WO2000050486A1 - Flame-retardant unsaturated polyester resin - Google Patents

Flame-retardant unsaturated polyester resin Download PDF

Info

Publication number
WO2000050486A1
WO2000050486A1 PCT/JP2000/000953 JP0000953W WO0050486A1 WO 2000050486 A1 WO2000050486 A1 WO 2000050486A1 JP 0000953 W JP0000953 W JP 0000953W WO 0050486 A1 WO0050486 A1 WO 0050486A1
Authority
WO
WIPO (PCT)
Prior art keywords
unsaturated polyester
flame
retardant
weight
parts
Prior art date
Application number
PCT/JP2000/000953
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Takeuchi
Tomoko Inoue
Hiroya Okumura
Hiroyuki Shiraki
Original Assignee
Takeda Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP11333917A external-priority patent/JP2000309697A/en
Priority claimed from JP33391699A external-priority patent/JP2001152000A/en
Application filed by Takeda Chemical Industries, Ltd. filed Critical Takeda Chemical Industries, Ltd.
Publication of WO2000050486A1 publication Critical patent/WO2000050486A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/14Macromolecular materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'

Definitions

  • the present invention provides an unsaturated polyester which is halogen-free, has high flame retardancy, and is excellent in heat resistance, moisture resistance, mechanical properties, chemical resistance, etc., and is also excellent in productivity.
  • the present invention relates to a resin containing the resin, a resin composition containing the resin, and a cured product thereof. Background art
  • Thermosetting resins having unsaturated bonds have been widely used in various industrial fields in recent years due to their excellent heat resistance, mechanical properties, electrical properties, and the like.
  • the flame retardation of these resins has been achieved by using halogen-based flame retardants or by introducing a halogen element into resin molecules.
  • halogen-based flame retardants or by introducing a halogen element into resin molecules.
  • it has become difficult to use cured products of resins using halogens for example, because they become sources of dioxin during combustion.
  • flame-retardant resins using elements such as phosphorus and antimony are being studied.
  • a reactive diluent such as styrene or methyl methacrylate
  • flame retardants are not usually incorporated into the molecules of the resin, and when used in large quantities, the mechanical properties of the cured product are reduced.
  • many phosphorus-based flame retardants have a phosphate ester structure, but the phosphate ester structure is inherently high in hygroscopicity and low in heat resistance. The heat resistance and moisture resistance may be reduced.
  • Japanese Unexamined Patent Publication (Kokai) No. 53-111297 states that some of the unsaturated groups in unsaturated polyesters Although a phosphorus-containing unsaturated polyester obtained by adding an organic phosphorus compound used in the present invention is described, the resin disclosed therein has a low phosphorus content of 1.6% by weight or less, so that it is not sufficient. Since flame retardancy cannot be achieved and the viscosity is high, it is difficult to impregnate glass cloth and glass nonwoven fabric. Disclosure of the invention
  • An object of the present invention is to obtain a cured product having high flame retardancy despite being halogen-free, and also having good properties such as good heat resistance, moisture resistance, and mechanical properties, and also having excellent productivity.
  • An object of the present invention is to provide a polyester, a resin containing the same, a resin composition, and a cured product thereof.
  • the present inventors have conducted intensive research in order to solve the above-mentioned drawbacks of the conventional technology.
  • the compound represented by the formula (I) has a phosphate ester structure
  • the cured product has a higher moisture resistance than a conventionally known phosphate ester compound. It has been found that it does not easily decrease and exhibits high heat resistance.
  • a certain amount of compound (I) is introduced into the molecule of unsaturated polyester by a method of adding it to unsaturated bonds derived from itaconic acid, it can be subjected to severe high-temperature and humidity resistance tests such as pressure cooker test (PCT test).
  • PCT test pressure cooker test
  • the present inventors have also found that very good results can be obtained, and that flame retardancy can be achieved with a lower phosphorus content than in the case of using a conventional phosphate compound, thereby completing the present invention.
  • the present invention provides:
  • the unsaturated group of the unsaturated polyester has the formula (I)
  • R 1 and R 2 are the same or different aliphatic groups or aromatic groups, and m and n are the same or different integers of 0 to 4).
  • a flame-retardant unsaturated polyester having a phosphorus content of 2 to 10% by weight and an unsaturated bond equivalent of 200 to 1,000 g / mo 1,
  • the unsaturated polyester contains an unsaturated polyester obtained by reacting a compound having one group reactive with a carboxyl group in a molecule with an unsaturated polyester having a carboxyl group at a terminal.
  • the flame-retardant unsaturated polyester according to the above (1) comprising (a) 100 parts and an ethylenically reactive diluent (b) 100 to 100 parts, and has a viscosity at 30 ° C.
  • a flame-retardant unsaturated polyester resin having a Q content of 70 Q mPa ⁇ s or less and a phosphorus content of 1.5 wt% or more,
  • a resin composition comprising the flame-retardant unsaturated polyester (a) according to the above (1), a reactive diluent (b) and a phosphorus-based flame retardant (c), wherein the resin composition In 100 parts, (a) is 25-90 parts, (b) is 5-70 parts and (c) force S 1-25 parts Yes, a flame-retardant unsaturated polyester resin composition having a phosphorus content of the resin composition of 2.0 to 10.0%,
  • a metal foil-clad laminate obtained by curing a reinforcing fiber layer impregnated with the flame-retardant unsaturated polyester resin composition according to the above (13) or (14) integrally with a metal foil. is there.
  • examples of the aliphatic group represented by R 1 and R 2 include an alkyl group such as methyl, ethyl and propyl, and examples of the aromatic group include an aryl group such as phenyl and naphthyl.
  • No. m and n are integers of 0 to 4, preferably 0 or 1, and particularly preferably 0.
  • Compound (I) can be easily produced by the method described in Polymer Bulletin No. 41, 45-52 (1998).
  • the unsaturated polyester used in the present invention can be synthesized by the condensation of a polyolefin-unsaturated dicarboxylic acid with a glycol.
  • a polyolefin-unsaturated dicarboxylic acid with a glycol.
  • unsaturated polyester in addition to these two components, aliphatic saturated dicarboxylic acid and aromatic dicarboxylic acid Saturated dicarboxylic acids such as can be used in combination.
  • Examples of c,] 3-olefinic unsaturated dicarboxylic acids include, for example, maleic acid, fumaric acid, itaconic acid, citraconic acid and anhydrides of these dicarboxylic acids.
  • Examples of the saturated dicarboxylic acids which can be used in combination with these ⁇ ,] 3-olefin unsaturated dicarboxylic acids include, for example, adipic acid, sebacic acid, succinic acid, darconic acid, o-, m-, p-phthalic acid Acids, tetrahydrophthalic acid, hexahydrophthalic acid and anhydrides of these dicarboxylic acids.
  • glycol for example, alkanediol, cycloalkanediol, oxaalkanediol, hydrogenated bisphenol A or bisphenol A, and the like are used.
  • monohydric or trihydric alcohols can be used.
  • alkanediols include, for example, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,4-butanediol, neopentinoglycol , 1,5-pentanediol and 1,6 hexanediol; and examples of cycloalkanediol include cyclohexanediol.
  • oxaalkanediol examples include diethylene glycol and triethylene glycol.
  • the monohydric or trihydric alcohol used in combination with these glycols includes, for example, octylanolole, oleylanolole, and trimethylolpropane.
  • the synthesis of unsaturated polyester is generally carried out under heating, and the reaction proceeds while removing by-product water.
  • the crosslink density and glass transition temperature of the cured product can be adjusted by selecting the raw materials to be used. For example, using a compound having a long-chain molecular structure as a raw material, such as adipic acid or sebacic acid as a saturated fatty acid, or diethylene glycol or dipropylene glycol as a glycol, as a raw material, the glass transition temperature can be lowered.
  • the glass transition temperature can be increased by using a compound having a rigid structure such as bisphenol A hydride as a glycol as a raw material.
  • the compound (I) may be introduced into the above-mentioned ⁇ , / 3-olefin unsaturated dicarboxylic acid or its anhydride.
  • the desired phosphorus-containing flame-retardant unsaturated polyester by synthesizing the corresponding phosphorus-containing dicarboxylic acid or its anhydride by using it as a raw material for the synthesis of unsaturated polyester. be able to.
  • the conditions under which the compound (I) is added vary depending on the structure of the unsaturated dicarboxylic acid to be added, but are generally 150 ° C. to 200 ° C.
  • the addition of the compound (I) to the unsaturated group can be performed after the unsaturated polyester is synthesized.
  • a polymerization inhibitor for preventing thermal polymerization of unsaturated groups for the purpose of preventing gelation, it is preferable to use, for example, a polymerization inhibitor for preventing thermal polymerization of unsaturated groups.
  • the unsaturated dicarboxylic acid to which the compound (I) is added itaconic acid, maleic acid or an anhydride thereof is preferable.
  • itaconic acid is easy to add the compound (I), and is excellent in heat resistance and moisture resistance. Resin can be obtained.
  • the structure of bisphenol A in the molecule of unsaturated polyester using the ethylene oxide or propylene oxide adduct of bisphenol A as the glycol that is, the remaining residue obtained by removing two hydroxyl groups from bisphenol A, is used.
  • Introducing a structure increases the heat resistance of the cured product, and at the same time, is effective in improving the fragility of the cured product and imparting toughness, which were problems when introducing phosphorus into unsaturated polyester molecules.
  • the phosphorus content in the unsaturated polyester of the present invention is usually in the range of 2 to 10% due to the manifestation of the flame retardancy of the cured product, but the laminate is particularly required to have strict flame retardancy and heat resistance. It is preferably in the range of 3 to 7% for use in When the phosphorus content is 2% or less, it is difficult to exhibit flame retardancy in the cured product, and when it exceeds 10%, high flame retardancy can be exhibited, but the mechanical properties, heat resistance, and moisture resistance of the cured product tend to decrease. In some cases, the productivity of the flame-retardant unsaturated polyester may be reduced.
  • the flame-retardant unsaturated polyester of the present invention must have an unsaturated bond equivalent of 200 to 1,000 g Zmo1 in order to impart high heat resistance, moisture resistance, and mechanical properties to the cured product. It is necessary, and preferably 200 to 700 g / mo1. If the unsaturated bond equivalent is less than 200 g / mo1, the crosslink density becomes too high, and the cured product becomes brittle, which hinders practical use. On the other hand, if it exceeds 1,000 g, the crosslink density becomes insufficient, and as a result, it becomes difficult to obtain a cured product having sufficiently high Tg and other necessary physical properties.
  • the Tg of the cured product of the phosphorus-containing unsaturated polyester and the resin obtained by diluting the same with a reactive diluent having an ethylenic double bond is 12
  • the temperature is preferably 0 ° C or higher, more preferably 120 to 190 ° C.
  • Examples of the compound having one group that reacts with a carboxyl group in the molecule include a compound having one epoxy group or hydroxyl group in the molecule. Further, such a compound preferably further has a double bond in the molecule in addition to the above-mentioned functional group in order to improve the heat resistance of the cured product.
  • Such compounds include glycidyl (meth) acrylate, vinyl glycidyl ether, (meth) acrylate
  • the reaction between the compound having one reactive group and the phosphorus-containing flame-retardant unsaturated polyester in the molecule is performed at 80 to 180 ° after the synthesis of the phosphorus-containing flame-retardant unsaturated polyester. About 0.2 to 8 hours at a temperature of about C in the presence or absence of a known catalyst used for polyesterification or bulesterification By reacting, the desired phosphorus-containing flame-retardant unsaturated polyester having reduced terminal carboxyl groups can be obtained.
  • the ratio of the compound having one group having a reactivity with the carboxyl group to the carboxyl group present at the terminal of the flame-retardant unsaturated polyester in the molecule is 0.5 to 1 with respect to 1 equivalent of the carboxyl group. .2 equivalents are preferred, and 0.8 to 1.05 equivalents are more preferred.
  • the obtained flame-retardant unsaturated polyester (a) may be diluted with a reactive diluent (b) having at least one ethylenic double bond in the molecule for the purpose of lowering the viscosity and the like.
  • a reactive diluent b
  • the reactive diluent include unsaturated fatty acids such as (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and (meth) acrylate.
  • Unsaturated carboxylic esters such as 2-ethylhexyl acrylate, glycidyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, dodecyl (meth) acrylate, (meth) acrylamide , (Meth) acrylonitrile and other nitrogen-based monomers, styrene, vinyltoluene, dibutylbenzene, pt-butylstyrene and other aromatic vinyl compounds, ethylene glycol di (meth) acrylate, diethylene glycol diethylene glycol (Meta) acrylate, 1,4-butanediol di (meth) acrylate, 1,6 hexane Examples thereof include polyfunctional (meth) acrylates such as di (meth) acrylate, trimethylolpropanetri (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol
  • the mixing ratio of ( a ) and (b) in the flame-retardant unsaturated polyester resin containing the flame-retardant unsaturated polyester (a) and the reactive diluent (b) is (a) 100 parts.
  • (b) is 10 to 100 parts, but (b) is preferably 10 to 80 parts in order to exhibit higher flame retardancy.
  • the viscosity of the flame-retardant unsaturated polyester resin comprising the flame-retardant unsaturated polyester (a) and the reactive diluent (b) at 30 ° C. is usually not more than 700 mPa ⁇ s, preferably 500 mPa ⁇ s or less, and the phosphorus content is 1.5% or more. Therefore, the ethylenic reactive diluent in the flame-retardant unsaturated polyester resin of the present invention is used.
  • the type and amount of the excipient may be selected so as to satisfy those conditions.
  • phosphorus-based flame retardant (c) used in the present invention those having a low hydrolyzability, a high phosphorus content and a structure that does not affect the curing of the radical-based o are preferable.
  • Suitable examples include condensed phosphoric acid-based and phosphazene-based phosphorus-based flame retardants.
  • R 3 is an alkylene group which may have a substituent, a (poly) oxyalkylene group which may have a substituent or an arylene group which may have a substituent, X is an integer of 1 to 20.
  • the alkylene group represented by R 3 is, for example, 3 alkylene groups such as methylene, ethylene, and propylene; and the arylene group is, for example, phenylene, naphthylene, a group represented by the formula:
  • (Poly) oxyalkylene groups include, for example, (poly) oxyethylene
  • (Poly) oxy d alkylene groups examples include C and alkyl groups such as methyl and ethyl.
  • substituent in each group examples include C and alkyl groups such as methyl and ethyl.
  • group in which the hydroxyl group of the compound of the formula (III) is esterified include C, -3 alkoxy groups such as methoxy and ethoxy, and aryloxy groups such as phenoxy, naphthoxy, methylphenoxy and dimethylphenoxy. From the viewpoint of the heat resistance of the cured product, the esterified hydroxyl group is preferably an aryloxy group.
  • X is an integer of 1 to 20, preferably an integer of 1 to 10.
  • Preferred examples of the condensed phosphate ester-based flame retardant include ⁇ -200 (manufactured by Daihachi Chemical Industry Co., Ltd.).
  • phosphazene-based flame retardants include the formula (m)
  • R 4 , R s , R 6 and R 7 are the same or different and each may be an alkyl group which may have a substituent or an aryl group which may have a substituent, y is 1 to 1
  • R 8 and R 9 are the same or different and are an alkyl group which may have a substituent or an aryl group which may have a substituent, and z is 3 or 4.
  • examples of the alkyl group represented by R 4 to R 9 include an alkyl group of d such as methyl, ethyl, propyl, and an aryl group.
  • W is, for example, phenyl, naphthyl or the like, and examples of the substituent thereof include an alkyl group having 13 to 13 carbon atoms such as methyl, ethyl, propyl and the like.
  • y is an integer of 1 to 10, preferably 3 to 6, and z is preferably 3.
  • R 4 to R S are preferably aryl groups such as phenyl.
  • phosphazene-based flame retardant examples include CP-134H (manufactured by Chemipro Kasei Co., Ltd.) belonging to the compound represented by the formula (IV) (wherein R 8 and R s are phenyl groups).
  • CP-134H manufactured by Chemipro Kasei Co., Ltd.
  • R 8 and R s are phenyl groups.
  • the proportion of each component in the flame-retardant unsaturated polyester resin composition containing the flame-retardant unsaturated polyester (a), the reactive diluent (b) and the phosphorus-based flame retardant (c) is as follows: In 100 parts of the product, (a) is preferably 25 to 90 parts, (b) is preferably 5 to 70 parts, and (c) is preferably 1 to 25 parts.
  • the flame-retardant unsaturated polyester resin and the resin composition of the present invention may be a vinyl ester resin, an unsaturated polyester resin, etc., which have been well known as a resin having an unsaturated bond, for the purpose of improving physical properties and improving productivity. Can also be used as a mixture. These amounts are appropriately determined depending on the performance required for the cured product, but from the viewpoint of flame retardancy, preferably 5 to 200 parts, more preferably 100 parts per 100 parts of the flame-retardant resin or resin composition. Is from 10 to 150 parts.
  • the flame-retardant resin or resin composition of the present invention may contain a rubber component for imparting toughness, impact resistance, panning workability, interlayer adhesion, and the like to the cured product.
  • a rubber component for imparting toughness, impact resistance, panning workability, interlayer adhesion, and the like to the cured product examples include liquid rubbers such as carboxyl-terminated NBR, epoxy-terminated NBR, vinyl-terminated NBR and the like, and modified products thereof, and fine-grained rubber such as cross-linked acrylic fine particles (average particle diameter 0.1 l). 5050 / zm).
  • the amount of the rubber component to be used is generally 1 to 30 parts, preferably 2 to 15 parts, per 100 parts of the flame-retardant resin or the resin composition.
  • the flame-retardant resin containing the components (a) and (b) or the flame-retardant resin composition containing the components (a), (b) and (c) of the present invention may be a general unsaturated polyester resin or a vinyl ester resin.
  • the composition can be easily cured by adding a curing agent used for curing the composition and, if necessary, a curing accelerator.
  • the curing agent used in the present invention include organic peroxides such as methyl ethyl ketone peroxide, t-butyl peroxybenzoate, benzoy peroxide, dicumyl baroxide, cumenehydroxide and the like.
  • the amount of the curing agent used is preferably 0.1 to 5 parts, more preferably 0.5 to 3 parts, per 100 parts of the flame-retardant resin.
  • the curing accelerator include cobalt naphthenate, cobalt octoate, manganese naphthenate, dimethylaniline, getylaniline, acetylacetone and the like.
  • the amount of the curing accelerator used is preferably 0.01 to 3 parts with respect to 100 parts of the flame-retardant resin or the resin composition.
  • the flame-retardant resin or resin composition of the present invention may further comprise a filler, a low-shrinking agent, a curing agent, a pigment, a dye, a polymerization inhibitor, a fiber reinforcing agent, an internal mold release agent, and a thickening agent which are conventionally used. Etc., and various cured products can be obtained.
  • the filler include inorganic fillers such as aluminum hydroxide, glass powder, calcium carbonate, talc, silica, clay, glass balloon and the like. These are usually used in an amount of 400 parts or less, preferably 50 to 300 parts, per 100 parts of the flame-retardant resin or resin composition.
  • low shrinkage agent examples include saturated polyester, polymethyl methacrylate, polyvinyl acetate, cross-linked polystyrene, styrene-butadiene (block) copolymer and its hydrogenated product, vinyl acetate-styrene (block) copolymer, (meth) Acryl-styrene (block) copolymer or the like is used.
  • These low-shrinkage agents are usually used in an amount of 30 parts or less per 100 parts of the flame-retardant resin or the resin composition.
  • the internal mold release agent examples include metal lithography such as calcium stearate and zinc stearate, and silicon and fluorine-based organic compounds, and phosphoric acid-based compounds. It is usually used in an amount of 100 parts or less based on 100 parts of the resin composition.
  • pigment examples include titanium oxide, carbon black, red iron oxide, and phthalocyanine blue.
  • thickener examples include oxides and hydroxides such as magnesium and calcium.
  • glass fiber having a diameter of about 8 to 15 ⁇ and a length of 25 mm or less is used as the fiber reinforcing material.
  • Fiber reinforcement is usually resin Out of 100 parts of the whole product: About 40 parts are blended.
  • the flame-retardant resin composition of the present invention is obtained by using a part or all of the above-mentioned compounding agents to form a resin composition, and then impregnating a glass cloth, a glass nonwoven fabric, or the like, and curing to obtain a laminate.
  • a resin composition obtained by using a part or all of the above-mentioned compounding agents to form a resin composition, and then impregnating a glass cloth, a glass nonwoven fabric, or the like, and curing to obtain a laminate.
  • a glass cloth, a glass nonwoven fabric, or the like or the like
  • the type and amount of the filler and the phosphorus content in the composition vary depending on the thickness of the laminate. Contains 20-70% of medium filler, and the phosphorus content is 0.4-8.0 ° /. Is preferably in the range of
  • the resin composition of the present invention is impregnated into a reinforcing fiber layer such as a glass cloth or a glass nonwoven fabric, and if necessary, a plurality of the impregnated materials are laminated, and a metal foil such as a copper foil is laminated and heated.
  • a metal foil-clad laminate in which the reinforcing fiber layer and the metal foil are integrally cured can be obtained.
  • a phosphorus-containing oligoester having a titer of 2.6 mg KOHZg was obtained. 406.3 g of fumaric acid and 0.17 g of hydroquinone were added to the reaction mixture containing the oligoester, 21 The dehydration condensation reaction was carried out at 5 ° C for 5 and a half hours to obtain a phosphorus-containing unsaturated polyester having an acid value of 20.3 mgKOH / g (phosphorus content 2.75%, unsaturated bond equivalent 394 g / mo 1 0 ) This unsaturated polyester was diluted with 91.1 Og of styrene monomer to obtain an unsaturated polyester resin (A).
  • the reaction mixture containing the oligoester was cooled to 140 ° C, charged with 245.2 g of fumaric acid and 0.14 g of hydroquinone, and subjected to a dehydration condensation reaction at 215 ° C for 6 hours to obtain an acid value of 16 3 mg KOHZg of a phosphorus-containing unsaturated polyester was obtained (phosphorus content: 5.38 ° /., Unsaturated bond equivalent: 564 gZmo 1).
  • the unsaturated polyester was diluted with 705.1 g of a styrene monomer to obtain an unsaturated polyester resin (D).
  • This oligo 343.6 g of fumaric acid and 0.12 g of hydroquinone were further added to the reaction mixture containing the steal, followed by a half-hour dehydration condensation reaction at 210 ° C for 5 hours and a phosphorus-containing unsaturated acid having an acid value of 21.3 mg KOH / g Polyester was obtained (phosphorus content: 2.64%, unsaturated bond equivalent: 410 g / mo 1).
  • This unsaturated polyester was diluted with 81.5 g of a styrene monomer to obtain an unsaturated polyester resin (F).
  • reaction mixture containing the oligomer 174.2 g of fumaric acid and 0.10 g of hydroquinone were further added, and a dehydration condensation reaction was performed at 210 ° C. for 3.5 hours. At this point, the acid value was measured and was 55. OmgKOHZg.
  • the reaction mixture was cooled to 150 ° C, added with 158.5 g of daricidyl methacrylate (1.0 equivalent to acid) and 0.20 g of hydroquinone, and reacted at 150 ° C for 1 hour.
  • the reaction mixture is cooled to 150 ° C, glycidyl methacrylate 160.6 g (1.0 equivalent to acid) and hydroquinone 0.20 g are added, and the mixture is reacted at 150 ° C for 1 hour.
  • the acid value is 4.2 mg KOH / g and the end is capped with glycidyl methacrylate.
  • a phosphorus-containing unsaturated polyester was obtained (phosphorus content: 6.66%, unsaturated bond equivalent: 790 g / mo 1).
  • This unsaturated polyester was diluted with 808.5 g of styrene monomer to obtain an unsaturated polyester resin (H).
  • An unsaturated polyester resin was synthesized according to the description in Example 1 of JP-A-53-112997.
  • an epoxy resin (YD128, manufactured by Toto Kasei Co., Ltd.) was used in the presence of 0.3 g of hydroquinone and 0.3 g of benzyldimethylamine. 1772 g of methacrylic acid was added to 3874 g of epoxy equivalent and reacted at 120 ° C. for 6 hours to obtain vinyl ester having an acid value of 2.Omg KOHZg. 294 g of a styrene monomer was added to the beer ester to obtain a phosphorus-free bullet ester resin (J).
  • the unsaturated polyester resins (A) to (1), vinyl ester resin (J), styrene monomer, cross-linked acrylic rubber fine particles, phosphorus-based flame retardant, and curing agent were blended at the weight ratios shown in Table 1.
  • a resin composition was manufactured. Each resin composition is poured into a glass mold equipped with a silicone spacer, and is cured by heating at 100 ° C. for 1 hour and then at 150 ° C. for 30 minutes. A casting plate containing no was prepared. Using these casting plates, the strength and Tg were measured by the following methods.
  • Flexural strength Compliant with JISK 7203
  • Flexural modulus Conforms to JISK7203
  • T g peak temperature of ta ⁇ ⁇ obtained by measuring dynamic elastic modulus
  • the unsaturated polyester resins ( ⁇ ) to (1), butyl ester resin (J), styrene monomer, crosslinked acrylic rubber fine particles, phosphorus-based flame retardant, curing agent, The materials were blended to produce a resin composition.
  • the obtained resin composition was poured into a glass mold equipped with a silicone spacer, and was cured by heating at 100 ° C. for 1 hour, and then at 175 ° C. for 30 minutes to cure.
  • a casting plate containing mm filler was prepared. Using this casting plate, flame resistance, heat resistance, heat resistance after PCT, and alkali resistance were measured by the following methods.
  • Heat resistance Time required to immerse the casting plate in a 260 ° C solder tank until blistering occurs (seconds)
  • Heat resistance after PCT 1 hour at 121 ° C under 95% humidity And then measure the above heat resistance
  • the casting plate was immersed in a 10% aqueous solution of sodium hydroxide at 60 for 1 hour, and the appearance and weight change were evaluated according to the following criteria.
  • the additives used are as follows.
  • Phosphorus-based flame retardant P X—200 (manufactured by Daihachi Chemical Industry Co., Ltd.)
  • Curing agent Cumene high dropper oxide 80% product, Parkmill H-80 (Nippon Yushi Co., Ltd.)
  • the cured product obtained from the flame-retardant unsaturated polyester resin of Example 19 has good mechanical properties, high flame retardancy, heat resistance, heat resistance after PCT, It turns out that it has alkali resistance.
  • compound (I) The casting plate of Comparative Example 1 using an unsaturated polyester resin (I) with a low addition rate of the resin had poor flame retardancy (burned), and the phosphorus content was adjusted to the same level as in the example by adding a phosphorus-based flame retardant It can be seen that the cast plates of Comparative Examples 2 and 3 also have lower flame retardancy than those of the examples, and have low heat resistance, particularly low heat resistance after PCT.
  • the resin composition was prepared by mixing the unsaturated polyester resins (K) to (M), the butyl ester resin (J), the phosphorus-based flame retardant, the crosslinked acrylic rubber fine particles, and the curing agent at the weight ratios shown in Table 2. It was prepared and the mechanical properties and Tg were measured in the same manner as in Example 1.
  • the unsaturated polyester resins (K) to (M), the butyl ester resin (J), the phosphorus-based flame retardant, the crosslinked acrylic rubber fine particles, the curing agent, and the filler are blended in the weight ratios shown in Table 2.
  • a resin composition was prepared.
  • Each resin composition is poured into a glass mold equipped with a silicone spacer and cured by heating at 100 ° C for 1 hour, followed by heating at 175 ° C for 30 minutes, and contains a 1 mm thick filler.
  • a casting plate was made. Using these casting plates, flame retardancy, heat resistance, heat resistance after PCT, and alkali resistance were measured by the following methods.
  • Heat resistance time until the blisters are formed by immersing the casting plate in a 260 ° C solder bath (seconds)
  • Heat resistance after PCT The casting plate is subjected to one-hour presser test at 121 ° C under 95% humidity for 1 hour, and the above heat resistance is measured.
  • Alkali resistance Immerse the casting plate in 10% aqueous sodium hydroxide solution at 60 for 1 hour Pickled, then evaluated appearance and weight change based on the following criteria
  • the flame retardants and additives used are as follows.
  • Condensed phosphate ester-based flame retardant PX-200 (manufactured by Daihachi Chemical Industry Co., Ltd.)
  • Phosphazene-based flame retardant CP-134H (manufactured by Chemipro Kasei Co., Ltd.) Industrial Co., Ltd.)
  • Curing agent Cumene Halo Dropper Oxide 80%, Park Mill H-80 (Nippon Yushi Co., Ltd.)
  • the flame-retardant unsaturated polyester of the present invention provides a cured product having high flame retardancy, heat resistance, moisture resistance, chemical resistance, and good mechanical properties while being halogen-free, and has excellent productivity. Therefore, it is particularly suitable as a material for a laminate.

Abstract

A flame-retardant unsaturated polyester which has a structure comprising an unsaturated polyester and added to part of the unsaturated groups a phosphorous compound represented by formula (I) (wherein R?1 and R2¿ are the same or different and each is an aliphatic or aromatic group; and m and n are the same or different and each is an integer of 0 to 4) and which has a phosphorous content of 2 to 10 wt.% and an unsaturated bond equivalent of 200 to 1,000 g/mol. It can give a cured article which has high flame retardancy although halogen-free and is excellent in properties such as heat resistance, moisture resistance, mechanical properties, and chemical resistance. The flame-retardant unsaturated polyester has excellent productivity. It is hence useful especially as a material for laminates for use in the electrical and electronic fields.

Description

明 細 書 難燃性不飽和ポリエステル樹脂 技術分野  Description Flame retardant unsaturated polyester resin Technical field
本発明はハロゲンフリーであって、 高い難燃性とともに、 耐熱性、 耐湿性、 機 械物性、 耐薬品性等に優れる硬化物が得られ、 しかも生産性にも優れる不飽和ポ リエステル、 それを含む樹脂、 その樹脂を含む樹脂組成物及びその硬化物に関す る。 背景技術  The present invention provides an unsaturated polyester which is halogen-free, has high flame retardancy, and is excellent in heat resistance, moisture resistance, mechanical properties, chemical resistance, etc., and is also excellent in productivity. The present invention relates to a resin containing the resin, a resin composition containing the resin, and a cured product thereof. Background art
不飽和ポリエステル樹脂、 ビニルエステル樹脂等の不飽和結合を有する熱硬化 性樹脂は、 その優れた耐熱性、 機械物性、 電気特性等により、 近年各種の産業分 野で広く使用されてきている。 これらの樹脂の難燃化は、 従来からハロゲン系の 難燃剤の使用、 あるいはハロゲン元素を樹脂の分子に導入する等の方法で達成さ れてきた。 しかし、 近年環境保全に対する関心の高まりとともに、 ハロゲンを使 用した樹脂の硬化物は燃焼時にダイォキシンの発生源になる等の理由で使用する ことが困難になってきている。  Thermosetting resins having unsaturated bonds, such as unsaturated polyester resins and vinyl ester resins, have been widely used in various industrial fields in recent years due to their excellent heat resistance, mechanical properties, electrical properties, and the like. Conventionally, the flame retardation of these resins has been achieved by using halogen-based flame retardants or by introducing a halogen element into resin molecules. However, in recent years, with increasing interest in environmental protection, it has become difficult to use cured products of resins using halogens, for example, because they become sources of dioxin during combustion.
その代替技術として、 リン、 アンチモン等の元素を使用した樹脂の難燃化が検 討されている。 しかし、 上記の不飽和ポリエステル等は通常スチレン、 メタタリ ル酸メチル等の反応性希釈剤とともに使用されるため、 その希釈剤に由来する部 分の難燃化が困難であることから、 その難燃化には大量の難燃剤の使用が必要と なる。 しかしこれらの難燃剤は、 通常樹脂の分子中に組み込まれないため、 大量 に使用すると硬化物の機械物性の低下を招く。 更に、 リン系の難燃剤には、 リン 酸エステルの構造を有するものが多いが、 リン酸エステル構造は本質的に吸湿性 が高く、 耐熱性も低いため、 難燃剤を大量に使用すると硬化物の耐熱性、 耐湿性 が低下する恐れがある。  As an alternative technology, flame-retardant resins using elements such as phosphorus and antimony are being studied. However, since the above unsaturated polyesters and the like are usually used together with a reactive diluent such as styrene or methyl methacrylate, it is difficult to make a portion derived from the diluent difficult to make it flame-retardant. It requires the use of large amounts of flame retardants. However, these flame retardants are not usually incorporated into the molecules of the resin, and when used in large quantities, the mechanical properties of the cured product are reduced. Furthermore, many phosphorus-based flame retardants have a phosphate ester structure, but the phosphate ester structure is inherently high in hygroscopicity and low in heat resistance. The heat resistance and moisture resistance may be reduced.
特開昭 5 3 - 1 1 2 9 9 7号には、 不飽和ポリエステルの不飽和基の一部に本 発明においても用いられる有機リン化合物を付加させてなるリン含有不飽和ポリ エステルが記載されているが、 そこに開示されている樹脂は、 リン含有率が 1 . 6重量%以下と低いので充分な難燃性を達成することができず、 また粘度が高い のでガラスクロス、 ガラス不織布等への含浸が困難である。 発明の開示 Japanese Unexamined Patent Publication (Kokai) No. 53-111297 states that some of the unsaturated groups in unsaturated polyesters Although a phosphorus-containing unsaturated polyester obtained by adding an organic phosphorus compound used in the present invention is described, the resin disclosed therein has a low phosphorus content of 1.6% by weight or less, so that it is not sufficient. Since flame retardancy cannot be achieved and the viscosity is high, it is difficult to impregnate glass cloth and glass nonwoven fabric. Disclosure of the invention
本発明の課題は、 ハロゲンフリーでありながら高い難燃性を有し、 かつ良好な 耐熱性、 耐湿性、 機械物性等の諸特性も併せ持つ硬化物が得られ、 しかも生産性 にも優れる不飽和ポリエステルそれを含む樹脂、 樹脂組成物およびその硬化物を 提供することにある。  An object of the present invention is to obtain a cured product having high flame retardancy despite being halogen-free, and also having good properties such as good heat resistance, moisture resistance, and mechanical properties, and also having excellent productivity. An object of the present invention is to provide a polyester, a resin containing the same, a resin composition, and a cured product thereof.
本発明者らは、 前述のような従来技術の欠点を解決するため、 鋭意研究を行つ た。 その結果、 式 (I ) で示される化合物はリン酸エステル構造を有しているに も拘わらず、 樹脂の分子に導入した場合従来知られているリン酸エステル化合物 に比べ硬化物の耐湿性が低下しにくく、 かつ高い耐熱性を発揮することを見いだ した。 特に化合物 ( I ) の一定量をィタコン酸由来の不飽和結合に付加させる方 法により不飽和ポリエステルの分子中に導入した場合、 プレッシャークッカーテ ス ト (P C Tテス ト) 等の厳しい高温耐湿試験においても非常に良好な結果を得 られるとともに、 従来のリン酸エステル化合物を使用する場合よりも低いリン含 有率で難燃化が可能になることを見いだし、 本発明を完成するに至った。  The present inventors have conducted intensive research in order to solve the above-mentioned drawbacks of the conventional technology. As a result, despite the fact that the compound represented by the formula (I) has a phosphate ester structure, when it is introduced into a resin molecule, the cured product has a higher moisture resistance than a conventionally known phosphate ester compound. It has been found that it does not easily decrease and exhibits high heat resistance. In particular, when a certain amount of compound (I) is introduced into the molecule of unsaturated polyester by a method of adding it to unsaturated bonds derived from itaconic acid, it can be subjected to severe high-temperature and humidity resistance tests such as pressure cooker test (PCT test). The present inventors have also found that very good results can be obtained, and that flame retardancy can be achieved with a lower phosphorus content than in the case of using a conventional phosphate compound, thereby completing the present invention.
すなわち本発明は、 . That is, the present invention provides:
( 1 ) 不飽和ポリエステルの不飽和基に式 ( I )  (1) The unsaturated group of the unsaturated polyester has the formula (I)
Figure imgf000004_0001
Figure imgf000004_0001
(式中、 R 1および R 2は同一または異なる脂肪族基または芳香族基であり、 mお よび nは同一または異なる 0〜4の整数である。) で示されるリン化合物が付加 した構造を有し、 リン含有率が 2~ 1 0重量%、 不飽和結合当量が 200〜 1, 00 0 g/mo 1である難燃性不飽和ポリエステル、 (Wherein, R 1 and R 2 are the same or different aliphatic groups or aromatic groups, and m and n are the same or different integers of 0 to 4). A flame-retardant unsaturated polyester having a phosphorus content of 2 to 10% by weight and an unsaturated bond equivalent of 200 to 1,000 g / mo 1,
(2) 式 (I ) で示されるリン化合物が付加した不飽和基がィタコン酸由来の ものである前記 (1) 記載の難燃性不飽和ポリエステル、  (2) The flame-retardant unsaturated polyester according to (1), wherein the unsaturated group to which the phosphorus compound represented by the formula (I) is added is derived from itaconic acid.
(3) 不飽和ポリエステルが、 ビスフエノール A構造を有するものである前記 (1 ) 記載の難燃性不飽和ポリエステル、  (3) The flame-retardant unsaturated polyester according to (1), wherein the unsaturated polyester has a bisphenol A structure,
(4) 不飽和ポリエステルが、 水素化ビスフユノール A構造を有するものであ る前記 (1 ) 記載の難燃性不飽和ポリエステル、  (4) The flame-retardant unsaturated polyester according to the above (1), wherein the unsaturated polyester has a hydrogenated bisphenol A structure.
(5) 不飽和ポリエステルが、 末端にカルボキシル基を有する不飽和ポリエス テルにカルボキシル基と反応性を有する基を分子内に 1つ持つ化合物を反応させ て得られた不飽和ポリエステルを含有するものである前記 (1) 記載の難燃性不 飽和ポリエステル、  (5) The unsaturated polyester contains an unsaturated polyester obtained by reacting a compound having one group reactive with a carboxyl group in a molecule with an unsaturated polyester having a carboxyl group at a terminal. The flame-retardant unsaturated polyester according to the above (1),
(6) カルボキシル基と反応性を有する基が、 エポキシ基である前記 (5) 記 載の難燃性不飽和ポリエステル、  (6) The flame-retardant unsaturated polyester according to the above (5), wherein the group having reactivity with the carboxyl group is an epoxy group.
(7) カルボキシル基と反応性を有する基を分子内に 1つ持つ化合物が、 更に 分子内に不飽和結合を有する化合物である前記 (5) または (6) 記載の難燃性 不飽和ポリエステル、  (7) The flame-retardant unsaturated polyester according to (5) or (6), wherein the compound having one group reactive with a carboxyl group in the molecule is a compound further having an unsaturated bond in the molecule.
(8) カルボキシル基と反応性を有する基を分子内に 1つ持つ化合物が、 グリ シジルァクリレ一トまたはグリシジルメタクリレートである前記 ( 5 ) 記載の難 燃性不飽和ポリエステル、  (8) The flame-retardant unsaturated polyester according to (5), wherein the compound having one group reactive with a carboxyl group in the molecule is glycidyl acrylate or glycidyl methacrylate.
(9) 前記 (1 ) 記載の難燃性不飽和ポリエステル (a) 1 00部、 エチレン 性反応性希釈剤 (b) 1 0〜 1 0 0部を含有してなり、 3 0°Cにおける粘度が 7 0 Q mP a · s以下、 且つリン含有率が 1. 5重量%以上である難燃性不飽和ポ リエステル樹脂、  (9) The flame-retardant unsaturated polyester according to the above (1), comprising (a) 100 parts and an ethylenically reactive diluent (b) 100 to 100 parts, and has a viscosity at 30 ° C. A flame-retardant unsaturated polyester resin having a Q content of 70 Q mPa · s or less and a phosphorus content of 1.5 wt% or more,
( 1 0) 難燃性不飽和ポリエステル樹脂硬化物のガラス転移温度が 1 2 0°C以 上である前記 (9) 記載の難燃性不飽和ポリエステル樹脂、  (10) The flame-retardant unsaturated polyester resin according to (9), wherein the cured product of the flame-retardant unsaturated polyester resin has a glass transition temperature of 120 ° C or higher.
( 1 1 ) 前記( 1 )記載の難燃性不飽和ポリエステル ( a )、反応性希釈剤 ( b ) およびリン系難燃剤 (c) を含んでなる樹脂組成物であって、 該樹脂組成物 1 0 0部中 ( a ) が 2 5〜 90部、 ( b ) が 5〜 70部および ( c ) 力 S 1〜 2 5部で あり、 樹脂組成物全体のリン含有率が 2. 0〜 10. 0 %である難燃性不飽和ポ リエステル樹脂組成物、 (11) A resin composition comprising the flame-retardant unsaturated polyester (a) according to the above (1), a reactive diluent (b) and a phosphorus-based flame retardant (c), wherein the resin composition In 100 parts, (a) is 25-90 parts, (b) is 5-70 parts and (c) force S 1-25 parts Yes, a flame-retardant unsaturated polyester resin composition having a phosphorus content of the resin composition of 2.0 to 10.0%,
(1 2) リン系難燃性剤 (c) 力 縮合リン酸エステル化合物および/または フォスファゼン化合物である前記 (1 1) 記載の難燃性不飽和ポリエステル樹脂 組成物、  (12) a flame-retardant unsaturated polyester resin composition according to (11), which is a phosphorus-based flame retardant (c) a force-condensed phosphate ester compound and / or a phosphazene compound;
(1 3) 前記 (9) の難燃性不飽和ポリエステル樹脂または (1 1) 記載の難 燃性不飽和ポリエステル樹脂組成物 1 00部あたり 1〜30部のゴム成分を配合 してなる難燃性不飽和ポリエステル樹脂組成物、  (13) Flame retardancy obtained by mixing 1 to 30 parts of a rubber component per 100 parts of the flame retardant unsaturated polyester resin of (9) or the flame retardant unsaturated polyester resin composition of (11). Unsaturated polyester resin composition,
(14) 前記 (9) の難燃性不飽和ポリエステル樹脂または (1 1) 記載の難 燃性不飽和ポリエステル樹脂組成物 1 00部あたり 0. 1〜 5部の硬化剤および 0〜400部の充填材を配合してなる難燃性不飽和ポリエステル樹脂組成物、 (14) The flame-retardant unsaturated polyester resin according to (9) or the flame-retardant unsaturated polyester resin composition according to (11), wherein 0.1 to 5 parts of a curing agent and 100 to 400 parts per 100 parts of the flame retardant unsaturated polyester resin Flame retardant unsaturated polyester resin composition comprising a filler,
(1 5) 前記 (1 3) または (14) 記載の難燃性不飽和ポリエステル樹脂組 成物を含浸させた捕強繊維層を金属箔と一体に硬化してなる金属箔張り積層板、 である。 (15) A metal foil-clad laminate obtained by curing a reinforcing fiber layer impregnated with the flame-retardant unsaturated polyester resin composition according to the above (13) or (14) integrally with a metal foil. is there.
まず、 はじめに式 (I ) で示されるリン化合物 (以下、 化合物 (I) という。) の特定量を付加した構造を有する難燃性不飽和ポリエステル (a) について説明 する。  First, the flame-retardant unsaturated polyester (a) having a structure to which a specific amount of the phosphorus compound represented by the formula (I) (hereinafter, referred to as compound (I)) is added will be described.
式 ( I) において、 R1および R2で示される脂肪族基としては、 たとえばメチ ル、 ェチル、 プロピルなどのアルキル基が、 芳香族基としては、 たとえばフエ二 ル、 ナフチルなどのァリール基が挙げられる。 mおよび nは 0〜4の整数である 力 \ 0または 1が好ましく、 特に 0が好ましい。 In the formula (I), examples of the aliphatic group represented by R 1 and R 2 include an alkyl group such as methyl, ethyl and propyl, and examples of the aromatic group include an aryl group such as phenyl and naphthyl. No. m and n are integers of 0 to 4, preferably 0 or 1, and particularly preferably 0.
化合物 (I ) は、 ポリマー ブレチン ( Polymer Bulletin) No. 41, 45 —52 ( 1 998) に示される方法により容易に製造することができる。  Compound (I) can be easily produced by the method described in Polymer Bulletin No. 41, 45-52 (1998).
化合物 ( I ) の例としては、 9, 10—ジヒ ドロ一 9—ォキサ一 10—フォス ファフェナントレン一 1 0—オキサイ ド (HCA 三光化学 (株) 製) が挙げら れる。  As an example of the compound (I), 9,10-dihydro-19-oxa-10-phosphaphenanthrene-10-oxide (manufactured by HCA Sanko Chemical Co., Ltd.) can be mentioned.
本発明で用いる不飽和ポリエステルは、 ひ、 —ォレフィン系不飽和ジカルボ ン酸とグリコールとの縮合により合成することができる。 不飽和ポリエステルの 合成には、 これら 2成分の他に脂肪族飽和ジカルボン酸や、 芳香族ジカルボン酸 などの飽和ジカルボン酸も併用することができる。 The unsaturated polyester used in the present invention can be synthesized by the condensation of a polyolefin-unsaturated dicarboxylic acid with a glycol. For the synthesis of unsaturated polyester, in addition to these two components, aliphatic saturated dicarboxylic acid and aromatic dicarboxylic acid Saturated dicarboxylic acids such as can be used in combination.
c 、 ]3—ォレフィン系不飽和ジカルボン酸の例としては、 例えばマレイン酸、 フマル酸、 ィタコン酸、 シトラコン酸およびこれらジカルボン酸の無水物が挙げ られる。 これら、 α、 ]3—ォレフイン系不飽和ジカルボン酸と併用することがで きる飽和ジカルボン酸の例としては、例えばアジピン酸、セバチン酸、 コハク酸、 ダルコン酸、 o - , m - , p—フタル酸、 テトラヒ ドロフタル酸、 へキサヒ ドロ フタル酸及びこれらジカルボン酸の無水物が挙げられる。  Examples of c,] 3-olefinic unsaturated dicarboxylic acids include, for example, maleic acid, fumaric acid, itaconic acid, citraconic acid and anhydrides of these dicarboxylic acids. Examples of the saturated dicarboxylic acids which can be used in combination with these α,] 3-olefin unsaturated dicarboxylic acids include, for example, adipic acid, sebacic acid, succinic acid, darconic acid, o-, m-, p-phthalic acid Acids, tetrahydrophthalic acid, hexahydrophthalic acid and anhydrides of these dicarboxylic acids.
グリコールとしては例えば、 アルカンジオール、 シクロアルカンジオール、 ォキサアルカンジオール、 水素化ビスフエノ一ル Aまたはビスフエノール Aにェ オールなどが用いられる。 これに加えて 1価あるいは 3価のアルコールを用いる ことも可能である。 アルカンジオールの例としては例えばエチレングリコール、 1 , 2—プロピレングリコ一ル、 1 , 3—プロピレングリコール、 1 , 3—ブタ ンジォ一 /レ、 1 , 4—ブタンジォ一ノレ、 ネオペンチノレグリコ一ル、 1 , 5—ペン タンジオール、 1 , 6へキサンジオールが、 シクロアルカンジオールの例として は、 たとえばシクロへキサンジオールなどが挙げられる。 ォキサアルカンジォー ルとしては、 例えばジエチレングリコール、 トリエチレングリコールなどが挙げ られる。 これらグリコールと併用される 1価あるいは 3価のアルコールとしては 例えばォクチルァノレコール、 ォレイルァノレコール、 トリメチロールプロパンなど が挙げられる。  As the glycol, for example, alkanediol, cycloalkanediol, oxaalkanediol, hydrogenated bisphenol A or bisphenol A, and the like are used. In addition, monohydric or trihydric alcohols can be used. Examples of alkanediols include, for example, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,4-butanediol, neopentinoglycol , 1,5-pentanediol and 1,6 hexanediol; and examples of cycloalkanediol include cyclohexanediol. Examples of the oxaalkanediol include diethylene glycol and triethylene glycol. The monohydric or trihydric alcohol used in combination with these glycols includes, for example, octylanolole, oleylanolole, and trimethylolpropane.
不飽和ポリエステルの合成は一般に加熱下で実施され、 副生する水を除去しな がら反応を進める。 一般に不飽和ポリエステルは、 使用する原料を選択すること により硬化物の架橋密度やガラス転移温度などを調節することができる。 たとえ ば飽和脂肪酸としてアジピン酸、 セバチン酸など、 グリコールとしてジヱチレン グリコ一ル、 ジプロピレングリコールなどの長鎖の分子構造を有する化合物を原 料に使用することにより、 そのガラス転移温度を低くすることができるし、 また グリコールとして水素化ビスフユノール Aなどの剛直な構造を持つ化合物を原料 に用いることによりそのガラス転移温度を高くすることもできる。  The synthesis of unsaturated polyester is generally carried out under heating, and the reaction proceeds while removing by-product water. Generally, for unsaturated polyesters, the crosslink density and glass transition temperature of the cured product can be adjusted by selecting the raw materials to be used. For example, using a compound having a long-chain molecular structure as a raw material, such as adipic acid or sebacic acid as a saturated fatty acid, or diethylene glycol or dipropylene glycol as a glycol, as a raw material, the glass transition temperature can be lowered. The glass transition temperature can be increased by using a compound having a rigid structure such as bisphenol A hydride as a glycol as a raw material.
硬化物が高い難燃性、 耐熱性および耐薬品性が要求される積層板等に使用され る場合は、 グリコールの一部または全部に、 原料として水素化ビスフエノール A を用いて不飽和ポリエステルの分子中に水素化ビスフエノ一ル Aの構造、 すなわ ち水素化ビスフユノール Aから 2つの水酸基を除いた残りの構造を導入すること によりその目的が達成される。 Used for laminated boards, etc., where cured products require high flame retardancy, heat resistance and chemical resistance When hydrogenated bisphenol A is used as a raw material, the structure of bisphenol A in the unsaturated polyester molecule, i.e., two hydroxyl groups from hydrogenated bisphenol A, is used in part or all of the glycol. The objective is achieved by introducing the rest of the structure.
次に化合物 ( I ) を不飽和ポリエステルの分子中、 すなわち分子構造中に導入 する方法としては、 化合物 ( I ) を先に示した α, /3—ォレフイン系不飽和ジカ ルボン酸あるいはその無水物の不飽和結合に付加させることにより、 それぞれ相 当するリン含有ジカルボン酸あるいはその無水物とし、 これを不飽和ポリエステ ルの合成原料とすることにより目的とするリン含有難燃性不飽和ポリエステルを 得ることができる。 この時、 化合物 ( I ) を付加させる条件は、 付加される不飽 和ジカルボン酸の構造によっても異なるが、 一般に無触媒下、 1 5 0 °C〜2 0 0 °C、 :!〜 5時間程度の反応により付加は完結する。 また、 化合物 (I ) の不飽和 基への付加は、 不飽和ポリエステルを合成した後に行うことも可能である。 この 場合、 ゲル化を防ぐ目的で、 たとえば不飽和基の熱重合を防ぐための重合禁止剤 を使用することが好ましい。 化合物 ( I ) を付加させる不飽和ジカルボン酸とし てはィタコン酸、 マレイン酸、 あるいはそれらの無水物が好ましいが、 とりわけ ィタコン酸は化合物 ( I ) の付加が容易であり、 耐熱、 耐湿性に優れた樹脂を得 ることができる。 またグリコールとして、 ビスフエノール Aのエチレンォキシド あるいはプロピレンォキシド付加物等を用いて不飽和ポリエステルの分子中にビ スフエノ一ル Aの構造、 すなわちビスフエノール Aから 2つの水酸基を除いた残 りの構造を導入すると、 硬化物の耐熱性が高くなると同時に、 従来リンを不飽和 ポリエステルの分子に導入した際に課題であった、 硬化物のもろさの改善、 靭性 の付与に効果がある。  Next, as a method for introducing the compound (I) into the molecule of the unsaturated polyester, that is, into the molecular structure, the compound (I) may be introduced into the above-mentioned α, / 3-olefin unsaturated dicarboxylic acid or its anhydride. To obtain the desired phosphorus-containing flame-retardant unsaturated polyester by synthesizing the corresponding phosphorus-containing dicarboxylic acid or its anhydride by using it as a raw material for the synthesis of unsaturated polyester. be able to. At this time, the conditions under which the compound (I) is added vary depending on the structure of the unsaturated dicarboxylic acid to be added, but are generally 150 ° C. to 200 ° C. in the absence of a catalyst. The addition is completed by a reaction of about 5 hours. Further, the addition of the compound (I) to the unsaturated group can be performed after the unsaturated polyester is synthesized. In this case, for the purpose of preventing gelation, it is preferable to use, for example, a polymerization inhibitor for preventing thermal polymerization of unsaturated groups. As the unsaturated dicarboxylic acid to which the compound (I) is added, itaconic acid, maleic acid or an anhydride thereof is preferable. In particular, itaconic acid is easy to add the compound (I), and is excellent in heat resistance and moisture resistance. Resin can be obtained. In addition, the structure of bisphenol A in the molecule of unsaturated polyester using the ethylene oxide or propylene oxide adduct of bisphenol A as the glycol, that is, the remaining residue obtained by removing two hydroxyl groups from bisphenol A, is used. Introducing a structure increases the heat resistance of the cured product, and at the same time, is effective in improving the fragility of the cured product and imparting toughness, which were problems when introducing phosphorus into unsaturated polyester molecules.
硬化物の難燃性の発現のため、 本発明の不飽和ポリエステル中のリンの含有率 は通常 2〜1 0 %の範囲であるが、 とりわけ厳しい難燃性および耐熱性が要求さ れる積層板への用途では 3〜 7 %の範囲であることが好ましい。 リン含有率が 2 %以下では硬化物における難燃性の発現は難しく、 また 1 0 %を越えると高い難 燃性は発現できるものの、 硬化物の機械物性、 耐熱性、 耐湿性が低下する傾向が あり、 また難燃性不飽和ポリエステルの生産性の低下を招く場合もある。 本発明の難燃性不飽和ポリエステルは、 硬化物に高い耐熱性、 耐湿性、 機械物 性を付与させるため、 不飽和結合当量が 2 0 0〜 1, 0 0 0 g Zm o 1である必 要があり、 好ましくは、 2 0 0〜7 0 0 g /m o 1である。 不飽和結合当量が 2 0 0 g /m o 1以下であると架橋密度が高くなりすぎて、 硬化物が脆くなり、 実 際の使用に支障がでる。また 1 , 0 0 0 g Zrn o 1を越えると架橋密度が不足し、 結果的に十分高い T gやその他必要な諸物性をもつ硬化物を得ることが難しくな る。 不飽和ポリエステルの不飽和結合当量が上記範囲内にあると同時に、 リン含 有不飽和ポリエステルおよびそれをェチレン性二重結合を有する反応性希釈剤で 希釈した樹脂の硬化物の T gが 1 2 0 °C以上であることが好ましく、 1 2 0〜1 9 0 °Cであることがさらに好ましい。 The phosphorus content in the unsaturated polyester of the present invention is usually in the range of 2 to 10% due to the manifestation of the flame retardancy of the cured product, but the laminate is particularly required to have strict flame retardancy and heat resistance. It is preferably in the range of 3 to 7% for use in When the phosphorus content is 2% or less, it is difficult to exhibit flame retardancy in the cured product, and when it exceeds 10%, high flame retardancy can be exhibited, but the mechanical properties, heat resistance, and moisture resistance of the cured product tend to decrease. In some cases, the productivity of the flame-retardant unsaturated polyester may be reduced. The flame-retardant unsaturated polyester of the present invention must have an unsaturated bond equivalent of 200 to 1,000 g Zmo1 in order to impart high heat resistance, moisture resistance, and mechanical properties to the cured product. It is necessary, and preferably 200 to 700 g / mo1. If the unsaturated bond equivalent is less than 200 g / mo1, the crosslink density becomes too high, and the cured product becomes brittle, which hinders practical use. On the other hand, if it exceeds 1,000 g, the crosslink density becomes insufficient, and as a result, it becomes difficult to obtain a cured product having sufficiently high Tg and other necessary physical properties. While the unsaturated bond equivalent of the unsaturated polyester is within the above range, the Tg of the cured product of the phosphorus-containing unsaturated polyester and the resin obtained by diluting the same with a reactive diluent having an ethylenic double bond is 12 The temperature is preferably 0 ° C or higher, more preferably 120 to 190 ° C.
近年積層板の加工工程ではスルーホールを設ける時などに強アル力リを使用す ることがあり、 積層板を構成する硬化樹脂に対しても高い耐ァルカリ性が要求さ れる。 かかる用途に於いては、 従来の不飽和ポリエステル樹脂では、 上記したよ うな強アルカリ条件下での使用に耐えられる硬化物を得ることができなかった 力 本発明において、 不飽和ポリエステルの末端に存在するカルボキシル基を力 ルポキシル基と反応性を有する基を分子内に 1つ有する化合物と反応させてカル ボキシル基を封止することにより硬化物の耐アルカリ性を飛躍的に向上させ、 前 記強アル力リ条件に耐える硬化物を得ることが可能になった。  In recent years, in the processing of a laminated board, a strong force is sometimes used when a through hole is provided, and a high alkali resistance is required for the cured resin constituting the laminated board. In such an application, a conventional unsaturated polyester resin cannot obtain a cured product that can withstand use under strong alkaline conditions as described above. The carboxyl group reacts with a compound having one group reactive with the ropoxyl group in the molecule to seal the carboxyl group, thereby dramatically improving the alkali resistance of the cured product. It has become possible to obtain a cured product that can withstand the force conditions.
分子内にカルボキシル基と反応する基を 1つ有する化合物としては、 例えば、 分子中に 1つのエポキシ基、 あるいは水酸基を有する化合物が挙げられる。 さら にこの様な化合物は硬化物の耐熱性向上のため、 上記した官能基の他にさらに分 子内に二重結合を有していることが好ましい。 この様な化合物としては、 グリシ ジル (メタ) アタリ レート、 ビニルグリシジルエーテル、 (メタ) アク リル酸一 Examples of the compound having one group that reacts with a carboxyl group in the molecule include a compound having one epoxy group or hydroxyl group in the molecule. Further, such a compound preferably further has a double bond in the molecule in addition to the above-mentioned functional group in order to improve the heat resistance of the cured product. Such compounds include glycidyl (meth) acrylate, vinyl glycidyl ether, (meth) acrylate
3, 4—エポキシシクロへキシルメチルなどが挙げられる。 これらの化合物の中 でもグリシジル (メタ) ァクリレートが好ましい例として挙げられる。 3, 4-epoxycyclohexylmethyl and the like. Among these compounds, glycidyl (meth) acrylate is a preferred example.
この力ルポキシル基と反応性を有する基を分子内に 1つ持つ化合物とリン含有 難燃性不飽和ポリエステルの反応は、 リン含有難燃性不飽和ポリエステルの合成 後、 8 0〜 1 8 0 °C程度の温度条件下、 ポリエステル化、 あるいはビュルエステ ル化に使用される公知の触媒の存在下、 あるいは不存在下で 0 . 2〜 8時間程度 反応させることにより目的とする末端のカルボキシル基が減じられたリン含有難 燃性不飽和ポリエステルが得られる。 難燃性不飽和ポリエステルの末端に存在す るカルボキシル基に対するカルボキシル基と反応性を有する基を分子内に 1つも つ化合物の使用割合は、 カルボキシル基 1当量に対して上記化合物 0 . 5〜1 . 2当量が好ましく、 0 . 8〜1 . 0 5当量がさらに好ましい The reaction between the compound having one reactive group and the phosphorus-containing flame-retardant unsaturated polyester in the molecule is performed at 80 to 180 ° after the synthesis of the phosphorus-containing flame-retardant unsaturated polyester. About 0.2 to 8 hours at a temperature of about C in the presence or absence of a known catalyst used for polyesterification or bulesterification By reacting, the desired phosphorus-containing flame-retardant unsaturated polyester having reduced terminal carboxyl groups can be obtained. The ratio of the compound having one group having a reactivity with the carboxyl group to the carboxyl group present at the terminal of the flame-retardant unsaturated polyester in the molecule is 0.5 to 1 with respect to 1 equivalent of the carboxyl group. .2 equivalents are preferred, and 0.8 to 1.05 equivalents are more preferred.
得られた難燃性不飽和ポリエステル (a ) は、 低粘度化する等の目的で、 分子 内に少なくとも 1つのエチレン性二重結合を有する反応性希釈剤 (b ) で希釈し て用いることが好ましい。 この反応性希釈剤としては、 (メタ) アクリル酸等の 不飽和脂肪酸、 (メタ) アクリル酸メチル、 (メタ) アクリル酸ェチル、 (メタ) アクリル酸プロピル、 (メタ) アクリル酸プチル、 (メタ) アクリル酸 2—ェチ ルへキシル、 (メタ) アク リル酸グリシジル、 (メタ) アク リル酸 2—ヒ ドロキ シェチル、 (メタ) アクリル酸ドデシル等の不飽和カルボン酸エステル、 (メタ) アクリルアミ ド、 (メタ) アクリロニトリル等の窒素系単量体、 スチレン、 ビニ ルトルエン、 ジビュルベンゼン、 p— t—プチルスチレン等の芳香族ビニル化合 物、 エチレングリコ一ルジ (メタ) ァク リ レート、 ジエチレングリコールジ (メ タ) ァクリ レート、 1、 4ブタンジオールジ (メタ) アタリ レート、 1、 6へキ サンジォ一ルジ (メタ) ァクリレート、 トリメチロールプロパントリ (メタ) ァ クリ レート、 ペンタエリスリ トールトリ (メタ) ァクリ レート、 ペンタエリスリ トールテトラ (メタ) アタリレート等の多官能 (メタ) ァクリレート類を挙げる ことができ、 これらは単独にあるいは混合して使用することもできる。 これらの 中でもスチレンが特に好ましく使用される。  The obtained flame-retardant unsaturated polyester (a) may be diluted with a reactive diluent (b) having at least one ethylenic double bond in the molecule for the purpose of lowering the viscosity and the like. preferable. Examples of the reactive diluent include unsaturated fatty acids such as (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and (meth) acrylate. Unsaturated carboxylic esters such as 2-ethylhexyl acrylate, glycidyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, dodecyl (meth) acrylate, (meth) acrylamide , (Meth) acrylonitrile and other nitrogen-based monomers, styrene, vinyltoluene, dibutylbenzene, pt-butylstyrene and other aromatic vinyl compounds, ethylene glycol di (meth) acrylate, diethylene glycol diethylene glycol (Meta) acrylate, 1,4-butanediol di (meth) acrylate, 1,6 hexane Examples thereof include polyfunctional (meth) acrylates such as di (meth) acrylate, trimethylolpropanetri (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol tetra (meth) atalylate. They can be used alone or as a mixture. Of these, styrene is particularly preferably used.
難燃性不飽和ポリエステル (a ) と反応性希釈剤 (b ) を含んでなる難燃性不 飽和ポリエステル樹脂中の (a ) と (b ) の混合割合は、 (a ) 1 0 0部に対し、 ( b ) 1 0〜1 0 0部であるが、 より高い難燃性を発現させるためには、 (b ) は 1 0〜8 0部であることが好ましい。 The mixing ratio of ( a ) and (b) in the flame-retardant unsaturated polyester resin containing the flame-retardant unsaturated polyester (a) and the reactive diluent (b) is (a) 100 parts. On the other hand, (b) is 10 to 100 parts, but (b) is preferably 10 to 80 parts in order to exhibit higher flame retardancy.
また、 難燃性不飽和ポリエステル (a ) と反応性希釈剤 (b ) からなる難燃性 不飽和ポリエステル樹脂の粘度は 3 0 °Cにおいて、 通常 7 0 0 m P a · s以下、 好ましくは 5 0 0 m P a · s以下であり、且つリン含有率は 1 . 5 %以上である。 したがって本発明の難燃性不飽和ポリエステル樹脂におけるェチレン性反応性希 釈剤の種類および使用量はそれらの条件を満足するよう選択すればよい。 The viscosity of the flame-retardant unsaturated polyester resin comprising the flame-retardant unsaturated polyester (a) and the reactive diluent (b) at 30 ° C. is usually not more than 700 mPa · s, preferably 500 mPa · s or less, and the phosphorus content is 1.5% or more. Therefore, the ethylenic reactive diluent in the flame-retardant unsaturated polyester resin of the present invention is used. The type and amount of the excipient may be selected so as to satisfy those conditions.
本発明の難燃性不飽和ポリエステル樹脂に、 リン含有率が 2 . 0重量%以上必 要とされる oようなより高い難燃性が求められる用途では、 樹脂の生産性、 硬化物 の物性に悪影響を及ぼさない範囲でリン系難燃剤 (c ) を併用することも発明の 好ましい形態である o。  In applications where higher flame retardancy is required, such as when the flame retardant unsaturated polyester resin of the present invention requires a phosphorus content of 2.0% by weight or more, the productivity of the resin and the physical properties of the cured product It is also a preferred embodiment of the present invention to use a phosphorus-based flame retardant (c) in combination within a range that does not adversely affect the composition.
本発明に用いられるリン系難燃剤 (c ) としては、 加水分解性が低く、 リン含 有率が高く、 かつラジカル系 oの硬化に影響しない構造のものが好ましい。 この好 適な例として縮合リン酸系およびフォスファゼン系のリン系難燃剤が挙げられ る。  As the phosphorus-based flame retardant (c) used in the present invention, those having a low hydrolyzability, a high phosphorus content and a structure that does not affect the curing of the radical-based o are preferable. Suitable examples include condensed phosphoric acid-based and phosphazene-based phosphorus-based flame retardants.
縮合リン酸エステル系難燃剤としては、 例えば式 (Π)  As the condensed phosphate ester flame retardant, for example, the formula (式)
0H
Figure imgf000011_0001
0H
Figure imgf000011_0001
(式中 R 3は置換基を有していてもよいアルキレン基、 置換基を有していてもよ い (ポリ) ォキシアルキレン基または置換基を有していてもよいァリーレン基で あり、 Xは 1〜2 0の整数である。) で示される化合物の水酸基がエステル化さ れた構造の化合物が挙げられる。 (Wherein R 3 is an alkylene group which may have a substituent, a (poly) oxyalkylene group which may have a substituent or an arylene group which may have a substituent, X is an integer of 1 to 20.) Compounds having a structure in which the hydroxyl group of the compound represented by
式 (Π) において R 3で表されるアルキレン基としてはたとえばメチレン、 ェ チレン、 プロピレンなど 3のアルキレン基が、 ァリ一レン基としては、 たとえば、 フヱニレン、 ナフチレン、 式 で示される基が、
Figure imgf000011_0002
In the formula (Π), the alkylene group represented by R 3 is, for example, 3 alkylene groups such as methylene, ethylene, and propylene; and the arylene group is, for example, phenylene, naphthylene, a group represented by the formula:
Figure imgf000011_0002
(ポリ) ォキシアルキレン基としては、 たとえば (ポリ) ォキシエチレンなどの (Poly) oxyalkylene groups include, for example, (poly) oxyethylene
(ポリ) ォキシ d アルキレン基が挙げられる。 それぞれの基における置換基 としては、 たとえばメチル、 ェチル等の C , アルキル基が挙げられる。 式(Π) の化合物の水酸基がエステル化された基としては、 たとえばメ トキシ、 エトキシなど C , - 3のアルコキシ基、 フエノキシ、 ナフトキシ、 メチルフエノキ シ、 ジメチルフエノキシなどのァリールォキシ基が挙げられる。 硬化物の耐熱性 の観点から、エステル化された水酸基がァリールォキシ基であることが好ましレ、。(Poly) oxy d alkylene groups. Examples of the substituent in each group include C and alkyl groups such as methyl and ethyl. Examples of the group in which the hydroxyl group of the compound of the formula (III) is esterified include C, -3 alkoxy groups such as methoxy and ethoxy, and aryloxy groups such as phenoxy, naphthoxy, methylphenoxy and dimethylphenoxy. From the viewpoint of the heat resistance of the cured product, the esterified hydroxyl group is preferably an aryloxy group.
Xは 1〜2 0の整数であるが、 1〜1 0の整数が好ましい。 X is an integer of 1 to 20, preferably an integer of 1 to 10.
この縮合リン酸エステル系難燃剤の好ましい例としては、 Ρ Χ— 2 0 0 (大八 化学工業 (株) 製) が挙げられる。  Preferred examples of the condensed phosphate ester-based flame retardant include Ρ-200 (manufactured by Daihachi Chemical Industry Co., Ltd.).
フォスファゼン系難燃剤としてはたとえば、 式 (m)  Examples of phosphazene-based flame retardants include the formula (m)
Figure imgf000012_0001
Figure imgf000012_0001
(式中、 R 4、 R s、 R 6および R 7は、 同一または異なって、 置換基を有していて もよいアルキル基または置換基有していてもよいァリール基、 yは 1〜1 0の整 数である。) で表される化合物、 および式 (IV) (Wherein, R 4 , R s , R 6 and R 7 are the same or different and each may be an alkyl group which may have a substituent or an aryl group which may have a substituent, y is 1 to 1 A compound represented by the formula: (IV)
Figure imgf000012_0002
Figure imgf000012_0002
(式中、 R 8および R 9は、 同一または異なって、 置換基を有していてもよいアル キル基または置換基を有していてもよいァリール基、 zは 3または 4である。) で表される化合物が挙げられる。 (In the formula, R 8 and R 9 are the same or different and are an alkyl group which may have a substituent or an aryl group which may have a substituent, and z is 3 or 4.) The compound represented by these is mentioned.
式 (ΠΙ) および— (IV) において、 R 4〜R 9で示されるアルキル基としては、 たとえばメチル、 ェチル、 プロピルなど d のアルキル基、 ァリール基として W は、 たとえばフエニル、 ナフチルなどが挙げられ、 それらの置換基としては、 メ チル、 ェチル、 プロピルなど炭素数 1一 3のアルキル基などが挙げられる。 yは 1〜10の整数であるが、 3〜6の整数が好ましく、 zは 3が好ましい。 In formulas (ΠΙ) and — (IV), examples of the alkyl group represented by R 4 to R 9 include an alkyl group of d such as methyl, ethyl, propyl, and an aryl group. W is, for example, phenyl, naphthyl or the like, and examples of the substituent thereof include an alkyl group having 13 to 13 carbon atoms such as methyl, ethyl, propyl and the like. y is an integer of 1 to 10, preferably 3 to 6, and z is preferably 3.
硬化物の耐熱性、 耐湿性の観点から、 R4〜RSはフエニル等のァリール基が好 ましい。 From the viewpoints of heat resistance and moisture resistance of the cured product, R 4 to R S are preferably aryl groups such as phenyl.
このフォスファゼン系難燃剤の好ましい例としては、 式 (IV) で示される化 合物に属する CP— 1 34H (ケミプロ化成 (株) 製) (式中 R8および Rsがフ ェニル基) が挙げられる。 Preferable examples of the phosphazene-based flame retardant include CP-134H (manufactured by Chemipro Kasei Co., Ltd.) belonging to the compound represented by the formula (IV) (wherein R 8 and R s are phenyl groups). Can be
難燃性不飽和ポリエステル( a )、反応性希釈剤( b )およびリン系難燃剤( c ) を含んでなる難燃性不飽和ポリエステル樹脂組成物中の各成分の使用割合は、 榭 脂組成物 1 00部中、 (a) が 25〜90部、 (b) が 5〜70部、 (c) が 1〜 25部の範囲であることが好ましい。  The proportion of each component in the flame-retardant unsaturated polyester resin composition containing the flame-retardant unsaturated polyester (a), the reactive diluent (b) and the phosphorus-based flame retardant (c) is as follows: In 100 parts of the product, (a) is preferably 25 to 90 parts, (b) is preferably 5 to 70 parts, and (c) is preferably 1 to 25 parts.
本発明の難燃性不飽和ポリエステル樹脂や樹脂組成物は、 物性改善や生産性向 上等の目的で、 不飽和結合を有する樹脂として従来から良く知られているビニル エステル樹脂、 不飽和ポリエステル樹脂等と混合して使用することもできる。 こ れらの使用量は硬化物に要求される性能によって適宜決定されるが、 難燃性の点 から、 好ましくは難燃性樹脂または樹脂組成物 100部に対し 5 ~200部、 よ り好ましくは 10〜1 50部である。  The flame-retardant unsaturated polyester resin and the resin composition of the present invention may be a vinyl ester resin, an unsaturated polyester resin, etc., which have been well known as a resin having an unsaturated bond, for the purpose of improving physical properties and improving productivity. Can also be used as a mixture. These amounts are appropriately determined depending on the performance required for the cured product, but from the viewpoint of flame retardancy, preferably 5 to 200 parts, more preferably 100 parts per 100 parts of the flame-retardant resin or resin composition. Is from 10 to 150 parts.
本発明の難燃性樹脂または樹脂組成物は、 硬化物に靭性、 耐衝撃性、 パンチン グ加工性、層間密着性などを付与するために、ゴム成分を添加することもできる。 添加するゴム成分としては、 たとえばカルボキシル基末端 NBR、 エポキシ基末 端 NBR、 ビニル基末端 NBR等の液状ゴムあるいはそれらの変性物、 架橋ァク リル微粒子等の微粒子状ゴム (平均粒子径 0. l〜50 /zm) 等が挙げられる。 ゴム成分の使用量は、 難燃性樹脂または樹脂組成物 100部に対し、 通常 1〜3 0部、 好ましくは 2~1 5部である。  The flame-retardant resin or resin composition of the present invention may contain a rubber component for imparting toughness, impact resistance, panning workability, interlayer adhesion, and the like to the cured product. Examples of the rubber component to be added include liquid rubbers such as carboxyl-terminated NBR, epoxy-terminated NBR, vinyl-terminated NBR and the like, and modified products thereof, and fine-grained rubber such as cross-linked acrylic fine particles (average particle diameter 0.1 l). 5050 / zm). The amount of the rubber component to be used is generally 1 to 30 parts, preferably 2 to 15 parts, per 100 parts of the flame-retardant resin or the resin composition.
本発明の (a) および (b) を含む難燃性樹脂または (a)、 (b) および (c) 成分を含んだ難燃性樹脂組成物は通常の不飽和ポリエステル樹脂、 ビニルエステ ル樹脂の硬化の際に使用される硬化剤および必要に応じて硬化促進剤を添加する ことによって容易に硬化させることができる。 本発明に使用される硬化剤としては、 メチルェチルケトンパーォキサイ ド、 t ーブチ パーォキシベンゾェート、 ベンゾィ パーオキサイ ド、 ジクミルバーオ キサイ ド、 クメンハイ ドロパーォキサイ ド等の有機過酸化物が挙げられる。 硬化 剤の使用量は、 難燃性樹脂 1 0 0部に対して、 0 . 1〜5部が好ましく、 より好 ましくは 0 . 5〜3部である。 硬化促進剤としては、 ナフテン酸コバルト、 ォク タン酸コバルト、 ナフテン酸マンガン、 ジメチルァニリン、 ジェチルァニリン、 ァセチルアセトン等が挙げられる。 硬化促進剤の使用量は、 難燃性樹脂または榭 脂組成物 1 0 0部に対して、 0 . 0 1〜3部が好ましい。 The flame-retardant resin containing the components (a) and (b) or the flame-retardant resin composition containing the components (a), (b) and (c) of the present invention may be a general unsaturated polyester resin or a vinyl ester resin. The composition can be easily cured by adding a curing agent used for curing the composition and, if necessary, a curing accelerator. Examples of the curing agent used in the present invention include organic peroxides such as methyl ethyl ketone peroxide, t-butyl peroxybenzoate, benzoy peroxide, dicumyl baroxide, cumenehydroxide and the like. The amount of the curing agent used is preferably 0.1 to 5 parts, more preferably 0.5 to 3 parts, per 100 parts of the flame-retardant resin. Examples of the curing accelerator include cobalt naphthenate, cobalt octoate, manganese naphthenate, dimethylaniline, getylaniline, acetylacetone and the like. The amount of the curing accelerator used is preferably 0.01 to 3 parts with respect to 100 parts of the flame-retardant resin or the resin composition.
本発明の難燃性樹脂または樹脂組成物はさらに従来から用いられている充填 材、 低収縮化剤、 硬化剤、 顔料、 染料、 重合禁止剤、 繊維強化剤、 内部離型剤、 増粘剤などを含ませることができ、 種々の硬化物を得ることができる。 充填材と しては水酸化アルミニウム、 ガラス粉末、 炭酸カルシウム、 タルク、 シリカ、 ク レー、 ガラスバルーン等の無機充填材が挙げられる。 これらは通常、 難燃性樹脂 または樹脂組成物 1 0 0部に対して 4 0 0部以下、 好ましくは 5 0〜 3 0 0部の 範囲で使用される。  The flame-retardant resin or resin composition of the present invention may further comprise a filler, a low-shrinking agent, a curing agent, a pigment, a dye, a polymerization inhibitor, a fiber reinforcing agent, an internal mold release agent, and a thickening agent which are conventionally used. Etc., and various cured products can be obtained. Examples of the filler include inorganic fillers such as aluminum hydroxide, glass powder, calcium carbonate, talc, silica, clay, glass balloon and the like. These are usually used in an amount of 400 parts or less, preferably 50 to 300 parts, per 100 parts of the flame-retardant resin or resin composition.
低収縮化剤としては、 飽和ポリエステル、 ポリメチルメタクリレート、 ポリビ ニルアセテート、 架橋ポリスチレン、 スチレン一ブタジエン (ブロック) 共重合 体およびその水添物、 酢酸ビニルースチレン (ブロック) 共重合体、 (メタ) ァ クリルースチレン (ブロック) 共重合体等が用いられる。  Examples of the low shrinkage agent include saturated polyester, polymethyl methacrylate, polyvinyl acetate, cross-linked polystyrene, styrene-butadiene (block) copolymer and its hydrogenated product, vinyl acetate-styrene (block) copolymer, (meth) Acryl-styrene (block) copolymer or the like is used.
これらの低収縮化剤は通常難燃性樹脂または樹脂組成物 1 0 0部に対して 3 0 部以下で使用される。  These low-shrinkage agents are usually used in an amount of 30 parts or less per 100 parts of the flame-retardant resin or the resin composition.
内部離型剤としては、 ステアリン酸カルシウム、 ステアリン酸亜鉛に代表され る金属石験や、 シリコンやフッ素系の有機化合物、 リン酸系の化合物などを挙げ ることができ、 これらは難燃性樹脂または樹脂組成物 1 0 0部に対して通常 1 0 部以下で使用される。  Examples of the internal mold release agent include metal lithography such as calcium stearate and zinc stearate, and silicon and fluorine-based organic compounds, and phosphoric acid-based compounds. It is usually used in an amount of 100 parts or less based on 100 parts of the resin composition.
顔料としては、 例えば酸化チタン、 カーボンブラック、 弁柄、 フタロシアニン ブルー等が挙げられる。 増粘剤としては、 マグネシウム、 カルシウム等の酸化物 または水酸化物が挙げられる。 繊維強化材としては、 一般的には直径約 8〜1 5 μで長さが 2 5 mm以下のガラス繊維が使用される。 繊維強化材は、 通常樹脂組 成物全量 100部中、 :!〜 40部程度配合される。 Examples of the pigment include titanium oxide, carbon black, red iron oxide, and phthalocyanine blue. Examples of the thickener include oxides and hydroxides such as magnesium and calcium. Generally, glass fiber having a diameter of about 8 to 15 μ and a length of 25 mm or less is used as the fiber reinforcing material. Fiber reinforcement is usually resin Out of 100 parts of the whole product: About 40 parts are blended.
また、 本発明の難燃性樹脂組成物は上記配合剤の一部あるいは全部を使用して 樹脂組成物とした後、 ガラスクロス、 ガラス不織布などに含浸させ、 硬化させる ことにより積層板を得ることができる。  Further, the flame-retardant resin composition of the present invention is obtained by using a part or all of the above-mentioned compounding agents to form a resin composition, and then impregnating a glass cloth, a glass nonwoven fabric, or the like, and curing to obtain a laminate. Can be.
本発明の難燃性樹脂組成物を積層板用として使用する際の充填材の種類、 量お よび組成物中のリン含有率は、 積層板の厚みにより異なってくるが、 通常樹脂組 成物中充填材を 20〜 70%含み、 リン含有率が 0. 4〜8. 0° /。の範囲にある のが好ましい  When the flame-retardant resin composition of the present invention is used for a laminate, the type and amount of the filler and the phosphorus content in the composition vary depending on the thickness of the laminate. Contains 20-70% of medium filler, and the phosphorus content is 0.4-8.0 ° /. Is preferably in the range of
さらに、 たとえばガラスクロス、 ガラス不織布などの補強繊維層に本発明の樹 脂組成物を含浸させ、 必要によりこの含浸物を複数重ね合わせるとともに、 たと えば銅箔などの金属箔を重ね合わせ、 加熱して樹脂組成物を硬化させることによ り補強繊維層と金属箔を一体に硬化させた金属箔張り積層板を得ることができ る。  Further, the resin composition of the present invention is impregnated into a reinforcing fiber layer such as a glass cloth or a glass nonwoven fabric, and if necessary, a plurality of the impregnated materials are laminated, and a metal foil such as a copper foil is laminated and heated. By curing the resin composition by heating, a metal foil-clad laminate in which the reinforcing fiber layer and the metal foil are integrally cured can be obtained.
なお、 本願明細書中を通じ、 部おょび%は断りのない限り重量基準であり、 当 量の単位は g/ mo 1である。 発明を実施するための最良の形態 Throughout the specification, parts and percentages are by weight unless otherwise specified, and the unit of equivalent is g / mo1. BEST MODE FOR CARRYING OUT THE INVENTION
次に本発明を樹脂製造例、 実施例、 比較例および試験例をあげて、 より具体的 に説明するが、 本発明はこれらによって何ら限定されるものではない。  Next, the present invention will be described more specifically with reference to resin production examples, examples, comparative examples, and test examples, but the present invention is not limited thereto.
樹脂製造例 1  Resin production example 1
攪拌機、 温度計、 窒素ガス導入管および塔頂部に温度計を付した部分還流器を 備えた 2リットルの 5頸フラスコにプロピレングリコ一ノレ 281. 5 g、 ビスフ ェノール Aのプロピレンォキシド (PO) 付加体 (ニューポ一ル B P— 23 P、 三洋化成工業 (株) 製、 分子量 356. 0) 605. 2 g、 ィタコン酸 1 99. l g、 9, 10—ジヒ ドロ一 9—ォキサ一フォスファフェナントレン一 1 0—ォ キサイ ド (以下リン化合物 ( 1 ) という。) 3 24. 3 gおよびハイ ドロキノン 0. 08 gを仕込み、 容器内を窒素置換して 1 90°Cで 7時間反応し、 酸価 2. 6 m g KOHZgのリン含有オリゴエステルを得た。 このオリゴエステルを含む 反応混合物に、 フマル酸 406. 3 gおよびハイ ドロキノン 0. 1 7 gを加え、 21 5°Cで 5時間半脱水縮合反応を行い、 酸価 20. 3mgKOH/gのリン含 有不飽和ポリエステルを得た (リン含有率 2. 75%、 不飽和結合当量 3 94 g /m o 1 )0 この不飽和ポリエステルを、 スチレンモノマー 9 1 1. O gで希釈 して不飽和ポリエステル樹脂 (A) とした。 281.5 g of propylene glycol in a 2-liter 5-neck flask equipped with a stirrer, thermometer, nitrogen gas inlet tube and a partial reflux condenser equipped with a thermometer at the top of the column, propylene oxide of bisphenol A (PO) Adduct (Newpol BP-23P, manufactured by Sanyo Chemical Industries, Ltd., molecular weight 356.0) 605.2 g, itaconic acid 199.lg, 9,10-dihydro-1 9-oxa-phosphaphenanthrene 1 10-Oxide (hereinafter referred to as phosphorus compound (1)) 3 24.3 g and 0.08 g of hydroquinone were charged, the atmosphere in the vessel was replaced with nitrogen, and the reaction was carried out at 190 ° C for 7 hours. A phosphorus-containing oligoester having a titer of 2.6 mg KOHZg was obtained. 406.3 g of fumaric acid and 0.17 g of hydroquinone were added to the reaction mixture containing the oligoester, 21 The dehydration condensation reaction was carried out at 5 ° C for 5 and a half hours to obtain a phosphorus-containing unsaturated polyester having an acid value of 20.3 mgKOH / g (phosphorus content 2.75%, unsaturated bond equivalent 394 g / mo 1 0 ) This unsaturated polyester was diluted with 91.1 Og of styrene monomer to obtain an unsaturated polyester resin (A).
樹脂製造例 2  Resin production example 2
攪拌機、 温度計、 窒素ガス導入管および塔頂部に温度計を付した部分還流器を 備えた 2リ ッ トルの 5頸フラスコにプロピレングリコール 493. 1 g、 イタコ ン酸 238. 9 g、 リン化合物 (1) 389. 1 gおよびハイ ドロキノン 0. 0 7 gを仕込み、 容器内を窒素置換して 1 80°Cで 7時間反応し、 酸価 1 1. 2 m g KOHZgのリン含有オリゴエステルを得た。 このオリゴエステルを含む反応 混合物に、 フマル酸 487. 5 gおよびハイ ドロキノン 0. 14 gをさらに加え、 21 5°Cで 7時間脱水縮合反応を行い、 酸価 29. 7mg KOHZgのリン含有 不飽和ポリエステルを得た (リン含有率 3. 97%、 不飽和結合当量 334 gZ mo l )。 この不飽和ポリエステルを、 スチレンモノマ一 84 1. 9 gで希釈し て不飽和ポリエステル樹脂 (B) とした。  493.1 g of propylene glycol, 238.9 g of itaconic acid, phosphorus compound in a 2-liter 5-neck flask equipped with a stirrer, thermometer, nitrogen gas inlet tube and a partial reflux condenser equipped with a thermometer at the top of the tower (1) 389.1 g and 0.07 g of hydroquinone were charged, and the inside of the vessel was replaced with nitrogen and reacted at 180 ° C for 7 hours to obtain a phosphorus-containing oligoester having an acid value of 11.2 mg KOHZg. Was. To the reaction mixture containing this oligoester, 487.5 g of fumaric acid and 0.14 g of hydroquinone were further added, and the mixture was subjected to a dehydration condensation reaction at 215 ° C for 7 hours to obtain an acid value of 29.7 mg KOHZg. A polyester was obtained (phosphorus content 3.97%, unsaturated bond equivalent 334 gZmol). This unsaturated polyester was diluted with 841.9 g of styrene monomer to obtain an unsaturated polyester resin (B).
樹脂製造例 3  Resin production example 3
攪拌機、 温度計、 窒素ガス導入管および塔頂部に温度計を付した部分還流器を 備えた 2リ ットルの 5頸フラスコにプロピレングリコ一ル 228. 3 g、 ジプロ ピレングリコ一ノレ 1 77. 0 g、 ジエチレングリコ一ノレ 21 0. l g、 ィタコン 酸 1 56. 1 g、 リン化合物 (1) 254. 2 gおよびハイ ドロキノン 0. 07 gを仕込み、 容器内を窒素置換し 1 90°Cで 6時間反応し、 酸価 1 2. 5mgK OHZgのリン含有オリゴエステルを得た。 このオリゴエステルを含む反応混合 物に、 無水マレイン酸 470. 7 gおよびハイ ドロキノン 0. 14 gをさらに加 え、 210°Cで 7時間脱水縮合反応を行い、 酸価 28. 5mgKOH/gのリン 含有不飽和ポリエステルを得た (リン含有率 2. 64%、 不飽和結合当量 286 g/m o 1 )。 この不飽和ポリエステルを、 スチレンモノマー 867. 8 gで希 釈して不飽和ポリエステル樹脂 (C) とした。  228.3 g of propylene glycol and 177.0 g of dipropylene glycol in a 2-liter 5-neck flask equipped with a stirrer, thermometer, nitrogen gas inlet tube and a partial reflux condenser equipped with a thermometer at the top of the tower , 210.lg of diethyleneglycol monohydrate, 156.1 g of itaconic acid, 254.2 g of a phosphorus compound (1) and 0.07 g of hydroquinone, the atmosphere in the vessel was replaced with nitrogen, and the reaction was carried out at 190 ° C for 6 hours. Then, a phosphorus-containing oligoester having an acid value of 12.5 mgK OHZg was obtained. To the reaction mixture containing this oligoester, 470.7 g of maleic anhydride and 0.14 g of hydroquinone were further added, and the mixture was subjected to a dehydration condensation reaction at 210 ° C for 7 hours to obtain a phosphorus compound having an acid value of 28.5 mgKOH / g. The resulting unsaturated polyester was obtained (phosphorus content: 2.64%, equivalent of unsaturated bond: 286 g / mo 1). This unsaturated polyester was diluted with 867.8 g of a styrene monomer to obtain an unsaturated polyester resin (C).
樹脂製造例 4  Resin production example 4
攪拌機、 温度計、 窒素ガス導入管および塔頂部に温度計を付した部分還流器を 備えた 2リットルの 5頸フラスコにプロピレングリコ一ル 3 1 9. 6 g、 ジェチ レングリコール 1 1 6. 7 g、 ィタコン酸 325. 3 g、 リン化合物 (1) 52 9. 6 gおよびハイ ドロキノン 0. 07 gを仕込み、 容器内を窒素置換し、 1 8 0°Cで 6時間反応して、 酸価 10. 8mg KOH/gのリン含有オリゴエステル を得た。 このオリゴエステルを含む反応混合物を 140°Cに冷却し、 フマル酸 2 45. 2 gおよびハイ ドロキノン 0. 14 gを仕込み、 21 5°Cで 6時間脱水縮 合反応を行い、 酸価 1 6. 3mgKOHZgのリン含有不飽和ポリエステルを得 た (リン含有率 5. 38°/。、 不飽和結合当量 564 gZmo 1 )。 この不飽和ポ リエステルをスチレンモノマー 705. 1 gで希釈して不飽和ポリエステル樹脂 (D) とした。 Stirrer, thermometer, nitrogen gas inlet tube and partial reflux with thermometer on top of column 39.6 g of propylene glycol, 16.7 g of ethylene glycol, 325.3 g of itaconic acid, 529.6 g of phosphorus compound (1) and 529.6 g of hydroquinone After charging 0.07 g, the inside of the vessel was replaced with nitrogen and reacted at 180 ° C. for 6 hours to obtain a phosphorus-containing oligoester having an acid value of 10.8 mg KOH / g. The reaction mixture containing the oligoester was cooled to 140 ° C, charged with 245.2 g of fumaric acid and 0.14 g of hydroquinone, and subjected to a dehydration condensation reaction at 215 ° C for 6 hours to obtain an acid value of 16 3 mg KOHZg of a phosphorus-containing unsaturated polyester was obtained (phosphorus content: 5.38 ° /., Unsaturated bond equivalent: 564 gZmo 1). The unsaturated polyester was diluted with 705.1 g of a styrene monomer to obtain an unsaturated polyester resin (D).
樹脂製造例 5  Resin production example 5
攪拌機、 温度計、 窒素ガス導入管およぴ塔頂部に温度計を付した部分還流器を 備えた 2リッ トルの 5頸フラスコにプロピレングリコール 277. 7 g、 ジプロ ピレングリコール 107. 3 g、 ビスフエノール Aの PO付加体 (ニュ一ポール BP— 23 P、 三洋化成工業 (株) 製、 分子量 356. 0) 284. 8 g、 無水 マレイン酸 1 22. 6 g、 リン化合物 (1) 264. 8 gおよびハイ ドロキノン 0. 07 gを仕込み容器內を窒素置換し、 180°Cで 5時間反応し、 酸価 7. 4 mg KOH/gのリン含有オリゴエステルを得た。 このオリゴエステルを含む反 応混合物を 140°Cに冷却し、 フマル酸 435. 3 gおよびハイ ドロキノン 0. 14 gを仕込み、 21 0°Cで脱水縮合反応を行い、 酸価 27. Omg KOH/g のリン含有不飽和ポリエステルを得た (リン含有率 2. 83%、 不飽和結合当量 357 g/ mo l )。 この不飽和ポリエステルをスチレンモノマー 845. 1 g で希釈して不飽和ポリエステル樹脂(E)とした。 In a 2-liter 5-neck flask equipped with a stirrer, thermometer, nitrogen gas inlet tube and a partial reflux condenser equipped with a thermometer at the top of the column, 277.7 g of propylene glycol, 107.3 g of dipropylene glycol, PO adduct of phenol A (Newpol BP-23P, manufactured by Sanyo Chemical Industries, Ltd., molecular weight 356.0) 284.8 g, maleic anhydride 122.6 g, phosphorus compound (1) 264.8 g and 0.07 g of hydroquinone were charged in the vessel 窒 素, and reacted at 180 ° C. for 5 hours to obtain a phosphorus-containing oligoester having an acid value of 7.4 mg KOH / g. The reaction mixture containing the oligoester was cooled to 140 ° C, charged with 435.3 g of fumaric acid and 0.14 g of hydroquinone, and subjected to a dehydration condensation reaction at 210 ° C to obtain an acid value of 27.Omg KOH / g of a phosphorus-containing unsaturated polyester were obtained (phosphorus content: 2.83%, equivalent of unsaturated bond: 357 g / mol). This unsaturated polyester was diluted with 845.1 g of a styrene monomer to obtain an unsaturated polyester resin (E).
樹脂製造例 6  Resin production example 6
攪拌機、 温度計、 窒素ガス導入管および塔頂部に温度計を付した部分還流器を 備えた 2リ ットルの 5類フラスコにネオペンチルグリコール 270. 4 g、 水素 添加ビスフエノール A 270. 4 g、 イタコン酸 1 35. 3 g、 リン化合物 ( 1 ) 224. 8 gおよびハイ ドロキノン 0. 08 gを仕込み、 1 90°Cで 5時間反応 し、 酸価 3. 6 m g KOHZgのリン含有オリゴエステルを得た。 このオリゴェ ステルを含む反応混合物に、 フマル酸 343. 6 gおよびハイ ドロキノン 0. 1 2 gをさらに加え、 21 0 で 5時間半脱水縮合反応を行い、 酸価 21. 3mg KOH/gのリン含有不飽和ポリエステルを得た (リン含有率 2. 64%、 不飽 和結合当量 4 1 0 g/mo 1 )。 この不飽和ポリエステルを、 スチレンモノマー 8 1 5. 0 gで希釈して不飽和ポリエステル樹脂 (F) とした。 In a 2-liter Class 5 flask equipped with a stirrer, thermometer, nitrogen gas inlet tube and a partial reflux condenser equipped with a thermometer at the top of the column, 270.4 g of neopentyl glycol, 270.4 g of hydrogenated bisphenol A, 135.3 g of itaconic acid, 224.8 g of the phosphorus compound (1) and 0.08 g of hydroquinone were charged and reacted at 190 ° C for 5 hours to obtain a phosphorus-containing oligoester having an acid value of 3.6 mg KOHZg. Obtained. This oligo 343.6 g of fumaric acid and 0.12 g of hydroquinone were further added to the reaction mixture containing the steal, followed by a half-hour dehydration condensation reaction at 210 ° C for 5 hours and a phosphorus-containing unsaturated acid having an acid value of 21.3 mg KOH / g Polyester was obtained (phosphorus content: 2.64%, unsaturated bond equivalent: 410 g / mo 1). This unsaturated polyester was diluted with 81.5 g of a styrene monomer to obtain an unsaturated polyester resin (F).
樹脂製造例 7  Resin production example 7
攪拌機、 温度計、 窒素ガス導入管および塔頂部に温度計を付した部分還流器を 備えた 2リットルの 5類フラスコにネオペンチルグリコール 1 56. 0 g、 水素 添加ビスフエノ一ル A 288. 2 g、 イタコン酸 1 95. 2 g、 リン化合物 ( 1 ) 324. 3 gおよびハイ ド口キノン 0. 08 gを仕込み、 1 90°Cで 5時間反応 し、 酸価 3. 1 mgKOH/gのリン含有オリゴエステルを得た。 このオリゴェ ステルを含む反応混合物に、 フマル酸 1 74. 2 gおよびハイ ドロキノン 0. 1 0 gをさらに加え、 21 0°Cで 3時間半脱水縮合反応を行った。 この時点で酸価 を測定したところ、 55. OmgKOHZgであった。 ここで反応混合物を 1 5 0°Cに冷却し、ダリシジルメタクリレート 1 58. 5 g (酸に対して 1. 0当量)、 ハイ ドロキノン 0. 20 gを加え、 1 50°Cで 1時間反応を行い、 酸価 3. 1 m gKOHZgの末端がグリシジルメタクリレ一トで封止されたリン含有不飽和ポ リエステルを得た (リン含有率 3. 8 9。/。、 不飽和結合当量 450 g/mo 1 )。 この不飽和ポリエステルを、 スチレンモノマー 795. 7 gで希釈して不飽和ポ リエステル樹脂 (G) とした。  Neopentyl glycol 156.0 g, hydrogenated bisphenol A 288.2 g in a 2 liter class 5 flask equipped with a stirrer, thermometer, nitrogen gas inlet tube, and a partial reflux condenser equipped with a thermometer at the top of the tower , 195.2 g of itaconic acid, 324.3 g of the phosphorus compound (1) and 0.08 g of a quinone at the mouth were charged and reacted at 190 ° C for 5 hours to obtain a phosphorus compound having an acid value of 3.1 mgKOH / g. The resulting oligoester was obtained. To the reaction mixture containing the oligomer, 174.2 g of fumaric acid and 0.10 g of hydroquinone were further added, and a dehydration condensation reaction was performed at 210 ° C. for 3.5 hours. At this point, the acid value was measured and was 55. OmgKOHZg. Here, the reaction mixture was cooled to 150 ° C, added with 158.5 g of daricidyl methacrylate (1.0 equivalent to acid) and 0.20 g of hydroquinone, and reacted at 150 ° C for 1 hour. To obtain a phosphorus-containing unsaturated polyester having an acid value of 3.1 mg KOHZg and capped with glycidyl methacrylate (phosphorus content: 3.89./., Unsaturated bond equivalent: 450 g) / mo 1). This unsaturated polyester was diluted with 795.7 g of a styrene monomer to obtain an unsaturated polyester resin (G).
樹脂製造例 8  Resin production example 8
攪拌機、 温度計、 窒素ガス導入管および塔頂部に温度計を付した部分還流器を 備えた 2リ ットルの 5頸フラスコにプロピレングリコール 205. 4 g、 イタコ ン酸 343. 5 g、 フマル酸 41. 8 g、 リン化合物 (1) 564. 2 gおよび ハイ ドロキノン 0. 20 gを仕込み、 210°Cで 6時間半脱水縮合反応を行った。 この時点で酸価を測定したところ、 55. 2mgKOHZgであった。 ここで反 応混合物を 1 50°Cに冷却し、 グリシジルメタクリレート 1 60. 6 g (酸に対 して 1. 0当量)、 ハイ ドロキノン 0. 20 gを加え、 1 50°Cで 1時間反応を 行い、 酸価 4. 2mg KOH/gの末端がグリシジルメタクリレートで封止され たリン含有不飽和ポリエステルを得た (リン含有率 6. 6 6%、 不飽和結合当量 7 90 g/m o 1 )。 この不飽和ポリエステルを、 スチレンモノマ一 80 8. 5 gで希釈して不飽和ポリエステル樹脂 (H) とした。 205.4 g of propylene glycol, 343.5 g of itaconic acid, 41 fumaric acid in a 2-liter 5-neck flask equipped with a stirrer, thermometer, nitrogen gas inlet tube and a partial reflux condenser equipped with a thermometer at the top of the tower .8 g, 564.2 g of the phosphorus compound (1) and 0.20 g of hydroquinone were charged, and a dehydration condensation reaction was performed at 210 ° C. for six and a half hours. At this time, the acid value was measured and found to be 55.2 mgKOHZg. Here, the reaction mixture is cooled to 150 ° C, glycidyl methacrylate 160.6 g (1.0 equivalent to acid) and hydroquinone 0.20 g are added, and the mixture is reacted at 150 ° C for 1 hour. The acid value is 4.2 mg KOH / g and the end is capped with glycidyl methacrylate. As a result, a phosphorus-containing unsaturated polyester was obtained (phosphorus content: 6.66%, unsaturated bond equivalent: 790 g / mo 1). This unsaturated polyester was diluted with 808.5 g of styrene monomer to obtain an unsaturated polyester resin (H).
樹脂製造例 9  Resin production example 9
特開昭 5 3 - 1 1 2 9 9 7号の実施例 1の記載に準じて不飽和ポリエステル樹 脂を合成した。  An unsaturated polyester resin was synthesized according to the description in Example 1 of JP-A-53-112997.
まず攪拌機、 温度計、 窒素ガス導入管および塔頂部に温度計を付した部分還流 器を備えた 2リットルの 5頸フラスコに無水マレイン酸 464 g、 プロピレング リコール 4 5 6 gを仕込み、 容器内を窒素置換し、 2 1 0°Cで 4時間反応して酸 価 20. 5mg KOH/gの不飽和ポリエステルを得た。 この反応混合物を 1 5 0°Cに冷却し、 リン化合物 (1) 1 0 0 gを加え、 1 5 0。Cに 1. 5時間保ち、 リン含有不飽和ポリエステルを得た (リン含有率 1. 5 2%、 不飽和結合当量 2 Z O gZmo l この不飽和ポリエステノレをスチレンモノマ一 400. O gで 希釈して不飽和ポリエステル樹脂(I )とした。  First, 464 g of maleic anhydride and 456 g of propylene glycol were charged into a 2-liter 5-neck flask equipped with a stirrer, thermometer, nitrogen gas inlet tube, and a partial reflux condenser equipped with a thermometer at the top of the tower. Was replaced with nitrogen and reacted at 210 ° C. for 4 hours to obtain an unsaturated polyester having an acid value of 20.5 mg KOH / g. The reaction mixture was cooled to 150 ° C., and 100 g of the phosphorus compound (1) was added. C for 1.5 hours to obtain a phosphorus-containing unsaturated polyester (phosphorus content 1.52%, unsaturated bond equivalent 2 ZO gZmol) This unsaturated polyester was diluted with 400 g of styrene monomer. To obtain an unsaturated polyester resin (I).
樹脂製造例 1 0  Resin production example 10
攪拌機、 温度計を備えた 1 リ ッ トル 4頸フラスコ中で、 ハイ ドロキノン 0. 3 g、 ベンジルジメチルァミン 0. 3 gの存在下、 エポキシ樹脂 (YD 1 28、 東都化成 (株) 製、 エポキシ当量 1 8 7) 3 7 4 gに、 メタクリル酸 1 7 2 gを 添加し、 1 20°Cで 6時間反応させ、 酸価が 2. Omg KOHZgのビニルエス テルを得た。 そのビエルエステルにスチレンモノマー 2 94 gを添加し、 リンを 含有しないビュルエステル樹脂 (J ) とした。  In a 1 liter 4-neck flask equipped with a stirrer and a thermometer, an epoxy resin (YD128, manufactured by Toto Kasei Co., Ltd.) was used in the presence of 0.3 g of hydroquinone and 0.3 g of benzyldimethylamine. 1772 g of methacrylic acid was added to 3874 g of epoxy equivalent and reacted at 120 ° C. for 6 hours to obtain vinyl ester having an acid value of 2.Omg KOHZg. 294 g of a styrene monomer was added to the beer ester to obtain a phosphorus-free bullet ester resin (J).
実施例:!〜 9、 比較例 1 ~ 3  Example:! ~ 9, Comparative Examples 1 ~ 3
〔表 1〕 に記載の重量比で、 不飽和ポリエステル樹脂 (A) ~ ( 1 )、 ビニル エステル樹脂 (J)、 スチレンモノマー、 架橋アク リルゴム微粒子、 リン系難燃 剤、 硬化剤を配合して樹脂組成物を製造した。 各樹脂組成物をシリコーンスぺー サーを備えたガラス製の型に流し込み、 1 00 で1時間、 続いて 1 Ί 5°Cで 3 0分間加熱して硬化させ、 それぞれ厚さ 3 mmの充填材を含まない注型板を作成 した。 これらの注型板を用いて次の方法で強度と T gを測定した。  The unsaturated polyester resins (A) to (1), vinyl ester resin (J), styrene monomer, cross-linked acrylic rubber fine particles, phosphorus-based flame retardant, and curing agent were blended at the weight ratios shown in Table 1. A resin composition was manufactured. Each resin composition is poured into a glass mold equipped with a silicone spacer, and is cured by heating at 100 ° C. for 1 hour and then at 150 ° C. for 30 minutes. A casting plate containing no was prepared. Using these casting plates, the strength and Tg were measured by the following methods.
曲げ強さ : J I S K 7 20 3に準拠 曲げ弾性率: J I S K 7 2 0 3に準拠 Flexural strength: Compliant with JISK 7203 Flexural modulus: Conforms to JISK7203
曲げたわみ: J I S K 7 2 0 3に準拠  Bending deflection: Complies with JISK 7203
T g :動的弾性率を測定して求めた t a η δのピーク温度  T g: peak temperature of ta η δ obtained by measuring dynamic elastic modulus
次に 〔表 1〕 に記載の重量比で、 不飽和ポリエステル樹脂 (Α) 〜 ( 1 )、 ビュルエステル樹脂 (J )、 スチレンモノマ一、 架橋アクリルゴム微粒子、 リン 系難燃剤、 硬化剤、 充填材を配合して樹脂組成物を製造した。 得られた樹脂組成 物をシリコーンスぺーサーを備えたガラス製の型に流し込み、 1 0 0 °Cで 1時間、 続いて 1 7 5 °Cで 3 0分間加熱して硬化させ、 厚さ 1 mmの充填材を含んだ注型 板を作成した。 この注型板を用いて次の方法で難燃性、 耐熱性、 P C T後の耐熱 性、 耐アルカリ性を測定した。  Next, the unsaturated polyester resins (Α) to (1), butyl ester resin (J), styrene monomer, crosslinked acrylic rubber fine particles, phosphorus-based flame retardant, curing agent, The materials were blended to produce a resin composition. The obtained resin composition was poured into a glass mold equipped with a silicone spacer, and was cured by heating at 100 ° C. for 1 hour, and then at 175 ° C. for 30 minutes to cure. A casting plate containing mm filler was prepared. Using this casting plate, flame resistance, heat resistance, heat resistance after PCT, and alkali resistance were measured by the following methods.
難燃性: U L— 9 4準拠  Flame retardant: UL 94
耐熱性: 260°Cのハンダ槽に注型板を漬け、 フクレが生じるまでの時間 (秒) P C T後の耐熱性:湿度 9 5 %の下、 1 2 1 °Cで 1時間プレッシャータッカー テスト機にかけた後、 上記耐熱性を測定  Heat resistance: Time required to immerse the casting plate in a 260 ° C solder tank until blistering occurs (seconds) Heat resistance after PCT: 1 hour at 121 ° C under 95% humidity And then measure the above heat resistance
耐ァルカリ性の測定:注型板を 6 0 で 1 0 %水酸化ナトリゥム水溶液に 1時 間浸漬し、 その後の外観、 重量変化を以下の基準で評価  Measurement of alkali resistance: The casting plate was immersed in a 10% aqueous solution of sodium hydroxide at 60 for 1 hour, and the appearance and weight change were evaluated according to the following criteria.
◎:外観に変化なく、 重量減少が 1 %未満  ◎: No change in appearance, weight loss less than 1%
〇:外観に変化はないが、 重量減少が 1〜 3 %  〇: No change in appearance, but weight loss is 1-3%
△:外観に変化があり、 重量減少が 1 %未満  Δ: Change in appearance, weight loss is less than 1%
X :外観に変化があり、 重量減少が 1 %以上  X: Change in appearance, weight loss of 1% or more
以上の測定結果を樹脂の組成とともに 〔表 1〕 に示す。 The above measurement results are shown in [Table 1] together with the composition of the resin.
なお、 用いた添加剤は次のとおりである。  The additives used are as follows.
架橋ァクリルゴム微粒子: スタフイロイ ド A C— 3 3 5 5 (武田薬品工業(株) 製)  Crosslinked acryl rubber fine particles: Staphyloid A C—335 5 (manufactured by Takeda Pharmaceutical Co., Ltd.)
リン系難燃剤: P X— 2 0 0 (大八化学工業 (株) 製)  Phosphorus-based flame retardant: P X—200 (manufactured by Daihachi Chemical Industry Co., Ltd.)
硬化剤: クメンハイ ドロパ一ォキサイ ド 8 0 %品、 パークミル H—8 0 (日本 油脂 (株) 製)  Curing agent: Cumene high dropper oxide 80% product, Parkmill H-80 (Nippon Yushi Co., Ltd.)
充填材:水酸化アルミニウム、 C L—3 1 0 (住友化学工業 (株) 製) 〔表 1〕
Figure imgf000021_0001
Filler: Aluminum hydroxide, CL-310 (Sumitomo Chemical Co., Ltd.) [Table 1]
Figure imgf000021_0001
〔表 1〕 から明らかなように、 実施例 1 9の難燃性不飽和ポリエステル樹脂 から得られた硬化物は良好な機械物性とともに、 高い難燃性、 耐熱性、 P CT後 の耐熱性、 耐アルカリ性を有していることが分かる。 これに対し、 化合物 (I ) の付加率の低い不飽和ポリエステル樹脂 ( I ) を用いた比較例 1の注型板は難燃 性に乏しく (燃焼した)、 リン系難燃剤を添加してリン含有率を実施例並に揃え た比較例 2および 3の注型板は、 難燃性も実施例のものより低く、 耐熱性、 特に PCT後の耐熱性が低いことが分かる。 樹脂製造例 1 1 As is clear from Table 1, the cured product obtained from the flame-retardant unsaturated polyester resin of Example 19 has good mechanical properties, high flame retardancy, heat resistance, heat resistance after PCT, It turns out that it has alkali resistance. In contrast, compound (I) The casting plate of Comparative Example 1 using an unsaturated polyester resin (I) with a low addition rate of the resin had poor flame retardancy (burned), and the phosphorus content was adjusted to the same level as in the example by adding a phosphorus-based flame retardant It can be seen that the cast plates of Comparative Examples 2 and 3 also have lower flame retardancy than those of the examples, and have low heat resistance, particularly low heat resistance after PCT. Resin production example 1 1
攪拌機、 温度計および塔頂部に温度計を付した部分還流器を備えた 2リットル の 5頸フラスコにプロピレングリコ一/レ 3 9 9. 5 g、ィタコン酸 240. 7 g、 リン化合物 (1) 389. 1 gおよびハイ ドロキノン 0. 08 gを仕込み、 1 9 0°Cで 6時間反応させ、 酸価 8. 5mg KOH/gのリン含有オリゴエステルを 得た。 このオリゴエステルを含む反応混合物にさらに、 無水マレイン酸 308. 9 gおよびハイ ドロキノン 0. 1 2 gを加え、 21 5°Cで 6時間半脱水縮合反応 を行い、 酸価 21. SmgKOH/gのリン含有不飽和ポリエステル樹脂 (リン 含有率 4. 75%、 不飽和結合当量 382 g/mo 1 ) を得た。 この不飽和ポリ エステルをスチレンモノマー 814. 4 gで希釈して樹脂 (K) とした。  In a 2 liter 5-necked flask equipped with a stirrer, thermometer and a partial reflux condenser equipped with a thermometer at the top of the column, 3.99.5 g of propylene glycol / reaction, 240.7 g of itaconic acid, phosphorus compound (1) 389.1 g and 0.08 g of hydroquinone were charged and reacted at 190 ° C. for 6 hours to obtain a phosphorus-containing oligoester having an acid value of 8.5 mg KOH / g. 308.9 g of maleic anhydride and 0.12 g of hydroquinone were further added to the reaction mixture containing the oligoester, and the mixture was subjected to a half-hour dehydration condensation reaction at 215 ° C for 6 and a half hours to obtain an acid value of 21.SmgKOH / g. As a result, a phosphorus-containing unsaturated polyester resin (phosphorus content: 4.75%, equivalent of unsaturated bond: 382 g / mo 1) was obtained. The unsaturated polyester was diluted with 814.4 g of a styrene monomer to obtain a resin (K).
樹脂製造例 1 2  Example of resin production 1 2
攪拌機、 温度計および塔頂部に温度計を付した部分還流器を備えた 2リットル の 5頸ブラスコにプロピレングリコール 1 82. 6 g、 水素添加ビスフエノ一ル A 240. 2 g、 ジエチレングリコ一ル 84. 8 g、 ィタコン酸 1 92. 6 g、 リン化合物 (1) 31 1. 3 gおよびハイ ドロキノン 0. 07 gを仕込み、 1 9 0°Cで 6時間反応させ、 酸価 8. 2m g KOH/gのリン含有オリゴエステルを 得た。 このオリゴエステルを含む反応混合物にさらに、 フマル酸 292. 5 gお よびハイ ドロキノン 0. 1 1 gを加え、 21 5 °Cで 7時間半脱水縮合反応を行い、 酸価 26. 7mg KOHZgのリン含有不飽和ポリエステル (リン含有率 3. 8 4%、 不飽和結合当量 455 g/mo 1 ) を得た。 この不飽和ポリエステル樹脂 をスチレンモノマ一 778. 4 gで希釈して樹脂 (L) とした。  182.6 g of propylene glycol, 240.2 g of hydrogenated bisphenol A and 20.2 g of diethylene glycol in a 2-liter 5-necked brasco flask equipped with a stirrer, thermometer and a partial reflux condenser equipped with a thermometer at the top of the column 84. 8 g, 192.6 g of itaconic acid, 311.3 g of the phosphorus compound (1) and 0.07 g of hydroquinone were added, and reacted at 190 ° C for 6 hours to obtain an acid value of 8.2 mg KOH / g of phosphorus-containing oligoester were obtained. To the reaction mixture containing the oligoester, 292.5 g of fumaric acid and 0.11 g of hydroquinone were further added, and the mixture was subjected to a half-hour dehydration condensation reaction at 215 ° C for 7 hours to obtain a phosphoric acid having an acid value of 26.7 mg KOHZg. The resulting unsaturated polyester (having a phosphorus content of 3.84% and an unsaturated bond equivalent of 455 g / mo 1) was obtained. This unsaturated polyester resin was diluted with 778.4 g of styrene monomer to obtain a resin (L).
樹脂製造例 13  Example of resin production 13
攪拌機、 温度計および塔頂部に温度計を付した部分還流器を備えた 2リットル の 5類フラスコに水素添加ビスフエノーノレ A307. 4 g、 ネオペンチルグリコ ール 1 66. 4 g、 イタコン酸 208. 2 g、 リン化合物 ( 1 ) 33 9. 0 gお よびハイ ドロキノン 0. 08 gを仕込み、 1 90°Cで 5時間反応させ、 酸価 4. 1 mg KOH/gのリン含有オリゴエステルを得た。 このオリゴエステルを含む 反応混合物にさらに、 フマル酸 1 85. 7 gおよびハイ ドロキノン 0. l l gを 加え、 21 0 °Cで 4時間半脱水縮合反応を行った。 この時点で反応物の酸価を測 定したところ、 55. 3 mg KOHZgであった。 反応物の温度を 1 50°Cに冷 却し、 グリシジルメタクリレート 1 68. 1 g (酸に対して 1. 0当量)、 ハイ ドロキノン 0. 20 gを加え、 1 50°Cで 1時間反応を行い、 酸価 4. 8mgK O HZ gの末端がグリシジルメタクリ レートで封止されたリン含有不飽和ポリエ ステル樹脂(リン含有率 3. 84%、不飽和結合当量 449 g/mo 1 ) を得た。 この不飽和ポリエステル樹脂をスチレンモノマ一 844. 0 gで希釈して樹脂 (M) とした。 Hydrogenated bisphenol A 307.4 g, neopentylglycol in a 2 liter class 5 flask equipped with a stirrer, thermometer and partial refluxer with thermometer at the top of the column 166.4 g, 208.2 g of itaconic acid, 339.0 g of phosphorus compound (1) and 0.08 g of hydroquinone, and reacted at 190 ° C for 5 hours to obtain an acid value of 4. 1 mg KOH / g of the phosphorus-containing oligoester was obtained. 185.7 g of fumaric acid and 0.1 llg of hydroquinone were further added to the reaction mixture containing the oligoester, and a dehydration condensation reaction was carried out at 210 ° C for 4.5 hours. At this time, the acid value of the reaction product was measured and found to be 55.3 mg KOHZg. The temperature of the reaction mixture was cooled to 150 ° C, 168.1 g of glycidyl methacrylate (1.0 equivalent to acid) and 0.20 g of hydroquinone were added, and the reaction was carried out at 150 ° C for 1 hour. An acid value of 4.8 mg K O HZ g was obtained as a phosphorus-containing unsaturated polyester resin having a terminal capped with glycidyl methacrylate (phosphorus content: 3.84%, unsaturated bond equivalent: 449 g / mo 1). . This unsaturated polyester resin was diluted with 844.0 g of styrene monomer to obtain a resin (M).
実施例 10〜: 14、 比較例 4  Examples 10 to: 14, Comparative Example 4
〔表 2〕 に記載の重量比で、 不飽和ポリエステル樹脂 (K) 〜 (M)、 ビュル エステル樹脂 (J)、 リン系難燃剤、 架橋アクリルゴム微粒子、 硬化剤を配合し て樹脂組成物を調製し、 実施例 1と同様にして機械物性と Tgを測定した。 また、 〔表 2〕 に記載の重量比で、 不飽和ポリエステル樹脂 (K) 〜 (M)、 ビュルエステル樹脂 (J)、 リン系難燃剤、 架橋アク リルゴム微粒子、 硬化剤、 充填材を配合して樹脂組成物を調製した。 各樹脂組成物をシリコーンスぺーサー を備えたガラス製の型に流し込み、 1 00¾で1時間、 続いて 1 75°Cで 30分 間加熱して硬化させ、 厚さ 1 mmの充填材を含んだ注型板を作成した。 これらの 注型板を用いて次の方法で難燃性、 耐熱性、 PCT後の耐熱性、 耐アルカリ性を 測定した。  The resin composition was prepared by mixing the unsaturated polyester resins (K) to (M), the butyl ester resin (J), the phosphorus-based flame retardant, the crosslinked acrylic rubber fine particles, and the curing agent at the weight ratios shown in Table 2. It was prepared and the mechanical properties and Tg were measured in the same manner as in Example 1. The unsaturated polyester resins (K) to (M), the butyl ester resin (J), the phosphorus-based flame retardant, the crosslinked acrylic rubber fine particles, the curing agent, and the filler are blended in the weight ratios shown in Table 2. Thus, a resin composition was prepared. Each resin composition is poured into a glass mold equipped with a silicone spacer and cured by heating at 100 ° C for 1 hour, followed by heating at 175 ° C for 30 minutes, and contains a 1 mm thick filler. A casting plate was made. Using these casting plates, flame retardancy, heat resistance, heat resistance after PCT, and alkali resistance were measured by the following methods.
難燃性: 11 ー94準拠  Flame retardant: 11-94 compliant
耐熱性: 260°Cのハンダ槽に注型板を漬け、 フクレが生じるまでの時間 (秒)  Heat resistance: time until the blisters are formed by immersing the casting plate in a 260 ° C solder bath (seconds)
P C T後の耐熱性:注型板を湿度 95 %の下、 1 21 °Cで 1時間プレツシャ 一タッカーテスト機にかけた後、 上記耐熱性を測定  Heat resistance after PCT: The casting plate is subjected to one-hour presser test at 121 ° C under 95% humidity for 1 hour, and the above heat resistance is measured.
耐ァルカリ性:注型板を 60 で 1 0 %水酸化ナトリウム水溶液に 1時間浸 漬し、 その後の外観、 重量変化を以下の基準で評価 Alkali resistance: Immerse the casting plate in 10% aqueous sodium hydroxide solution at 60 for 1 hour Pickled, then evaluated appearance and weight change based on the following criteria
◎:外観に変化なく、 重量減少が 0. 5 %未満  :: No change in appearance, weight loss is less than 0.5%
〇:外観に変化はないが、 重量減少が 0. 5〜2%  〇: There is no change in appearance, but the weight loss is 0.5-2%
△:外観に変化があり、 重量減少が 0. 5 %未満  Δ: Change in appearance, weight loss is less than 0.5%
X :外観に変化があり、 重量減少が 0. 5。/。以上  X: Change in appearance, weight loss 0.5. /. that's all
以上の測定結果を樹脂組成とともに 〔表 2〕 に示す。 The above measurement results are shown in [Table 2] together with the resin composition.
なお、 用いた難燃剤および添加剤は次のとおりである。  The flame retardants and additives used are as follows.
縮合リン酸エステル系難燃剤: PX— 200 (大八化学工業 (株) 製) フォスファゼン系難燃剤: CP— 1 34H (ケミプロ化成 (株) 製) 架橋ァクリルゴム微粒子: スタフイロイ ド AC— 3355 (武田薬品工業(株) 製)  Condensed phosphate ester-based flame retardant: PX-200 (manufactured by Daihachi Chemical Industry Co., Ltd.) Phosphazene-based flame retardant: CP-134H (manufactured by Chemipro Kasei Co., Ltd.) Industrial Co., Ltd.)
硬化剤: クメンハイ ドロパ一ォキサイ ド 80%品、 パークミル H—80 (日本 油脂 (株) 製)  Curing agent: Cumene Halo Dropper Oxide 80%, Park Mill H-80 (Nippon Yushi Co., Ltd.)
充填材:水酸化アルミニウム、 CL—3 1 0 (住友化学工業 (株) 製) 〔表 2〕 Filler: Aluminum hydroxide, CL-310 (Sumitomo Chemical Co., Ltd.) [Table 2]
Figure imgf000025_0002
Figure imgf000025_0003
Figure imgf000025_0002
Figure imgf000025_0003
Figure imgf000025_0001
Figure imgf000025_0001
〔表 2〕 から明らかなように、 実施例 1 0〜 1 4はいずれも高い難燃性を有し ているのに対し、 リンを含有しないビニルエステル樹脂 (J ) を用い、 多量の縮 合リン酸エステル系難燃剤を使用した比較例 4は、難燃性が劣り、 しかも耐熱性、 特に P C T後の耐熱性は著しく低下した。 産業上の利用可能性 As is clear from [Table 2], while Examples 10 to 14 all have high flame retardancy, a large amount of condensation was performed using vinyl ester resin (J) containing no phosphorus. Comparative Example 4, in which a phosphate ester-based flame retardant was used, was inferior in flame retardancy and significantly reduced heat resistance, particularly heat resistance after PCT. Industrial applicability
本発明の難燃性不飽和ポリエステルは、 ハロゲンフリーでありながら、 高い難 燃性、 耐熱性、 耐湿性、 耐薬品性、 良好な機械物性を有する硬化物を与え、 且つ 生産性にも優れているので、 特に積層板用の材料として好適である。  The flame-retardant unsaturated polyester of the present invention provides a cured product having high flame retardancy, heat resistance, moisture resistance, chemical resistance, and good mechanical properties while being halogen-free, and has excellent productivity. Therefore, it is particularly suitable as a material for a laminate.

Claims

請 求 の 範 囲 不飽和ポリエステルの不飽和基に式 ( I ) Scope of the claim Formula (I)
Figure imgf000027_0001
Figure imgf000027_0001
(式中、 R 1および R 2は同一または異なる脂肪族基または芳香族基であり、 mお よび nは同一または異なる 0〜4の整数である。) で示されるリン化合物が付加 した構造を有し、 リン含有率が 2〜1 0重量。 /0、 不飽和結合当量が 2 0 0〜1, 0 0 0 g /m o 1である難燃性不飽和ポリエステル。 (Wherein, R 1 and R 2 are the same or different aliphatic groups or aromatic groups, and m and n are the same or different integers from 0 to 4). Having a phosphorus content of 2 to 10 weight. / 0 , a flame-retardant unsaturated polyester having an unsaturated bond equivalent of 200 to 1,000 g / mo1.
2 . 式 ( I ) で示されるリン化合物が付加した不飽和基がィタコン酸由来のも のである請求の範囲 1記載の難燃性不飽和ポリエステル。  2. The flame-retardant unsaturated polyester according to claim 1, wherein the unsaturated group to which the phosphorus compound represented by the formula (I) is added is derived from itaconic acid.
3 . 不飽和ポリエステルが、 ビスフエノール A構造を有するものである請求の 範囲 1記載の難燃性不飽和ポリエステル。  3. The flame-retardant unsaturated polyester according to claim 1, wherein the unsaturated polyester has a bisphenol A structure.
4 . 不飽和ポリエステルが、 水素化ビスフエノール A構造を有するものである 請求の範囲 1記載の難燃性不飽和ポリエステル。  4. The flame-retardant unsaturated polyester according to claim 1, wherein the unsaturated polyester has a hydrogenated bisphenol A structure.
5 . 不飽和ポリエステルが、 末端にカルボキシル基を有する不飽和ポリエステ ルにカルボキシル基と反応性を有する基を分子内に 1つ持つ化合物を反応させて 得られた不飽和ポリエステルを含有するものである請求の範囲 1記載の難燃性不 飽和ポリエステル。  5. The unsaturated polyester contains an unsaturated polyester obtained by reacting a compound having one group reactive with a carboxyl group in a molecule with an unsaturated polyester having a terminal carboxyl group. The flame-retardant unsaturated polyester according to claim 1.
6 . カルボキシル基と反応性を有する基が、 エポキシ基である請求の範囲 5記 載の難燃性不飽和ポリエステル。  6. The flame-retardant unsaturated polyester according to claim 5, wherein the group having reactivity with a carboxyl group is an epoxy group.
7 . カルボキシル基と反応性を有する基を分子内に 1つ持つ化合物が、 更に分 子内に不飽和結合を有する化合物である請求の範囲 5または 6記載の難燃性不飽 和ポリエステル。  7. The flame-retardant unsaturated polyester according to claim 5, wherein the compound having one group reactive with a carboxyl group in the molecule is a compound further having an unsaturated bond in the molecule.
8 . カルボキシル基と反応性を有する基を分子内に 1つ持つ化合物が、 グリシ ジルァクリレ一トまたはダリシジルメタクリレートである請求の範囲 5記載の難 燃性不飽和ポリエステル。 8. A compound having one group reactive with a carboxyl group in the molecule 6. The flame-retardant unsaturated polyester according to claim 5, which is diacrylate or dalicidyl methacrylate.
9. 請求の範囲 1記載の難燃性不飽和ポリエステル (a) 1 0 0重量部、 ェチ レン性反応性希釈剤 (b) 1 0〜1 0 0重量部を含有してなり、 30。Cにおける 粘度が 70 0mP a · s以下、 且つリン含有率が 1. 5重量%以上である難燃性 不飽和ポリエステル樹脂。  9. The flame-retardant unsaturated polyester according to claim 1, (a) 100 parts by weight, and an ethylenic reactive diluent (b) 100 to 100 parts by weight, 30. A flame-retardant unsaturated polyester resin having a viscosity in C of 700 mPa · s or less and a phosphorus content of 1.5% by weight or more.
1 0. 難燃性不飽和ポリエステル樹脂硬化物のガラス転移温度が 1 20°C以上 である請求の範囲 9記載の難燃性不飽和ポリエステル樹脂。  10. The flame-retardant unsaturated polyester resin according to claim 9, wherein the glass transition temperature of the flame-retardant unsaturated polyester resin cured product is 120 ° C or higher.
1 1.請求の範囲 1記載の難燃性不飽和ポリエステル( a )、反応性希釈剤( b ) およびリン系難燃剤 (c) を含んでなる樹脂組成物であって、 該樹脂組成物 1 0 0重量部中 (a) が 2 5〜 9 0重量部、 (b) が 5〜 70重量部および ( c ) 力 S :!〜 2 5重量部であり、 樹脂組成物全体のリン含有率が 2. 0〜 1 0. 0重量% である難燃性不飽和ポリエステル樹脂組成物。  1 1. A resin composition comprising the flame-retardant unsaturated polyester (a) according to claim 1, a reactive diluent (b) and a phosphorus-based flame retardant (c), wherein the resin composition 1 (A) is 25 to 90 parts by weight, (b) is 5 to 70 parts by weight, and (c) force S is! To 25 parts by weight, and the phosphorus content of the whole resin composition is 100 parts by weight. Is from 2.0 to 10.0% by weight.
1 2. リン系難燃性剤 (c ) 1 縮合リン酸エステル化合物および またはフ ォスファゼン化合物である請求の範囲 1 1記載の難燃性不飽和ポリエステル樹脂 組成物。  12. The flame-retardant unsaturated polyester resin composition according to claim 11, which is a phosphorus-based flame retardant (c) a 1-condensed phosphate ester compound and / or a phosphazene compound.
1 3. 請求の範囲 9の難燃性不飽和ポリエステル樹脂または 1 1記載の難燃性 不飽和ポリエステル樹脂組成物 1 00重量部あたり 1〜30重量部のゴム成分を 配合してなる難燃性不飽和ポリエステル樹脂組成物。  1 3. The flame-retardant unsaturated polyester resin according to claim 9 or the flame-retardant unsaturated polyester resin composition described in 11: 1 to 30 parts by weight of rubber component per 100 parts by weight Unsaturated polyester resin composition.
1 4. 請求の範囲 9の難燃性不飽和ポリエステル樹脂または 1 1記載の難燃性 不飽和ポリエステル樹脂組成物 1 00重量部あたり 0. 1〜 5重量部の硬化剤お ょぴ 0〜400重量部の充填材を配合してなる難燃性不飽和ポリエステル樹脂組 成物。  1 4. The flame-retardant unsaturated polyester resin according to claim 9 or the flame-retardant unsaturated polyester resin composition described in 11 0.1 to 5 parts by weight of curing agent per 100 parts by weight 0 to 400 A flame-retardant unsaturated polyester resin composition containing parts by weight of filler.
1 5. 請求の範囲 1 3または 1 4記載の難燃性不飽和ポリエステル樹脂組成物 を含浸させた補強繊維層を金属箔と一体に硬化してなる金属箔張り積層板。  1 5. A metal foil-clad laminate obtained by curing a reinforcing fiber layer impregnated with the flame-retardant unsaturated polyester resin composition according to claim 13 or 14 integrally with a metal foil.
PCT/JP2000/000953 1999-02-22 2000-02-18 Flame-retardant unsaturated polyester resin WO2000050486A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP4250899 1999-02-22
JP11/42508 1999-02-22
JP11333917A JP2000309697A (en) 1999-02-22 1999-11-25 Flame-retardant unsaturated polyester, resin containing the same, and cured product thereof
JP11/333916 1999-11-25
JP11/333917 1999-11-25
JP33391699A JP2001152000A (en) 1999-11-25 1999-11-25 Flame-retardant unsaturated polyester resin composition

Publications (1)

Publication Number Publication Date
WO2000050486A1 true WO2000050486A1 (en) 2000-08-31

Family

ID=27291239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000953 WO2000050486A1 (en) 1999-02-22 2000-02-18 Flame-retardant unsaturated polyester resin

Country Status (1)

Country Link
WO (1) WO2000050486A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112759720A (en) * 2021-01-11 2021-05-07 广东锐涂精细化工有限公司 Boiling-resistant phosphorus-containing waterborne acrylic modified polyester dispersion resin and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53112997A (en) * 1977-03-14 1978-10-02 Sanko Kaihatsu Kagaku Kenkiyuu Phosphorusscontaining unsaturated polyester

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53112997A (en) * 1977-03-14 1978-10-02 Sanko Kaihatsu Kagaku Kenkiyuu Phosphorusscontaining unsaturated polyester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112759720A (en) * 2021-01-11 2021-05-07 广东锐涂精细化工有限公司 Boiling-resistant phosphorus-containing waterborne acrylic modified polyester dispersion resin and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US5696225A (en) Process for making high-performance polyetherester resins and thermosets
JP4779129B2 (en) Low thermal expansion laminate
WO2000044805A1 (en) Flame-retardant vinyl esters, resins and resin compositions containing the same, and cured products thereof
WO2000050486A1 (en) Flame-retardant unsaturated polyester resin
US4684695A (en) Flame-retardant, unsaturated polyester resin and composition therefor
JP2001002769A (en) Phosphorus-containing unsaturated polyester resin and resin composition containing the same
JP2000309697A (en) Flame-retardant unsaturated polyester, resin containing the same, and cured product thereof
JP2005007783A (en) Halogen-free low-thermal-expansion composite laminate
JP2001152000A (en) Flame-retardant unsaturated polyester resin composition
JP5017160B2 (en) Liquid thermosetting resin composition, prepreg, and metal-clad laminate
JP2671366B2 (en) Solvent resistant resin composition
JP2000313795A (en) Phosphorus-containing flame-retardant unsaturated polyester resin composition
JP2001002770A (en) Flame-retardant unsaturated polyester resin and composition containing the same
JP2005232195A (en) Thermosetting resin composition and its cured coating film
JPH0959499A (en) Corrosion preventive lining composition
WO2020040052A1 (en) Curable resin composition and cured product therefrom
JP3321078B2 (en) Resin composition and cured resin
JP4066335B2 (en) Organic phosphorus composition, flame retardant containing the same, and flame retardant resin composition
JP3921107B2 (en) Flame retardant resin composition
JPH11302344A (en) Halogen-free flame-retardant resin composition and cured product
JP2000344846A (en) Radical-curing flame-retardant resin composition
JP2000128929A (en) Halogen-free flame-retardant resin
JP4416347B2 (en) Thermosetting resin composition and cured product thereof
JPS61275347A (en) Unsaturated polyester resin composition and laminated sheet
JPH02300220A (en) Allylic thermosetting resin composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase