WO2000058238A1 - Pyrotechnischer nebelsatz zur erzeugung eines im sichtbaren, infraroten und im millimeterwellen-bereich undurchdringlichen aerosols - Google Patents

Pyrotechnischer nebelsatz zur erzeugung eines im sichtbaren, infraroten und im millimeterwellen-bereich undurchdringlichen aerosols Download PDF

Info

Publication number
WO2000058238A1
WO2000058238A1 PCT/EP2000/000499 EP0000499W WO0058238A1 WO 2000058238 A1 WO2000058238 A1 WO 2000058238A1 EP 0000499 W EP0000499 W EP 0000499W WO 0058238 A1 WO0058238 A1 WO 0058238A1
Authority
WO
WIPO (PCT)
Prior art keywords
pyrotechnic
dipoles
fibers
visible
infrared
Prior art date
Application number
PCT/EP2000/000499
Other languages
English (en)
French (fr)
Inventor
Ernst-Christian Koch
Josef Schneider
Original Assignee
Piepenbrock Pyrotechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Piepenbrock Pyrotechnik Gmbh filed Critical Piepenbrock Pyrotechnik Gmbh
Priority to JP2000607945A priority Critical patent/JP2002540375A/ja
Priority to EP00906220A priority patent/EP1173395B1/de
Priority to US09/937,617 priority patent/US6578492B1/en
Priority to IL14511300A priority patent/IL145113A0/xx
Priority to DK00906220T priority patent/DK1173395T3/da
Priority to AT00906220T priority patent/ATE229489T1/de
Priority to DE50000928T priority patent/DE50000928D1/de
Publication of WO2000058238A1 publication Critical patent/WO2000058238A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/36Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information
    • F42B12/56Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information for dispensing discrete solid bodies
    • F42B12/70Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information for dispensing discrete solid bodies for dispensing radar chaff or infrared material
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D3/00Generation of smoke or mist (chemical part)

Definitions

  • Pyrotechnic mist set for generating an aerosol that is impenetrable in the visible, infrared and millimeter-wave range
  • the present invention relates to a pyrotechnic mist set for generating an aerosol impenetrable in the visible, infrared and millimeter wave range.
  • the human and ecotoxicologically compatible smoke substance consists of pre-assembled dipoles for radiation in the frequency range of 2 - 300 GHz, which is suitable for the generation of an impermeable aerosol in the millimeter wave range, and suitable smoke substances that absorb in the visible and infrared range.
  • a major problem in use with tarna aerosols is the shielding of electromagnetic radiation in the frequency range from 2 to 300 GHz; preferably in the atmospheric damping windows between 2-18 GHz and in particular at 35, 94, 140 and 220 GHz, since target detection and tracking systems (radars) of ground-to-surface guided weapons typically work in these frequency bands (e.g. SMArt 155, Longbow Hellfire).
  • radars target detection and tracking systems
  • camouflage methods There are currently only two methods known as camouflage methods in this frequency range.
  • the strand and spiral-shaped graphite fibers produced by thermally induced expansion of graphite intercalation compounds are only statistically distributed with respect to their length. It is therefore not possible to produce only graphite fibers of a certain length (e.g. at 35 and 94 GHz), which means that the effectiveness (damping performance) of aerosols produced in this way is only very limited in individual spectral ranges. Furthermore, alveolar particles are also generated, which makes the risk of respiratory diseases evident.
  • the fog sets according to the invention contain as pre-assembled heat-resistant dipoles made of graphite or a ceramic material made conductive or in-situ conductive, such as ziconium oxide or aluminum oxide, which are coated with pyrotechnic substances. These dipoles are entrained by the hot swathes of gas when the known mist theorem burns up.
  • the dipoles consist of thin, conductive fibers, the length of which is matched to the frequency bands common to typical target acquisition and tracking systems. For the frequencies of 35, 94, 140 u. 220 Ghz, for example, a mixture of lengths from 1 to 30 mm is used.
  • the fiber diameter is 0.001 to 0.1 mm, preferably 0.005 to 0.02 mm.
  • the conductive fibers consist either of metal or graphite, which is produced by charring spun plastic fibers, or of glass, ceramic or plastic fibers, which are made conductive by a metal coating. Methods for coating surfaces with a very thin metal film are known.
  • metals can be deposited on the fibers from the gas phase.
  • the pure metals can be deposited on the fibers from transition metal organyls, in particular carbonyls, by heating under reduced pressure.
  • the / ns / uv-conductive is also conceivable with the help of a pyrotechnic coating. Under the influence of the reaction React heat from the main theorem to form a conductive, for example metallic, coating. Pyrotechnic switch systems are therefore suitable as coating materials for the ceramic fibers. Suitable systems are in the scheme. 1 reproduced.
  • the dipole fiber 3 is first coated according to the invention with a phosphor or phosphor sulfide coating 2, which burns off after the dipoles have been applied and distributed and increases their buoyancy or slows their rate of descent and additionally generates a strong IR emission .
  • these fibers also have an ignition coating 1, which comprises a known, easily combustible pyrotechnic mass from a fuel, for example red phosphorus, hexachlorocyclohexane, metal powder etc., an oxidizing agent, for example alkali nitrate, alkali perchlorate etc., and a binder a polymeric plastic and, if appropriate, also contains combustion moderators.
  • a cover layer (not shown in the figure) made of a plastic lacquer can optionally also be provided.
  • the thickness of all the layers corresponds to the size of the fiber itself, ie it has a thickness of 0.001 to 0.1 mm, preferably 0.01 to 0.02 mm, and is usually obtained by immersing or spraying the fibers with appropriate solutions or suspensions of the constituents and drying them of the solvent.
  • the fiber dipoles according to the invention are mixed with known pyrotechnic nebulas, which produce aerosols which are highly scattering and absorbing in the visible and infrared spectral range, and are shaped into compacts or granules suitable for application.
  • the fibers After the fibers have dried, they are immersed in a suspension of RRootteemm PPhhoosspphhoorr ((5500 %%)), BBiiss (( ⁇ 55 --ccyyccllooppeennttaaddiieennyyll) iron (25%), potassium nitrate (23%) and a novolak binder ( 2%) coated.
  • An active composition according to the invention is produced from 100 g of pretreated fibers and a conventional camouflage fog set, for example according to the following recipe: 2750 g of red phosphorus, 990 g of potassium nitrate, 220 g of silicon, 220 g of boron, 220 g of zirconium conium / iron alloy and 990 g Macroplast binder (30% solids) is created by gradually adding the components to the red phosphorus.
  • the solvent-moist mass is sieved (7 mm mesh size) and dried for 20 minutes in a vacuum at 40 ° C. and 20 mbar. The granulate is pressed with a pressure of 20 tons to cylindrical presses with 7 mm edge height and 74 mm diameter.
  • One tablet has a burning time of approx. 27 seconds.
  • the fog substance which is laboratoryized according to the invention attenuates the radiation in the infrared and visual very well (> 95%).
  • attenuation of approximately 20 dB is achieved in the respective frequency bands (35, 94, 140 and 220 GHz) in the millimeter wave range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Botany (AREA)
  • Organic Chemistry (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plant Pathology (AREA)
  • Air Bags (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • Curtains And Furnishings For Windows Or Doors (AREA)
  • Radiation-Therapy Devices (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Cosmetics (AREA)
  • Artificial Filaments (AREA)

Abstract

Die vorliegende Erfindung betrifft einen pyrotechnischen Nebelsatz zur Erzeugung eines im sichtbaren, infraroten und im Millimeterwellen-Bereich undurchdringlichen Aerosols für Tarn- und Täuschzwecke, wobei faserförmige leitfähige Dipole oder in situ leitfähig werdende Dipol-Vorläufer und herkömmliche pyrotechnische im visuellen wie infaroten Bereich wirksame Nebelmassen zu einem gemeinsamen Satz vereinigt sind.

Description

Pyrotechnischer Nebelsatz zur Erzeugung eines im sichtbaren, infraroten und im Millimeterwellen-Bereich undurchdringlichen Aerosols
Die vorliegende Erfindung betrifft einen pyrotechnischen Nebelsatz zur Erzeugung eines im sichtbaren, infraroten und Millimeterwellen-Bereich undurchdringlichen Aerosols. Der human- und Ökotoxikologisch verträgliche Nebelstoff besteht aus vorkonfektionierten Dipolen für Strahlung im Frequenzbereich von 2 - 300 GHz, welcher sich zur Erzeugung eines im Millimeterwellenbereich undurchdringlichen Aerosols eignet, und geeigneten Nebelstoffen, die im sichtbaren und infraroten Bereich absorbieren.
Pyrotechnisch erzeugte Aerosole werden heute überwiegend im militärischen Bereich zum Tarnen, Täuschen, Blenden, Simulieren und Markieren eingesetzt.
Ein Hauptproblem im Einsatz mit Tarnaerosolen besteht bei der Abschirmung von elektromagnetischer Strahlung im Frequenzbereich von 2 - 300 GHz; vorzugsweise in den atmosphärischen Dämpfungsfenstern zwischen 2-18 GHz und insbesondere bei 35, 94, 140 und 220 GHz, da in diesen Frequenzbändern typischerweise Zielerfassuπgs- und Verfolgungssysteme (Radargeräte) von Boden- Boden-Lenkwaffen arbeiten (z.B. SMArt 155, Longbow Hellfire).
Als Methoden zur Tarnung in diesem Frequenzbereich kennt man augenblicklich nur zwei Methoden.
a) Die Explosivdispersion geeigneter Dipole, z.B. aluminisierte Glasfasern und Nickel- gecoatete Nylonfasern, mit im v-Bereich angepasster Dipollänge. b) Pyrotechnische Erzeugung von Graphitfasern durch thermisch induzierte Expansion von Graphit-Intercalationsverbindungen.
Ein Beispiel für die thermische induzierte Expansion von Graphitverbindungen zum Zwecke der Aerosolerzeugung ist in der DE 4337071 C 1 beschrieben.
Die generellen Nachteile beider Methoden bestehen zunächst in der völligen Transparenz dieses Aerosols für sichtbare Strahlung und das nahe bis mittlere Infrarot. Als weitere Nachteile kommt es bei der Explosivdispersion von vorkonfektionierten Partikeln stets zum sogenannten Bird-nesting. Darunter versteht man das durch den Explosionsvorgang der Mitte in der Aerosolwolke hervorgerufene Loch mit sehr niedriger Teilchendichte. An dieser Stelle der Wolke wird die Line of sight (LOS) nicht blockiert. Weiterhin sinken die bekannten Dipole aufgrund ihres spezifischen Gewichts sehr schnell zu Boden, so daß nur unbefriedigende Abdeckzeiten erreicht werden.
Die durch thermisch induzierte Expansion von Graphit-Intercalationsverbindungen erzeugten Strang und Spiral-förmigen Graphitfasern liegen, in Bezug auf ihre Länge, nur statistisch verteilt vor. Es ist also nicht möglich nur Graphitfasern bestimmter Länge (z.B. bei 35 und 94 GHz) zu erzeugen, was zur Folge hat, daß die Wirksamkeit (Dämpfungsleistung) so erzeugter Aerosole in einzelnen Spektralbereichen nur sehr begrenzt ist. Weiterhin werden auch Alveolen-gängige Partikeln erzeugt, was das Risiko von Atemwegserkrankungen evident macht.
Es stellte sich daher die Aufgabe, neue im sichtbaren, infraroten und im Millimeterwellenbereich undurchdringliche Aerosole zu finden, welche darüber hinaus human- und ökotoxologisch verträglich sind. Es wurde nun gefunden, daß herkömmliche, im visuellen und infraroten Bereich transmissionshindernde, pyrotechnische Nebelsätze durch Zusatz von mit pyro- technischen Stoffen beschichteten vorkonfektionierten Dipolen die oben beschriebenen Probleme lösen können.
Dazu enthalten die erfindungsgemäßen Nebelsätze als vorkonfektionierte hitzebeständige Dipole aus Graphit oder einem leitfähig gemachten oder in-situ leitfähigen keramischen Material wie beispielsweise Ziconiumoxid oder Aluminiumoxid die mit pyrotechnischen Stoffen beschichtet sind. Diese Dipole werden durch die heißen Gas-Schwaden beim Abbrand des bekannten Nebelsatzes mitgerissen.
Die Dipole bestehen aus dünnen, leitfähigen Fasern, deren Länge auf die für die typischen Zielerfassungs- und Verfolgungssysteme üblichen Frequenzbänder abgestimmt ist. Für die Frequenzen von 35, 94, 140 u. 220 Ghz wird beispielsweise eine Mischung aus Längen von 1 bis 30 mm verwendet. Der Faserdurchmesser liegt bei 0,001 bis 0,1 mm, vorzugsweise 0,005 bis 0,02 mm.
Die leitfähigen Fasern bestehen entweder aus Metall oder Graphit, der durch Verkohlung von gesponnenen Kunststoff-Fasern hergestellt ist, oder aus Glas-, Keramik- oder Kunststoff-Fasern, die durch einen Metallüberzug leitfähig gemacht sind. Methoden zum Beschichten von Oberflächen mit einem sehr dünnen Metallfilm sind bekannt.
Beispielsweise lassen sich Metalle aus der Gasphase auf den Fasern abscheiden. Ebenso können aus Übergangsmetallorganylen, insbesondere Carbonylen, durch Erhitzen bei vermindertem Druck die reinen Metalle auf den Fasern abgeschieden werden. Alternativ ist auch das /n-s/uv-leitfähig machen mit Hilfe einer pyrotechni- scher Beschichtung denkbar. Diese könnte unter dem Einfluß der Reaktions- wärme des Hauptsatzes unter Bildung eines leitfähigen z.B. metallischen Überzugs abreagieren. Als Überzugsmaterialien für die keramischen Fasern kommen daher pyrotechnische Schalter-Systeme in Frage. Geeignete Systeme sind in Schema. 1 wiedergegeben.
2 PbO + Si > Si02 + 2 Pb
2 CuO + Si > Si02 + 2 Cu
2 CuO + Ti > Ti02 + 2 Cu
3 NiO + 2 B > B203 + 3 Ni
Wie in der Figur 1 dargestellt ist, wird die Dipolfaser 3 erfindungsgemäß zunächst mit einer Phosphor- oder Phosphorsulfidbeschichtung 2 überzogen, welche nach dem Ausbringen und Verteilen der Dipole abbrennt und den Auftrieb derselben erhöht bzw. ihre Sinkrate verlangsamt und zusätzlich eine starke IR-Emission erzeugt. Ferner weisen diese Fasern noch einen Anzünd-Überzug 1 auf, welcher eine bekannte, leicht brennbare pyrotechnische Masse aus einem Brennstoff, beispielsweise roter Phosphor, Hexachlorcyclohexan, Metallpulver etc., ein Oxidati- onsmittel, beispielsweise Alkalinitrat, Alkaliperchlorat etc., und ein Bindemittel aus einem polymeren Kunststoff und gegebenenfalls noch Abbrandmoderatoren enthält.
Aus Stabilitätsgründen und als Oxidationsschutz kann gegebenenfalls noch eine Deckschicht (in der Figur nicht dargestellt) aus einem Kunststofflack vorgesehen sein. Alle Schichten entsprechen in ihrer Dicke größenordnungsmäßig der Faserdicke selbst, d. h. weisen Dicken von 0,001 bis 0,1 mm, vorzugsweise 0,01 bis 0,02 mm auf und werden üblicherweise durch Eintauchen oder Besprühen der Fasern mit entsprechenden Lösungen oder Suspensionen der Bestandteile und Trocknen der Lösemittel hergestellt. Die erfindungsgemäßen Faserdipole werden mit an sich bekannten pyrotechni- schen Nebelmassen, die im sichtbaren und infraroten Spektralbereich stark streuende und absorbierende Aerosole erzeugen, gemischt und in für die Ausbringung geeignete Preßkörper oder Granulate geformt. Diese werden in ebenfalls bekannter Weise mit entsprechenden Zündern, Anzündladungen, Treibladungen etc. in Hüllen zu den gewünschten Nebelwurfkörpern, Nebel-Granaten oder Raketen vereinigt. Die entsprechenden Techniken sind mit denen von bekannten Nebelkörpern für IR- und sichtbares Spektrum identisch, so daß auf eine gesonderte Beschreibung verzichtet wird.
Das folgende Beispiel soll die Erfindung verdeutlichen, ohne sie jedoch zu beschränken:
Beispiel
500 g Graphitfasern (50 % 35 GHz, 25 % 94 GHz, 12,5 % 144 GHz und 12,5 % 220 GHz-Faser-Cut) werden 5 min in einer gesättigten Lösung von Phosphor- sesquisulfid in Schwefelkohlenstoff geschüttelt und im Vakuum bei 40°C und 20 mbar getrocknet.
Nach dem Trocknen der Fasern werden diese durch Tauchen in einer Suspension aauuss RRootteemm PPhhoosspphhoorr ((5500 %%)),, BBiiss((ηη55--ccyyccllooppeennttaaddiieennyyll)eisen (25%), Kaliumnitrat (23 %) und einem Novolak-Binder (2 %) beschichtet.
Aus 100 g vorbehandelter Fasern und einem herkömmlichen Tarnnebelsatz bspw. gemäß folgender Rezeptur wird eine erfindungsgemäße Wirkmasse hergestellt: 2750 g Rotem Phosphor, 990 g Kaliumnitrat, 220 g Silicium, 220 g Bor, 220 g Zir- konium/Eisen-Legierung und 990 g Macroplast-Binder (30 % Festkörper) wird durch schrittweise Zugabe der Komponenten zum roten Phosphor ein teigiger Satz erzeugt. Die lösemittelfeuchte Masse wird (7 mm Maschenweite) gesiebt und 20 Minuten im Vakuum bei 40°C und 20 mbar getrocknet. Das Granulat wird mit einem Pressdruck von 20 Tonnen zu zylindrischen Pressungen von 7 mm Kantenhöhe und 74 mm Durchmesser verpresst. Eine Tablette besitzt eine Brennzeit von ca 27 Sekunden.
Der erfindungsgemäß laborierte Nebelstoff dämpft die Strahlung im Infraroten und visuellen sehr gut (> 95 %) darüber hinaus wird im Millimeterwellenbereich in den betreffenden Frequenzbändern (35, 94, 140 und 220 GHz) eine Dämpfung von jeweils etwa 20 dB erreicht.

Claims

Patentansprüche
1. Pyrotechnischer Nebelsatz zur Erzeugung eines im sichtbaren, infraroten und im Millimeterwellen-Bereich undurchdringlichen Aerosols für Tarn- und Täuschzwecke, dadurch gekennzeichnet, daß faseiförmige leitfähige Dipole oder in-situ leitfähig werdende Dipol-Vorläufer und als herkömmliche pyrotechnische im visuellen wie infaroten Bereich wirksamer Nebelmassen zu einem gemeinsamen Satz vereinigt sind.
2. Pyrotechnischer Satz nach Anspruch 1 , dadurch gekennzeichnet, daß die vorkonfektionierten Dipole der elektromagnetischen Strahlung im Millimeterwellenbereich den für Zielsuchgeräte üblichen Frequenzbändern entsprechen.
3. Pyrotechnischer Satz nach den vorhergehenden Ansprüchen, dadurch gekennzeichnet, daß der Satz 5 bis 25 % vorkonfektionierte Dipole oder deren Vorläuferenthält.
4. Pyrotechnischer Satz nach einem der vorhergehenden Ansprüche, wobei die Dipole aus dünnen leitfähigen Fasern aus Metall, Graphit oder aus Glas-, Keramik- oder Kunststoffasern, die mit einem leitfähigen Überzug aus Metall versehen sind, bestehen, eine Länge von 1 bis 30 mm und einen Durchmesser von 0,001 bis 0,1 mm aufweisen, dadurch gekennzeichnet, daß die Fasern mit einer ersten Schicht aus Phosphor oder Phosphorsulfid und einer zweiten Anzündschicht aus einem Brennstoff, einem Oxidationsmittel und einem Bindemittel überzogen sind, wobei diese Schichten Dicken von 0,001 bis 0,1 mm aufweisen. Pyrotechnischer Satz nach den vorhergehenden Ansprüchen, dadurch gekennzeichnet, daß Dipole aus Graphitfasern, die mit Phosphorsesquisulfid sowie mit einer Mischung aus 50% rotem Phosphor, 25 % Bis(η5-cyclopentadienyl)eisen, 23 % Kaliumnitrat und 2 % Novolak-Binder beschichtet sind.
PCT/EP2000/000499 1999-03-27 2000-01-24 Pyrotechnischer nebelsatz zur erzeugung eines im sichtbaren, infraroten und im millimeterwellen-bereich undurchdringlichen aerosols WO2000058238A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2000607945A JP2002540375A (ja) 1999-03-27 2000-01-24 可視、赤外及びミリメータ波範囲内で不透過性のエーロゾルの花火技術的煙幕発生ユニット
EP00906220A EP1173395B1 (de) 1999-03-27 2000-01-24 Pyrotechnischer nebelsatz zur erzeugung eines im sichtbaren, infraroten und im millimeterwellen-bereich undurchdringlichen aerosols
US09/937,617 US6578492B1 (en) 1999-03-27 2000-01-24 Pyrotechnic smoke screen units for producing an aerosol impenetrable in the visible, infrared and millimetric wave range
IL14511300A IL145113A0 (en) 1999-03-27 2000-01-24 A pyrotechnic smoke screen unit
DK00906220T DK1173395T3 (da) 1999-03-27 2000-01-24 Pryoteknisk tågesats til frembringelse af en i det synlige, infrarøde og i millimeterbølgeområdet uigennemtrængelig aerosol
AT00906220T ATE229489T1 (de) 1999-03-27 2000-01-24 Pyrotechnischer nebelsatz zur erzeugung eines im sichtbaren, infraroten und im millimeterwellen- bereich undurchdringlichen aerosols
DE50000928T DE50000928D1 (de) 1999-03-27 2000-01-24 Pyrotechnischer nebelsatz zur erzeugung eines im sichtbaren, infraroten und im millimeterwellen-bereich undurchdringlichen aerosols

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19914095A DE19914095A1 (de) 1999-03-27 1999-03-27 Pyrotechnischer Nebelsatz zur Erzeugung eines im sichtbaren, infraroten und im Millimeterwellen-Bereich undurchdringlichen Aerosols
DE19914095.2 1999-03-27

Publications (1)

Publication Number Publication Date
WO2000058238A1 true WO2000058238A1 (de) 2000-10-05

Family

ID=7902741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/000499 WO2000058238A1 (de) 1999-03-27 2000-01-24 Pyrotechnischer nebelsatz zur erzeugung eines im sichtbaren, infraroten und im millimeterwellen-bereich undurchdringlichen aerosols

Country Status (11)

Country Link
US (1) US6578492B1 (de)
EP (1) EP1173395B1 (de)
JP (1) JP2002540375A (de)
AT (1) ATE229489T1 (de)
DE (2) DE19914095A1 (de)
DK (1) DK1173395T3 (de)
ES (1) ES2188507T3 (de)
IL (1) IL145113A0 (de)
PT (1) PT1173395E (de)
TR (1) TR200102720T2 (de)
WO (1) WO2000058238A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106913A1 (de) * 2002-06-14 2003-12-24 Diehl Munitionssysteme Gmbh & Co. Kg Nebelwurfkörper
WO2006034746A1 (de) 2004-09-28 2006-04-06 Rheinmetall Waffe Munition Gmbh Wirkkörper
US7710643B2 (en) 2007-01-31 2010-05-04 Alion Science And Technology Corporation Apparatus for and method of delivering visual image into air

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004024857B4 (de) * 2004-05-19 2008-07-10 Diehl Bgt Defence Gmbh & Co. Kg Pyrotechnischer Satz
DE102005020159B4 (de) * 2005-04-29 2007-10-04 Rheinmetall Waffe Munition Gmbh Tarn- und Täuschmunition zum Schutz von Objekten gegen Lenkflugkörper
US7343861B1 (en) 2005-05-31 2008-03-18 The United States Of America As Represented By The Secretary Of The Navy Device and method for producing an infrared emission at a given wavelength
US8750517B2 (en) * 2007-10-09 2014-06-10 The Trustees Of Columbia University In The City Of New York Friend or foe detection
DE102008060573B4 (de) * 2008-12-04 2016-08-11 Diehl Bgt Defence Gmbh & Co. Kg Pyrotechnische Wirkmasse zur Erzeugung eines Tarnnebels
RU2610792C1 (ru) * 2015-10-29 2017-02-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" (СГУГиТ) Способ создания комбинированной низкотемпературной помехи для ложной цели или маскировочной завесы
US10088278B1 (en) * 2017-04-26 2018-10-02 The Boeing Company Electromagnetic pulse (EMP) generation
US11251536B2 (en) 2018-01-05 2022-02-15 Bae Systems Plc Lightweight tuneable insulated chaff material
GB201800653D0 (en) * 2018-01-05 2018-02-28 Bae Systems Plc Lightweight tuneable insulated chaff material
US10969207B1 (en) * 2020-03-04 2021-04-06 The Boeing Company Magnetically enhanced EMP generating device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3725927A (en) * 1962-12-27 1973-04-03 Us Air Force Disappearing-reappearing radar chaff and method for production
DE3147850A1 (de) * 1981-12-03 1983-06-09 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Breitband-tarnnebel
EP0108939A2 (de) * 1982-10-16 1984-05-23 Pyrotechnische Fabrik F. Feistel GmbH + Co KG Nebelwurfkörper und Verfahren zur Erzeugung eines gleichzeitig optisch und im Infrarotbereich deckenden Nebels
GB2162621A (en) * 1978-03-14 1986-02-05 Buck Chem Tech Werke Screening projectiles
US5049883A (en) * 1978-05-30 1991-09-17 The United States Of America As Represented By The Secretary Of The Navy Combined microwave and infrared chaff
WO1992013251A1 (en) * 1991-01-21 1992-08-06 Raufoss A/S Arrangement in a smoke shell
WO1996001912A2 (en) * 1994-07-11 1996-01-25 Advanced Technology Materials, Inc. Metal-coated substrate articles responsive to electromagnetic radiation, and method of making and using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5445078A (en) * 1989-12-14 1995-08-29 Universal Propulsion Company, Inc. Apparatus and method for dispensing payloads
DE4337071C1 (de) * 1993-10-29 1995-03-02 Nico Pyrotechnik Pyrotechnischer Nebelsatz für Tarnzwecke und dessen Verwendung in einem Nebelkörper
US6047644A (en) * 1998-03-18 2000-04-11 The United States Of America As Represented By The Secretary Of The Army Propellant based aerosol generating device and method of use
US6283033B1 (en) * 1999-07-30 2001-09-04 Jake's Fireworks Multiple effect pyrotechnic shell
US6412416B1 (en) * 2001-03-19 2002-07-02 The United States Of America As Represented By The Secretary Of The Army Propellant-based aerosol generation devices and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3725927A (en) * 1962-12-27 1973-04-03 Us Air Force Disappearing-reappearing radar chaff and method for production
GB2162621A (en) * 1978-03-14 1986-02-05 Buck Chem Tech Werke Screening projectiles
US5049883A (en) * 1978-05-30 1991-09-17 The United States Of America As Represented By The Secretary Of The Navy Combined microwave and infrared chaff
DE3147850A1 (de) * 1981-12-03 1983-06-09 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Breitband-tarnnebel
EP0108939A2 (de) * 1982-10-16 1984-05-23 Pyrotechnische Fabrik F. Feistel GmbH + Co KG Nebelwurfkörper und Verfahren zur Erzeugung eines gleichzeitig optisch und im Infrarotbereich deckenden Nebels
WO1992013251A1 (en) * 1991-01-21 1992-08-06 Raufoss A/S Arrangement in a smoke shell
WO1996001912A2 (en) * 1994-07-11 1996-01-25 Advanced Technology Materials, Inc. Metal-coated substrate articles responsive to electromagnetic radiation, and method of making and using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106913A1 (de) * 2002-06-14 2003-12-24 Diehl Munitionssysteme Gmbh & Co. Kg Nebelwurfkörper
WO2006034746A1 (de) 2004-09-28 2006-04-06 Rheinmetall Waffe Munition Gmbh Wirkkörper
DE102004047231A1 (de) * 2004-09-28 2006-04-06 Rheinmetall Waffe Munition Gmbh Wirkkörper
DE102004047231B4 (de) * 2004-09-28 2008-08-21 Rheinmetall Waffe Munition Gmbh Wirkkörper
US8783183B2 (en) 2004-09-28 2014-07-22 Rheinmetall Waffe Munition Gmbh Active body
US7710643B2 (en) 2007-01-31 2010-05-04 Alion Science And Technology Corporation Apparatus for and method of delivering visual image into air

Also Published As

Publication number Publication date
DK1173395T3 (da) 2003-03-10
PT1173395E (pt) 2003-04-30
ES2188507T3 (es) 2003-07-01
EP1173395B1 (de) 2002-12-11
IL145113A0 (en) 2002-06-30
DE50000928D1 (de) 2003-01-23
ATE229489T1 (de) 2002-12-15
US6578492B1 (en) 2003-06-17
TR200102720T2 (tr) 2002-04-22
JP2002540375A (ja) 2002-11-26
EP1173395A1 (de) 2002-01-23
DE19914095A1 (de) 2000-09-28

Similar Documents

Publication Publication Date Title
DE4244682B4 (de) Hochintensive pyrotechnische Infrarot-Leuchtdrohne
DE3326884C2 (de) Verfahren zum Verdecken sichtbarer und infraroter Strahlung und Nebelmunition zur Durchführung dieses Verfahrens
EP0664876B1 (de) Verfahren zur scheinzielerzeugung
EP1173395B1 (de) Pyrotechnischer nebelsatz zur erzeugung eines im sichtbaren, infraroten und im millimeterwellen-bereich undurchdringlichen aerosols
EP1173394B9 (de) Pyrotechnische wirkmasse zur erzeugung eines im infraroten stark emissiven und im visuellen undurchdringlichen aerosols
EP0679150B1 (de) Pyrotechnischer nebelsatz für tarnzwecke und dessen verwendung in einem nebelkörper
DE2752946B2 (de) Verwendung einer Brandmasse für Brandgeschosse
EP1794537B1 (de) Wirkkörper
DE29622620U1 (de) Schnellnebelhandgranate
EP2468700B1 (de) Pyrotechnische Scheinzielwirkmasse für Infrarotscheinziele
EP0106334B1 (de) Pyrotechnische Nebelsätze
EP0588015A1 (de) Tarnverfahren und Tarnpartikel zu seiner Durchführung
EP1286129A1 (de) Brandsatz für ein flügelstabilisiertes Wuchtgeschoss
DE3443778A1 (de) Pyrotechnisches gemisch zur erzeugung eines strahlungs-sperrschirmes, verfahren zu seiner herstellung und vorrichtung zum austragen eines pyrotechnischen gemisches
DE19964172B4 (de) Pyrotechnischer Satz zur Erzeugung von IR-Strahlung
DE2930936C1 (de) Scheinziel zur Taeuschung von Radar- und Infrarotsuchgeraeten
DE102008060573B4 (de) Pyrotechnische Wirkmasse zur Erzeugung eines Tarnnebels
EP2770294B1 (de) Sprengstoffwirkmasse für eine Gefechtsmunition
DE2720695A1 (de) Brandmasse fuer brandgeschosse
DE10152023B4 (de) Schockunempfindliche Nebelwurfkörper
DE102010053812A1 (de) Pyrotechnische Scheinzielwirkmasse für Infrarotscheinziele
DE102004043991C5 (de) Infrarot-Täuschkörper und seine Verwendung
EP1954651B1 (de) Brandmasse mit einem metallischen brennstoff aus der gruppe ivb des periodischen systems sowie geschoss mit dieser brandmasse
DE10046955A1 (de) Aktive Zweiwellentypen-Köderladung und solche Ladungen enthaltende Munition
DE2110586A1 (de) Anordnung zur Bekaempfung gepanzerter Ziele

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): IL JP TR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 145113

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2000906220

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2001/02720

Country of ref document: TR

ENP Entry into the national phase

Ref document number: 2000 607945

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09937617

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000906220

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000906220

Country of ref document: EP