WO2000056891A2 - Human transmembrane proteins - Google Patents

Human transmembrane proteins Download PDF

Info

Publication number
WO2000056891A2
WO2000056891A2 PCT/US2000/007817 US0007817W WO0056891A2 WO 2000056891 A2 WO2000056891 A2 WO 2000056891A2 US 0007817 W US0007817 W US 0007817W WO 0056891 A2 WO0056891 A2 WO 0056891A2
Authority
WO
WIPO (PCT)
Prior art keywords
htmp
polynucleotide
seq
sequence
sequences
Prior art date
Application number
PCT/US2000/007817
Other languages
French (fr)
Other versions
WO2000056891A3 (en
Inventor
Henry Yue
Preeti Lal
Y. Tom Tang
Jennifer L. Hillman
Roopa Reddy
Olga Bandman
Mariah R. Baughn
Dyung Aina M. Lu
Yalda Azimzai
Junming Yang
Original Assignee
Incyte Pharmaceuticals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Incyte Pharmaceuticals, Inc. filed Critical Incyte Pharmaceuticals, Inc.
Priority to JP2000606750A priority Critical patent/JP2003525025A/en
Priority to EP00918335A priority patent/EP1210419A2/en
Priority to CA002365243A priority patent/CA2365243A1/en
Priority to AU39164/00A priority patent/AU3916400A/en
Publication of WO2000056891A2 publication Critical patent/WO2000056891A2/en
Publication of WO2000056891A3 publication Critical patent/WO2000056891A3/en
Priority to US10/187,657 priority patent/US7105315B2/en
Priority to US11/498,712 priority patent/US20060275314A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/16Central respiratory analeptics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/06Antiabortive agents; Labour repressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/08Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/10Drugs for genital or sexual disorders; Contraceptives for impotence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)

Definitions

  • This invention relates to nucleic acid and amino acid sequences of human transmembrane proteins and to the use of these sequences in the diagnosis, treatment, and prevention of cell proliferative, immunological, reproductive, smooth muscle, and neurological disorders.
  • Eukaryotic organisms are distinct from prokaryotes in possessing many intracellular membrane-bound compartments such as organelles and vesicles. Many of the metabolic reactions which distinguish eukaryotic biochemistry from prokaryotic biochemistry take place within these compartments. In particular, many cellular functions require very stringent reaction conditions, and the organelles and vesicles enable compartmentalization and isolation of reactions which might otherwise disrupt cytosolic metabolic processes.
  • the organelles include mitochondria, smooth and rough endoplasmic reticula, sarcoplasmic reticulum, and the Golgi body.
  • the vesicles include phagosomes, lysosomes, endosomes, peroxisomes, and secretory vesicles. Organelles and vesicles are bounded by single or double membranes.
  • Membranes surround organelles, vesicles, and the cell itself.
  • Membranes are highly selective permeability barriers made up of lipid bilayer sheets composed of phosphoglycerides, fatty acids, cholesterol, phospholipids, giycolipids, proteogl yeans, and proteins.
  • Membranes contain ion pumps, ion channels, and specific receptors for external stimuli which transmit biochemical signals across the membranes. These membranes also contain second messenger proteins which interact with these pumps, channels, and receptors to amplify and regulate transmission of these signals.
  • Plasma Membrane Proteins are highly selective permeability barriers made up of lipid bilayer sheets composed of phosphoglycerides, fatty acids, cholesterol, phospholipids, giycolipids, proteogl yeans, and proteins.
  • Membranes contain ion pumps, ion channels, and specific receptors for external stimuli which transmit biochemical signals across the membranes. These membranes also contain second messenger proteins which interact with these pumps,
  • Plasma membrane proteins are divided into two groups based upon methods of protein extraction from the membrane. Extrinsic or peripheral membrane proteins can be released using extremes of ionic strength or pH, urea, or other disruptors of protein interactions. Intrinsic or integral membrane proteins are released only when the lipid bilayer of the membrane is dissolved by detergent.
  • TM proteins transmembrane proteins
  • TM domains are typically comprised of 15 to 25 hydrophobic amino acids which are predicted to adopt an -helical conformation.
  • TM proteins are classified as bitopic (Types I and II) and polytopic (Types III and IV) (Singer, S.J. (1990) Annu. Rev. Cell Biol. 6:247-96).
  • Bitopic proteins span the membrane once while polytopic proteins contain multiple membrane-spanning segments.
  • TM proteins carry out a variety of important cellular functions acting as cell-surface receptor proteins involved in signal transduction.
  • TM proteins also act as transporters of ions or metabolites, such as gap junction channels (connexins), and ion channels, and as cell anchoring proteins, such as lectins, integrins, and fibronectins.
  • TM proteins are found in vesicle organelle- forming molecules, such as caveolins; or cell recognition molecules, such as cluster of differentiation (CD) antigens, glycoproteins, and mucins.
  • CD cluster of differentiation
  • Many MPs contain amino acid sequence motifs that serve to localize proteins to specific subcellular sites.
  • motifs include PDZ domains, KDEL, RGD, NGR, and GSL sequence motifs, von Willebrand factor A (vWFA) domains, and EGF-like domains.
  • RGD, NGR, and GSL motif-containing peptides have been used as drug delivery agents in targeted cancer treatment of tumor vasculature (Arap, W. et al. (1998) Science, 279:377-380).
  • MPs may also contain amino acid sequence motifs that serve to interact with extracellular or intracellular molecules, such as carbohydrate recognition domains (CRD).
  • Chemical modification of amino acid residue side chains alters the manner in which MPs interact with other molecules, for example, phospholipid membranes.
  • Examples of such chemical modifications to amino acid residue side chains are covalent bond formation with glycosaminoglycans, oligosaccharides, phospholipids, acetyl and palmitoyl moieties, ADP-ribose, phosphate, and sulphate groups.
  • RNA encoding membrane proteins may have alternative splice sites which give rise to proteins encoded by the same gene but with different messenger RNA and amino acid sequences. Splice variant membrane proteins may interact with other ligand and protein isoforms. G-Protein Coupled Receptors
  • GPCRs G-protein coupled receptors
  • GPCRs include receptors for biogenic amines, lipid mediators of inflammation, peptide hormones, and sensory signal mediators.
  • the structure of these highly-conserved receptors consists of seven hydrophobic transmembrane (serpentine) regions, cysteine disulfide bridges between the second and third extracellular loops, an extracellular N-terminus, and a cytoplasmic C-terminus. Three extracellular loops alternate with three intracellular loops to link the seven transmembrane regions. The most conserved parts of these proteins are the transmembrane regions and the first two cytoplasmic loops.
  • GPCR G-protein Linked Receptor Facts Book
  • Mutations and changes in transcriptional activation of GPCR -encoding genes have been associated with neurological disorders such as schizophrenia, Parkinson's disease, Alzheimer's disease, drug addiction, and feeding disorders.
  • Macrophage scavenger receptors with broad ligand specificity may participate in the binding of low density lipoproteins (LDL) and foreign antigens.
  • Scavenger receptors types I and II are trimeric membrane proteins with each subunit containing a small N-terminal intracellular domain, a transmembrane domain, a large extracellular domain, and a C-terminal cysteine-rich domain.
  • the extracellular domain contains a short spacer domain, an -helical coiled-coil domain, and a triple helical collagenous domain. These receptors have been shown to bind a spectrum of ligands, including chemically modified lipoproteins and albumin, polyribonucleotides, polysaccharides, phospholipids.
  • the scavenger receptors are thought to play a key role in atherogenesis by mediating uptake of modified LDL in arterial walls, and in host defense by binding bacterial endotoxins, bacteria, and protozoa. Tetraspan Family Proteins
  • the transmembrane 4 superfamily (TM4SF) or tetraspan family is a multigene family encoding type III integral membrane proteins (Wright, M.D. and Tomlinson, M.G. (1994) Immunol. Today 15:588).
  • the TM4SF is comprised of membrane proteins which traverse the cell membrane four times.
  • Members of the TM4SF include platelet and endothelial cell membrane proteins, melanoma-associated antigens, leukocyte surface glycoproteins, colonal carcinoma antigens, tumor- associated antigens, and surface proteins of the schistosome parasites (Jankowski, S.A. (1994) Oncogene 9: 1205-1211).
  • TM4SF Tumor Antigens
  • Tumor antigens are surface molecules that are differentially expressed in tumor cells relative to normal cells. Tumor antigens distinguish tumor cells immunologically from normal cells and provide diagnostic and therapeutic targets for human cancers (Takagi, S. et al. (1995) Int. J. Cancer 61: 706-715; Liu, E. et al. (1992) Oncogene 7: 1027-1032). Ion Channels
  • Ion channels are found in the plasma membranes of virtually every cell in the body.
  • chloride channels mediate a variety of cellular functions including regulation of membrane potentials and absorption and secretion of ions across epithelial membranes.
  • chloride channels When present in intracellular membranes of the Golgi apparatus and endocytic vesicles, chloride channels also regulate organelle pH.
  • organelle pH See, e.g., Greger, R. (1988) Annu. Rev. Physiol. 50: 111-122.
  • Electrophysiological and pharmacological properties of chloride channels including ion conductance, current-voltage relationships, and sensitivity to modulators, suggest that different chloride channels exist in muscles, neurons, fibroblasts, epithelial cells, and lymphocytes.
  • Many channels have sites for phosphorylation by one or more protein kinases including protein kinase A, protein kinase C, tyrosine kinase, and casein kinase II, all of which regulate ion channel activity in cells.
  • Inappropriate phosphorylation of proteins in cells has been linked to changes in cell cycle progression and cell differentiation. Changes in the cell cycle have been linked to induction of apoptosis or cancer. Changes in cell differentiation have been linked to diseases and disorders of the reproductive system, immune system, and skeletal muscle.
  • Proton ATPases are a large class of membrane proteins that use the energy of ATP hydrolysis to generate an electrochemical proton gradient across a membrane. The resultant gradient may be used to transport other ions across the membrane (Na + , K + , or Cl ) or to maintain organelle pH.
  • Proton ATPases are further subdivided into the mitochondrial F-ATPases, the plasma membrane ATPases, and the vacuolar ATPases. The vacuolar ATPases establish and maintain an acidic pH within various vesicles involved in the processes of endocytosis and exocytosis (Mellman, I. et al. (1986) Ann. Rev. Biochem. 55:663-700).
  • Proton-coupled, 12 membrane-spanning domain transporters such as PEPT 1 and PEPT 2 are responsible for gastrointestinal absorption and for renal reabsorbtion of peptides using an electrochemical H + gradient as the driving force.
  • Another type of peptide transporter, the TAP transporter is a heterodimer consisting of TAP 1 and TAP 2 and is associated with antigen processing. Peptide antigens are transported across the membrane of the endoplasmic reticulum by TAP so they can be expressed on the cell surface in association with MHC molecules.
  • Each TAP protein consists of multiple hydrophobic membrane spanning segments and a highly conserved ATP-binding cassette (Boll, M. et al. ( 1996) Proc. Natl. Acad. Sci.USA
  • Pathogenic microorganisms such as herpes simplex virus, may encode inhibitors of TAP-mediated peptide transport in order to evade immune surveillance (Marusina, K. and Manaco, J.J. (1996) Curr. Opin. Hematol. 3: 19-26).
  • ABC Transporters ATP-binding cassette (ABC) transporters also called the "traffic ATPases", are a superfamily of membrane proteins that mediate transport and channel functions in prokaryotes and eukaryotes (Higgins, C.F. ( 1992) Annu. Rev. Cell Biol. 8:67-113). ABC proteins share a similar overall structure and significant sequence homology.
  • ABC proteins contain a conserved domain of approximately two hundred amino acid residues which includes one or more nucleotide binding domains. Mutations in ABC transporter genes are associated with various disorders, such as hyperbilirubinemia II/Dubin-Johnson syndrome, recessive Stargardt's disease, X-linked adrenoleukodystrophy, multidrug resistance, celiac disease, and cystic fibrosis.
  • Intercellular communication is essential for the development and survival of multicellular organisms.
  • Cells communicate with one another through the secretion and uptake of protein signaling molecules.
  • the uptake of proteins into the cell is achieved by endocytosis, in which the interaction of signaling molecules with the plasma membrane surface, often via binding to specific receptors, results in the formation of plasma membrane-derived vesicles that enclose and transport the molecules into the cytosol.
  • the secretion of proteins from the cell is achieved by exocytosis, in which molecules inside of the cell are packaged into membrane-bound transport vesicles derived from the trans Golgi network. These vesicles fuse with the plasma membrane and release their contents into the surrounding extracellular space. Endocytosis and exocytosis result in the removal and addition of plasma membrane components, and the recycling of these components is essential to maintain the integrity, identity, and functionality of both the plasma membrane and internal membrane-bound compartments.
  • Lysosomes are the site of degradation of intracellular material during autophagy and of extracellular molecules following endocytosis. Lysosomal enzymes are packaged into vesicles which bud from the trans-Go ⁇ gi network. These vesicles fuse with endosomes to form the mature lysosome in which hydrolytic digestion of endocytosed material occurs. Lysosomes can fuse with autophagosomes to form a unique compartment in which the degradation of organelles and other intracellular components occurs.
  • Protein sorting by transport vesicles has important consequences for a variety of physiological processes including cell surface growth, the biogenesis of distinct intracellular organelles, endocytosis, and the controlled secretion of hormones and neurotransmitters (Rothman, J.E. and Wieland, F.T. (1996) Science 272:227-234).
  • neurodegenerative disorders and other neuronal pathologies are associated with biochemical flaws during endosomal protein sorting or endosomal biogenesis (Mayer R.J. et al. (1996) Adv. Exp. Med. Biol. 389:261-269).
  • Peroxisomes are organelles independent from the secretory pathway. They are the site of many peroxide-generating oxidative reactions in the cell. Peroxisomes are unique among eukaryotic organelles in that their size, number, and enzyme content vary depending upon organism, cell type, and metabolic needs (Waterham, H.R. and Cregg, J.M. (1997) BioEssays 19:57-66).
  • the normal functioning of the eukaryotic cell requires that all newly synthesized proteins be correctly folded, modified, and delivered to specific intra- and extracellular sites.
  • Newly synthesized membrane and secretory proteins enter a cellular sorting and distribution network during or immediately after synthesis (cotranslationally or posttranslationally) and are routed to specific locations inside and outside of the cell.
  • the initial compartment in this process is the endoplasmic reticulum (ER) where proteins undergo modifications such as glycosylation, disulfide bond formation, and assembly into oligomers.
  • ER endoplasmic reticulum
  • the modified proteins are then transported through a series of membrane-bound compartments which include the various cisternae of the Golgi complex, where further carbohydrate modifications occur. Transport between compartments occurs by means of vesicles that bud and fuse in a manner specific to the type of protein being transported. Once within the secretory pathway, proteins do not have to cross a membrane to reach the cell surface.
  • the signal for retention in the ER in mammalian cells consists of the tetrapeptide sequence, KDEL, located at the carboxyl terminus of proteins (Munro, S. (1986) Cell 46:291-300). Proteins containing this sequence leave the ER but are quickly retrieved from the early Golgi cisternae and returned to the ER, while proteins lacking this signal continue through the secretory pathway.
  • ⁇ -amyloid precursor protein ⁇ APP
  • the mitochondrial electron transport (or respiratory) chain is a series of three enzyme complexes in the mitochondrial membrane that is responsible for the transport of electrons from NADH to oxygen and the coupling of this oxidation to the synthesis of ATP (oxidative phosphorylation). ATP then provides the primary source of energy for driving the many energy-requiring reactions of a cell.
  • mitochondrial respiratory chain Most of the protein components of the mitochondrial respiratory chain are the products of nuclear encoded genes that are imported into the mitochondria, and the remainder are products of mitochondrial genes. Defects and altered expression of enzymes in the respiratory chain are associated with a variety of disease conditions in man, including, for example, neurodegenerative diseases, myopathies, and cancer.
  • the B-cell response to antigens is an essential component of the normal immune system.
  • Mature B cells recognize foreign antigens through B cell receptors (BCR) which are membrane-bound, specific antibodies that bind foreign antigens.
  • BCR B cell receptors
  • the antigen/receptor complex is internalized, and the antigen is proteolytically processed.
  • the BCR, BCR associated proteins, and T cell response are all required.
  • Proteolytic fragments of the antigen are complexed with major histocompatability complex-II (MHCII) molecules on the surface of the B cells where the complex can be recognized by T cells.
  • MHCII major histocompatability complex-I
  • T cells recognize and are activated by the MHCI-antigen complex through interactions with the T cell receptor/CD3 complex, a T cell-surface multimeric protein located in the plasma membrane.
  • T cells activated by antigen presentation secrete a variety of lymphokines that induce B cell maturation and T cell proliferation, and activate macrophages, which kill target cells.
  • Leukocytes have a fundamental role in the inflammatory and immune response, and include monocytes/macrophages, mast cells, polymorphonucleoleukocytes, natural killer cells, neutrophils, eosinophils, basophils, and myeloid precursors.
  • Leukocyte membrane proteins include members of the CD antigens, N-CAM, I-CAM, human leukocyte antigen (HLA) class I and HLA class II gene products, immunoglobulins, immunoglobulin receptors, complement, complement receptors, interferons, interferon receptors, interleukin receptors, and chemokine receptors.
  • Abnormal lymphocyte and leukocyte activity has been associated with acute disorders such as AIDS, immune hypersensitivity, leukemias, leukopenia, systemic lupus, granulomatous disease, and eosinophilia.
  • a variety of ligands, receptors, enzymes, tumor suppressors, viral gene products, pharmacological agents, and inorganic ions have important positive or negative roles in regulating and implementing the apoptotic destruction of a cell. Although some specific components of the apoptotic pathway have been identified and characterized, many interactions between the proteins involved are undefined, leaving major aspects of the pathway unknown.
  • the invention features purified polypeptides, human transmembrane proteins, referred to collectively as “HTMP” and individually as “HTMP-1,” “HTMP-2.” “HTMP-3,” “HTMP-4,” “HTMP-5,” “HTMP-6,” “HTMP-7,” “HTMP-8,” “HTMP-9,” “HTMP- 10,” “HTMP-11,” “HTMP- 12,” “HTMP-13,” “HTMP-14,” “HTMP-15,” “HTMP-16,” “HTMP-17,” “HTMP-18,” “HTMP-19,” “HTMP-20,” “HTMP-21,” “HTMP-22,” “HTMP-23,” “HTMP-24,” “HTMP-25,” “HTMP-26,” “HTMP-27,” “HTMP-28,” and “HTMP-29.”
  • the invention provides an isolated polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consist
  • the invention provides an isolated polypeptide comprising the amino acid sequence of SEQ ID NO: 1-29.
  • the invention further provides an isolated polynucleotide encoding a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ED NO: 1-29, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29.
  • the polynucleotide is selected from the group consisting of SEQ ID NO:30-58.
  • the invention provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ LD NO: 1-29.
  • the invention provides a cell transformed with the recombinant polynucleotide.
  • the invention provides a transgenic organism comprising the recombinant polynucleotide.
  • the invention also provides a method for producing a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29.
  • the method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.
  • the invention provides an isolated antibody which specifically binds to a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29.
  • the invention further provides an isolated polynucleotide comprising a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:30-58, b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:30-58, c) a polynucleotide sequence complementary to a), or d) a polynucleotide sequence complementary to b).
  • the polynucleotide comprises at least 60 contiguous nucleotides.
  • the invention provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide comprising a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:30-58, b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ LD NO:30-58, c) a polynucleotide sequence complementary to a), or d) a polynucleotide sequence complementary to b).
  • the method comprises a) hybridizing the sample with a probe comprising at least 16 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide, and b) detecting the presence or absence of said hybridization complex, and optionally, if present, the amount thereof.
  • the probe comprises at least 30 contiguous nucleotides.
  • the probe comprises at least 60 contiguous nucleotides.
  • the invention further provides a pharmaceutical composition comprising an effective amount of a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, and a pharmaceutically acceptable excipient.
  • the invention additionally provides a method of treating a disease or condition associated with decreased expression of functional HTMP, comprising administering to a patient in need of such treatment the pharmaceutical composition.
  • the invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ED NO: 1-29, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29.
  • the method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample.
  • the invention provides a pharmaceutical composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient.
  • the invention provides a method of treating a disease or condition associated with decreased expression of functional HTMP, comprising administering to a patient in need of such treatment the pharmaceutical composition.
  • the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29. or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29.
  • the method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample.
  • the invention provides a pharmaceutical composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient.
  • the invention provides a method of treating a disease or condition associated with overexpression of functional HTMP, comprising administering to a patient in need of such treatment the pharmaceutical composition.
  • the invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence selected from the group consisting of SEQ ID NO.30-58, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, and b) detecting altered expression of the target polynucleotide.
  • Table 1 shows polypeptide and nucleotide sequence identification numbers (SEQ ID NOs), clone identification numbers (clone IDs), cDNA libraries, and cDNA fragments used to assemble full- length sequences encoding HTMP.
  • Table 2 shows features of each polypeptide sequence, including potential motifs, homologous sequences, and methods, algorithms, and searchable databases used for analysis of HTMP.
  • Table 3 shows selected fragments of each nucleic acid sequence; the tissue-specific expression patterns of each nucleic acid sequence as determined by northern analysis; diseases, disorders, or conditions associated with these tissues; and the vector into which each cDNA was cloned.
  • Table 4 describes the tissues used to construct the cDNA libraries from which cDNA clones encoding HTMP were isolated.
  • Table 5 shows the tools, programs, and algorithms used to analyze HTMP, along with applicable descriptions, references, and threshold parameters.
  • HTMP refers to the amino acid sequences of substantially purified HTMP obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.
  • agonist refers to a molecule which intensifies or mimics the biological activity of HTMP.
  • Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of HTMP either by directly interacting with HTMP or by acting on components of the biological pathway in which HTMP participates.
  • allelic variant is an alternative form of the gene encoding HTMP. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.
  • altered nucleic acid sequences encoding HTMP include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as HTMP or a polypeptide with at least one functional characteristic of HTMP. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding HTMP, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding HTMP.
  • the encoded protein may also be "altered,” and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent HTMP.
  • Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of HTMP is retained.
  • negatively charged amino acids may include aspartic acid and glutamic acid
  • positively charged amino acids may include lysine and arginine.
  • Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine.
  • Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.
  • amino acid and amino acid sequence refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where “amino acid sequence” is recited to refer to an amino acid sequence of a naturally occurring protein molecule, “amino acid sequence” and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.
  • Amplification relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.
  • the term “antagonist” refers to a molecule which inhibits or attenuates the biological activity of HTMP. Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of HTMP either by directly interacting with HTMP or by acting on components of the biological pathway in which HTMP participates.
  • the term “antibody” refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab') 2 , and Fv fragments, which are capable of binding an epitopic determinant.
  • Antibodies that bind HTMP polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen.
  • the polypeptide or oligopeptide used to immunize an animal e.g., a mouse, a rat, or a rabbit
  • an animal e.g., a mouse, a rat, or a rabbit
  • RNA Ribonucleic acid
  • Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.
  • KLH keyhole limpet hemocyanin
  • antigenic determinant refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody.
  • a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (particular regions or three-dimensional structures on the protein).
  • An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.
  • antisense refers to any composition capable of base-pairing with the "sense" strand of a specific nucleic acid sequence.
  • Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5-methyl cytosine, 2'-deoxyuracil, or 7-deaza-2'-deoxyguanosine.
  • Antisense molecules may be produced by any method including chemical synthesis or transcription.
  • the complementary antisense molecule base-pairs with a naturally occurring nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation.
  • the designation "negative” or “minus” can refer to the antisense strand, and the designation “positive” or “plus” can refer to the sense strand of a reference DNA molecule.
  • biologically active refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule.
  • immunologically active refers to the capability of the natural, recombinant, or synthetic HTMP, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.
  • complementary and complementarity refer to the natural binding of polynucleotides by base pairing.
  • the sequence "5' A-G-T 3'” bonds to the complementary sequence "3' T-C-A 5'.”
  • Complementarity between two single-stranded molecules may be "partial,” such that only some of the nucleic acids bind, or it may be "complete,” such that total complementarity exists between the single stranded molecules.
  • the degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands. This is of particular importance in amplification reactions, which depend upon binding between nucleic acid strands, and in the design and use of peptide nucleic acid (PNA) molecules.
  • PNA peptide nucleic acid
  • composition comprising a given polynucleotide sequence and a “composition comprising a given amino acid sequence” refer broadly to any composition containing the given polynucleotide or amino acid sequence.
  • the composition may comprise a dry formulation or an aqueous solution.
  • Compositions comprising polynucleotide sequences encoding HTMP or fragments of HTMP may be employed as hybridization probes.
  • the probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate.
  • the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).
  • salts e.g., NaCl
  • detergents e.g., sodium dodecyl sulfate; SDS
  • other components e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.
  • Consensus sequence refers to a nucleic acid sequence which has been resequenced to resolve uncalled bases, extended using the XL-PCR kit (Perkin-Elmer, Norwalk CT) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from the overlapping sequences of one or more Incyte Clones and, in some cases, one or more public domain ESTs, using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (GCG, Madison WI). Some sequences have been both extended and assembled to produce the consensus sequence.
  • GELVIEW fragment assembly system GELVIEW fragment assembly system
  • Constant amino acid substitutions are those substitutions that, when made, least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions.
  • the table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions.
  • Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain.
  • a “deletion” refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.
  • derivative refers to the chemical modification of a polypeptide sequence, or a polynucleotide sequence. Chemical modifications of a polynucleotide sequence can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group.
  • a derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule.
  • a derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.
  • a “fragment” is a unique portion of HTMP or the polynucleotide encoding HTMP which is identical in sequence to but shorter in length than the parent sequence.
  • a fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue.
  • a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues.
  • a fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes, may be at least 5, 10, 15, 20, 25. 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule.
  • a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50% of a polypeptide) as shown in a certain defined sequence.
  • these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.
  • a fragment of SEQ ID NO:30-58 comprises a region of unique polynucleotide sequence that specifically identifies SEQ ID NO:30-58, for example, as distinct from any other sequence in the same genome.
  • a fragment of SEQ ID NO:30-58 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO:30-58 from related polynucleotide sequences.
  • the precise length of a fragment of SEQ ID NO:30-58 and the region of SEQ ID NO:30-58 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.
  • a fragment of SEQ ID NO: 1-29 is encoded by a fragment of SEQ ID NO: 30-58.
  • a fragment of SEQ ID NO: 1-29 comprises a region of unique amino acid sequence that specifically identifies SEQ ID NO: 1-29.
  • a fragment of SEQ ID NO: 1-29 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ ID NO: 1-29.
  • the precise length of a fragment of SEQ ID NO: 1-29 and the region of SEQ ID NO: 1-29 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.
  • similarity refers to a degree of complementarity. There may be partial similarity or complete similarity. The word “identity” may substitute for the word “similarity.”
  • a partially complementary sequence that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid is referred to as “substantially similar.”
  • the inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or northern blot, solution hybridization, and the like) under conditions of reduced stringency.
  • a substantially similar sequence or hybridization probe will compete for and inhibit the binding of a completely similar (identical) sequence to the target sequence under conditions of reduced stringency.
  • percent identity and % identity refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.
  • Percent identity between polynucleotide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison WI). CLUSTAL V is described in
  • NCBI National Center for Biotechnology Information
  • BLAST Basic Local Alignment Search Tool
  • NCBI National Center for Biotechnology Information
  • BLAST Basic Local Alignment Search Tool
  • the BLAST software suite includes various sequence analysis programs including "blastn,” that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases.
  • BLAST 2 Sequences are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences” tool Version 2.0.9 (May-07-1999) set at default parameters. Such default parameters may be, for example:
  • Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20. at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides.
  • Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
  • nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.
  • percent identity and % identity refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm.
  • Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the hydrophobicity and acidity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.
  • NCBI BLAST software suite may be used.
  • BLAST 2 Sequences Version 2.0.9 (May-07-1999) with blastp set at default parameters.
  • Such default parameters may be, for example:
  • Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues.
  • Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
  • Human artificial chromosomes are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size, and which contain all of the elements required for stable mitotic chromosome segregation and maintenance.
  • humanized antibody refers to antibody molecules in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.
  • Hybridization refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of identity. Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the "washing" step(s). The washing step(s) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched.
  • Permissive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity.
  • Permissive annealing conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1% (w/v) SDS, and about 100 ⁇ g/ml denatured salmon sperm DNA.
  • stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out.
  • wash temperatures are selected to be about 5°C to 20°C lower than the thermal melting point (T ⁇ ) for the specific sequence at a defined ionic strength and pH.
  • T ⁇ thermal melting point
  • the T m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe.
  • High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%.
  • blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, denatured salmon sperm DNA at about 100-200 ⁇ g/ml. Organic solvent, such as formamide at a concentration of about 35-50% v/v, may also be used under particular circumstances, such as for RNA:DNA hybridizations.
  • Hybridization particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.
  • hybridization complex refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases.
  • a hybridization complex may be formed in solution (e.g., C 0 t or R 0 t analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).
  • a solid support e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed.
  • Immuno response can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.
  • factors e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.
  • an “immunogenic fragment” is a polypeptide or oligopeptide fragment of HTMP which is capable of eliciting an immune response when introduced into a living organism, for example, a mammal.
  • the term “immunogenic fragment” also includes any polypeptide or oligopeptide fragment of HTMP which is useful in any of the antibody production methods disclosed herein or known in the art.
  • microarray refers to an arrangement of distinct polynucleotides on a substrate.
  • element and “array element” in a microarray context, refer to hybridizable polynucleotides arranged on the surface of a substrate.
  • modulate refers to a change in the activity of HTMP. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of HTMP.
  • nucleic acid and nucleic acid sequence refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.
  • PNA peptide nucleic acid
  • operably linked refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence.
  • a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence.
  • operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.
  • PNA protein nucleic acid
  • PNA refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.
  • Probe refers to nucleic acid sequences encoding HTMP, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences.
  • Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes.
  • Primmers are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).
  • PCR polymerase chain reaction
  • Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used. Methods for preparing and using probes and primers are described in the references, for example Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 2 nd ed., vol.
  • PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).
  • Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope.
  • the Primer3 primer selection program (available to the public from the Whitehead Institute/MIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming library," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.)
  • the PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences.
  • this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments.
  • the oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.
  • a "recombinant nucleic acid” is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, supra.
  • the term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid.
  • a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.
  • such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be use to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.
  • RNA equivalent in reference to a DNA sequence, is composed of the same linear sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
  • sample is used in its broadest sense.
  • a sample suspected of containing nucleic acids encoding HTMP, or fragments thereof, or HTMP itself may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA. in solution or bound to a substrate; a tissue; a tissue print; etc.
  • binding and “specifically binding” refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A,” the presence of a polypeptide containing the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.
  • substantially purified refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which they are naturally associated.
  • substitution refers to the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides. respectively.
  • Substrate refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries.
  • the substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.
  • Transformation describes a process by which exogenous DNA enters and changes a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell.
  • the method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, viral infection, electroporation, heat shock, lipofection, and particle bombardment.
  • the term "transformed” cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.
  • a "transgenic organism,” as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art.
  • the nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus.
  • the term genetic manipulation does not include classical cross-breeding, or in vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule.
  • the transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria. fungi, and plants and animals.
  • the isolated DNA of the present invention can be introduced into the host by methods known in the art. for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook et al. (1989), supra.
  • a “variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (March-07- 1999) set at default parameters.
  • Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%. at least 90%, at least 95% or at least 98% or greater sequence identity over a certain defined length.
  • a variant may be described as, for example, an "allelic” (as defined above), “splice,” “species,” or “polymorphic” variant.
  • a splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing.
  • the corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule.
  • Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides generally will have significant amino acid identity relative to each other.
  • a polymo ⁇ hic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species.
  • Polymo ⁇ hic variants also may encompass "single nucleotide polymo ⁇ hisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base.
  • SNPs single nucleotide polymo ⁇ hisms
  • a "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07- 1999) set at default parameters.
  • Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98% or greater sequence identity over a certain defined length of one of the polypeptides.
  • the invention is based on the discovery of new human transmembrane proteins (HTMP), the polynucleotides encoding HTMP, and the use of these compositions for the diagnosis, treatment, or prevention of cell proliferative, immunological, reproductive, smooth muscle, and neurological disorders.
  • HTMP human transmembrane proteins
  • Table 1 lists the Incyte clones used to assemble full length nucleotide sequences encoding HTMP. Columns 1 and 2 show the sequence identification numbers (SEQ ID NOs) of the polypeptide and nucleotide sequences, respectively. Column 3 shows the clone IDs of the Incyte clones in which nucleic acids encoding each HTMP were identified, and column 4 shows the cDNA libraries from which these clones were isolated. Column 5 shows Incyte clones and their corresponding cDNA libraries. Clones for which cDNA libraries are not indicated were derived from pooled cDNA libraries. The Incyte clones in column 5 were used to assemble the consensus nucleotide sequence of each HTMP and are useful as fragments in hybridization technologies.
  • SEQ ID NOs sequence identification numbers
  • column 1 references the SEQ ID NO; column 2 shows the number of amino acid residues in each polypeptide; column 3 shows potential phosphorylation sites; column 4 shows potential glycosylation sites; column 5 shows the amino acid residues comprising signature sequences and motifs; column 6 shows the identity of each polypeptide and homologous sequences as identified by BLAST analysis; and column 7 shows analytical methods and in some cases, searchable databases to which the analytical methods were applied. The methods of column 7 were used to characterize each polypeptide through sequence homology and protein motifs.
  • the columns of Table 3 show the tissue-specificity and diseases, disorders, or conditions associated with nucleotide sequences encoding HTMP.
  • the first column of Table 3 lists the nucleotide SEQ ID NOs.
  • Column 2 lists fragments of the nucleotide sequences of column 1. These fragments are useful, for example, in hybridization or amplification technologies to identify SEQ ID NO:30-58 and to distinguish between SEQ ED NO:30-58 and related polynucleotide sequences.
  • the polypeptides encoded by the specified fragments of SEQ ID NO:30-58 are useful, for example, as immunogenic peptides.
  • Column 3 lists tissue categories which express HTMP as a fraction of total tissues expressing HTMP.
  • Table 4 show descriptions of the tissues used to construct the cDNA libraries from which cDNA clones encoding HTMP were isolated.
  • Column 1 references the nucleotide SEQ ID NOs
  • column 2 shows the cDNA libraries from which these clones were isolated
  • column 3 shows the tissue origins and other descriptive information relevant to the cDNA libraries in column 2.
  • SEQ ID NO:45 maps to chromosome 3 within the interval from 49.50 to 55.40 centiMorgans. This interval also contains genes associated with disorders of cell proliferation.
  • SEQ ID NO:47 maps to chromosome 7 within the interval from 74.30 to 76.40 centiMorgans. This interval also contains an EST associated with cell proliferation.
  • SEQ ID NO:50 maps to chromosome 2 within the interval from 1 1 1.5 to 115.3 centiMorgans. This interval also contains genes associated with immune response.
  • SEQ ID NO:51 maps to chromosome 1 1 within the interval from 84.2 to 87.1 centiMorgans. This interval also contains a gene associated with immune response.
  • SEQ ID NO:53 maps to chromosome 13 within the interval from 77.10 to 86.90 centiMorgans. This interval also contains genes associated with immune response.
  • SEQ ID NO:55 maps to chromosome 1 within the interval from 74.80 to 78.30 centiMorgans. This interval also contains a gene associated with immune response.
  • SEQ ID NO:58 maps to chromosome 15 within the interval from the p-terminus to 25.30 centiMorgans. This interval also contains a gene associated with cell proliferation.
  • the invention also encompasses HTMP variants.
  • a preferred HTMP variant is one which has at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the HTMP amino acid sequence, and which contains at least one functional or structural characteristic of HTMP.
  • the invention also encompasses polynucleotides which encode HTMP.
  • the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:30-58, which encodes HTMP.
  • the polynucleotide sequences of SEQ ED NO:30-58, as presented in the Sequence Listing, embrace the equivalent RNA sequences, wherein occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
  • the invention also encompasses a variant of a polynucleotide sequence encoding HTMP.
  • a variant polynucleotide sequence will have at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding HTMP.
  • a particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:30-58 which has at least about 70%, or alternatively at least about 85%, or even at least about
  • polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:30-58.
  • Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of HTMP.
  • the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring HTMP, and all such variations are to be considered as 0 being specifically disclosed.
  • nucleotide sequences which encode HTMP and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring HTMP under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding HTMP or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-natural ly 5 occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host.
  • RNA transcripts having more desirable properties such as a greater 0 half-life, than transcripts produced from the naturally occurring sequence.
  • the invention also encompasses production of DNA sequences which encode HTMP and HTMP derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to 5 introduce mutations into a sequence encoding HTMP or any fragment thereof. Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:30-58 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 152:507-511.) Hybridization conditions, including annealing and wash conditions, are described in "Definitions.”
  • Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention.
  • the methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Perkin- Elmer), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies. Gaithersburg MD).
  • sequence preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (Perkin-Elmer). Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Perkin-Elmer), the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA). or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology. John Wiley & Sons, New York NY, unit 7.7; Meyers. R.A. (1995) Molecular Biology and Biotechnology. Wiley VCH, New York NY, pp. 856-853.)
  • the nucleic acid sequences encoding HTMP may be extended utilizing a partial nucleotide sequence and employing various PCR -based methods known in the art to detect upstream sequences, such as promoters and regulatory elements.
  • various PCR -based methods known in the art to detect upstream sequences, such as promoters and regulatory elements.
  • restriction-site PCR uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.)
  • inverse PCR uses primers that extend in divergent directions to amplify unknown sequence from a circularized template.
  • the template is derived from restriction fragments comprising a known genomic locus and surrounding sequences.
  • a third method, capture PCR involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic.
  • primers may be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.
  • commercially available software such as OLIGO 4.06 Primer Analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.
  • Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.
  • Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products.
  • capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide- specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths.
  • Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Perkin-Elmer), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled.
  • Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.
  • polynucleotide sequences or fragments thereof which encode HTMP may be cloned in recombinant DNA molecules that direct expression of HTMP, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express HTMP.
  • nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter HTMP-encoding sequences for a variety of pu ⁇ oses including, but not limited to, modification of the cloning, processing, and/or expression of the gene product.
  • DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences.
  • oligonucleotide- mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.
  • the nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent Number 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians. F.C. et al. (1999) Nat. Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of HTMP, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds.
  • MOLECULARBREEDING Maxygen Inc., Santa Clara CA; described in U.S. Patent Number 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians. F.C. et
  • DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection screening.
  • genetic diversity is created through "artificial" breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.
  • sequences encoding HTMP may be synthesized, in whole or in part, using chemical methods well known in the art.
  • chemical methods See, e.g., Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; and Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232.
  • HTMP itself or a fragment thereof may be synthesized using chemical methods.
  • peptide synthesis can be performed using various solid-phase techniques.
  • Automated synthesis may be achieved using the ABI 431 A peptide synthesizer (Perkin-Elmer). Additionally, the amino acid sequence of HTMP, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide.
  • the peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.)
  • the composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY.)
  • the nucleotide sequences encoding HTMP or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host.
  • these elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding HTMP.
  • Such elements may vary in their strength and specificity.
  • Specific initiation signals may also be used to achieve more efficient translation of sequences encoding HTMP. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence.
  • a variety of expression vector/host systems may be utilized to contain and express sequences encoding HTMP. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems.
  • the invention is not limited by the host cell employed.
  • a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding HTMP.
  • routine cloning, subcloning, and propagation of polynucleotide sequences encoding HTMP can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Life Technologies). Ligation of sequences encoding HTMP into the vector's multiple cloning site disrupts the lacZ gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules.
  • these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence.
  • vectors which direct high level expression of HTMP may be used.
  • vectors containing the strong, inducible T5 or T7 bacteriophage promoter may be used.
  • Yeast expression systems may be used for production of HTMP.
  • a number of vectors containing constitutive or inducible promoters may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris.
  • constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH promoters
  • such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation.
  • Plant systems may also be used for expression of HTMP. Transcription of sequences encoding HTMP may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 3:17-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3: 1671-1680; Brogue, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ.
  • viral promoters e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 3:1311).
  • plant promoters
  • constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection.
  • pathogen-mediated transfection See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196.
  • a number of viral-based expression systems may be utilized.
  • sequences encoding HTMP may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential El or E3 region of the viral genome may be used to obtain infective virus which expresses HTMP in host cells.
  • transcription enhancers such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells.
  • SV40 or EBV- based vectors may also be used for high-level protein expression.
  • HACs Human artificial chromosomes
  • HACs may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid.
  • HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic pu ⁇ oses. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355.)
  • sequences encoding HTMP can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media.
  • the pu ⁇ ose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences.
  • Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.
  • Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the he ⁇ es simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in tk and apr cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection.
  • dhfr confers resistance to methotrexate
  • neo confers resistance to the aminoglycosides neomycin and G-418
  • als and par confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively.
  • Additional selectable genes have been described, e.g., trpB and hisD, which alter cellular requirements for metabolites.
  • Visible markers e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), ⁇ glucuronidase and its substrate ⁇ -glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, CA. (1995) Methods Mol. Biol. 55: 121-131.)
  • marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed.
  • sequence encoding HTMP is inserted within a marker gene sequence
  • transformed cells containing sequences encoding HTMP can be identified by the absence of marker gene function.
  • a marker gene can be placed in tandem with a sequence encoding HTMP under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.
  • HTMP may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences. Immunological methods for detecting and measuring the expression of HTMP using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS).
  • ELISAs enzyme-linked immunosorbent assays
  • RIAs radioimmunoassays
  • FACS fluorescence activated cell sorting
  • a two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on HTMP is preferred, but a competitive binding assay may be employed.
  • assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press. St. Paul MN, Sect. IV; Coligan, J.E. et al. (1997) Current Protocols in Immunology. Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D.
  • Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding HTMP include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide.
  • sequences encoding HTMP, or any fragments thereof may be cloned into a vector for the production of an mRNA probe.
  • RNA polymerase such as T7, T3, or SP6 and labeled nucleotides.
  • T7, T3, or SP6 an appropriate RNA polymerase
  • Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemi luminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.
  • Host cells transformed with nucleotide sequences encoding HTMP may be cultured under conditions suitable for the expression and recovery of the protein from cell culture.
  • the protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used.
  • expression vectors containing polynucleotides which encode HTMP may be designed to contain signal sequences which direct secretion of HTMP through a prokaryotic or eukaryotic cell membrane.
  • a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion.
  • modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation.
  • Post-translational processing which cleaves a "prepro” or “pro” form of the protein may also be used to specify protein targeting, folding, and/or activity.
  • Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein.
  • ATCC American Type Culture Collection
  • natural, modified, or recombinant nucleic acid sequences encoding HTMP may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems.
  • a chimeric HTMP protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of HTMP activity.
  • Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices.
  • Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, c-myc, and hemagglutinin (HA).
  • GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively.
  • FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags.
  • a fusion protein may also be engineered to contain a proteolytic cleavage site located between the HTMP encoding sequence and the heterologous protein sequence, so that HTMP may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, supra, ch. 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.
  • synthesis of radiolabeled HTMP may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, 3:, S-methionine. Fragments of HTMP may be produced not only by recombinant means, but also by direct peptide synthesis using solid-phase techniques. (See, e.g., Creighton, supra, pp. 55-60.) Protein synthesis may be performed by manual techniques or by automation. Automated synthesis may be achieved, for example, using the ABI 431 A peptide synthesizer (Perkin-Elmer). Various fragments of HTMP may be synthesized separately and then combined to produce the full length molecule. THERAPEUTICS
  • HTMP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTMP.
  • disorders include, but are not limited to, a cell proliferative disorder such as actinic keratosis.
  • arteriosclerosis arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; an immunological disorder such as acquired immunodeficiency syndrome (AIDS), Addison'
  • emphysema episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis. erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout.
  • Graves' disease Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sj ⁇ gren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic pu ⁇ ura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis.
  • a reproductive disorder such as a disorder of prolactin production, infertility, including tubal disease, ovulatory defects, and endometriosis, a disruption of the estrous cycle, a disruption of the menstrual cycle, polycystic ovary syndrome, ovarian hyperstimulation syndrome, an endometrial or ovarian tumor, a uterine fibroid, autoimmune disorders, an ectopic pregnancy, and teratogenesis, cancer of the breast, fibrocystic breast disease, and galactorrhea, a disruption of spermatogenesis, abnormal sperm physiology, cancer of the testis, cancer of the prostate, benign prostatic hype ⁇ lasia, prostatitis.
  • a reproductive disorder such as a disorder of prolactin production, infertility, including tubal disease, ovulatory defects, and endometriosis, a disruption of the estrous cycle, a disruption of the menstrual cycle, polycystic ovary syndrome, ova
  • Peyronie's disease impotence, carcinoma of the male breast, and gynecomastia
  • a smooth muscle disorder such as angina, anaphylactic shock, arrhythmias, asthma, cardiovascular shock, Cushing's syndrome, hypertension, hypoglycemia, myocardial infarction, migraine, and pheochromocytoma, and myopathies including cardiomyopathy, encephalopathy, epilepsy, Kearns-Sayre syndrome, lactic acidosis, myoclonic disorder, and ophthalmoplegia
  • a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demye
  • a vector capable of expressing HTMP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTMP including, but not limited to, those described above.
  • a pharmaceutical composition comprising a substantially purified HTMP in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTMP including, but not limited to, those provided above.
  • an agonist which modulates the activity of HTMP may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTMP including, but not limited to, those listed above.
  • an antagonist of HTMP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of HTMP. Examples of such disorders include, but are not limited to, those cell proliferative, immunological, reproductive, smooth muscle, and neurological disorders described above.
  • an antibody which specifically binds HTMP may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express HTMP.
  • a vector expressing the complement of the polynucleotide encoding HTMP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of HTMP including, but not limited to, those described above.
  • any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art. according to conventional pharmaceutical principles.
  • the combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.
  • An antagonist of HTMP may be produced using methods which are generally known in the art.
  • purified HTMP may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind HTMP.
  • Antibodies to HTMP may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are generally preferred for therapeutic use.
  • various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with HTMP or with any fragment or oligopeptide thereof which has immunogenic properties.
  • various adjuvants may be used to increase immunological response.
  • adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol.
  • BCG Bacilli Calmette-Guerin
  • Corynebacterium parvum are especially preferable. It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to
  • HTMP have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein and contain the entire amino acid sequence of a small, naturally occurring molecule. Short stretches of HTMP amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.
  • Monoclonal antibodies to HTMP may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J.
  • chimeric antibodies such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity.
  • techniques developed for the production of single chain antibodies may be adapted, using methods known in the art, to produce HTMP-specific single chain antibodies.
  • Antibodies with related specificity, but of distinct idiotypic composition may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88: 10134-10137.)
  • Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)
  • Antibody fragments which contain specific binding sites for HTMP may also be generated.
  • fragments include, but are not limited to, F(ab ⁇ ) 2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments.
  • Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. ( 1989) Science 246: 1275-1281.)
  • immunoassays may be used for screening to identify antibodies having the desired specificity.
  • Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art.
  • Such immunoassays typically involve the measurement of complex formation between HTMP and its specific antibody.
  • a two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering HTMP epitopes is generally used, but a competitive binding assay may also be employed (Pound, supra).
  • K association constant
  • the K determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple HTMP epitopes, represents the average affinity, or avidity, of the antibodies for HTMP.
  • the K determined for a preparation of monoclonal antibodies, which are monospecific for a particular HTMP epitope, represents a true measure of affinity.
  • High-affinity antibody preparations with K ranging from about 10 9 to 10 12 L/mole are preferred for use in immunoassays in which the HTMP-antibody complex must withstand rigorous manipulations.
  • Low-affinity antibody preparations with K ranging from about 10 6 to 10 7 L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of HTMP, preferably in active form, from the antibody (Catty, D. (1988) Antibodies. Volume I: A Practical Approach. IRL Press, Washington, DC; Liddell, J.E. and Cryer, A. (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).
  • polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications.
  • a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml is generally employed in procedures requiring precipitation of HTMP-antibody complexes.
  • Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan et al. supra.)
  • the polynucleotides encoding HTMP may be used for therapeutic pu ⁇ oses.
  • the complement of the polynucleotide encoding HTMP may be used in situations in which it would be desirable to block the transcription of the mRNA.
  • cells may be transformed with sequences complementary to polynucleotides encoding HTMP.
  • complementary molecules or fragments may be used to modulate HTMP activity, or to achieve regulation of gene function.
  • sense or antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding HTMP.
  • Expression vectors derived from retroviruses, adenoviruses, or he ⁇ es or vaccinia viruses, or from various bacterial plasmids may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. Methods which are well known to those skilled in the art can be used to construct vectors to express nucleic acid sequences complementary to the polynucleotides encoding HTMP. (See, e.g., Sambrook, supra; Ausubel, 1995, supra.) Genes encoding HTMP can be turned off by transforming a cell or tissue with expression vectors which express high levels of a polynucleotide. or fragment thereof, encoding HTMP.
  • Such constructs may be used to introduce untranslatable sense or antisense sequences into a cell. Even in the absence of integration into the DNA, such vectors may continue to transcribe RNA molecules until they are disabled by endogenous nucleases. Transient expression may last for a month or more with a non-replicating vector, and may last even longer if appropriate replication elements are part of the vector system.
  • modifications of gene expression can be obtained by designing complementary sequences or antisense molecules (DNA, RNA, or PNA) to the control, 5', or regulatory regions of the gene encoding HTMP.
  • Oligonucleotides derived from the transcription initiation site e.g., between about positions -10 and +10 from the start site, may be employed.
  • inhibition can be achieved using triple helix base-pairing methodology.
  • Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al.
  • a complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.
  • Ribozymes enzymatic RNA molecules
  • Ribozymes may also be used to catalyze the specific cleavage of RNA.
  • the mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage.
  • engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding HTMP.
  • ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.
  • RNA molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis.
  • RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding HTMP. Such DNA sequences may be inco ⁇ orated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6.
  • these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.
  • RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine.
  • vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nat. Biotechnol. 15:462-466.)
  • compositions may consist of HTMP, antibodies to HTMP, and mimetics, agonists, antagonists, or inhibitors of HTMP.
  • the compositions may be administered alone or in combination with at least one other agent, such as a stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier including, but not limited to, saline, buffered saline, dextrose, and water.
  • the compositions may be administered to a patient alone, or in combination with other agents, drugs, or hormones.
  • compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary. intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.
  • these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA).
  • compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.
  • Pharmaceutical preparations for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores. Suitable auxiliaries can be added, if desired.
  • Suitable excipients include carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and tragacanth; and proteins, such as gelatin and collagen.
  • disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, and alginic acid or a salt thereof, such as sodium alginate.
  • Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures.
  • Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.
  • Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol.
  • Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers.
  • the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.
  • compositions suitable for parenteral administration may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline.
  • Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran.
  • suspensions of the active compounds may be prepared as appropriate oily injection suspensions.
  • Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes.
  • Non-lipid polycationic amino polymers may also be used for delivery.
  • the suspension may also contain suitable stabilizers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions.
  • penetrants appropriate to the particular barrier to be permeated are used in the formulation.
  • penetrants are generally known in the art.
  • compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.
  • the pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, and succinic acids. Salts tend to be more soluble in aqueous or other protonic solvents than are the .corresponding free base forms.
  • the preparation may be a lyophilized powder which may contain any or all of the following: 1 mM to 50 mM histidine, 0.1% to 2% sucrose, and 2% to 7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.
  • compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended pu ⁇ ose. The determination of an effective dose is well within the capability of those skilled in the art.
  • the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.
  • a therapeutically effective dose refers to that amount of active ingredient, for example HTMP or fragments thereof, antibodies of HTMP, and agonists, antagonists or inhibitors of HTMP, which ameliorates the symptoms or condition.
  • Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED 50 (the dose therapeutically effective in 50% of the population) or LD 50 (the dose lethal to 50% of the population) statistics.
  • the dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD 50 /ED 50 ratio.
  • Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use.
  • the dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED, 0 with little or no toxicity.
  • the dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration. The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.
  • Normal dosage amounts may vary from about 0.1 ⁇ g to 100,000 ⁇ g, up to a total dose of about 1 gram, depending upon the route of administration.
  • Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.
  • DIAGNOSTICS In another embodiment, antibodies which specifically bind HTMP may be used for the diagnosis of disorders characterized by expression of HTMP, or in assays to monitor patients being treated with HTMP or agonists, antagonists, or inhibitors of HTMP.
  • Antibodies useful for diagnostic pu ⁇ oses may be prepared in the same manner as described above for therapeutics. Diagnostic assays for HTMP include methods which utilize the antibody and a label to detect HTMP in human body fluids or in extracts of cells or tissues.
  • the antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule.
  • reporter molecules A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.
  • HTMP HTMP-specific kinase kinase kinase
  • ELISAs RI-associated kinase kinase kinase kinase kinase kinase kinase kinase kinase kinase kinase kinase kinase kinase kinase kinas, kinas, and fragments thereof.
  • the polynucleotides encoding HTMP may be used for diagnostic pu ⁇ oses.
  • the polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs.
  • the polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of HTMP may be correlated with disease.
  • the diagnostic assay may be used to determine absence, presence, and excess expression of HTMP, and to monitor regulation of HTMP levels during therapeutic intervention.
  • hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding HTMP or closely related molecules may be used to identify nucleic acid sequences which encode HTMP.
  • the specificity of the probe whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occurring sequences encoding HTMP, allelic variants, or related sequences.
  • Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the HTMP encoding sequences.
  • the hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:30-58 or from genomic sequences including promoters, enhancers, and introns of the HTMP gene.
  • Means for producing specific hybridization probes for DNAs encoding HTMP include the cloning of polynucleotide sequences encoding HTMP or HTMP derivatives into vectors for the production of mRNA probes.
  • Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides.
  • Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as 32 P or 35 S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.
  • Polynucleotide sequences encoding HTMP may be used for the diagnosis of disorders associated with expression of HTMP.
  • disorders include, but are not limited to, a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria.
  • a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria.
  • MCTD mixed connective tissue disease
  • myelofibrosis paroxysmal nocturnal hemoglobinuria.
  • psoriasis primary thrombocythemia
  • cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; an immunological disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dys
  • atrophic gastritis glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjogren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic pu ⁇ ura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extraco ⁇ oreal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a reproductive disorder such as a disorder of
  • HTMP familial frontotemporal dementia
  • the polynucleotide sequences encoding HTMP may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered HTMP expression. Such qualitative or quantitative methods are well known in the art.
  • the nucleotide sequences encoding HTMP may be useful in assays that detect the presence of associated disorders, particularly those mentioned above.
  • the nucleotide sequences encoding HTMP may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding HTMP in the sample indicates the presence of the associated disorder.
  • Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.
  • a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding HTMP, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.
  • hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject.
  • the results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.
  • the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms.
  • a more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.
  • oligonucleotides designed from the sequences encoding HTMP may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding HTMP, or a fragment of a polynucleotide complementary to the polynucleotide encoding HTMP, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.
  • Methods which may also be used to quantify the expression of HTMP include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and inte ⁇ olating results from standard curves.
  • radiolabeling or biotinylating nucleotides include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and inte ⁇ olating results from standard curves.
  • the speed of quantitation of multiple samples may be accelerated by running the assay in a high-throughput format where the oligomer of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.
  • oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as targets in a microarray.
  • the microarray can be used to monitor the expression level of large numbers of genes simultaneously and to identify genetic variants, mutations, and polymo ⁇ hisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, and to develop and monitor the activities of therapeutic agents.
  • Microarrays may be prepared, used, and analyzed using methods known in the art.
  • methods known in the art See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93: 10614-10619; Baldeschweiler et al. (1995) PCT application W095/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. USA 94:2150- 2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.
  • nucleic acid sequences encoding HTMP may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence.
  • the sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial PI constructions, or single chromosome cDNA libraries.
  • HACs human artificial chromosomes
  • YACs yeast artificial chromosomes
  • BACs bacterial artificial chromosomes
  • PI constructions or single chromosome cDNA libraries.
  • Fluorescent in situ hybridization may be correlated with other physical chromosome mapping techniques and genetic map data.
  • FISH Fluorescent in situ hybridization
  • Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) World Wide Web site. Correlation between the location of the gene encoding HTMP on a physical chromosomal map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder.
  • the nucleotide sequences of the invention may be used to detect differences in gene sequences among normal, carrier, and affected individuals.
  • In situ hybridization of chromosomal preparations and physical mapping techniques may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the number or arm of a particular human chromosome is not known. New sequences can be assigned to chromosomal arms by physical mapping. This provides valuable information to investigators searching for disease genes using positional cloning or other gene discovery techniques.
  • any sequences mapping to that area may represent associated or regulatory genes for further investigation.
  • the nucleotide sequence of the subject invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.
  • HTMP its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques.
  • the fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between HTMP and the agent being tested may be measured.
  • Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest.
  • This method large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with HTMP, or fragments thereof, and washed. Bound HTMP is then detected by methods well known in the art. Purified HTMP can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.
  • nucleotide sequences which encode HTMP may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.
  • RNA was purchased from Clontech or isolated from tissues described in Table 4. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.
  • poly(A-t-) RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN).
  • cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, units 5.1-6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes.
  • cDNA was size-selected (300- 1000 bp) using SEPHACRYL SI 000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis.
  • cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSPORTl plasmid (Life Technologies), pcDNA2.1 plasmid (Invitrogen, Carlsbad CA), or pINCY plasmid (Incyte Pharmaceuticals, Palo Alto CA).
  • Recombinant plasmids were transformed into competent E. coli cells including XLl-Blue, XLl-BlueMRF, or SOLR from Stratagene or DH5 ⁇ , DH10B, or ElectroMAX DH10B from Life Technologies.
  • Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid purification kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4 C C
  • plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216: 1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSKAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland). III.
  • cDNA sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Perkin-Elmer) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system.
  • cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer).
  • Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI PRISM 373 or 377 sequencing system (Perkin-Elmer) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VI.
  • Table 5 summarizes the tools, programs, and algorithms used and provides applicable descriptions, references, and threshold parameters.
  • the first column of Table 5 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are inco ⁇ orated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score, the greater the homology between two sequences).
  • Sequences were analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR). Polynucleotide and polypeptide sequence alignments were generated using the default parameters specified by the clustal algorithm as inco ⁇ orated into the MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent identity between aligned sequences. The polynucleotide sequences were validated by removing vector, linker, and polyA sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programing, and dinucleotide nearest neighbor analysis.
  • sequences were then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM, and PFAM to acquire annotation using programs based on BLAST, FAST A, and BLEMPS.
  • GenBank primate rodent, mammalian, vertebrate, and eukaryote databases
  • BLOCKS PRINTS
  • DOMO DOMO
  • PRODOM PRODOM
  • PFAM PFAM
  • the sequences were assembled into full length polynucleotide sequences using programs based on Phred, Phrap, and Consed, and were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA.
  • HMM Hidden Markov Model
  • the product score takes into account both the degree of similarity between two sequences and the length of the sequence match. For example, with a product score of 40, the match will be exact within a 1% to 2% error, and, with a product score of 70, the match will be exact. Similar molecules are usually identified by selecting those which show product scores between 15 and 40, although lower scores may identify related molecules.
  • the results of northern analyses are reported as a percentage distribution of libraries in which the transcript encoding HTMP occurred. Analysis involved the categorization of cDNA libraries by organ/tissue and disease. The organ tissue categories included cardiovascular, dermatologic, developmental, endocrine, gastrointestinal, hematopoietic/immune, musculoskeletal, nervous, reproductive, and urologic.
  • the disease/condition categories included cancer, inflammation, trauma, cell proliferation, neurological, and pooled. For each category, the number of libraries expressing the sequence of interest was counted and divided by the total number of libraries across all categories. Percentage values of tissue-specific and disease- or condition-specific expression are reported in Table 3. V. Chromosomal Mapping of HMTP Encoding Polynucleotides
  • the cDNA sequences which were used to assemble SEQ ID NO: 30-58 were compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith-Waterman algorithm. Sequences from these databases that matched SEQ ID NO:30-58 were assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 5). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Genethon were used to determine if any of the clustered sequences had been previously mapped.
  • SHGC Stanford Human Genome Center
  • WIGR Whitehead Institute for Genome Research
  • SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:55, and SEQ ID NO:58 are described in The Invention as ranges, or intervals, of human chromosomes.
  • the map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p-arm.
  • centiMorgan (cM) is a unit of measurement based on recombination frequencies between chromosomal markers.
  • the full length nucleic acid sequences of SEQ LD NO:30-58 were produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment.
  • One primer was synthesized to initiate 5' extension of the known fragment, and the other primer, to initiate 3' extension of the known fragment.
  • the initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68 °C to about 72°C. Any stretch of nucleotides which would result in hai ⁇ in structures and primer-primer dimerizations was avoided.
  • Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.
  • PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.).
  • the reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg 2+ , (NH 4 ) 2 S0 4 , and ⁇ -mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68 C C, 5 min; Step 7: storage at 4°C.
  • the parameters for primer pair T7 and SK+ were as follows: Step 1: 94 °C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68 °C, 5 min; Step 7: storage at 4°C.
  • the concentration of DNA in each well was determined by dispensing 100 ⁇ l PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in IX TE and 0.5 ⁇ l of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent.
  • the plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA.
  • a 5 ⁇ l to 10 ⁇ aliquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose mini-gel to determine which reactions were successful in extending the sequence.
  • the extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech).
  • CviJI cholera virus endonuclease Molecular Biology Research, Madison WI
  • sonicated or sheared prior to religation into pUC 18 vector
  • the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega).
  • Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent E. coli cells. Transformed cells were selected on antibiotic-containing media, individual colonies were picked and cultured overnight at 37 °C in 384- well plates in LB/2x carb liquid media.
  • Step 1 94°C, 3 min
  • Step 2 94 °C. 15 sec
  • Step 3 60°C, 1 min
  • Step 4 72°C, 2 min;
  • Step 5 steps 2, 3. and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethysulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM
  • nucleotide sequences of SEQ ID NO:30-58 are used to obtain 5' regulatory sequences using the procedure above, oligonucleotides designed for such extension, and an appropriate genomic library.
  • Hybridization probes derived from SEQ ID NO:30-58 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 ⁇ Ci of [ ⁇ - 32 P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA).
  • the labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 10 7 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).
  • the DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C To remove nonspecific signals, blots are sequentially washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared.
  • Microarrays A chemical coupling procedure and an ink jet device can be used to synthesize array elements on the surface of a substrate. (See, e.g., Baldeschweiler. supra.) An array analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced by hand or using available methods and machines and contain any appropriate number of elements. After hybridization, nonhybridized probes are removed and a scanner used to determine the levels and patterns of fluorescence. The degree of complementarity and the relative abundance of each probe which hybridizes to an element on the microarray may be assessed through analysis of the scanned images.
  • Full-length cDNAs, Expressed Sequence Tags (ESTs), or fragments thereof may comprise the elements of the microarray. Fragments suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). Full-length cDNAs, ESTs, or fragments thereof corresponding to one of the nucleotide sequences of the present invention, or selected at random from a cDNA library relevant to the present invention, are arranged on an appropriate substrate, e.g., a glass slide. The cDNA is fixed to the slide using, e.g., UV cross-linking followed by thermal and chemical treatments and subsequent drying. (See, e.g., Schena, M. et al.
  • Fluorescent probes are prepared and used for hybridization to the elements on the substrate.
  • the substrate is analyzed by procedures described above.
  • oligonucleotide sequences complementary to the HTMP-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring HTMP. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of HTMP. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the HTMP-encoding transcript.
  • HTMP expression and purification of HTMP is achieved using bacterial or virus-based expression systems.
  • cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription.
  • promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element.
  • Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3).
  • Antibiotic resistant bacteria express HTMP upon induction with isopropyl beta-D- thiogalactopyranoside (EPTG).
  • HTMP HTMP in eukaryotic cells
  • infecting insect or mammalian cell lines with recombinant Autographica californica nuclear polyhedrosis virus ( AcMNPV), commonly known as baculovirus recombinant Autographica californica nuclear polyhedrosis virus ( AcMNPV), commonly known as baculovirus.
  • AcMNPV Autographica californica nuclear polyhedrosis virus
  • baculovirus baculovirus
  • the nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding HTMP by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription.
  • Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases.
  • HTMP is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates.
  • GST glutathione S-transferase
  • a peptide epitope tag such as FLAG or 6-His
  • FLAG an 8-amino acid peptide
  • 6-His a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch. 10 and 16). Purified HTMP obtained by these methods can be used directly in the following activity assay.
  • XI Demonstration of HTMP Activity
  • An assay for HMTP activity measures the expression of HMTP on the cell surface.
  • cDNA encoding HMTP is transfected into an appropriate mammalian cell line.
  • HMTP-specific antibodies Cell surface proteins are labeled with biotin as described (de la Fuente, M. A. et al. (1997) Blood 90:2398-2405). Immunoprecipitations are performed using HMTP-specific antibodies, and immunoprecipitated samples are analyzed using SDS-PAGE and immunoblotting techniques. The ratio of labeled immunoprecipitant to unlabeled immunoprecipitant is proportional to the amount of HMTP expressed on the cell surface.
  • An alternative assay for HMTP activity is based on a prototypical assay for ligand/receptor- mediated modulation of cell proliferation. This assay measures the amount of newly synthesized DNA in Swiss mouse 3T3 cells expressing HMTP.
  • An appropriate mammalian expression vector containing cDNA encoding HMTP is added to quiescent 3T3 cultured cells using transfection methods well known in the art. The transfected cells are incubated in the presence of [ ⁇ jthymidine and varying amounts of HMTP ligand.
  • Inco ⁇ oration of [ 3 H]thymidine into acid-precipitable DNA is measured over an appropriate time interval using a tritium radioisotope counter, and the amount inco ⁇ orated is directly proportional to the amount of newly synthesized DNA.
  • a linear dose- response curve over at least a hundred-fold HMTP ligand concentration range is indicative of receptor activity.
  • One unit of activity per milliliter is defined as the concentration of HMTP producing a 50% response level, where 100% represents maximal inco ⁇ oration of [ 3 H]thymidine into acid-precipitable DNA (McKay, I. and Leigh, I., eds. (1993) Growth Factors: A Practical Approach, Oxford University Press, New York, NY, p. 73).
  • an assay for HTMP activity measures the effect of HMTP expression on the regulation of cell growth.
  • expression vectors encoding HTMP are electroporated into highly motile cell lines, such as U-937 (ATCC CRL 1593), HEL 92.1.7 (ATCC TIB 180) and MAC 10, and the motility of the electroporated and control cells are compared.
  • Methods for the design and construction of an expression vector capable of expressing HTMP in the desired mammalian cell line(s) chosen are well known to the art.
  • Assays for examining the motility of cells in culture are known to the art (cf Miyake, M. et al. (1991) J.
  • HTMP function is assessed by expressing the sequences encoding HTMP at physiologically elevated levels in mammalian cell culture systems.
  • cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression.
  • Vectors of choice include pCMV SPORT plasmid (Life Technologies) and pCR3.1 plasmid (Invitrogen), both of which contain the cytomegalovirus promoter. 5-10 ⁇ g of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell line, using either liposome formulations or electroporation.
  • 1-2 ⁇ g of an additional plasmid containing sequences encoding a marker protein are co-transfected.
  • Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector.
  • Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein.
  • FCM Flow cytometry
  • FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M.G. (1994) Flow Cytometry, Oxford, New York NY.
  • HTMP The influence of HTMP on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding HTMP and either CD64 or CD64-GFP.
  • CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG).
  • Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY).
  • mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding HTMP and other genes of interest can be analyzed by northern analysis or microarray techniques.
  • HTMP substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495). or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.
  • PAGE polyacrylamide gel electrophoresis
  • the HTMP amino acid sequence is analyzed using LASERGENE software
  • oligopeptides of about 15 residues in length are synthesized using an ABI 431A peptide synthesizer (Perkin-Elmer) using fmoc -chemistry and coupled to KLH (Sigma-Aldrich, St.
  • Naturally occurring or recombinant HTMP is substantially purified by immunoaffinity chromatography using antibodies specific for HTMP.
  • An immunoaffinity column is constructed by covalently coupling anti-HTMP antibody to an activated chromatographic resin, such as
  • Media containing HTMP are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of HTMP (e.g., high ionic strength buffers in the presence of detergent).
  • the column is eluted under conditions that disrupt antibody/HTMP binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and HTMP is collected.
  • HTMP HTMP, or biologically active fragments thereof, are labeled with 125 I Bolton-Hunter reagent.
  • Bolton-Hunter reagent See, e.g., Bolton A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539.
  • Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled HTMP, washed, and any wells with labeled HTMP complex are assayed. Data obtained using different concentrations of HTMP are used to calculate values for the number, affinity, and association of HTMP with the candidate molecules.
  • molecules interacting with HTMP are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989, Nature 340:245-246), or using commercially available kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech).
  • ABI FACTURA A program that removes vector sequences and masks Perkin-Elmer Applied Biosystems, ambiguous bases in nucleic acid sequences. Foster City, CA.
  • ABI/PARACEL FDF A Fast Data Finder useful in comparing and annotating Perkin-Elmer Applied Biosystems, Mismatch ⁇ 50% amino acid or nucleic acid sequences. Foster City, CA; Paracel Inc., Pasadena, CA.
  • ABI AutoAssembler A program that assembles nucleic acid sequences. Perkin-Elmer Applied Biosystems, Foster City, CA.
  • fastx score 100 or greater
  • Phred A base-calling algorithm that examines automated Ewing, B. et al. ( 1998) Genome sequencer traces with high sensitivity and probability. Res. 8: 175-185; Ewing, B. and P. Green ( 1998) Genome Res. 8: 186- 194.
  • Motifs A program that searches amino acid sequences for patterns Bairoch et al. supra; Wisconsin that matched those defined in Prosite. Package Program Manual, version 9, page M51 -59, Genetics Computer Group, Madison, WI.

Abstract

The invention provides human transmembrane proteins (HTMP) and polynucleotides which identify and encode HTMP. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with expression of HTMP.

Description

HUMAN TRANSMEMBRANE PROTEINS
TECHNICAL FIELD
This invention relates to nucleic acid and amino acid sequences of human transmembrane proteins and to the use of these sequences in the diagnosis, treatment, and prevention of cell proliferative, immunological, reproductive, smooth muscle, and neurological disorders.
BACKGROUND OF THE INVENTION
Eukaryotic organisms are distinct from prokaryotes in possessing many intracellular membrane-bound compartments such as organelles and vesicles. Many of the metabolic reactions which distinguish eukaryotic biochemistry from prokaryotic biochemistry take place within these compartments. In particular, many cellular functions require very stringent reaction conditions, and the organelles and vesicles enable compartmentalization and isolation of reactions which might otherwise disrupt cytosolic metabolic processes. The organelles include mitochondria, smooth and rough endoplasmic reticula, sarcoplasmic reticulum, and the Golgi body. The vesicles include phagosomes, lysosomes, endosomes, peroxisomes, and secretory vesicles. Organelles and vesicles are bounded by single or double membranes.
Biological membranes surround organelles, vesicles, and the cell itself. Membranes are highly selective permeability barriers made up of lipid bilayer sheets composed of phosphoglycerides, fatty acids, cholesterol, phospholipids, giycolipids, proteogl yeans, and proteins. Membranes contain ion pumps, ion channels, and specific receptors for external stimuli which transmit biochemical signals across the membranes. These membranes also contain second messenger proteins which interact with these pumps, channels, and receptors to amplify and regulate transmission of these signals. Plasma Membrane Proteins
Plasma membrane proteins (MPs) are divided into two groups based upon methods of protein extraction from the membrane. Extrinsic or peripheral membrane proteins can be released using extremes of ionic strength or pH, urea, or other disruptors of protein interactions. Intrinsic or integral membrane proteins are released only when the lipid bilayer of the membrane is dissolved by detergent.
The majority of known integral membrane proteins are transmembrane proteins (TM) which are characterized by an extracellular, a transmembrane, and an intracellular domain. TM domains are typically comprised of 15 to 25 hydrophobic amino acids which are predicted to adopt an -helical conformation. TM proteins are classified as bitopic (Types I and II) and polytopic (Types III and IV) (Singer, S.J. (1990) Annu. Rev. Cell Biol. 6:247-96). Bitopic proteins span the membrane once while polytopic proteins contain multiple membrane-spanning segments. TM proteins carry out a variety of important cellular functions acting as cell-surface receptor proteins involved in signal transduction. These functions are represented by growth and differentiation factor receptors, and receptor- interacting proteins such as Drosophila pecanex and frizzled proteins, LIV-1 protein, NF2 protein, and GNS1/SUR4 eukaryotic integral membrane proteins. TM proteins also act as transporters of ions or metabolites, such as gap junction channels (connexins), and ion channels, and as cell anchoring proteins, such as lectins, integrins, and fibronectins. TM proteins are found in vesicle organelle- forming molecules, such as caveolins; or cell recognition molecules, such as cluster of differentiation (CD) antigens, glycoproteins, and mucins. Many MPs contain amino acid sequence motifs that serve to localize proteins to specific subcellular sites. Examples of these motifs include PDZ domains, KDEL, RGD, NGR, and GSL sequence motifs, von Willebrand factor A (vWFA) domains, and EGF-like domains. RGD, NGR, and GSL motif-containing peptides have been used as drug delivery agents in targeted cancer treatment of tumor vasculature (Arap, W. et al. (1998) Science, 279:377-380). Furthermore, MPs may also contain amino acid sequence motifs that serve to interact with extracellular or intracellular molecules, such as carbohydrate recognition domains (CRD).
Chemical modification of amino acid residue side chains alters the manner in which MPs interact with other molecules, for example, phospholipid membranes. Examples of such chemical modifications to amino acid residue side chains are covalent bond formation with glycosaminoglycans, oligosaccharides, phospholipids, acetyl and palmitoyl moieties, ADP-ribose, phosphate, and sulphate groups.
RNA encoding membrane proteins may have alternative splice sites which give rise to proteins encoded by the same gene but with different messenger RNA and amino acid sequences. Splice variant membrane proteins may interact with other ligand and protein isoforms. G-Protein Coupled Receptors
G-protein coupled receptors (GPCRs) are a superfamily of integral membrane proteins which transduce extracellular signals. GPCRs include receptors for biogenic amines, lipid mediators of inflammation, peptide hormones, and sensory signal mediators. The structure of these highly-conserved receptors consists of seven hydrophobic transmembrane (serpentine) regions, cysteine disulfide bridges between the second and third extracellular loops, an extracellular N-terminus, and a cytoplasmic C-terminus. Three extracellular loops alternate with three intracellular loops to link the seven transmembrane regions. The most conserved parts of these proteins are the transmembrane regions and the first two cytoplasmic loops. A conserved, acidic-Arg-aromatic residue triplet present in the second cytoplasmic loop may interact with G proteins. A GPCR consensus pattern is characteristic of most proteins belonging to this superfamily (ExPASy PROSITE document PS00237; and Watson, S. and S. Arkinstall (1994) The G-protein Linked Receptor Facts Book, Academic Press, San Diego, CA, pp 2-6). Mutations and changes in transcriptional activation of GPCR -encoding genes have been associated with neurological disorders such as schizophrenia, Parkinson's disease, Alzheimer's disease, drug addiction, and feeding disorders.
Scavenger Receptors
Macrophage scavenger receptors with broad ligand specificity may participate in the binding of low density lipoproteins (LDL) and foreign antigens. Scavenger receptors types I and II are trimeric membrane proteins with each subunit containing a small N-terminal intracellular domain, a transmembrane domain, a large extracellular domain, and a C-terminal cysteine-rich domain. The extracellular domain contains a short spacer domain, an -helical coiled-coil domain, and a triple helical collagenous domain. These receptors have been shown to bind a spectrum of ligands, including chemically modified lipoproteins and albumin, polyribonucleotides, polysaccharides, phospholipids. and asbestos (Matsumoto, A. et al. (1990) Proc. Natl. Acad. Sci. USA 87:9133-9137; and Elomaa, O. et al. (1995) Cell 80:603-609). The scavenger receptors are thought to play a key role in atherogenesis by mediating uptake of modified LDL in arterial walls, and in host defense by binding bacterial endotoxins, bacteria, and protozoa. Tetraspan Family Proteins
The transmembrane 4 superfamily (TM4SF) or tetraspan family is a multigene family encoding type III integral membrane proteins (Wright, M.D. and Tomlinson, M.G. (1994) Immunol. Today 15:588). The TM4SF is comprised of membrane proteins which traverse the cell membrane four times. Members of the TM4SF include platelet and endothelial cell membrane proteins, melanoma-associated antigens, leukocyte surface glycoproteins, colonal carcinoma antigens, tumor- associated antigens, and surface proteins of the schistosome parasites (Jankowski, S.A. (1994) Oncogene 9: 1205-1211). Members of the TM4SF share about 25-30% amino acid sequence identity with one another. A number of TM4SF members have been implicated in signal transduction, control of cell adhesion, regulation of cell growth and proliferation, including development and oncogenesis, and cell motility, including tumor cell metastasis. Expression of TM4SF proteins is associated with a variety of tumors and the level of expression may be altered when cells are growing or activated. Tumor Antigens
Tumor antigens are surface molecules that are differentially expressed in tumor cells relative to normal cells. Tumor antigens distinguish tumor cells immunologically from normal cells and provide diagnostic and therapeutic targets for human cancers (Takagi, S. et al. (1995) Int. J. Cancer 61: 706-715; Liu, E. et al. (1992) Oncogene 7: 1027-1032). Ion Channels
Ion channels are found in the plasma membranes of virtually every cell in the body. For example, chloride channels mediate a variety of cellular functions including regulation of membrane potentials and absorption and secretion of ions across epithelial membranes. When present in intracellular membranes of the Golgi apparatus and endocytic vesicles, chloride channels also regulate organelle pH. (See, e.g., Greger, R. (1988) Annu. Rev. Physiol. 50: 111-122.) Electrophysiological and pharmacological properties of chloride channels, including ion conductance, current-voltage relationships, and sensitivity to modulators, suggest that different chloride channels exist in muscles, neurons, fibroblasts, epithelial cells, and lymphocytes. Many channels have sites for phosphorylation by one or more protein kinases including protein kinase A, protein kinase C, tyrosine kinase, and casein kinase II, all of which regulate ion channel activity in cells. Inappropriate phosphorylation of proteins in cells has been linked to changes in cell cycle progression and cell differentiation. Changes in the cell cycle have been linked to induction of apoptosis or cancer. Changes in cell differentiation have been linked to diseases and disorders of the reproductive system, immune system, and skeletal muscle. Proton Pumps
Proton ATPases are a large class of membrane proteins that use the energy of ATP hydrolysis to generate an electrochemical proton gradient across a membrane. The resultant gradient may be used to transport other ions across the membrane (Na+, K+, or Cl ) or to maintain organelle pH. Proton ATPases are further subdivided into the mitochondrial F-ATPases, the plasma membrane ATPases, and the vacuolar ATPases. The vacuolar ATPases establish and maintain an acidic pH within various vesicles involved in the processes of endocytosis and exocytosis (Mellman, I. et al. (1986) Ann. Rev. Biochem. 55:663-700). Proton-coupled, 12 membrane-spanning domain transporters such as PEPT 1 and PEPT 2 are responsible for gastrointestinal absorption and for renal reabsorbtion of peptides using an electrochemical H+ gradient as the driving force. Another type of peptide transporter, the TAP transporter, is a heterodimer consisting of TAP 1 and TAP 2 and is associated with antigen processing. Peptide antigens are transported across the membrane of the endoplasmic reticulum by TAP so they can be expressed on the cell surface in association with MHC molecules. Each TAP protein consists of multiple hydrophobic membrane spanning segments and a highly conserved ATP-binding cassette (Boll, M. et al. ( 1996) Proc. Natl. Acad. Sci.USA
93:284-289). Pathogenic microorganisms, such as herpes simplex virus, may encode inhibitors of TAP-mediated peptide transport in order to evade immune surveillance (Marusina, K. and Manaco, J.J. (1996) Curr. Opin. Hematol. 3: 19-26). ABC Transporters ATP-binding cassette (ABC) transporters, also called the "traffic ATPases", are a superfamily of membrane proteins that mediate transport and channel functions in prokaryotes and eukaryotes (Higgins, C.F. ( 1992) Annu. Rev. Cell Biol. 8:67-113). ABC proteins share a similar overall structure and significant sequence homology. All ABC proteins contain a conserved domain of approximately two hundred amino acid residues which includes one or more nucleotide binding domains. Mutations in ABC transporter genes are associated with various disorders, such as hyperbilirubinemia II/Dubin-Johnson syndrome, recessive Stargardt's disease, X-linked adrenoleukodystrophy, multidrug resistance, celiac disease, and cystic fibrosis. Membrane Proteins Associated with Intercellular Communication
Intercellular communication is essential for the development and survival of multicellular organisms. Cells communicate with one another through the secretion and uptake of protein signaling molecules. The uptake of proteins into the cell is achieved by endocytosis, in which the interaction of signaling molecules with the plasma membrane surface, often via binding to specific receptors, results in the formation of plasma membrane-derived vesicles that enclose and transport the molecules into the cytosol. The secretion of proteins from the cell is achieved by exocytosis, in which molecules inside of the cell are packaged into membrane-bound transport vesicles derived from the trans Golgi network. These vesicles fuse with the plasma membrane and release their contents into the surrounding extracellular space. Endocytosis and exocytosis result in the removal and addition of plasma membrane components, and the recycling of these components is essential to maintain the integrity, identity, and functionality of both the plasma membrane and internal membrane-bound compartments.
Lysosomes are the site of degradation of intracellular material during autophagy and of extracellular molecules following endocytosis. Lysosomal enzymes are packaged into vesicles which bud from the trans-Go\gi network. These vesicles fuse with endosomes to form the mature lysosome in which hydrolytic digestion of endocytosed material occurs. Lysosomes can fuse with autophagosomes to form a unique compartment in which the degradation of organelles and other intracellular components occurs.
Protein sorting by transport vesicles, such as the endosome, has important consequences for a variety of physiological processes including cell surface growth, the biogenesis of distinct intracellular organelles, endocytosis, and the controlled secretion of hormones and neurotransmitters (Rothman, J.E. and Wieland, F.T. (1996) Science 272:227-234). In particular, neurodegenerative disorders and other neuronal pathologies are associated with biochemical flaws during endosomal protein sorting or endosomal biogenesis (Mayer R.J. et al. (1996) Adv. Exp. Med. Biol. 389:261-269).
Peroxisomes are organelles independent from the secretory pathway. They are the site of many peroxide-generating oxidative reactions in the cell. Peroxisomes are unique among eukaryotic organelles in that their size, number, and enzyme content vary depending upon organism, cell type, and metabolic needs (Waterham, H.R. and Cregg, J.M. (1997) BioEssays 19:57-66). Genetic defects in peroxisome proteins which result in peroxisomal deficiencies have been linked to a number of human pathologies, including Zellweger syndrome, rhizomelic chonrodysplasia punctata, X-linked adrenoleukodystrophy, acyl-CoA oxidase deficiency, bifunctional enzyme deficiency, classical Refsum's disease, DHAP alkyl transferase deficiency, and acatalasemia (Moser, H.W. and Moser, A.B. (1996) Ann. NY Acad. Sci. 804:427-441). In addition, Gartner, J. et al. (1991; Pediatr. Res. 29: 141-146) found a 22 kDa integral membrane protein associated with lower density peroxisome- like subcellular fractions in patients with Zellweger syndrome.
Normal embryonic development and control of germ cell maturation is modulated by a number of secretory proteins which interact with their respective membrane-bound receptors. Cell fate during embryonic development is determined by members of the activin/TGF- β superfamily, cadherins, IGF-2, and other morphogens. In addition, proliferation, maturation, and redifferentiation of germ cell and reproductive tissues are regulated, for example, by IGF-2, inhibins, activins, and follistatins (Petraglia, F. (1997) Placenta 18:3-8; Mather, J.P. et al. (1997) Proc. Soc. Exp. Biol. Med. 215:209-222).
Endoplasmic Reticulum Membrane Proteins
The normal functioning of the eukaryotic cell requires that all newly synthesized proteins be correctly folded, modified, and delivered to specific intra- and extracellular sites. Newly synthesized membrane and secretory proteins enter a cellular sorting and distribution network during or immediately after synthesis (cotranslationally or posttranslationally) and are routed to specific locations inside and outside of the cell. The initial compartment in this process is the endoplasmic reticulum (ER) where proteins undergo modifications such as glycosylation, disulfide bond formation, and assembly into oligomers. The modified proteins are then transported through a series of membrane-bound compartments which include the various cisternae of the Golgi complex, where further carbohydrate modifications occur. Transport between compartments occurs by means of vesicles that bud and fuse in a manner specific to the type of protein being transported. Once within the secretory pathway, proteins do not have to cross a membrane to reach the cell surface.
Although the majority of proteins processed through the ER are transported out of the organelle, some are retained. The signal for retention in the ER in mammalian cells consists of the tetrapeptide sequence, KDEL, located at the carboxyl terminus of proteins (Munro, S. (1986) Cell 46:291-300). Proteins containing this sequence leave the ER but are quickly retrieved from the early Golgi cisternae and returned to the ER, while proteins lacking this signal continue through the secretory pathway.
Disruptions in the cellular secretory pathway have been implicated in several human diseases. In familial hypercholesterolemia the low density lipoprotein receptors remain in the ER, rather than moving to the cell surface (Pathak, R.K. (1988) J. Cell Biol. 106: 1831-1841). Altered transport and processing of the β-amyloid precursor protein (βAPP), involves the putative vesicle transport protein presenilin, and may play a role in early-onset Alzheimer's disease (Levy-Lahad, E. et al. (1995) Science 269:973-977). Changes in ER-derived calcium homeostasis have been associated with diseases such as cardiomyopathy, cardiac hypertrophy, myotonic dystrophy, Brody disease, Smith-McCort dysplasia, and diabetes mellitus. Mitochondrial Membrane Proteins
The mitochondrial electron transport (or respiratory) chain is a series of three enzyme complexes in the mitochondrial membrane that is responsible for the transport of electrons from NADH to oxygen and the coupling of this oxidation to the synthesis of ATP (oxidative phosphorylation). ATP then provides the primary source of energy for driving the many energy-requiring reactions of a cell.
Most of the protein components of the mitochondrial respiratory chain are the products of nuclear encoded genes that are imported into the mitochondria, and the remainder are products of mitochondrial genes. Defects and altered expression of enzymes in the respiratory chain are associated with a variety of disease conditions in man, including, for example, neurodegenerative diseases, myopathies, and cancer.
Lymphocyte and Leukocyte Membrane Proteins
The B-cell response to antigens, which is modulated through receptors, is an essential component of the normal immune system. Mature B cells recognize foreign antigens through B cell receptors (BCR) which are membrane-bound, specific antibodies that bind foreign antigens. The antigen/receptor complex is internalized, and the antigen is proteolytically processed. To generate an efficient response to complex antigens, the BCR, BCR associated proteins, and T cell response are all required. Proteolytic fragments of the antigen are complexed with major histocompatability complex-II (MHCII) molecules on the surface of the B cells where the complex can be recognized by T cells. In contrast, macrophages and other lymphoid cells present antigens in association with MHCI molecules to T cells. T cells recognize and are activated by the MHCI-antigen complex through interactions with the T cell receptor/CD3 complex, a T cell-surface multimeric protein located in the plasma membrane. T cells activated by antigen presentation secrete a variety of lymphokines that induce B cell maturation and T cell proliferation, and activate macrophages, which kill target cells.
Leukocytes have a fundamental role in the inflammatory and immune response, and include monocytes/macrophages, mast cells, polymorphonucleoleukocytes, natural killer cells, neutrophils, eosinophils, basophils, and myeloid precursors. Leukocyte membrane proteins include members of the CD antigens, N-CAM, I-CAM, human leukocyte antigen (HLA) class I and HLA class II gene products, immunoglobulins, immunoglobulin receptors, complement, complement receptors, interferons, interferon receptors, interleukin receptors, and chemokine receptors.
Abnormal lymphocyte and leukocyte activity has been associated with acute disorders such as AIDS, immune hypersensitivity, leukemias, leukopenia, systemic lupus, granulomatous disease, and eosinophilia.
Apoptosis- Associated Membrane Proteins
A variety of ligands, receptors, enzymes, tumor suppressors, viral gene products, pharmacological agents, and inorganic ions have important positive or negative roles in regulating and implementing the apoptotic destruction of a cell. Although some specific components of the apoptotic pathway have been identified and characterized, many interactions between the proteins involved are undefined, leaving major aspects of the pathway unknown.
A requirement for calcium in apoptosis was previously suggested by studies showing the involvement of calcium levels in DNA cleavage and Fas-mediated cell death (Hewish, D.R. and L.A. Burgoyne (1973) Biochem. Biophys. Res. Comm. 52:504-510; Vignaux, F. et al. (1995) J. Exp. Med. 181:781-786; Oshimi, Y. and S. Miyazaki (1995) J. Immunol. 154:599-609). Other studies show that intracellular calcium concentrations increase when apoptosis is triggered in thymocytes by either T cell receptor cross-linking or by glucocorticoids, and cell death can be prevented by blocking this increase (McConkey, D.J. et al. (1989) J. Immunol. 143: 1801-1806; McConkey, D.J. et al. (1989) Arch. Biochem. Biophys. 269:365-370). Therefore, membrane proteins such as calcium channels are important for the apopoptic response.
The discovery of new human transmembrane proteins and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of cell proliferative, immunological. reproductive, smooth muscle, and neurological disorders.
SUMMARY OF THE INVENTION The invention features purified polypeptides, human transmembrane proteins, referred to collectively as "HTMP" and individually as "HTMP-1," "HTMP-2." "HTMP-3," "HTMP-4," "HTMP-5," "HTMP-6," "HTMP-7," "HTMP-8," "HTMP-9," "HTMP- 10," "HTMP-11," "HTMP- 12," "HTMP-13," "HTMP-14," "HTMP-15," "HTMP-16," "HTMP-17," "HTMP-18," "HTMP-19," "HTMP-20," "HTMP-21," "HTMP-22," "HTMP-23," "HTMP-24," "HTMP-25," "HTMP-26," "HTMP-27," "HTMP-28," and "HTMP-29." In one aspect, the invention provides an isolated polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29. In one alternative, the invention provides an isolated polypeptide comprising the amino acid sequence of SEQ ID NO: 1-29. The invention further provides an isolated polynucleotide encoding a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ED NO: 1-29, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29. In one alternative, the polynucleotide is selected from the group consisting of SEQ ID NO:30-58.
Additionally, the invention provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ LD NO: 1-29. In one alternative, the invention provides a cell transformed with the recombinant polynucleotide. In another alternative, the invention provides a transgenic organism comprising the recombinant polynucleotide.
The invention also provides a method for producing a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29. The method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed. Additionally, the invention provides an isolated antibody which specifically binds to a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29.
The invention further provides an isolated polynucleotide comprising a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:30-58, b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:30-58, c) a polynucleotide sequence complementary to a), or d) a polynucleotide sequence complementary to b). In one alternative, the polynucleotide comprises at least 60 contiguous nucleotides.
Additionally, the invention provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide comprising a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:30-58, b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ LD NO:30-58, c) a polynucleotide sequence complementary to a), or d) a polynucleotide sequence complementary to b). The method comprises a) hybridizing the sample with a probe comprising at least 16 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide, and b) detecting the presence or absence of said hybridization complex, and optionally, if present, the amount thereof. In one alternative, the probe comprises at least 30 contiguous nucleotides. In another alternative, the probe comprises at least 60 contiguous nucleotides.
The invention further provides a pharmaceutical composition comprising an effective amount of a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, and a pharmaceutically acceptable excipient. The invention additionally provides a method of treating a disease or condition associated with decreased expression of functional HTMP, comprising administering to a patient in need of such treatment the pharmaceutical composition. The invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ED NO: 1-29, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample. In one alternative, the invention provides a pharmaceutical composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with decreased expression of functional HTMP, comprising administering to a patient in need of such treatment the pharmaceutical composition.
Additionally, the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29. or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample. In one alternative, the invention provides a pharmaceutical composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with overexpression of functional HTMP, comprising administering to a patient in need of such treatment the pharmaceutical composition. The invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence selected from the group consisting of SEQ ID NO.30-58, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, and b) detecting altered expression of the target polynucleotide.
BRIEF DESCRIPTION OF THE TABLES Table 1 shows polypeptide and nucleotide sequence identification numbers (SEQ ID NOs), clone identification numbers (clone IDs), cDNA libraries, and cDNA fragments used to assemble full- length sequences encoding HTMP. Table 2 shows features of each polypeptide sequence, including potential motifs, homologous sequences, and methods, algorithms, and searchable databases used for analysis of HTMP. Table 3 shows selected fragments of each nucleic acid sequence; the tissue-specific expression patterns of each nucleic acid sequence as determined by northern analysis; diseases, disorders, or conditions associated with these tissues; and the vector into which each cDNA was cloned. Table 4 describes the tissues used to construct the cDNA libraries from which cDNA clones encoding HTMP were isolated.
Table 5 shows the tools, programs, and algorithms used to analyze HTMP, along with applicable descriptions, references, and threshold parameters.
DESCRIPTION OF THE INVENTION Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.
It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.
Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention. DEFINITIONS
"HTMP" refers to the amino acid sequences of substantially purified HTMP obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.
The term "agonist" refers to a molecule which intensifies or mimics the biological activity of HTMP. Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of HTMP either by directly interacting with HTMP or by acting on components of the biological pathway in which HTMP participates.
An "allelic variant" is an alternative form of the gene encoding HTMP. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence. "Altered" nucleic acid sequences encoding HTMP include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as HTMP or a polypeptide with at least one functional characteristic of HTMP. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding HTMP, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding HTMP. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent HTMP. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of HTMP is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, and positively charged amino acids may include lysine and arginine. Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine. Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.
The terms "amino acid" and "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where "amino acid sequence" is recited to refer to an amino acid sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.
"Amplification" relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art. The term "antagonist" refers to a molecule which inhibits or attenuates the biological activity of HTMP. Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of HTMP either by directly interacting with HTMP or by acting on components of the biological pathway in which HTMP participates. The term "antibody" refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab')2, and Fv fragments, which are capable of binding an epitopic determinant. Antibodies that bind HTMP polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.
The term "antigenic determinant" refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (particular regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody. The term "antisense" refers to any composition capable of base-pairing with the "sense" strand of a specific nucleic acid sequence. Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5-methyl cytosine, 2'-deoxyuracil, or 7-deaza-2'-deoxyguanosine. Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation. The designation "negative" or "minus" can refer to the antisense strand, and the designation "positive" or "plus" can refer to the sense strand of a reference DNA molecule.
The term "biologically active" refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" refers to the capability of the natural, recombinant, or synthetic HTMP, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies. The terms "complementary" and "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence "5' A-G-T 3'" bonds to the complementary sequence "3' T-C-A 5'." Complementarity between two single-stranded molecules may be "partial," such that only some of the nucleic acids bind, or it may be "complete," such that total complementarity exists between the single stranded molecules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands. This is of particular importance in amplification reactions, which depend upon binding between nucleic acid strands, and in the design and use of peptide nucleic acid (PNA) molecules.
A "composition comprising a given polynucleotide sequence" and a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding HTMP or fragments of HTMP may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).
"Consensus sequence" refers to a nucleic acid sequence which has been resequenced to resolve uncalled bases, extended using the XL-PCR kit (Perkin-Elmer, Norwalk CT) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from the overlapping sequences of one or more Incyte Clones and, in some cases, one or more public domain ESTs, using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (GCG, Madison WI). Some sequences have been both extended and assembled to produce the consensus sequence.
"Conservative amino acid substitutions" are those substitutions that, when made, least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions. The table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions. Original Residue Conservative Substitution
Ala Gly, Ser Arg His, Lys
Asn Asp, Gin, His
Asp Asn, Glu
Cys Ala, Ser
Gin Asn, Glu, His Glu Asp, Gin, His
Gly Ala
His Asn, Arg, Gin, Glu
He Leu, Val
Leu He, Val Lys Arg, Gin, Glu
Met Leu, He
Phe His, Met, Leu, Tip, Tyr
Ser Cys, Thr
Thr Ser, Val Tip Phe, Tyr
Figure imgf000017_0001
Val He, Leu. Thr
Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain.
A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.
The term "derivative" refers to the chemical modification of a polypeptide sequence, or a polynucleotide sequence. Chemical modifications of a polynucleotide sequence can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.
A "fragment" is a unique portion of HTMP or the polynucleotide encoding HTMP which is identical in sequence to but shorter in length than the parent sequence. A fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues. A fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes, may be at least 5, 10, 15, 20, 25. 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule. For example, a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50% of a polypeptide) as shown in a certain defined sequence. Clearly these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.
A fragment of SEQ ID NO:30-58 comprises a region of unique polynucleotide sequence that specifically identifies SEQ ID NO:30-58, for example, as distinct from any other sequence in the same genome. A fragment of SEQ ID NO:30-58 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO:30-58 from related polynucleotide sequences. The precise length of a fragment of SEQ ID NO:30-58 and the region of SEQ ID NO:30-58 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment. A fragment of SEQ ID NO: 1-29 is encoded by a fragment of SEQ ID NO: 30-58. A fragment of SEQ ID NO: 1-29 comprises a region of unique amino acid sequence that specifically identifies SEQ ID NO: 1-29. For example, a fragment of SEQ ID NO: 1-29 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ ID NO: 1-29. The precise length of a fragment of SEQ ID NO: 1-29 and the region of SEQ ID NO: 1-29 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.
The term "similarity" refers to a degree of complementarity. There may be partial similarity or complete similarity. The word "identity" may substitute for the word "similarity." A partially complementary sequence that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid is referred to as "substantially similar." The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or northern blot, solution hybridization, and the like) under conditions of reduced stringency. A substantially similar sequence or hybridization probe will compete for and inhibit the binding of a completely similar (identical) sequence to the target sequence under conditions of reduced stringency. This is not to say that conditions of reduced stringency are such that non-specific binding is permitted, as reduced stringency conditions require that the binding of two sequences to one another be a specific (i.e., a selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% similarity or identity). In the absence of non-specific binding, the substantially similar sequence or probe will not hybridize to the second non-complementary target sequence.
The phrases "percent identity" and "% identity," as applied to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.
Percent identity between polynucleotide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison WI). CLUSTAL V is described in
Higgins, D.G. and P.M. Sharp (1989) CABIOS 5: 151-153 and in Higgins. D.G. et al. (1992) CABIOS 8: 189-191. For pairwise alignments of polynucleotide sequences, the default parameters are set as follows: Ktuple=2, gap penalty=5, window=4. and "diagonals saved"=4. The "weighted" residue weight table is selected as the default. Percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polynucleotide sequence pairs. Alternatively, a suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S.F. et al. ( 1990) J. Mol. Biol. 215:403-410), which is available from several sources, including the NCBI, Bethesda, MD, and on the Internet at http://www.ncbi.nlm.nih.gov/BLAST/. The BLAST software suite includes various sequence analysis programs including "blastn," that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called "BLAST 2 Sequences" that is used for direct pairwise comparison of two nucleotide sequences. "BLAST 2 Sequences" can be accessed and used interactively at http://www.ncbi.nlm.nih.gov/gorf/bl2.html. The "BLAST 2 Sequences" tool can be used for both blastn and blastp (discussed below). BLAST programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such default parameters may be, for example:
Matrix: BLOSUM62 Reward for match: 1
Penalty for mismatch: -2
Open Gap: 5 and Extension Gap: 2 penalties
Gap x drop-off: 50
Expect: 10 Word Size: 11
Pilter: on
Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20. at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.
The phrases "percent identity" and "% identity," as applied to polypeptide sequences, refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the hydrophobicity and acidity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.
Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program (described and referenced above). For pairwise alignments of polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktuple=l, gap penalty=3, window=5, and "diagonals saved"=5. The PAM250 matrix is selected as the default residue weight table. As with polynucleotide alignments, the percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polypeptide sequence pairs.
Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise comparison of two polypeptide sequences, one may use the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) with blastp set at default parameters. Such default parameters may be, for example:
Matrix: BLOSUM62 Open Gap: 11 and Extension Gap: 1 penalties
Gap x drop-off: 50
Expect: 10
Word Size: 3
Filter: on Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
"Human artificial chromosomes" (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size, and which contain all of the elements required for stable mitotic chromosome segregation and maintenance. The term "humanized antibody" refers to antibody molecules in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.
"Hybridization" refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of identity. Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the "washing" step(s). The washing step(s) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched. Permissive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity. Permissive annealing conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1% (w/v) SDS, and about 100 μg/ml denatured salmon sperm DNA. Generally, stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out. Generally, such wash temperatures are selected to be about 5°C to 20°C lower than the thermal melting point (Tπι) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. An equation for calculating Tm and conditions for nucleic acid hybridization are well known and can be found in Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual. 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; specifically see volume 2, chapter 9.
High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%. Typically, blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, denatured salmon sperm DNA at about 100-200 μg/ml. Organic solvent, such as formamide at a concentration of about 35-50% v/v, may also be used under particular circumstances, such as for RNA:DNA hybridizations. Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art. Hybridization, particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides. The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C0t or R0t analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed). The words "insertion" and "addition" refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.
"Immune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.
An "immunogenic fragment" is a polypeptide or oligopeptide fragment of HTMP which is capable of eliciting an immune response when introduced into a living organism, for example, a mammal. The term "immunogenic fragment" also includes any polypeptide or oligopeptide fragment of HTMP which is useful in any of the antibody production methods disclosed herein or known in the art.
The term "microarray" refers to an arrangement of distinct polynucleotides on a substrate.
The terms "element" and "array element" in a microarray context, refer to hybridizable polynucleotides arranged on the surface of a substrate.
The term "modulate" refers to a change in the activity of HTMP. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of HTMP.
The phrases "nucleic acid" and "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.
"Operably linked" refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Generally, operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.
"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.
"Probe" refers to nucleic acid sequences encoding HTMP, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. "Primers" are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).
Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used. Methods for preparing and using probes and primers are described in the references, for example Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; Ausubel et al.,1987, Current Protocols in Molecular Biology, Greene Publ. Assoc. & Wiley-Intersciences, New York NY; Innis et al., 1990, PCR Protocols, A Guide to Methods and Applications, Academic Press, San Diego CA. PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).
Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope. The Primer3 primer selection program (available to the public from the Whitehead Institute/MIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming library," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.) The PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments. The oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.
A "recombinant nucleic acid" is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, supra. The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.
Alternatively, such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be use to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.
An "RNA equivalent," in reference to a DNA sequence, is composed of the same linear sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose. The term "sample" is used in its broadest sense. A sample suspected of containing nucleic acids encoding HTMP, or fragments thereof, or HTMP itself, may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA. in solution or bound to a substrate; a tissue; a tissue print; etc.
The terms "specific binding" and "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide containing the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.
The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which they are naturally associated. A "substitution" refers to the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides. respectively.
"Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.
"Transformation" describes a process by which exogenous DNA enters and changes a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed" cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time. A "transgenic organism," as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus. The term genetic manipulation does not include classical cross-breeding, or in vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule. The transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria. fungi, and plants and animals. The isolated DNA of the present invention can be introduced into the host by methods known in the art. for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook et al. (1989), supra.
A "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07- 1999) set at default parameters. Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%. at least 90%, at least 95% or at least 98% or greater sequence identity over a certain defined length. A variant may be described as, for example, an "allelic" (as defined above), "splice," "species," or "polymorphic" variant. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides generally will have significant amino acid identity relative to each other. A polymoφhic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymoφhic variants also may encompass "single nucleotide polymoφhisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state. A "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07- 1999) set at default parameters. Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98% or greater sequence identity over a certain defined length of one of the polypeptides. THE INVENTION
The invention is based on the discovery of new human transmembrane proteins (HTMP), the polynucleotides encoding HTMP, and the use of these compositions for the diagnosis, treatment, or prevention of cell proliferative, immunological, reproductive, smooth muscle, and neurological disorders.
Table 1 lists the Incyte clones used to assemble full length nucleotide sequences encoding HTMP. Columns 1 and 2 show the sequence identification numbers (SEQ ID NOs) of the polypeptide and nucleotide sequences, respectively. Column 3 shows the clone IDs of the Incyte clones in which nucleic acids encoding each HTMP were identified, and column 4 shows the cDNA libraries from which these clones were isolated. Column 5 shows Incyte clones and their corresponding cDNA libraries. Clones for which cDNA libraries are not indicated were derived from pooled cDNA libraries. The Incyte clones in column 5 were used to assemble the consensus nucleotide sequence of each HTMP and are useful as fragments in hybridization technologies.
The columns of Table 2 show various properties of each of the polypeptides of the invention: column 1 references the SEQ ID NO; column 2 shows the number of amino acid residues in each polypeptide; column 3 shows potential phosphorylation sites; column 4 shows potential glycosylation sites; column 5 shows the amino acid residues comprising signature sequences and motifs; column 6 shows the identity of each polypeptide and homologous sequences as identified by BLAST analysis; and column 7 shows analytical methods and in some cases, searchable databases to which the analytical methods were applied. The methods of column 7 were used to characterize each polypeptide through sequence homology and protein motifs.
The columns of Table 3 show the tissue-specificity and diseases, disorders, or conditions associated with nucleotide sequences encoding HTMP. The first column of Table 3 lists the nucleotide SEQ ID NOs. Column 2 lists fragments of the nucleotide sequences of column 1. These fragments are useful, for example, in hybridization or amplification technologies to identify SEQ ID NO:30-58 and to distinguish between SEQ ED NO:30-58 and related polynucleotide sequences. The polypeptides encoded by the specified fragments of SEQ ID NO:30-58 are useful, for example, as immunogenic peptides. Column 3 lists tissue categories which express HTMP as a fraction of total tissues expressing HTMP. Column 4 lists diseases, disorders, or conditions associated with those tissues expressing HTMP as a fraction of total tissues expressing HTMP. Column 5 lists the vectors used to subclone each cDNA library. Of particular note is the expression of SEQ ID NO:41 in 21 libraries, of which 15 (71%) are associated with nervous tissue.
The columns of Table 4 show descriptions of the tissues used to construct the cDNA libraries from which cDNA clones encoding HTMP were isolated. Column 1 references the nucleotide SEQ ID NOs, column 2 shows the cDNA libraries from which these clones were isolated, and column 3 shows the tissue origins and other descriptive information relevant to the cDNA libraries in column 2. SEQ ID NO:45 maps to chromosome 3 within the interval from 49.50 to 55.40 centiMorgans. This interval also contains genes associated with disorders of cell proliferation. SEQ ID NO:47 maps to chromosome 7 within the interval from 74.30 to 76.40 centiMorgans. This interval also contains an EST associated with cell proliferation. SEQ ID NO:50 maps to chromosome 2 within the interval from 1 1 1.5 to 115.3 centiMorgans. This interval also contains genes associated with immune response. SEQ ID NO:51 maps to chromosome 1 1 within the interval from 84.2 to 87.1 centiMorgans. This interval also contains a gene associated with immune response. SEQ ID NO:53 maps to chromosome 13 within the interval from 77.10 to 86.90 centiMorgans. This interval also contains genes associated with immune response. SEQ ID NO:55 maps to chromosome 1 within the interval from 74.80 to 78.30 centiMorgans. This interval also contains a gene associated with immune response. SEQ ID NO:58 maps to chromosome 15 within the interval from the p-terminus to 25.30 centiMorgans. This interval also contains a gene associated with cell proliferation.
The invention also encompasses HTMP variants. A preferred HTMP variant is one which has at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the HTMP amino acid sequence, and which contains at least one functional or structural characteristic of HTMP.
The invention also encompasses polynucleotides which encode HTMP. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:30-58, which encodes HTMP. The polynucleotide sequences of SEQ ED NO:30-58, as presented in the Sequence Listing, embrace the equivalent RNA sequences, wherein occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
The invention also encompasses a variant of a polynucleotide sequence encoding HTMP. In 5 particular, such a variant polynucleotide sequence will have at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding HTMP. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:30-58 which has at least about 70%, or alternatively at least about 85%, or even at least about
10 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:30-58. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of HTMP.
It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding HTMP, some bearing minimal
15 similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring HTMP, and all such variations are to be considered as 0 being specifically disclosed.
Although nucleotide sequences which encode HTMP and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring HTMP under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding HTMP or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-natural ly 5 occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding HTMP and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater 0 half-life, than transcripts produced from the naturally occurring sequence.
The invention also encompasses production of DNA sequences which encode HTMP and HTMP derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to 5 introduce mutations into a sequence encoding HTMP or any fragment thereof. Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:30-58 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 152:507-511.) Hybridization conditions, including annealing and wash conditions, are described in "Definitions."
Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Perkin- Elmer), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies. Gaithersburg MD). Preferably, sequence preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (Perkin-Elmer). Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Perkin-Elmer), the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA). or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology. John Wiley & Sons, New York NY, unit 7.7; Meyers. R.A. (1995) Molecular Biology and Biotechnology. Wiley VCH, New York NY, pp. 856-853.)
The nucleic acid sequences encoding HTMP may be extended utilizing a partial nucleotide sequence and employing various PCR -based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.)
Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic. 1: 111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-3060). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.
When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.
Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide- specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Perkin-Elmer), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.
In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode HTMP may be cloned in recombinant DNA molecules that direct expression of HTMP, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express HTMP.
The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter HTMP-encoding sequences for a variety of puφoses including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide- mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.
The nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent Number 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians. F.C. et al. (1999) Nat. Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of HTMP, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds. DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection screening. Thus, genetic diversity is created through "artificial" breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.
In another embodiment, sequences encoding HTMP may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; and Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232.) Alternatively, HTMP itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solid-phase techniques. (See, e.g., Roberge, J.Y. et al. ( 1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431 A peptide synthesizer (Perkin-Elmer). Additionally, the amino acid sequence of HTMP, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide.
The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY.)
In order to express a biologically active HTMP, the nucleotide sequences encoding HTMP or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding HTMP. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding HTMP. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding HTMP and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.)
Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding HTMP and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. ( 1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, ch. 9, 13, and 16.)
A variety of expression vector/host systems may be utilized to contain and express sequences encoding HTMP. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. The invention is not limited by the host cell employed.
In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding HTMP. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding HTMP can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Life Technologies). Ligation of sequences encoding HTMP into the vector's multiple cloning site disrupts the lacZ gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509.) When large quantities of HTMP are needed, e.g. for the production of antibodies, vectors which direct high level expression of HTMP may be used. For example, vectors containing the strong, inducible T5 or T7 bacteriophage promoter may be used. Yeast expression systems may be used for production of HTMP. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH promoters, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, supra; Bitter, G.A. et al. (1987) Methods Enzymol. 153:516-544; and Scorer, CA. et al. (1994) Bio/Technology 12: 181-184.)
Plant systems may also be used for expression of HTMP. Transcription of sequences encoding HTMP may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3: 1671-1680; Brogue, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196.)
In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding HTMP may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential El or E3 region of the viral genome may be used to obtain infective virus which expresses HTMP in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV- based vectors may also be used for high-level protein expression.
Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic puφoses. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355.)
For long term production of recombinant proteins in mammalian systems, stable expression of HTMP in cell lines is preferred. For example, sequences encoding HTMP can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The puφose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.
Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the heφes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in tk and apr cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, dhfr confers resistance to methotrexate; neo confers resistance to the aminoglycosides neomycin and G-418; and als and par confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. USA 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150: 1-14.) Additional selectable genes have been described, e.g., trpB and hisD, which alter cellular requirements for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. USA 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), β glucuronidase and its substrate β-glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, CA. (1995) Methods Mol. Biol. 55: 121-131.)
Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding HTMP is inserted within a marker gene sequence, transformed cells containing sequences encoding HTMP can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding HTMP under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well. In general, host cells that contain the nucleic acid sequence encoding HTMP and that express
HTMP may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences. Immunological methods for detecting and measuring the expression of HTMP using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on HTMP is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press. St. Paul MN, Sect. IV; Coligan, J.E. et al. (1997) Current Protocols in Immunology. Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ.) A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding HTMP include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding HTMP, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemi luminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.
Host cells transformed with nucleotide sequences encoding HTMP may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode HTMP may be designed to contain signal sequences which direct secretion of HTMP through a prokaryotic or eukaryotic cell membrane.
In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" or "pro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein.
In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding HTMP may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric HTMP protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of HTMP activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, c-myc, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the HTMP encoding sequence and the heterologous protein sequence, so that HTMP may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, supra, ch. 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins. In a further embodiment of the invention, synthesis of radiolabeled HTMP may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, 3:,S-methionine. Fragments of HTMP may be produced not only by recombinant means, but also by direct peptide synthesis using solid-phase techniques. (See, e.g., Creighton, supra, pp. 55-60.) Protein synthesis may be performed by manual techniques or by automation. Automated synthesis may be achieved, for example, using the ABI 431 A peptide synthesizer (Perkin-Elmer). Various fragments of HTMP may be synthesized separately and then combined to produce the full length molecule. THERAPEUTICS
Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of HTMP and human transmembrane proteins. In addition, the expression of HTMP is closely associated with cell proliferation and the immune response, and with cardiovascular, gastrointestinal, reproductive, and neurological tissues. Therefore, HTMP appears to play a role in cell proliferative, immunological, reproductive, smooth muscle, and neurological disorders. In the treatment of disorders associated with increased HTMP expression or activity, it is desirable to decrease the expression or activity of HTMP. In the treatment of disorders associated with decreased HTMP expression or activity, it is desirable to increase the expression or activity of HTMP. Therefore, in one embodiment, HTMP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTMP. Examples of such disorders include, but are not limited to, a cell proliferative disorder such as actinic keratosis. arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; an immunological disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy- candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus. emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis. erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout. Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjόgren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic puφura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis. and extracoφoreal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a reproductive disorder such as a disorder of prolactin production, infertility, including tubal disease, ovulatory defects, and endometriosis, a disruption of the estrous cycle, a disruption of the menstrual cycle, polycystic ovary syndrome, ovarian hyperstimulation syndrome, an endometrial or ovarian tumor, a uterine fibroid, autoimmune disorders, an ectopic pregnancy, and teratogenesis, cancer of the breast, fibrocystic breast disease, and galactorrhea, a disruption of spermatogenesis, abnormal sperm physiology, cancer of the testis, cancer of the prostate, benign prostatic hypeφlasia, prostatitis. Peyronie's disease, impotence, carcinoma of the male breast, and gynecomastia; a smooth muscle disorder such as angina, anaphylactic shock, arrhythmias, asthma, cardiovascular shock, Cushing's syndrome, hypertension, hypoglycemia, myocardial infarction, migraine, and pheochromocytoma, and myopathies including cardiomyopathy, encephalopathy, epilepsy, Kearns-Sayre syndrome, lactic acidosis, myoclonic disorder, and ophthalmoplegia; and a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis. inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postheφetic neuralgia, Tourette's disorder, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia. In another embodiment, a vector capable of expressing HTMP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTMP including, but not limited to, those described above.
In a further embodiment, a pharmaceutical composition comprising a substantially purified HTMP in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTMP including, but not limited to, those provided above.
In still another embodiment, an agonist which modulates the activity of HTMP may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTMP including, but not limited to, those listed above. In a further embodiment, an antagonist of HTMP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of HTMP. Examples of such disorders include, but are not limited to, those cell proliferative, immunological, reproductive, smooth muscle, and neurological disorders described above. In one aspect, an antibody which specifically binds HTMP may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express HTMP.
In an additional embodiment, a vector expressing the complement of the polynucleotide encoding HTMP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of HTMP including, but not limited to, those described above.
In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art. according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.
An antagonist of HTMP may be produced using methods which are generally known in the art. In particular, purified HTMP may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind HTMP. Antibodies to HTMP may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are generally preferred for therapeutic use.
For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with HTMP or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable. It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to
HTMP have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein and contain the entire amino acid sequence of a small, naturally occurring molecule. Short stretches of HTMP amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.
Monoclonal antibodies to HTMP may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J.
Immunol. Methods 81 :31-42; Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. USA 80:2026-2030; and Cole, S.P. et al. (1984) Mol. Cell Biol. 62: 109-120.)
In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) Proc. Natl. Acad. Sci. USA 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; and Takeda, S. et al. ( 1985) Nature 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce HTMP-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88: 10134-10137.)
Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)
Antibody fragments which contain specific binding sites for HTMP may also be generated. For example, such fragments include, but are not limited to, F(abτ)2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. ( 1989) Science 246: 1275-1281.)
Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between HTMP and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering HTMP epitopes is generally used, but a competitive binding assay may also be employed (Pound, supra).
Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for HTMP. Affinity is expressed as an association constant, K ,, which is defined as the molar concentration of HTMP-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The K , determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple HTMP epitopes, represents the average affinity, or avidity, of the antibodies for HTMP. The K, determined for a preparation of monoclonal antibodies, which are monospecific for a particular HTMP epitope, represents a true measure of affinity. High-affinity antibody preparations with K, ranging from about 109 to 1012 L/mole are preferred for use in immunoassays in which the HTMP-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K, ranging from about 106 to 107 L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of HTMP, preferably in active form, from the antibody (Catty, D. (1988) Antibodies. Volume I: A Practical Approach. IRL Press, Washington, DC; Liddell, J.E. and Cryer, A. (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).
The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is generally employed in procedures requiring precipitation of HTMP-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan et al. supra.)
In another embodiment of the invention, the polynucleotides encoding HTMP, or any fragment or complement thereof, may be used for therapeutic puφoses. In one aspect, the complement of the polynucleotide encoding HTMP may be used in situations in which it would be desirable to block the transcription of the mRNA. In particular, cells may be transformed with sequences complementary to polynucleotides encoding HTMP. Thus, complementary molecules or fragments may be used to modulate HTMP activity, or to achieve regulation of gene function. Such technology is now well known in the art, and sense or antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding HTMP. Expression vectors derived from retroviruses, adenoviruses, or heφes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. Methods which are well known to those skilled in the art can be used to construct vectors to express nucleic acid sequences complementary to the polynucleotides encoding HTMP. (See, e.g., Sambrook, supra; Ausubel, 1995, supra.) Genes encoding HTMP can be turned off by transforming a cell or tissue with expression vectors which express high levels of a polynucleotide. or fragment thereof, encoding HTMP. Such constructs may be used to introduce untranslatable sense or antisense sequences into a cell. Even in the absence of integration into the DNA, such vectors may continue to transcribe RNA molecules until they are disabled by endogenous nucleases. Transient expression may last for a month or more with a non-replicating vector, and may last even longer if appropriate replication elements are part of the vector system.
As mentioned above, modifications of gene expression can be obtained by designing complementary sequences or antisense molecules (DNA, RNA, or PNA) to the control, 5', or regulatory regions of the gene encoding HTMP. Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, may be employed. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches. Futura Publishing, Mt. Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.
Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding HTMP.
Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays. Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding HTMP. Such DNA sequences may be incoφorated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.
RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine. and uridine which are not as easily recognized by endogenous endonucleases. Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nat. Biotechnol. 15:462-466.)
Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys. An additional embodiment of the invention relates to the administration of a pharmaceutical or sterile composition, in conjunction with a pharmaceutically acceptable carrier, for any of the therapeutic effects discussed above. Such pharmaceutical compositions may consist of HTMP, antibodies to HTMP, and mimetics, agonists, antagonists, or inhibitors of HTMP. The compositions may be administered alone or in combination with at least one other agent, such as a stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier including, but not limited to, saline, buffered saline, dextrose, and water. The compositions may be administered to a patient alone, or in combination with other agents, drugs, or hormones.
The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary. intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.
In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA).
Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient. Pharmaceutical preparations for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores. Suitable auxiliaries can be added, if desired. Suitable excipients include carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and tragacanth; and proteins, such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, and alginic acid or a salt thereof, such as sodium alginate. Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage. Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.
Pharmaceutical formulations suitable for parenteral administration may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the suspension may also contain suitable stabilizers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions.
For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.
The pharmaceutical compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.
The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, and succinic acids. Salts tend to be more soluble in aqueous or other protonic solvents than are the .corresponding free base forms. In other cases, the preparation may be a lyophilized powder which may contain any or all of the following: 1 mM to 50 mM histidine, 0.1% to 2% sucrose, and 2% to 7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.
After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. For administration of HTMP, such labeling would include amount, frequency, and method of administration. Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended puφose. The determination of an effective dose is well within the capability of those skilled in the art.
For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.
A therapeutically effective dose refers to that amount of active ingredient, for example HTMP or fragments thereof, antibodies of HTMP, and agonists, antagonists or inhibitors of HTMP, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED50 (the dose therapeutically effective in 50% of the population) or LD50 (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD50/ED50 ratio. Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED,0 with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration. The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.
Normal dosage amounts may vary from about 0.1 μg to 100,000 μg, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc. DIAGNOSTICS In another embodiment, antibodies which specifically bind HTMP may be used for the diagnosis of disorders characterized by expression of HTMP, or in assays to monitor patients being treated with HTMP or agonists, antagonists, or inhibitors of HTMP. Antibodies useful for diagnostic puφoses may be prepared in the same manner as described above for therapeutics. Diagnostic assays for HTMP include methods which utilize the antibody and a label to detect HTMP in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.
A variety of protocols for measuring HTMP, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of HTMP expression. Normal or standard values for HTMP expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, for example, human subjects, with antibody to HTMP under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, such as photometric means. Quantities of HTMP expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease. In another embodiment of the invention, the polynucleotides encoding HTMP may be used for diagnostic puφoses. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of HTMP may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of HTMP, and to monitor regulation of HTMP levels during therapeutic intervention.
In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding HTMP or closely related molecules may be used to identify nucleic acid sequences which encode HTMP. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occurring sequences encoding HTMP, allelic variants, or related sequences.
Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the HTMP encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:30-58 or from genomic sequences including promoters, enhancers, and introns of the HTMP gene.
Means for producing specific hybridization probes for DNAs encoding HTMP include the cloning of polynucleotide sequences encoding HTMP or HTMP derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as 32P or 35S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like. Polynucleotide sequences encoding HTMP may be used for the diagnosis of disorders associated with expression of HTMP. Examples of such disorders include, but are not limited to, a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria. polycythemia vera. psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; an immunological disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum. atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjogren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic puφura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracoφoreal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a reproductive disorder such as a disorder of prolactin production, infertility, including tubal disease, ovulatory defects, and endometriosis, a disruption of the estrous cycle, a disruption of the menstrual cycle, polycystic ovary syndrome, ovarian hyperstimulation syndrome, an endometrial or ovarian tumor, a uterine fibroid, autoimmune disorders, an ectopic pregnancy, and teratogenesis, cancer of the breast, fibrocystic breast disease, and galactorrhea, a disruption of spermatogenesis, abnormal sperm physiology, cancer of the testis, cancer of the prostate, benign prostatic hypeφlasia, prostatitis, Peyronie's disease, impotence, carcinoma of the male breast, and gynecomastia; a smooth muscle disorder such as angina, anaphy lactic shock, arrhythmias, asthma, cardiovascular shock, Cushing's syndrome, hypertension, hypoglycemia, myocardial infarction, migraine, and pheochromocytoma, and myopathies including cardiomyopathy, encephalopathy, epilepsy, Kearns-Sayre syndrome, lactic acidosis, myoclonic disorder, and ophthalmoplegia; and a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia. diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postheφetic neuralgia, Tourette's disorder, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia . The polynucleotide sequences encoding HTMP may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered HTMP expression. Such qualitative or quantitative methods are well known in the art.
In a particular aspect, the nucleotide sequences encoding HTMP may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding HTMP may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding HTMP in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.
In order to provide a basis for the diagnosis of a disorder associated with expression of HTMP, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding HTMP, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.
Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.
With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.
Additional diagnostic uses for oligonucleotides designed from the sequences encoding HTMP may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding HTMP, or a fragment of a polynucleotide complementary to the polynucleotide encoding HTMP, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.
Methods which may also be used to quantify the expression of HTMP include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and inteφolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in a high-throughput format where the oligomer of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.
In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as targets in a microarray. The microarray can be used to monitor the expression level of large numbers of genes simultaneously and to identify genetic variants, mutations, and polymoφhisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, and to develop and monitor the activities of therapeutic agents.
Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93: 10614-10619; Baldeschweiler et al. (1995) PCT application W095/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. USA 94:2150- 2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.)
In another embodiment of the invention, nucleic acid sequences encoding HTMP may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial PI constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355; Price, CM. (1993) Blood Rev. 7: 127-134; and Trask, B.J. (1991) Trends Genet. 7: 149-154.)
Fluorescent in situ hybridization (FISH) may be correlated with other physical chromosome mapping techniques and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) World Wide Web site. Correlation between the location of the gene encoding HTMP on a physical chromosomal map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder. The nucleotide sequences of the invention may be used to detect differences in gene sequences among normal, carrier, and affected individuals.
In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the number or arm of a particular human chromosome is not known. New sequences can be assigned to chromosomal arms by physical mapping. This provides valuable information to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the disease or syndrome has been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to l lq22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. ( 1988) Nature 336:577-580.) The nucleotide sequence of the subject invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.
In another embodiment of the invention, HTMP, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between HTMP and the agent being tested may be measured.
Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with HTMP, or fragments thereof, and washed. Bound HTMP is then detected by methods well known in the art. Purified HTMP can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.
In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding HTMP specifically compete with a test compound for binding HTMP. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with HTMP.
In additional embodiments, the nucleotide sequences which encode HTMP may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.
Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.
The disclosures of all patents, applications and publications, mentioned above and below, in particular U. S. Ser. No. 60/125,537 and U. S. Ser. No. 60/139,565, are hereby expressly incoφorated by reference. EXAMPLES
I. Construction of cDNA Libraries
RNA was purchased from Clontech or isolated from tissues described in Table 4. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.
Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most libraries, poly(A-t-) RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX). In some cases. Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, units 5.1-6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300- 1000 bp) using SEPHACRYL SI 000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSPORTl plasmid (Life Technologies), pcDNA2.1 plasmid (Invitrogen, Carlsbad CA), or pINCY plasmid (Incyte Pharmaceuticals, Palo Alto CA). Recombinant plasmids were transformed into competent E. coli cells including XLl-Blue, XLl-BlueMRF, or SOLR from Stratagene or DH5α, DH10B, or ElectroMAX DH10B from Life Technologies.
II. Isolation of cDNA Clones Plasmids were recovered from host cells by in vivo excision using the UNIZAP vector system
(Stratagene) or by cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid purification kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4CC
Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216: 1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSKAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland). III. Sequencing and Analysis cDNA sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Perkin-Elmer) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer). Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI PRISM 373 or 377 sequencing system (Perkin-Elmer) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VI.
The polynucleotide sequences derived from cDNA sequencing were assembled and analyzed using a combination of software programs which utilize algorithms well known to those skilled in the art. Table 5 summarizes the tools, programs, and algorithms used and provides applicable descriptions, references, and threshold parameters. The first column of Table 5 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incoφorated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score, the greater the homology between two sequences). Sequences were analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR). Polynucleotide and polypeptide sequence alignments were generated using the default parameters specified by the clustal algorithm as incoφorated into the MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent identity between aligned sequences. The polynucleotide sequences were validated by removing vector, linker, and polyA sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programing, and dinucleotide nearest neighbor analysis. The sequences were then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM, and PFAM to acquire annotation using programs based on BLAST, FAST A, and BLEMPS. The sequences were assembled into full length polynucleotide sequences using programs based on Phred, Phrap, and Consed, and were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length amino acid sequences, and these full length sequences were subsequently analyzed by querying against databases such as the GenBank databases (described above), SwissProt, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, and Hidden Markov Model (HMM)-based protein family databases such as PFAM. HMM is a probabilistic approach which analyzes consensus primary structures of gene families. (See, e.g., Eddy, S.R. (1996) Curr. Opin. Struct. Biol. 6:361-365.) The programs described above for the assembly and analysis of full length polynucleotide and amino acid sequences were also used to identify polynucleotide sequence fragments from SEQ ID NO:30-58. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies were described in The Invention section above. IV. Northern Analysis Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, supra, ch. 7; Ausubel, 1995, supra, ch. 4 and 16.)
Analogous computer techniques applying BLAST were used to search for identical or related molecules in nucleotide databases such as GenBank or LIFESEQ (Incyte Pharmaceuticals). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:
% sequence identity x % maximum BLAST score 100
The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. For example, with a product score of 40, the match will be exact within a 1% to 2% error, and, with a product score of 70, the match will be exact. Similar molecules are usually identified by selecting those which show product scores between 15 and 40, although lower scores may identify related molecules. The results of northern analyses are reported as a percentage distribution of libraries in which the transcript encoding HTMP occurred. Analysis involved the categorization of cDNA libraries by organ/tissue and disease. The organ tissue categories included cardiovascular, dermatologic, developmental, endocrine, gastrointestinal, hematopoietic/immune, musculoskeletal, nervous, reproductive, and urologic. The disease/condition categories included cancer, inflammation, trauma, cell proliferation, neurological, and pooled. For each category, the number of libraries expressing the sequence of interest was counted and divided by the total number of libraries across all categories. Percentage values of tissue-specific and disease- or condition-specific expression are reported in Table 3. V. Chromosomal Mapping of HMTP Encoding Polynucleotides
The cDNA sequences which were used to assemble SEQ ID NO: 30-58 were compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith-Waterman algorithm. Sequences from these databases that matched SEQ ID NO:30-58 were assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 5). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Genethon were used to determine if any of the clustered sequences had been previously mapped. Inclusion of a mapped sequence in a cluster resulted in the assignment of all sequences of that cluster, including its particular SEQ ID NO:, to that map location. The genetic map locations of SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:50, SEQ ID
NO:51, SEQ ID NO:53, SEQ ID NO:55, and SEQ ID NO:58 are described in The Invention as ranges, or intervals, of human chromosomes. The map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p-arm. (The centiMorgan (cM) is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.) The cM distances are based on genetic markers mapped by Genethon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters. Diseases associated with the public and Incyte sequences located within the indicated intervals are also reported in the Invention where applicable. VI. Extension of HTMP Encoding Polynucleotides
The full length nucleic acid sequences of SEQ LD NO:30-58 were produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer, to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68 °C to about 72°C. Any stretch of nucleotides which would result in haiφin structures and primer-primer dimerizations was avoided.
Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.
High fidelity amplification was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg2+, (NH4)2S04, and β-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68CC, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94 °C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68 °C, 5 min; Step 7: storage at 4°C.
The concentration of DNA in each well was determined by dispensing 100 μl PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in IX TE and 0.5 μl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 μl to 10 μ\ aliquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose mini-gel to determine which reactions were successful in extending the sequence.
The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent E. coli cells. Transformed cells were selected on antibiotic-containing media, individual colonies were picked and cultured overnight at 37 °C in 384- well plates in LB/2x carb liquid media.
The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94 °C. 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min;
Step 5: steps 2, 3. and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethysulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM
BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer).
In like manner, the nucleotide sequences of SEQ ID NO:30-58 are used to obtain 5' regulatory sequences using the procedure above, oligonucleotides designed for such extension, and an appropriate genomic library.
VII. Labeling and Use of Individual Hybridization Probes
Hybridization probes derived from SEQ ID NO:30-58 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 μCi of [γ-32P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 107 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).
The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C To remove nonspecific signals, blots are sequentially washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared.
VIII. Microarrays A chemical coupling procedure and an ink jet device can be used to synthesize array elements on the surface of a substrate. (See, e.g., Baldeschweiler. supra.) An array analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced by hand or using available methods and machines and contain any appropriate number of elements. After hybridization, nonhybridized probes are removed and a scanner used to determine the levels and patterns of fluorescence. The degree of complementarity and the relative abundance of each probe which hybridizes to an element on the microarray may be assessed through analysis of the scanned images.
Full-length cDNAs, Expressed Sequence Tags (ESTs), or fragments thereof may comprise the elements of the microarray. Fragments suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). Full-length cDNAs, ESTs, or fragments thereof corresponding to one of the nucleotide sequences of the present invention, or selected at random from a cDNA library relevant to the present invention, are arranged on an appropriate substrate, e.g., a glass slide. The cDNA is fixed to the slide using, e.g., UV cross-linking followed by thermal and chemical treatments and subsequent drying. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645.) Fluorescent probes are prepared and used for hybridization to the elements on the substrate. The substrate is analyzed by procedures described above.
IX. Complementary Polynucleotides Sequences complementary to the HTMP-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring HTMP. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of HTMP. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the HTMP-encoding transcript.
X. Expression of HTMP Expression and purification of HTMP is achieved using bacterial or virus-based expression systems. For expression of HTMP in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express HTMP upon induction with isopropyl beta-D- thiogalactopyranoside (EPTG). Expression of HTMP in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Autographica californica nuclear polyhedrosis virus ( AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding HTMP by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7: 1937-1945.)
In most expression systems, HTMP is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26- kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from HTMP at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch. 10 and 16). Purified HTMP obtained by these methods can be used directly in the following activity assay. XI. Demonstration of HTMP Activity An assay for HMTP activity measures the expression of HMTP on the cell surface. cDNA encoding HMTP is transfected into an appropriate mammalian cell line. Cell surface proteins are labeled with biotin as described (de la Fuente, M. A. et al. (1997) Blood 90:2398-2405). Immunoprecipitations are performed using HMTP-specific antibodies, and immunoprecipitated samples are analyzed using SDS-PAGE and immunoblotting techniques. The ratio of labeled immunoprecipitant to unlabeled immunoprecipitant is proportional to the amount of HMTP expressed on the cell surface.
An alternative assay for HMTP activity is based on a prototypical assay for ligand/receptor- mediated modulation of cell proliferation. This assay measures the amount of newly synthesized DNA in Swiss mouse 3T3 cells expressing HMTP. An appropriate mammalian expression vector containing cDNA encoding HMTP is added to quiescent 3T3 cultured cells using transfection methods well known in the art. The transfected cells are incubated in the presence of [Ηjthymidine and varying amounts of HMTP ligand. Incoφoration of [3H]thymidine into acid-precipitable DNA is measured over an appropriate time interval using a tritium radioisotope counter, and the amount incoφorated is directly proportional to the amount of newly synthesized DNA. A linear dose- response curve over at least a hundred-fold HMTP ligand concentration range is indicative of receptor activity. One unit of activity per milliliter is defined as the concentration of HMTP producing a 50% response level, where 100% represents maximal incoφoration of [3H]thymidine into acid-precipitable DNA (McKay, I. and Leigh, I., eds. (1993) Growth Factors: A Practical Approach, Oxford University Press, New York, NY, p. 73). Alternatively, an assay for HTMP activity measures the effect of HMTP expression on the regulation of cell growth. To demonstrate that increased levels of HTMP expression correlates with decreased cell motility and increased cell proliferation, expression vectors encoding HTMP are electroporated into highly motile cell lines, such as U-937 (ATCC CRL 1593), HEL 92.1.7 (ATCC TIB 180) and MAC 10, and the motility of the electroporated and control cells are compared. Methods for the design and construction of an expression vector capable of expressing HTMP in the desired mammalian cell line(s) chosen are well known to the art. Assays for examining the motility of cells in culture are known to the art (cf Miyake, M. et al. (1991) J. Exp. Med. 174: 1347-1354 and Ikeyama. S. et al. (1993) J. Exp. Med. 177: 1231-1237). Increasing the level of HTMP in highly motile cell lines by transfection with an HTMP expression vector inhibits or reduces the motility of these cell lines, and the amount of this inhibition is proportional to the activity of HTMP in the assay. XII. Functional Assays
HTMP function is assessed by expressing the sequences encoding HTMP at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include pCMV SPORT plasmid (Life Technologies) and pCR3.1 plasmid (Invitrogen), both of which contain the cytomegalovirus promoter. 5-10 μg of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell line, using either liposome formulations or electroporation. 1-2 μg of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics- based technique, is used to identify transfected cells expressing GFP or CD64-GFP and to evaluate the apoptotic state of the cells and other cellular properties. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M.G. (1994) Flow Cytometry, Oxford, New York NY.
The influence of HTMP on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding HTMP and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding HTMP and other genes of interest can be analyzed by northern analysis or microarray techniques.
XIII. Production of HTMP Specific Antibodies
HTMP substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495). or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols. Alternatively, the HTMP amino acid sequence is analyzed using LASERGENE software
(DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.) Typically, oligopeptides of about 15 residues in length are synthesized using an ABI 431A peptide synthesizer (Perkin-Elmer) using fmoc -chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, supra.) Rabbits are immunized with the oligopeptide- KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide and anti- HTMP activity by, for example, binding the peptide or HTMP to a substrate, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.
XIV. Purification of Naturally Occurring HTMP Using Specific Antibodies Naturally occurring or recombinant HTMP is substantially purified by immunoaffinity chromatography using antibodies specific for HTMP. An immunoaffinity column is constructed by covalently coupling anti-HTMP antibody to an activated chromatographic resin, such as
CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.
Media containing HTMP are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of HTMP (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/HTMP binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and HTMP is collected.
XV. Identification of Molecules Which Interact with HTMP
HTMP, or biologically active fragments thereof, are labeled with 125I Bolton-Hunter reagent. (See, e.g., Bolton A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled HTMP, washed, and any wells with labeled HTMP complex are assayed. Data obtained using different concentrations of HTMP are used to calculate values for the number, affinity, and association of HTMP with the candidate molecules. Alternatively, molecules interacting with HTMP are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989, Nature 340:245-246), or using commercially available kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech).
Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with certain embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.
Table 1
Figure imgf000064_0001
Figure imgf000064_0002
Table 1 (cont.)
Figure imgf000065_0001
Table 1 (cont.)
Figure imgf000066_0001
Table 2
Figure imgf000067_0001
Figure imgf000067_0002
Table 2 (cont.)
Figure imgf000068_0001
Figure imgf000068_0002
Table 2 (cont.)
Figure imgf000069_0001
Table 2 (cont.)
Figure imgf000070_0001
Table 2 (cont.)
Figure imgf000071_0001
Table 3
Figure imgf000072_0001
-~ι o
Figure imgf000072_0002
Table 3 (cont.)
Figure imgf000073_0001
Table 3 (cont.)
Figure imgf000074_0001
Table 3 (cont.)
Figure imgf000075_0001
Figure imgf000075_0002
>J
Table 4
Figure imgf000076_0001
Figure imgf000076_0002
Table 4 (cont.)
Figure imgf000077_0001
Figure imgf000077_0002
Table 4 (cont.)
Figure imgf000078_0001
Figure imgf000078_0002
Table 4 (cont.)
^1 ^1
Figure imgf000079_0001
Table 4 (cont.)
Figure imgf000080_0001
Table 4 (cont.)
Figure imgf000081_0001
Figure imgf000081_0002
Table 5
Program Description Reference Parameter Threshold
ABI FACTURA A program that removes vector sequences and masks Perkin-Elmer Applied Biosystems, ambiguous bases in nucleic acid sequences. Foster City, CA.
ABI/PARACEL FDF A Fast Data Finder useful in comparing and annotating Perkin-Elmer Applied Biosystems, Mismatch <50% amino acid or nucleic acid sequences. Foster City, CA; Paracel Inc., Pasadena, CA.
ABI AutoAssembler A program that assembles nucleic acid sequences. Perkin-Elmer Applied Biosystems, Foster City, CA.
BLAST A Basic Local Alignment Search Tool useful in sequence Altschul, S.F. et al. ( 1990) J. Mol. Biol. ESTs: Probability value= 1.0E-8 or similarity search for amino acid and nucleic acid 215:403-410; Altschul, S.F. et al. ( 1997) less sequences. BLAST includes five functions: blastp, blastn, Nucleic Acids Res. 25: 3389-3402. Full Length sequences: Probability blastx, tblastn, and tblastx. value= l .OE-lO or less
FASTA A Pearson and Lipman algorithm that searches for Pearson, W.R. and D.J. Lipman ( 1988) Proc. ESTs: fasta E value=l .06E-6 similarity between a query sequence and a group of Natl. Acad Sci. 85:2444-2448; Pearson, W.R. Assembled ESTs: fasta Identity= sequences of the same type. FASTA comprises as least (1990) Methods Enzymol. 183: 63-98; and 95% or greater and five functions: fasta, tfasta, fastx, tfastx, and ssearch. Smith, T.F. and M. S. Waterman ( 1981) Adv. Match length=200 bases or greater; Appl. Math. 2:482-489. fastx E value=l .0E-8 or less
Full Length sequences: fastx score= 100 or greater
BLIMPS A BLocks IMProved Searcher that matches a sequence Henikoff, S and J.G. Henikoff, Nucl. Acid Score= 1000 or greater; against those in BLOCKS, PRINTS, DOMO, PRODOM, Res., 19:6565-72, 1991. J.G. Henikoff and S. Ratio of Score/Strength = 0.75 or and PFAM databases to search for gene families, sequence Henikoff (1996) Methods Enzymol. 266:88- larger; and, if applicable, homology, and structural fingerprint regions. 105; and Attwood, T.K. et al. ( 1997) J. Chem. Probability valuer 1.0E-3 or less Inf. Comput. Sci. 37: 417-424.
HMMER An algorithm for searching a query sequence against Krogh, A. et al. ( 1994) J. Mol. Biol., Score= 10-50 bits for PFAM hits, hidden Markov model (HMM)-based databases of protein 235: 1501-1531 ; Sonnhammer, E.L.L. et al. depending on individual protein family consensus sequences, such as PFAM. (1988) Nucleic Acids Res. 26:320-322. families
Table (cont.)
Program Description Reference Parameter Threshold
Pro ileScan An algorithm that searches for structural and sequence Gribskov, M. et al. ( 1988) CABIOS 4:61-66; Normalized quality score≥GCG- motifs in protein sequences that match sequence patterns Gribskov, et al. ( 1989) Methods Enzymol. specified "HIGH" value for that defined in Prosite. 183: 146-159; Bairoch, A. et al. ( 1997) particular Prosite motif. Nucleic Acids Res. 25: 217-221. Generally, score= 1.4-2.1.
Phred A base-calling algorithm that examines automated Ewing, B. et al. ( 1998) Genome sequencer traces with high sensitivity and probability. Res. 8: 175-185; Ewing, B. and P. Green ( 1998) Genome Res. 8: 186- 194.
Phrap A Phils Revised Assembly Program including SWAT and Smith, T.F. and M. S. Waterman ( 1981 ) Adv. Score= 120 or greater; CrossMatch, programs based on efficient implementation Appl. Math. 2:482-489; Smith, T.F. and M. Match length= 56 or greater of the Smith- Waterman algorithm, useful in searching S. Waterman (1981 ) J. Mol. Biol. 147: 195- sequence homology and assembling DNA sequences. 197; and Green, P., University of Washington, Seattle, WA.
Consed A graphical tool for viewing and editing Phrap assemblies Gordon, D. et al. (1998) Genome Res. 8: 195-202.
SPScan A weight matrix analysis program that scans protein Nielson, H. et al. ( 1997) Protein Engineering Score=3.5 or greater sequences for the presence of secretory signal peptides. 10: 1-6; Claverie, J.M. and S. Audic (1997) CABIOS 12: 431-439.
Motifs A program that searches amino acid sequences for patterns Bairoch et al. supra; Wisconsin that matched those defined in Prosite. Package Program Manual, version 9, page M51 -59, Genetics Computer Group, Madison, WI.

Claims

What is claimed is:
1. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of: a) an amino acid sequence selected from the group consisting of SEQ ID NO: 1-23 and SEQ
ID NO:25-29, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-23 and SEQ ID NO:25-29, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-23 and SEQ ID NO:25-29, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-23 and SEQ ID NO:25-29.
2. An isolated polypeptide of claim 1 selected from the group consisting of SEQ ID NO: 1-23 and SEQ ID NO:25-29.
3. An isolated polynucleotide encoding a polypeptide of claim 1.
4. An isolated polynucleotide of claim 3 selected from the group consisting of SEQ ID NO:30-52 and SEQ ID NO:54-58.
5. A recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide of claim 3.
6. A cell transformed with a recombinant polynucleotide of claim 5.
7. A transgenic organism comprising a recombinant polynucleotide of claim 5.
8. A method for producing a polypeptide of claim 1, the method comprising: a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide, and said recombinant polynucleotide comprises a promoter sequence operably linked to a polynucleotide encoding the polypeptide of claim 1, and b) recovering the polypeptide so expressed.
9. An isolated antibody which specifically binds to a polypeptide of claim 1.
10. An isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of: a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:30-52 and
SEQ ID NO:54-58, b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:30-52 and SEQ ID NO:54-58, c) a polynucleotide sequence complementary to a), d) a polynucleotide sequence complementary to b), and e) an RNA equivalent of a)-d).
11. An isolated polynucleotide comprising at least 60 contiguous nucleotides of a polynucleotide of claim 10.
12. A method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 10, the method comprising: a) hybridizing the sample with a probe comprising at least 16 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide, and b) detecting the presence or absence of said hybridization complex, and, optionally, if present, the amount thereof.
13. A method of claim 12, wherein the probe comprises at least 30 contiguous nucleotides.
14. A method of claim 12, wherein the probe comprises at least 60 contiguous nucleotides.
15. A pharmaceutical composition comprising an effective amount of a polypeptide of claim
1 and a pharmaceutically acceptable excipient.
16. A method for treating a disease or condition associated with decreased expression of functional HTMP, comprising administering to a patient in need of such treatment the pharmaceutical composition of claim 15.
17. A method for screening a compound for effectiveness as an agonist of a polypeptide of claim 1, the method comprising: a) exposing a sample comprising a polypeptide of claim 1 to a compound, and b) detecting agonist activity in the sample.
18. A pharmaceutical composition comprising an agonist compound identified by a method of claim 17 and a pharmaceutically acceptable excipient.
19. A method for treating a disease or condition associated with decreased expression of functional HTMP, comprising administering to a patient in need of such treatment a pharmaceutical composition of claim 18.
20. A method for screening a compound for effectiveness as an antagonist of a polypeptide of claim 1, the method comprising: a) exposing a sample comprising a polypeptide of claim 1 to a compound, and b) detecting antagonist activity in the sample.
21. A pharmaceutical composition comprising an antagonist compound identified by a method of claim 20 and a pharmaceutically acceptable excipient.
22. A method for treating a disease or condition associated with overexpression of functional HTMP, comprising administering to a patient in need of such treatment a pharmaceutical composition of claim 21.
23. A method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence of claim 4, the method comprising: a) exposing a sample comprising the target polynucleotide to a compound, and b) detecting altered expression of the target polynucleotide.
PCT/US2000/007817 1999-03-22 2000-03-22 Human transmembrane proteins WO2000056891A2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000606750A JP2003525025A (en) 1999-03-22 2000-03-22 Human transmembrane protein
EP00918335A EP1210419A2 (en) 1999-03-22 2000-03-22 Human transmembrane proteins
CA002365243A CA2365243A1 (en) 1999-03-22 2000-03-22 Human transmembrane proteins
AU39164/00A AU3916400A (en) 1999-03-22 2000-03-22 Human transmembrane proteins
US10/187,657 US7105315B2 (en) 1999-06-16 2002-07-01 Transmembrane protein differentially expressed in cancer
US11/498,712 US20060275314A1 (en) 1999-03-22 2006-08-04 Transmembrane protein differentially expressed in cancer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12553799P 1999-03-22 1999-03-22
US60/125,537 1999-03-22
US13956599P 1999-06-16 1999-06-16
US60/139,565 1999-06-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/187,657 Continuation-In-Part US7105315B2 (en) 1999-03-22 2002-07-01 Transmembrane protein differentially expressed in cancer

Publications (2)

Publication Number Publication Date
WO2000056891A2 true WO2000056891A2 (en) 2000-09-28
WO2000056891A3 WO2000056891A3 (en) 2001-04-05

Family

ID=26823669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/007817 WO2000056891A2 (en) 1999-03-22 2000-03-22 Human transmembrane proteins

Country Status (5)

Country Link
EP (1) EP1210419A2 (en)
JP (1) JP2003525025A (en)
AU (1) AU3916400A (en)
CA (1) CA2365243A1 (en)
WO (1) WO2000056891A2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001023567A1 (en) * 1999-09-28 2001-04-05 Zymogenetics, Inc. Membrane-bound protein-60
WO2001055408A1 (en) * 2000-01-27 2001-08-02 MEMOREC STOFFEL GmbH - MEDIZINISCH-MOLEKULARE ENTWICKLUNG, KÖLN Ceramidase
WO2001077173A1 (en) * 2000-04-10 2001-10-18 Human Genome Sciences, Inc. Tm4sf receptor polynucleotides, polypeptides, and antibodies
WO2002016603A2 (en) * 2000-08-21 2002-02-28 Millennium Pharmaceuticals, Inc. 23228, a novel human tetraspanin family member and uses thereof
EP1183386A1 (en) * 1999-05-19 2002-03-06 Human Genome Sciences, Inc. Tm4sf receptors
WO2002034783A2 (en) * 2000-10-27 2002-05-02 Incyte Genomics, Inc. Transmembrane proteins
EP1282635A1 (en) * 2000-05-18 2003-02-12 Hyseq, Inc. Novel nucleic acids and polypeptides
WO2003083110A1 (en) * 2002-03-29 2003-10-09 National Institute Of Advanced Industrial Science And Technology Novel galactose transferases, peptides thereof and nucleic acid encoding the same
WO2005017155A1 (en) * 2003-06-18 2005-02-24 Chugai Seiyaku Kabushiki Kaisha Fucose transporter
EP1165778B1 (en) * 1999-03-11 2006-10-18 GlaxoSmithKline Biologicals S.A. Uses of casb618 polynucleotides and polypeptides
US20150037251A1 (en) * 2012-02-17 2015-02-05 Universitat Bern Mammalian homologues of flower, their use in cancer diagnostics, prevention and treatment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5160447B2 (en) * 2005-12-22 2013-03-13 アボット・ラボラトリーズ Methods and marker combinations for screening for propensity to lung cancer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0834563A2 (en) * 1996-09-26 1998-04-08 Smithkline Beecham Corporation Human 7-transmembrane receptor, member of the chemokine receptor family, named Strl-33

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0834563A2 (en) * 1996-09-26 1998-04-08 Smithkline Beecham Corporation Human 7-transmembrane receptor, member of the chemokine receptor family, named Strl-33

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAMMOND H.A. ET AL.: "Homo sapiens chromosome 11 clone pac255-m-19 map 11q13,***sequencing in progress***, 7 ordered pieces" EMBL DATABASE SEQUENCE AC024127;ACCESSION NO. AC024127, 24 February 2000 (2000-02-24), XP002148958 *
NCI-CGAP: "National Cancer Institute, Cancer Genome Anatomy Project (CGAP), Tumor Gene Index http://www.ncbi.nlm.nih.gov/ncicgap; ot03c01.s1 NCI_CGAP_GC3 Homo sapiens cDNA clone IMAGE:1613760 3', mRNA sequence" EMBL DATABASE ENTRY AI000010; ACCESSION NO. AI000010,5 June 1998 (1998-06-05), XP002148959 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1165778B1 (en) * 1999-03-11 2006-10-18 GlaxoSmithKline Biologicals S.A. Uses of casb618 polynucleotides and polypeptides
US7470782B2 (en) 1999-03-11 2008-12-30 Glaxosmithkline Biologicals, S.A. CASB618 polynucleotides and polypeptides and their use
EP1183386A4 (en) * 1999-05-19 2003-08-27 Human Genome Sciences Inc Tm4sf receptors
EP1183386A1 (en) * 1999-05-19 2002-03-06 Human Genome Sciences, Inc. Tm4sf receptors
WO2001023567A1 (en) * 1999-09-28 2001-04-05 Zymogenetics, Inc. Membrane-bound protein-60
WO2001055408A1 (en) * 2000-01-27 2001-08-02 MEMOREC STOFFEL GmbH - MEDIZINISCH-MOLEKULARE ENTWICKLUNG, KÖLN Ceramidase
WO2001077173A1 (en) * 2000-04-10 2001-10-18 Human Genome Sciences, Inc. Tm4sf receptor polynucleotides, polypeptides, and antibodies
EP1282635A4 (en) * 2000-05-18 2005-05-11 Nuvelo Inc Novel nucleic acids and polypeptides
EP1282635A1 (en) * 2000-05-18 2003-02-12 Hyseq, Inc. Novel nucleic acids and polypeptides
WO2002016603A3 (en) * 2000-08-21 2003-01-30 Millennium Pharm Inc 23228, a novel human tetraspanin family member and uses thereof
WO2002016603A2 (en) * 2000-08-21 2002-02-28 Millennium Pharmaceuticals, Inc. 23228, a novel human tetraspanin family member and uses thereof
WO2002034783A3 (en) * 2000-10-27 2003-10-30 Incyte Genomics Inc Transmembrane proteins
WO2002034783A2 (en) * 2000-10-27 2002-05-02 Incyte Genomics, Inc. Transmembrane proteins
WO2003083110A1 (en) * 2002-03-29 2003-10-09 National Institute Of Advanced Industrial Science And Technology Novel galactose transferases, peptides thereof and nucleic acid encoding the same
JPWO2003083110A1 (en) * 2002-03-29 2005-08-04 独立行政法人産業技術総合研究所 Novel galactose transferase, peptide thereof and nucleic acid encoding the same
WO2005017155A1 (en) * 2003-06-18 2005-02-24 Chugai Seiyaku Kabushiki Kaisha Fucose transporter
US7863042B2 (en) 2003-06-18 2011-01-04 Chugai Seiyaku Kabushiki Kaisha Fucose transporter
US20150037251A1 (en) * 2012-02-17 2015-02-05 Universitat Bern Mammalian homologues of flower, their use in cancer diagnostics, prevention and treatment

Also Published As

Publication number Publication date
JP2003525025A (en) 2003-08-26
WO2000056891A3 (en) 2001-04-05
CA2365243A1 (en) 2000-09-28
AU3916400A (en) 2000-10-09
EP1210419A2 (en) 2002-06-05

Similar Documents

Publication Publication Date Title
EP1080194A2 (en) Human transmembrane proteins
EP1177296A2 (en) Extracellular matrix and adhesion-associated proteins
EP1114155A2 (en) Human gpcr proteins
WO2000021988A2 (en) Human ankyrin family protein
WO2000029583A2 (en) Immunoglobulin superfamily proteins
EP1108019A2 (en) Protein transport-associated molecules
WO2001098354A2 (en) Human receptors
WO2000056891A2 (en) Human transmembrane proteins
WO2000052151A2 (en) Human secretory proteins
CA2379801A1 (en) Receptors and associated proteins
EP1190051A2 (en) Human transport proteins
WO2000044900A2 (en) Nucleic-acid binding proteins
WO2000020590A2 (en) G-protein coupled receptor proteins
WO2000028032A2 (en) Human cell surface receptor proteins
WO2000060080A2 (en) Molecules of the immune system
EP1173566A2 (en) Human membrane-associated proteins
WO2000028029A2 (en) Cell surface glycoproteins
EP1165789A2 (en) Vesicle associated proteins
WO2000052161A2 (en) Leukocyte- and blood-associated proteins
EP1124848A2 (en) Transmembrane 4 proteins
WO2004029218A2 (en) Receptors and membrane-associated proteins
US20020110858A1 (en) Lymphocytic membrane proteins
WO2004044159A2 (en) Receptors and membrane-associated proteins
EP1115864A2 (en) Human chaperone proteins
EP1119621A2 (en) G-protein coupled receptor proteins

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

ENP Entry into the national phase in:

Ref document number: 2365243

Country of ref document: CA

Ref country code: CA

Ref document number: 2365243

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase in:

Ref country code: JP

Ref document number: 2000 606750

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2000918335

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 09937059

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000918335

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10187657

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2000918335

Country of ref document: EP