WO2000055551A1 - Air conditioner and outdoor equipment used for it - Google Patents

Air conditioner and outdoor equipment used for it Download PDF

Info

Publication number
WO2000055551A1
WO2000055551A1 PCT/JP1999/001318 JP9901318W WO0055551A1 WO 2000055551 A1 WO2000055551 A1 WO 2000055551A1 JP 9901318 W JP9901318 W JP 9901318W WO 0055551 A1 WO0055551 A1 WO 0055551A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
refrigerant
heat exchanger
air conditioner
bypass passage
Prior art date
Application number
PCT/JP1999/001318
Other languages
French (fr)
Japanese (ja)
Inventor
Tomomi Umeda
Kazuhiro Endoh
Kazuya Matsuo
Hitoshi Matsushima
Kazumoto Urata
Kensaku Oguni
Hiromu Yasuda
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP2000605141A priority Critical patent/JP3757796B2/en
Priority to PCT/JP1999/001318 priority patent/WO2000055551A1/en
Priority to TW089101033A priority patent/TW464749B/en
Publication of WO2000055551A1 publication Critical patent/WO2000055551A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0276Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using six-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves

Definitions

  • the refrigerant in the cycle is moved at the start of operation or immediately before the operation is stopped.
  • the compressor is intermittently operated for a predetermined time at the start of the pump-down, or the compressor is restarted after the pump-down is completed, for a predetermined time. It is known that only intermittent operation is performed, and this is described in, for example, Japanese Patent Application Laid-Open No. H10-170080.
  • the refrigerant in the evaporator or the suction pipe is supplied to the condenser or the receiver before the operation is started, immediately before the operation is stopped, or when the operation is switched in the differential port operation.
  • the pump-down operation is performed so that the refrigerant liquefies and collects in the low-temperature part to be collected in the cooler or to return to the liquid at the next start. Go.
  • this operation is started from the low pressure side of the compressor. After the power was turned off and the forced shutdown was performed during the operation of the air conditioner to move the refrigerant to the pressure side, condensation occurred due to a long-term stoppage of operation or because the surrounding area was at a low temperature.
  • the liquid refrigerant that has returned to the compressor is directly drawn into the compression chamber, causing liquid compression to occur, resulting in an overload force and abnormal vibration and abnormalities. Generates a sound.
  • the bearings may be damaged.
  • the refrigerant In a low-pressure chamber compressor, the refrigerant enters the space for the refrigerating machine oil before being sucked into the compression chamber, but the liquid refrigerant dilutes the refrigerating machine oil and feeds the oil to the bearings. And the bearing is burned.
  • the liquid refrigerant is discharged without being completely gasified during the compression process, it flows into the refrigerating machine oil reservoir located downstream of the compression chamber. However, the refrigerating machine oil is diluted here, and the oil viscosity is reduced. In this case as well, the bearing will seize like a low-pressure chamber compressor.
  • the liquid refrigerant may move to the outdoor side (compressor or heat source side heat exchanger side) due to the height difference between the indoor unit and the outdoor unit, or vice versa. Then, it moves to the indoor side (use side heat exchanger side). Then, the refrigerant condenses in the heat source side heat exchanger due to the low outdoor temperature, and conversely, the refrigerant condenses in the use side heat exchanger due to the low indoor temperature. Also, if the power is cut off during operation, the liquid refrigerant is present in any part of the cycle, but the location is unknown.
  • An object of the present invention is to solve the above-mentioned problems and to improve the reliability by preventing the liquid from returning to the compressor even when the compressor is started in the cooling operation, the heating operation, and the defrosting operation. It is a thing.
  • Another object of the present invention is to reduce the amount of the refrigerant used, save the refrigerant, and further protect the global environment by reducing the power consumption and the like. It is to be.
  • the present invention is intended to solve at least one of the above-mentioned problems.
  • the present invention relates to an invention wherein an intake passage connecting a suction side of a compressor and a receiver and an intake passage for a refrigeration cycle are opened.
  • a control valve for closing the bypass passage and opening the bypass passage when closed, and operating the compressor for a predetermined time after opening the bypass passage It is a thing.
  • the compressor is operated for a predetermined time after the bypass path is opened, so that the refrigerant on the low pressure side is discharged regardless of the state of the refrigerant existing on the low pressure side of the compressor.
  • the compressor can be moved, and thereafter, the compressor can be started without liquid return, so that the reliability of the compressor can be ensured. Therefore, the number of parts is reduced by eliminating the accumulation of air, which adjusts the dryness of the refrigerant (the ratio between the liquid refrigerant and the gas refrigerant) of the refrigerant sucked into the compressor.
  • the size and weight can be reduced, and the amount of the refrigerant to be used can be reduced.
  • the present invention provides a bypass passage connecting the suction side of a compressor and the liquid receiver, and a compressor, a heat source side heat exchanger or a use side heat exchanger.
  • a means for forming a closed cycle including a bypass path and a method for operating the compressor for a predetermined time after the closed cycle is formed. .
  • the present invention further provides a disk passage connecting the suction side of the compressor and the receiver, opens the outdoor decompression device and the indoor decompression device, and uses the compressor, the heat source side heat exchanger and the use thereof.
  • One of the side heat exchangers one of which is the suction side of the compressor, the first closed cycle including the heat receiver, the receiver and the bypass passage, and the compressor and the heat source side heat exchange
  • the second closed cycle including the other heat exchanger, the receiver, and the bypass passage, which is the discharge side of the compressor, of the heat exchanger and the use side heat exchanger After the formation, the compressor is operated for a predetermined time.
  • the compressor is operated for a predetermined time, so that the refrigerant in the heat exchanger and the pipe in both the low-pressure side and the high-pressure side is moved. It can be done. Therefore, regardless of the operation mode refrigerant state, liquid return on the suction side of the compressor can be avoided.
  • the present invention provides a bypass passage connecting the suction side of the compressor and the receiver, and after opening the bypass passage, a plurality of compressors are provided within 0.5 to 15 minutes. It is operated for a time multiplied by the number of indoor units.
  • a three-way valve be provided at a junction between the bypass passage and the suction side of the compressor. Further, in the present invention, it is desirable that the bypass path is connected to a position that is to be the upper part of the liquid receiver in the above-described structure.
  • a flow control valve be provided in the noise passage in the above-described configuration.
  • the refrigerant circulating in the refrigeration cycle be a natural refrigerant.
  • FIG. 1 is a cycle diagram of an air conditioner provided with a drain between a receiver and a compressor according to an embodiment of the present invention and a water passage
  • FIG. 3 is the cycle diagram of the air conditioner shown in FIG.
  • Fig. 4 is a cycle diagram showing the cycle configuration and coolant flow during the refrigerant transfer operation before the heating operation
  • Fig. 4 is the receiver-compressor in the air conditioner shown in Fig. 1.
  • FIG. 5 shows an open / close valve in place of the three-way valve in the air conditioner shown in Fig. 1.
  • Figure 6 shows the cycle used, and Figure 6 shows a six-way valve in place of the four-way and three-way valves in the air conditioner shown in Figure 1.
  • Cycle diagram showing the flow of refrigerant during the refrigerant transfer operation before cooling operation in the previous cycle configuration, and FIG. 7 shows the heating operation in the air conditioner shown in FIG. 6.
  • FIG. 8 is a cycle diagram showing the flow of the refrigerant during the previous refrigerant transfer operation, and FIG. 8 is a cycle diagram showing the flow of the refrigerant during the cooling operation in the air conditioner of FIG. Fig.
  • FIG. 9 is a cycle diagram showing the flow of refrigerant during the heating operation in the air conditioner shown in Fig. 6, and Fig. 10 is a diagram before cooling operation using a three-mode four-way valve.
  • Fig. 1 shows the structure and cooling of a three-mode four-way valve during cooling operation.
  • Fig. 12 shows the flow of the medium
  • Fig. 12 shows the structure and the refrigerant flow during the heating operation of the three-mode four-way valve
  • Fig. 13 shows the refrigerant transfer operation of the three-mode four-way valve.
  • Fig. 14 shows the structure of the air conditioner and the flow of the refrigerant.
  • Fig. 14 shows another embodiment using an open / close valve instead of the 3-mode 4-way valve in the air conditioner shown in Fig. 10.
  • Fig. 15 is a cycle diagram showing the cycle configuration and the flow of the refrigerant during the refrigerant transfer operation.
  • Fig. 15 is a three-mode four-way valve in the air conditioner shown in Fig. 10.
  • FIG. 16 is a cycle diagram showing another embodiment using two four-way valves in place of the above, and showing the flow of the refrigerant during the refrigerant transfer and cultivation.
  • Fig. 14 is a cycle diagram showing the flow of refrigerant during the cooling operation in the air conditioner of Fig. 14.
  • Fig. 17 is the heating condition of the air conditioner of Fig. 14 during the heating operation.
  • a cycle diagram showing the flow of the medium.
  • Fig. 18 shows an example of Fig. 1 in which one end of a bypass passage on the cycle is connected during the compression process of the compressor.
  • Cycle diagram showing the cycle configuration and the flow of the refrigerant during the refrigerant transfer operation.
  • Fig. 19 is a cross-section showing the compressor used for the cycle shown in Fig. 18.
  • FIG. 20 is a sectional view showing the structure of a liquid receiver used in one embodiment.
  • FIG. 1 shows a cycle configuration diagram of a refrigeration cycle of the air conditioner of the present invention.
  • the refrigeration cycle includes a compressor 1, a four-way valve 2 as a flow direction control valve, a heat source side heat exchanger 3, a pressure reducing device 4, a receiver 5, a valve 6, a pressure reducing device 7a, and a pressure reducing device.
  • the device 7 b, the use side heat exchanger 8 a, the use side heat exchanger 8 b, and the valve 10 are sequentially connected by piping. Further, the use side heat exchangers 7a and 7b and the heat source side heat exchanger 3 are blown by the blowers 9a and 9b and the blower 12, respectively, and exchange heat.
  • the refrigeration cycle is roughly divided into three units, and the part enclosed by a broken line including the compressor 1 is the outdoor unit 15 and the heat exchange on the user side.
  • the portion enclosed by the dashed line including the heat sink 8a is the indoor unit 16a
  • the portion enclosed by the dashed line including the use-side heat exchanger 8b is the indoor unit 16b.
  • the indoor unit 16a and the indoor unit 16b are connected in parallel to the pipes 13f and 13g, which are connected to the outdoor unit 15 in parallel. It is a H-type air conditioner.
  • a bypass path 14 is provided to connect the receiver 5 and the suction pipe 13 j of the compressor, and a no-pass path 14, a pipe 13 j and a pipe 1 are provided.
  • the three-way valve 11 for controlling the flow direction of the refrigerant is provided at the junction of 3i.
  • the gas refrigerant that has passed through the four-way valve 2 passes through the pipe 13 b and radiates heat to the air sent from the blower 12 by the heat source-side heat exchanger 3, and a high-pressure liquid coolant or It becomes a gas-liquid two-phase refrigerant and flows into the receiver 5.
  • the decompression device is fully open and does not serve as a throttle. In the case of two-phase gas-liquid separation, the refrigerant flowing into the receiver 5 is separated into gas and liquid, and the refrigerant with an appropriate degree of dryness passes through the pipe 13 e and the indoor unit 16 a and Flows into room unit 16b.
  • the refrigerant is decompressed by the decompression devices 7a and 7b, and becomes a gas-liquid two-phase refrigerant having a temperature lower than the room air temperature.
  • the heat exchanger 8a on the use side and the heat on the use side Flow into exchangers 8b and each The heat is absorbed from the air sent by the blowers 9a and 9b, and the gas is returned to the compressor 1 again.
  • the refrigerant flows in the opposite direction to that during the cooling operation, and flows in the direction of the dashed arrow in the figure.
  • the pipes 13a and 13h and the force s are connected, and the rooster pipes 13b and 13i are connected. Therefore, the use side heat exchanger 8a and the use side heat exchanger 8b are on the high pressure side, and the heat source side heat exchanger 3 is on the low pressure side.
  • the decompression devices 7a and 7b in the indoor units 16a and 16b may be used, or the outdoor unit 15 may be used. Any of the pressure reducing devices 4 may be used. In this example, the pressure reducing device 4 is used during the heating operation. From the point of controllability, it is rare to use the decompression devices inside and outside the room at the same time. Also, in the cooling operation and the heating operation, the three-way service 11 connects the piping 13 i and the piping 13 j, and the refrigerant does not flow in the bin passage 14. Absent.
  • the compressor is restarted after the power is turned off during cooling or heating operation with the above-mentioned refrigeration cycle, or if air is When the air conditioner is stopped, the outdoor temperature is low, and the refrigerant is condensed in the heat source side heat exchanger 3, and the heating operation is performed.
  • the heat source-side heat exchanger or the use-side heat exchanger the phenomenon that the liquid refrigerant cannot return to the compressor 1 in a partially liquid state without being completely gasified, that is, the liquid A return occurs.
  • Liquid return causes the following problems to the compressor 1. For example, in a high-pressure chamber compressor, the liquid refrigerant that has returned to the compressor is directly drawn into the compression chamber, causing overload due to liquid compression. Generates abnormal vibration and noise.
  • a pressure vessel (accumulator) is mounted upstream of the compressor to adjust the dryness of the refrigerant returning to the compressor, thereby preventing the liquid from returning and preventing the liquid from returning. The return is avoided.
  • accumulator a pressure vessel
  • C0P coefficient of performance
  • the four-way valve 2 is set so as to connect the pipe 13a to the pipe 13h, and to connect the pipe 13b to the pipe 13i. This is the same as the setting of the four-way valve when performing the heating operation.
  • the three-way valve 11 is set to make noise, and the connection between the water passage 14 and the pipe 13 j is made.
  • compressor 1, pipe 13a, four-way valve 2, pipe 13h, pipe 13g, indoor unit 16 and 16b, pipe 13f, receiver 5 A closed cycle for connecting the compressor, the no-pass passage 14, the three-way valve 11, the piping 13 j, and the compressor again can be made.
  • the compressor 1 When the connection piping length between the outdoor unit 15 and the indoor unit 16a, 16b is short, the refrigerant is collected in the receiver 5 so that it can be recovered.
  • the compressor 1 When the pipe length is long, the compressor 1 is operated so that the refrigerant moves to the liquid receiver 5 side from the pressure reducing devices 7a and 7b. After that, the pressure reducing devices 7a and 7b are closed, the compressor 1 is stopped, the four-way valve 2 and the three-way valve 11 are switched to a predetermined state, and the cooling operation is started.
  • the pressure reducing devices 7a and 7b may gradually open the opening so that the suction side of the compressor does not reach a negative pressure.
  • the heat source side heat exchanger 3 and the pipes 13a, 13b, and 13c are connected to the low pressure side. That is, the refrigerant in this is drawn into the compressor 1. Then, it is transformed into the following cycle configuration, and the refrigerant on the low pressure side is moved to the upstream side of the pressure reducing device 4 (to the liquid receiver 5 side).
  • the four-way valve 2 is set so as to connect the pipe 13a and the pipe 13b, and to connect the pipe 13h to the torso pipe; I3i. This is the same as the setting of the four-way valve for cooling operation.
  • the three-way valve 11 is set to connect the no-pass passage 14 to the pipe 13 j.
  • compressor 1, pipe 13a, four-way valve 2, pipe 13b, heat source side heat exchanger 3, pipe 13c, pressure reducing device 4, pipe 13d, receiver 5, pipe 5 Pass passage 14, three-way valve 11, piping 13 j, and a closed cycle to connect the compressor again.
  • the pressure reducing device 4 is fully opened and the compressor 1 is started, the refrigerant in the heat source side heat exchanger 3 and the pipes 13a, 13b and 13c flows to the receiver side. Moving .
  • the pressure reducing device 4 After starting the compressor 1 for a predetermined time, the pressure reducing device 4 is closed, the compressor 1 is stopped, the four-way valve 2 and the three-way valve 11 are switched to a predetermined state, and the heating operation is started. You It is desirable that the pressure reducing devices 7a and 7b gradually open the opening so that the suction side of the compressor does not reach a negative pressure. .
  • FIG. 4 shows the flow of the noise through the no-pass passage 14 over the no-noise passage 14
  • a flow control valve 17 for adjusting the flow rate of the refrigerant is provided. It is desired that the flow control valve 17 has a closeability.
  • the function of the three-way valve 11 of the embodiment shown in FIGS. 1 to 4 was carried out by two opening / closing valves 18a and 18b. It is the case. That is, in the cooling operation, the heating operation, and the defrosting operation, the opening / closing valve 18a is opened and the opening / closing valve 18b is closed. During the refrigerant transfer operation, the opening / closing valve 18a is closed and the opening / closing valve 18b is opened.
  • the opening / closing valve 18b may have a flow rate adjusting function.
  • the 6-way valve 81 has piping 13a from the compressor 1, 13b from the 6-way valve 81 to the heat source side heat exchanger 3, and 13b from the 6-way valve 81 to the use side heat exchanger 9a. Piping 13 j to the relay 9 b, the no-pass passage 80 leading to the receiver 5, the piping 13 s and the piping connecting to the suction side piping 13 j of the compressor 1 And 6 pipes of 13 tons are connected.
  • the refrigerant transfer operation before the cooling operation as shown in the example in FIG.
  • the six-way valve 81 connects the pipes 13a and 13j, and also connects the pipes 13h and 13h. 1 3 s and. Also, in the refrigerant transfer operation before the heating operation, as shown in the example in FIG. 7, the six-way valve 81 connects the pipes 13a and 13b, and also connects the pipes 13h and 1h. 3 t is connected to. Further, in the cooling operation, as in the example shown in FIG. 8, the hexagonal valve 81 connects the pipes 13a and 13b, and connects the pipes 13h and 13s to each other. We tie and review. In the heating operation, as in the embodiment shown in FIG. 9, the six-way valve 81 connects the pipes 13a and 13j, and connects the pipes 13b and 13t to each other.
  • FIGS. 10 to 18 show still another embodiment of the present invention.
  • the operation mode is such that the refrigerant in the heat exchanger or the pipe located on the low pressure side of each operation mode is moved.
  • the refrigerant in both the low-pressure side and high-pressure side heat exchangers and the refrigerant in the pipes is moved.
  • the cycle configuration shown in FIG. 10 will be described by showing only the difference from the cycle shown in FIG.
  • the four-way valve 2 in FIG. 1 was capable of switching between two modes during cooling operation and heating operation.
  • the four-way valve 19 shown in FIG. 6 is capable of switching between three modes during a cooling operation, a heating operation, and a refrigerant transfer operation. Therefore, when the four-way valve 19 is set to the refrigerant transfer operation mode, the following two cycle forces are generated. It is formed at the same time.
  • One cycle consists of compressor 1, pipe 13a, 3-mode four-way valve 19, pipe 13b, heat source side heat exchanger 3, pipe 13c, pressure reducing device 4, pipe 13 d, a receiver 5, a bypass passage 14, a three-way valve 11, a pipe 13j, and a cycle formed again by the compressor 1.
  • the three-way valve 11 is a refrigerant transfer operation mode, and the path passage 14 and the pipe 13 j are connected.
  • the decompression devices 4, 7a and 7b are fully open.
  • the compressor 1 When the compressor 1 is started in this state, the refrigerant in each heat exchanger and the pipe is moved to the upstream side (the receiver 5 side) of the pressure reducing device 4 and the pressure reducing devices 7a and 7b. You can do it.
  • the decompression devices 4, 7a and 7b are closed and then cooled. Start operation such as chamber operation or heating operation. As a result, liquid return on the suction side of the compressor 1 can be avoided irrespective of the operation mode and the refrigerant state.
  • FIGS. 11 to 13 show another embodiment showing the structure and operation of a three-mode four-way valve.
  • the four-way valve has channels 23a, 23b, a moving passage wall 26 and a partition wall 27 inside the channel 21, and a partition wall on the outer wall of the moving passage wall 26. 27 is attached, and also contacts the inner wall of the channel 21.
  • the ends of the non-members 23a and 23b are connected, and the other end is connected to the inner wall of the chamber.
  • pipes connected to the outlet of the compressor, pipes connected to the suction port of the compressor, pipes connected to the suction port of the compressor, and pipes connected to the heat source side heat exchanger are connected to the channel.
  • Piping 13 h that connects to the use side heat exchanger is connected.
  • the switching valve 22 is connected to the spaces 24 and 25 formed by the inner wall of the chamber 21 and the moving passage wall 26 and the partition plate 27 and the pipe 13 i. Through pressure passages 28a, 28b, 28c. During operation stop, the moving passage wall 26 is used to balance the forces of the panels 23a and 23b, and the switching valve 22 connects the pressure passages 28a and 28c. It is in a neutral position as shown in Fig. 13 at the appropriate pressure balance.
  • the switching valve 22 is provided by providing three opening / closing valves in each of the pressure passages 28 a, 28 b, 28 c, and at the same time, by joining the three pressure passages. Can also have a similar function.
  • FIG. 14 shows still another embodiment with respect to the example of FIG.
  • the piping 13 i, the piping 13 j, and the no-pass passage 14 are connected via the three-way valve 11, but in the example of FIG.
  • the two pipes are connected at a junction 72, and open / close valves 29b and 29a are provided on the bypass passage 14 and the pipe 13h, respectively.
  • a sub-passage 70 connecting the pipe 13 b and the pipe 13 h between the four-way valve 2 and the heat source side heat exchanger 3 is provided, and an opening / closing valve 29 c is provided on the sub-passage 70. ing .
  • the opening / closing valve 29a may be provided between the junction 71 and the junction 72.
  • the pressure reducing devices 4, 7a and 7b are closed, After that, operations such as cooling operation and heating operation are started. As a result, liquid return on the suction side of the compressor 1 can be avoided irrespective of the operation mode and the state of the refrigerant.
  • FIG. 15 shows yet another embodiment of FIG.
  • the piping 13 i, the piping 13 j, and the nose passage 14 are connected via the three-way valve 11, but in the example of FIG. And the three pipes are joined at the junction 72 and connected.
  • the discharge side of compressor 1 is branched into two passages (piping 13a, piping 13q), each of which is a four-way valve.
  • the pipes 13q, 13r, 13 ⁇ and 13 ⁇ are connected to the four-way valve 2b.
  • the piping 13q and the piping 13r are connected, and the piping 130 and the piping 13p are connected.
  • r is connected to piping 130.
  • the other end of the pipe 13p joins the pipe 13g at the junction 73.
  • the other end of the pipe 130 joins the pipe 13 h and the bypass passage 14 at a junction 72.
  • the pipe 13 i merges with the pipe 130 at the junction 74.
  • the pipe 13r joins the pipe 13b at the junction 75.
  • a check valve 31b is provided on the pipe 13r, and the refrigerant flows only from the four-way valve 2b toward the heat source side heat exchanger 3. Further, a check valve 31a is provided on the pipe 13i, and the refrigerant flows only in the direction of the pipe 130 from the four-way valve 2a.
  • the four-way valve 2a is set to the cooling operation mode, and the four-way valve 2b is set to the heating operation mode.
  • the decompression devices 4, 7a and 7b are fully open.
  • each heat exchange The refrigerant in the vessel and the pipe can be moved to the upstream side of the decompression device 4 and the decompression devices 7a and 7b (to the receiver 5 side).
  • the depressurizing devices 4, 7a and 7b are closed, and then operations such as cooling operation and heating operation are started.
  • liquid return on the suction side of the compressor 1 can be avoided irrespective of the operation mode and the refrigerant state.
  • FIG. 16 shows the flow of the refrigerant when performing the cooling operation in the cycle shown in FIG.
  • FIG. 17 shows the flow of the refrigerant during the heating operation in the cycle shown in FIG.
  • FIG. 18 is the cycle shown in FIG. 5 and corresponds to the noise passage in FIG. 5 and the noise passage in FIG.
  • This is a cycle configuration in which the connection position of the passage 33 on the compressor side is not the suction side pipe of the compressor but is in the middle of the compression process of the compressor.
  • a gas injection cycle is constituted during the cooling operation and the heating operation by using the bypass passage 33. You can do it.
  • FIG. 19 shows an example of a compressor used as the compressor 1 on the cycle shown in FIG.
  • the noise passage 33 is connected to a compression chamber 50 formed by a fixed scroll 44 and a head plate 45.
  • FIG. 20 shows an example of the structure of the liquid receiver.
  • the receiver 5 has a partition plate 64 in the center of the bottom, and the pipes 62a and 62b are inserted.
  • the ends of the piping 62 a and the piping 62 b are located lower than the upper end of the partition plate 64, so that mutual interference of the refrigerant flows flowing out of the respective piping does not occur. I am doing it.
  • the receiver 5 is internally The phase refrigerant is separated into a gas phase in the upper layer and a liquid phase in the lower layer due to the density difference between the gas and liquid, that is, the influence of gravity.
  • Each of the pipes 6 2 a and 62 b inserted into the receiver 5 has a dryness of the refrigerant flow flowing out of the receiver 5 (to the total refrigerant mass flow rate).
  • the end of the noise passage 61 connected to the suction side of the compressor is attached to the upper part of the receiver 5 to take out only gas refrigerant.
  • the refrigerant transfer operation is performed before the cooling operation, the heating operation, the defrosting operation, and the restart of the compressor during the defrosting operation. It may be performed just before the end of driving. In this case, the operation is the same as the operation of collecting the refrigerant in the receiver.
  • the refrigerant is collected in the outdoor unit by performing the refrigerant transfer operation immediately before the end of the operation, so that leakage of the refrigerant into the room can be prevented. Even if a leak occurs, it is possible to minimize the amount of leak.
  • Two closed cycles each including a heat source side heat exchanger on the outdoor side and a use side heat exchanger on the indoor side can be configured simultaneously, and it is preferable to perform the refrigerant transfer operation. It is desirable to construct a closed cycle that includes at least the indoor heat exchanger on the indoor side and perform refrigerant transfer operation.
  • the above example shows the liquid return regardless of the type of refrigerant, such as the type of refrigerant and oil, the scroll compressor, the reciprocating compressor, and the rotary compressor.
  • the type of refrigerant such as the type of refrigerant and oil
  • the scroll compressor the reciprocating compressor
  • the rotary compressor the rotary compressor.
  • HFC-based refrigerants represented by R407C or R410A or natural refrigerants such as carbon dioxide or HC-based refrigerants Since it is possible to reduce the amount of refrigerant used, it is desirable for global environmental protection. Furthermore, if a scroll compressor is used, Efficiency can be further improved and it can be more desirable for global environmental protection.
  • the compressor is a low-pressure chamber-type compressor in which the electric motor in the compressor is on the refrigerant suction side, It is also effective in a high-pressure channel type compressor in which the electric motor in the compressor is on the refrigerant discharge side, so it is particularly suitable for an inverter driven high-pressure channel type.
  • the compressor of (1) can operate efficiently with respect to the required load, so that the power consumption etc. can be further reduced, which is desirable for global environmental protection. I can do this.
  • the cycle with the accumulator is changed to the cycle with the receiver, for example, in the cooling operation, the liquid refrigerant is stored in the receiver.
  • the liquid refrigerant condensed in the heat exchanger on the heat source side of the outdoor unit is moved to the receiver, and the heat exchanger part where the liquid refrigerant is stored can be used in the two-phase region.
  • the heat exchanger can be effectively used, and as a result, the condensing pressure is reduced and the compression work is reduced, so that the power consumption can be reduced with the same cooling capacity.
  • the cooling capacity Z power consumption is about 2.6 to about 2.8. It can be improved by about 10% to 2.9. The same effect can be obtained during the heating operation.
  • an accumulator in a cycle with a receiver, an accumulator must also be installed to ensure the compressor's reliability against liquid return. .
  • the width of the outdoor unit will be about 1.2. m
  • the cycle with the accumulator is replaced with the one with the receiver.
  • the amount of liquid cooling medium that accumulates in the heat exchanger acting as a condenser can be reduced from 5.6 kg to about 4.0 kg.
  • the amount of refrigerant charged is approximately 4.5 to 4.5 kg.
  • the effect of refrigerant saving can be maintained.
  • Operating time Number of indoor units (units) X 0.5 to 1.5 (minutes / unit) It is desirable to operate for a period of time.
  • the operation time of the closed-cycle refrigerant transfer operation on the outdoor unit side is generally desired to be about 0.5 to 1.5 minutes.
  • the present invention no noise. Since the compressor is operated for a predetermined time after the passage is opened, the low pressure side refrigerant is moved regardless of the state of the refrigerant present on the low pressure side of the compressor. And improve the reliability. So, accumulate The number of parts can be reduced by removing the data, the size and weight can be reduced, and the amount of the refrigerant to be used can be reduced.
  • one of the heat exchanger, the liquid receiver and the vino Compression after forming a first closed cycle containing the heat passage, and a second closed cycle containing the other heat exchanger, receiver and bypass passage. Since the unit is operated for a predetermined time, it is possible to move the refrigerant in both the low-pressure side and high-pressure side heat exchangers and the refrigerant in the piping, and to return the liquid regardless of the operation mode. Can be avoided.
  • the compressor is operated for 0.5 to 1.5 minutes multiplied by the number of indoor units.
  • the operation for preventing the liquid from returning does not needlessly become longer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An air conditioner comprising a bypass path (14) for connecting the suction side of a compressor (1) to a liquid receiver (5) and a control valve (11) to close the bypass path (14) when a refrigerating cycle path is open and to open it when the refrigerating cycle path is closed, the compressor (1) being operated for a specified time after the bypass path (14) has been opened, whereby, because the compressor (1) is operated for a specified time after the bypass path (14) has been opened, refrigerant on the low pressure side can be moved irrespective of the state of refrigerant present on the low pressure side of the compressor (1) and then the compressor (1) can be started without causing liquid return to ensure the reliability of the compressor (1), and an accumulator to regulate the degree of dryness of refrigerant sucked into the compressor (1) can be removed so as to downsize the compressor and also reduce the amount of refrigerant used.

Description

明 細 書  Specification
空気調和機及 びそ れ に用 い ら れ る 室外機 技術分野  Air conditioner and outdoor unit used for it Technical field
本発明 は 、 冷凍サ イ ク ル ま た は ヒ ー ト ポ ン プサ イ ク ル に よ る 空気調和機 に 関 し 、 特 に圧縮機 を 起動す る と き の液冷媒の戻 り を 防止す る も の に好適であ る 。  The present invention relates to an air conditioner using a refrigeration cycle or a heat pump cycle, and in particular, prevents return of liquid refrigerant when starting a compressor. It is suitable for everything.
背景技術 Background art
従来 、 圧縮 機 の 吸 い 込み 側 に ア キ ュ ム レ ー タ (低圧圧力 容 器) を 配置 し 、 圧縮機 に吸入 さ れ る 冷媒の乾 き 度 (即 ち 、 液冷 媒量 と ガス 冷媒量の比率) を 制御す る こ と で 、 圧縮機への液戻 り を 防止 し 、 信頼性の確保 を し て い る 。  Conventionally, an accumulator (low pressure vessel) is placed on the suction side of the compressor, and the dryness of the refrigerant sucked into the compressor (in other words, the amount of liquid cooling medium and gas refrigerant) By controlling the ratio (volume ratio), the liquid is prevented from returning to the compressor and reliability is ensured.
し か し 、 空気調和機のユニ ッ ト の小型 . 軽量化、 消費電力 の 低減 (即 ち 、 C 0 P 向上) 、 原価低減な どの 要求 を 同時 に満足 さ せ る た め に ア キ ュ ム レ ー タ を 除去 し た簡素化 さ れ た冷凍サ イ ク ル が望 ま し レ、 。  However, accumulators have been developed to simultaneously satisfy the demands of air conditioner units, such as smaller size, lighter weight, lower power consumption (improve COP), and cost reduction. We want a simplified refrigeration cycle with no data removed.
そ し て 、 圧縮機への液戻 り を 防止す る た め 、 運転の始動時又 は停止直前 にサ イ ク ル内 の冷媒 を 移動 さ せ る た め始動時 に ポ ン プ ダ ゥ ン運転 を 行い 、 ポ ン プ ダ ゥ ン 開始時 に圧縮機 を 所定時間 だ け 間 欠運転す る 、 ボ ン プ ダ ゥ ン終了後で圧縮機 を 再起動時 さ せ る と き に 、 所定時間 だ け 間 欠運転 を 行 う こ と が知 ら れ、 例 え ば特開平 1 0 — 1 7 0 0 8 0 号公報に記載 さ れて い る 。  Then, in order to prevent the liquid from returning to the compressor, the refrigerant in the cycle is moved at the start of operation or immediately before the operation is stopped. When the compressor is operated, the compressor is intermittently operated for a predetermined time at the start of the pump-down, or the compressor is restarted after the pump-down is completed, for a predetermined time. It is known that only intermittent operation is performed, and this is described in, for example, Japanese Patent Application Laid-Open No. H10-170080.
上記従来技術 に よ る も の で は 、 運転の始動前、 停止直前あ る い は デフ 口 ス ト 運転での切換時等 に蒸発器や吸 い込み管 中 の冷 媒 を 凝縮器ゃ受液器 に 回収す る た め 、 ま た は低温部 に 冷媒が液 化 し て溜 ま り 次の始動時 に液戻 り し な レゝ よ う にす る た め ポ ン プ ダ ウ ン 運転 を 行 う 。 し か し 、 こ の運転は圧縮機の低圧側か ら 高 圧側 に冷媒 を 移動 さ せ る た め 、 空気調和機の運転中 に電源が切 れ強制停止 を し た後、 長期 の運転休止後や周 囲が低温度の た め に凝縮が起 こ っ て い る 場合、 あ る い は各空気調和機の設置位置 の高低差等 に よ り 液冷媒が溜 ま っ て い る 場合 な ど、 液冷媒が圧 縮機の低圧側 に存在 し て い る 場合に は 、 圧縮機の起動時 に圧縮 機への液戻 り を 起 こ す恐れがあ る 。 According to the above-mentioned conventional technology, the refrigerant in the evaporator or the suction pipe is supplied to the condenser or the receiver before the operation is started, immediately before the operation is stopped, or when the operation is switched in the differential port operation. The pump-down operation is performed so that the refrigerant liquefies and collects in the low-temperature part to be collected in the cooler or to return to the liquid at the next start. Go. However, this operation is started from the low pressure side of the compressor. After the power was turned off and the forced shutdown was performed during the operation of the air conditioner to move the refrigerant to the pressure side, condensation occurred due to a long-term stoppage of operation or because the surrounding area was at a low temperature. In some cases, liquid refrigerant is present on the low pressure side of the compressor, such as when liquid refrigerant is accumulated due to the height difference between the installation positions of the air conditioners, etc. In such a case, there is a possibility that the liquid may return to the compressor when the compressor is started.
そ し て 、 圧縮機の運転中 に 液戻 り が生 じ る と 、 次の よ う な不 具合が生 じ る 場合があ る 。  Then, if liquid returns during the operation of the compressor, the following problems may occur.
高圧チ ヤ ン バの圧縮機では 、 圧縮機に戻 っ て き た液冷媒は 、 直接圧縮室 に吸入 さ れる た め 、 液圧縮が起 こ る こ と で過荷重力 生 じ 異常振動や異常音 を発生 さ せ る 。 ま た、 軸受け等 の破損 を 招 く 。  In a high-pressure chamber compressor, the liquid refrigerant that has returned to the compressor is directly drawn into the compression chamber, causing liquid compression to occur, resulting in an overload force and abnormal vibration and abnormalities. Generates a sound. In addition, the bearings may be damaged.
低圧チ ヤ ン バ の圧縮機で は 、 圧縮室 に吸入 さ れる 前 に冷凍機 油 の油溜 め の空間 に入 る が、 液冷媒が冷凍機油 を 希釈 し軸受 け に給油 さ れる 油 の粘度が低下 し 、 軸受 けが焼 き 付 き を起 こ す。 一方、 高圧チ ャ ン バの圧縮機 に お い て も 、 圧縮過程で液冷媒 が完全に ガス 化 さ れず に 吐出 さ れる と 、 圧縮室の下流 に位置す る 冷凍機油の油溜 め に流入 し 、 こ こ で冷凍機油 を 希釈 し油粘度 が低下す る 。 こ の場合 も 低圧チ ヤ ン バの圧縮機 と 同様に軸受 け が焼 き 付 き を 起 こ す。  In a low-pressure chamber compressor, the refrigerant enters the space for the refrigerating machine oil before being sucked into the compression chamber, but the liquid refrigerant dilutes the refrigerating machine oil and feeds the oil to the bearings. And the bearing is burned. On the other hand, even in a high-pressure chamber compressor, if the liquid refrigerant is discharged without being completely gasified during the compression process, it flows into the refrigerating machine oil reservoir located downstream of the compression chamber. However, the refrigerating machine oil is diluted here, and the oil viscosity is reduced. In this case as well, the bearing will seize like a low-pressure chamber compressor.
圧縮機の 液戻 り は 、 空気調和機が停止 中 に 室内機 と 室外機 と の高低差 に よ り 液冷媒が室外側 (圧縮機や熱源側熱交換器側) に 移動 し た り 、 逆 に 室内側 (利用側熱交換器側) に移動す る こ と と な る 。 そ し て 、 室外温度が低 く 熱源側熱交換器に冷媒が凝 縮 し た り 、 逆 に 室 内温度が低 く 利用側熱交換器に冷媒が凝縮 し た り す る 。 ま た 、 運転中 に電源が切断 さ れた場合は 、 液冷媒がサ イ ク ル 内 の いずれか に存在す る が、 存在場所が不明 と な る 。 When the air conditioner is stopped, the liquid refrigerant may move to the outdoor side (compressor or heat source side heat exchanger side) due to the height difference between the indoor unit and the outdoor unit, or vice versa. Then, it moves to the indoor side (use side heat exchanger side). Then, the refrigerant condenses in the heat source side heat exchanger due to the low outdoor temperature, and conversely, the refrigerant condenses in the use side heat exchanger due to the low indoor temperature. Also, if the power is cut off during operation, the liquid refrigerant is present in any part of the cycle, but the location is unknown.
本発明 の 目 的 は 、 上記課題 を 解決 し 、 冷房運転、 暖房運転、 除霜運転での圧縮機起動時であ っ て も 、 圧縮機への液戻 り 防止 し て 信頼性 を 向上す る も ので あ る 。  An object of the present invention is to solve the above-mentioned problems and to improve the reliability by preventing the liquid from returning to the compressor even when the compressor is started in the cooling operation, the heating operation, and the defrosting operation. It is a thing.
ま た 、 本発明 の他の 目 的 は 、 冷媒の使用量 を 少 な く 、 省冷媒 と し て 、 さ ら に消費電力量等の低減に よ る 地球環境保全に も 望 ま し レ も の と す る こ と に あ る 。  Another object of the present invention is to reduce the amount of the refrigerant used, save the refrigerant, and further protect the global environment by reducing the power consumption and the like. It is to be.
以上、 本発明 は上記課題の少 な く と も 一つ を 解決 し ょ う と す る も の であ る。  As described above, the present invention is intended to solve at least one of the above-mentioned problems.
発明の開示 Disclosure of the invention
上記 目 的 を 達成す る た め本発明 は 、 圧縮機の吸入側 と 受液器 と を 結ぶバ イ ノヽ' ス 通路 と 、 '冷凍サ イ ク ルの通路が、 開 の と き ' イ ノ、"ス 通路が閉 と な り 、 閉 の と き ' ィ パス 通路が開 と さ れる 制 御弁 と を 備 え 、 バ イ パ ス 通路 を 開 と し た後に圧縮機 を 所定時間 運転す る も の であ る 。  In order to achieve the above-mentioned object, the present invention relates to an invention wherein an intake passage connecting a suction side of a compressor and a receiver and an intake passage for a refrigeration cycle are opened. A control valve for closing the bypass passage and opening the bypass passage when closed, and operating the compressor for a predetermined time after opening the bypass passage It is a thing.
こ れ に よ り 、 バ イ パス 通路 を 開 と し た後に圧縮機 を 所定時間 運転す る の で、 圧縮機の低圧側 に存在す る 冷媒の状態 に係わ ら ず、 低圧側 の冷媒 を 移動 さ せ る こ と がで き 、 そ の後は液戻 り 無 し に圧縮機 を 起動 さ せ る こ と がで き 、 圧縮機の信頼性 を確保す る こ と がで き る 。 よ っ て 、 圧縮機 に 吸 入 さ れ る 冷媒 の 乾 き 度 (液冷媒 と ガ ス 冷媒の量の比) を 調整す る ア キ ュ ム レ ー 夕 を 除 去 し て部品点数 を 削減 し 、 小型化、 軽量化が可能 と な り 、 使用 す る 冷媒 も 少 な く で き る 。  As a result, the compressor is operated for a predetermined time after the bypass path is opened, so that the refrigerant on the low pressure side is discharged regardless of the state of the refrigerant existing on the low pressure side of the compressor. The compressor can be moved, and thereafter, the compressor can be started without liquid return, so that the reliability of the compressor can be ensured. Therefore, the number of parts is reduced by eliminating the accumulation of air, which adjusts the dryness of the refrigerant (the ratio between the liquid refrigerant and the gas refrigerant) of the refrigerant sucked into the compressor. In addition, the size and weight can be reduced, and the amount of the refrigerant to be used can be reduced.
ま た本発明 は 、 圧縮機の吸入側 と 前記受液器 と を 結ぶバィ パ ス 通路 と 、 圧縮機、 熱源側熱交換器又 は利用 側熱交換器の いず れか一方、 及 びバ ィ パス 通路 を 含ん だ閉サ イ ク ル を 形成す る 手 段 と 、 閉サ イ ク ル を 形成 し た後 に圧縮機 を 所定時間運転す る も の であ る 。 Further, the present invention provides a bypass passage connecting the suction side of a compressor and the liquid receiver, and a compressor, a heat source side heat exchanger or a use side heat exchanger. On the other hand, a means for forming a closed cycle including a bypass path and a method for operating the compressor for a predetermined time after the closed cycle is formed. .
さ ら に本発明 は 、 圧縮機の吸入側 と 受液器 と を 結ぶ ィ ス 通路 を 備 え 、 室外減圧装置及 び室内減圧装置 を 開 と し 、 圧縮機、 熱源側熱交換器及 び利用側熱交換器の う ち 圧縮機の吸い込み側 と な る 一方の熱交換器、 受液器及びバ イ パ ス 通路 を 含ん だ第 1 の 閉サ イ ク ル と 、 圧縮機、 熱源側熱交換器及 び利用側熱交換器 の う ち 圧縮機の吐 き 出 し側 と な る 他方の熱交換器、 受液器及 び バ イ パス 通路 を 含んだ第 2 の 閉サ イ ク ル と を 形成 し た後に 、 圧 縮機 を 所定時間運転す る も の で あ る 。  In addition, the present invention further provides a disk passage connecting the suction side of the compressor and the receiver, opens the outdoor decompression device and the indoor decompression device, and uses the compressor, the heat source side heat exchanger and the use thereof. One of the side heat exchangers, one of which is the suction side of the compressor, the first closed cycle including the heat receiver, the receiver and the bypass passage, and the compressor and the heat source side heat exchange The second closed cycle including the other heat exchanger, the receiver, and the bypass passage, which is the discharge side of the compressor, of the heat exchanger and the use side heat exchanger After the formation, the compressor is operated for a predetermined time.
こ れ に よ り 、 一方の熱交換器、 受液器及びバ イ パ ス 通路 を 含 ん だ第 1 の 閉サ イ ク ル と 、 他方の熱交換器、 受液器及 びバ イ パ ス 通路 を 含ん だ第 2 の 閉サ イ ク ル と を 形成 し た後に 、 圧縮機 を 所定時間運転す る の で 、 低圧側及 び高圧側 の両方の熱交換器や 配管内 の冷媒 を 移動 さ せ る こ と がで き る 。 よ っ て 、 運転モ ー ド 冷媒状態 に係 わ ら ず、 圧縮機の吸い込み側で の液戻 り を 回避で き る 。  As a result, the first closed cycle including one heat exchanger, the receiver and the bypass passage, and the other heat exchanger, the receiver and the bypass After forming the second closed cycle including the passage, the compressor is operated for a predetermined time, so that the refrigerant in the heat exchanger and the pipe in both the low-pressure side and the high-pressure side is moved. It can be done. Therefore, regardless of the operation mode refrigerant state, liquid return on the suction side of the compressor can be avoided.
さ ら に本発明 は 、 圧縮機の吸入側 と 受液器 と を 結ぶバ ィ パス 通路 を 備 え 、 ィ パ ス 通路 を 開 と し た後に圧縮機 を 0 . 5 〜 1 5 分間 に複数台の 室内機の台数 を 乗 じ た時間 運転す る も の であ る 。  Further, the present invention provides a bypass passage connecting the suction side of the compressor and the receiver, and after opening the bypass passage, a plurality of compressors are provided within 0.5 to 15 minutes. It is operated for a time multiplied by the number of indoor units.
こ れ に よ り 、 室内機が複数台あ る 場合で も 液戻 り を 防止す る 運転 を無駄に長 く す る こ と がな く 、 信頼性 を 向上で き る 。  As a result, even when there are a plurality of indoor units, the operation for preventing liquid return is not lengthened unnecessarily, and the reliability can be improved.
さ ら に本発明 は 、 上記の も の に お い て 、 バ イ パス 通路 と 圧縮 機の吸入側 と の合流部 に 三方弁 を 設け る こ と が望 ま し い。 さ ら に本発明 は 、 上記の も の に お い て 、 バ イ パ ス 通路 を 受液 器の上部 と な る 位置 に接続す る こ と が望 ま し い。 Further, according to the present invention, it is desirable that a three-way valve be provided at a junction between the bypass passage and the suction side of the compressor. Further, in the present invention, it is desirable that the bypass path is connected to a position that is to be the upper part of the liquid receiver in the above-described structure.
さ ら に本発明 は 、 上記の も の に お い て、 ノ イ ノヽ"ス 通路 に流量 制御弁 を 設け る こ と が望 ま し い。  Further, in the present invention, it is preferable that a flow control valve be provided in the noise passage in the above-described configuration.
さ ら に本発明 は 、 上記の も の に お い て 、 冷凍サ イ ク ル に流通 す る 冷媒 を 自 然系冷媒 と す る こ と が望 ま し い。  Furthermore, in the present invention, it is desirable that the refrigerant circulating in the refrigeration cycle be a natural refrigerant.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1 図 は 、 本発明 の一実施例 であ る 受液器一圧縮機間バ イ ノ、' ス 通路 を 設け た空気調和機のサ イ ク ル図、 第 2 図 は 、 第 1 図 の 空気調和機 に お け る 冷房運転前の冷媒移送運転時のサ イ ク ル構 成 と 冷媒の流れ を 示すサ イ ク ル図 、 第 3 図 は 、 第 1 図 の空気調 和機 に お け る 暖房運転前の冷媒移送運転時のサ イ ク ル構成 と 冷 媒の流れ を 示すサ イ ク ル図 、 第 4 図 は、 第 1 図 の空気調和機 に お け る 受液器 一 圧縮機間バ ィ パス 通路 に流量制御弁 を 設け たサ イ ク ル を 示すサ イ ク ル図 、 第 5 図 は 、 第 1 図 の空気調和機に お け る 三方弁の代わ り に 開 閉弁 を 用 い たサ イ ク ル を 示すサ イ ク ル 図 、 第 6 図 は 、 第 1 図の空気調和機 にお け る 四方弁 と 三方弁の 代わ り に 六方弁 を 用 い たサ イ ク ル構成 に お い て 、 冷房運転前の 冷媒移送運転時の冷媒の流れ を 示すサ イ ク ル図 、 第 7 図 は 、 第 6 図 の 空気調和機 に お け る 暖房運転前の冷媒移送運転時の冷媒 の流れ を 示すサ イ ク ル図、 第 8 図 は 、 第 6 図 の空気調和機 に お け る 冷房運転時の 冷媒の流れ を 示すサ イ ク ル図、 第 9 図 は 、 第 6 図 の空気調和機 にお け る 暖房運転時の冷媒の流れ を 示すサ イ ク ル図 、 第 1 0 図 は 、 3 モ ー ド四方弁 を 用 い た冷房運転前の両 方同時冷媒移送運転時 の サ イ ク ル構成 と 冷媒の流れ を 示すサ イ ク ル図、 第 1 1 図 は 、 3 モ ー ド四方弁の冷房運転時の構造 と 冷 媒の流れ を 示す図 、 第 1 2 図 は 、 3 モ ー ド四 方弁の暖房運転時 の構造 と 冷媒の流れ を 示す図、 第 1 3 図 は、 3 モ ー ド四方弁の 冷媒移送運転時の構造 と 冷媒の流れ を 示す 図 、 第 1 4 図 は 、 第 1 0 図 の 空気調和機に お け る 3 モ ー ド四方弁の代わ り に 開 閉弁 を 用 い た他の 実施例であ る サ イ ク ル構成 と 冷媒移送運転時の冷 媒の流れ を 示すサ イ ク ル図 、 第 1 5 図 は 、 第 1 0 図の空気調和 機 に お け る 3 モ ー ド四方弁の代わ り に 四方弁 2 個 を 用 い た他の 実施例 で あ る サ イ ク ル構成 と 冷媒移送運耘時の冷媒の流れ を 示 すサ イ ク ル図 、 第 1 6 図 は 、 第 1 4 図 の空気調和機に お け る 冷 房運転時の冷媒の流れを 示すサ イ ク ル図、 第 1 7 図 は 、 第 1 4 図 の空気調和機 に お け る 暖房運転時の冷媒の流れ を 示すサ イ ク ル図、 第 1 8 図 は 、 第 1 図 の一実施例であ る サ イ ク ル上の バ イ パ ス 通路の一端 を 圧縮機の圧縮過程 中 間 に接続 し た時のサ イ ク ル構成 と 冷媒移送運転時の冷媒の流れ を 示すサ イ ク ル図、 第 1 9 図 は 、 第 1 8 図 のサ イ ク ル に使用 す る 圧縮機 を 示す 断面図、 第 2 0 図 は 、 一実施例 に使用 す る 受液器構造 を 示す断面図。 FIG. 1 is a cycle diagram of an air conditioner provided with a drain between a receiver and a compressor according to an embodiment of the present invention and a water passage, and FIG. The cycle diagram showing the cycle configuration and the flow of the refrigerant during the refrigerant transfer operation before the cooling operation in the air conditioner, and FIG. 3 is the cycle diagram of the air conditioner shown in FIG. Fig. 4 is a cycle diagram showing the cycle configuration and coolant flow during the refrigerant transfer operation before the heating operation, and Fig. 4 is the receiver-compressor in the air conditioner shown in Fig. 1. A cycle diagram showing a cycle in which a flow control valve is provided in the inter-pass passageway, and Fig. 5 shows an open / close valve in place of the three-way valve in the air conditioner shown in Fig. 1. Figure 6 shows the cycle used, and Figure 6 shows a six-way valve in place of the four-way and three-way valves in the air conditioner shown in Figure 1. Cycle diagram showing the flow of refrigerant during the refrigerant transfer operation before cooling operation in the previous cycle configuration, and FIG. 7 shows the heating operation in the air conditioner shown in FIG. 6. FIG. 8 is a cycle diagram showing the flow of the refrigerant during the previous refrigerant transfer operation, and FIG. 8 is a cycle diagram showing the flow of the refrigerant during the cooling operation in the air conditioner of FIG. Fig. 9 is a cycle diagram showing the flow of refrigerant during the heating operation in the air conditioner shown in Fig. 6, and Fig. 10 is a diagram before cooling operation using a three-mode four-way valve. A cycle diagram showing the cycle configuration and refrigerant flow during simultaneous refrigerant transfer operation on both sides.Fig. 1 shows the structure and cooling of a three-mode four-way valve during cooling operation. Fig. 12 shows the flow of the medium, Fig. 12 shows the structure and the refrigerant flow during the heating operation of the three-mode four-way valve, and Fig. 13 shows the refrigerant transfer operation of the three-mode four-way valve. Fig. 14 shows the structure of the air conditioner and the flow of the refrigerant. Fig. 14 shows another embodiment using an open / close valve instead of the 3-mode 4-way valve in the air conditioner shown in Fig. 10. Fig. 15 is a cycle diagram showing the cycle configuration and the flow of the refrigerant during the refrigerant transfer operation. Fig. 15 is a three-mode four-way valve in the air conditioner shown in Fig. 10. FIG. 16 is a cycle diagram showing another embodiment using two four-way valves in place of the above, and showing the flow of the refrigerant during the refrigerant transfer and cultivation. Fig. 14 is a cycle diagram showing the flow of refrigerant during the cooling operation in the air conditioner of Fig. 14. Fig. 17 is the heating condition of the air conditioner of Fig. 14 during the heating operation. A cycle diagram showing the flow of the medium. Fig. 18 shows an example of Fig. 1 in which one end of a bypass passage on the cycle is connected during the compression process of the compressor. Cycle diagram showing the cycle configuration and the flow of the refrigerant during the refrigerant transfer operation. Fig. 19 is a cross-section showing the compressor used for the cycle shown in Fig. 18. FIG. 20 is a sectional view showing the structure of a liquid receiver used in one embodiment.
発明を実施する ための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明 の実施形態 を 図面 に よ り 説明す る 。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第 1 図 は 、 本発明 の空気調和機の冷凍サ イ ク ルのサ イ ク ル構 成図 を 示 し て い る 。 冷凍サ イ ク ル は 、 圧縮機 1 、 流れ方向制御 弁 と し て の 四方弁 2 、 熱源側熱交換器 3 、 減圧装置 4 、 受液器 5 、 弁 6 、 減圧装置 7 a お よ び減圧装置 7 b 、 利用 側熱交換器 8 a お よ び利用側熱交換器 8 b 、 弁 1 0 を 順次配管で接続 さ れ て い る 。 ま た利用 側熱交換器 7 a お よ び 7 b と 熱源側熱交換器 3 は 、 送風機 9 a お よ び 9 b と 送風機 1 2 で各々 送風 さ れ、 熱 交換 し て レゝ る 。 冷凍サ イ ク ル は大 き く 3 つ のュニ ッ ト に分 け ら れ、 圧縮機 1 を 含み破線で囲 ま れ た部分が室外ュ ニ ッ ト 1 5 であ り 、 利用 側 熱交換器 8 a を 含む破線で囲 ま れた部分が室内ュ ニ ッ ト 1 6 a 、 利用側熱交換器 8 b を 含む破線で囲 ま れ た部分が室内ュニ ッ ト 1 6 b で あ り 、 室 内ユ ニ ッ ト 1 6 a と 室内ユ ニ ッ ト 1 6 b は並 列 に 室外ュ ニ ッ ト 1 5 に繋がる 配管 1 3 f お よ び配管 1 3 g に 接続 さ れ、 マ ル チ型の 空気調和機 と な っ て い る 。 本例 で は 、 受 液器 5 と 圧縮機の吸い込み側配管 1 3 j と を 結ぶバ イ パス 通路 1 4 を 設け て お り 、 ノ ィ パス 通路 1 4 、 配管 1 3 j お よ び配管 1 3 i の合流部 に冷媒の流れ方向 を 制御す る 三方弁 1 1 を 設け て レ、 る こ と を 特徴 と し て レ る 。 FIG. 1 shows a cycle configuration diagram of a refrigeration cycle of the air conditioner of the present invention. The refrigeration cycle includes a compressor 1, a four-way valve 2 as a flow direction control valve, a heat source side heat exchanger 3, a pressure reducing device 4, a receiver 5, a valve 6, a pressure reducing device 7a, and a pressure reducing device. The device 7 b, the use side heat exchanger 8 a, the use side heat exchanger 8 b, and the valve 10 are sequentially connected by piping. Further, the use side heat exchangers 7a and 7b and the heat source side heat exchanger 3 are blown by the blowers 9a and 9b and the blower 12, respectively, and exchange heat. The refrigeration cycle is roughly divided into three units, and the part enclosed by a broken line including the compressor 1 is the outdoor unit 15 and the heat exchange on the user side. The portion enclosed by the dashed line including the heat sink 8a is the indoor unit 16a, and the portion enclosed by the dashed line including the use-side heat exchanger 8b is the indoor unit 16b. The indoor unit 16a and the indoor unit 16b are connected in parallel to the pipes 13f and 13g, which are connected to the outdoor unit 15 in parallel. It is a H-type air conditioner. In this example, a bypass path 14 is provided to connect the receiver 5 and the suction pipe 13 j of the compressor, and a no-pass path 14, a pipe 13 j and a pipe 1 are provided. The three-way valve 11 for controlling the flow direction of the refrigerant is provided at the junction of 3i.
本サ イ ク ル内 の冷媒の流れ を 説明す る 。  The flow of the refrigerant in this cycle will be described.
冷房運転時で は 、 図 中 の実線矢印方向 に冷媒が流れる 。 圧縮 機 1 か ら 吐出 し た高温高圧の ガス 冷媒は 、 配管 1 3 a を 通 り 、 四方弁 2 に流入す る 。 一方、 四方弁 2 内 で は 配管 1 3 a と 1 3 b と が、 ま た配管 1 3 h と 配管 1 3 i と がそ れぞれ接続 さ れて レ、 る 。  During the cooling operation, the refrigerant flows in the direction of the solid arrow in the figure. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the four-way valve 2 through the pipe 13a. On the other hand, in the four-way valve 2, the pipes 13a and 13b are connected to each other, and the pipe 13h and the pipe 13i are connected to each other.
四方弁 2 を 通 っ た ガ ス 冷媒 は配管 1 3 b を 通 り 、 熱源側熱交 換器 3 で送風機 1 2 で送 ら れる 空気 に対 し放熱 し 、 高圧の液冷 媒 も し く は気液二相冷媒 と な り 受液器 5 に流入す る 。 減圧装置 は全開 と な り 絞 り の役 目 を し て い な い。 受液器 5 内 に流入 し た冷媒は気液二相 の場合は気液分離 し 、 配管 1 3 e を 通 り 適度 な乾 き 度状態の冷媒が室内 ュニ ッ ト 1 6 a お よ び室内ュニ ッ ト 1 6 b に流入す る 。 冷媒は減圧装置 7 a お よ び減圧装置 7 b で 減圧 さ れ、 室内空気温度 よ り も 低い温度の気液二相冷媒 と な り 、 利 用 側熱交換器 8 a お よ び利用側熱交換器 8 b に流入 し 、 各 々 送風機 9 a お よ び 9 b で送 ら れ る 空気か ら 吸熱 し ガ ス ィヒ し再 び 圧縮機 1 に戻 る 。 The gas refrigerant that has passed through the four-way valve 2 passes through the pipe 13 b and radiates heat to the air sent from the blower 12 by the heat source-side heat exchanger 3, and a high-pressure liquid coolant or It becomes a gas-liquid two-phase refrigerant and flows into the receiver 5. The decompression device is fully open and does not serve as a throttle. In the case of two-phase gas-liquid separation, the refrigerant flowing into the receiver 5 is separated into gas and liquid, and the refrigerant with an appropriate degree of dryness passes through the pipe 13 e and the indoor unit 16 a and Flows into room unit 16b. The refrigerant is decompressed by the decompression devices 7a and 7b, and becomes a gas-liquid two-phase refrigerant having a temperature lower than the room air temperature.The heat exchanger 8a on the use side and the heat on the use side Flow into exchangers 8b and each The heat is absorbed from the air sent by the blowers 9a and 9b, and the gas is returned to the compressor 1 again.
暖房運転時 は 、 冷房運転時 と は逆の方向 に冷媒が流れ、 図 中 の破線矢印 の方向 に冷媒が流れ る 。 四方弁 2 内 では 、 配管 1 3 a と 1 3 h と 力 s、 ま た酉己管 1 3 b と 1 3 i と が接続 さ れて い る 。 従っ て 、 利用 側熱交換器 8 a お よ び利用 側熱交換器 8 b が 高圧側 と な り 、 熱源側熱交換器 3 は低圧側 と な る 。 During the heating operation, the refrigerant flows in the opposite direction to that during the cooling operation, and flows in the direction of the dashed arrow in the figure. In the four-way valve 2, the pipes 13a and 13h and the force s are connected, and the rooster pipes 13b and 13i are connected. Therefore, the use side heat exchanger 8a and the use side heat exchanger 8b are on the high pressure side, and the heat source side heat exchanger 3 is on the low pressure side.
減圧装置 と し て は 、 室 内ュ ニ ッ ト 1 6 a 、 1 6 b 内 の減圧装 置 7 a お よ び 7 b を 用 い て も ょ レ、 し 、 室外ュ ニ ッ ト 1 5 内 の減 圧装置 4 の いずれ を 用 い て も 良い。 本例で は 、 暖房運転時 に は 減圧装置 4 を 用 い る 。 な お 制御性の点か ら 室 内外の減圧装置 を 同時 に使用 す る こ と は ほ と ん どな い。 ま た 、 冷房運転時、 暖房 運転時 と も 三方便 1 1 は 、 配管 1 3 i と 配管 1 3 j と を 接続 し て お り 、 バ イ ノヽ " ス 通路 1 4 に は冷媒は流れて い な い。  As the decompression device, the decompression devices 7a and 7b in the indoor units 16a and 16b may be used, or the outdoor unit 15 may be used. Any of the pressure reducing devices 4 may be used. In this example, the pressure reducing device 4 is used during the heating operation. From the point of controllability, it is rare to use the decompression devices inside and outside the room at the same time. Also, in the cooling operation and the heating operation, the three-way service 11 connects the piping 13 i and the piping 13 j, and the refrigerant does not flow in the bin passage 14. Absent.
上記の よ う な 冷凍サ イ ク ル で、 冷房運転や暖房運転 を し て い る と き に 、 電源が切 ら れて し ま っ た後圧縮機 を 再起動 さ せ る 場 合や 、 空気調和機の停止時 に室外温度が低 く 、 熱源側熱交換器 3 内 で冷媒が凝縮 し て い る 状態か ら 暖房運転 を す る 場合な ど、 圧縮機 1 に対 し て 低圧側 と な る 熱源側熱交換器 ま た は利用側熱 交換器で は 、 完全 に液冷媒 を ガ ス 化で き ずに一部液冷媒の状態 の ま ま 圧縮機 1 に戻 る 現象、 つ ま り 液戻 り が生 じ る 。 液戻 り は 圧縮機 1 に対 し 、 次の よ う な不具合 を 生 じ さ せ る 。 例 え ば、 高 圧チ ヤ ン バ の圧縮機では 、 圧縮機 に戻 っ て き た液冷媒は 、 直接 圧縮室 に吸入 さ れ る た め 、 液圧縮が起 こ る こ と で過荷重が生 じ 異常振動や異常音 を 発生 さ せ る 。 ま た 、 軸受 け等の破損 を 招 く こ と も あ る 。 さ ら に 、 低圧チ ャ ン バの圧縮機で は、 圧縮機 に戻 っ て き た液 冷媒は 、 圧縮室 に吸入 さ れ る 前 に冷凍機油 の油溜 め の空間 に入 る が、 液冷媒が冷凍機油 を 希釈 し軸受け に給油 さ れ る 油の粘度 が低下 し 、 軸受 け が焼 き 付 き を 起 こ し た り す る 。 一方 、 高圧チ ヤ ン バの 圧縮機 に お いて も 、 圧縮過程で液冷媒が完全 に ガス ィ匕 さ れず に 吐出 さ れ る と 、 圧縮室の下流 に位置す る 冷凍機油 の油 溜 め に流入 し 、 こ こ で冷凍機油 を 希釈 し油粘度が低下す る 。 こ の場合 も 低圧チ ヤ ン バ の圧縮機 と 同様に軸受け に給油 さ れ る と 、 軸受けが焼 き 付 き を 起 こ す。 こ れ ら は圧縮機の信頼性 に係 わ る 重要 な 問題 を 生 じ さ せ る 恐れがあ る 。 If the compressor is restarted after the power is turned off during cooling or heating operation with the above-mentioned refrigeration cycle, or if air is When the air conditioner is stopped, the outdoor temperature is low, and the refrigerant is condensed in the heat source side heat exchanger 3, and the heating operation is performed. In the heat source-side heat exchanger or the use-side heat exchanger, the phenomenon that the liquid refrigerant cannot return to the compressor 1 in a partially liquid state without being completely gasified, that is, the liquid A return occurs. Liquid return causes the following problems to the compressor 1. For example, in a high-pressure chamber compressor, the liquid refrigerant that has returned to the compressor is directly drawn into the compression chamber, causing overload due to liquid compression. Generates abnormal vibration and noise. In addition, damage to bearings and the like may be caused. Further, in the compressor of the low-pressure chamber, the liquid refrigerant returned to the compressor enters the oil reservoir space of the refrigerating machine oil before being sucked into the compression chamber. Refrigerant dilutes the refrigerating machine oil, the viscosity of the oil supplied to the bearing decreases, and the bearing may burn. On the other hand, even in the compressor of the high-pressure chamber, if the liquid refrigerant is discharged without being completely gasified during the compression process, the refrigerant is stored in the oil reservoir of the refrigerating machine oil located downstream of the compression chamber. Inflow, where the refrigerating machine oil is diluted, and the oil viscosity decreases. Also in this case, if the bearing is lubricated as in the case of the compressor of the low pressure chamber, the bearing may seize. These can create significant problems with compressor reliability.
そ こ で 、 従来 は 、 圧縮 機 の 上流 に 圧力 容器 ( ア キ ュ ム レ ー タ ) を 取付 け 、 圧縮機 に戻 る 冷媒の乾 き 度 を 調整 し 、 液戻 り の 防止お よ び液戻 り を 回避 し て い る 。 し か し 、 空気調和機のュ ニ ッ ト の小型、 軽量化、 消費電力 の低減 (即 ち 、 成績係数 C 0 P 向上) 、 原価低減な どの要求 を 同時 に満足 さ せ る た め に ア キ ュ ム レ ー タ を 除去 し 、 圧縮機の信頼性は維持 し た ま ま 、 簡素化す る こ と が必要であ る 。  Conventionally, a pressure vessel (accumulator) is mounted upstream of the compressor to adjust the dryness of the refrigerant returning to the compressor, thereby preventing the liquid from returning and preventing the liquid from returning. The return is avoided. However, in order to simultaneously satisfy the requirements such as miniaturization and weight reduction of the air conditioner unit, reduction of power consumption (immediately, improvement of coefficient of performance C0P), and cost reduction. It is necessary to eliminate the cumulator and simplify the compressor while maintaining the reliability of the compressor.
本実施例 で は 、 ノ ィ パ ス 通路 1 4 を 用 いて 、 ア キ ュ ム レ ー タ の無い冷凍サ イ ク ル に お い て も 圧縮機起動時等での液戻 り を 防 止 し 、 圧縮機の信頼性 を 確保す る も の であ る 。 ま た 、 使用 資源 の減少、 消費電力 量の低減に よ る 地球環境保全 に も 貢献 し よ う と す る も の で あ る 。  In this embodiment, the no-pass passage 14 is used to prevent the liquid from returning when the compressor is started, even in a refrigeration cycle without an accumulator. This is to ensure the reliability of the compressor. In addition, it is intended to contribute to global environmental conservation by reducing resources used and reducing power consumption.
第 2 図お よ び第 3 図 に 、 各 々 冷房運転お よ び暖房運転 に お け る 圧縮機起動時の液戻 り 防止 に つ いて説明す る 。  FIGS. 2 and 3 explain the prevention of liquid return when the compressor is started in the cooling operation and the heating operation, respectively.
第 2 図 を 用 い て 冷房運転 を 開始す る こ と を 前提 と し た場合 を 説明す る 。 冷房運転時で は 、 利用側熱交換器 8 a お よ ぶ利用 側 熱交換器 8 b 、 そ し て配管 1 3 g , 1 3 m、 1 3 n が低圧側 と な り 、 こ の 中 の冷媒が圧縮機 1 に吸入 さ れる 。 そ こ で、 次に示 す よ う な サ イ ク ル構成 に 変形 し 、 低圧側 に あ る 冷媒 を 減圧装置 7 a お よ び 7 b の上流側 (受液器 5 側) に 移動 さ せ る 。 The case where the cooling operation is assumed to be started using FIG. 2 will be described. During cooling operation, the use side heat exchanger 8a and the use side The heat exchanger 8 b and the pipes 13 g, 13 m, and 13 n are on the low-pressure side, and the refrigerant therein is sucked into the compressor 1. Then, it is transformed into the following cycle configuration, and the refrigerant on the low pressure side is moved to the upstream side of the pressure reducing devices 7a and 7b (to the liquid receiver 5 side). .
四方弁 2 は配管 1 3 a と 配管 1 3 h と を 、 ま た配管 1 3 b と 配管 1 3 i と を 接続す る よ う に設定す る 。 こ れ は暖房運転 を 行 う と き の 四方弁の 設定 と 同 じ であ る 。 ま た 三方弁 1 1 を ノ イ ノ、' ス 通路 1 4 と 配管 1 3 j と を 接続す る 設定 と す る 。 こ の結果、 圧縮機 1 、 配管 1 3 a 、 四 方弁 2 、 配管 1 3 h 、 配管 1 3 g そ し て室内 ユニ ッ ト 1 6 及び 1 6 b 、 配管 1 3 f 、 受液器 5 、 ノ ィ パ ス 通路 1 4 、 三方弁 1 1 、 配管 1 3 j そ し て再び圧縮機 を 接続す る 閉サ イ ク ルがで き る 。 こ の と き 、 減圧装置 7 a お よ び 7 b を 全開 と し圧縮機 1 を 起動 さ せ る と 、 利 用側熱交換器 8 a や 8 b 、 配管 1 3 m、 1 3 n や 1 3 g 内 の冷媒が受液器側 に移 動す る 。  The four-way valve 2 is set so as to connect the pipe 13a to the pipe 13h, and to connect the pipe 13b to the pipe 13i. This is the same as the setting of the four-way valve when performing the heating operation. In addition, the three-way valve 11 is set to make noise, and the connection between the water passage 14 and the pipe 13 j is made. As a result, compressor 1, pipe 13a, four-way valve 2, pipe 13h, pipe 13g, indoor unit 16 and 16b, pipe 13f, receiver 5 A closed cycle for connecting the compressor, the no-pass passage 14, the three-way valve 11, the piping 13 j, and the compressor again can be made. At this time, when the pressure reducing devices 7a and 7b are fully opened and the compressor 1 is started, the use side heat exchangers 8a and 8b, the pipes 13m, 13n and 13n and 1 Refrigerant within 3 g moves to the receiver side.
室外ュニ ッ ト 1 5 と 室内ュニ ッ ト 1 6 a 、 1 6 b 間 の接続配 管長が短い と き は 、 受液器 5 に冷媒が回収で き る よ う に し 、 ま た接続配管長が長い と き は 、 減圧装置 7 a お よ び 7 b よ り も 受 液器 5 側 に 冷媒が移動す る よ う に圧縮機 1 を 運転す る 。 そ の後 . 減圧装置 7 a と 7 b を 閉 に し圧縮機 1 を 止め 、 四方弁 2 お よ び 三方弁 1 1 を 所定の状態 に切 り 換え て 、 冷房運転を 開始す る 。 そ し て 、 減圧装置 7 a お よ び 7 b は 、 圧縮機の吸い込み側が負 圧 に成 ら な い程度 に 、 徐々 に 開度 を 開 け る よ う にす る と よ い。  When the connection piping length between the outdoor unit 15 and the indoor unit 16a, 16b is short, the refrigerant is collected in the receiver 5 so that it can be recovered. When the pipe length is long, the compressor 1 is operated so that the refrigerant moves to the liquid receiver 5 side from the pressure reducing devices 7a and 7b. After that, the pressure reducing devices 7a and 7b are closed, the compressor 1 is stopped, the four-way valve 2 and the three-way valve 11 are switched to a predetermined state, and the cooling operation is started. The pressure reducing devices 7a and 7b may gradually open the opening so that the suction side of the compressor does not reach a negative pressure.
次に 第 3 図 を 参照 し て 暖房運転 を 開始す る こ と を 前提 と し た 場合 を 説明す る 。 暖房運転時で は、 減圧装置 4 を 用 い る と 熱源 側熱交換器 3 、 そ し て 配管 1 3 a , 1 3 b 、 1 3 c が低圧側 と な り 、 こ の 中 の冷媒が圧縮機 1 に吸入 さ れる こ と に な る 。 そ こ で、 次に 示す よ う なサ イ ク ル構成 に 変形 し 、 低圧側 に あ る 冷媒 を 減圧装置 4 の上流側 (受液器 5 側) に移動 さ せ る 。 四方弁 2 は配管 1 3 a と 配管 1 3 b と を 、 ま た配管 1 3 h と 酉己管 ; I 3 i と を接続す る よ う に設定す る 。 こ れ は冷房運転 を 行 う と き の 四 方弁の設定 と 同 じ であ る 。 ま た 三方弁 1 1 を ノ ィ パス 通路 1 4 と 配管 1 3 j と を 接続す る 設定 と す る 。 こ の結果、 圧縮機 1 、 配管 1 3 a 、 四方弁 2 、 配管 1 3 b 、 熱源側熱交換器 3 、 配管 1 3 c 、 減圧装置 4 、 配管 1 3 d 、 受液器 5 、 バ イ パ ス 通路 1 4 、 三方弁 1 1 、 配管 1 3 j そ し て再び圧縮機 を接続す る 閉 サ ィ ク ルがで き る 。 こ の と き 、 減圧装置 4 を 全開 と し 圧縮機 1 を 起動 さ せ る と 、 熱源側熱交換器 3 、 配管 1 3 a , 1 3 b や 1 3 c 内 の冷媒が受液器側 に移動す る 。 所定時間圧縮機 1 を 起動 し た後、 減圧装置 4 を 閉 に し圧縮機 1 を 止め 、 四方弁 2 お よ び三 方弁 1 1 を 所定の状態 に切 り 換 え て 、 暖房運転 を 開始す る 。 そ し て 、 減圧装置 7 a お よ び 7 b は、 圧縮機の吸い込み側が負圧 に成 ら な い程度 に 、 徐々 に 開度 を 開 け る よ う にす る こ と が望 ま し い。 Next, a case where it is assumed that heating operation is started will be described with reference to FIG. In the heating operation, when the pressure reducing device 4 is used, the heat source side heat exchanger 3 and the pipes 13a, 13b, and 13c are connected to the low pressure side. That is, the refrigerant in this is drawn into the compressor 1. Then, it is transformed into the following cycle configuration, and the refrigerant on the low pressure side is moved to the upstream side of the pressure reducing device 4 (to the liquid receiver 5 side). The four-way valve 2 is set so as to connect the pipe 13a and the pipe 13b, and to connect the pipe 13h to the torso pipe; I3i. This is the same as the setting of the four-way valve for cooling operation. Also, the three-way valve 11 is set to connect the no-pass passage 14 to the pipe 13 j. As a result, compressor 1, pipe 13a, four-way valve 2, pipe 13b, heat source side heat exchanger 3, pipe 13c, pressure reducing device 4, pipe 13d, receiver 5, pipe 5 Pass passage 14, three-way valve 11, piping 13 j, and a closed cycle to connect the compressor again. At this time, when the pressure reducing device 4 is fully opened and the compressor 1 is started, the refrigerant in the heat source side heat exchanger 3 and the pipes 13a, 13b and 13c flows to the receiver side. Moving . After starting the compressor 1 for a predetermined time, the pressure reducing device 4 is closed, the compressor 1 is stopped, the four-way valve 2 and the three-way valve 11 are switched to a predetermined state, and the heating operation is started. You It is desirable that the pressure reducing devices 7a and 7b gradually open the opening so that the suction side of the compressor does not reach a negative pressure. .
バ イ パ ス 通路 1 4 内 は受液器 5 で の気液分離に よ り ガス 冷媒 力 流れ、 バ イ パ ス 通路 1 4 を 通 っ て 液戻 り が生 じ る こ と は な い 以上 に よ り 、 圧縮機の低圧側 に存在す る 冷媒の状態 に係 わ ら ず、 液戻 り 無 し に圧縮機 を 起動 さ せ る こ と がで き 、 圧縮機の信 頼性 を 確保す る こ と がで き る 。  Gas refrigerant flows in the bypass passage 14 due to gas-liquid separation in the receiver 5, and there is no possibility that liquid returns through the bypass passage 14. Thus, the compressor can be started without liquid return irrespective of the state of the refrigerant present on the low pressure side of the compressor, and the reliability of the compressor is ensured. You can do it.
次に 各冷房運転、 暖房運転や除霜運転前 に 、 低圧側 の冷媒 を 移動 さ せ る 運転方法 を 冷媒移送運転 と 称 し て 説明す る 。  Next, an operation method of moving the low-pressure side refrigerant before each cooling operation, heating operation or defrosting operation will be described as a refrigerant transfer operation.
第 4 図 は 、 ノ イ ノ、' ス 通路 1 4 上 に ノ ィ パ ス 通路 1 4 を 流れ る 冷媒の流量 を 調整す る た め の流量調整弁 1 7 を 設け て い る 。 こ の流量調整弁 1 7 は 、 閉 め切 り 性があ る こ と が望 ま し い。 FIG. 4 shows the flow of the noise through the no-pass passage 14 over the no-noise passage 14 A flow control valve 17 for adjusting the flow rate of the refrigerant is provided. It is desired that the flow control valve 17 has a closeability.
第 5 図 に 示す例 で、 第 1 図か ら 第 4 図 に 示 し た実施例 の三方 弁 1 1 の 機能 を 、 2 つ の 開 閉弁 1 8 a お よ び 1 8 b で実施 し た 場合であ る 。 即 ち 、 冷房運転、 暖房運転、 除霜運転時 は 、 開 閉 弁 1 8 a が開 と な り 開 閉弁 1 8 b が閉 と な る 。 ま た冷媒移送運 転中 は 、 開 閉弁 1 8 a が閉 と な り 開 閉弁 1 8 b が開 と な る 。 な お 、 開 閉弁 1 8 b は流量調整機能 を 有 し て い て も よ い。  In the example shown in FIG. 5, the function of the three-way valve 11 of the embodiment shown in FIGS. 1 to 4 was carried out by two opening / closing valves 18a and 18b. It is the case. That is, in the cooling operation, the heating operation, and the defrosting operation, the opening / closing valve 18a is opened and the opening / closing valve 18b is closed. During the refrigerant transfer operation, the opening / closing valve 18a is closed and the opening / closing valve 18b is opened. The opening / closing valve 18b may have a flow rate adjusting function.
第 6 図か ら 第 9 図 に示す例 で は 、 第 1 図か ら 第 4 図 に示 し た 例 に お け る 四 方弁 2 と 三方弁 1 1 の機能 を 一 つ の六方弁 8 1 で 実施 し た場合であ る 。 六方弁 8 1 に は 、 圧縮機 1 か ら の配管 1 3 a 、 六方弁 8 1 か ら 熱源側熱交換器 3 への配管 1 3 b 、 六方 弁 8 1 か ら 利用側熱交換器 9 a な レゝ し 9 b へ の配管 1 3 j 、 受 液器 5 に つ な がる ノ ィ パ ス 通路 8 0 、 圧縮機 1 の吸い込み側配 管 1 3 j に接続す る 配管 1 3 s 及 び配管 1 3 t の 6 配管が接続 さ れて い る 。 例 え ば、 冷房運転前の冷媒移送運転では 、 第 6 図 に示す例 の よ う に 、 六方弁 8 1 は 、 配管 1 3 a と 配管 1 3 j を 結 び、 かつ配管 1 3 h と 配管 1 3 s と を 結 んでい る 。 ま た暖房 運転前の冷媒移送運転では 、 第 7 図 に示す例 の よ う に 、 六方弁 8 1 は 、 配管 1 3 a と 配管 1 3 b を 結 び、 かつ配管 1 3 h と 配 管 1 3 t と を 結 ん でい る 。 さ ら に冷房運転で は 、 第 8 図 に示す 例 の よ う に 、 六方弁 8 1 は 、 配管 1 3 a と 配管 1 3 b を 結 び、 かつ配管 1 3 h と 配管 1 3 s と を 結 んでレゝ る 。 ま た暖房運転で は 、 第 9 図 に 示す実施例の よ う に 、 六方弁 8 1 は 、 配管 1 3 a と 配管 1 3 j を 結 び、 かつ 配管 1 3 b と 配管 1 3 t と を 結 ん で い る 。 第 1 0 図 か ら 第 1 8 図 に さ ら に本発明の他の実施形態 を 示す。 上記の例 で は各運転モ ー ド の低圧側 に位置す る 熱交換器や配管 内 の 冷媒 を 移動 さ せ る 運転形態であ っ た 。 以下 に説明す る 例 で は 、 低圧側お よ び高圧側 の両方の熱交換器や配管内 の冷媒 を 移 動 さ せ る も の であ る 。 In the examples shown in FIGS. 6 to 9, the functions of the four-way valve 2 and the three-way valve 11 in the examples shown in FIGS. 1 to 4 are combined into one six-way valve 8 1. This is the case when it was implemented. The 6-way valve 81 has piping 13a from the compressor 1, 13b from the 6-way valve 81 to the heat source side heat exchanger 3, and 13b from the 6-way valve 81 to the use side heat exchanger 9a. Piping 13 j to the relay 9 b, the no-pass passage 80 leading to the receiver 5, the piping 13 s and the piping connecting to the suction side piping 13 j of the compressor 1 And 6 pipes of 13 tons are connected. For example, in the refrigerant transfer operation before the cooling operation, as shown in the example in FIG. 6, the six-way valve 81 connects the pipes 13a and 13j, and also connects the pipes 13h and 13h. 1 3 s and. Also, in the refrigerant transfer operation before the heating operation, as shown in the example in FIG. 7, the six-way valve 81 connects the pipes 13a and 13b, and also connects the pipes 13h and 1h. 3 t is connected to. Further, in the cooling operation, as in the example shown in FIG. 8, the hexagonal valve 81 connects the pipes 13a and 13b, and connects the pipes 13h and 13s to each other. We tie and review. In the heating operation, as in the embodiment shown in FIG. 9, the six-way valve 81 connects the pipes 13a and 13j, and connects the pipes 13b and 13t to each other. You are connected. FIGS. 10 to 18 show still another embodiment of the present invention. In the above example, the operation mode is such that the refrigerant in the heat exchanger or the pipe located on the low pressure side of each operation mode is moved. In the example described below, the refrigerant in both the low-pressure side and high-pressure side heat exchangers and the refrigerant in the pipes is moved.
第 1 0 図 に示すサ イ ク ル構成 を 第 1 図 に 示 し たサ イ ク ル と の 差違の み を 示 し て 説明す る 。 第 1 図 の 四方弁 2 は 、 冷房運転時 と 暖房運転時の 2 つ の モ ー ド切換が可能であ っ た。 し か し 、 第 6 図 に示す 四方弁 1 9 は 、 冷房運転時、 暖房運転時 と 冷媒移送 運転時の 3 つ モ ー ド切換が可能 と し て い る 。 よ っ て 、 四方弁 1 9 を 冷媒移送運転モ ー ド に設定す る と 、 次の 2 つ のサ イ ク ル力? 同時 に形成 さ れる 。 一方のサ イ ク ル は、 圧縮機 1 、 配管 1 3 a 、 3 モ ー ド四方弁 1 9 、 配管 1 3 b 、 熱源側熱交換器 3 、 配管 1 3 c 、 減圧装置 4 、 配管 1 3 d 、 受液器 5 、 バ イ パス 通路 1 4 、 三方弁 1 1 、 配管 1 3 j そ し て再び圧縮機 1 で形成 さ れ る サ イ ク ルであ る 。 他方 は 、 圧縮機 1 、 配管 1 3 a 、 3 モ ー ド四方弁 1 9 、 配管 1 3 j 、 1 3 g 、 1 3 m 、 1 3 η 、 室内ユニ ッ ト 1 6 a 、 1 6 b 、 配管 1 3 k 、 1 3 1 、 1 3 f 、 1 3 e 、 受液器 5 ス 通路 1 4 、 三方弁 1 1 、 配管 1 3 j そ し て再び圧 縮機 1 で形成 さ れる サ イ ク ルであ る 。  The cycle configuration shown in FIG. 10 will be described by showing only the difference from the cycle shown in FIG. The four-way valve 2 in FIG. 1 was capable of switching between two modes during cooling operation and heating operation. However, the four-way valve 19 shown in FIG. 6 is capable of switching between three modes during a cooling operation, a heating operation, and a refrigerant transfer operation. Therefore, when the four-way valve 19 is set to the refrigerant transfer operation mode, the following two cycle forces are generated. It is formed at the same time. One cycle consists of compressor 1, pipe 13a, 3-mode four-way valve 19, pipe 13b, heat source side heat exchanger 3, pipe 13c, pressure reducing device 4, pipe 13 d, a receiver 5, a bypass passage 14, a three-way valve 11, a pipe 13j, and a cycle formed again by the compressor 1. On the other hand, compressor 1, piping 13 a, 3 mode four-way valve 19, piping 13 j, 13 g, 13 m, 13 m, 13 η, indoor unit 16 a, 16 b, Piping 13 k, 13 1, 13 f, 13 e, Receptor 5 Sway 14, Three-way valve 11, Piping 13 j, and cycle formed by compressor 1 again It is.
三方弁 1 1 は 、 冷媒移送運転モ ー であ り パス 通路 1 4 と 配管 1 3 j が接続 さ れて い る 。 ま た減圧装置 4 、 7 a お よ び 7 b は全開 であ る 。 こ の状態で圧縮機 1 を 起動 さ せ る と 、 各熱 交換器 と 配管内 の冷媒 を 減圧装置 4 、 減圧装置 7 a と 7 b の上 流側 (受液器 5 側) に移動 さ せ る こ と がで き る 。 こ の冷媒移送 運転の終了 時 に減圧装置 4 、 7 a お よ び 7 b を 閉 じ 、 そ の後冷 房運転や暖房運転等の運転 を 開始す る 。 そ の結果、 運転モ ー ド、 冷媒状態 に係 わ ら ず、 圧縮機 1 の吸い込み側 で の液戻 り を 回避 す る こ と がで き る 。 The three-way valve 11 is a refrigerant transfer operation mode, and the path passage 14 and the pipe 13 j are connected. The decompression devices 4, 7a and 7b are fully open. When the compressor 1 is started in this state, the refrigerant in each heat exchanger and the pipe is moved to the upstream side (the receiver 5 side) of the pressure reducing device 4 and the pressure reducing devices 7a and 7b. You can do it. At the end of this refrigerant transfer operation, the decompression devices 4, 7a and 7b are closed and then cooled. Start operation such as chamber operation or heating operation. As a result, liquid return on the suction side of the compressor 1 can be avoided irrespective of the operation mode and the refrigerant state.
第 1 1 図 か ら 第 1 3 図 は 、 3 モ ー ド四方弁 の構造 と 動作 を 示 し た他の実施の形態であ る 。 四方弁 は チ ャ ン ノ 2 1 内 に ノ ネ 2 3 a 、 2 3 b , お よ び移動通路壁 2 6 と 仕切 り 壁 2 7 があ り 、 移動通路壁 2 6 の外壁 に仕切 り 壁 2 7 は取 り 付 け ら れ、 チ ャ ン ノ 2 1 の 内壁 に も 接 し て レゝ る 。 ま た移動通路壁 2 6 の外壁 に は 両端 に ノ ネ 2 3 a と 2 3 b の端が接続 し て お り 、 残 り の も う 一 方 は チ ャ ン バ内壁 に接続 し て い る 。 ま た チ ヤ ン ノ 2 1 に は 、 圧 縮機の 吐 出 口 に繁がる 配管 1 3 a 、 圧縮機の吸い込み 口 に繋が る 配管 1 3 i 、 熱源側熱交換器に繋がる 配管 1 3 b 、 利用側熱 交換器に繋がる 配管 1 3 . h が接続 さ れて い る 。  FIGS. 11 to 13 show another embodiment showing the structure and operation of a three-mode four-way valve. The four-way valve has channels 23a, 23b, a moving passage wall 26 and a partition wall 27 inside the channel 21, and a partition wall on the outer wall of the moving passage wall 26. 27 is attached, and also contacts the inner wall of the channel 21. At the both ends of the outer wall of the moving passage wall 26, the ends of the non-members 23a and 23b are connected, and the other end is connected to the inner wall of the chamber. . In addition, pipes connected to the outlet of the compressor, pipes connected to the suction port of the compressor, pipes connected to the suction port of the compressor, and pipes connected to the heat source side heat exchanger are connected to the channel. b. Piping 13. h that connects to the use side heat exchanger is connected.
さ ら に 、 チ ャ ン バ 2 1 内壁お よ び移動通路壁 2 6 、 仕切 り 板 2 7 で形成 さ れ る 空間 2 4 お よ び 2 5 と 配管 1 3 i と は切換弁 2 2 を 介 し て 圧力 通路 2 8 a 、 2 8 b 、 2 8 c で接続 さ れて レ る 。 運転停止 中 は 、 移動通路壁 2 6 はパネ 2 3 a と 2 3 b の 力 の釣 り 合いお よ び切換弁 2 2 が圧力 通路 2 8 a と 2 8 c を接続 す る こ と に よ る 圧力 バ ラ ン ス で第 1 3 図 に示す よ う な 中立位置 に あ る 。  Further, the switching valve 22 is connected to the spaces 24 and 25 formed by the inner wall of the chamber 21 and the moving passage wall 26 and the partition plate 27 and the pipe 13 i. Through pressure passages 28a, 28b, 28c. During operation stop, the moving passage wall 26 is used to balance the forces of the panels 23a and 23b, and the switching valve 22 connects the pressure passages 28a and 28c. It is in a neutral position as shown in Fig. 13 at the appropriate pressure balance.
冷房運転時で は 、 切換弁 2 2 に よ り 圧力通路 2 8 a と 2 8 b が接続 さ れ る と 、 空間 2 4 の圧力 が下が り 、 第 1 3 図 の 中立 の 位置か ら 、 移動通路壁 2 6 と 仕切 り 板 2 7 は 図 に対 し右 に移動 し第 1 1 図 の状態 と な り 安定す る 。 一方、 暖房運転時で は、 切 換弁 2 2 に よ り 圧力 通路 2 8 b と 2 8 c が接続 さ ; IXる と 、 空間 2 5 の圧力 が下が り 、 第 1 3 図 の 中 立位置か ら 、 移動通路壁 2 6 と 仕切 り 板 2 7 は 図 に対 し左 に移動 し第 1 2 図 の状態 と な り 安定す る 。 冷媒移送運転時では 、 切換弁 2 2 は圧力通路 2 8 a と 2 8 c を 接続 し 、 第 1 3 図 の 中立位置で安定す る 。 従 っ て 、 圧縮機の吐出 口 に 繋がる 配管 1 3 a を 流れ た 冷媒は 、 配管 1 3 b と 配管 1 3 h の両方 に 流す こ と 力 で き る 。 切換弁 2 2 は 3 つ の 開 閉弁 を 各々 の圧力通路 2 8 a 、 2 8 b , 2 8 c に設け る と 同時 に 、 3 つ の圧力通路 を 合流 さ せ る こ と に よ つ て も 同様な機 能 と す る こ と 力 で き る 。 During the cooling operation, when the pressure passages 28 a and 28 b are connected by the switching valve 22, the pressure in the space 24 decreases, and from the neutral position in FIG. 13, The moving passage wall 26 and the partition plate 27 move to the right with respect to the figure, and become stable as shown in FIG. 11. On the other hand, during the heating operation, the pressure passages 28b and 28c are connected by the switching valve 22; IX, when the pressure in the space 25 decreases, the neutral position in FIG. From the moving passage wall 2 6 and the partition plate 27 move to the left with respect to the figure, and reach the state shown in Fig. 12 and become stable. During the refrigerant transfer operation, the switching valve 22 connects the pressure passages 28a and 28c, and stabilizes at the neutral position in FIG. Therefore, the refrigerant flowing through the pipe 13a connected to the discharge port of the compressor can be forced to flow through both the pipe 13b and the pipe 13h. The switching valve 22 is provided by providing three opening / closing valves in each of the pressure passages 28 a, 28 b, 28 c, and at the same time, by joining the three pressure passages. Can also have a similar function.
第 1 4 図 は 、 第 1 0 図 の例 に対 し て さ ら に 、 他の実施の形態 を 示す。 第 1 図 で は配管 1 3 i 、 配管 1 3 j そ し て ノ ィ パス 通 路 1 4 を 三方弁 1 1 を 介 し て接続 し て い たが、 第 1 4 図 の例 で は 、 3 つ の配管 を 合流点 7 2 で合流接続 さ せ、 バ イ パス 通路 1 4 上お よ び配管 1 3 h 上 に各々 開 閉弁 2 9 b 、 2 9 a を 設け て い る 。 ま た 、 四方弁 2 と 熱源側熱交換器 3 の 間 の配管 1 3 b と 配管 1 3 h と を 結 ぶ副通路 7 0 を 設け 、 副通路 7 0 上 に 開 閉弁 2 9 c を 設け て い る 。 開 閉弁 2 9 a は 、 合流点 7 1 か ら 合流点 7 2 の 間 に設け て あ れば よ い。  FIG. 14 shows still another embodiment with respect to the example of FIG. In FIG. 1, the piping 13 i, the piping 13 j, and the no-pass passage 14 are connected via the three-way valve 11, but in the example of FIG. The two pipes are connected at a junction 72, and open / close valves 29b and 29a are provided on the bypass passage 14 and the pipe 13h, respectively. In addition, a sub-passage 70 connecting the pipe 13 b and the pipe 13 h between the four-way valve 2 and the heat source side heat exchanger 3 is provided, and an opening / closing valve 29 c is provided on the sub-passage 70. ing . The opening / closing valve 29a may be provided between the junction 71 and the junction 72.
冷房運転、 暖房運転そ し て 除霜運転時で は 、 開閉弁 2 9 b , 2 9 c を 閉 と し 、 開 閉弁 2 9 a を 開 と す る こ と で通常 の運転が 可能 と な る 。 ま た 冷媒移送運転では 、 開 閉弁 2 9 b 、 2 9 c を 開 と し 、 開 閉弁 2 9 a を 閉 と し 、 四方弁 2 を 冷房運転時のモ ー ド と す る 。 さ ら に 、 減圧装置 4 、 7 a お よ び 7 b は全開 であ る c こ の状態 で圧縮機 1 を 起動 さ せ る と 、 各熱交換器 と 配管内 の冷 媒 を 減圧装置 .4 、 減圧装置 7 a と 7 b の上流側 (受液器 5 側) に移動 さ せ る こ と がで き る 。 During cooling operation, heating operation and defrosting operation, normal operation can be performed by closing the on-off valves 29b and 29c and opening the on-off valve 29a. . In the refrigerant transfer operation, the opening and closing valves 29b and 29c are opened, the opening and closing valve 29a is closed, and the four-way valve 2 is set to a mode for the cooling operation. Et al is, decompressor 4, 7 when a contact good beauty 7 b is Ru activates the compressor 1 in a state of Ru fully open der c This vacuum apparatus refrigerant in the pipe between the heat exchangers .4 However, it can be moved upstream of the pressure reducing devices 7a and 7b (to the receiver 5 side).
冷媒移送運転の終了時 に減圧装置 4 、 7 a お よ び 7 b を 閉 じ , そ の後冷房運転や 暖房運転等の運転 を 開始す る 。 そ の結果、 運 転モ ー ド、 冷媒状態 に係わ ら ず、 圧縮機 1 の吸 い込み側 での液 戻 り を 回避す る こ と がで き る 。 At the end of the refrigerant transfer operation, the pressure reducing devices 4, 7a and 7b are closed, After that, operations such as cooling operation and heating operation are started. As a result, liquid return on the suction side of the compressor 1 can be avoided irrespective of the operation mode and the state of the refrigerant.
第 1 5 図 は 、 第 1 0 図 の さ ら に他の実施形態 を 示す。 第 1 図 で は配管 1 3 i 、 配管 1 3 j そ し て ノ イ ノ、'ス 通路 1 4 を 三方弁 1 1 を 介 し て接続 し て い た が、 第 1 5 図 の例 で は、 3 つ の配管 を 合流点 7 2 で合流 し て接続 さ せ る 。 ま た圧縮機 1 の 吐出側 は 2 つ に通路 に 分岐 し (配管 1 3 a 、 配管 1 3 q ) 、 各 々 四方弁 FIG. 15 shows yet another embodiment of FIG. In FIG. 1, the piping 13 i, the piping 13 j, and the nose passage 14 are connected via the three-way valve 11, but in the example of FIG. And the three pipes are joined at the junction 72 and connected. The discharge side of compressor 1 is branched into two passages (piping 13a, piping 13q), each of which is a four-way valve.
2 a と 2 b に接続す る 。 四方弁 2 a に は 、 配管 1 3 a 、 配管 1 3 b 、 配管 1 3 〖 と 配管 1 3 h が接続 し 、 冷房運転時で は、 配 管 1 3 a と 配管 1 3 b 、 配管 1 3 i と 配管 1 3 h 力?繫が り 、 暧 房運転時で は、 配管 1 3 a と 配管 1 3 h 、 配管 1 3 b と 配管 1Connect to 2a and 2b. Piping 13a, piping 13b, piping 13 〖and piping 13h are connected to the four-way valve 2a. During cooling operation, piping 13a and piping 13b and piping 13 are connected. i and piping 1 3 h force? When the tubing is in operation, the piping 13a and the piping 13h, the piping 13b and the piping 1
3 i が繋力 sる 。 四方弁 2 b に は、 配管 1 3 q 、 1 3 r 、 1 3 ο と 1 3 ρ が接続 し 、 ?令房運転時で は 、 配管 1 3 q と 配管 1 3 r 、 配管 1 3 0 と 配管 1 3 p が繋が り 、 暖房運酝時で は 、 配管 1 3 q と 配管 1 3 p 、 配管 1 3 r と 配管 1 3 0 が繋がる 。 配管 1 3 p の他端 は合流点 7 3 で配管 1 3 g と 合流す る 。 配管 1 3 0 の 他端 は合流点 7 2 で配管 1 3 h と バ イ パス 通路 1 4 と 合流す る 。 配管 1 3 i は合流点 7 4 で配管 1 3 0 と 合流す る 。 配管 1 3 r は 合流点 7 5 で配管 1 3 b に 合流す る 。 ま た 配管 1 3 r 上 に は 逆止弁 3 1 b があ り 、 四方弁 2 b か ら 熱源側熱交換器 3 の方 向 に の み冷媒が流れ る 。 さ ら に 配管 1 3 i 上 に は逆止弁 3 1 a あ り 、 四方弁 2 a カゝ ら 配管 1 3 0 の方向 の み冷媒が流れる 。 3 i is connected. The pipes 13q, 13r, 13ο and 13ρ are connected to the four-way valve 2b. During operation, the piping 13q and the piping 13r are connected, and the piping 130 and the piping 13p are connected. During the heating operation, the piping 13q and the piping 13p and the piping 13 are connected. r is connected to piping 130. The other end of the pipe 13p joins the pipe 13g at the junction 73. The other end of the pipe 130 joins the pipe 13 h and the bypass passage 14 at a junction 72. The pipe 13 i merges with the pipe 130 at the junction 74. The pipe 13r joins the pipe 13b at the junction 75. A check valve 31b is provided on the pipe 13r, and the refrigerant flows only from the four-way valve 2b toward the heat source side heat exchanger 3. Further, a check valve 31a is provided on the pipe 13i, and the refrigerant flows only in the direction of the pipe 130 from the four-way valve 2a.
冷媒移送運転で は 、 四方弁 2 a を 冷房運転モ ー ド、 四方弁 2 b を 暖房運転モ ー ド と す る 。 ま た減圧装置 4 、 7 a お よ び 7 b は全開 であ る 。 こ の状態で圧縮機 1 を 起動 さ せ る と 、 各熱交換 器 と 配管内 の 冷媒 を 減圧装置 4 、 減圧装置 7 a と 7 b の上流側 (受液器 5 側) に 移動 さ せ る こ と 力 で き る 。 こ の冷媒移送運転 の終了時 に 減圧装置 4 、 7 a お よ び 7 b を 閉 じ 、 そ の後冷房運 転や暖房運転等の運転 を 開始す る 。 そ の結果、 運転モ ー ド 、 冷 媒状態 に係 わ ら ず、 圧縮機 1 の吸い込み側 で の液戻 り を 回避す る こ と がで き る 。 In the refrigerant transfer operation, the four-way valve 2a is set to the cooling operation mode, and the four-way valve 2b is set to the heating operation mode. The decompression devices 4, 7a and 7b are fully open. When the compressor 1 is started in this state, each heat exchange The refrigerant in the vessel and the pipe can be moved to the upstream side of the decompression device 4 and the decompression devices 7a and 7b (to the receiver 5 side). At the end of the refrigerant transfer operation, the depressurizing devices 4, 7a and 7b are closed, and then operations such as cooling operation and heating operation are started. As a result, liquid return on the suction side of the compressor 1 can be avoided irrespective of the operation mode and the refrigerant state.
第 1 6 図 は 、 第 1 5 図 に示 し たサ イ ク ル で 、 冷房運転 を行 う と き の冷媒の流れ を 示 し て い る 。 ま た第 1 7 図 は 、 第 1 5 図 に 示 し たサ イ ク ル で 、 暖房運転 を 行 う と き の冷媒の流れ を 示 し て い る 。  FIG. 16 shows the flow of the refrigerant when performing the cooling operation in the cycle shown in FIG. FIG. 17 shows the flow of the refrigerant during the heating operation in the cycle shown in FIG.
第 1 8 図 は 、 第 5 図 に 示 し たサ イ ク ルで、 第 5 図 中 のノ イ ノ、' ス 通路 1 4 に相 当 す る 第 1 4 図 中 の ノ イ ノ、 ° ス 通路 3 3 の圧縮機 側 の接続位置 を 、 圧縮機の吸い込み側配管で は な く 、 圧縮機の 圧縮過程 の途 中 と し た場合のサ イ ク ル構成であ る 。 こ のサ イ ク ルで は 、 バ イ ノヽ ' ス 通路 3 3 を 利用 し て 、 冷房運転時、 暖房運転 時 に お いて 、 ガ ス イ ン ジ ェ ク シ ョ ン サ イ ク ル を 構成す る こ と が で き る 。  FIG. 18 is the cycle shown in FIG. 5 and corresponds to the noise passage in FIG. 5 and the noise passage in FIG. This is a cycle configuration in which the connection position of the passage 33 on the compressor side is not the suction side pipe of the compressor but is in the middle of the compression process of the compressor. In this cycle, a gas injection cycle is constituted during the cooling operation and the heating operation by using the bypass passage 33. You can do it.
第 1 9 図 は 、 第 1 8 図 に示すサ イ ク ル上の 圧縮機 1 と し て 用 レ、 る 圧縮機の例 を 示 し て レ る 。 ノ イ ノヽ° ス 通路 3 3 は 、 固定ス ク ロ ー ル 4 4 と 鏡板 4 5 で形成 さ れ る 圧縮室 5 0 に接続 さ れて い る o  FIG. 19 shows an example of a compressor used as the compressor 1 on the cycle shown in FIG. The noise passage 33 is connected to a compression chamber 50 formed by a fixed scroll 44 and a head plate 45.
第 2 0 図 は 、 受液器の構造 の例 を 示す。 受液器 5 は底部 中 央 に仕切 り 板 6 4 を 有 し 、 配管 6 2 a お よ び配管 6 2 b が挿入 さ れて い る 。 配管 6 2 a と 配管 6 2 b の端部は仕切 り 板 6 4 の上 端 よ り も 低い位置 に あ り 、 各々 の配管か ら 流出す る 冷媒流の相 互干渉あ が生 じ な レゝ ょ う に し て い る 。 ま た受液器 5 は 内部で二 相冷媒 を 気液の密度差、 即 ち 重力 の影響に よ り 、 上層 に ガ ス 相 、 下層 に液相 と に気液分離す る 。 FIG. 20 shows an example of the structure of the liquid receiver. The receiver 5 has a partition plate 64 in the center of the bottom, and the pipes 62a and 62b are inserted. The ends of the piping 62 a and the piping 62 b are located lower than the upper end of the partition plate 64, so that mutual interference of the refrigerant flows flowing out of the respective piping does not occur. I am doing it. The receiver 5 is internally The phase refrigerant is separated into a gas phase in the upper layer and a liquid phase in the lower layer due to the density difference between the gas and liquid, that is, the influence of gravity.
受液器 5 内 に挿入 さ れて い る そ れ ぞれの配管 6 2 a 、 6 2 b に は 、 受液器 5 か ら 流出 す る 冷媒流の乾 き 度 (全冷媒質量流量 に対す る ガス 冷媒 の 質量流量割合) を 適度 に す る た め の ガス 抜 き 孔 6 3 a 、 6 3 b があ る 。 ま た 、 圧縮機の吸い込み側 に繋が る ノ イ ノヽ° ス 通路 6 1 の端部 は 、 受液器 5 の上部 に取 り 付 け ら れ ガス 冷媒の み を 取 り 出す。  Each of the pipes 6 2 a and 62 b inserted into the receiver 5 has a dryness of the refrigerant flow flowing out of the receiver 5 (to the total refrigerant mass flow rate). There are gas vent holes 63a and 63b to make the mass flow rate of the gas refrigerant appropriate. Further, the end of the noise passage 61 connected to the suction side of the compressor is attached to the upper part of the receiver 5 to take out only gas refrigerant.
以上の説明 で は 、 冷房運転、 暖房運転や 除霜運転前お よ び除 霜運転中 の圧縮機の再起動時後 に冷媒移送運転 を行 う と し て い る が、 冷媒移送運転は各運転の終了直前 に行 っ て も よ い。 こ の 場合は受液器への冷媒回収運転 と 同 じ に な る 。  In the above description, the refrigerant transfer operation is performed before the cooling operation, the heating operation, the defrosting operation, and the restart of the compressor during the defrosting operation. It may be performed just before the end of driving. In this case, the operation is the same as the operation of collecting the refrigerant in the receiver.
特 に 可燃性の冷媒 な どは 、 運転終了直前 に冷媒移送運転 を 行 う こ と で、 室外機 に冷媒 を 集め ら れ る の で 、 室内への冷媒の漏 洩 な ど を 防 ぎ、 ま た漏洩 し た場合に お い て も 最小限度の漏洩量 に押 さ え る こ と が可能 と な る 。 室外側 の熱源側熱交換器 と 室内 側 の利用側熱交換器 を 各々 含む 2 つ の 閉サ イ ク ル を 同時 に構成 で き 、 冷媒移送運転 を行 う こ と が好 ま し いが、 少 な く と も 室内 側の利用側熱交換器 を含む 閉サ イ ク ル を構成 し 、 冷媒移送運転 を 行 う こ と 力 望 ま し レ 。  In particular, for flammable refrigerants, the refrigerant is collected in the outdoor unit by performing the refrigerant transfer operation immediately before the end of the operation, so that leakage of the refrigerant into the room can be prevented. Even if a leak occurs, it is possible to minimize the amount of leak. Two closed cycles each including a heat source side heat exchanger on the outdoor side and a use side heat exchanger on the indoor side can be configured simultaneously, and it is preferable to perform the refrigerant transfer operation. It is desirable to construct a closed cycle that includes at least the indoor heat exchanger on the indoor side and perform refrigerant transfer operation.
上記の例 は 、 冷媒の種類及 び油 の種類、 ス ク ロ ー ル圧縮機、 レ シ プ ロ 圧縮機、 ロ ー タ リ 一圧縮機 な ど圧縮機の形式 に係 わ ら ず液戻 り を 解消 で き る の で 、 特 に R 4 0 7 C や R 4 1 0 A を 代 表 と す る H F C 系冷媒、 ま た は二酸化炭素や H C 系冷媒な どの 自 然系冷媒 と し た場合は 、 冷媒の使用 量 を 少 な く で き る の で、 地球環境保全 に 望 ま し い。 さ ら に 、 ス ク ロ ー ル圧縮機 と す れば 効率が よ り 向上 し て一層地球環境保全に望 ま し い も の と す る こ と がで き る 。 The above example shows the liquid return regardless of the type of refrigerant, such as the type of refrigerant and oil, the scroll compressor, the reciprocating compressor, and the rotary compressor. In particular, when using HFC-based refrigerants represented by R407C or R410A or natural refrigerants such as carbon dioxide or HC-based refrigerants Since it is possible to reduce the amount of refrigerant used, it is desirable for global environmental protection. Furthermore, if a scroll compressor is used, Efficiency can be further improved and it can be more desirable for global environmental protection.
ま た 、 一定速機、 イ ン バー タ 駆動の圧縮機で も 可能であ り 、 圧縮機内 の電動機部が冷媒吸入側 に あ る 低圧 チ ヤ ン バ方式の圧 縮機 に お い て も 、 ま た圧縮機内 の電動機部が冷媒吐出側 に あ る 高圧チ ヤ ン ノ 方式の圧縮機 に お い て も 有効で あ る の で 、 特 に ィ ン ノ 一 タ 駆動、 高圧チ ヤ ン バ方式の圧縮機 と す れば要求負荷 に 対 し て効率良 く 運転で き る の で 、 よ り 一層 、 消費電力 量等の低 減がで き 地球環境保全 に望 ま し い も の と す る こ と 力 で き る 。  It is also possible to use a constant-speed compressor or an inverter-driven compressor.Even if the compressor is a low-pressure chamber-type compressor in which the electric motor in the compressor is on the refrigerant suction side, It is also effective in a high-pressure channel type compressor in which the electric motor in the compressor is on the refrigerant discharge side, so it is particularly suitable for an inverter driven high-pressure channel type. The compressor of (1) can operate efficiently with respect to the required load, so that the power consumption etc. can be further reduced, which is desirable for global environmental protection. I can do this.
以上 、 ア キ ュ ム レ ー タ 付 き サ イ ク ル を レ シ ー ノ 付 き サ イ ク ル に す る こ と で、 例 え ば冷房運転で は 、 レ シ一ノ に液冷媒 を 溜 め る 構成 と な り 、 室外機の熱源側熱交換器で凝縮 し た液冷媒 を レ シ一バ に移動 し 、 液冷媒の溜 ま つ て い た熱交換器部分 も 二相域 で使用 で き る た め熱交換器の有効活用 が図れ、 そ の結果、 凝縮 圧力 が下が り 、 ま た圧縮仕事が減 る こ と で 、 同一冷房能力 で消 費電力 低減がで き る 。  As described above, the cycle with the accumulator is changed to the cycle with the receiver, for example, in the cooling operation, the liquid refrigerant is stored in the receiver. The liquid refrigerant condensed in the heat exchanger on the heat source side of the outdoor unit is moved to the receiver, and the heat exchanger part where the liquid refrigerant is stored can be used in the two-phase region. As a result, the heat exchanger can be effectively used, and as a result, the condensing pressure is reduced and the compression work is reduced, so that the power consumption can be reduced with the same cooling capacity.
例 え ば、 冷房能力 1 4 k Wの室外機 1 台、 室内機 1 台の機種 で は 、 冷房 C 0 P (成績係数 = 冷房能力 Z消費電力 ) を 約 2 . 6 か ら 約 2 . 8 〜 2 . 9 に 約 1 0 % 向上で き る 。 ま た暖房運転 時 も 同様な効果が得 ら れる 。  For example, for a model with one outdoor unit and one indoor unit with a cooling capacity of 14 kW, the cooling C0P (coefficient of performance = cooling capacity Z power consumption) is about 2.6 to about 2.8. It can be improved by about 10% to 2.9. The same effect can be obtained during the heating operation.
従来、 レ シ ー バ付 き サ イ ク ル に お い て 、 液戻 り に対す る 圧縮 機の信頼性 を 確保す る た め に 、 ア キ ュ ム レ ー タ も 搭載す る 必要 があ る 。 し か し 、 本発明 に よ り 、 ア キ ュ ム レ ー タ 無 し の レ シ一 バ付 き サ イ ク ル と す る こ と が可能であ る 。 そ の結果、 例 え ば冷 房能力 1 4 k Wの 室外機で は 、 ア キ ュ ム レ ー タ と レ シ ー ノ の両 方 を 搭載 し た場合、 室外機の 幅が約 1 . 2 m の寸法 と な る の を 本発明 に よ れば約 1 . 0 〜 1 . 1 m に約 1 0 %小型化す る こ と が可能 と な る 。 Conventionally, in a cycle with a receiver, an accumulator must also be installed to ensure the compressor's reliability against liquid return. . However, according to the present invention, it is possible to provide a receiver-less cycle without an accumulator. As a result, for example, in an outdoor unit with a cooling capacity of 14 kW, if both the accumulator and the receiver are installed, the width of the outdoor unit will be about 1.2. m According to the present invention, it is possible to reduce the size by about 10% to about 1.0 to 1.1 m.
さ ら に 、 例 え ば、 冷房能力 1 4 k Wの室外機 1 台、 室内機 1 台 の機種で は 、 ア キ ュ ム レ ー タ 付 き サ イ ク ル を レ シ ー ノ 付 き サ ィ ク ル に す る こ と で、 凝縮器 と し て働 く 熱交換器に溜 ま る 液冷 媒量 を 削減で き る の で、 冷媒封入量 を 5 . 6 k g か ら 約 4 . 0 〜 4 . 5 k g に約 2 0 %削減 (省冷媒化) で き 、 ま た ア キ ュ ム レ ー タ と レ シ ー バ の両方 を 搭載 し た場合、 冷媒封入量が約 4 . 5 〜 5 . 0 k g と な る の を 、 本発明 に よ り 、 ア キ ュ ム レ ー タ を 配置 し な く て よ い の で、 冷媒封入量 を 約 4 〜 4 . 5 k g に で き る こ と で、 省冷媒化の効果 を 維持で き る 。  Furthermore, for example, in the case of a model with one outdoor unit and one indoor unit with a cooling capacity of 14 kW, the cycle with the accumulator is replaced with the one with the receiver. By reducing the amount of liquid cooling medium that accumulates in the heat exchanger acting as a condenser, the amount of refrigerant charged can be reduced from 5.6 kg to about 4.0 kg. Approximately 20% reduction to 4.5 kg (refrigerant saving), and when both the accumulator and receiver are installed, the amount of refrigerant charged is approximately 4.5 to 4.5 kg. According to the present invention, it is not necessary to arrange an accumulator according to the present invention, so that the refrigerant filling amount can be reduced to about 4 to 4.5 kg. Thus, the effect of refrigerant saving can be maintained.
室内機側 の 閉サ イ ク ル の冷媒移送運転の運転時間 は 、 室外熱 交換器 と 室内熱交換器の 間 の配管長や、 室内機の台数 に よ つ て も 異 な る 。 例 え ば、 室外機 1 台 と 室 内機 1 台 で、 室外熱交換器 と 室内熱交換器間 の配管長が 5 m の時、 運転時間 は 0 . 5 〜 1 . 5 分間程度が望 ま し い。 ま た 、 そ れ以上の配管長の場合は 、 運転時間 (分) = 配管長 ( m ) / 5 ( m ) X 0 . 5 〜 1 . 5 (分) の時間、 運転す る こ と が良 く 、 室内機が複数台あ る 場合は 、  The operation time of the closed-cycle refrigerant transfer operation on the indoor unit side also differs depending on the pipe length between the outdoor heat exchanger and the indoor heat exchanger, and the number of indoor units. For example, with one outdoor unit and one indoor unit, if the pipe length between the outdoor heat exchanger and the indoor heat exchanger is 5 m, the operating time is expected to be about 0.5 to 1.5 minutes. Yes. If the pipe length is longer than that, it is better to operate for the time of operation time (min) = pipe length (m) / 5 (m) X 0.5 to 1.5 (min). If there are multiple indoor units,
運転時間 (分) = 室内機台数 (台) X 0 . 5 〜 1 . 5 (分/台) の時間 、 運転す る こ と が望 ま し い。  Operating time (minutes) = Number of indoor units (units) X 0.5 to 1.5 (minutes / unit) It is desirable to operate for a period of time.
さ ら に 、 室外機側 の 閉サ イ ク ル の冷媒移送運転の運転時間 は 大概 0 . 5 〜 1 . 5 分間程度が望 ま し い。  In addition, the operation time of the closed-cycle refrigerant transfer operation on the outdoor unit side is generally desired to be about 0.5 to 1.5 minutes.
以上説明 し た よ う に 、 本発明 に よ れば、 ノ ' ィ ノ、。 ス 通路 を 開 と し た後に圧縮機 を 所定時間運転す る の で 、 圧縮機の低圧側 に存 在す る 冷媒の状態 に係 わ ら ず、 低圧側の冷媒 を 移動 さ せ る こ と 力 で き 、 信頼性 を 向上 す る こ と 力 で き る 。 よ っ て 、 ア キ ュ ム レ ー タ を 除去 し て部品点数 を 削減 し 、 小型化、 軽量化が可能 と な り 、 使用 す る 冷媒 も 少 な く で き る 。 As described above, according to the present invention, no noise. Since the compressor is operated for a predetermined time after the passage is opened, the low pressure side refrigerant is moved regardless of the state of the refrigerant present on the low pressure side of the compressor. And improve the reliability. So, accumulate The number of parts can be reduced by removing the data, the size and weight can be reduced, and the amount of the refrigerant to be used can be reduced.
ま た 、 本発明 に よ れ ば、 一方の熱交換器、 受液器及 びバ イ ノ、。 ス 通路 を 含ん だ第 1 の 閉サ イ ク ル と 、 他方の熱交換器、 受液器 及 びバ イ パス 通路 を 含ん だ第 2 の 閉サ イ ク ル と を 形成 し た後 に 、 圧縮機 を 所定時間 運転す る の で、 低圧側及び高圧側 の両方の熱 交換器や配管内 の 冷媒 を 移動 さ せ る こ と がで き 、 運転モ ー ド に 係 わ ら ず、 液戻 り を 回避で き る 。  Also, according to the present invention, one of the heat exchanger, the liquid receiver and the vino. Compression after forming a first closed cycle containing the heat passage, and a second closed cycle containing the other heat exchanger, receiver and bypass passage. Since the unit is operated for a predetermined time, it is possible to move the refrigerant in both the low-pressure side and high-pressure side heat exchangers and the refrigerant in the piping, and to return the liquid regardless of the operation mode. Can be avoided.
さ ら に 、 本発明 に よ れば、 ノ ィ パス 通路 を 開 と し た後に圧縮 機 を 0 . 5 〜 1 . 5 分間 に複数台の室内機の 台数 を 乗 じ た 時間 運転す る の で、 室内機が複数台あ る 場合で も 液戻 り を 防止す る 運転 を無駄に 長 く す る こ と がな い。  Furthermore, according to the present invention, after the no-pass passage is opened, the compressor is operated for 0.5 to 1.5 minutes multiplied by the number of indoor units. However, even when there are multiple indoor units, the operation for preventing the liquid from returning does not needlessly become longer.

Claims

贖 求 の 範 囲 Scope of Atonement
1 . 圧縮機、 四方弁、 熱源側熱交換器、 室外減圧装置、 受液器、 室 内減圧装置、 利用側熱交換器が配管で接続 さ れ た冷凍サ イ ク ル を 有す る 空気調和機 に お い て 、  1. Air conditioning with a refrigeration cycle in which a compressor, a four-way valve, a heat source side heat exchanger, an outdoor decompression device, a receiver, an indoor decompression device, and a use side heat exchanger are connected by piping. On the machine,
前記圧縮機の吸入側 と 前記受液器 と を 結ぶバ イ パ ス 通路 と 、 前記冷凍サ イ ク ル の 通路が、 開の と き 前記バ ィ パ ス 通路が閉 と な り 、 閉 の と き 前記バィ パス 通路が開 と さ れ る 制御弁 と を 備 え 、 少 な く と も 前記空気調和器の運転の始動時 に前記バ ィ ノ、" ス 通路 を 開 と し た後 に前記圧縮機 を 所定時 間運転す る こ と を 特徴 と す る 空気調和機。  When the bypass passage connecting the suction side of the compressor and the liquid receiver and the passage of the refrigeration cycle are open, the bypass passage is closed, and the closed passage is closed. A control valve for opening the bypass passage, at least at the start of the operation of the air conditioner, after opening the bypass passage. An air conditioner characterized by operating the air conditioner for a predetermined time.
2 . 圧縮機、 四 方弁、 熱源側熱交換器、 室外減圧装置、 受液器、 室内減圧装置、 利用側熱交換器が配管で接続 さ れ た冷凍サ イ ク ル を 有す る 空気調和機 にお い て 、  2. Air conditioning with a refrigeration cycle in which a compressor, a four-way valve, a heat source side heat exchanger, an outdoor decompression device, a receiver, an indoor decompression device, and a use side heat exchanger are connected by piping. On the machine,
前記圧縮機の吸入側 と 前記受液器 と を 結ぶバ イ パ ス 通路 と 、 前記圧縮機、 前記熱源側熱交換器又 は前記利 側熱交換器の いずれか一方、 及 び前記バ ィ パス 通路 を 含ん だ閉サ イ ク ル を 形 成す る 手段 と 、  A bypass passage connecting the suction side of the compressor and the liquid receiver, any one of the compressor, the heat source side heat exchanger or the right side heat exchanger, and the bypass Means for forming a closed cycle including a passage;
前記閉サ イ ク ル を 形成 し た後に前記圧縮機 を 所定時間運転す る こ と を特徴 と す る 空気調和機。  An air conditioner characterized in that the compressor is operated for a predetermined time after the closed cycle is formed.
3 . 圧縮機、 四方弁、 熱源側熱交換器、 室外減圧装置、 受液器、 室内減圧装置、 利用側熱交換器が配管で接続 さ れた冷凍サ イ ク ル を 有す る 空気調和機に お い て 、  3. An air conditioner with a refrigeration cycle in which a compressor, a four-way valve, a heat source side heat exchanger, an outdoor pressure reducing device, a receiver, an indoor pressure reducing device, and a use side heat exchanger are connected by piping. In the
前記圧縮機の吸入側 と 前記受液器 と を 結ぶ バ イ パ ス 通路 を 備 え 、 前記室外減圧装置及び室内減圧装置 を 開 と し 、  A bypass passage connecting the suction side of the compressor and the liquid receiver is provided, and the outdoor decompression device and the indoor decompression device are opened;
前記圧縮機、 前記熱源側熱交換器及 び前記利用側熱交換器の う ち 前記圧縮機の吸 い込み側 と な る一方の熱交換器、 前記受液器 及 び前記バ イ パス 通路 を 含ん だ第 1 の 閉サ イ ク ル と 、 One of the compressor, the heat source side heat exchanger and the use side heat exchanger, which is a suction side of the compressor, and the liquid receiver And a first closed cycle including said bypass passage; and
前記圧縮機、 前記熱源側熱交換器及 び前記利用側熱交換器の う ち 前記圧縮機の 吐 き 出 し 側 と な る 他方の熱交換器、 前記受液 器及 び前記バ イ パ ス 通路 を 含ん だ第 2 の 閉サ イ ク ル と を形成 し た後 に 、 前記圧縮機を 所定時間運転す る こ と を 特徴 と す る 空気 調和機。  The other of the compressor, the heat source side heat exchanger, and the use side heat exchanger, which is a discharge side of the compressor, the liquid receiver, and the bypass. An air conditioner characterized by operating the compressor for a predetermined time after forming a second closed cycle including a passage.
4 . 圧縮機、 四方弁、 熱源側熱交換器、 室外減圧装置 と 受液器 を 有す る 室外機 と 、 室内減圧装置、 利用側熱交換器を 有す る 複 数台の室内機 を備 え た空気調和機 に お いて 、  4. An outdoor unit having a compressor, a four-way valve, a heat source side heat exchanger, an outdoor decompression device and a receiver, and a plurality of indoor units having an indoor decompression device and a use side heat exchanger In the air conditioner obtained,
前記圧縮機の吸入側 と 前記受液器 と を 結ぶ バ イ パ ス 通路 を 備 え 、 少 な く と も 前記空気調和器の運転の始動時 に前記バ イ パ ス 通路 を 開 と し た後 に前記圧縮機 を 0 . 5 〜 1 . 5 分間 に前記複 数台の室内機の台数 を 乗 じ た 時間運転す る こ と を特徴 と す る 空 気調和機。  A bypass passage connecting the suction side of the compressor and the liquid receiver is provided, at least after opening the bypass passage at the start of the operation of the air conditioner; An air conditioner characterized in that the compressor is operated for 0.5 to 1.5 minutes, multiplied by the number of the plurality of indoor units.
5 . 請求項 1 に 記載の も の に お い て 、 前記バ イ パ ス 通路 と 前記 圧縮機の吸入側 と の合流部 に 三方弁 を 設け た こ と を 特徴 と す る 空気調和機。  5. The air conditioner according to claim 1, wherein a three-way valve is provided at a junction between the bypass passage and a suction side of the compressor.
6 . 請求項 1 に記載の も の にお いて 、 前記バ イ パス 通路 を 前記 受液器の上部 と な る 位置 に接続 し た こ と を 特徴 と す る 空気調和 機。  6. The air conditioner according to claim 1, wherein the bypass passage is connected to a position that is to be an upper part of the liquid receiver.
7 . 請求項 1 に記載の も の に お い て 、 前記バ ィ パス 通路 に流量 制御弁 を 設 け た こ と を 特徴 と す る 空気調和機。  7. The air conditioner according to claim 1, wherein a flow control valve is provided in the bypass passage.
8 . 圧縮機、 四方弁、 熟源側熱交換器、 室外減圧装置、 受液器 を 有す る 室外機 に お いて 、  8. For an outdoor unit that has a compressor, a four-way valve, a heat source side heat exchanger, an outdoor decompression device, and a receiver,
前記圧縮機の吸入側 と 前記受液器 と を 結ぶバ ィ パス 通路 と 、 前記バ ィ パ ス 通路 を 開 閉す る 制御弁 と を 備 え 、 前記バ イ パ ス 通 路 を 開 と し た後 に 前記圧縮機 を 所定時間運転す る こ と を 特徴 と す る 室外機。 A bypass passage connecting the suction side of the compressor and the liquid receiver; and a control valve for opening and closing the bypass passage, wherein the bypass passage is provided. An outdoor unit characterized in that the compressor is operated for a predetermined time after the road is opened.
9 . 請求項 8 に記載の も の に お い て 、 前記バ イ パス 通路 と 前記 圧縮機の吸 入側 と の 合流部 に 三方弁 を 設け た こ と を 特徴 と す る 室外機。  9. An outdoor unit according to claim 8, wherein a three-way valve is provided at a junction between the bypass passage and a suction side of the compressor.
1 0 . 請求項 3 に 記載の も の に お い て 、 前記冷凍サ イ ク ル に 流 通す る 冷媒 を 自 然系冷媒 と し た こ と を 特徴 と す る 空気調和機。  10. The air conditioner according to claim 3, wherein the refrigerant flowing through the refrigeration cycle is a natural refrigerant.
PCT/JP1999/001318 1999-03-17 1999-03-17 Air conditioner and outdoor equipment used for it WO2000055551A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000605141A JP3757796B2 (en) 1999-03-17 1999-03-17 Air conditioner and outdoor unit used therefor
PCT/JP1999/001318 WO2000055551A1 (en) 1999-03-17 1999-03-17 Air conditioner and outdoor equipment used for it
TW089101033A TW464749B (en) 1999-03-17 2000-01-21 Air conditioner and outdoor equipment used for it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/001318 WO2000055551A1 (en) 1999-03-17 1999-03-17 Air conditioner and outdoor equipment used for it

Publications (1)

Publication Number Publication Date
WO2000055551A1 true WO2000055551A1 (en) 2000-09-21

Family

ID=14235209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001318 WO2000055551A1 (en) 1999-03-17 1999-03-17 Air conditioner and outdoor equipment used for it

Country Status (3)

Country Link
JP (1) JP3757796B2 (en)
TW (1) TW464749B (en)
WO (1) WO2000055551A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153349A (en) * 2004-11-29 2006-06-15 Mitsubishi Electric Corp Refrigeration and air conditioning device, and operation control method and refrigerant quantity control method for the same
WO2006115051A1 (en) * 2005-04-18 2006-11-02 Daikin Industries, Ltd. Air conditioner
US20150362235A1 (en) * 2013-03-12 2015-12-17 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2017085888A1 (en) * 2015-11-20 2017-05-26 三菱電機株式会社 Refrigeration cycle device
CN107702370A (en) * 2017-10-23 2018-02-16 东南大学 A kind of air-conditioning six-way valve and include its heat pump type air conditioner
WO2018078729A1 (en) * 2016-10-25 2018-05-03 三菱電機株式会社 Refrigeration cycle device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111023271B (en) * 2019-12-31 2021-01-19 宁波奥克斯电气股份有限公司 Adjusting device and system of multi-split air conditioner refrigerant, control method of system and air conditioner
CN115183492B (en) * 2022-06-14 2023-09-22 海信空调有限公司 Air conditioner and control method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629158A (en) * 1985-07-03 1987-01-17 株式会社日立製作所 Heat pump type refrigeration cycle
JPH10259963A (en) * 1997-03-19 1998-09-29 Mitsubishi Electric Corp Refrigerating cycle device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629158A (en) * 1985-07-03 1987-01-17 株式会社日立製作所 Heat pump type refrigeration cycle
JPH10259963A (en) * 1997-03-19 1998-09-29 Mitsubishi Electric Corp Refrigerating cycle device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153349A (en) * 2004-11-29 2006-06-15 Mitsubishi Electric Corp Refrigeration and air conditioning device, and operation control method and refrigerant quantity control method for the same
JP4670329B2 (en) * 2004-11-29 2011-04-13 三菱電機株式会社 Refrigeration air conditioner, operation control method of refrigeration air conditioner, refrigerant amount control method of refrigeration air conditioner
US8109105B2 (en) 2004-11-29 2012-02-07 Mitsubishi Electric Corporation Refrigerating air conditioning system, method of controlling operation of refrigerating air conditioning system, and method of controlling amount of refrigerant in refrigerating air conditioning system
WO2006115051A1 (en) * 2005-04-18 2006-11-02 Daikin Industries, Ltd. Air conditioner
US20150362235A1 (en) * 2013-03-12 2015-12-17 Mitsubishi Electric Corporation Air-conditioning apparatus
US10088205B2 (en) * 2013-03-12 2018-10-02 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2017085888A1 (en) * 2015-11-20 2017-05-26 三菱電機株式会社 Refrigeration cycle device
WO2018078729A1 (en) * 2016-10-25 2018-05-03 三菱電機株式会社 Refrigeration cycle device
CN109863353A (en) * 2016-10-25 2019-06-07 三菱电机株式会社 Refrigerating circulatory device
JPWO2018078729A1 (en) * 2016-10-25 2019-09-05 三菱電機株式会社 Refrigeration cycle equipment
CN107702370A (en) * 2017-10-23 2018-02-16 东南大学 A kind of air-conditioning six-way valve and include its heat pump type air conditioner
CN107702370B (en) * 2017-10-23 2019-12-10 东南大学 air conditioner six-way valve and heat pump type air conditioner comprising same

Also Published As

Publication number Publication date
JP3757796B2 (en) 2006-03-22
TW464749B (en) 2001-11-21

Similar Documents

Publication Publication Date Title
JP6678332B2 (en) Outdoor unit and control method for air conditioner
JP5596745B2 (en) Air conditioner
US7802440B2 (en) Compression system and air conditioning system
JP2010139155A (en) Refrigeration apparatus
CN101063567B (en) Multiple air-conditioning unit pipe device
US7908878B2 (en) Refrigerating apparatus
WO2009098899A1 (en) Refrigeration system
JP4214021B2 (en) Engine heat pump
JP6315375B2 (en) Air conditioner outdoor unit
JP4179595B2 (en) Air conditioner
WO2000055551A1 (en) Air conditioner and outdoor equipment used for it
CN110849019A (en) Heat pump type air conditioning system and control method thereof
WO2018097124A1 (en) Air conditioning device
CN211575589U (en) Heat pump type air conditioning system
CN100526756C (en) Apparatus for switching air conditioner refrigerant pipes
JP6917583B2 (en) Air conditioner
JP2015152241A (en) Outdoor unit of air conditioner
JP6222493B2 (en) Air conditioner
CN104930743B (en) The cooling and warming circulatory system
CN220883976U (en) Thermal management system
JP6895653B2 (en) Air conditioner
WO2015122167A1 (en) Air conditioner
JP4055264B2 (en) Air conditioner
KR20100102863A (en) Heat pump system
JP2022173639A (en) air conditioner

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 605141

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase