WO2000049246A1 - Composite building material and production method thereof and comosite floor material - Google Patents

Composite building material and production method thereof and comosite floor material Download PDF

Info

Publication number
WO2000049246A1
WO2000049246A1 PCT/JP1999/007313 JP9907313W WO0049246A1 WO 2000049246 A1 WO2000049246 A1 WO 2000049246A1 JP 9907313 W JP9907313 W JP 9907313W WO 0049246 A1 WO0049246 A1 WO 0049246A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
composite building
building material
composite
layer
Prior art date
Application number
PCT/JP1999/007313
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshimi Matsuno
Tetsuji Ogawa
Kenji Sato
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP3722199A external-priority patent/JPH11315594A/en
Priority claimed from JP3722099A external-priority patent/JPH11303369A/en
Priority claimed from JP3880999A external-priority patent/JPH11315595A/en
Priority claimed from JP3881299A external-priority patent/JPH11314980A/en
Priority claimed from JP11038810A external-priority patent/JPH11315593A/en
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Publication of WO2000049246A1 publication Critical patent/WO2000049246A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/024Sectional false floors, e.g. computer floors
    • E04F15/02405Floor panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B13/00Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material

Definitions

  • the present invention relates to a composite building material used as a building material, a method for producing the same, and a composite flooring material, and particularly to a material having strength as a building material.
  • the base material of the FA floor where the computer is installed (meaning the free access floor; the same applies hereinafter) is required to be able to withstand the weight of the computer and not be damaged by the impact even if the computer falls over during an earthquake. Since the wiring is installed on the underside of the floor, it must have excellent fire resistance so that it can withstand cable fires.
  • the base materials for such FA floors are: (1) those made of metals such as steel and aluminum; (2) those made of resins such as polychlorinated vinyl, ABS resin and polypropylene; and (3) those made of concrete reinforced with fibers. , ⁇ ⁇ ⁇ ⁇ Calcium silicate plate with metal plate attached, 5 Particle board with wood type.
  • metal (1), those made of concrete (3), and those made of calcium silicate plate with metal attached on (2) are heavy and have poor workability.
  • the particle board made of resin (2) is inferior in fire resistance.
  • a porous inorganic core material such as gypsum board is superior in terms of cost, and is used as a wall material.
  • Japanese Patent Application Laid-Open No. 7-32926 proposes a building material for walls and partitions in which a prepreg made of a thermoplastic resin is attached to a porous inorganic core material.
  • porous inorganic core materials cannot be used for flooring because of their low strength. That was the common sense of the construction industry.
  • porous inorganic core material and architectural fiberboard had the problem that nails did not have the strength to withstand nails and could be pulled out without being held.
  • porous inorganic core material has poor design properties and is not suitable for use as a floor material as it is.
  • the present invention can use a porous inorganic core material as a floor material and various other building materials, and has high strength, light weight, and excellent fire resistance, workability, and nail strength. And a composite flooring material. Disclosure of the invention
  • the present invention is a composite building material comprising a porous inorganic core material and a functional layer, wherein the porous inorganic core material contains an organic component.
  • the porous inorganic core material is low in cost and excellent in compressive strength, but on the other hand, when a force is applied, a tensile force is generated on the side opposite to the side on which the force is applied, and the point at which this force is generated Destruction occurs as a starting point.
  • the porous inorganic core material contains an organic component in addition to the porous inorganic core material itself.
  • the fracture toughness of the porous inorganic core material is improved. Therefore, the fracture toughness, bending strength and crack resistance of the composite building material can be improved.
  • Composite building materials have high fracture toughness and can be nailed, making them suitable as building materials. It is also ideal as a floor material.
  • At least one of the front side, the back side, and the inside of the porous inorganic core An active layer is provided. Since the functional layer performs various functions depending on the material, the function of the functional layer can be given to the composite building material.
  • the composite building material of the present invention is mainly composed of a porous inorganic core material and an organic component, it is lightweight, has excellent fire resistance and workability, and has low cost.
  • the porous inorganic core material is a gypsum board.
  • excellent compressive strength can be imparted to composite building materials. It is lightweight and can be manufactured at low cost.
  • the porous inorganic core material in addition to the above-mentioned gypsum board, it is preferable to use a calcium silicate board, a gypsum board, a slag gypsum board, a cement board, an asbestos cement board, a perlite board, a lightweight foamed concrete, or the like. They are relatively lightweight and low cost.
  • the gypsum board mentioned above is a board in which the base paper is adhered to the surface of the gypsum board.
  • the gypsum board is a plate made of gypsum.
  • the above-mentioned slag gypsum board, crystal by applying special catalytic treatment in blast furnace slag and gypsum (Etoraito, 3 C a O, A 1 2 ⁇ 3, 3 C a S 0 4 ⁇ 3 1 ⁇ 3 2 H 2 O, etc.)
  • the above-mentioned asbestos-cement board is a cement product in which asbestos is mixed with cement, kneaded with water, strongly pressed into a plate shape to remove moisture, and cured.
  • the above-mentioned pearlite plate is generally an asbestos-cement pearlite plate, which is formed by mixing, assimilating cement asbestos and pearlite, adding water, molding, and curing.
  • An inorganic amorphous body can be used as the porous inorganic core material.
  • a 1 2 0 3 - S i 0 2 -C a O -based amorphous material and the like. This means that alkoxides and hydroxides of metal elements such as Al, Si, and Ca are hydrolyzed and polymerized in the presence of an acid or alkali to form a sol, which is dried and cured to form a gel.
  • the organic component is contained in the porous inorganic core material produced by the method.
  • the organic component is an organic binder or an organic fibrous material. It is preferable to use a thermosetting resin or a thermoplastic resin as the organic binder.
  • the thermosetting resin is preferably a phenol resin, an epoxy resin, a urethane resin, a melamine resin, or a resorcinol resin.
  • the thermoplastic resin is desirably at least one selected from the group consisting of polyethersulfone, polysulfide, polyphenylene ether, polyphenylene sulfide, polyphenylene oxide, and polyetherimide.
  • organic fibrous material at least one selected from synthetic fibers such as vinylon, polypropylene, and polyethylene, or organic fibrous materials composed of polysaccharides can be used.
  • synthetic fibers such as vinylon, polypropylene, and polyethylene
  • organic fibrous materials composed of polysaccharides are desirable. This is because, the polysaccharide is present OH group, by hydrogen bonding, because A 1 2 0 3, tends to bind to the S i 0 2 or an inorganic material C a O.
  • the polysaccharide is desirably at least one compound selected from amino sugars, peronic acid, starch, glycogen, inulin, lichenin, senorelose, chitin, chitosan, hemicenolerose and pectin.
  • chips aggregate of fibers
  • Pulp generally contains about 10 to 30% by weight of lignin in addition to cellulose.
  • the organic component may be impregnated in the porous inorganic core material, or the inorganic component and the organic component may be kneaded and molded to form a porous inorganic core material.
  • the porous inorganic core material is an inorganic amorphous material
  • an organic component can be added in a sol state, and then dried and cured to form a gel.
  • the content of organic components in the porous inorganic core material is preferably 3 to 65% by weight. This further improves the fracture toughness of the porous inorganic core material.
  • the total thickness of the porous inorganic core material is preferably 9.5 to 3.0 mm. As a result, sufficient rigidity, impact resistance, and workability can be obtained, and a sufficient wiring space under the floor can be secured. On the other hand, if it is less than 9.5 mm, sufficient rigidity and impact resistance may not be obtained. If it exceeds 30 mm, it is difficult to obtain the corresponding effect. In particular, the total thickness of the porous inorganic core material is desirably 19 to 25 mm. As a result, superior rigidity, impact resistance and workability can be obtained.
  • a plurality of porous inorganic core materials may be laminated and adjusted to the above thickness.
  • the total thickness of the porous inorganic core material is defined as the thickness of one layer. If it is, the thickness refers to the total thickness of the multiple layers, and if the board base paper described below is adhered, it refers to the thickness including the thickness of the board base paper.
  • the specific gravity of the entire porous inorganic core material is preferably 0.9 to 1.5. As a result, it is relatively lightweight and can exhibit excellent rigidity and impact resistance. On the other hand, if it is less than 0.9, the porous inorganic core material may become brittle. If it exceeds 1.5, the weight of the composite building material may be reduced.
  • the total specific gravity of the porous inorganic core material is the specific gravity of one layer when the composite building material is provided with only one layer of porous inorganic core material, and the specific gravity when two or more layers are laminated.
  • the total specific gravity of the multiple layers refers to the specific gravity including the thickness of the board base paper when the board base paper described below is adhered to the porous inorganic core material.
  • the above specific gravity refers to the ratio of the volume density of the porous inorganic core material to the volume density of water at 4 ° C.
  • At least one of the front side and the back side of the porous inorganic core material has a board base paper adhered thereto, and the reinforcing layer is preferably bonded onto the board base paper.
  • the mechanical strength of the composite building material such as bending strength, impact resistance, and water resistance, is further improved.
  • the board base paper for example, it is preferable to use thick paper having a thickness of about 0.3 to 0.5 mm, which is made of waste paper, pulp, or the like as a main raw material and to which a water generating agent is added.
  • porous inorganic core material is laminated in a plurality of layers. This further increases the impact resistance and rigidity of the composite building material.
  • each porous inorganic core material is bonded with an adhesive.
  • the adhesive is preferably made of one or more selected from the group consisting of a phenol resin, an epoxy resin, a urethane resin, a melamine resin, a resorcinol resin, and a butyl acetate resin. This can prevent the entire composite building material from bending. (Functional layer)
  • One or more functional layers are provided on at least one of the front side, back side, and inside of the porous inorganic core material.
  • the functional layer is at least one of the following: (1) a reinforcing layer, (2) a surface coating layer, or (3) a magnetic shield layer.
  • the functional layer is preferably a reinforcing layer composed of a resin and inorganic fibers.
  • the reinforcing layer has a function of improving the strength of the porous inorganic core material against tensile force. That is, by forming a high-strength reinforcing layer on the front side or the back side of the porous inorganic core, the porous inorganic core does not break even when a tensile force is applied.
  • the reinforcing layer is preferably formed at least on the back side of the porous inorganic core material (opposite the indoor side). This makes it possible to exhibit excellent strength against the pressing force applied from the front side to the back side of the composite building material. In addition, the resistance to the tensile force from the front side is improved. Bending strength and impact resistance are also improved.
  • the reinforcing layer may be formed on only one side of the porous inorganic core material or on both sides.
  • the reinforcing layer contains resin and inorganic fibers.
  • thermosetting resin i) a thermosetting resin, ii) a composite resin composed of a thermosetting resin and an elastic polymer, or iii) a thermoplastic resin can be used.
  • thermosetting resin has better fire resistance than thermoplastic resin and does not soften even at high temperatures. For this reason, the reinforcing layer formed of thermosetting resin has excellent heat resistance and does not lose its function as a reinforcing layer even at high temperatures.
  • thermosetting resin phenol resin, melamine resin, epoxy resin, polyimide resin, urea resin and the like are preferable.
  • the content of the thermosetting resin in the reinforcing layer is preferably 20 to 200 parts by weight based on 100 parts by weight of the inorganic fibers. If the amount is less than 20 parts by weight, the tensile strength, bending strength and impact resistance of the composite building material may be reduced. Also, 200 times If the amount exceeds the above range, the fire resistance of the composite building material may decrease.
  • the resin contained in the reinforcing layer is preferably a composite resin comprising a thermosetting resin and an elastic polymer.
  • the elastic polymer has a structure in which “islands” of the elastic polymer are dispersed in the “sea” of the thermosetting resin matrix, thereby improving the strength of the resin and imparting toughness to the composite building material. For this reason, cracks do not occur starting from the nail even when the nail is driven into the composite building material.
  • the bullet I “biopolymer can improve the friction resistance of composite building materials against nails and improve the holding power of nails.
  • the elastic polymer is preferably a rubber latex, an acrylic latex, an acrylate latex, or a urethane latex. Since these are dispersed in a liquid state in the uncured thermosetting resin liquid, they can be easily impregnated into the porous inorganic core material / inorganic fiber.
  • the rubber latex is preferably nitrile-butadiene (NBR) or sine-butadiene (SBR).
  • the elastic polymer is preferably contained in the composite resin in an amount of 5 to 35% by weight. On the other hand, if it exceeds 35% by weight, the toughness of the reinforcing layer decreases, cracks are likely to occur, and the holding power of the nail may decrease. If the content is less than 5% by weight, the resin strength may decrease, and the nail holding force may decrease.
  • thermoplastic resin When a thermoplastic resin is used as the resin for the reinforcing layer, the strength and toughness of the reinforcing layer tend to be insufficient.
  • the porous inorganic core contains an organic component, the strength and toughness of the porous inorganic core are improved, and the strength and toughness of the entire composite building material are improved. Therefore, according to the present invention, a thermoplastic resin can be used as the resin contained in the reinforcing layer.
  • the thermoplastic resin is preferably at least one selected from polyether sulfone, polysulfide, polyphenylene ether, polyphenylene sulfide, polyphenylene oxide, and polyether imide.
  • the inorganic fibers contained in the reinforcing layer include glass fibers and rock wool.
  • Ceramic fiber and carbon fiber are preferred. This is because of low cost, heat resistance and strength.
  • non-continuous fibers are formed into a mat shape, continuous filaments are cut into 3 to 7 cm into mats (chopped strand mats), and continuous filaments are spirally laminated. It can be made into a mat (continuous strand mat) or woven from continuous filaments (roving cloth).
  • the content of the resin contained in the reinforcing layer is preferably from 20 to 2 ⁇ 0 parts by weight based on 100 parts by weight of the inorganic fibers. The reason is that in this range, sufficient rigidity and impact resistance can be obtained, and high fire resistance can be maintained.
  • the content of the resin contained in the reinforcing layer is preferably 40 to 120 parts by weight based on 100 parts by weight of the inorganic fibers. As a result, the above-mentioned characteristics of the reinforcing layer can be exhibited more effectively.
  • a flame retardant such as aluminum hydroxide or magnesium hydroxide, or a commonly used inorganic binder such as silica sol, a / remina sol, or water glass is used. You may also add bonito. Silica sol, alumina sol is obtained by dispersing 5 i 0 2 or A 1 2 0 3 of particle size 1 0-1 0 0 11 111 in water, its concentration is 2 0-4 0 wt% Preferably, there is. Thereby, the reinforcing layer can be formed uniformly.
  • the thickness of the reinforcing layer is preferably from 0.3 mm to 3.5 mm. As a result, sufficient rigidity and impact resistance can be obtained, and high workability can be maintained.
  • the ratio (tZT) of the thickness t of the reinforcing layer to the thickness T of the porous inorganic core material is preferably 0.01 to 0.7. This further increases the strength of the composite building material. On the other hand, if it is less than 0.01, the tensile resistance of the composite building material may decrease, and if it exceeds 0.7, the fire resistance and workability may decrease. More preferably, the ratio (t / T) of the thickness t of the reinforcing layer to the thickness T of the porous inorganic core material is preferably from 0.03 to 0.36. This will further increase the strength of the composite building material.
  • the specific gravity of the reinforcing layer is preferably 0.5 to 4.0.
  • the specific gravity of the reinforcing layer is 0.77 to 1.95. As a result, the effect of the reinforcing layer can be effectively exerted.
  • the reinforcing layer is bonded to at least one of the front surface and the back surface of the porous inorganic core material with an adhesive. Thereby, the reinforcing layer is firmly adhered to the porous inorganic core material.
  • the adhesive is the same as the adhesive for bonding between the porous inorganic core material and the reinforcing layer, that is, phenol resin, epoxy resin, resorcinol resin, melamine resin, urethane resin, and butyl acetate resin. It is preferable to consist of one or more members selected from the group consisting of Since these adhesives have little deflection after bonding, the radius of the entire composite building material can be suppressed.
  • the method of forming a reinforcing layer on the surface of a porous inorganic core material is as follows: (1) Inorganic fibers impregnated with an inorganic or organic binder are preliminarily formed into a plate shape, and a thermosetting resin composition is impregnated therein. There is a method of attaching the dried and cured product to a porous inorganic core material via an adhesive.
  • thermosetting resin may be applied to the porous inorganic core material, a mat of inorganic fibers may be placed here, and hot pressing may be used.
  • thermosetting resin such as phenolic resin is coated on the fiber surface of glass fiber, rock wool, and ceramic fiber at the B stage, laminated on a gypsum board as a porous inorganic core material, and heated and pressed.
  • a method can also be adopted.
  • the method (3) is advantageous because the adhesion to the impregnated resin is improved, the fibers are easily bonded to each other, and the impregnation rate of the resin can be improved.
  • a raw material melt of glass fiber, rock wool, and ceramic fiber flows out of the nozzle, and is converted into a fiber by a profiling method or a centrifugal method. There is a method of spraying a thermosetting resin solution to collect cotton.
  • a mat made of inorganic fibers is impregnated with a resin in advance and dried to produce a resin-impregnated mat, and the mat impregnated with the resin is coated on at least one of the front and rear surfaces of a porous inorganic core material containing an organic component.
  • a method of manufacturing composite building materials characterized by laminating and pressing under heating.
  • a composite building material with high fracture toughness and excellent bending strength / crack resistance can be manufactured because the porous inorganic core material contains an organic component.
  • the manufactured composite building materials have high fracture toughness and can be nailed, making them ideal as building materials.
  • the above resin-impregnated mat is laminated on a porous inorganic core material and heated and pressed to form a reinforcing layer.
  • the resin-impregnated mat is a mat made of inorganic fibers impregnated with resin.
  • the adhesion between the inorganic fibers and the resin is high, and the inorganic fibers are easy to adhere to each other, so that the resin impregnation rate can be improved, which is advantageous for forming the reinforcing layer.
  • the resin-impregnated mat is laminated on the porous inorganic core material, and is adhered to the porous inorganic core material by hot pressing, so there is no need to use a separate adhesive. Furthermore, the manufacturing process can be simplified.
  • the conditions for heating are 70 to 130 ° C and the pressure is 10 kg Zc in 2 or less. It is good Good.
  • a dilute solution such as phenolic, epoxy, or melamine resin to the porous inorganic core material or the resin-impregnated mat before lamination. You can
  • the functional layer is preferably a surface decorative layer. This enhances the design of the composite building material.
  • the surface decorative layer is, for example, a melamine decorative plate.
  • the melamine veneer is a veneer made of melamine resin, which generally consists of an overlay layer made of melamine resin impregnated paper, a pattern layer, a packer layer, and a core layer laminated with phenol resin impregnated paper. It is preferable that the melamine decorative plate has a melamine packer layer on the back surface. This can prevent the melamine decorative board from peeling off from the reinforcing layer due to warpage.
  • the surface decorative layer may be, for example, a carpet.
  • a carpet is a rug laid on the floor surface, and includes, for example, salt-filled tile, cloth-made pets, and the like.
  • the surface decorative layer may be natural wood, decorative plywood, natural stone or artificial stone. This further enhances the design of the composite building material.
  • the surface decorative layer may be a tatami mat.
  • the functional layer is preferably composed of the surface decorative layer and a reinforcing layer composed of a resin and inorganic fibers.
  • the reinforcing layer is the reinforcing layer described above.
  • the front side or the back side of the porous inorganic core material is covered with the reinforcing layer. Therefore, the tensile strength, bending strength, impact resistance, workability, and fire resistance of the composite building material are improved.
  • the method of fixing the surface decorative layer to the porous inorganic core material or the reinforcing layer depends on the force depending on the material of the surface decorative layer. For example, a method of bonding using an adhesive, a method of laminating melamine resin impregnated paper in an uncured state. There is a pressing method.
  • the functional layer is preferably an electromagnetic wave shielding layer.
  • the composite of the present invention Building materials can absorb electromagnetic waves. Especially in rooms where many computers are installed, electromagnetic waves emitted from computers are efficiently absorbed. Therefore, the effects of electromagnetic waves on the human body can be suppressed.
  • the electromagnetic wave shielding layer is preferably, for example, a metal foil. This is because metal foil not only absorbs electromagnetic waves efficiently, but also has high strength, light weight, and good workability.
  • the metal foil is preferably one or more selected from the group consisting of aluminum foil, copper foil, zinc foil, stainless steel foil, gold foil and silver foil. These are particularly effective in absorbing electromagnetic waves.
  • the electromagnetic wave shielding layer is preferably a composite sheet comprising a conductive filler and a resin.
  • a composite sheet not only absorbs electromagnetic waves efficiently, but is also lightweight, has high workability, and absorbs sound and vibration.
  • the conductive filler contained in the composite sheet is, for example, a powder composed of one or more selected from the group of iron, copper, aluminum, stainless steel, brass, zinc, carbon, and the like.
  • the resin for example, phenol, epoxy, polyurethane, urea, polyester, polypropylene, and polyethylene can be used.
  • the electromagnetic wave shielding layer is preferably a conductive sheet material such as a metal foil or a composite sheet made of a conductive filler and a resin as described above, but may be a material coated with a conductive paint or the like.
  • the electromagnetic wave shielding layer can be provided on at least one of the front side and the back side of the porous inorganic core material.
  • a surface decorative layer is often formed on the front surface of the porous inorganic core material, and therefore, it is preferable to provide the electromagnetic wave shielding layer on the back surface.
  • the electromagnetic wave shielding layer may be embedded in a porous inorganic core material. When buried, the electromagnetic shielding layer may be sandwiched by a porous inorganic core material such as gypsum board.
  • the functional layer comprises the above-mentioned electromagnetic wave shielding layer and a reinforcing layer comprising a resin and an inorganic fiber.
  • the reinforcing layer is the reinforcing layer described above.
  • the front surface or the top and bottom surfaces of the porous inorganic core material are covered with the reinforcing layer. Will be.
  • damage to the electromagnetic shielding layer can be prevented, and the tensile strength, bending strength, impact resistance, workability, and fire resistance of the composite building material are improved.
  • the surface of the electromagnetic wave shielding layer may be roughened to improve the adhesion with the porous inorganic core material or the reinforcing layer.
  • the depth of the roughened surface is preferably about 0.1 to 100 / xm.
  • the thickness of the metal foil is desirably about 10 to 500 // m. This is because the metal foil has excellent conductivity and can be thinned.
  • the electromagnetic wave shielding layer is a composite sheet containing a conductive filler, the thickness of the composite sheet is preferably 0.5 to 5 mm. This is because the above-mentioned composite sheet is inferior in electrical conductivity to metal foil and needs to be slightly thicker.
  • the method of bonding the electromagnetic wave shielding layer to the porous inorganic core material includes the method of applying an adhesive to the surface of the porous inorganic core material or the electromagnetic wave shielding layer, bringing the two into close contact, and curing them. There is a method of applying a mixture with a resin.
  • the adhesive for example, at least one or more selected from phenolic resins, epoxy resins, resorcinol resins, melamine resins, urethane resins, and vinyl acetate resins can be used.
  • the tip of the porous inorganic core material is preferably covered with a coating layer.
  • the coating layer is, for example, an inorganic material.
  • the inorganic material for example, it is preferable to use a sodium silicate solution, a silica sol, an alumina sol, or the like. This makes it possible to effectively prevent gypsum powder from scattering.
  • Silica sol, alumina sol, size 1 0 ⁇ : 1 0 0 nm of S i 0 2, A 1 2 0 3 particles will have a material obtained by dispersing in water.
  • the concentration of the particles in water is between 20 and 40% by weight. Thereby, the coating layer can be formed with a uniform thickness.
  • the coating layer may be an organic material.
  • organic materials such as a rubber emulsion and an acrylic emulsion.
  • the rubber emulsion is preferably a nitrile-butadiene solution or an ethylene-butadiene solution.
  • the concentration of each emulsion solution is preferably 30 to 60% by weight. As a result, the coating layer can be formed uniformly.
  • the coating layer forms an impregnated layer impregnated on the surface of the cut end surface. Thereby, scattering of the powder can be effectively prevented.
  • the thickness of the coating layer is preferably 0.01 to 4.5 mm both in the case of the impregnated layer and in the case of not being the impregnated layer.
  • the thickness of the coating layer is preferably 0.01 to 4.5 mm both in the case of the impregnated layer and in the case of not being the impregnated layer.
  • the coating layer covers the entirety of the mouth of the porous inorganic core material. This makes it possible to almost completely prevent the powder of the porous inorganic core material from being scattered from the tip surface.
  • the thickness of the composite building material of the present invention is preferably 9.8 to 37. O mm. If it is less than 9.8 mm, the strength may decrease. If it exceeds 37. O mm, an effect corresponding to it cannot be expected.
  • the composite building material of the present invention is preferably cut into an appropriate size and panelized. This facilitates the construction of composite building materials, increases the degree of freedom in the combination of composite building materials at the time of construction, and allows construction to be performed in any shape according to the floor shape.
  • the composite building material has at least one of through holes, steps or notches.
  • the through holes are, for example, mounting bracket mounting holes, electrical wiring outlets, air conditioning outlets, etc. Can be used as The steps can be used for mounting bracket mounting holes, electrical wiring take-out fittings, and adjustment blow-out fittings.
  • the cutouts can be used for mounting bracket mounting holes, holes for taking out electric wires, air conditioning outlets, and so on.
  • the through-hole may be of any shape and size.
  • the shape may be circular or polygonal.
  • the size is generally 10 to 25 mm, but this varies depending on the application.
  • the through hole is used as an air-conditioning outlet, the diameter is preferably 50 to 200 mm.
  • the through hole can be formed by punching, drilling, router processing, or the like.
  • the step is formed by removing a part of the reinforcing layer of the composite building material and the porous inorganic core material.
  • the step should be formed as a circular arc by cutting the four corners of a square or rectangular composite building material into a fan shape.
  • the upper support plate 8 12 (FIG. 16) can be fitted as in the embodiment 12.
  • the step may have any shape and size, and is appropriately selected depending on the application.
  • the step can be formed by, for example, router processing. It is desirable that the notch is formed by cutting a part of the side surface of the composite building material into a square shape as in Embodiment 13 described later.
  • the apex angle of a square or rectangular composite building material may be cut into an arc.
  • the notch contacts the support, for example, a support bolt 82 (Fig. 16).
  • the notch may have any shape and size, and is appropriately selected according to the application.
  • the notch can be formed by, for example, router processing, dolinole processing, or the like.
  • FIG. 1 is a schematic cross-sectional view of the composite building material of the first embodiment.
  • FIG. 2 is a schematic cross-sectional view of the composite building material of the third embodiment.
  • FIG. 3 is a schematic cross-sectional view of the composite building material according to the fourth embodiment.
  • FIG. 4 is a perspective view of a composite building material according to a fourth embodiment.
  • FIG. 1 is a schematic cross-sectional view of a composite building material according to a tenth embodiment.
  • FIG. 11 is a cross-sectional view of the composite building material of the embodiment 11 taken along the line AA in Fig. 12.
  • FIG. 12 is a plan view of the composite building material of Embodiment 11 of the present invention.
  • FIG. 13 is a front view of the composite building material with the support legs attached thereto in Embodiment 11 of the present invention.
  • FIG. 14 is an explanatory view showing an application example of the composite building material of the embodiment 11;
  • FIG. 15 is a plan view (a) and a front view (b) of a composite building material according to Embodiment 12 of the present invention.
  • FIG. 17 A plan view (a) and a front view (b) of a composite building material according to Embodiment 13 of the present invention.
  • FIG. 18 is an explanatory view showing a method of using the composite building material according to the first to third embodiments.
  • FIG. 19 is a schematic view of a composite building material according to Embodiment 14 of the present invention.
  • FIG. 20 is an explanatory diagram of a method for manufacturing a composite building material of Embodiment 15; Embodiment of the Invention
  • the reinforcing layer 4 is bonded to both the front side 71 and the back side 72 of the gypsum board 3 as the porous inorganic core material.
  • Gypsum board 3 is impregnated with 7% by weight of phenolic resin as an organic component.
  • the reinforcing layer 4 is composed of 42 parts by weight of the composite resin (4 11) and 100 parts by weight of the inorganic fiber (4 2).
  • Composite resin 4 1 1 which are contained in the reinforcing layer 4 is a phenolic resin 9 5 weight 0/0 of the thermosetting resin, nitrile butadiene rubber based latex 5% by weight of an elastic polymer Consists of
  • the thickness t of the reinforcing layer 4 is 0.7 mm, and the specific gravity is 1.2.
  • the gypsum board 3 consists of one layer, and its total thickness T is 9.5 mm.
  • the overall specific gravity of gypsum board 3 is 1.3.
  • the gypsum board 3 has a gypsum board 35 with a board base paper 38 stuck to the front and back sides.
  • a thick paper of about 0.3 to 0.5 mm thick made of waste paper, pulp, or the like as a main raw material and adding a water generating agent or the like is used.
  • the reinforcing layer 4 is bonded to the surface of the gypsum board 3 with an adhesive 60.
  • a phenol resin is used as the adhesive 60.
  • a resin solution is obtained by mixing 95% by weight of a thermosetting resin (phenol resin) before curing and 5% by weight of an elastic high molecule (nitrile butadiene rubber-based latex) before crosslinking.
  • a thermosetting resin phenol resin
  • an elastic high molecule nitrile butadiene rubber-based latex
  • the gypsum board 35 was impregnated with phenolic resin as an organic component by the dive method, and the board base paper 38 was stuck on both sides of the gypsum board 35, and the gypsum board (specific gravity 1. 0, thickness 9.5 mm) 3.
  • an adhesive 60 consisting of the resin solution of the above (1) to which a hardening agent was added was applied to the surface of the gypsum board 3 at a rate of 250 g / m 2 (in terms of solid content).
  • a glass fiber chopped strand mat (weight 600 g / m 2 , thickness 0.7 mm) is stacked and pressed at 80 ° C for 20 minutes. Thereby, the reinforcing layer 4 is formed on the front side 71 and the back side 72 of the gypsum board 3.
  • a composite building material 7 consisting of gypsum board 3 and reinforcing layer 4 and having a thickness of 10.9 mm is obtained.
  • the obtained composite building material is cut into squares of several tens of cm square, legs are attached to the back side, and a plurality of these are used as a base material for FA floors.
  • the fracture toughness of the composite building material 7 is improved, and the bending strength and the crack resistance are excellent. Also Because of its excellent fracture toughness, it can be nailed and is ideal as a building material. Since the composite building material 7 has the reinforcing layer 4 adhered to the front side 71 and the back side 72 of the gypsum board 3, it does not break even when a tensile force is applied. Therefore, composite building material 7 exhibits excellent tensile strength.
  • the elastic polymer in the reinforcement layer 4 gives the thermosetting resin excellent strength and toughness
  • the reinforcing layer 4 containing it has high nail holding power.
  • the reinforcing layer 4 is made of resin and inorganic fibers and has excellent workability. Unlike the thermoplastic resin, the thermosetting resin (phenolic resin) contained in the reinforcing layer 4 has excellent fire resistance and does not soften even at high temperatures, so its function as a reinforcing layer is not lost even at high temperatures. The reinforcing layer 4 continues to maintain high strength and imparts durability to the composite building material 7.
  • the composite building material 7 of this example is composed of gypsum board 3, composite resin 4 11 and inorganic fiber 4
  • Embodiment 2 Since it is composed of the reinforcing layer 4 consisting of 2, it is lightweight, has excellent workability, and is low in cost. Embodiment 2
  • the reinforcing layer is composed of 100 parts by weight of inorganic fibers (glass fiber chopped strand mat) and 30 parts by weight of thermosetting resin (phenol resin).
  • the reinforcing layer does not contain any elastic polymer.
  • porous inorganic core material two gypsum boards impregnated with organic components are laminated and bonded with an adhesive made of phenol resin.
  • Each gypsum board has a thickness of 12.5 mm and a specific gravity of 1.3.
  • the organic component the same one as in the first embodiment is used. Others are the same as the first embodiment. In this example, the same effect as in the first embodiment can be obtained.
  • the composite building material of this example is composed of a porous inorganic core material 30 and both sides. And a reinforcing layer 4.
  • the reinforcing layer 4 is composed of a thermosetting resin 41 and inorganic fibers 42.
  • the mixture of the crushed waste paper and the sol solution is poured into a mold and dried at 100 ° C for 24 hours to obtain a plate-shaped porous inorganic core material.
  • the plate-shaped porous inorganic core material is impregnated with phenolic resin and dried at 60 ° C.
  • a commercially available glass fiber chopped strand mat (weight 600 g / m 2 , thickness 0.7 mm) is impregnated with phenolic resin and dried at 60 ° C.
  • the glass fiber content is 600 g / m 2 and the resin content is 300 gm. Obtain 2 reinforced sheets.
  • the reinforcing sheet is laminated on both sides of the porous inorganic core material and pressed at a temperature of 80 ° C for 20 minutes. Thus, a composite building material is obtained. Comparative Example 1
  • the composite building material of this example differs from Embodiment 1 in that the gypsum board is not impregnated with organic components. Others are the same as the first embodiment. Comparative Example 2
  • the composite building material of this example differs from the third embodiment in that the porous inorganic core material does not contain organic fibrous materials. Others are the same as the third embodiment.
  • Example 1 the composite building materials (floor materials) of Examples 1 and 3 and Comparative Examples 1 and 2 were evaluated for: r and bending strength, and the results are shown in Table 1.
  • Table 1 The table shows that when the multi-hard inorganic core material contains an organic component, the bending strength of the composite building material tends to increase.
  • the surface decorative layer 1 is provided on the front side 71 and the back side 72 of the composite building material 7.
  • the decorative surface layer 1 is a melamine decorative veneer with natural woodgrain. As shown in Fig. 4, the woodgrain pattern 10 appears on the front side 71 and the back side 72 of the composite building material 7.
  • the surface decorative layer 1 is provided with a decorative plate 11 impregnated with melamine resin on its outer surface and a resin-impregnated paper layer 12 called melamine packer on its inner surface. Laminated and hot pressed to cure the melamine resin.
  • the gypsum board 3 is impregnated with an organic component as in the first embodiment.
  • the reinforcing layer 4 is composed of 37% by weight of a thermosetting resin 41 and 63% by weight of inorganic fibers 42.
  • the thermosetting resin is a phenolic resin. Matt glass fibers (weight: 500 g / in 2 ) are used as the inorganic fibers.
  • the thickness of the reinforcing layer 4 is 2 mm.
  • a gypsum board 3 impregnated with an organic component is prepared, and a reinforcing layer 4 is formed on the front side 71 and the back side 72 thereof.
  • bleached kraft paper pattern weight SO g Zm 2
  • bleached kraft paper for packer layer basis weight 8 0 g / / m 2
  • the melamine resin impregnated paper is placed on the surface of the reinforcing layer 4, and the pressure is 1 to 50 kg / cm 2 , the temperature is 120 to 180 ° C, and the time is 5 to 300 seconds. And press to form a single piece. As a result, composite building material 7 is obtained.
  • the composite building material 7 is cut with a circular saw for woodwork to a size of several tens of cm square, and legs are attached to the back side, and a plurality of these are used as a composite building material.
  • the cut edge 37 of the composite building material 7 that has been cut and exposed may be covered with a coating layer to prevent gypsum powder from scattering.
  • the composite building material 7 of this example has a high design because the surface decorative layer 1 is provided on the surface of the reinforcing layer 4 covering the gypsum board 3.
  • Embodiment 5 is a diagrammatic representation of the same effects as those of the first embodiment.
  • the composite building material 7 of this example has a surface decorative layer 1 on the front side 71 of a gypsum board 3 impregnated with an organic component, and a reinforcing layer 4 on its rear side 72.
  • Others are the same as the fourth embodiment.
  • the composite building material 7 of this example has a surface decorative layer 1 for surface decoration on its front side 71 and is useful as a floor material for interior decoration.
  • the back side 72 of the gypsum board 3 is provided with a reinforcing layer 4 for reinforcing the strength.
  • a tensile force from above acts particularly strongly. Therefore, by covering the back surface 72 of the gypsum board 3 with the reinforcing layer 4 as in this example, it is possible to obtain a composite building material 7 having an excellent tensile force from above.
  • the surface decorative plate 1 is made of melamine tree. It is composed of an overlay layer 13 composed of a fat-impregnated paper, a pattern layer 14, a core layer 15 laminated with a phenol resin-impregnated paper, and a backer layer 16 composed of a resin-impregnated paper called melamine packer.
  • the pattern layer 14 is made of a base material for imparting a pattern or color to the composite building material 7, for example, a plywood, a natural board, or a patterned kraft paper impregnated with a melamine resin.
  • the decorative panel 1 is adhered to the front side 71 and the back side 72 of the gypsum board 3 impregnated with organic components.
  • a gypsum board 3 impregnated with an organic component is produced, and a reinforcing layer 4 is formed on the front and back surfaces thereof.
  • the reinforcing layer 4 is made of only a thermosetting resin and does not contain an elastic polymer.
  • bleached kraft paper for the overlay layer (basis weight 25 gZm 2 ), bleached kraft paper for the pattern layer printed with patterns and colors (basis weight SO gZm 2 ), bleached kraft paper for the packer layer (basis weight 80 g / m 2 ), Prepare bleached kraft paper for the core layer (basis weight: 120 g / m 2 ).
  • the bleached kraft paper for the overlay layer, bleached kraft paper for the pattern layer, and bleached kraft paper for the packer layer are impregnated with melamine resin at the impregnation rates of 250%, 80%, and 80%, respectively.
  • the bleached kraft paper for the core layer is impregnated with phenolic resin at an impregnation rate of 100%.
  • the reinforcing layer 4 is provided on the front side surface 71 and the back side surface 72 of the porous inorganic core material 30.
  • a cedar board as the surface decorative layer 1 is provided on the front side 71 of the composite building material 7.
  • Porous inorganic core material 30 is a practical type Similar to Tairei 3, A 1 2 0 3 _ S i O 2 of the inorganic material - consisting of a C a O-based amorphous material 3 9, the waste paper pulverized as organic quality fibrous material 3 1.
  • the reinforcing layer 4 is composed of a thermosetting resin 41 and inorganic fibers 42.
  • the porous inorganic core material 30 and the reinforcing layer 4 were formed in the same manner as in Embodiment 3; First, a decorative veneer (cedar plate) with a thickness of l mm is attached with a vinyl acetate adhesive to form a surface decorative layer 1.
  • the porous inorganic core material 30 contains an organic fibrous material 31 as an organic component. Therefore, similarly to Embodiment 3, the fracture toughness of the composite building material can be improved, the bending strength / crack resistance can be improved, and nailing can be performed. Other effects similar to those of the fourth embodiment can be obtained.
  • an electromagnetic wave shielding layer 2 is provided on the back side 72 of the composite building material 7.
  • the composite building material 7 has a reinforcing layer 4 made of a thermosetting resin 41 and an inorganic fiber 42 attached to both sides of a front side 71 and a back side 72 of a gypsum board 3 impregnated with an organic component.
  • the electromagnetic shielding layer 2 is a composite sheet composed of 80% by weight of a conductive filler and 20% by weight of a thermosetting resin, and has a thickness of 2 mm. Copper powder is used as the conductive filler, and phenol resin is used as the thermosetting resin.
  • the gypsum board 3 is impregnated with an organic component as in the first embodiment.
  • Gypsum board 3 is made of one layer, the thickness thereof is 9. A 5 mm, the specific gravity is 1. 0 g / cm 3.
  • the reinforcing layer 4 is composed of 18% by weight of a thermosetting resin 41 and 82% by weight of inorganic fibers 42.
  • Thermosetting resin 41 is a phenolic resin.
  • As the inorganic fiber 42 a mat-like glass fiber (weight: 1500 g Zm 2 ) is used.
  • the thickness of the reinforcing layer 4 is 2 mm. A method for manufacturing the composite building material of this example will be described.
  • a phenolic resin solution (adhesive) containing a hardening agent was applied to the front side 71 and back side 72 of the gypsum board 3 at a rate of 250 gZm 2 (solid content conversion).
  • the composite building material 7 is then cut with a circular saw for woodwork to have a size of several tens of cm square, and legs are attached to the back surface 72, and a plurality of these materials are used as a floor material.
  • the composite building material 7 of this example has the electromagnetic wave shielding layer 2
  • the composite building material 7 of this example can absorb electromagnetic waves. Particularly in offices where many computers are installed, electromagnetic waves emitted from computers are efficiently absorbed. Therefore, according to the composite building material of this example, the effect of electromagnetic waves on the human body can be suppressed.
  • the gypsum board 3 is impregnated with an organic component, the gypsum board 3 is different from the first embodiment. Similarly, it has excellent fracture toughness, flexural strength and crack resistance. Also, since the reinforcing layers 4 are bonded to both sides of the gypsum board 3, the bow I tension is high.
  • Embodiment 9
  • the electromagnetic wave shielding layer 2 is embedded between two layers of gypsum board.
  • the gypsum board 3 and the electromagnetic wave sinored layer 2 are adhered and fixed with an adhesive or the like.
  • the front side 71 and the back side 72 of the composite building material 7 are provided with a reinforcing layer 4 made of a thermosetting resin 41 and inorganic fibers 42.
  • Embodiment 10 is the same as in the eighth embodiment. In this example, the same effect as in the eighth embodiment can be obtained. Embodiment 10
  • a reinforcing layer 4 is provided on the front surface 71 of the porous inorganic core material 30.
  • a copper foil as the electromagnetic wave shield layer 2 is provided on the front side 71 of the composite building material 7.
  • the reinforcing layer 4 is composed of a phenol resin as the thermosetting resin 41 and a glass fiber as the inorganic fiber 42.
  • a porous inorganic core material 30 containing an organic fibrous material 31 is produced in the same manner as in the third embodiment.
  • a commercially available glass fiber chopped strand mat (weight: 600 g / m 2 , thickness: 0.7 mm) is impregnated with phenolic resin and dried at 60 ° C to obtain a glass fiber content of 600 g / m 2. 2.
  • a reinforcing sheet with a resin amount of 300 g Zm 2 is obtained.
  • a reinforcing sheet is laminated on both surfaces of the porous inorganic core material and a reinforcing layer 4 is formed at a temperature of 85 ° C. for 20 minutes.
  • an electromagnetic wave seal is applied to the surface of one reinforcement layer 4.
  • a copper foil with a thickness of 12 ⁇ as the metal layer 2 is attached with a vinyl acetate adhesive. Hence, composite building material 7 of this example is obtained.
  • the porous inorganic core material contains an organic fibrous material as an organic component, the fracture toughness of the composite building material is improved. For this reason, nails can be driven into composite building materials. Bending strength ⁇ ⁇ high crack resistance.
  • the electromagnetic waves can be absorbed as in the ninth embodiment.
  • through holes 51 and 52 are provided as shown in Figs.
  • composite building material 7 is obtained by bonding a reinforcing layer 4 made of thermosetting resin 41 and inorganic fibers 42 to the front side 71 and back side 72 of gypsum board 3 impregnated with organic components. I have.
  • the gypsum board 3 is impregnated with an organic component as in the first embodiment.
  • Gypsum board 3 consists of one layer, its thickness is 12.5 mm, and its specific gravity is 1.3.
  • the reinforcing layer 4 is composed of 420 parts by weight of a thermosetting resin 41 and 600 parts by weight of inorganic fibers 42.
  • the thermosetting resin 41 is a phenol resin.
  • a glass fiber chopped strand mat (weight 600 g, m 2 ) is used as the inorganic fiber 42.
  • the thickness of the reinforcing layer 4 is 0.8 mm.
  • a carpet as the surface decorative layer 1 is provided on the front side 71 of the composite building material 7.
  • the composite building material 7 has two types of through holes 51 and 52.
  • the through hole 51 is a round hole for application with a diameter of 10 mm.
  • the support leg 8 is attached to the through hole 51.
  • the support leg 8 is composed of a panel nut 81 for insertion into the through hole 51, a height adjusting bolt 82 screwed vertically into a panel nut 81, and a support base 83.
  • the other through hole 52 is a round hole having a diameter of 12 Omm. This through hole 52 is, for example, For example, as shown in Fig. 14, it is used for air-conditioning blowout and wiring extraction.
  • the through-hole 51 when used for air-conditioning blowout, the through-hole 51 is covered with a lid 66 having a vent, and an under-floor air conditioner is provided below the through-hole 51. Perform air conditioning. Further, the through hole 52 can be used as a wiring outlet for taking out the wiring cord 61 arranged on the rear side surface 72 to the front side surface 71.
  • reference numeral 62 denotes a wiring repeater.
  • a mixture of calcined gypsum and water is poured into a mold for forming a gypsum board.
  • a phenol resin as an organic component is also added and mixed.
  • the gypsum is dried and hardened to obtain a gypsum board 3.
  • the composite building material 7 is cut by a circular saw for woodwork to form a panel of several tens of cm square.
  • the obtained composite building material 7 is provided with supporting legs 8 on its back side surface 72, and a plurality of these are used as a floor material.
  • office equipment can be installed on the front side 71, and wiring equipment and air conditioning equipment for office equipment can be installed on the back side 72.
  • the wiring cord 61 for the wiring equipment and the cooling and heating blown from the air conditioning equipment can be taken out of the composite building material 7 through the through-hole 52 on the floor.
  • the composite building material 7 in this example uses gypsum board 3 impregnated with organic components. , Low cost, high fracture toughness, bending strength, crack resistance, fire resistance and compressive strength.
  • a step 53 is provided at a corner of the front side 71 of the composite building material 7.
  • the step 53 has an arc shape with a radius of 4 cm and a depth of 2.5 mm.
  • the shape of the step portion 53 is a shape that is convenient for fitting the upper support plate 8 12 of the support leg 8.
  • an arc-shaped notch 54 for inserting the support leg is provided at the end of the step 53.
  • the support leg 8 includes a panel nut 81 for insertion into the notch 54, a height adjustment bolt 82 screwed vertically into the panel nut 81, and a support base 83. I'm sorry
  • the panel nut 81 has an upper support plate 812 for holding the composite building material 7 from the front side 71 and a lower support plate 811 for holding the composite building material 7 from the back side 72.
  • the support legs 8 are used as combined panel flooring by supporting the corners of a plurality of composite building materials 7.
  • the composite building material of this example is composed of a gypsum board, a reinforcing layer, and a surface decorative layer, as in Embodiment 11 (see Fig. 11).
  • the composite building material 7 of this example is easy to construct because it has a step 53 and a notch 54 for construction.
  • a notch 55 is provided on the side of the composite building material 7.
  • the notch 55 is 12 cm wide and 2 cm deep.
  • the composite building material 7 has a through hole 51 for mounting the support leg 8 on the back side surface 72 as in the case of the embodiment 11 and the gypsum board, the reinforcing layer and the surface. It consists of a decorative layer (see Fig. 11).
  • the reinforcing layer 4 is provided on the front side 71 and the back side 72 of the porous inorganic core material 30.
  • the reinforcing layer 4 is made of phenolic resin as the thermosetting resin 41 and glass fiber as the inorganic fiber 42.
  • the composite building material 7 has a through hole 51 and a notch 55.
  • a porous inorganic core material 30 containing an organic fibrous material was prepared, and a reinforcing layer 4 was formed on the front and back surfaces thereof. Is formed to obtain the composite building material 7. Drill a through hole 51 and a notch 55 in the composite building material 7 (see Figs. 11 and 17).
  • Embodiment 15 Since the organic inorganic fibrous material 31 is contained in the porous inorganic core material 30, the fracture toughness of the composite building material is improved, and the bending strength / crack resistance is high. In addition, in this embodiment, the same effects as those of Embodiment 11 can be obtained.
  • Embodiment 15 the same effects as those of Embodiment 11 can be obtained.
  • This example relates to a method for manufacturing a composite building material.
  • the outline is that a resin-impregnated mat is laminated on a porous inorganic core material impregnated with organic components and pressed under heating.
  • a resin-impregnated mat is laminated on a porous inorganic core material impregnated with organic components and pressed under heating.
  • step S2 420 parts by weight of the thermosetting resin 41 and 126 parts by weight of the curing agent 43 are blended, and these blended raw materials are impregnated into inorganic fibers to impregnate the resin.
  • Thermosetting resin 41 is a phenolic resin.
  • Hardener 4 3 is good It is a mixture of an aromatic hydrocarbon sulfonate and sulfuric acid.
  • step S3 the resin-impregnated mat 40 is dried using a hot air drier.
  • the dry thickness of the resin-impregnated mat 40 is 0.8 mm.
  • step S4 a mixture of calcined gypsum and water is placed on the board base paper.
  • the phenolic resin as an organic component is added and mixed at a ratio of 8% by weight in the solid content. Further, a board base paper is coated thereon. Next, this is dried and cured to obtain a gypsum board 3 having a thickness of 12.5 mm and a specific gravity of 1.3 impregnated with organic components.
  • step S5 one side of the gypsum board 3 impregnated with an organic component was coated with 100 parts by weight of a cold-setting resin (61) and 15 parts by weight of a curing agent (62). Is applied.
  • a fuanol resin is used as the room temperature curing resin 61, and a mixture of aromatic hydrocarbon sulfonic acid and sulfuric acid is used as the curing agent 62.
  • step S6 another gypsum board 3 prepared in the same manner as in step S4 is laminated on the side of the gypsum board 3 to which the adhesive 6 has been applied, and these are bonded.
  • step S7 the resin-impregnated mat 40 prepared in step S3 is laminated on the front and back surfaces of the two-layer gypsum board 3, respectively.
  • step S8 these are heated and pressurized at a temperature of 100 ° C and a pressure of 1 kg / cm 2 for 10 minutes.
  • the composite building material 7 is subjected to external processing, drilling, etc., and is turned into a panel of several tens of cm square.
  • the panelized composite building material is provided with through holes, steps, and notches, and supporting legs are attached to the back side of the composite building material. Also used as flooring.
  • the inorganic fiber 42 was previously impregnated with a thermosetting resin 41 and a curing agent 43 (S 2), and dried to produce a resin-impregnated mat 40 (S 3). After being laminated on the gypsum board 3 (S7), it is heated and pressed (S8). Therefore, nothing Good adhesion between the material fibers and the impregnated thermosetting resin. In addition, the inorganic fibers are easy to adhere to each other, which is advantageous because the impregnation rate of the thermosetting resin can be improved.
  • the reinforcing layer made of the resin-impregnated mat is bonded to the gypsum board 3 by hot pressing, it is not necessary to use a separate adhesive. Moreover, 0 the manufacturing process can be simplified
  • the mixture of the crushed waste paper and the sol solution is poured into a mold and dried at 100 ° C for 24 hours to obtain a plate-like porous inorganic core material.
  • the reinforcing sheet is laminated on the above porous inorganic core material and pressed at a temperature of 85 ° C for 20 minutes to obtain a composite building material.
  • the composite building material obtained in this example has high fracture toughness and can be nailed because the porous inorganic core material contains the waste of organic paper, which is an organic component. Is high.
  • the same effects as those of Embodiment 15 can be exerted.
  • the composite building material of the present invention can be used for floor materials, wall materials, ceiling materials and the like. It is especially suitable for floor forests that require strength and fire resistance, and can be used as composite flooring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Floor Finish (AREA)
  • Laminated Bodies (AREA)

Abstract

An ideal composite building material which permits porous inorganic core materials to be used as various building materials such as floor materials and which is high in strength, light in weight, and excellent in fire resistance, workability and nail resistance and a production method thereof, and a composite floor material. A composite building material characterized by comprising a porous inorganic core material containing an organic component, and a functional layer. The porous inorganic core material consists of a gypsum board, an inorganic amorphous material and the like. The organic component is an organic binder or an organic fibrous material. The functional layer is a reinforcing layer, a surface decorative layer or an electromagnetic wave shield layer. The reinforcing layer consists of resin and inorganic fibers. The surface decorative layer is a melamine decorative sheet, a carpet and the like. The electromagnetic wave shield layer is a composite sheet consisting of a metal foil or conductive filler and resin.

Description

明細書 複合建材及びその製造方法並びに複合床材 技術分野  Description Composite building material, method for producing the same, and composite flooring
本発明は, 建築材料に用いられる複合建材及びその製造方法並びに複合床材に 関するものであって, 特に建築材料としての強度を有するものに関する。 背景技術  TECHNICAL FIELD The present invention relates to a composite building material used as a building material, a method for producing the same, and a composite flooring material, and particularly to a material having strength as a building material. Background art
コンピュータ等を設置する F Aフロアー (フリーアクセスフロアーを意味する 。 以下同様。 ) の基材は, コンピュータの重量に耐え, 地震時にコンピュータ等 が転倒した場合でもその衝撃で破損しないことが要求され, また, 配線を床下面 に配設することになるため, ケーブル火災などでも耐えられるように耐火性にも 優れていることが必要とされる。  The base material of the FA floor where the computer is installed (meaning the free access floor; the same applies hereinafter) is required to be able to withstand the weight of the computer and not be damaged by the impact even if the computer falls over during an earthquake. Since the wiring is installed on the underside of the floor, it must have excellent fire resistance so that it can withstand cable fires.
このような F Aフロアーの基材としては, ①スチール, アルミニウムなどの金 属を使用したもの, ②ポリ塩化ビュル, A B S樹脂, ポリプロピレンなどの樹脂 製のもの, ③繊維で補強されたコンクリート製のもの, ④ケィ酸カルシウム板に 金属板を貼付したもの, ⑤パーティクルボードなどの木質系のものがある。 ところ力 ①の金属を使用したもの, ③のコンクリート製のもの, ④のケィ酸 カルシウム板に金属を貼付したものは, 重く, 加工性も悪い。 ②の樹脂製のもの ゃ⑤のパーティクルボードは, 耐火性に劣る。  The base materials for such FA floors are: (1) those made of metals such as steel and aluminum; (2) those made of resins such as polychlorinated vinyl, ABS resin and polypropylene; and (3) those made of concrete reinforced with fibers. , カ ル シ ウ ム Calcium silicate plate with metal plate attached, ⑤ Particle board with wood type. However, those made of metal (1), those made of concrete (3), and those made of calcium silicate plate with metal attached on (2) are heavy and have poor workability. The particle board made of resin (2) is inferior in fire resistance.
このため, 強度が高く, 軽くて耐火性に優れ, 加工性にも優れた実用的な床材 の開発が望まれている。  Therefore, the development of a practical flooring material with high strength, light weight, excellent fire resistance, and excellent workability is desired.
ところで, 建築材料としては, 石膏ボードなどの多孔質無機芯材が, コストの 点で優れており, 壁材等に使用されている。 例えば, 熱可塑性樹脂製のプリプレ グを多孔質無機芯材に貼付した, 壁用, 間仕切り用の建築材料が特開平 7— 3 2 9 2 3 6号に提案されている。  By the way, as a building material, a porous inorganic core material such as gypsum board is superior in terms of cost, and is used as a wall material. For example, Japanese Patent Application Laid-Open No. 7-32926 proposes a building material for walls and partitions in which a prepreg made of a thermoplastic resin is attached to a porous inorganic core material.
しかしながら, 多孔質無機芯材は強度が低いため床材に使用することはできな いというのが建築業界の常識であった。 However, porous inorganic core materials cannot be used for flooring because of their low strength. That was the common sense of the construction industry.
また ^多孔質無機芯材ゃ建築用繊維板は, 釘を打ちつけても釘耐力がなく, 釘 が保持されずに抜けてしまうという問題があった。  In addition, the porous inorganic core material and architectural fiberboard had the problem that nails did not have the strength to withstand nails and could be pulled out without being held.
また, 多孔質無機芯材は意匠性に劣るため, 床材としてそのまま使用するには 不向きである。  In addition, the porous inorganic core material has poor design properties and is not suitable for use as a floor material as it is.
また, 事務室内には, 多数のコンピュータが配置されている。 コンピュータか ら発生する電磁波は人体に良くない影響を与えるといわれている。 そのため, 電 磁はを吸収する建築材料が要求されている。  There are many computers in the office. It is said that electromagnetic waves generated by computers have a bad effect on the human body. For this reason, the building materials that absorb electromagnetic waves are required.
また, 室内には, 多数の電気機器, 空調機器などがあり, これらを載置する床 には, 多機能が要求される。  In addition, there are many electrical and air-conditioning equipment in the room, and the floor on which these are mounted must have multiple functions.
本発明はかかる従来の問題点に鑑み, 多孔質無機芯材を床材を始めとして各種 建築材料として使用でき, 強度が高く, 軽量で, 耐火性, 加工性及び釘耐力に優 れた理想的な複合建材及びその製造方法並びに複合床材を提供しようとするもの である。 発明の開示  In view of the above-mentioned conventional problems, the present invention can use a porous inorganic core material as a floor material and various other building materials, and has high strength, light weight, and excellent fire resistance, workability, and nail strength. And a composite flooring material. Disclosure of the invention
本発明は, 多孔質無機芯材と機能層とからなるとともに, 上記多孔質無機芯材 は, 有機質成分を含有することを特徴とする複合建材である。  The present invention is a composite building material comprising a porous inorganic core material and a functional layer, wherein the porous inorganic core material contains an organic component.
本発明の作用及び効果について説明する。  The operation and effect of the present invention will be described.
多孔質無機質芯材は, 低コストで圧縮強度に優れているが, その反面, 力が加 わると, 力が加わった側とは反対側に引張り力が発生して, この力の発生点を起 点として破壊が生じる。  The porous inorganic core material is low in cost and excellent in compressive strength, but on the other hand, when a force is applied, a tensile force is generated on the side opposite to the side on which the force is applied, and the point at which this force is generated Destruction occurs as a starting point.
そこで, 本発明の複合建材においては, 多孔質無機芯材は, 多孔質無機芯材自 体の他に, 有機質成分を含んでいる。 そのため, 多孔質無機芯材の破壊靱性が改 善される。 よって, 複合建材の破壊靱性, 曲げ強度及び耐クラック性を向上させ ることができる。 また, 複合建材は, 破壊靱性値が高いため釘を打つことができ , 建築材料として適している。 また, 床材として最適である。  Therefore, in the composite building material of the present invention, the porous inorganic core material contains an organic component in addition to the porous inorganic core material itself. As a result, the fracture toughness of the porous inorganic core material is improved. Therefore, the fracture toughness, bending strength and crack resistance of the composite building material can be improved. Composite building materials have high fracture toughness and can be nailed, making them suitable as building materials. It is also ideal as a floor material.
また, 多孔質無機芯材の表側面, 裏側面または内部の少なくとも一方には, 機 能層を設けている。 機能層はその材料により種々の機能を発揮するため, 複合建 材に機能層の機能を付与することができる。 Also, at least one of the front side, the back side, and the inside of the porous inorganic core An active layer is provided. Since the functional layer performs various functions depending on the material, the function of the functional layer can be given to the composite building material.
更に, 本発明の複合建材は, 主として多孔質無機芯材及び有機質成分から構成 されているため, 軽量で耐火性及び加工性に優れ, かつ低コス トである。  Furthermore, since the composite building material of the present invention is mainly composed of a porous inorganic core material and an organic component, it is lightweight, has excellent fire resistance and workability, and has low cost.
次に, 本発明の詳細について説明する。  Next, details of the present invention will be described.
(多孔質無機芯材)  (Porous inorganic core material)
上記多孔質無機芯材は, 石膏ボードであることが好ましい。 これにより, 優れ た圧縮強度を複合建材に付与することができる。 また, 軽量で低コス トで製造で きる。 多孔質無機芯材としては, 上記石膏ボードのほかに, ケィ酸カルシウム板 , 石膏板, スラグ石膏板, セメント板, 石綿セメント板, パーライト板, 軽量発 泡コンクリートなどを用いることが好ましい。 これらは比較的軽量で低コストだ からである。  Preferably, the porous inorganic core material is a gypsum board. As a result, excellent compressive strength can be imparted to composite building materials. It is lightweight and can be manufactured at low cost. As the porous inorganic core material, in addition to the above-mentioned gypsum board, it is preferable to use a calcium silicate board, a gypsum board, a slag gypsum board, a cement board, an asbestos cement board, a perlite board, a lightweight foamed concrete, or the like. They are relatively lightweight and low cost.
上記石膏ボードとは, 石膏板の表面にボード原紙を貼着した板をいう。 上記石 膏板とは, 石膏からなる板状体をいう。 上記スラグ石膏板とは, 高炉スラグ及び 二水石膏に特殊触媒処理を施すことにより結晶 (エトライト, 3 C a O, A 1 23, 3 C a S 04■ 3 1〜3 2 H2O等) を生成させた不燃材をいう。 上記石綿 セメント板とは, 石綿をセメントに混ぜ, 水練りして板状に強圧して水分を取り 養生したセメント製品をいう。 上記パーライト板とは, 一般に石綿セメントパー ライト板をいい, これは, セメント石綿, パーライトを主原料として水を加えて 混合し抄造成形し養生して形成される。 The gypsum board mentioned above is a board in which the base paper is adhered to the surface of the gypsum board. The gypsum board is a plate made of gypsum. The above-mentioned slag gypsum board, crystal by applying special catalytic treatment in blast furnace slag and gypsum (Etoraito, 3 C a O, A 1 2 ◦ 3, 3 C a S 0 4 ■ 3 1~3 2 H 2 O, etc.) The above-mentioned asbestos-cement board is a cement product in which asbestos is mixed with cement, kneaded with water, strongly pressed into a plate shape to remove moisture, and cured. The above-mentioned pearlite plate is generally an asbestos-cement pearlite plate, which is formed by mixing, assimilating cement asbestos and pearlite, adding water, molding, and curing.
また, 多孔質無機芯材としては, 無機非晶質体を用いることができる。 例えば , A 1 203— S i 02—C a O系非晶質体などである。 これは, A l, S i , C a などの金属元素のアルコキシドゃ水酸化物を酸やアル力リの存在下で加水分解し 重合させてゾル化させ, これを乾燥硬化させてゲルィヒすることにより製造される 多孔質無機芯材には, 有機質成分が含まれている。 An inorganic amorphous body can be used as the porous inorganic core material. For example, A 1 2 0 3 - S i 0 2 -C a O -based amorphous material and the like. This means that alkoxides and hydroxides of metal elements such as Al, Si, and Ca are hydrolyzed and polymerized in the presence of an acid or alkali to form a sol, which is dried and cured to form a gel. The organic component is contained in the porous inorganic core material produced by the method.
有機質成分は, 有機質結合剤または有機質繊維状物であることが好ましい。 有機質結合剤としては, 熱硬化性樹脂または熱可塑性樹脂を用いることが好ま しい。 上記熱硬化性樹脂は, フエノール樹脂, エポキシ樹脂, ウレタン樹脂, メ ラミン樹脂, レゾルシノール樹脂が望ましい。 上記熱可塑性樹脂は, ポリエーテ ルスルフォン, ポリスルフイ ド, ポリフエ二レンエーテル, ポリフエ二レンスル フイ ド, ポリフエ二レンォキシド, ポリエーテルイミ ドから選ばれる少なくとも 1種以上が望ましい。 Preferably, the organic component is an organic binder or an organic fibrous material. It is preferable to use a thermosetting resin or a thermoplastic resin as the organic binder. New The thermosetting resin is preferably a phenol resin, an epoxy resin, a urethane resin, a melamine resin, or a resorcinol resin. The thermoplastic resin is desirably at least one selected from the group consisting of polyethersulfone, polysulfide, polyphenylene ether, polyphenylene sulfide, polyphenylene oxide, and polyetherimide.
また, 有機質繊維状物としては, ビニロン, ポリプロピレンおよびポリェチレ ンなどの化学繊維, または多糖類からなる有機質繊維状物から選ばれる少なくと も 1種以上を使用できる。 この中, 多糖類からなる有機質繊維状物であることが 望ましい。 なぜなら, 多糖類には O H基が存在し, 水素結合により, A 1 203, S i 02または C a Oの無機物と結合しやすいからである。 As the organic fibrous material, at least one selected from synthetic fibers such as vinylon, polypropylene, and polyethylene, or organic fibrous materials composed of polysaccharides can be used. Among these, organic fibrous materials composed of polysaccharides are desirable. This is because, the polysaccharide is present OH group, by hydrogen bonding, because A 1 2 0 3, tends to bind to the S i 0 2 or an inorganic material C a O.
上記多糖類は, アミノ糖, ゥロン酸, デンプン, グリコーゲン, ィヌリン, リ ケニン, セノレロース, キチン, キトサン, へミセノレロースおよびぺクチンから選 ばれる少なくとも 1種以上の化合物であることが望ましい。 これら多糖類からな る有機質繊維状物としては, パルプ, パルプかす, 針葉樹, 広葉樹などの粉砕物 であるチップ (繊維の集合物) , 新聞や雑誌などの古紙の粉砕物を用いることが 好ましい。 なお, パルプは, 一般に, セルロースの他にリグニンを 1 0〜3 0重 量%程度含んでいる。  The polysaccharide is desirably at least one compound selected from amino sugars, peronic acid, starch, glycogen, inulin, lichenin, senorelose, chitin, chitosan, hemicenolerose and pectin. As the organic fibrous material composed of these polysaccharides, it is preferable to use chips (aggregate of fibers) which are crushed materials such as pulp, pulp waste, softwood, hardwood, and the like, and crushed waste paper such as newspapers and magazines. Pulp generally contains about 10 to 30% by weight of lignin in addition to cellulose.
有機質成分は, 多孔質無機芯材に含浸させてもよく, あるいは無機粒子と有機 質成分とを混練して成形して多孔質無機芯材としてもよい。 また, 多孔質無機芯 材が無機非晶質体である場合には, ゾルの状態の際に有機質成分を加え, その後 乾燥硬化させてゲル化することもできる。  The organic component may be impregnated in the porous inorganic core material, or the inorganic component and the organic component may be kneaded and molded to form a porous inorganic core material. When the porous inorganic core material is an inorganic amorphous material, an organic component can be added in a sol state, and then dried and cured to form a gel.
多孔質無機芯材中の有機質成分の含有量は, 3〜6 5重量%であることが好ま しい。 これにより, 多孔質無機芯材の破壊靭性が更に向上する。  The content of organic components in the porous inorganic core material is preferably 3 to 65% by weight. This further improves the fracture toughness of the porous inorganic core material.
多孔質無機芯材の全体厚みは, 9 . 5〜3 0 . O mmであることが好ましい。 これにより, 充分な剛性, 耐衝撃性及び加工性が得られ, かつ床下の配線スぺー スを充分確保できる。 一方, 9 . 5 mm未満の場合には, 十分な剛性及び耐衝撃 性が得られないおそれがある。 また, 3 0 . O mmを超える場合には, それに見 合う効果が得られ難い。 特に, 多孔質無機芯材の全体厚みは, 1 9〜 2 5 mmであることが望ましい。 これにより, 更に優れた剛性, 耐衝撃性及び加工性が得られる。 The total thickness of the porous inorganic core material is preferably 9.5 to 3.0 mm. As a result, sufficient rigidity, impact resistance, and workability can be obtained, and a sufficient wiring space under the floor can be secured. On the other hand, if it is less than 9.5 mm, sufficient rigidity and impact resistance may not be obtained. If it exceeds 30 mm, it is difficult to obtain the corresponding effect. In particular, the total thickness of the porous inorganic core material is desirably 19 to 25 mm. As a result, superior rigidity, impact resistance and workability can be obtained.
また, 多孔質無機芯材を複数枚積層して上記の厚みに調整してもよい。  Also, a plurality of porous inorganic core materials may be laminated and adjusted to the above thickness.
なお, 上記多孔質無機芯材の全体厚みとは, 耐火性複合建築材材料に 1層のみ の多孔質無機芯材が設けられている場合には 1層の厚みを, 複数層積層されてい る場合には複数層の全体厚みを, 後述するボード原紙が貼着されている場合には 該ボード原紙の厚みをも含めた厚みをいう。  When the fire-resistant composite building material is provided with only one layer of porous inorganic core material, the total thickness of the porous inorganic core material is defined as the thickness of one layer. If it is, the thickness refers to the total thickness of the multiple layers, and if the board base paper described below is adhered, it refers to the thickness including the thickness of the board base paper.
また, 多孔質無機芯材の全体比重は, 0 . 9〜1 . 5であることが好ましい。 これにより, 比較的軽量で, 優れた剛性及び耐衝撃性を発揮できる。 一方, 0 . 9未満の場合には, 多孔質無機芯材がもろくなるおそれがある。 また 1 . 5を超 える場合には, 複合建材の軽量化が妨げられるおそれがある。  The specific gravity of the entire porous inorganic core material is preferably 0.9 to 1.5. As a result, it is relatively lightweight and can exhibit excellent rigidity and impact resistance. On the other hand, if it is less than 0.9, the porous inorganic core material may become brittle. If it exceeds 1.5, the weight of the composite building material may be reduced.
なお, 上記多孔質無機芯材の全体比重とは, 複合建材に 1層のみの多孔質無機 芯材が設けられている場合には 1層の比重を, 複数層積層されている場合には複 数層の全体比重を, 後述するボード原紙が多孔質無機芯材に貼着されている場合 には該ボード原紙の厚みをも含めた比重をいう。 上記比重とは, 4 °Cの水の体積 密度に対する多孔質無機芯材の体積密度の比をいう。  The total specific gravity of the porous inorganic core material is the specific gravity of one layer when the composite building material is provided with only one layer of porous inorganic core material, and the specific gravity when two or more layers are laminated. The total specific gravity of the multiple layers refers to the specific gravity including the thickness of the board base paper when the board base paper described below is adhered to the porous inorganic core material. The above specific gravity refers to the ratio of the volume density of the porous inorganic core material to the volume density of water at 4 ° C.
上記多孔質無機芯材の表側面又は裏側面の少なくとも一方には, ボード原紙を 貼着してなり, 上記補強層は上記ボード原紙の上に接着されていることが好まし い。 これにより, 複合建材の曲げ強度, 耐衝撃性及び耐水性などの機械的強度が 更に向上する。 上記ボード原紙としては, 例えば, 古紙, パルプなどを主原料と し発水剤などを添加した, 厚み 0 . 3〜0 . 5 mm程度の厚紙を用いることが好 ましい。  Preferably, at least one of the front side and the back side of the porous inorganic core material has a board base paper adhered thereto, and the reinforcing layer is preferably bonded onto the board base paper. As a result, the mechanical strength of the composite building material, such as bending strength, impact resistance, and water resistance, is further improved. As the board base paper, for example, it is preferable to use thick paper having a thickness of about 0.3 to 0.5 mm, which is made of waste paper, pulp, or the like as a main raw material and to which a water generating agent is added.
上記多孔質無機芯材は, 複数層積層されていることが好ましい。 これにより, 複合建材の耐衝撃性及び剛性が更に高くなる。  It is preferable that the porous inorganic core material is laminated in a plurality of layers. This further increases the impact resistance and rigidity of the composite building material.
各多孔質無機芯材の間は, 接着剤により接着されていることが好ましい。 上記 接着剤は, フエノール樹脂, エポキシ樹脂, ウレタン樹脂, メラミン樹脂, レゾ ルシノール樹脂, 及び酢酸ビュル樹脂の群から選ばれる 1種又は 2種以上からな ることが好ましい。 これにより, 複合建材全体の撓みを防止できる。 (機能層) It is preferable that each porous inorganic core material is bonded with an adhesive. The adhesive is preferably made of one or more selected from the group consisting of a phenol resin, an epoxy resin, a urethane resin, a melamine resin, a resorcinol resin, and a butyl acetate resin. This can prevent the entire composite building material from bending. (Functional layer)
多孔質無機芯材の表側面, 裏側面または内部の少なくとも一方には, 1または 2以上の機能層が設けられている。 機能層は, 以下に述べる①補強層, ②表面化 粧層または③磁気シールド層の少なくとも 1種である。  One or more functional layers are provided on at least one of the front side, back side, and inside of the porous inorganic core material. The functional layer is at least one of the following: (1) a reinforcing layer, (2) a surface coating layer, or (3) a magnetic shield layer.
①補強層 ① Reinforcement layer
上記機能層は, 樹脂と無機質繊維とからなる補強層であることが好ましい。 補 強層は, 多孔質無機芯材の引張り力に対する強度を改善する機能を有する。 即ち , 高強度の補強層を多孔質無機芯材の表側面又は裏側面に形成することにより, 多孔質無機芯材に引張り力が加わった場合でも破壊しない。  The functional layer is preferably a reinforcing layer composed of a resin and inorganic fibers. The reinforcing layer has a function of improving the strength of the porous inorganic core material against tensile force. That is, by forming a high-strength reinforcing layer on the front side or the back side of the porous inorganic core, the porous inorganic core does not break even when a tensile force is applied.
また, 補強層は, 少なくとも多孔質無機芯材の裏面側 (室内側の反対側) に形 成されていることが好ましい。 これにより, 複合建材の表側面から裏側面へ向け て加わる押圧力に対して優れた強度を発揮できる。 また, 表側面からの引張り力 に対する耐性が向上する。 また, 曲げ強度及び耐衝撃性も向上する。  The reinforcing layer is preferably formed at least on the back side of the porous inorganic core material (opposite the indoor side). This makes it possible to exhibit excellent strength against the pressing force applied from the front side to the back side of the composite building material. In addition, the resistance to the tensile force from the front side is improved. Bending strength and impact resistance are also improved.
なお, 補強層は, 多孔質無機芯材の片面のみ, あるいはその両面に形成されて いてもよレ、。  The reinforcing layer may be formed on only one side of the porous inorganic core material or on both sides.
補強層は, 樹脂及び無機質繊維を含有している。  The reinforcing layer contains resin and inorganic fibers.
上記補強層に含まれている樹脂としては, i)熱硬化性樹脂, i i) 熱硬化性樹 脂と弾性高分子とからなる複合樹脂, または iii) 熱可塑性樹脂を用いることが できる。  As the resin contained in the reinforcing layer, i) a thermosetting resin, ii) a composite resin composed of a thermosetting resin and an elastic polymer, or iii) a thermoplastic resin can be used.
i)熱硬化性樹脂  i) Thermosetting resin
熱硬化性樹脂は, 熱可塑性樹脂と比べて, 耐火性に優れ, 高温化でも軟化しな い。 このため, 熱硬化性樹脂により形成した補強層は, 耐熱性に優れ, 高温時で も補強層としての機能を失わない。  Thermosetting resin has better fire resistance than thermoplastic resin and does not soften even at high temperatures. For this reason, the reinforcing layer formed of thermosetting resin has excellent heat resistance and does not lose its function as a reinforcing layer even at high temperatures.
熱硬化性樹脂としては, フエノール樹脂, メラミン樹脂, エポキシ樹脂, ポリ イミド樹脂, 尿素樹脂などがよい。  As the thermosetting resin, phenol resin, melamine resin, epoxy resin, polyimide resin, urea resin and the like are preferable.
上記補強層中の熱硬化性樹脂の含有量は, 無機質繊維 1 0 0重量部に対して, 2 0〜 2 0 0重量部であることが好ましい。 2 0重量部未満の場合には, 複合建 材の引張り強度, 曲げ強度, 耐衝撃性が低下するおそれがある。 また, 2 0 0重 量部を超える場合には, 複合建材の耐火性が低下するおそれがある。 The content of the thermosetting resin in the reinforcing layer is preferably 20 to 200 parts by weight based on 100 parts by weight of the inorganic fibers. If the amount is less than 20 parts by weight, the tensile strength, bending strength and impact resistance of the composite building material may be reduced. Also, 200 times If the amount exceeds the above range, the fire resistance of the composite building material may decrease.
ii) 化性樹脂と弾性高分子とからなる複合樹脂 ii) Composite resin consisting of a curable resin and an elastic polymer
補強層に含まれている樹脂は, 熱硬化性樹脂と弾性高分子とからなる複合樹脂 であることが好ましい。 これにより, 複合建材の釘耐力が向上する。 即ち, 弾性 高分子は, 熱硬化性樹脂マトリックスの" 海" の中に弾性高分子の" 島" が分散 した構成となり, 樹脂の強度を向上させ, また複合建材に靱性を付与できる。 こ のため, 複合建材に釘を打ち付けても釘を起点としてクラックが発生することは ない。 また, 弾 I"生高分子は, 釘に対する複合建材の耐摩擦 1生を向上させ, 釘の保 持力を向上させることができる。  The resin contained in the reinforcing layer is preferably a composite resin comprising a thermosetting resin and an elastic polymer. This improves the nail strength of composite building materials. In other words, the elastic polymer has a structure in which “islands” of the elastic polymer are dispersed in the “sea” of the thermosetting resin matrix, thereby improving the strength of the resin and imparting toughness to the composite building material. For this reason, cracks do not occur starting from the nail even when the nail is driven into the composite building material. In addition, the bullet I "biopolymer can improve the friction resistance of composite building materials against nails and improve the holding power of nails.
上記弾性高分子としては, ゴム系ラテックス, アクリル系ラテックス, アタリ レート系ラテックス, ウレタン系ラテックスであることが好ましい。 これらは, 未硬化の熱硬化性樹脂液中に液状で分散するため, 多孔質無機芯材ゃ無機質繊維 に含浸させやすい。 上記ゴム系ラテックスは, 二トリル一ブタジエン (N B R ) , ステレン一ブタジエン (S B R ) であることが好ましい。  The elastic polymer is preferably a rubber latex, an acrylic latex, an acrylate latex, or a urethane latex. Since these are dispersed in a liquid state in the uncured thermosetting resin liquid, they can be easily impregnated into the porous inorganic core material / inorganic fiber. The rubber latex is preferably nitrile-butadiene (NBR) or stellene-butadiene (SBR).
上記弾性高分子は, 上記複合樹脂の中に, 5〜3 5重量%含まれていることが 好ましい。 一方, 3 5重量%を超える場合には, 補強層の靱性が低下してクラッ クが発生しやすくなり, 釘の保持力が低下するおそれがある。 また, 5重量%未 満の場合には, 樹脂強度が低下し, 釘の保持力が低下するおそれがある。  The elastic polymer is preferably contained in the composite resin in an amount of 5 to 35% by weight. On the other hand, if it exceeds 35% by weight, the toughness of the reinforcing layer decreases, cracks are likely to occur, and the holding power of the nail may decrease. If the content is less than 5% by weight, the resin strength may decrease, and the nail holding force may decrease.
iii) 熱可塑性樹脂 iii) thermoplastic resin
熱可塑性樹脂を補強層の樹脂として用いる場合には, 補強層の強度及び靱性値 が不足しがちである。 しかし, 本発明では多孔質無機芯材に有機質成分を含むた め, 多孔質無機芯材の強度及び靱性が向上し, 複合建材全体の強度, 靱性値が改 善される。 そのため, 本発明によれば, 補強層中に含まれる樹脂として, 熱可塑 性樹脂を用いることができる。  When a thermoplastic resin is used as the resin for the reinforcing layer, the strength and toughness of the reinforcing layer tend to be insufficient. However, in the present invention, since the porous inorganic core contains an organic component, the strength and toughness of the porous inorganic core are improved, and the strength and toughness of the entire composite building material are improved. Therefore, according to the present invention, a thermoplastic resin can be used as the resin contained in the reinforcing layer.
熱可塑性樹脂は, ポリエーテルスルフォン, ポリスルフイ ド, ポリフエ二レン エーエル, ポリフエ二レンスルフイ ド, ポリフエ二レンォキシド, ポリエーテル イミ ドから選ばれる少なくとも 1種以上が望ましい。  The thermoplastic resin is preferably at least one selected from polyether sulfone, polysulfide, polyphenylene ether, polyphenylene sulfide, polyphenylene oxide, and polyether imide.
次に, 補強層に含まれている無機質繊維としては, ガラス繊維, ロックウール , セラミックファイバ一, カーボンファイバーが望ましい。 低価格で耐熱性, 強 度に るからである。 Next, the inorganic fibers contained in the reinforcing layer include glass fibers and rock wool. , Ceramic fiber and carbon fiber are preferred. This is because of low cost, heat resistance and strength.
無機質繊維としては, 非連続の繊維がマット状に成形されたもの, 連続長繊維 を 3〜 7 c mに切断してマット状にしたもの (チョップドストランドマット) , 連続長繊維を渦巻き状に積層しマット状にしたもの (コンティニユアスストラン ドマット) , または連続長繊維を織りあげたもの (ロービングクロス) を用いる ことができる。  As inorganic fibers, non-continuous fibers are formed into a mat shape, continuous filaments are cut into 3 to 7 cm into mats (chopped strand mats), and continuous filaments are spirally laminated. It can be made into a mat (continuous strand mat) or woven from continuous filaments (roving cloth).
上記補強層に含まれる上記樹脂の含有量は, 無機質繊維 1 0 0重量部に対して , 2 0〜 2◦ 0重量部であることが好ましい。 この理由は, この範囲では, 充分 な剛性, 耐衝撃性等が得られ, かつ高い耐火性を維持できるからである。  The content of the resin contained in the reinforcing layer is preferably from 20 to 2〜0 parts by weight based on 100 parts by weight of the inorganic fibers. The reason is that in this range, sufficient rigidity and impact resistance can be obtained, and high fire resistance can be maintained.
更には, 補強層に含まれている上記樹脂の含有量は, 無機質繊維 1 0 0重量部 に対して, 4 0〜1 2 0重量部であることが好ましい。 これにより, 補強層の上 記特性を更に効果的に発揮できる。  Further, the content of the resin contained in the reinforcing layer is preferably 40 to 120 parts by weight based on 100 parts by weight of the inorganic fibers. As a result, the above-mentioned characteristics of the reinforcing layer can be exhibited more effectively.
上記補強層には, 上記樹脂及び無機質繊維の他に, 水酸化アルミニウム, 水酸 化マグネシウムなどの難燃化剤, またはシリカゾル, ァ /レミナゾル, 水ガラスな どの一般に使用される無機質の結合剤を添カ卩してもよい。 シリカゾル, アルミナ ゾルは, 大きさ 1 0〜 1 0 0 11 111の5 i 02又は A 1 203の粒子を水中に分散させ たものであり, その濃度は 2 0〜4 0重量%であることが好ましい。 これにより , 補強層を均一に形成することができる。 For the reinforcing layer, in addition to the resin and the inorganic fibers, a flame retardant such as aluminum hydroxide or magnesium hydroxide, or a commonly used inorganic binder such as silica sol, a / remina sol, or water glass is used. You may also add bonito. Silica sol, alumina sol is obtained by dispersing 5 i 0 2 or A 1 2 0 3 of particle size 1 0-1 0 0 11 111 in water, its concentration is 2 0-4 0 wt% Preferably, there is. Thereby, the reinforcing layer can be formed uniformly.
上記補強層の厚さは, 0 . 3 mm〜3 . 5 mmが望ましい。 これにより, 充分 な剛性, 耐衝撃性などが得られ, かつ高い加工性を維持できる。  The thickness of the reinforcing layer is preferably from 0.3 mm to 3.5 mm. As a result, sufficient rigidity and impact resistance can be obtained, and high workability can be maintained.
上記多孔質無機芯材の厚み Tに対する上記補強層の厚み tの比 (t ZT) は, 0 . 0 1〜0 . 7であることが好ましい。 これにより, 複合建材の強度が更に高 くなる。 一方, 0. 0 1未満の場合は, 複合建材の耐引張り性が低下するおそれ があり, 0 . 7を超える場合は, 耐火性及び加工性が低下するおそれがある。 更に好ましくは, 上記多孔質無機芯材の厚み Tに対する上記補強層の厚み tの 比 (t /T) は, 0 . 0 3〜0 . 3 6であることが好ましい。 これにより, 複合 建材の強度が更に高くなる。 上記補強層の比重は, 0 . 5〜4 . 0であることが好ましい。 これにより, 複 合建材の引張り強度, 曲げ強度, 耐衝撃性及び耐熱性が高くなる。 一方, 0 . 5 未満の場合には, 引張り強度, 曲げ強度, 耐衝撃性が低下するおそれがある。 ま た, 4 . 0を超える場合には, 加工性が低下するおそれがある。 The ratio (tZT) of the thickness t of the reinforcing layer to the thickness T of the porous inorganic core material is preferably 0.01 to 0.7. This further increases the strength of the composite building material. On the other hand, if it is less than 0.01, the tensile resistance of the composite building material may decrease, and if it exceeds 0.7, the fire resistance and workability may decrease. More preferably, the ratio (t / T) of the thickness t of the reinforcing layer to the thickness T of the porous inorganic core material is preferably from 0.03 to 0.36. This will further increase the strength of the composite building material. The specific gravity of the reinforcing layer is preferably 0.5 to 4.0. This increases the tensile strength, bending strength, impact resistance and heat resistance of the composite building material. On the other hand, if it is less than 0.5, the tensile strength, bending strength, and impact resistance may decrease. If it exceeds 4.0, workability may decrease.
更に好ましくは, 上記補強層の比重は, 0 . 7 7〜1 . 9 5である。 これによ り, 上記補強層の効果を効果的に発揮できる。  More preferably, the specific gravity of the reinforcing layer is 0.77 to 1.95. As a result, the effect of the reinforcing layer can be effectively exerted.
上記補強層は, 接着剤により上記多孔質無機芯材の表側面又は裏側面の少なく とも一方に接着されていることが好ましい。 これにより補強層が多孔質無機芯材 に対して強固に接着される。  It is preferable that the reinforcing layer is bonded to at least one of the front surface and the back surface of the porous inorganic core material with an adhesive. Thereby, the reinforcing layer is firmly adhered to the porous inorganic core material.
上記接着剤は, 上記多孔質無機芯材と補強層との間を接着する接着剤と同様の もの, 即ち, フエノール樹脂, エポキシ樹脂, レゾルシノール樹脂, メラミン樹 脂, ウレタン樹脂, 及び酢酸ビュル樹脂の群から選ばれる 1種又は 2種以上から なることが好ましい。 これらの接着剤は, 接着後に撓みが少ないため, 複合建材 全体の橈みを抑制できる。  The adhesive is the same as the adhesive for bonding between the porous inorganic core material and the reinforcing layer, that is, phenol resin, epoxy resin, resorcinol resin, melamine resin, urethane resin, and butyl acetate resin. It is preferable to consist of one or more members selected from the group consisting of Since these adhesives have little deflection after bonding, the radius of the entire composite building material can be suppressed.
多孔質無機芯材の表面に補強層を形成する方法としては, ①無機, 有機バイン ダなどを含浸させた無機質繊維を予め板状に成形し, ここに熱硬化性樹脂組成物 を含浸, 乾燥, 硬化させたものを接着剤を介して多孔質無機芯材に貼付する方法 がある。  The method of forming a reinforcing layer on the surface of a porous inorganic core material is as follows: (1) Inorganic fibers impregnated with an inorganic or organic binder are preliminarily formed into a plate shape, and a thermosetting resin composition is impregnated therein. There is a method of attaching the dried and cured product to a porous inorganic core material via an adhesive.
また, ②無機質繊維のマットに樹脂組成物を含浸, 乾燥した後, 加熱プレスし , 熱硬化性樹脂を硬化せしめて成形し, これを接着剤を介して多孔質無機芯材に 貼付する方法がある。 あるいは, 無機質繊維のマットに榭脂組成物を含浸し, 必 要に応じて乾燥した後, 多孔質無機芯材に積層し, 加熱プレスし, 熱硬化性樹脂 を硬化せしめて成形する方法でもよい。 また, 多孔質無機芯材に熱硬化性樹脂を 塗布しておき, ここに無機質繊維のマットを載置し, 加熱プレスする方法でもよ い。  Also, (2) a method in which a resin composition is impregnated into a mat of inorganic fibers, dried, and then heated and pressed to cure the thermosetting resin, and then molded and adhered to a porous inorganic core material via an adhesive. There is. Alternatively, a method in which a resin composition is impregnated into a mat of inorganic fibers, dried as necessary, laminated on a porous inorganic core material, heated and pressed to cure the thermosetting resin, and then molded. Good. Alternatively, a thermosetting resin may be applied to the porous inorganic core material, a mat of inorganic fibers may be placed here, and hot pressing may be used.
さらに, ③ガラス繊維, ロックウール, セラミックファイバーの繊維表面にフ ェノール樹脂などの熱硬化性樹脂を Bステージでコーティングしておき, 多孔質 無機芯材としての石膏ボードに積層して加熱プレスする方法も採用できる。 この ③の方法では, 含浸した樹脂との密着性が向上し, また繊維同士を接着しやすく し, ま—た樹脂の含浸率を改善できるため有利である。 上記のコーティングの方法 としては, ガラス繊維, ロックウール, セラミックファイバーの原料溶融物をノ ズルから流出させて, プロ一^ f ング法あるいは遠心法により, 繊維化し, この繊 維化と同時にフエノール樹脂などの熱硬化性樹脂の溶液を吹きつけて集綿する方 法がある。 Furthermore, (3) a thermosetting resin such as phenolic resin is coated on the fiber surface of glass fiber, rock wool, and ceramic fiber at the B stage, laminated on a gypsum board as a porous inorganic core material, and heated and pressed. A method can also be adopted. this The method (3) is advantageous because the adhesion to the impregnated resin is improved, the fibers are easily bonded to each other, and the impregnation rate of the resin can be improved. As a method of the above-mentioned coating, a raw material melt of glass fiber, rock wool, and ceramic fiber flows out of the nozzle, and is converted into a fiber by a profiling method or a centrifugal method. There is a method of spraying a thermosetting resin solution to collect cotton.
なお, ガラス繊維, ロックウール, セラミックファイバーを使用する場合は, シランカップリング剤をコーティングしておくとよい。  When using glass fiber, rock wool, or ceramic fiber, it is recommended to coat it with a silane coupling agent.
また, 有機質成分を含む多孔質無機芯材の表側面又は裏側面の少なくとも一方 に, 樹脂及び無機質繊維からなる補強層を設けてなる複合建材を製造するに当た り,  Also, in producing a composite building material in which a reinforcing layer made of resin and inorganic fibers is provided on at least one of the front and back surfaces of a porous inorganic core material containing an organic component,
無機質繊維からなるマツトに予め樹脂を含浸し, 乾燥して樹脂含浸マツトを作 製しておき, 該樹脂含浸マットを, 有機質成分を含む多孔質無機芯材の表側面又 は裏側面の少なくとも一方に積層し, 加熱下でプレスすることを特徴とする複合 建材の製造方法がある。  A mat made of inorganic fibers is impregnated with a resin in advance and dried to produce a resin-impregnated mat, and the mat impregnated with the resin is coated on at least one of the front and rear surfaces of a porous inorganic core material containing an organic component. On the other hand, there is a method of manufacturing composite building materials characterized by laminating and pressing under heating.
本製造方法においては, 多孔質無機芯材が有機質成分を含有しているため, 破 壊靱性値が高く, 曲げ強度ゃ耐クラック性に優れた複合建材を製造することがで きる。 また, 製造された複合建材は, 破壊靱性値が高いため釘を打つことができ , 建築材料としては最適である。  In this manufacturing method, a composite building material with high fracture toughness and excellent bending strength / crack resistance can be manufactured because the porous inorganic core material contains an organic component. In addition, the manufactured composite building materials have high fracture toughness and can be nailed, making them ideal as building materials.
上記樹脂含浸マットは, 多孔質無機芯材に積層し, 加熱プレスすることにより , 補強層となる。 樹脂含浸マットは, 無機質繊維からなるマットに樹脂を含浸し たものである。 無機質繊維と樹脂との密着性は高く, また, 無機質繊維同士は接 着しやすいため, 樹脂の含浸率を改善でき, 補強層形成に有利である。  The above resin-impregnated mat is laminated on a porous inorganic core material and heated and pressed to form a reinforcing layer. The resin-impregnated mat is a mat made of inorganic fibers impregnated with resin. The adhesion between the inorganic fibers and the resin is high, and the inorganic fibers are easy to adhere to each other, so that the resin impregnation rate can be improved, which is advantageous for forming the reinforcing layer.
樹脂含浸マットは, 多孔質無機芯材に積層し, 加熱プレスにより, 多孔質無機 芯材に貼着するため, 別途接着剤を用いる必要はない。 更に, 製造プロセスを簡 略化できる。  The resin-impregnated mat is laminated on the porous inorganic core material, and is adhered to the porous inorganic core material by hot pressing, so there is no need to use a separate adhesive. Furthermore, the manufacturing process can be simplified.
上記多孔質無機芯材に樹脂含浸マツトを積層し, 加熱下でプレスするときの条 件は, 加熱温度は 7 0〜 1 3 0 °C, 圧力は 1 0 k g Z c in2以下であることが好 ましい。 多孔質無機芯材と樹脂含浸マットとの接着性をより良くするために, フ エノーレ, エポキシ, メラミン樹脂等の希薄液を, 積層前の多孔質無機芯材また は樹脂含浸マツトに塗布して良い。 When the resin-impregnated mat is laminated on the porous inorganic core material and pressed under heating, the conditions for heating are 70 to 130 ° C and the pressure is 10 kg Zc in 2 or less. It is good Good. To improve the adhesion between the porous inorganic core material and the resin-impregnated mat, apply a dilute solution such as phenolic, epoxy, or melamine resin to the porous inorganic core material or the resin-impregnated mat before lamination. You can
②表面化粧層  ②Surface decoration layer
また, 機能層は, 表面化粧層であることが好ましい。 これにより, 複合建材の 意匠性が高くなる。  The functional layer is preferably a surface decorative layer. This enhances the design of the composite building material.
上記表面化粧層は, 例えば, メラミン化粧板である。 メラミン化粧板とは, メ ラミン樹脂からなる化粧板をいい, 一般にはメラミン樹脂含浸紙からなるオーバ 一レイ層, パターン層, パッカー層, 及びフエノール樹脂含浸紙を積層したコア 層とからなる。 メラミン化粧板は, その裏面にメラミンパッカー層を有している ことが好ましい。 これにより, メラミン化粧板が反って補強層から剥離すること を防止できる。  The surface decorative layer is, for example, a melamine decorative plate. The melamine veneer is a veneer made of melamine resin, which generally consists of an overlay layer made of melamine resin impregnated paper, a pattern layer, a packer layer, and a core layer laminated with phenol resin impregnated paper. It is preferable that the melamine decorative plate has a melamine packer layer on the back surface. This can prevent the melamine decorative board from peeling off from the reinforcing layer due to warpage.
また, 上記表面化粧層は, 例えば, カーペットであってもよい。 カーペットと は, 床表面に敷かれる敷物であり, 例えば, 塩ィヒビュルタイル, 布製力一ペット 等がある。  The surface decorative layer may be, for example, a carpet. A carpet is a rug laid on the floor surface, and includes, for example, salt-filled tile, cloth-made pets, and the like.
また, 上記表面化粧層は, 天然木, 化粧合板, 天然石又は人造石であってもよ い。 これにより, 複合建材の意匠性が更に高くなる。  The surface decorative layer may be natural wood, decorative plywood, natural stone or artificial stone. This further enhances the design of the composite building material.
また, 上記表面化粧層は, 畳であってもよい。  Further, the surface decorative layer may be a tatami mat.
上記機能層は, 上記表面化粧層, 及び樹脂と無機質繊維とからなる補強層から なることが好ましい。 該補強層は, 上記で説明した補強層である。 これにより, 多孔質無機芯材の表側面又は 及び裏側面が, 補強層により被覆されることにな る。 そのため, 複合建材の引張り強度, 曲げ強度, 耐衝撃性, 加工性及び耐火性 が向上する。  The functional layer is preferably composed of the surface decorative layer and a reinforcing layer composed of a resin and inorganic fibers. The reinforcing layer is the reinforcing layer described above. As a result, the front side or the back side of the porous inorganic core material is covered with the reinforcing layer. Therefore, the tensile strength, bending strength, impact resistance, workability, and fire resistance of the composite building material are improved.
表面化粧層の多孔質無機芯材または補強層への固定方法は, 表面化粧層の材質 により異なる力 例えば, 接着剤を用いて接着する方法, 未硬化状態のメラミン 樹脂含浸紙を積層したホットプレスする方法等がある。  The method of fixing the surface decorative layer to the porous inorganic core material or the reinforcing layer depends on the force depending on the material of the surface decorative layer. For example, a method of bonding using an adhesive, a method of laminating melamine resin impregnated paper in an uncured state. There is a pressing method.
③電磁波シールド層  ③ Electromagnetic wave shielding layer
機能層は電磁波シールド層であることが好ましい。 これにより, 本発明の複合 建材は, 電磁波を吸収することができる。 特にコンピュータが多数設置されてい る事 室では, コンピュータから発する電磁波を効率よく吸収する。 そのため, 電磁波の人体へ影響を抑制することができる。 The functional layer is preferably an electromagnetic wave shielding layer. Thus, the composite of the present invention Building materials can absorb electromagnetic waves. Especially in rooms where many computers are installed, electromagnetic waves emitted from computers are efficiently absorbed. Therefore, the effects of electromagnetic waves on the human body can be suppressed.
上記電磁波シールド層は, 例えば, 金属箔であることが好ましい。 金属箔は, 電磁波を効率よく吸収するだけでなく, 強度が高く, 軽量でかつ加工性も良いか らである。  The electromagnetic wave shielding layer is preferably, for example, a metal foil. This is because metal foil not only absorbs electromagnetic waves efficiently, but also has high strength, light weight, and good workability.
上記金属箔は, アルミニウム箔, 銅箔, 亜鉛箔, ステンレス箔, 金箔及び銀箔 のグループから選ばれる 1種又は 2種以上であることが好ましい。 これらは, 特 に有効に電磁波を吸収する性質を有するからである。  The metal foil is preferably one or more selected from the group consisting of aluminum foil, copper foil, zinc foil, stainless steel foil, gold foil and silver foil. These are particularly effective in absorbing electromagnetic waves.
また, 上記電磁波シールド層は, 導電性フィラーと樹脂とからなる複合シート であることが好ましい。 かかる複合シートは, 電磁波を効率よく吸収するだけで なく, 軽量で加工性が高く, 音や振動も吸収するという点についても優れている からである。 複合シートに含まれている導電性フイラ一は, 例えば, 鉄, 銅, ァ ルミ二ゥム, ステンレス, 黄銅, 亜鉛, カーボン等のグループから選ばれる 1種 又は 2種以上からなる粉末であり, また, 樹脂としては, 例えば, フエノール, エポキシ, ポリウレタン, ユリ ア, ポリエステノレ, ポリプロピレン, ポリエチレ ンを用いることができる。  Further, the electromagnetic wave shielding layer is preferably a composite sheet comprising a conductive filler and a resin. This is because such a composite sheet not only absorbs electromagnetic waves efficiently, but is also lightweight, has high workability, and absorbs sound and vibration. The conductive filler contained in the composite sheet is, for example, a powder composed of one or more selected from the group of iron, copper, aluminum, stainless steel, brass, zinc, carbon, and the like. As the resin, for example, phenol, epoxy, polyurethane, urea, polyester, polypropylene, and polyethylene can be used.
また, 上記電磁波シールド層は, 上記のごとく金属箔または導電性フィラーと 樹脂とからなる複合シートなどの導電性シート状物質であることが好ましいが, 導電性塗料等を塗布したものでもよい。  The electromagnetic wave shielding layer is preferably a conductive sheet material such as a metal foil or a composite sheet made of a conductive filler and a resin as described above, but may be a material coated with a conductive paint or the like.
電磁波シールド層は, 多孔質無機芯材の表側面または裏側面の少なくとも一方 に設けることができる。 多孔質無機芯材の表側面には一般に表面化粧層が形成さ れることが多いため, 電磁波シールド層は裏側面に設けることが好ましい。 また, 電磁波シールド層は多孔質無機芯材の中に埋設してもよい。 埋設する場 合は, 石膏ボードのような多孔質無機芯材で電磁波シールド層を挟んでもよい。 また, 機能層は, 上記電磁波シールド層, 及び樹脂と無機質繊維とからなる補 強層からなることが好ましい。 該補強層は, 上記で説明した補強層である。 これ により, 多孔質無機芯材の表側面又はノ及び裏側面が, 補強層により被覆される ことになる。 そのため, 電磁波シールド層の破損を防止でき, また, 複合建材の 引張り強度, 曲げ強度, 耐衝撃性, 加工性及び耐火性が向上する。 The electromagnetic wave shielding layer can be provided on at least one of the front side and the back side of the porous inorganic core material. In general, a surface decorative layer is often formed on the front surface of the porous inorganic core material, and therefore, it is preferable to provide the electromagnetic wave shielding layer on the back surface. Further, the electromagnetic wave shielding layer may be embedded in a porous inorganic core material. When buried, the electromagnetic shielding layer may be sandwiched by a porous inorganic core material such as gypsum board. Further, it is preferable that the functional layer comprises the above-mentioned electromagnetic wave shielding layer and a reinforcing layer comprising a resin and an inorganic fiber. The reinforcing layer is the reinforcing layer described above. As a result, the front surface or the top and bottom surfaces of the porous inorganic core material are covered with the reinforcing layer. Will be. As a result, damage to the electromagnetic shielding layer can be prevented, and the tensile strength, bending strength, impact resistance, workability, and fire resistance of the composite building material are improved.
電磁波シールド層の表面は, 多孔質無機芯材または補強層との密着性を向上さ せるために粗化処理されていてもよい。 粗化面の深さは, 0 . l〜1 0 0 /x m程 度が望ましい。  The surface of the electromagnetic wave shielding layer may be roughened to improve the adhesion with the porous inorganic core material or the reinforcing layer. The depth of the roughened surface is preferably about 0.1 to 100 / xm.
電磁波シールド層として金属箔を用いる場合には, 金属箔の厚みは 1 0〜 5 0 0 // m程度が望ましい。 金属箔は導電性に優れるため薄くすることができるから である。 また, 電磁波シールド層が導電性フィラーを含む複合シートである場合 には, 複合シートの厚みは 0 . 5〜 5 mmが望ましい。 上記複合シートは, 金属 箔に比べて電気導電性に劣るため, やや厚くする必要があるからである。  When a metal foil is used as the electromagnetic wave shielding layer, the thickness of the metal foil is desirably about 10 to 500 // m. This is because the metal foil has excellent conductivity and can be thinned. When the electromagnetic wave shielding layer is a composite sheet containing a conductive filler, the thickness of the composite sheet is preferably 0.5 to 5 mm. This is because the above-mentioned composite sheet is inferior in electrical conductivity to metal foil and needs to be slightly thicker.
電磁波シールド層を多孔質無機芯材に接着する方法は, 接着剤を多孔質無機芯 材面又は電磁波シールド層に塗布し両者を密着させて硬化させることにより接着 する方法, 導電性フィラーと樹脂との混合物を塗布する方法などがある。 なお, 接着剤としては, 例えばフエノール樹脂, エポキシ樹脂, レゾルシノール樹脂, メラミン樹脂, ウレタン樹脂, 酢酸ビニル樹脂から選ばれる少なくとも 1種又は 2種以上を用いることができる。  The method of bonding the electromagnetic wave shielding layer to the porous inorganic core material includes the method of applying an adhesive to the surface of the porous inorganic core material or the electromagnetic wave shielding layer, bringing the two into close contact, and curing them. There is a method of applying a mixture with a resin. As the adhesive, for example, at least one or more selected from phenolic resins, epoxy resins, resorcinol resins, melamine resins, urethane resins, and vinyl acetate resins can be used.
(多孔質無機芯材の木口面を被覆する被覆層) (Coating layer that covers the opening of the porous inorganic core material)
多孔質無機芯材の木口面は, 被覆層により被覆されていることが好ましい。 こ れにより, 多孔質無機芯材, 特に石膏ボードの粉の飛散を防止でき, 取扱性が高 くなる。  The tip of the porous inorganic core material is preferably covered with a coating layer. As a result, the scattering of the powder of the porous inorganic core material, particularly the gypsum board, can be prevented, and the handleability is improved.
上記被覆層は, 例えば, 無機系材料である。 無機系材料としては, 例えば, 珪 酸ソーダ溶液, シリカゾル, アルミナゾル等を用いることが好ましい。 これによ り, 石膏粉の飛散を効果的に防止することができる。 シリカゾル, アルミナゾル は, 大きさ 1 0〜: 1 0 0 n mの S i 02, A 1 203粒子が水中で分散したものをい う。 水中の該粒子の濃度は 2 0〜4 0重量%であることが好ましい。 これにより , 被覆層を均一な厚みに形成できる。 The coating layer is, for example, an inorganic material. As the inorganic material, for example, it is preferable to use a sodium silicate solution, a silica sol, an alumina sol, or the like. This makes it possible to effectively prevent gypsum powder from scattering. Silica sol, alumina sol, size 1 0~: 1 0 0 nm of S i 0 2, A 1 2 0 3 particles will have a material obtained by dispersing in water. Preferably, the concentration of the particles in water is between 20 and 40% by weight. Thereby, the coating layer can be formed with a uniform thickness.
また, 上記被覆層は, 有機系材料であってもよい。 この場合には, 有機系材料 として, 例えば, ゴム系ェマルジヨン, アクリルェマルジヨン等の各種樹脂エマ ルジョンを用いることが好ましい。 これにより, 多孔質無機芯材の粉の飛散を効 果的に防止することができる。 ゴム系ェマルジヨンは, 二トリル一ブタジエンゴ ム溶液, エチレン一ブタジエン溶液がよい。 また, 各ェマルジヨン溶液の濃度は , 3 0〜6 0重量%であることが好ましい。 これにより, 被覆層を均一に形成で さる。 Further, the coating layer may be an organic material. In this case, organic materials For example, it is preferable to use various resin emulsions such as a rubber emulsion and an acrylic emulsion. As a result, the scattering of the powder of the porous inorganic core material can be effectively prevented. The rubber emulsion is preferably a nitrile-butadiene solution or an ethylene-butadiene solution. The concentration of each emulsion solution is preferably 30 to 60% by weight. As a result, the coating layer can be formed uniformly.
上記被覆層は, 上記木口面の表面に含浸された含浸層を形成していることが好 ましい。 これにより, 上記粉の飛散を効果的に防止することができる。  It is preferable that the coating layer forms an impregnated layer impregnated on the surface of the cut end surface. Thereby, scattering of the powder can be effectively prevented.
上記被覆層の厚みは, 上記含浸層である場合及びそうでない場合のいずれも, 0 . 0 1〜4 . 5 mmであることが好ましい。 これにより, 重量, コス トの増大 を招くことなく, 多孔質無機芯材の粉の飛散を防止できる。 一方, 0 . 0 1 mm 未満の場合には, 上記粉が飛散するおそれがある。 また, 4 . 5 mmを超える場 合には, それに見合う効果は期待できない。  The thickness of the coating layer is preferably 0.01 to 4.5 mm both in the case of the impregnated layer and in the case of not being the impregnated layer. As a result, the scattering of the powder of the porous inorganic core material can be prevented without increasing the weight and cost. On the other hand, if it is less than 0.01 mm, the powder may be scattered. If it exceeds 4.5 mm, the corresponding effect cannot be expected.
上記被覆層は, 多孔質無機芯材の木口面の全体を被覆することが好ましい。 こ れにより, 木口面からの多孔質無機芯材の粉の飛散をほぼ完全に防止できる。  It is preferable that the coating layer covers the entirety of the mouth of the porous inorganic core material. This makes it possible to almost completely prevent the powder of the porous inorganic core material from being scattered from the tip surface.
(複合建材の厚み) (Thickness of composite building materials)
本発明の複合建材の厚みは, 9 . 8〜3 7 . O mmであることが好ましい。 9 . 8 mm未満の場合には, 強度が低下するおそれがある。 また, 3 7 . O mmを 超える場合にはそれに見合う効果は期待できない。  The thickness of the composite building material of the present invention is preferably 9.8 to 37. O mm. If it is less than 9.8 mm, the strength may decrease. If it exceeds 37. O mm, an effect corresponding to it cannot be expected.
(複合建材の加工) (Processing of composite building materials)
本発明の複合建材は, 適当な大きさに切断し, パネル化することが好ましい。 これにより, 複合建材の施工が容易となり, また施工時の複合建材の組合せの自 由度が増し, 床の形状に応じて任意な形状に施工することができる。  The composite building material of the present invention is preferably cut into an appropriate size and panelized. This facilitates the construction of composite building materials, increases the degree of freedom in the combination of composite building materials at the time of construction, and allows construction to be performed in any shape according to the floor shape.
複合建材は, 貫通穴, 段部または切欠き部の少なくとも 1つを有することが好 ましい。  Preferably, the composite building material has at least one of through holes, steps or notches.
貫通穴は, 例えば, 施工用金具取付け穴, 電気配線取出し口, 空調吹出し口等 として利用することができる。 段部は, 施工用金具取付け穴, 電気配線取出し用 金具, 調吹出し用金具取付け等に利用できる。 切欠き部は, 施工用金具取付け 穴, 電気酉己線取出し用穴, 空調吹出し口等に利用できる。 The through holes are, for example, mounting bracket mounting holes, electrical wiring outlets, air conditioning outlets, etc. Can be used as The steps can be used for mounting bracket mounting holes, electrical wiring take-out fittings, and adjustment blow-out fittings. The cutouts can be used for mounting bracket mounting holes, holes for taking out electric wires, air conditioning outlets, and so on.
以上のように, 複合建材に貫通穴, 段部または切欠き部を形成することにより , 複合建材の用途範囲が広がり, 取扱いやすくなり, 多目的使用を実現できる。 貫通穴は, どのような形状, 大きさでもよい。 例えば, その形状は, 円形, 多 角形等がある。 また, その大きさは, 一般に 1 0〜2 5 mmであるが, これは用 途により異なる。 貫通穴を空調吹出し口としている場合には, 5 0〜2 0 0 mm であることが好ましい。 貫通穴は, パンチング加工, ドリル加工, ルーター加工 等により形成することができる。  As described above, by forming through holes, steps, or cutouts in the composite building material, the range of uses of the composite building material can be expanded, handling can be facilitated, and multipurpose use can be realized. The through-hole may be of any shape and size. For example, the shape may be circular or polygonal. The size is generally 10 to 25 mm, but this varies depending on the application. When the through hole is used as an air-conditioning outlet, the diameter is preferably 50 to 200 mm. The through hole can be formed by punching, drilling, router processing, or the like.
段部は, 複合建材の補強層および多孔質無機芯材の一部を除去して形成される 。 段部の形成は, 図 1 5の (a ) のように, 正方形又は長方形等の方形の複合建 材の四隅を扇形に切削して, 円弧として形成されたものが望ましい。 このような 形状の場合は, 実施形態例 1 2のように上側支持板 8 1 2 (図 1 6 ) を嵌め込む ことができる。 上記段部は, どのような形状, 大きさでもよく, 用途により適宜 選択する。 段部は, 例えば, ルーター加工等により形成することができる。 切欠き部は, 後述の実施形態例 1 3にあるように複合建材の側面の一部を方形 に切り欠いて形成されていることが望ましい。  The step is formed by removing a part of the reinforcing layer of the composite building material and the porous inorganic core material. As shown in Fig. 15 (a), the step should be formed as a circular arc by cutting the four corners of a square or rectangular composite building material into a fan shape. In the case of such a shape, the upper support plate 8 12 (FIG. 16) can be fitted as in the embodiment 12. The step may have any shape and size, and is appropriately selected depending on the application. The step can be formed by, for example, router processing. It is desirable that the notch is formed by cutting a part of the side surface of the composite building material into a square shape as in Embodiment 13 described later.
また, 図 1 5 ( a ) のように正方形又は長方形等の方形の複合建材の頂角を円 弧に切り欠いてもよい。 この場合は, 切欠き部は, 例えば, 支持用ボルト 8 2等 の支持具に当接する (図 1 6 ) 。 上記切欠き部は, どのような形状, 大きさでも よく, 用途により適宜選択する。 切欠き部は, 例えば, ルーター加工, ドリノレ加 ェ等により形成することができる。 図面の簡単な説明  Also, as shown in Fig. 15 (a), the apex angle of a square or rectangular composite building material may be cut into an arc. In this case, the notch contacts the support, for example, a support bolt 82 (Fig. 16). The notch may have any shape and size, and is appropriately selected according to the application. The notch can be formed by, for example, router processing, dolinole processing, or the like. BRIEF DESCRIPTION OF THE FIGURES
図 1 ;実施形態例 1の複合建材の断面模式図。 FIG. 1 is a schematic cross-sectional view of the composite building material of the first embodiment.
図 2 ;実施形態例 3の複合建材の断面模式図。 FIG. 2 is a schematic cross-sectional view of the composite building material of the third embodiment.
図 3 ;実施形態例 4の複合建材の断面模式図。 図 4 実施形態例 4の複合建材の斜視図。 FIG. 3 is a schematic cross-sectional view of the composite building material according to the fourth embodiment. FIG. 4 is a perspective view of a composite building material according to a fourth embodiment.
図 5 —実施形態例 5の複合建材の断面模式図 c Figure 5—Schematic cross section of composite building material of Embodiment 5 c
図 6 実施形態例 6の複合建材の断面模式図 c Figure 6 Cross-sectional schematic diagram of the composite building material of Embodiment 6 c
図 7 実施形態例 7の複合建材の断面模式図 c Figure 7 Cross-sectional schematic diagram of the composite building material of Embodiment 7 c
図 8 実施形態例 8の複合建材の断面模式図 c Figure 8 Cross-sectional schematic diagram of the composite building material of Embodiment 8 c
図 9 実施形態例 9の複合建林の断面模式図 c Fig. 9 Cross-sectional schematic diagram of the compound forest of the ninth embodiment c
0 実施形態例 1 0の複合建材の断面模式図。  FIG. 1 is a schematic cross-sectional view of a composite building material according to a tenth embodiment.
図 1 1 実施形態例 1 1の複合建材における, 図 1 2の A— A線矢視断面図。 図 1 2 実施形態例 1 1の複合建材の平面図。 Fig. 11 is a cross-sectional view of the composite building material of the embodiment 11 taken along the line AA in Fig. 12. FIG. 12 is a plan view of the composite building material of Embodiment 11 of the present invention.
図 1 3 実施形態例 1 1における, 支持脚を取り付けた複合建材の正面図。 図 1 4 実施形態例 1 1の複合建材の用途例を示す説明図。 FIG. 13 is a front view of the composite building material with the support legs attached thereto in Embodiment 11 of the present invention. FIG. 14 is an explanatory view showing an application example of the composite building material of the embodiment 11;
図 1 5 実施形態例 1 2の複合建材の平面図 (a ) , 及び正面図 (b ) 。 FIG. 15 is a plan view (a) and a front view (b) of a composite building material according to Embodiment 12 of the present invention.
6 実施形態例 1 2における, 支持脚により固定された複合建材の断面図 図 1 7 実施形態例 1 3の複合建材の平面図 (a ) 及び正面図 (b ) 。  6 Cross-sectional view of composite building material fixed by support legs in Embodiment 12 Fig. 17 A plan view (a) and a front view (b) of a composite building material according to Embodiment 13 of the present invention.
図 1 8 実施形態例 1 3の複合建材の用途方法を示す説明図。 FIG. 18 is an explanatory view showing a method of using the composite building material according to the first to third embodiments.
図 1 9 実施形態例 1 4の複合建材の模式図。 FIG. 19 is a schematic view of a composite building material according to Embodiment 14 of the present invention.
図 2 0 実施形態例 1 5の複合建材の製造方法の説明図。 発明の実施の形態 FIG. 20 is an explanatory diagram of a method for manufacturing a composite building material of Embodiment 15; Embodiment of the Invention
実施形態例 1 Embodiment 1
本例の複合建材 7においては, 図 1に示すごとく, 多孔質無機芯材としての石 膏ボード 3の表側面 7 1及び裏側面 7 2の両面に, 補強層 4を接着している。 石 膏ボード 3には, 有機質成分としてのフエノール樹脂が 7重量%含浸されている 。 補強層 4は, 複合樹脂 (4 1 1 ) 4 2重量部と無機質繊維 (4 2 ) 1 0 0重量 部とからなる。 補強層 4の中に含まれている複合樹脂 4 1 1は, 熱硬化性樹脂と してのフエノール樹脂 9 5重量0 /0と, 弾性高分子としての二トリルブタジエンゴ ム系ラテックス 5重量%とからなる。 In the composite building material 7 of this example, as shown in Fig. 1, the reinforcing layer 4 is bonded to both the front side 71 and the back side 72 of the gypsum board 3 as the porous inorganic core material. Gypsum board 3 is impregnated with 7% by weight of phenolic resin as an organic component. The reinforcing layer 4 is composed of 42 parts by weight of the composite resin (4 11) and 100 parts by weight of the inorganic fiber (4 2). Composite resin 4 1 1 which are contained in the reinforcing layer 4 is a phenolic resin 9 5 weight 0/0 of the thermosetting resin, nitrile butadiene rubber based latex 5% by weight of an elastic polymer Consists of
無機質繊維 4 2としては, ガラス繊維チョップドストランドマット (重量 6 0 0 g/m2) を用いる。 Glass fiber chopped strand mat (weight 60%) 0 g / m 2 ) is used.
補強層 4の厚み tは 0. 7 mmであり, 比重は 1. 2である。  The thickness t of the reinforcing layer 4 is 0.7 mm, and the specific gravity is 1.2.
石膏ボード 3は, 1層からなり, その全体厚み Tは, 9. 5 mmである。 石膏 ボード 3の全体比重は, 1. 3である。  The gypsum board 3 consists of one layer, and its total thickness T is 9.5 mm. The overall specific gravity of gypsum board 3 is 1.3.
石膏ボード 3は, 石膏板 35の表側面及び裏側面にボード原紙 38を貼着した ものである。 ボード原紙 38としては, 古紙, パルプなどを主原料とし発水剤な どを添加した厚み 0. 3〜0. 5 mm程度の厚紙を用いる。 補強層 4は, 接着剤 60により石膏ボード 3の表面に接着されている。 接着剤 60としてはフエノー ル樹脂を用いる。  The gypsum board 3 has a gypsum board 35 with a board base paper 38 stuck to the front and back sides. As the board base paper 38, a thick paper of about 0.3 to 0.5 mm thick made of waste paper, pulp, or the like as a main raw material and adding a water generating agent or the like is used. The reinforcing layer 4 is bonded to the surface of the gypsum board 3 with an adhesive 60. A phenol resin is used as the adhesive 60.
本例の複合建材の製造方法を説明する。  A method for manufacturing the composite building material of this example will be described.
(1) 硬化前の熱硬化性樹脂 (フエノール樹脂) 95重量%と, 架橋前の弾性高 分子 (二トリルブタジェンゴム系ラテックス) 5重量%とを混合して, 樹脂溶液 を得る。  (1) A resin solution is obtained by mixing 95% by weight of a thermosetting resin (phenol resin) before curing and 5% by weight of an elastic high molecule (nitrile butadiene rubber-based latex) before crosslinking.
(2) また, デイツビング法にて, 石膏板 35に, 有機質成分としてのフエノー ル樹脂を含浸させ, この石膏板 35の両面にボード原紙 38を貼着して, 石膏ボ ード (比重 1. 0, 厚み 9. 5 mm) 3を得る。  (2) The gypsum board 35 was impregnated with phenolic resin as an organic component by the dive method, and the board base paper 38 was stuck on both sides of the gypsum board 35, and the gypsum board (specific gravity 1. 0, thickness 9.5 mm) 3.
(3) 次に, 石膏ボード 3の表面に, 硬化剤を添加した上記 (1) の樹脂溶液か らなる接着剤 60を 250 g/m2 (固形分換算) の割合で塗布し, 市販のガラ ス繊維チョップドストランドマット (重量 600 g/m2, 厚み 0. 7 mm) を 重ね 80°Cの温度にて 20分間プレスする。 これにより, 石膏ボード 3の表側面 7 1及び裏側面 72に補強層 4を形成する。 (3) Next, an adhesive 60 consisting of the resin solution of the above (1) to which a hardening agent was added was applied to the surface of the gypsum board 3 at a rate of 250 g / m 2 (in terms of solid content). A glass fiber chopped strand mat (weight 600 g / m 2 , thickness 0.7 mm) is stacked and pressed at 80 ° C for 20 minutes. Thereby, the reinforcing layer 4 is formed on the front side 71 and the back side 72 of the gypsum board 3.
以上より, 石膏ボード 3及び補強層 4からなる, 厚さ 10. 9mmの複合建材 7を得る。  Thus, a composite building material 7 consisting of gypsum board 3 and reinforcing layer 4 and having a thickness of 10.9 mm is obtained.
得られた複合建材は, 数十 cm平方の正方形に切断し, 裏側面に脚を取り付け , これらを複数枚組み合わせて FAフロアー用基材として使用する。  The obtained composite building material is cut into squares of several tens of cm square, legs are attached to the back side, and a plurality of these are used as a base material for FA floors.
次に, 本例の作用及び効果について説明する。  Next, the operation and effect of the present embodiment will be described.
本例の複合建材 7においては, 石膏ボード 3に有機質成分を含浸しているため , 複合建材 7の破壊靱性が向上し, 曲げ強度ゃ耐クラック性に優れている。 また , 破壊靱性が優れているため釘を打つことができ, 建築材料として最適である。 複合建材 7は, 石膏ボード 3の表側面 7 1及び裏側面 7 2に補強層 4を接着し たものであるため, 引張り力が加わった場合でも破壊が起きない。 従って, 複合 建材 7は, 優れた引張り強度を発揮する。 In the composite building material 7 of this example, since the gypsum board 3 is impregnated with an organic component, the fracture toughness of the composite building material 7 is improved, and the bending strength and the crack resistance are excellent. Also Because of its excellent fracture toughness, it can be nailed and is ideal as a building material. Since the composite building material 7 has the reinforcing layer 4 adhered to the front side 71 and the back side 72 of the gypsum board 3, it does not break even when a tensile force is applied. Therefore, composite building material 7 exhibits excellent tensile strength.
補強層 4の中の弾性高分子は, 熱硬化性樹脂に優れた強度及び靭性を付与する The elastic polymer in the reinforcement layer 4 gives the thermosetting resin excellent strength and toughness
。 このため, 補強層 4に釘を打ち付けても釘を起点としてクラックが発生するこ とはない。 また, 弾性高分子は釘に対する耐衝撃性及び耐摩擦性が高いため, こ れを含む補強層 4は釘保持力が高い。 . For this reason, even if a nail is driven into the reinforcing layer 4, cracks do not occur starting from the nail. In addition, since the elastic polymer has high impact resistance and friction resistance to nails, the reinforcing layer 4 containing it has high nail holding power.
補強層 4は, 樹脂及び無機質繊維からなり, 加工性に優れている。 補強層 4に 含まれている熱硬化性樹脂 (フエノール樹脂) は, 熱可塑性樹脂と異なり, 耐火 性に優れ, 高温下でも軟化しないため, 高温時でも補強層としての機能は失われ ない。 補強層 4は高い強度を保持しつづけ, 複合建材 7に耐久性を付与する。 本例の複合建材 7は, 石膏ボード 3 , 並びに複合樹脂 4 1 1及び無機質繊維 4 The reinforcing layer 4 is made of resin and inorganic fibers and has excellent workability. Unlike the thermoplastic resin, the thermosetting resin (phenolic resin) contained in the reinforcing layer 4 has excellent fire resistance and does not soften even at high temperatures, so its function as a reinforcing layer is not lost even at high temperatures. The reinforcing layer 4 continues to maintain high strength and imparts durability to the composite building material 7. The composite building material 7 of this example is composed of gypsum board 3, composite resin 4 11 and inorganic fiber 4
2からなる補強層 4より構成されるため, 軽量で加工性に優れ, かつ低コストで ある。 実施形態例 2 Since it is composed of the reinforcing layer 4 consisting of 2, it is lightweight, has excellent workability, and is low in cost. Embodiment 2
本例の複合建材においては, 補強層が無機質繊維 (ガラス繊維チョップドスト ランドマット) 1 0 0重量部と熱硬化性樹脂 (フエノール樹脂) 3 0重量部とか らなる。 補強層の中には, 弾性高分子は含まれていない。  In the composite building material of this example, the reinforcing layer is composed of 100 parts by weight of inorganic fibers (glass fiber chopped strand mat) and 30 parts by weight of thermosetting resin (phenol resin). The reinforcing layer does not contain any elastic polymer.
多孔質無機芯材としては, 有機質成分を含浸した 2枚の石膏ボードを積層しフ エノ一ル榭脂からなる接着剤により接着したものを用いる。 石膏ボードは, 1枚 の厚みが 1 2 . 5 mmであり, 比重は 1 . 3である。 有機質成分としては, 実施 形態例 1と同様のものを用いる。 その他は, 実施形態例 1と同様である。 本例に おいても, 実施形態例 1と同様の効果を得ることができる。 実施形態例 3  As the porous inorganic core material, two gypsum boards impregnated with organic components are laminated and bonded with an adhesive made of phenol resin. Each gypsum board has a thickness of 12.5 mm and a specific gravity of 1.3. As the organic component, the same one as in the first embodiment is used. Others are the same as the first embodiment. In this example, the same effect as in the first embodiment can be obtained. Embodiment 3
本例の複合建材は, 図 2に示すごとく, 多孔質無機芯材 3 0と, その両面に積 層した補強層 4とからなる。 多孔質無機芯材 30は, 無機質体としての A 120 3-S-i 02— C a O系非晶質体 39と, 有機質繊維状物 3 1としての古紙粉砕 物とからなる。 また, 補強層 4は, 熱硬化性樹脂 41と, 無機質繊維 42とから なる。 As shown in Fig. 2, the composite building material of this example is composed of a porous inorganic core material 30 and both sides. And a reinforcing layer 4. Porous inorganic core material 30, A 1 2 0 3-Si 0 2 as inorganic material - consisting of a C a O-based amorphous material 39, the waste paper pulverized as organic fibrous material 3 1. The reinforcing layer 4 is composed of a thermosetting resin 41 and inorganic fibers 42.
本例の複合建材の製造方法について説明する。  A method for manufacturing the composite building material of this example will be described.
まず, エチルアルコールと古紙を混ぜたものをボールミルで 1時間粉砕する。 次いで, S i (OC2H5) 440重量部, A l (OC3H7) 330重量部, C a ( OCH3) 230重量部, C2H5OH66重量部, 水 18重量部, 0. 1 N塩酸を 1重量部を加え, 攪拌混合してゾル溶液を得る。 First, a mixture of ethyl alcohol and waste paper is ground for 1 hour with a ball mill. Then, Si (OC 2 H 5 ) 4 40 parts by weight, Al (OC 3 H 7 ) 3 30 parts by weight, Ca (OCH 3 ) 2 30 parts by weight, C 2 H 5 OH 66 parts by weight, water 18 parts by weight , 0.1 N hydrochloric acid and 1 part by weight, and mix by stirring.
上記古紙粉砕物と上記ゾル溶液とを混合したものを型枠に流し込み, 100 °c で 24時間乾燥させ, 板状の多孔質無機芯材とする。  The mixture of the crushed waste paper and the sol solution is poured into a mold and dried at 100 ° C for 24 hours to obtain a plate-shaped porous inorganic core material.
この板状の多孔質無機芯材にフエノール樹脂を含浸させた後, 60°Cで乾燥さ せる。  The plate-shaped porous inorganic core material is impregnated with phenolic resin and dried at 60 ° C.
また, 市販のガラス繊維チョップドストランドマット (重量 600 g/m2, 厚み 0. 7 mm) にフエノール樹脂を含浸させて 60 °Cで乾燥させ, ガラス繊維 量 600 g/m2, 樹脂量 300 g m2の補強シートを得る。 A commercially available glass fiber chopped strand mat (weight 600 g / m 2 , thickness 0.7 mm) is impregnated with phenolic resin and dried at 60 ° C. The glass fiber content is 600 g / m 2 and the resin content is 300 gm. Obtain 2 reinforced sheets.
補強シートを多孔質無機芯材の両面に積層して 80°Cの温度にて 20分間プレ スする。 以上より, 複合建材を得る。 比較例 1  The reinforcing sheet is laminated on both sides of the porous inorganic core material and pressed at a temperature of 80 ° C for 20 minutes. Thus, a composite building material is obtained. Comparative Example 1
本例の複合建材は, 石膏ボードに有機質成分が含浸されていない点で, 実施形 態例 1と相違する。 その他は, 実施形態例 1と同様である。 比較例 2  The composite building material of this example differs from Embodiment 1 in that the gypsum board is not impregnated with organic components. Others are the same as the first embodiment. Comparative Example 2
本例の複合建材は, 多孔質無機芯材に有機質繊維状物が含まれていない点で, 実施形態例 3と相違する。 その他は, 実施形態例 3と同様である。  The composite building material of this example differs from the third embodiment in that the porous inorganic core material does not contain organic fibrous materials. Others are the same as the third embodiment.
(実験例) 本例においては, 上記実施形態例 1, 3及び比較例 1, 2の複合建材 (床材) につい :r, 曲げ強度の評価を行い, その結果を表 1に示した。 同表より, 多硬質 無機芯材が有機質成分を含有すると, 複合建材の曲げ強度が高くなる傾向がある ことがわかる。 (Experimental example) In this example, the composite building materials (floor materials) of Examples 1 and 3 and Comparative Examples 1 and 2 were evaluated for: r and bending strength, and the results are shown in Table 1. The table shows that when the multi-hard inorganic core material contains an organic component, the bending strength of the composite building material tends to increase.
Figure imgf000022_0001
Figure imgf000022_0001
実施形態例 4 Embodiment 4
本例においては, 図 3に示すごとく, 複合建材 7の表側面 7 1及び裏側面 7 2 に表面化粧層 1を設けている。  In this example, as shown in FIG. 3, the surface decorative layer 1 is provided on the front side 71 and the back side 72 of the composite building material 7.
表面化粧層 1は天然木目調のメラミン化粧板であり, 図 4に示すごとく, 複合 建材 7の表側面 7 1及び裏側面 7 2に木目模様 1 0を現している。  The decorative surface layer 1 is a melamine decorative veneer with natural woodgrain. As shown in Fig. 4, the woodgrain pattern 10 appears on the front side 71 and the back side 72 of the composite building material 7.
表面化粧層 1は, 図 3に示すごとく, その外面側にはメラミン樹脂を含浸した 化粧板 1 1を, その内側面にはメラミンパッカーと呼ばれる樹脂含浸紙層 1 2を 配置して, これらを積層しホットプレスしてメラミン樹脂を硬化させたものであ る。  As shown in Fig. 3, the surface decorative layer 1 is provided with a decorative plate 11 impregnated with melamine resin on its outer surface and a resin-impregnated paper layer 12 called melamine packer on its inner surface. Laminated and hot pressed to cure the melamine resin.
石膏ボード 3には, 実施形態例 1と同様に有機質成分が含浸されている。 補強層 4は, 3 7重量%の熱硬化性樹脂 4 1と, 6 3重量%の無機質繊維 4 2 と力、らなる。 熱硬化性樹脂は, フエノール樹脂である。 無機質繊維としては, マ ット状ガラス繊維 (重量 5 0 0 g /in2) を用いる。 補強層 4の厚さは, 2 mm である。 The gypsum board 3 is impregnated with an organic component as in the first embodiment. The reinforcing layer 4 is composed of 37% by weight of a thermosetting resin 41 and 63% by weight of inorganic fibers 42. The thermosetting resin is a phenolic resin. Matt glass fibers (weight: 500 g / in 2 ) are used as the inorganic fibers. The thickness of the reinforcing layer 4 is 2 mm.
本例の複合建材の製造方法を説明する。  A method for manufacturing the composite building material of this example will be described.
( 1 ) まず, 実施形態例 1と同様に, 有機質成分を含浸した石膏ボード 3を作製 し, その表側面 7 1及び裏側面 7 2に補強層 4を形成する。 なお, 補強層 4には (1) First, similarly to Embodiment 1, a gypsum board 3 impregnated with an organic component is prepared, and a reinforcing layer 4 is formed on the front side 71 and the back side 72 thereof. The reinforcement layer 4
, 弾性高分子は添加しない。 , No elastic polymer is added.
( 2 ) 次に, 木目模様を印刷したパターン層用の晒クラフト紙 (坪量 S O g Zm 2) , パッカー層用の晒クラフト紙 (坪量 8 0 g //m2) にそれぞれメラミン樹脂 を含浸库 8 0 %, 8 0 %の割合で含浸させて, 表面化粧層としてのメラミン樹脂 含浸紙を得る。 (2) Next, bleached kraft paper (pattern weight SO g Zm 2) bleached kraft paper for packer layer (basis weight 8 0 g / / m 2), respectively the melamine resin impregnated freezers 80%, impregnated at the rate of 80%, the melamine resin impregnated as a surface decorative layer Get the paper.
( 3 ) 次に, このメラミン樹脂含浸紙を補強層 4の表面に載置し, 圧力 1〜5 0 k g / c m2, 温度 1 2 0〜1 8 0 °C, 時間 5〜 3 0 0 s e cで加熱加圧して一 体成形する。 これにより, 複合建材 7が得られる。 (3) Next, the melamine resin impregnated paper is placed on the surface of the reinforcing layer 4, and the pressure is 1 to 50 kg / cm 2 , the temperature is 120 to 180 ° C, and the time is 5 to 300 seconds. And press to form a single piece. As a result, composite building material 7 is obtained.
( 4 ) その後, 複合建材 7を木工用の丸鋸により切断して, 数十 c m平方の大き さにし, その裏側面に脚を取り付け, これらを複数枚組み合わせて複合建材とし て使用する。  (4) Then, the composite building material 7 is cut with a circular saw for woodwork to a size of several tens of cm square, and legs are attached to the back side, and a plurality of these are used as a composite building material.
なお, 図 4に示すごとく, 複合建材 7を切断して露出した木口面 3 7には, 石 膏粉飛散防止用の被覆層を被覆してもよい。  As shown in Fig. 4, the cut edge 37 of the composite building material 7 that has been cut and exposed may be covered with a coating layer to prevent gypsum powder from scattering.
本例の複合建材 7は, 石膏ボード 3を被覆する補強層 4の表面に表面化粧層 1 を設けているため, 意匠性が高い。  The composite building material 7 of this example has a high design because the surface decorative layer 1 is provided on the surface of the reinforcing layer 4 covering the gypsum board 3.
その他, 実施形態例 1と同様の効果を得ることができる。 実施形態例 5  In addition, the same effects as those of the first embodiment can be obtained. Embodiment 5
本例の複合建材 7は, 図 5に示すごとく, 有機質成分を含浸させた石膏ボード 3の表側面 7 1には表面化粧層 1を, その裏側面 7 2には補強層 4を設けている 。 その他は, 実施形態例 4と同様である。  As shown in Fig. 5, the composite building material 7 of this example has a surface decorative layer 1 on the front side 71 of a gypsum board 3 impregnated with an organic component, and a reinforcing layer 4 on its rear side 72. . Others are the same as the fourth embodiment.
本例の複合建材 7は, その表側面 7 1に表面装飾用の表面化粧層 1を設けてい るため, 室内装飾用床材として有用である。  The composite building material 7 of this example has a surface decorative layer 1 for surface decoration on its front side 71 and is useful as a floor material for interior decoration.
また, 石膏ボード 3の裏側面 7 2にのみ強度補強用の補強層 4が設けられてい る。 石膏ボード 3の裏側面 7 2には, 上からの引張り力が特に強く働く。 そのた め, 本例のように石膏ボード 3の裏側面 7 2に補強層 4を被覆することにより, 上からの引張り力に優れた複合建材 7を得ることができる。 実施形態例 6  Further, only the back side 72 of the gypsum board 3 is provided with a reinforcing layer 4 for reinforcing the strength. On the back side 72 of the gypsum board 3, a tensile force from above acts particularly strongly. Therefore, by covering the back surface 72 of the gypsum board 3 with the reinforcing layer 4 as in this example, it is possible to obtain a composite building material 7 having an excellent tensile force from above. Embodiment 6
本例の複合建材においては, 図 6に示すごとく, 表面化粧板 1が, メラミン樹 脂含浸紙からなるオーバーレイ層 1 3, パターン層 14, フエノール樹脂含浸紙 を積層したコア層 1 5, 及びメラミンパッカーと呼ばれる樹脂含浸紙からなるバ ッカ一層 1 6とからなる。 パターン層 14は, 複合建材 7に模様や色彩を付与す る基材, 例えば, 合板, 天然板, あるいは模様 '色彩付きクラフト紙にメラミン 樹脂を含浸させたもの等を用いる。 In the composite building material of this example, as shown in Fig. 6, the surface decorative plate 1 is made of melamine tree. It is composed of an overlay layer 13 composed of a fat-impregnated paper, a pattern layer 14, a core layer 15 laminated with a phenol resin-impregnated paper, and a backer layer 16 composed of a resin-impregnated paper called melamine packer. The pattern layer 14 is made of a base material for imparting a pattern or color to the composite building material 7, for example, a plywood, a natural board, or a patterned kraft paper impregnated with a melamine resin.
表面化粧板 1は, 有機質成分を含浸した石膏ボード 3の表側面 71及び裏側面 72に接着されている。  The decorative panel 1 is adhered to the front side 71 and the back side 72 of the gypsum board 3 impregnated with organic components.
本例の複合建材を製造するに当たっては, まず, 実施形態例 1と同様に有機質 成分を含浸させた石膏ボード 3を作製するとともにその表側面及び裏側面に補強 層 4を形成する。 なお, 補強層 4は, 熱硬化性樹脂のみからなり, 弾性高分子は 含まない。  In manufacturing the composite building material of this example, first, similarly to Embodiment 1, a gypsum board 3 impregnated with an organic component is produced, and a reinforcing layer 4 is formed on the front and back surfaces thereof. The reinforcing layer 4 is made of only a thermosetting resin and does not contain an elastic polymer.
次いで, オーバーレイ層用の晒クラフト紙 (坪量 25 gZm2) , 模様や色彩 を印刷したパターン層用の晒クラフト紙 (坪量 S O gZm2) , パッカー層用の 晒クラフト紙 (坪量 80 g/m2) , コア層用の晒クラフト紙 (坪量 1 20 g/ m2) を用意する。 オーバーレイ層用の晒クラフト紙及びパターン層用の晒クラ フト紙, パッカー層用の晒クラフト紙に, それぞれメラミン樹脂の含浸率 250 %, 80%, 80%の割合で含浸させる。 また, コア層用の晒クラフト紙にフエ ノール樹脂を含浸率 100%で含浸させる。 Next, bleached kraft paper for the overlay layer (basis weight 25 gZm 2 ), bleached kraft paper for the pattern layer printed with patterns and colors (basis weight SO gZm 2 ), bleached kraft paper for the packer layer (basis weight 80 g / m 2 ), Prepare bleached kraft paper for the core layer (basis weight: 120 g / m 2 ). The bleached kraft paper for the overlay layer, bleached kraft paper for the pattern layer, and bleached kraft paper for the packer layer are impregnated with melamine resin at the impregnation rates of 250%, 80%, and 80%, respectively. The bleached kraft paper for the core layer is impregnated with phenolic resin at an impregnation rate of 100%.
次いで, 補強層 4の表面に, 順に, 上記パッカー層用の晒クラフト紙, コア層 用の晒クラフト紙, パターン層用晒クラフト紙, 及びオーバーレイ一層用の晒ク ラフト紙を積層し, これらを圧力 1〜50 k gZc m2, 温度1 20〜1 80°〇 , 時間 5〜 300秒間加熱加圧して一体成形し, 図 6に示す複合建材 Ίを得た。 本例の複合建材も, 実施形態例 4と同様に意匠性が高い。 実施形態例 7 Next, bleached kraft paper for the packer layer, bleached kraft paper for the core layer, bleached kraft paper for the pattern layer, and bleached kraft paper for the overlay layer were laminated on the surface of the reinforcing layer 4 in this order. pressure 1~50 k gZc m 2, temperature 1 20 to 1 80 ° 〇, molded integrally heating and pressing time 5-300 seconds, to obtain a composite building material Ί shown in FIG. The composite building material of this example also has a high design property as in the fourth embodiment. Embodiment 7
本例の複合建材においては, 図 7に示すごとく, 多孔質無機芯材 30の表側面 71及び裏側面 72に, 補強層 4を設けている。 複合建材 7の表側面 7 1には, 表面化粧層 1としてのスギ板が設けられている。 多孔質無機芯材 30は, 実施形 態例 3と同様に, 無機質体としての A 1 2 0 3 _ S i O 2— C a O系非晶質体 3 9 と, 有 質繊維状物 3 1としての古紙粉砕物とからなる。 補強層 4は, 熱硬化性 樹脂 4 1および無機質繊維 4 2とからなる。 In the composite building material of this example, as shown in Fig. 7, the reinforcing layer 4 is provided on the front side surface 71 and the back side surface 72 of the porous inorganic core material 30. On the front side 71 of the composite building material 7, a cedar board as the surface decorative layer 1 is provided. Porous inorganic core material 30 is a practical type Similar to Tairei 3, A 1 2 0 3 _ S i O 2 of the inorganic material - consisting of a C a O-based amorphous material 3 9, the waste paper pulverized as organic quality fibrous material 3 1. The reinforcing layer 4 is composed of a thermosetting resin 41 and inorganic fibers 42.
本例の複合建材を製造するにあたっては, 実施形態例 3と同様にして, 多孔質 無機芯材 3 0及び補強層 4を形成し, 次いで, 多孔質無機芯材 3 0の表側面 7 1 に, 厚さ l mmの化粧単板 (スギ板) を酢酸ビニル接着剤で貼りつけて表面化粧 層 1を形成する。  In manufacturing the composite building material of this example, the porous inorganic core material 30 and the reinforcing layer 4 were formed in the same manner as in Embodiment 3; First, a decorative veneer (cedar plate) with a thickness of l mm is attached with a vinyl acetate adhesive to form a surface decorative layer 1.
本例においては, 多孔質無機芯材 3 0に有機質成分である有機質繊維状物 3 1 を含有している。 そのため, 実施形態例 3と同様に, 複合建材の破壊靱性を向上 させることができ, 曲げ強度ゃ耐クラック性を向上させることができ, また釘を 打つことができる。 その他実施形態例 4と同様の効果を得ることができる。 実施形態例 8  In this example, the porous inorganic core material 30 contains an organic fibrous material 31 as an organic component. Therefore, similarly to Embodiment 3, the fracture toughness of the composite building material can be improved, the bending strength / crack resistance can be improved, and nailing can be performed. Other effects similar to those of the fourth embodiment can be obtained. Embodiment 8
本例は, 図 8に示すごとく, 複合建材 7の裏側面 7 2に電磁波シールド層 2を 設けた例である。  In this example, as shown in Fig. 8, an electromagnetic wave shielding layer 2 is provided on the back side 72 of the composite building material 7.
複合建材 7は, 有機質成分を含浸させた石膏ボード 3の表側面 7 1及び裏側面 7 2の両面に, 熱硬化性樹脂 4 1及び無機質繊維 4 2からなる補強層 4を接着し ている。  The composite building material 7 has a reinforcing layer 4 made of a thermosetting resin 41 and an inorganic fiber 42 attached to both sides of a front side 71 and a back side 72 of a gypsum board 3 impregnated with an organic component.
電磁波シールド層 2は導電性フィラー 8 0重量%と熱硬化性樹脂 2 0重量%と からなる複合シートであり, 厚み 2 mmである。 導電性フイラ一としては銅粉末 を用い, 熱硬化性樹脂としてはフエノール樹脂を用いる。  The electromagnetic shielding layer 2 is a composite sheet composed of 80% by weight of a conductive filler and 20% by weight of a thermosetting resin, and has a thickness of 2 mm. Copper powder is used as the conductive filler, and phenol resin is used as the thermosetting resin.
石膏ボード 3には, 実施形態例 1と同様に有機質成分が含浸されている。 石膏 ボード 3は, 1層からなり, その厚みは, 9 . 5 mmであり, その比重は, 1 . 0 g / c m3である。 The gypsum board 3 is impregnated with an organic component as in the first embodiment. Gypsum board 3 is made of one layer, the thickness thereof is 9. A 5 mm, the specific gravity is 1. 0 g / cm 3.
補強層 4は, 1 8重量%の熱硬化性樹脂 4 1と, 8 2重量%の無機質繊維 4 2 とからなる。 熱硬化性樹脂 4 1は, フエノール樹脂である。 無機質繊維 4 2とし ては, マット状ガラス繊維 (重量 1 5 0 0 g Zm2) を用いる。 補強層 4の厚さ は, 2 mmである。 本例の複合建材の製造方法を説明する。 The reinforcing layer 4 is composed of 18% by weight of a thermosetting resin 41 and 82% by weight of inorganic fibers 42. Thermosetting resin 41 is a phenolic resin. As the inorganic fiber 42, a mat-like glass fiber (weight: 1500 g Zm 2 ) is used. The thickness of the reinforcing layer 4 is 2 mm. A method for manufacturing the composite building material of this example will be described.
(1) 未硬化状態のフエノール樹脂が付着 (付着量 固形分換算 1 3%) したマ ット状ガラス繊維 (重量 1 500 gZm2) を 200°Cの温度にて 5分間プレス し, 厚さ 1. 5 mmのシート状ガラス繊維とする。 (1) The glass fiber (weight: 1,500 gZm 2 ) to which the uncured phenolic resin has adhered (the amount of adhered solid content: 13%) was pressed at 200 ° C for 5 minutes and the thickness was reduced. 1. Use 5 mm sheet glass fiber.
(2) このシート状ガラス繊維に硬化剤を添カ卩したフエノール樹脂溶液を含浸 ( 含浸量 固形分換算 5%) させた後, 80°Cの温度にて 20分間プレスして, 厚 さ 1. 5 mmのフエノール樹脂含浸シートを得る。  (2) After impregnating the sheet-like glass fiber with a phenol resin solution obtained by adding a curing agent (impregnation amount: 5% in solid content), press at 80 ° C for 20 minutes to obtain a thickness of 1 mm. .5 mm phenolic resin impregnated sheet is obtained.
(3) ボード原紙 3 8の上に焼石膏と水との混合物を流し込む。 このとき, 有機 質成分としてのアクリル樹脂も添加混合する。 更にその上にボード原紙 3 8を載 せ, 石膏を乾燥, 硬化させる。 これにより, ボード原紙 3 8を石膏板 35の表側 面 7 1及び裏側面 Ί 2に貼着してなる石膏ボード 3を得る。  (3) Pour a mixture of calcined gypsum and water onto board base paper 38. At this time, acrylic resin as an organic component is also added and mixed. Further, the board base paper 38 is placed thereon, and the gypsum is dried and hardened. As a result, a gypsum board 3 is obtained in which the board base paper 38 is adhered to the front side 71 and the back side 2 of the gypsum board 35.
(4) 次に, 石膏ボード 3の表側面 7 1及び裏側面 7 2に, 硬化剤を添加したフ ュノール樹脂溶液 (接着剤) を 250 gZm2 (固形分換算) の割合で塗布し, 上記 (2) で作成したフエノール樹脂含浸シートを重ねる。 さらに, この上に硬 化剤を添加したフエノール樹脂溶液を 2 50 g m2 (固形分換算) の割合で塗 布した後, 市販のガラス繊維チョップドストランドマット (重量 4 50 gZm2 , 厚み 0. 5 mm) を重ね 80°Cの温度にて 20分間プレスしする。 これにより , 石膏ボード 3の表側面 7 1及び裏側面 72に補強層 4を形成する。 (4) Next, a phenolic resin solution (adhesive) containing a hardening agent was applied to the front side 71 and back side 72 of the gypsum board 3 at a rate of 250 gZm 2 (solid content conversion). Lay the phenolic resin impregnated sheet created in (2). Furthermore, after coating the fabric in a proportion of the phenolic resin solution was added hardening agent on the 2 50 g m 2 (solid basis), commercially available glass fiber chopped strand mat (weight 4 50 gZm 2, thickness 0. 5 mm) and press at 80 ° C for 20 minutes. Thereby, the reinforcing layer 4 is formed on the front side 71 and the back side 72 of the gypsum board 3.
(5) 次に, 上記石膏ボ一ド 3の裏側面 72に, フエノール樹脂等の接着剤によ り電磁波シールド層 2としての複合シートを接着して, 複合建材 7を得た。  (5) Next, the composite sheet as the electromagnetic wave shielding layer 2 was adhered to the back side surface 72 of the gypsum board 3 with an adhesive such as phenol resin to obtain a composite building material 7.
(6) 複合建材 7は, その後木工用の丸鋸により切断して, 数十 cm平方の大き さにし, その裏側面 72に脚を取り付け, これらを複数枚組み合わせて床材とし て使用する。  (6) The composite building material 7 is then cut with a circular saw for woodwork to have a size of several tens of cm square, and legs are attached to the back surface 72, and a plurality of these materials are used as a floor material.
本例の複合建材 7は, 電磁波シールド層 2を有しているため, 本例の複合建材 7は, 電磁波を吸収することができる。 特にコンピュータが多数設置されている 事務室では, コンピュータから発する電磁波を効率よく吸収する。 そのため, 本 例の複合建材によれば, 電磁波の人体へ影響を抑制することができる。  Since the composite building material 7 of this example has the electromagnetic wave shielding layer 2, the composite building material 7 of this example can absorb electromagnetic waves. Particularly in offices where many computers are installed, electromagnetic waves emitted from computers are efficiently absorbed. Therefore, according to the composite building material of this example, the effect of electromagnetic waves on the human body can be suppressed.
また, 石膏ボード 3には, 有機質成分が含浸されているため, 実施形態例 1と 同様に, 破壊靱性, 曲げ強度及び耐クラック性に優れている。 また, 石膏ボード 3の両面に補強層 4を接着しているため, 弓 I張り強度が高い。 実施形態例 9 Further, since the gypsum board 3 is impregnated with an organic component, the gypsum board 3 is different from the first embodiment. Similarly, it has excellent fracture toughness, flexural strength and crack resistance. Also, since the reinforcing layers 4 are bonded to both sides of the gypsum board 3, the bow I tension is high. Embodiment 9
本例の複合建材 7においては, 図 9に示すごとく, 2層の石膏ボード 3の間に 電磁波シールド層 2を埋設している。 石膏ボード 3と電磁波シーノレド層 2との間 は, 接着剤などにより接着固定されている。 複合建材 7の表側面 7 1及び裏側面 7 2には, 熱硬化性樹脂 4 1及び無機質繊維 4 2からなる補強層 4が設けられて いる。  In the composite building material 7 of this example, as shown in Fig. 9, the electromagnetic wave shielding layer 2 is embedded between two layers of gypsum board. The gypsum board 3 and the electromagnetic wave sinored layer 2 are adhered and fixed with an adhesive or the like. The front side 71 and the back side 72 of the composite building material 7 are provided with a reinforcing layer 4 made of a thermosetting resin 41 and inorganic fibers 42.
その他は, 実施形態例 8と同様である。 本例においても, 実施形態例 8と同様 の効果を得ることができる。 実施形態例 1 0  Others are the same as in the eighth embodiment. In this example, the same effect as in the eighth embodiment can be obtained. Embodiment 10
本例の複合建材 7においては, 図 1 0に示すごとく, 多孔質無機芯材 3 0の表 側面 7 1に, 補強層 4を設けている。 複合建材 7の表側面 7 1には, 電磁波シー ノレド層 2としての銅箔が設けられている。  In the composite building material 7 of this example, as shown in FIG. 10, a reinforcing layer 4 is provided on the front surface 71 of the porous inorganic core material 30. On the front side 71 of the composite building material 7, a copper foil as the electromagnetic wave shield layer 2 is provided.
多孔質無機芯材 3 0は, 有機質繊維状物 3 1としての古紙粉砕物と, 無機質体 としての A 1 2 0 3— S i 0 2— C a O系非晶質体 3 9とからなる。 補強層 4は, 熱硬化性樹脂 4 1としてのフエノール樹脂, および無機質繊維 4 2としてのガラ ス繊維からなる。 Porous inorganic core material 3 0, and used paper pulverized as organic fibrous material 3 1, A 1 2 0 3 as the inorganic material - from C a O-based amorphous material 3 9 Metropolitan - S i 0 2 Become. The reinforcing layer 4 is composed of a phenol resin as the thermosetting resin 41 and a glass fiber as the inorganic fiber 42.
本例の複合建材の製造方法について説明する。  A method for manufacturing the composite building material of this example will be described.
まず, 実施形態例 3と同様にして, 有機繊維状物 3 1を含む多孔質無機芯材 3 0を作製する。  First, a porous inorganic core material 30 containing an organic fibrous material 31 is produced in the same manner as in the third embodiment.
次いで, 市販のガラス繊維チョップドストランドマット (重量 6 0 0 g / m2 , 厚み 0 . 7 mm) にフエノール樹脂を含浸させて 6 0 °Cで乾燥させ, ガラス繊 維量 6 0 0 g /m2, 樹脂量 3 0 0 g Zm2の補強シートを得る。 Next, a commercially available glass fiber chopped strand mat (weight: 600 g / m 2 , thickness: 0.7 mm) is impregnated with phenolic resin and dried at 60 ° C to obtain a glass fiber content of 600 g / m 2. 2. A reinforcing sheet with a resin amount of 300 g Zm 2 is obtained.
補強シートを上記多孔質無機芯材の両面に積層して 8 5 °Cの温度にて 2 0分間 :補強層 4を形成する。 さらに, 一方の補強層 4の表面に電磁波シール ド層 2としての厚さ 1 2 μιηの銅箔を, 酢酸ビニル接着剤により貼り付ける。 以 _hJ:り, 本例の複合建材 7を得る。 A reinforcing sheet is laminated on both surfaces of the porous inorganic core material and a reinforcing layer 4 is formed at a temperature of 85 ° C. for 20 minutes. In addition, an electromagnetic wave seal is applied to the surface of one reinforcement layer 4. A copper foil with a thickness of 12 μιη as the metal layer 2 is attached with a vinyl acetate adhesive. Hence, composite building material 7 of this example is obtained.
本例においては, 多孔質無機芯材の中に, 有機質成分である有機質繊維状物が 含まれているため, 複合建材の破壊靱性が向上する。 このため, 複合建材に釘を 打ち付けることができる。 また, 曲げ強度ゃ耐クラック性が高い。 本例において も, 実施形態例 9と同様に電磁波を吸収することができる。 実施形態例 1 1  In this example, since the porous inorganic core material contains an organic fibrous material as an organic component, the fracture toughness of the composite building material is improved. For this reason, nails can be driven into composite building materials. Bending strength 曲 げ high crack resistance. In this embodiment, the electromagnetic waves can be absorbed as in the ninth embodiment. Embodiment 1 1
本例の複合建材 7には, 図 1 1, 図 12に示すごとく, 貫通穴 51, 52が設 けられている。  In the composite building material 7 of this example, through holes 51 and 52 are provided as shown in Figs.
複合建材 7は, 図 1 1に示すごとく, 有機質成分を含浸させた石膏ボード 3の 表側面 71及び裏側面 72に, 熱硬化性樹脂 41及び無機質繊維 42からなる捕 強層 4を接着している。  As shown in Fig. 11, composite building material 7 is obtained by bonding a reinforcing layer 4 made of thermosetting resin 41 and inorganic fibers 42 to the front side 71 and back side 72 of gypsum board 3 impregnated with organic components. I have.
石膏ボード 3には, 実施形態例 1と同様に有機質成分が含浸されている。 石膏 ボード 3は, 1層からなり, その厚みは, 1 2. 5mmであり, その比重は, 1 . 3である。  The gypsum board 3 is impregnated with an organic component as in the first embodiment. Gypsum board 3 consists of one layer, its thickness is 12.5 mm, and its specific gravity is 1.3.
補強層 4は, 420重量部の熱硬化性樹脂 41と, 600重量部の無機質繊維 42とからなる。 熱硬化性樹脂 41は, フエノール樹脂である。 無機質繊維 42 としては, ガラス繊維チョップドストランドマット (重量 600 g,m2) を用 いる。 補強層 4の厚さは, 0. 8 mmである。 The reinforcing layer 4 is composed of 420 parts by weight of a thermosetting resin 41 and 600 parts by weight of inorganic fibers 42. The thermosetting resin 41 is a phenol resin. A glass fiber chopped strand mat (weight 600 g, m 2 ) is used as the inorganic fiber 42. The thickness of the reinforcing layer 4 is 0.8 mm.
複合建材 7の表側面 71には, 表面化粧層 1としてのカーぺットが設けられて いる。  On the front side 71 of the composite building material 7, a carpet as the surface decorative layer 1 is provided.
複合建材 7には, 図 1 1, 図 1 2に示すごとく, 2種類の貫通穴 51, 52が 設けられている。 一方の貫通穴 5 1は, 図 1 3に示すごとく, 直径 10 mmの施 ェ用丸穴である。 貫通穴 51には, 支持脚 8が取り付けられる。 支持脚 8は, 貫 通穴 5 1に挿入するためのパネルナツト 8 1と, パネルナツト 81の中に上下動 可能にネジ切りされた高さ調整用のボルト 82と, 支持台 83とカゝらなる。 他方の貫通穴 52は, 直径 1 2 Ommの丸穴である。 この貫通穴 52は, 例え ば, 図 14に示すごとく, 空調吹出し用, 配線取出し用として用いられる。 具体 的には,— 空調吹出し用として利用する場合には, 貫通穴 5 1を通気孔を有する蓋 体 66により被覆して, その下方に床下空調装置を設けて, 貫通穴 5 1を通じて 室内の空調を行う。 また, 貫通穴 52は, 裏側面 72に配置された配線コード 6 1を表側面 71に取出すための配線取出し口として利用することもできる。 なお , 図 14において, 符号 62は, 配線中継器である。 As shown in Figs. 11 and 12, the composite building material 7 has two types of through holes 51 and 52. As shown in Fig. 13, the through hole 51 is a round hole for application with a diameter of 10 mm. The support leg 8 is attached to the through hole 51. The support leg 8 is composed of a panel nut 81 for insertion into the through hole 51, a height adjusting bolt 82 screwed vertically into a panel nut 81, and a support base 83. . The other through hole 52 is a round hole having a diameter of 12 Omm. This through hole 52 is, for example, For example, as shown in Fig. 14, it is used for air-conditioning blowout and wiring extraction. Specifically, when used for air-conditioning blowout, the through-hole 51 is covered with a lid 66 having a vent, and an under-floor air conditioner is provided below the through-hole 51. Perform air conditioning. Further, the through hole 52 can be used as a wiring outlet for taking out the wiring cord 61 arranged on the rear side surface 72 to the front side surface 71. In FIG. 14, reference numeral 62 denotes a wiring repeater.
本例の複合建材の製造方法を説明する。  A method for manufacturing the composite building material of this example will be described.
(1) 石膏ボード形成用の成形型に焼石膏と水との混合物を流し込む。 この際, 有機質成分としてのフエノール樹脂も添加混合する。 次いで, 石膏を乾燥, 硬化 させて, 石膏ボード 3を得る。  (1) A mixture of calcined gypsum and water is poured into a mold for forming a gypsum board. At this time, a phenol resin as an organic component is also added and mixed. Next, the gypsum is dried and hardened to obtain a gypsum board 3.
(2) 次に, 石膏ボード 3の表面に, 硬化剤を添カ卩したフエノール榭脂溶液 (接 着剤) を 250 gZm2 (固形分換算) の割合で塗布し, 市販のガラス繊維チヨ ップドス トランドマット (重量 600 gZm2, 厚み 0. 7 mm) を重ね 80°C の温度にて 20分間プレスした。 これにより, 石膏ボード 3の表側面 7 1及び裏 側面 72に補強層 4が形成される。 (2) Next, a phenolic resin solution (adhesive) with a hardening agent added was applied to the surface of the gypsum board 3 at a rate of 250 gZm 2 (solid content), and commercially available glass fiber chopped glass was used. A strand mat (weight: 600 gZm 2 , thickness: 0.7 mm) was stacked and pressed at a temperature of 80 ° C for 20 minutes. Thereby, the reinforcing layer 4 is formed on the front side 71 and the back side 72 of the gypsum board 3.
(3) 次に, 上記石膏ボード 3に, パンチング加工により貫通穴 5 1 , 1 2をあ ける。  (3) Next, through holes 51 and 12 are made in the gypsum board 3 by punching.
(4) 次いで, 石膏ボード 3の表側面 71に設けられた補強層 4の表面に, カー ペットからなる表面化粧層 2して, 複合建材 7を得る。  (4) Next, the surface of the reinforcing layer 4 provided on the front side 71 of the gypsum board 3 is applied to the surface decorative layer 2 made of carpet to obtain the composite building material 7.
(5) 次いで, 木工用の丸鋸により複合建材 7を切断して, 数十 cm平方の大き さにパネル化する。  (5) Next, the composite building material 7 is cut by a circular saw for woodwork to form a panel of several tens of cm square.
得られた複合建材 7には, 図 13, 図 14に示すごとく, その裏側面 72に支 持脚 8を取り付け, これらを複数枚組み合わせて床材として使用する。 複合建材 7を事務室の床 9に設置すると, その表側面 71には事務機器を, その裏側面 7 2には事務機器の配線機器, 空調機器を配設することができる。 配線機器用の配 線コード 6 1及び空調機器から吹出す冷暖房は, 複合建材 7の貫通穴 52から床 上に取出すことができる。  As shown in Figs. 13 and 14, the obtained composite building material 7 is provided with supporting legs 8 on its back side surface 72, and a plurality of these are used as a floor material. When the composite building material 7 is installed on the floor 9 of the office room, office equipment can be installed on the front side 71, and wiring equipment and air conditioning equipment for office equipment can be installed on the back side 72. The wiring cord 61 for the wiring equipment and the cooling and heating blown from the air conditioning equipment can be taken out of the composite building material 7 through the through-hole 52 on the floor.
本例の複合建材 7は, 有機質成分を含浸させた石膏ボード 3を用いているため , 低コストで破壊靱性, 曲げ強度, 耐クラック性, 耐火性及び圧縮強度が高い。 実施形態例 1 2 The composite building material 7 in this example uses gypsum board 3 impregnated with organic components. , Low cost, high fracture toughness, bending strength, crack resistance, fire resistance and compressive strength. Embodiment example 1 2
本例においては, 図 1 5 , 図 1 6に示すごとく, 複合建材 7の表側面 7 1のコ ーナ一部に段部 5 3を設けている。 段部 5 3は, 半径 4 c mの円弧状であり, そ の深さは 2 . 5 mmである。 この段部 5 3の形状は, 図 1 6に示すごとく, 支持 脚 8の上側支持板 8 1 2を嵌め込むのに都合のよい形状である。 また, 図 1 5 , 図 1 6に示すごとく, 上記段部 5 3の端部には, 支持脚揷入用の円弧状の切欠き 部 5 4が設けられている。  In this example, as shown in Figs. 15 and 16, a step 53 is provided at a corner of the front side 71 of the composite building material 7. The step 53 has an arc shape with a radius of 4 cm and a depth of 2.5 mm. As shown in FIG. 16, the shape of the step portion 53 is a shape that is convenient for fitting the upper support plate 8 12 of the support leg 8. As shown in FIGS. 15 and 16, an arc-shaped notch 54 for inserting the support leg is provided at the end of the step 53.
支持脚 8は, 切欠き部 5 4に挿入するためのパネルナツト 8 1と, パネルナツ ト 8 1の中に上下動可能にネジ切りされた高さ調整用のボルト 8 2と, 支持台 8 3とカゝらなる。 パネルナツト 8 1は, 複合建材 7を表側面 7 1から保持するため の上側支持板 8 1 2と, 複合建材 7を裏側面 7 2から保持するための下側支持板 8 1 1とを有する。  The support leg 8 includes a panel nut 81 for insertion into the notch 54, a height adjustment bolt 82 screwed vertically into the panel nut 81, and a support base 83. I'm sorry The panel nut 81 has an upper support plate 812 for holding the composite building material 7 from the front side 71 and a lower support plate 811 for holding the composite building material 7 from the back side 72.
支持脚 8は, 複数の複合建材 7のコーナー部を支持することにより, 組合せパ ネル床材として使用する。  The support legs 8 are used as combined panel flooring by supporting the corners of a plurality of composite building materials 7.
本例の複合建材は, 実施形態例 1 1と同様に, 石膏ボードと補強層と表面化粧 層とからなる (図 1 1参照) 。  The composite building material of this example is composed of a gypsum board, a reinforcing layer, and a surface decorative layer, as in Embodiment 11 (see Fig. 11).
本例の複合建材 7は, 施工用の段部 5 3及び切欠き部 5 4を設けているため, 施工が容易である。 実施形態例 1 3  The composite building material 7 of this example is easy to construct because it has a step 53 and a notch 54 for construction. Embodiment example 1 3
本例においては, 図 1 7に示すごとく, 複合建材 7の側面に切欠き部 5 5を設 けている。 切欠き部 5 5は, 幅 1 2 c m, 奥行き 2 c mである。 切欠き部 5 5は , 図 1 8に示すごとく, 複合建材 7を組み合わせたときに, 隣合う複合建材 7の 切欠き部 5 5とともに, 貫通穴を形成し, 配線取出し口として利用される。 また, 複合建材 7は, 実施形態例 1 1と同様に, 裏側面 7 2に支持脚 8を取り 付けるための施工用の貫通穴 5 1を設けており, また石膏ボードと補強層と表面 化粧層とからなる (図 1 1参照) 。 In this example, as shown in Fig. 17, a notch 55 is provided on the side of the composite building material 7. The notch 55 is 12 cm wide and 2 cm deep. As shown in Fig. 18, when the composite building material 7 is combined, the notch portion 55 forms a through hole together with the notch portion 55 of the adjacent composite building material 7, and is used as a wiring outlet. In addition, the composite building material 7 has a through hole 51 for mounting the support leg 8 on the back side surface 72 as in the case of the embodiment 11 and the gypsum board, the reinforcing layer and the surface. It consists of a decorative layer (see Fig. 11).
本例の複合建材 7は, 配線取出し用の切欠き部 5 5及び施工用の貫通穴 5 1を 有するため, 実施形態例 1 1と同様に, 施工及び配線の取出しが容易である。 実施形態例 1 4  Since the composite building material 7 of the present example has the cutout portion 55 for extracting the wiring and the through hole 51 for the installation, the installation and the extraction of the wiring are easy as in the embodiment 11 of the present invention. Embodiment 14
本例の複合建材 7においては, 図 1 9に示すごとく, 多孔質無機芯材 3 0の表 側面 7 1および裏側面 7 2に, 補強層 4を設けている。 多孔質無機芯材 3 0は, 有機質繊維状物 3 1としての古紙粉砕物と, 無機質体としての A 1 203— S i O2 一 C a O系非晶質体 3 9とからなる。 補強層 4は, 熱硬化性樹脂 4 1としてのフ エノール榭脂, および無機質繊維 4 2としてのガラス繊維からなる。 複合建材 7 は, 貫通穴 5 1および切欠き部 5 5を有する。 In the composite building material 7 of this example, as shown in Fig. 19, the reinforcing layer 4 is provided on the front side 71 and the back side 72 of the porous inorganic core material 30. Porous inorganic core material 3 0, and used paper pulverized as organic fibrous material 3 1, A 1 2 0 3 as the inorganic material - from S i O 2 one C a O-based amorphous material 3 9 Metropolitan Become. The reinforcing layer 4 is made of phenolic resin as the thermosetting resin 41 and glass fiber as the inorganic fiber 42. The composite building material 7 has a through hole 51 and a notch 55.
本例の複合建材を製造するにあたっては, まず, 実施形態例 3と同様に, 有機 質繊維状物を含む多孔質無機芯材 3 0を作製し, その表側面及び裏側面に補強層 4を形成して, 複合建材 7を得る。 複合建材 7にドリルで貫通穴 5 1と切欠き部 5 5とを形成する (図 1 1, 図 1 7参照) 。  When manufacturing the composite building material of this example, first, as in Embodiment 3, a porous inorganic core material 30 containing an organic fibrous material was prepared, and a reinforcing layer 4 was formed on the front and back surfaces thereof. Is formed to obtain the composite building material 7. Drill a through hole 51 and a notch 55 in the composite building material 7 (see Figs. 11 and 17).
多孔質無機芯材 3 0の中には有機質繊維状物 3 1が含まれているため, 複合建 材の破壊靱性が向上し, 曲げ強度ゃ耐クラック性が高い。 その他, 本例において も実施形態例 1 1と同様の効果を得ることができる。 実施形態例 1 5  Since the organic inorganic fibrous material 31 is contained in the porous inorganic core material 30, the fracture toughness of the composite building material is improved, and the bending strength / crack resistance is high. In addition, in this embodiment, the same effects as those of Embodiment 11 can be obtained. Embodiment 15
本例は, 複合建材の製造方法に関するものであり, その概要は, 樹脂含浸マツ トを, 有機質成分を含浸させた多孔質無機芯材に積層し, 加熱下でプレスするこ とである。 以下, これを詳細に説明する。  This example relates to a method for manufacturing a composite building material. The outline is that a resin-impregnated mat is laminated on a porous inorganic core material impregnated with organic components and pressed under heating. Hereinafter, this will be described in detail.
まず, 図 2 0に示すごとく, S 1工程において, ガラス繊維チョップドストラ ンドマツト (重量 4 5 0 g /m2) からなる無機質繊維 4 2を準備する。 First, as shown in FIG. 2 0, in the S 1 process, preparing a mineral fiber 4 2 made of glass fiber chopped Stra Ndomatsuto (weight 4 5 0 g / m 2) .
S 2工程において, 4 2 0量部の熱硬化性樹脂 4 1と, 1 2 6重量部の硬化剤 4 3とを調合して, これらの調合原料を, 無機質繊維に含浸させて, 樹脂含浸マ ット 4 0を得る。 熱硬化性樹脂 4 1は, フエノール樹脂である。 硬化剤 4 3は芳 香族炭化水素スルホル化物と硫酸との混合物である。 In step S2, 420 parts by weight of the thermosetting resin 41 and 126 parts by weight of the curing agent 43 are blended, and these blended raw materials are impregnated into inorganic fibers to impregnate the resin. Get a mat 40. Thermosetting resin 41 is a phenolic resin. Hardener 4 3 is good It is a mixture of an aromatic hydrocarbon sulfonate and sulfuric acid.
S 3工程において, 樹脂含浸マット 4 0を熱風乾燥機を用いて乾燥させる。 樹 脂含浸マツト 4 0の乾燥時の厚みは 0 . 8 mmである。  In step S3, the resin-impregnated mat 40 is dried using a hot air drier. The dry thickness of the resin-impregnated mat 40 is 0.8 mm.
S 4工程において, ボード原紙の上に, 焼石膏と水との混合液を載せる。 また , 有機質成分としてのフエノール樹脂を, 固形分中 8重量%の割合で添加混合す る。 更にその上にボード原紙を被覆する。 次いで, これを乾燥, 硬化させて, 有 機質成分を含浸させた, 厚み 1 2 . 5 mm, 比重 1 . 3の石膏ボード 3を得る。  In step S4, a mixture of calcined gypsum and water is placed on the board base paper. The phenolic resin as an organic component is added and mixed at a ratio of 8% by weight in the solid content. Further, a board base paper is coated thereon. Next, this is dried and cured to obtain a gypsum board 3 having a thickness of 12.5 mm and a specific gravity of 1.3 impregnated with organic components.
S 5工程において, 有機質成分を含浸させた石膏ボード 3の片面に, 常温硬化 樹脂 (6 1 ) 1 0 0重量部と硬化剤 (6 2 ) 1 5重量部とを調合してなる接着剤 6を塗布する。 常温硬化樹脂 6 1としてはフユノール樹脂を用い, 硬化剤 6 2と しては芳香族炭化水素スルホン酸と硫酸の混合物を用レヽる。  In step S5, one side of the gypsum board 3 impregnated with an organic component was coated with 100 parts by weight of a cold-setting resin (61) and 15 parts by weight of a curing agent (62). Is applied. A fuanol resin is used as the room temperature curing resin 61, and a mixture of aromatic hydrocarbon sulfonic acid and sulfuric acid is used as the curing agent 62.
S 6工程において, 石膏ボード 3における接着剤 6を塗布した側に, S 4工程 と同様の方法で作製した別の石膏ボード 3を積層し, これらを接着する。  In step S6, another gypsum board 3 prepared in the same manner as in step S4 is laminated on the side of the gypsum board 3 to which the adhesive 6 has been applied, and these are bonded.
S 7工程において, 2層構造の石膏ボード 3の表側面及び裏側面に, それぞれ 上記 S 3工程で作製した樹脂含浸マット 4 0を積層する。  In step S7, the resin-impregnated mat 40 prepared in step S3 is laminated on the front and back surfaces of the two-layer gypsum board 3, respectively.
S 8工程において, これらを, 温度 1 0 0 °C, 圧力 1 k g / c m2の条件で 1 0分間加熱加圧する。 In step S8, these are heated and pressurized at a temperature of 100 ° C and a pressure of 1 kg / cm 2 for 10 minutes.
以上により, 2層構造の石膏ボード 3の表側面及び裏側面に補強層 4を形成し てなる複合建材 7が得られる。  As described above, a composite building material 7 in which the reinforcing layer 4 is formed on the front side and the back side of the two-layer gypsum board 3 is obtained.
その後, S 9工程において, 複合建材 7に, 外形加工, 穴明け加工等を行い, 数十 c m平方にパネル化する。  Then, in the S9 process, the composite building material 7 is subjected to external processing, drilling, etc., and is turned into a panel of several tens of cm square.
パネル化した複合建材には, 実施形態例 1 1〜実施形態例 1 3のように, 貫通 穴, 段部, 切欠き部を設け, その裏側面に支持脚を取り付け, これらを複数枚組 み合わせて床材として使用する。  As in Embodiments 11 to 13, the panelized composite building material is provided with through holes, steps, and notches, and supporting legs are attached to the back side of the composite building material. Also used as flooring.
次に, 本例の作用及び効果について説明する。  Next, the operation and effect of the present embodiment will be described.
本例の複合建材 7は, 無機質繊維 4 2に予め熱硬化性樹脂 4 1及び硬化剤 4 3 を含浸し (S 2 ) , 乾燥して樹脂含浸マット 4 0を作製し (S 3 ) , これを石膏 ボード 3に積層した後に (S 7 ) , 加熱プレスしている (S 8 ) 。 そのため, 無 機質繊維と含浸した熱硬化性樹脂との密着性が良い。 また, 無機質繊維同士は接 着しやすく, 熱硬化性樹脂の含浸率を改善できるため有利である。 In the composite building material 7 of this example, the inorganic fiber 42 was previously impregnated with a thermosetting resin 41 and a curing agent 43 (S 2), and dried to produce a resin-impregnated mat 40 (S 3). After being laminated on the gypsum board 3 (S7), it is heated and pressed (S8). Therefore, nothing Good adhesion between the material fibers and the impregnated thermosetting resin. In addition, the inorganic fibers are easy to adhere to each other, which is advantageous because the impregnation rate of the thermosetting resin can be improved.
また, 樹脂含浸マットからなる補強層は, 加熱プレスにより石膏ボード 3に接 着するため, 別途接着剤を用いる必要はない。 更に, 製造プロセスが簡単となる 0 In addition, since the reinforcing layer made of the resin-impregnated mat is bonded to the gypsum board 3 by hot pressing, it is not necessary to use a separate adhesive. Moreover, 0 the manufacturing process can be simplified
また, 石膏ボード 3には有機質成分が含浸されているため, 破壊靱性, 曲げ強 度及び耐クラック性に優れている。 また, 補強層を設けているため, 耐引張り性 に優れている。 実施形態例 16  In addition, since gypsum board 3 is impregnated with organic components, it is excellent in fracture toughness, flexural strength and crack resistance. In addition, since a reinforcing layer is provided, it has excellent tensile resistance. Embodiment 16
本例は, A l 2O3— S i 02— C a O系非晶質体と, 有機質繊維状物とからな る多孔質無機芯材を作製し, その表側面及び裏側面に補強層を形成する方法であ る。 This example, A l 2 O 3 - S i 0 2 - and C a O-based amorphous material, to prepare a porous inorganic core ing from the organic fibrous material, on its front surface and back surface This is a method of forming a reinforcing layer.
即ち, まず, エチルアルコールと古紙を混ぜたものをボールミルで 1時間粉砕 する。  That is, first, a mixture of ethyl alcohol and waste paper is crushed for 1 hour with a ball mill.
次いで, S i (OC2H5) 4 40重量部, A l (OC3H7) 3 30重量部, C a (〇CH3) 2 30重量部, C2H5OH66重量部, 水 18重量部, 0. 1 N塩酸 を 1重量部を加え, 攪拌混合してゾル溶液を得る。 Then, Si (OC 2 H 5 ) 4 40 parts by weight, Al (OC 3 H 7 ) 3 30 parts by weight, Ca (〇CH 3 ) 2 30 parts by weight, C 2 H 5 OH 66 parts by weight, water 18 Add 1 part by weight of 0.1 N hydrochloric acid, and stir and mix to obtain a sol solution.
上記古紙粉砕物とゾル溶液を混合したものを型枠に流し込み, 100 °Cで 24 時間乾燥させ, 板状の多孔質無機芯材とする。  The mixture of the crushed waste paper and the sol solution is poured into a mold and dried at 100 ° C for 24 hours to obtain a plate-like porous inorganic core material.
多孔質無機芯材にフエノール樹脂を含浸させた後, 60°Cで乾燥させる。 また, 市販のガラス繊維チョップドストランドマット (重量 600 g/m2, 厚み 0. 7mm) にフエノーノレ樹脂を含浸させて 60°Cで乾燥させ, ガラス繊維 量 600 g/m2, 樹脂量 300 g/m2の補強シートを得る。 After impregnating the porous inorganic core material with the phenol resin, dry at 60 ° C. A commercially available glass fiber chopped strand mat (weight 600 g / m 2 , thickness 0.7 mm) is impregnated with phenol resin and dried at 60 ° C to obtain a glass fiber content of 600 g / m 2 and a resin content of 300 g / m 2 . get a reinforcing sheet of m 2.
補強シートを上記の多孔質無機芯材に積層して 85 °Cの温度にて 20分間プレ スし, 複合建材を得る。  The reinforcing sheet is laminated on the above porous inorganic core material and pressed at a temperature of 85 ° C for 20 minutes to obtain a composite building material.
本例により得られた複合建材は, 多孔質無機芯材に有機質成分である古紙粉碎 物が含まれているため, 破壊靱性が高く釘打ちができ, 曲げ強度ゃ耐クラック性 が高い。 その他, 本例においても実施形態例 1 5と同様の効果を発揮できる。 産業上の利用の可能性 The composite building material obtained in this example has high fracture toughness and can be nailed because the porous inorganic core material contains the waste of organic paper, which is an organic component. Is high. In addition, in this embodiment, the same effects as those of Embodiment 15 can be exerted. Industrial applicability
本発明の複合建材は, 床材, 壁材, 天井材などに使用できる。 特に強度, 耐火 性が要求される床林には最適であり, 複合床材として使用できる。  The composite building material of the present invention can be used for floor materials, wall materials, ceiling materials and the like. It is especially suitable for floor forests that require strength and fire resistance, and can be used as composite flooring.

Claims

請求の範囲 The scope of the claims
1 多孔質無機芯材と機能層とからなるとともに,  1 While consisting of a porous inorganic core material and a functional layer,
上記多孔質無機芯材は, 有機質成分を含有することを特徴とする複合建材。  The composite building material, wherein the porous inorganic core material contains an organic component.
2. 請求の範囲第 1において, 上記多孔質無機芯材は, 石膏ボードである ことを特徴とする複合建材。  2. The composite building material according to claim 1, wherein the porous inorganic core material is a gypsum board.
3. 請求の範囲第 1において, 上記多孔質無機芯材は, 無機非晶質体であ ることを特徴とする複合建材。  3. The composite building material according to claim 1, wherein the porous inorganic core material is an inorganic amorphous material.
4. 請求の範囲第 1において, 上記有機質成分は, 有機質結合剤または有 機質繊維状物であることを特徴とする複合建材。  4. The composite building material according to claim 1, wherein the organic component is an organic binder or an organic fibrous material.
5. 請求の範囲第 1において, 上記機能層は, 樹脂と無機質繊維とからな る補強層であることを特徴とする複合建材。  5. The composite building material according to claim 1, wherein the functional layer is a reinforcing layer made of resin and inorganic fibers.
6. 請求の範囲第 5において, 上記補強層に含まれている樹脂は, 熱硬化 性樹脂であることを特徴とする複合建材。  6. The composite building material according to claim 5, wherein the resin contained in the reinforcing layer is a thermosetting resin.
7. 請求の範囲第 6において, 上記熱硬化性樹脂の含有量は, 上記無機質 繊維 100重量部に対して, 20 200重量部であることを特徴とする複合建 材。  7. The composite building material according to claim 6, wherein the content of the thermosetting resin is 20 to 200 parts by weight based on 100 parts by weight of the inorganic fibers.
8. 請求の範囲第 5において, 上記補強層に含まれている樹脂は, 熱硬化 性樹脂及び弾性高分子からなる複合樹脂であることを特徴とする複合建材。  8. The composite building material according to claim 5, wherein the resin contained in the reinforcing layer is a composite resin composed of a thermosetting resin and an elastic polymer.
9. 請求の範囲第 8において, 上記複合樹脂における上記弾性高分子の含 有量は, 5 35重量%であることを特徴とする複合建材。  9. The composite building material according to claim 8, wherein the content of the elastic polymer in the composite resin is 535% by weight.
10. 請求の範囲第 5において, 上記補強層に含まれている樹脂は, 熱可塑 性樹脂であることを特徴とする複合建材。  10. The composite building material according to claim 5, wherein the resin contained in the reinforcing layer is a thermoplastic resin.
1 1. 請求の範囲第 5において, 上記補強層の厚みは, 0. 3 3. 5 mm であることを特徴とする複合建材。  1 1. The composite building material according to claim 5, wherein the thickness of the reinforcing layer is 0.33.5 mm.
12. 請求の範囲第 5において, 上記多孔質無機芯材の厚み Tに対する上記 補強層の厚み tの比 (t/T) は, 0. 01 0. 7であることを特徴とする複 合建材。  12. The composite according to claim 5, wherein a ratio (t / T) of the thickness t of the reinforcing layer to the thickness T of the porous inorganic core material is 0.01 0.7. Building materials.
1 3. 請求の範囲第 5において, 上記補強層の比重は, 0. 5 4. 0であ ることを特徴とする複合建材。 1 3. In Claim 5, the specific gravity of the reinforcing layer is 0.54.0. A composite building material characterized by the fact that:
1 4^ 請求の範囲第 1において, 上記機能層は, 表面化粧層であることを特 徴とする複合建材。  1 4 ^ The composite building material according to claim 1, wherein the functional layer is a surface decorative layer.
1 5 . 請求の範囲第 1 4において, 上記機能層は, 上記表面化粧層, 及び榭 脂と無機質繊維とからなる補強層からなることを特徴とする複合建材。  15. The composite building material according to claim 14, wherein the functional layer comprises the surface decorative layer, and a reinforcing layer made of resin and inorganic fibers.
1 6 . 請求の範囲第 1 4において, 上記表面化粧層は, メラミン化粧板, 力 一ペット, 天然木, 化粧合板, 天然石, 人造石または畳であることを特徴とする 複合建材。  16. The composite building material according to claim 14, wherein the surface decorative layer is a melamine decorative board, a royal pet, a natural wood, a decorative plywood, a natural stone, an artificial stone or a tatami mat.
1 7 . 請求の範囲第 1において, 上記機能層は, 電磁波シールド層であるこ とを特徴とする複合建材。  17. The composite building material according to claim 1, wherein the functional layer is an electromagnetic wave shielding layer.
1 8 . 請求の範囲第 1 7において, 上記機能層は, 上記電磁波シールド層, 及び樹脂と無機質繊維と力 らなる補強層からなることを特徴とする複合建材。  18. The composite building material according to claim 17, wherein the functional layer comprises the electromagnetic wave shielding layer, and a reinforcing layer made of resin, inorganic fiber, and force.
1 9 . 請求の範囲第 1 7において, 上記電磁波シールド層は, 金属箔である ことを特徴とする複合建材。  19. The composite building material according to claim 17, wherein the electromagnetic wave shielding layer is a metal foil.
2 0 . 請求の範囲第 1 9において, 上記金属箔は, アルミニウム箔, 銅箔, 亜鉛箔, ステンレス箔, 金箔及び銀箔のグループから選ばれる 1種又は 2種以上 であることを特徴とする複合建材。  20. The composite according to claim 19, wherein the metal foil is one or more selected from the group consisting of aluminum foil, copper foil, zinc foil, stainless steel foil, gold foil and silver foil. Building materials.
2 1 . 請求の範囲第 1 7において, 上記電磁波シールド層は, 導電性フイラ 一と樹脂とからなる複合シートであることを特徴とする複合建材。  21. The composite building material according to claim 17, wherein the electromagnetic wave shielding layer is a composite sheet comprising a conductive filler and a resin.
2 2 . 請求の範囲第 2 1において, 上記導電性フイラ一は, 鉄, 銅, アルミ 二ゥム, ステンレス, 黄銅, 亜鉛, カーボンのグループから選ばれる 1種又は 2 種以上からなる粉末であることを特徴とする複合建材。  22. In Claim 21, the conductive filler is a powder composed of one or more selected from the group consisting of iron, copper, aluminum, stainless steel, brass, zinc, and carbon. A composite building material characterized in that:
2 3 . 請求の範囲第 1において, 多孔質無機芯材の木口面には, 被覆層が形 成されていることを特徴とする複合建材。  23. The composite building material according to claim 1, wherein a coating layer is formed on the mouth of the porous inorganic core material.
2 4 . 請求の範囲第 1において, 該複合建材は, 貫通穴, 段部または切欠き 部の少なくとも 1つを有することを特徴とする複合建材。  24. The composite building material according to claim 1, wherein the composite building material has at least one of a through hole, a step, or a notch.
2 5 . 請求の範囲第 1の複合建材からなることを特徴とする複合床材。 25. A composite flooring comprising the first composite building material according to the claims.
2 6 . 有機質成分を含む多孔質無機芯材の表側面又は裏側面の少なくとも一 方に, 樹脂及び無機質繊維からなる補強層を設けてなる複合建材を製造するに当 たり, 26. At least one of the front and back surfaces of the porous inorganic core material containing organic components On the other hand, when manufacturing a composite building material provided with a reinforcing layer made of resin and inorganic fibers,
無機質繊維からなるマツトに予め樹脂を含浸し, 乾燥して樹脂含浸マツトを作 製しておき, 該樹脂含浸マットを, 有機質成分を含む多孔質無機芯材の表側面又 は裏側面の少なくとも一方に積層し, 加熱下でプレスすることを特徴とする複合 建材の製造方法。  A mat made of inorganic fibers is impregnated with a resin in advance, and dried to produce a resin-impregnated mat. A method for manufacturing composite building materials, comprising laminating on one side and pressing under heating.
2 7 . 請求の範囲第 2 6において, 上記多孔質無機芯材は, 石膏ボードであ ることを特徴とする複合建材の製造方法。  27. The method for manufacturing a composite building material according to claim 26, wherein the porous inorganic core material is gypsum board.
2 8 . 請求の範囲第 2 6において, 上記多孔質無機芯材は, 無機非晶質体で あることを特徴とする複合建材の製造方法。  28. The method for producing a composite building material according to claim 26, wherein the porous inorganic core material is an inorganic amorphous material.
2 9 . 請求の範囲第 2 6において, 上記有機質成分は, 有機質結合剤または 有機質繊維状物であることを特徴とする複合建材の製造方法。  29. The method according to claim 26, wherein the organic component is an organic binder or an organic fibrous material.
3 0 . 請求の範囲第 2 6において, 上記補強層に含まれている樹脂は, 熱硬 化性樹脂であることを特徴とする複合建材の製造方法。  30. The method according to claim 26, wherein the resin contained in the reinforcing layer is a thermosetting resin.
3 1 . 請求の範囲第 3 0において, 上記熱硬化性樹脂は, フエノール樹脂, メラミン樹脂, エポキシ樹脂, ポリイミド樹脂, 及び尿素樹脂の群から選ばれる 1種又は 2種以上であることを特徴とする複合建材の製造方法。  31. The method according to claim 30, wherein the thermosetting resin is at least one selected from the group consisting of a phenolic resin, a melamine resin, an epoxy resin, a polyimide resin, and a urea resin. Manufacturing method of composite building materials.
3 2 . 請求の範囲第 3 0において, 上記熱硬化性樹脂の含有量は, 上記無機 質繊維 1 0 0重量部に対して, 2 0〜2 0 0重量部であることを特徴とする複合 建材の製造方法。  32. The composite according to claim 30, wherein the content of the thermosetting resin is 20 to 200 parts by weight based on 100 parts by weight of the inorganic fibers. Manufacturing method of building materials.
3 3 . 請求の範囲第 2 6において, 上記補強層に含まれている樹脂は, 熱硬 化性樹脂及び弾性高分子からなる複合樹脂であることを特徴とする複合建材の製 造方法。  33. The method according to claim 26, wherein the resin contained in the reinforcing layer is a composite resin comprising a thermosetting resin and an elastic polymer.
3 4 . 請求の範囲第 2 6において, 上記補強層に含まれている樹脂は, 熱可 塑性樹脂であることを特徴とする複合建材の製造方法。  34. The method according to claim 26, wherein the resin contained in the reinforcing layer is a thermoplastic resin.
3 5 . 請求の範囲第 2 6において, 上記無機質繊維は, ガラス繊維, ロック ウール, 及びセラミックファイバーの群から選ばれる 1種又は 2種以上であるこ とを特徴とする複合建材の製造方法。  35. The method for producing a composite building material according to claim 26, wherein the inorganic fiber is at least one selected from the group consisting of glass fiber, rock wool, and ceramic fiber.
PCT/JP1999/007313 1999-02-16 1999-12-24 Composite building material and production method thereof and comosite floor material WO2000049246A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP3722199A JPH11315594A (en) 1998-02-17 1999-02-16 Fire-resistive complex building material and fire-resistive composite floor material
JP3722099A JPH11303369A (en) 1998-02-17 1999-02-16 Fire resisting composite building material and fire resisting composite flooring
JP11/37221 1999-02-16
JP11/37220 1999-02-16
JP3880999A JPH11315595A (en) 1998-02-18 1999-02-17 Fire-resistive complex building material and fire-resistive composite floor material
JP11/38812 1999-02-17
JP11/38809 1999-02-17
JP3881299A JPH11314980A (en) 1998-02-18 1999-02-17 Production of refractory composite building material
JP11038810A JPH11315593A (en) 1998-02-19 1999-02-17 Fire-resistive complex building material and fire-resistive composite floor material
JP11/38810 1999-02-17

Publications (1)

Publication Number Publication Date
WO2000049246A1 true WO2000049246A1 (en) 2000-08-24

Family

ID=27521853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/007313 WO2000049246A1 (en) 1999-02-16 1999-12-24 Composite building material and production method thereof and comosite floor material

Country Status (1)

Country Link
WO (1) WO2000049246A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10421250B2 (en) 2015-06-24 2019-09-24 United States Gypsum Company Composite gypsum board and methods related thereto
EP3494267B1 (en) * 2017-06-22 2019-11-20 Champion Link International Corporation Floor panel and method of producing such a floor panel
US10822798B2 (en) 2006-01-20 2020-11-03 Material Innovations Llc Carpet waste composite
US11225046B2 (en) 2016-09-08 2022-01-18 United States Gypsum Company Gypsum board with perforated cover sheet and system and method for manufacturing same
CN114701216A (en) * 2022-01-07 2022-07-05 泰山石膏(福建)有限公司 Manufacturing process of water-resistant pressure-resistant paper-surface gypsum board
US11560714B2 (en) 2019-05-07 2023-01-24 United States Gypsum Company Conductive paper for making electroactive surface in construction
US11572646B2 (en) 2020-11-18 2023-02-07 Material Innovations Llc Composite building materials and methods of manufacture

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306375A (en) * 1991-04-08 1993-11-19 Chubu Nippon Denki Software Kk Coating material for electrically conductive floor and electrically conductive flooring material
JPH0932247A (en) * 1995-07-25 1997-02-04 Sekisui Chem Co Ltd Composite facing and manufacture thereof
JPH0960267A (en) * 1995-08-18 1997-03-04 Sekisui Chem Co Ltd Finishing material with joint and its manufacture
JPH09203153A (en) * 1996-01-25 1997-08-05 Misawa Ceramics Kk Vibration control structure for building composite panel and floor board
JP2769949B2 (en) * 1992-06-15 1998-06-25 浅野スレート株式会社 Gypsum floorboard and its construction method
JPH10252182A (en) * 1997-03-11 1998-09-22 Ibiden Co Ltd Fire resisting composite building material and manufacturing thereof
JPH10259309A (en) * 1997-03-17 1998-09-29 Ibiden Co Ltd Resin composition for imparting nailability, sheety molding and platy molding
JPH10278003A (en) * 1997-04-10 1998-10-20 Dainippon Printing Co Ltd Fancy veneer decorative sheet
JPH10292610A (en) * 1997-04-11 1998-11-04 Yoshino Sekko Kk Sound-proof floor structure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306375A (en) * 1991-04-08 1993-11-19 Chubu Nippon Denki Software Kk Coating material for electrically conductive floor and electrically conductive flooring material
JP2769949B2 (en) * 1992-06-15 1998-06-25 浅野スレート株式会社 Gypsum floorboard and its construction method
JPH0932247A (en) * 1995-07-25 1997-02-04 Sekisui Chem Co Ltd Composite facing and manufacture thereof
JPH0960267A (en) * 1995-08-18 1997-03-04 Sekisui Chem Co Ltd Finishing material with joint and its manufacture
JPH09203153A (en) * 1996-01-25 1997-08-05 Misawa Ceramics Kk Vibration control structure for building composite panel and floor board
JPH10252182A (en) * 1997-03-11 1998-09-22 Ibiden Co Ltd Fire resisting composite building material and manufacturing thereof
JPH10259309A (en) * 1997-03-17 1998-09-29 Ibiden Co Ltd Resin composition for imparting nailability, sheety molding and platy molding
JPH10278003A (en) * 1997-04-10 1998-10-20 Dainippon Printing Co Ltd Fancy veneer decorative sheet
JPH10292610A (en) * 1997-04-11 1998-11-04 Yoshino Sekko Kk Sound-proof floor structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10822798B2 (en) 2006-01-20 2020-11-03 Material Innovations Llc Carpet waste composite
US11773592B2 (en) 2006-01-20 2023-10-03 Material Innovations Llc Carpet waste composite
US10421250B2 (en) 2015-06-24 2019-09-24 United States Gypsum Company Composite gypsum board and methods related thereto
US10421251B2 (en) 2015-06-24 2019-09-24 United States Gypsum Company Composite gypsum board and methods related thereto
US11040513B2 (en) 2015-06-24 2021-06-22 United States Gypsum Company Composite gypsum board and methods related thereto
US11225046B2 (en) 2016-09-08 2022-01-18 United States Gypsum Company Gypsum board with perforated cover sheet and system and method for manufacturing same
EP3494267B1 (en) * 2017-06-22 2019-11-20 Champion Link International Corporation Floor panel and method of producing such a floor panel
EP3584388A1 (en) * 2017-06-22 2019-12-25 Champion Link International Corporation Floor panel and method of producing such a floor panel
US11560714B2 (en) 2019-05-07 2023-01-24 United States Gypsum Company Conductive paper for making electroactive surface in construction
US11572646B2 (en) 2020-11-18 2023-02-07 Material Innovations Llc Composite building materials and methods of manufacture
CN114701216A (en) * 2022-01-07 2022-07-05 泰山石膏(福建)有限公司 Manufacturing process of water-resistant pressure-resistant paper-surface gypsum board

Similar Documents

Publication Publication Date Title
WO1999016984A1 (en) Composite refractory building material, method of manufacturing the same, gypsum board, and resin composition
JP2004511685A (en) Composite building materials
WO2000049246A1 (en) Composite building material and production method thereof and comosite floor material
JP2009132078A (en) Non-combustible board and manufacturing method of the same
JPH11315595A (en) Fire-resistive complex building material and fire-resistive composite floor material
JPH11315593A (en) Fire-resistive complex building material and fire-resistive composite floor material
JPH11314980A (en) Production of refractory composite building material
JPH11315594A (en) Fire-resistive complex building material and fire-resistive composite floor material
JPH11303369A (en) Fire resisting composite building material and fire resisting composite flooring
JPH1199588A (en) Fire resistant composite floor material
JP2001140454A (en) Floor structure of building and its floor substrate material
JPH11227081A (en) Fire resistant composite floor material
JP2001009970A (en) Fire retardant finish material
JP2000297496A (en) Composite building material
JPH10252182A (en) Fire resisting composite building material and manufacturing thereof
RU2756192C1 (en) Mineral wool plate with fillers
JP2001132212A (en) Free-access-floor and its foundation material
JP2000296576A (en) Building material
JP4290091B2 (en) Architectural board
JPH11300882A (en) Production of fire-resistant composite building material
JPH11227095A (en) Fire-resistant composite flooring material
JPH10259309A (en) Resin composition for imparting nailability, sheety molding and platy molding
JPH11240105A (en) Fire-resistant composite floor material
JP5137364B2 (en) Inorganic board and method for producing the same
JP5137353B2 (en) Inorganic board and method for producing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN ID KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase