17 jeweils parallel mit Strömungsmedium S beaufschlagbar.
Einer Anzahl der Verdampferrohre 10 der Brennkammer 4 ist strömungsmediumsseitig ein Eintrittssammler-System 18 für Strömungsmedium S vorgeschaltet und ein Austrittssammler-System 20 nachgeschaltet. Das Eintrittssammler-System 18 umfaßt dabei eine Anzahl von parallelen Eintritsssammlern. Dabei ist zum Zuführen von Strömungsmedium S in das Eintrittssammler-System 18 der Verdampferrohre 10 ein Leitungssystem 19 vorgesehen. Das Leitungssystems 19 umfaßt mehrere parallel geschaltete Leitungen, die jeweils mit einem der Eintrittssammler des Eintrittssammler-Systems 18 verbunden sind.
In gleicher Weise ist den parallel mit Strömungsmedium S beaufschlagbaren Dampferzeugerrohren 16 der Seitenwände 12 des Horizontalgaszugs 6 ein gemeinsames Eintrittssammlersystem 21 vorgeschaltet und ein gemeinsames Austrittssammlersystem 22 nachgeschaltet. Dabei ist zum Zuführen von Strömungsmedium S in das Eintrittssammler-System 21 der Dampferzeugerrohre 16 ebenfalls ein Leitungssystem 19 vorgesehen. Das Leitungssystem umfaßt auch hier mehrere parallel geschaltete Leitungen, die jeweils mit einem der Eintrittssammler des Eintrittssammler-Systems 21 verbunden sind.
Durch diese Ausgestaltung des Durchlaufdampferzeugers 2 mit Eintrittssammler-Systemen 18, 21 und Austrittssammler-Systemen 20, 22 ist ein besonders zuverlässiger Druckausgleich zwischen den parallel geschalteten Verdampferrohren 10 der Brennkammer 4 bzw. den parallel geschalteten Dampferzeugerrohren 16 des Horizontalgaszugs 6 in der Weise möglich, daß jeweils alle parallel geschalteten Verdampfer- bzw. Dampferzeugerrohre 10 bzw. 16 den gleichen Gesamtdruckverlust aufweisen. Dies bedeutet, daß bei einem mehr beheizten Verdampferrohr 10 bzw. Dampferzeugerrohr 16 im Vergleich zu einem minderbeheizten Verdampferrohr 10 bzw. Dampferzeugerrohr 16 der Durchsatz steigen muß.
Die Verdampferrohre 10 weisen - wie in Figur 2 dargestellt - einen Rohrinnendurchmesser D und auf ihrer Innenseite Rippen 40 auf, die eine Art mehrgängiges Gewinde bilden und eine Rippenhöhe C haben. Dabei ist der Steigungswinkel α zwischen einer zur Rohrachse senkrechten Ebene 42 und den Flanken 44 der auf der Rohrinnenseite angeordneten Rippen 40 kleiner als 55°. Dadurch werden ein besonders hoher Wärmeübergang von den Innenwänden der Verdampferrohre 10 an das in den Verdampferrohren 10 geführte Strömungsmedium S und gleichzeitig besonders niedrige Temperaturen der Rohrwand erreicht.
Der Rohrinnendurchmesser D der Verdampferrohre 10 der Brennkammer 4 ist abhängig von der jeweiligen Position der Verdampferrohre 10 in der Brennkammer 4 gewählt. Auf diese Weise ist der Durchlaufdampferzeuger 2 an die unterschiedlich starke Beheizung der Verdampferrohre 10 angepaßt. Diese Auslegung der Verdampferrohre 10 der Brennkammer 4 gewährleistet besonders zuverlässig, daß Temperaturunterschiede des Strömungsmediums S beim Austritt aus den Verdampferrohren 10 besonders gering gehalten sind.
Als Mittel zum Reduzieren des Durchflusses des Strömungsmediums S sind ein Teil der Verdampferrohre 10 mit Drosseleinrichtungen ausgestattet, die in der Zeichnung nicht näher dargestellt sind. Die Drosseleinrichtungen sind als den Rohrinnendurchmesser D an einer Stelle verkleinernde Lochblenden ausgeführt und bewirken beim Betrieb des Durchlaufdampferzeugers 2 eine Reduzierung des Durchsatzes des Strömungsmediums S in minderbeheizten Verdampferrohren 10, wodurch der Durchsatz des Strömungsmediums S der Beheizung angepaßt wird.
Weiterhin sind als Mittel zum Reduzieren des Durchsatzes des Strömungsmediums S in den Verdampferrohren 10 eine oder mehrere nicht näher dargestellte Leitungen des Leitungssystems 19 mit Drosseleinrichtungen, insbesondere Drosselarmaturen, ausgestattet.
Benachbarte Verdampfer- bzw. Dampferzeugerrohre 10, 16, 17 sind in nicht näher in der Zeichnung dargestellter Weise an ihren Längsseiten über Flossen gasdicht miteinander verschweißt. Durch eine geeignete Wahl der Flossenbreite kann nämlich die Beheizung der Verdampfer- bzw. Dampferzeugerrohre 10, 16, 17 beeinflußt werden. Daher ist die jeweilige Flossenbreite an ein heizgasseitig vorgebbares Beheizungsprofil angepaßt, das von der Position der jeweiligen Verdampfer- bzw. Dampferzeugerrohre 10, 16, 17 im Durchlaufdampferzeuger 2 abhängt. Das Beheizungsprofil kann dabei ein aus Erfahrungswerten ermitteltes typisches Beheizungsprofil oder auch eine grobe Abschätzung sein. Dadurch sind Temperaturunterschiede am Austritt der Verdampfer- bzw. Dampferzeugerrohre 10, 16, 17 auch bei stark unterschiedlicher Beheizung der Verdampfer- bzw. Dampferzeugerrohre 10, 16, 17 besonders gering gehalten. Auf diese Weise sind Materialermüdungen als Folge von Wärmespannungen zuverlässig verhindert, was eine lange Lebensdauer des Durchlaufdampferzeugers 2 gewährleistet.
Bei der Berohrung der horizontalen Brennkammer 4 ist zu berücksichtigen, daß die Beheizung der einzelnen, miteinander gasdicht verschweißten Verdampferrohre 10 beim Betrieb des Durchlaufdampferzeugers 2 sehr unterschiedlich ist. Deswegen wird die Auslegung der Verdampferrohre 10 hinsichtlich ihrer Innenberippung, ihrer Flossenverbindung zu benachbarten Verdampferrohren 10 und ihres Rohrinnendurchmessers D so gewählt, daß alle Verdampferrohre 10 trotz unterschiedlicher Beheizung annähernd gleiche Austrittstemperaturen des Strömungsmediums S aufweisen und eine ausreichende Kühlung aller Verdampferrohre 10 für alle Betriebszustände des Durchlaufdampferzeugers 2 gewährleistet ist. Eine Minderbeheizung einiger Verdampferrohre 10 beim Betrieb des Durchlaufdampferzeugers 2 wird dabei durch den Einbau von Drosseleinrichtungen zusätzlich berücksichtigt.
Die Rohrinnendurchmesser D der Verdampferrohre 10 in der Brennkammer 4 sind in Abhängigkeit von ihrer jeweiligen Position in der Brennkammer 4 gewählt. Dabei weisen Verdampferrohre 10, die beim Betrieb des Durchlaufdampferzeugers 2 einer stärkeren Beheizung ausgesetzt sind, einen größeren Rohrinnendurchmesser D auf als Verdampferrohre 10, die beim Betrieb des Durchlaufdampferzeugers 2 geringer beheizt werden. Damit wird gegenüber dem Fall mit gleichen Rohrinnendurchmessern erreicht, daß sich der Durchsatz des Strömungsmediums S in den Verdampferrohren 10 mit größerem Rohrinnendurchmesser D erhöht und dadurch Temperaturdifferenzen am Austritt der Verdampferrohre 10 infolge unterschiedlicher Beheizung reduziert werden. Eine weitere Maßnahme, die Durchströmung der Verdampferrohre 10 mit Strömungsmedium S an die Beheizung anzupassen, ist der Einbau von Drosseleinrichtungen in einen Teil der Verdampferrohre 10 und/oder in das zur Zuführung von Strömungsmedium S vorgesehene Leitungssystem 19. Um dagegen die Beheizung an den Durchsatz des Strömungsmediums S durch die Verdampferrohre 10 anzupassen, kann die Flossenbreite in Abhängigkeit von der Position der Verdampferrohre 10 in der Brennkammer 4 gewählt werden. Alle genannten Maßnahmen bewirken trotz stark unterschiedlicher Beheizung der einzelnen Verdampferrohre 10 eine annähernd gleiche spezifische Wärmeaufnahme des in den Verdampferrohren 10 geführten Strömungsmediums S beim Betrieb des Durchlaufdampferzeugers 2 und somit nur geringe Temperaturdifferenzen des Strömungsmediums S an deren Austritt. Die Innenberippung der Verdampferrohre 10 ist dabei derart ausgelegt, daß eine besonders zuverlässige Kühlung der Verdampferrohre 10 trotz unterschiedlicher Beheizung und Durchströmung mit Strömungsmedium S bei allen Lastzuständen des Durchlaufdampferzeugers 2 gewährleistet ist.
Der Horizontalgaszug 6 weist eine Anzahl von als Schottheizflächen ausgebildeten Überhitzerheizflächen 23 auf, die in hängender Bauweise annähernd senkrecht zur Hauptströmungsrichtung 24 des Heizgases G angeordnet und deren Rohre für eine Durchströmung des Strömungsmediums S jeweils parallel geschaltet sind. Die Überhitzerheizflächen 23 werden überwiegend konvektiv beheizt und sind strömungsmediumsseitig den Verdampferrohren 10 der Brennkammer 4 nachgeschaltet.
Der Vertikalgaszug 8 weist eine Anzahl von überwiegend konvektiv beheizbaren Konvektionsheizflächen 26 auf, die aus annähernd senkrecht zur Hauptströmungsrichtung 24 des Heizgases G angeordneten Rohren gebildet sind. Diese Rohre sind für eine Durchströmung des Strömungsmediums S jeweils parallel geschaltet. Außerdem ist in dem Vertikalgaszug 8 ein Economizer 28 angeordnet. Ausgangsseitig mündet der Vertikalgaszug 8 in einen weiteren Wärmetauscher, beispielsweise in einen Luftvorwärmer und von dort über einen Staubfilter in einen Kamin. Die dem Vertikalgaszug 8 nachgeschalteten Bauteile sind in der Zeichnung nicht näher dargestellt.
Der Durchlaufdampferzeuger 2 ist mit einer horizontalen Brennkammer 4 mit besonders niedriger Bauhöhe ausgeführt und somit mit besonders geringem Herstellungs- und Montageaufwand errichtbar. Hierzu weist die Brennkammer 4 des Durchlaufdampferzeugers 2 eine Anzahl von Brennern 30 für fossilen Brennstoff B auf, die an der Stirnwand 11 der Brennkammer 4 in der Höhe des Horizontalgaszuges 6 angeordnet sind. Bei dem fossilen Brennstoff B kann es sich dabei um feste Brennstoffe, insbesondere Kohle handeln.
Damit der fossile Brennstoff B, beispielsweise Kohle in fester Form, zur Erzielung eines besonders hohen Wirkungsgrads besonders vollständig ausbrennt und Materialschäden der heizgasseitig gesehen ersten Überhitzerheizfläche 23 des Horizontalgaszuges 6 und eine Verschmutzung derselben, beispielsweise durch Eintrag von schmelzflüssiger Asche mit hoher Temperatur, besonders zuverlässig verhindert sind, ist die Länge L der Brennkammer 4 derart gewählt, daß sie die Ausbrandlänge des fossilen Brennstoffs B beim Vollastbetrieb des Durchlaufdampferzeugers 2 übersteigt. Die Länge L ist dabei der Abstand von der Stirnwand 11 der Brennkammer 4 zum Eintrittsbereich 32 des Horizontalgaszugs 6. Die Ausbrandlänge des fossilen Brennstoffs B ist dabei definiert als die Heizgasgeschwindigkeit in horizontaler Richtung bei einer bestimmten mittleren Heizgastemperatur multipliziert mit der Ausbrandzeit tA der Flamme F des fossilen Brennstoffs B. Die für den jeweiligen Durchlaufdampferzeuger 2 maximale Ausbrandlänge ergibt sich beim Vollastbetrieb des jeweiligen Durchlaufdampferzeugers 2. Die Ausbrandzeit tA der Flamme F des Brennstoffs B wiederum ist die Zeit, die beispielsweise ein Kohlenstaubkorn mittlerer Größe zum vollständigen Ausbrennen bei einer bestimmten mittleren Heizgastemperatur benötigt.
Um eine besonders günstige Ausnutzung der Verbrennungswärme des fossilen Brennstoffs B zu gewährleisten, ist die Länge L (angegeben in m) der Brennkammer 4 in Abhängigkeit von der Austrittstemperatur TBRK (angegeben in °C) des Heizgases G aus der Brennkammer 4; der Ausbrandzeit tA (angegeben in s) der Flamme F des fossilen Brennstoffs B und der Dampfleistung M (angegeben in kg/s) des Durchlaufdampferzeugers 2 bei Vollast geeignet gewählt. Diese horizontale Länge L der Brennkammer 4 beträgt dabei mindestens 80 % der Höhe H der Brennkammer 4. Die Höhe H wird dabei von der Oberkante des Trichters 5 der Brennkammer 4, in Figur 1 durch die Hilfslinie mit den Endpunkten X und Y markiert, bis zur Brennkammerdecke gemessen. Die Länge L der Brennkammer 4 bestimmt sich näherungsweise über die Funktionen (I) und (II): L (M, tA) - (C1 + C2 · M) · tA und L (M, TBRK) = (C3 · TBRK + C4) M + C5 (TBRK)2 + C6 · TBRK + C7 mit
   C1 = 8 m/s   und
   C2 = 0,0057 m/kg   und
   C3 = -1,905 · 10-4 (m · s)/(kg°C)   und
   C4 = 0,286 (s · m)/kg   und
   C5 = 3 · 10-4 m/(°C)2   und
   C6 = -0,842 m/°C   und
   C7 = 603,41 m.
Näherungsweise ist hierbei als eine zulässige Abweichung der Länge L der Brennkammer 4 um +20%/-10% vom durch die jeweilige Funktion definierten Wert zu verstehen. Dabei gilt bei der Auslegung des Durchlaufdampferzeugers 2 für eine vorgegebene Dampfleistung M des Durchlaufdampferzeugers 2 bei Vollast der größere Wert aus den Funktionen (I) und (II) für die Länge L der Brennkammer 4.
Als Beispiel für eine mögliche Auslegung des Durchlaufdampferzeugers 2 sind für einige Längen L der Brennkammer 4 in Abhängigkeit von der Dampfleistung M des Durchlaufdampferzeugers 2 bei Vollast in das Koordinatensystem gemäß Figur 3 sechs Kurven K1 bis K6 eingezeichnet. Dabei sind den Kurven jeweils folgende Parameter zugeordnet:
  • K1: tA = 3s   gemäß (I),
  • K2: tA = 2,5s   gemäß (I),
  • K3: tA = 2s   gemäß (I),
  • K4: TBRK = 1200°C   gemäß (II),
  • K5: TBRK = 1300°C   gemäß (II),
  • K6: TBRK = 1400°C   gemäß (II).
  • Zur Bestimmung der Länge L der Brennkammer 4 sind somit beispielsweise für die Ausbrandzeit tA = 3s der Flamme F des fossilen Brennstoffs B und die Austrittstemperatur TBRK = 1200°C des Heizgases G aus der Brennkammer 4 die Kurven K1 und K4 heranzuziehen. Daraus ergibt sich bei einer vorgegebenen Dampfleistung M des Durchlaufdampferzeugers 2 bei Vollast
       von M = 80 kg/s eine Länge von L = 29 m gemäß K4,
       von M = 160 kg/s eine Länge von L = 34 m gemäß K4,
       von M = 560 kg/s eine Länge von L = 57 m gemäß K4.
    Es gilt also stets die als durchgezogene Linie gezeichnete Kurve K4.
    Für die Ausbrandzeit tA = 2,5s der Flamme F des fossilen Brennstoffs B und die Austrittstemperatur des Heizgases G aus der Brennkammer TBRK = 1300°C sind beispielsweise die Kurven K2 und K5 heranzuziehen. Daraus ergibt sich bei einer vorgegebenen Dampfleistung M des Durchlaufdampferzeugers 2 bei Vollast
       von M = 80 kg/s eine Länge von L = 21 m gemäß K2,
       von M = 180 kg/s eine Länge von L = 23 m gemäß K2 und K5,
       von M = 560 kg/s eine Länge von L = 37 m gemäß K5.
    Es gilt also bis M = 180 kg/s der Teil der Kurve K2, die als durchgezogene Linie gezeichnet ist und nicht die in diesem Wertebereich von M als gestrichelte Linie gezeichnete Kurve K5. Für Werte von M, die größer als 180 kg/s sind, gilt der Teil der Kurve K5, der als durchgezogene Linie gezeichnet ist und nicht die in diesem Wertebereich von M als gestrichelte Linie gezeichnete Kurve K2.
    Der Ausbrandzeit tA = 2s der Flamme F des fossilen Brennstoffs B und der Austrittstemperatur TBRK = 1400°C des Heizgases G aus der Brennkammer 4 sind beispielsweise die Kurven K3 und K6 zugeordnet. Daraus ergibt sich bei einer vorgegebenen Dampfleistung M des Durchlaufdampferzeugers 2 bei Vollast
       von M = 80 kg/s eine Länge von L = 18 m gemäß K3,
       von M = 465 kg/s eine Länge von L = 21 m gemäß K3 und K6,
       von M = 560 kg/s eine Länge von L = 23 m gemäß K6.
    Es gilt also für Werte von M bis 465 kg/s die als durchgezogene Linie in diesem Bereich gezeichnete Kurve K3 und nicht die als gestrichelte Linie in diesem Bereich gezeichnete Kurve K6. Für Werte von M die größer als 465 kg/s sind gilt der Teil der als durchgezogene Linie gezeichneten Kurve K6 und nicht der Teil der als gestrichelte Linie gezeichneten Kurve K3.
    Damit zwischen dem Austrittsbereich 34 der Brennkammer 4 und dem Eintrittsbereich 32 des Horizontalgaszugs 6 beim Betrieb des Durchlaufdampferzeugers 2 vergleichsweise geringe Temperaturunterschiede auftreten, sind die Verdampferrohre 50 und 52 in dem in Figur 1 markierten Verbindungsabschnitt Z in besonderer Weise geführt. Dieser Verbindungsabschnitt Z ist in Figur 4 im Detail dargestellt und umfaßt den Austrittsbereich 34 der Brennkammer 4 und Eintrittsbereich 32 des Horizontalgaszugs 6. Dabei ist das Verdampferrohr 50 das unmittelbar mit der Seitenwand 12 des Horizontalgaszugs 6 verschweißte Verdampferrohr 50 der Umfassungswand 9 der Brennkammer 4 und das Verdampferrohr 52 das diesem unmittelbar benachbarte Verdampferrohr 52 der Umfassungswand 9 der Brennkammer 4.
    Diese beiden Verdampferrohre 50 und 52 treten gemeinsam mit den ihnen parallel geschalteten Verdampferrohren 10 aus dem gemeinsamen Eintrittsammler-System 18 aus. Dann jedoch werden sowohl das Verdampferrohr 50 als auch das Verdampferrohr 52 zunächst in annähernd horizontaler Richtung entgegengesetzt zur Hauptströmungsrichtung 24 des Heizgases G außerhalb der Brennkammer 4 geführt. Dann treten sie in die Brennkammer 4 ein und werden nun nicht unmittelbar bei ihrem Eintritt in die Brennkammer 4 Bestandteil der Umfassungswand 9 der Brennkammer 4. Sie werden nämlich entlang der Hauptströmungsrichtung 24 des Heizgases G in der Brennkammer 4 bis zu dem Bereich zurückgeführt, an dem sie außerhalb der Brennkammer 4 von ihrem annähernd senkrechten Verlauf abgezweigt sind, um entgegengesetzt zur Hauptströmungsrichtung 24 des Heizgases G zu verlaufen. Erst nach dieser Schlaufe werden sie in die Umfassungswand 9 der Brennkammer 4 eingeschweißt, so daß sie ein Teil der Umfassungswand 9 der Brennkammer 4 sind.
    Durch diese spezielle Rohrführung werden beim Betrieb des Durchlaufdampferzeugers 2 die Verdampferrohre 50 und 52 vor ihrem Eintritt in die Umfassungswand 9 der Brennkammer 4 vorgewärmt. Das in ihnen geführte Strömungsmedium S wird also beim Betrieb des Durchlaufdampferzeugers 2 beheizt und damit vorgewärmt, so daß es mit einer vergleichsweise höheren Temperatur in die Umfassungswand 9 der Brennkammer 4 eintritt, als dies bei den in den unmittelbar an die Verdampferrohre 50 und 52 angrenzenden Verdampferrohre 10 der Brennkammer 4 der Fall ist. Durch diese spezielle Rohrführung der Verdampferrohre 50 und 52 weisen die Verdampferrohre 50 und 52 im Eintrittsabschnitt E beim Betrieb des Durchlaufdampferzeugers 2 eine vergleichsweise höhere Temperatur auf als die ihnen unmittelbar benachbarten Verdampferrohre 10 der Umfassungswand 9 der Brennkammer 4. Dadurch sind beim Betrieb des Durchlaufdampferzeugers 2 Temperaturunterschiede an der Verbindung 36 zwischen der Brennkammer 4 und dem Horizontalgaszug 6 besonders zuverlässig besonders gering gehalten.
    Als Beispiel für mögliche Temperaturen Ts des Strömungsmediums S in den Verdampferrohren 10 der Brennkammer 4 bzw. den Dampferzeugerrohren 16 des Horizontalgaszugs 6 sind in das Koordinatensystem gemäß Figur 5 für einige Temperaturen Ts (angeben in °C) in Abhängigkeit von der relativen Rohrlänge R (angegeben in %) die Kurven U1 bis U4 eingetragen. U1 beschreibt dabei den Temperaturverlauf eines Dampferzeugerrohrs 16 des Horizontalgaszugs 6. U2 dagegen beschreibt den Temperaturverlauf eines Verdampferrohrs 10 entlang seiner relativen Rohrlänge R. U3 beschreibt den Temperaturverlauf des speziell geführten Verdampferrohrs 50 und U4 beschreibt den Temperaturverlauf des Verdampferrohrs 52 der Umfassungswand 9 der Brennkammer 4. Anhand der eingezeichneten Kurven wird deutlich, daß durch die spezielle Rohrführung der Verdampferrohre 50 und 52 im Eintrittsabschnitt E in der Umfassungswand 9 der Brennkammer 4 der Temperaturunterschied zu den Dampferzeugerrohren 16 der Umfassungswand 12 des Horizontalgaszugs deutlich verringert werden kann. Im Beispiel läßt sich die Temperatur der Verdampferrohre 50 und 52 im Eintrittsabschnitt E der Verdampferrohre 50 und 52 um 45 Kelvin erhöhen. Dadurch sind beim Betrieb des Durchlaufdampferzeugers 2 besonders geringe Temperaturunterschiede im Eintrittsabschnitt E der Verdampferrohre 50 und 52 und den Dampferzeugerrohren 16 des Horizontalgaszugs 6 an der Verbindung 36 zwischen der Brennkammer 4 und dem Horizontalgaszugs 6 gewährleistet.
    Beim Betrieb des Durchlaufdampferzeugers 2 wird den Brennern 30 fossiler Brennstoff B, vorzugsweise Kohle in fester Form, zugeführt. Die Flammen F der Brenner 30 sind dabei horizontal ausgerichtet. Durch die Bauweise der Brennkammer 4 wird eine Strömung des bei der Verbrennung entstehenden Heizgases G in annähernd horizontaler Hauptströmungsrichtung 24 erzeugt. Dieses gelangt über den Horizontalgaszug 6 in den annähernd zum Boden hin ausgerichteten Vertikalgaszug 8 und verläßt diesen in Richtung des nicht näher dargestellten Kamins.
    In den Economizer 28 eintretendes Strömungsmedium S gelangt in das Eintrittssammler-System 18 der Verdampferrohre 10 der Brennkammer 4 des Durchlaufdampferzeugers 2. In den vertikal angeordneten, gasdicht miteinander verschweißten Verdampferrohren 10 der Brennkammer 4 des Durchlaufdampferzeugers 2 findet die Verdampfung und gegebenenfalls eine teilweise Überhitzung des Strömungsmediums S statt. Der dabei entstehende Dampf bzw. ein Wasser-Dampf-Gemisch wird in dem Austrittssammler-System 20 für Strömungsmedium S gesammelt. Von dort gelangt der Dampf bzw. das Wasser-Dampf-Gemisch über die Wände des Horizontalgaszugs 6 und des Vertikalgaszugs 8 in die Überhitzerheizflächen 23 des Horizontalgaszuges 6. In den Überhitzerheizflächen 23 erfolgt eine weitere Überhitzung des Dampfs, der anschließend einer Nutzung, beispielsweise dem Antrieb einer Dampfturbine, zugeführt wird.
    Mit der speziellen Führung der Verdampferrohre 50 und 52 fallen beim Betrieb des Durchlaufdampferzeugers Temperaturunterschiede zwischen dem Austrittsbereich 34 der Brennkammer 4 und dem Eintrittsbereich 32 des Horizontalgaszugs 6 besonders gering aus. Dabei ist durch eine Wahl der Länge L der Brennkammer 4 in Abhängigkeit von der Dampfleistung M des Durchlaufdampferzeugers 2 bei Vollast sichergestellt, daß die Verbrennungswärme des fossilen Brennstoffs B besonders zuverlässig ausgenutzt wird. Außerdem läßt sich der Durchlaufdampferzeuger 2 durch seine besonders geringe Bauhöhe und kompakte Bauweise mit besonders geringem Herstellungs- und Montageaufwand errichten. Dabei kann ein mit vergleichsweise geringem technischen Aufwand erstellbares Gerüst vorgesehen sein. Bei einer Kraftwerksanlage mit einer Dampfturbine und einem eine derart geringe Bauhöhe aufweisenden Durchlaufdampferzeuger 2 können außerdem die Verbindungsrohre von dem Durchlaufdampferzeuger zu der Dampfturbine in besonders kurzer Weise ausgelegt sein.

    Claims (19)

    1. Durchlaufdampferzeuger (2) mit einer Brennkammer (4) für fossilen Brennstoff (B), der heizgasseitig über einen Horizontalgaszug (6) ein Vertikalgaszug (8) nachgeschaltet ist, wobei die Brennkammer (4) eine Anzahl von in der Höhe des Horizontalgaszugs (6) angeordneten Brennern (30) umfaßt und die Umfassungswände (9) der Brennkammer (4) aus gasdicht miteinander verschweißten, vertikal angeordneten Verdampferrohren (10) gebildet sind, wobei eine Mehrzahl der Verdampferrohre (10) jeweils parallel mit Strömungsmedium (S) beaufschlagbar ist und in dem Austrittsbereich (34) der Brennkammer (4) eine Anzahl der parallel mit Strömungsmedium (S) beaufschlagbaren Verdampferrohre (10) vor ihrem Eintritt in die jeweilige Umfassungswand (9) der Brennkammer (4) durch die Brennkammer (4) geführt ist.
    2. Durchlaufdampferzeuger (2) nach Anspruch 1, bei dem die Seitenwände (12) des Horizontalgaszugs (6) aus gasdicht miteinander verschweißten, vertikal angeordneten, parallel mit Strömungsmedium (S) beaufschlagbaren Dampferzeugerrohren (16) gebildet sind.
    3. Durchlaufdampferzeuger (2) nach Anspruch 1 oder 2, bei dem die Seitenwände (14) des Vertikalgaszugs (8) aus gasdicht miteinander verschweißten, vertikal angeordneten, parallel mit Strömungsmedium (S) beaufschlagbaren Dampferzeugerrohren (17) gebildet sind.
    4. Durchlaufdampferzeuger (2) nach einem der Ansprüche 1 bis 3, bei dem jeweils einer Mehrzahl von parallel mit Strömungsmedium (S) beaufschlagbaren Verdampferrohren (10) strömungsmediumsseitig ein gemeinsames Eintrittssammler-System (18) vorgeschaltet und ein gemeinsames Austrittssammler-System (20) nachgeschaltet ist.
    5. Durchlaufdampferzeuger (2) nach einem der Ansprüche 1 bis 4, bei dem jeweils einer Anzahl von parallel mit Strömungsmedium (S) beaufschlagbaren Dampferzeugerrohren (16, 17) des Horizontalgaszugs (6) oder des Vertikalgaszugs (8) strömungsmediumsseitig ein gemeinsames Eintrittssammler-System (21) vorgeschaltet und ein gemeinsames Austrittssammler-System (22) nachgeschaltet ist.
    6. Durchlaufdampferzeuger (2) nach einem der Ansprüche 1 bis 5, bei dem eine Umfassungswand (9) der Brennkammer (4) die Stirnwand (11) ist, wobei die Verdampferrohre (10) der Stirnwand (9) parallel mit Strömungsmedium (S) beaufschlagbar sind.
    7. Durchlaufdampferzeuger (2) nach einem der Ansprüche 1 bis 6, bei dem die Verdampferrohre (10) der Stirnwand (11) der Brennkammer (4) strömungsmediumsseitig den anderen Umfassungswänden (9) der Brennkammer (4) vorgeschaltet sind.
    8. Durchlaufdampferzeuger (2) nach einem der Ansprüche 1 bis 7, bei dem der Rohrinnendurchmesser (D) einer Anzahl der Verdampferrohre (10) der Brennkammer (4) abhängig von der jeweiligen Position der Verdampferrohre (10) in der Brennkammer (4) gewählt ist.
    9. Durchlaufdampferzeuger (2) nach einem der Ansprüche 1 bis 8, bei dem eine Anzahl der Verdampferrohre (10) auf ihrer Innenseite jeweils ein mehrgängiges Gewinde bildende Rippen (40) tragen.
    10. Durchlaufdampferzeuger (2) nach Anspruch 9, bei dem ein Steigungswinkel (α) zwischen einer zur Rohrachse senkrechten Ebene (42) und den Flanken (44) der auf der Rohrinnenseite angeordneten Rippen (40) kleiner als 60°, vorzugsweise kleiner als 55°, ist.
    11. Durchlaufdampferzeuger (2) nach einem der Ansprüche 1 bis 10, bei dem eine Anzahl der Verdampferrohre (10) jeweils eine Drosseleinrichtung aufweist.
    12. Durchlaufdampferzeuger (2) nach einem der Ansprüche 1 bis 11, bei dem ein Leitungssystem (19) zur Zuführung von Strömungsmedium (S) in die Verdampferrohre (10) der Brennkammer (4) vorgesehen ist, wobei das Leitungssystem (19) zur Reduzierung des Durchflusses des Strömungsmediums (S) eine Anzahl von Drosseleinrichtungen, insbesondere Drosselarmaturen, aufweist.
    13. Durchlaufdampferzeuger (2) nach einem der Ansprüche 1 bis 12, bei dem benachbarte Verdampfer- bzw. Dampferzeugerrohre (10, 16, 17) über Flossen gasdicht miteinander verschweißt sind, wobei die Flossenbreite abhängig von der jeweiligen Position der Verdampfer- bzw. Dampferzeugerrohre (10, 16, 17) in der Brennkammer (4), des Horizontalgaszugs (6) und/oder des Vertikalgaszugs (8) gewählt ist.
    14. Durchlaufdampferzeuger (2) nach einem der Ansprüche 1 bis 13, bei dem in dem Horizontalgaszug (6) eine Anzahl von Überhitzerheizflächen (23) in hängender Bauweise angeordnet ist.
    15. Durchlaufdampferzeuger (2) nach einem der Ansprüche 1 bis 14, bei dem in dem Vertikalgaszug (8) eine Anzahl von Konvektionsheizflächen (26) angeordnet ist.
    16. Durchlaufdampferzeuger (2) nach einem der Ansprüche 1 bis 15, bei dem die Brenner (58) an der Stirnwand (11) der Brennkammer (4) angeordnet sind.
    17. Durchlaufdampferzeuger (2) nach einem der Ansprüche 1 bis 16, bei dem die durch den Abstand von der Stirnwand (11) der Brennkammer (4) zum Eintrittsbereich (32) des Horizontalgaszugs (6) definierte Länge (L) der Brennkammer (4) mindestens gleich der Ausbrandlänge des Brennstoffs (B) beim Vollastbetrieb ist.
    18. Durchlaufdampferzeuger (2) nach einem der Ansprüche 1 bis 17, bei dem die Länge (L) der Brennkammer (4) als Funktion der Dampfleistung (M) bei Vollast, der Ausbrandzeit (tA), der Flamme (F) des Brennstoffs (B) und/oder der Austrittstemperatur (TBRK) des Heizgases (G) aus der Brennkammer (4) näherungsweise gemäß den beiden Funktionen (I) und (II) L (M, tA) = (C1 + C2 · M) · tA und L (M, TBRK) = (C3 · TBRK + C4)M + C5(TBRK)2 + C6 · TBRK + C7 mit
         C1 = 8 m/s   und
         C2 = 0,0057 m/kg   und
         C3 = -1,905 · 10-4 (m · s)/(kg°C)   und
         C4 = 0,286 (s · m)/kg   und
         C5 = 3 · 10-4 m/(°C)2   und
         C6 = -0,842 m/°C   und
         C7 = 603,41 m
      gewählt ist, wobei für eine vorgegebene Dampfleistung (M) bei Vollast der jeweils größere Wert der Länge (L) der Brennkammer (4) gilt.
    19. Durchlaufdampferzeuger (2) nach einem der Ansprüche 1 bis 18, bei dem der untere Bereich der Brennkammer (4) als Trichter (5) ausgebildet ist.
    EP00922444A 1999-03-31 2000-03-20 Fossilbeheizter durchlaufdampferzeuger Expired - Lifetime EP1166015B1 (de)

    Priority Applications (1)

    Application Number Priority Date Filing Date Title
    DK00922444T DK1166015T3 (da) 1999-03-31 2000-03-20 Med fossilt brændsel opvarmet gennemströmningsdampgenerator

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19914760A DE19914760C1 (de) 1999-03-31 1999-03-31 Fossilbeheizter Durchlaufdampferzeuger
    DE19914760 1999-03-31
    PCT/DE2000/000865 WO2000060283A1 (de) 1999-03-31 2000-03-20 Fossilbeheizter durchlaufdampferzeuger

    Publications (2)

    Publication Number Publication Date
    EP1166015A1 EP1166015A1 (de) 2002-01-02
    EP1166015B1 true EP1166015B1 (de) 2004-06-09

    Family

    ID=7903177

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00922444A Expired - Lifetime EP1166015B1 (de) 1999-03-31 2000-03-20 Fossilbeheizter durchlaufdampferzeuger

    Country Status (12)

    Country Link
    US (1) US6715450B1 (de)
    EP (1) EP1166015B1 (de)
    JP (1) JP4489307B2 (de)
    KR (1) KR100694356B1 (de)
    CN (1) CN1193191C (de)
    AT (1) ATE268882T1 (de)
    CA (1) CA2368972C (de)
    DE (2) DE19914760C1 (de)
    DK (1) DK1166015T3 (de)
    ES (1) ES2222900T3 (de)
    RU (1) RU2224949C2 (de)
    WO (1) WO2000060283A1 (de)

    Families Citing this family (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10254780B4 (de) * 2002-11-22 2005-08-18 Alstom Power Boiler Gmbh Durchlaufdampferzeuger mit zirkulierender atmosphärischer Wirbelschichtfeuerung
    US7878157B2 (en) * 2004-09-23 2011-02-01 Siemens Aktiengesellschaft Fossil-fuel heated continuous steam generator
    EP1701090A1 (de) * 2005-02-16 2006-09-13 Siemens Aktiengesellschaft Dampferzeuger in liegender Bauweise
    EP2182278A1 (de) * 2008-09-09 2010-05-05 Siemens Aktiengesellschaft Durchlaufdampferzeuger
    EP2180250A1 (de) * 2008-09-09 2010-04-28 Siemens Aktiengesellschaft Durchlaufdampferzeuger
    EP2180251A1 (de) * 2008-09-09 2010-04-28 Siemens Aktiengesellschaft Durchlaufdampferzeuger
    JP5193007B2 (ja) * 2008-12-03 2013-05-08 三菱重工業株式会社 ボイラ構造
    DE102009024587A1 (de) * 2009-06-10 2010-12-16 Siemens Aktiengesellschaft Durchlaufverdampfer
    DE102011004268A1 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Solarthermischer Durchlaufverdampfer mit lokaler Querschnittsverengung am Eintritt
    CA3021456A1 (en) * 2017-10-20 2019-04-20 Fluor Technologies Corporation Integrated configuration for a steam assisted gravity drainage central processing facility
    KR20240093200A (ko) * 2022-12-15 2024-06-24 두산에너빌리티 주식회사 수직 관류형 배열회수 보일러 및 이를 포함하는 복합발전 시스템

    Family Cites Families (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3003479A (en) * 1952-10-11 1961-10-10 Duerrwerke Ag Steam and air boiler with heating surface of smallest load
    US3043279A (en) 1954-06-18 1962-07-10 Svenska Maskinverken Ab Steam boiler plant
    US3527261A (en) 1968-11-12 1970-09-08 Babcock & Wilcox Co Tube guide apparatus
    EP0349834B1 (de) * 1988-07-04 1996-04-17 Siemens Aktiengesellschaft Durchlaufdampferzeuger
    ATE117420T1 (de) * 1991-04-18 1995-02-15 Siemens Ag Durchlaufdampferzeuger mit einem vertikalen gaszug aus im wesentlichen vertikal angeordneten rohren.
    US5492689A (en) 1991-11-19 1996-02-20 The Center For Innovative Technology Combined virustatic antimediator (COVAM) treatment of common colds
    US5560322A (en) * 1994-08-11 1996-10-01 Foster Wheeler Energy Corporation Continuous vertical-to-angular tube transitions
    CA2334699C (en) * 1998-06-10 2008-11-18 Siemens Aktiengesellschaft Fossil-fuel-fired steam generator

    Also Published As

    Publication number Publication date
    KR100694356B1 (ko) 2007-03-12
    WO2000060283A1 (de) 2000-10-12
    DE19914760C1 (de) 2000-04-13
    CA2368972A1 (en) 2000-10-12
    ATE268882T1 (de) 2004-06-15
    CA2368972C (en) 2007-12-11
    DK1166015T3 (da) 2004-10-25
    KR20010112293A (ko) 2001-12-20
    ES2222900T3 (es) 2005-02-16
    US6715450B1 (en) 2004-04-06
    RU2224949C2 (ru) 2004-02-27
    EP1166015A1 (de) 2002-01-02
    JP4489307B2 (ja) 2010-06-23
    CN1344360A (zh) 2002-04-10
    DE50006755D1 (de) 2004-07-15
    CN1193191C (zh) 2005-03-16
    JP2002541419A (ja) 2002-12-03

    Similar Documents

    Publication Publication Date Title
    EP0944801B1 (de) Dampferzeuger
    EP1188021B1 (de) Fossilbeheizter dampferzeuger mit einer entstickungseinrichtung für heizgas
    EP1086339B1 (de) Fossilbeheizter dampferzeuger
    EP0617778B1 (de) Fossil befeuerter durchlaufdampferzeuger
    EP1166015B1 (de) Fossilbeheizter durchlaufdampferzeuger
    EP0977964B1 (de) Durchlaufdampferzeuger und verfahren zum anfahren eines durchlaufdampferzeugers
    DE19914761C1 (de) Fossilbeheizter Durchlaufdampferzeuger
    EP1141625B1 (de) Fossilbeheizter durchlaufdampferzeuger
    EP1794495B1 (de) Fossil beheizter durchlaufdampferzeuger
    EP2321578B1 (de) Durchlaufdampferzeuger
    EP1144910B1 (de) Fossilbeheizter dampferzeuger
    EP1144911B1 (de) Fossilbeheizter dampferzeuger
    EP0937218B1 (de) Verfahren zum betreiben eines durchlaufdampferzeugers und durchlaufdampferzeuger zur durchführung des verfahrens
    EP2601441B1 (de) Zwangdurchlaufdampferzeuger
    WO2011138116A2 (de) Verfahren zum betreiben eines dampferzeugers
    EP1533565A1 (de) Durchlaufdampferzeuger
    DE19851809A1 (de) Fossilbeheizter Dampferzeuger
    DE19825800A1 (de) Fossilbeheizter Dampferzeuger

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20010720

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    17Q First examination report despatched

    Effective date: 20030804

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20040609

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040609

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040609

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040609

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: SIEMENS SCHWEIZ AG

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 50006755

    Country of ref document: DE

    Date of ref document: 20040715

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040806

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040909

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2222900

    Country of ref document: ES

    Kind code of ref document: T3

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050320

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050320

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050320

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050331

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050331

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20050310

    BERE Be: lapsed

    Owner name: *SIEMENS A.G.

    Effective date: 20050331

    BERE Be: lapsed

    Owner name: *SIEMENS A.G.

    Effective date: 20050331

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041109

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PCAR

    Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111001

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20120327

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20120308

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20120614

    Year of fee payment: 13

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130321

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20131129

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130331

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130402

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130331

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DK

    Payment date: 20160321

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20160310

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20160520

    Year of fee payment: 17

    Ref country code: ES

    Payment date: 20160425

    Year of fee payment: 17

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50006755

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    Effective date: 20170331

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20170320

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170320

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170331

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20180629

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170321

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20171003