WO2000041980A1 - Glass panel - Google Patents

Glass panel Download PDF

Info

Publication number
WO2000041980A1
WO2000041980A1 PCT/JP2000/000142 JP0000142W WO0041980A1 WO 2000041980 A1 WO2000041980 A1 WO 2000041980A1 JP 0000142 W JP0000142 W JP 0000142W WO 0041980 A1 WO0041980 A1 WO 0041980A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
seal portion
seal
thermal expansion
sheet
Prior art date
Application number
PCT/JP2000/000142
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuro Kawahara
Masao Misonou
Takahiro Sonoda
Takahiro Asai
Original Assignee
Nippon Sheet Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co., Ltd. filed Critical Nippon Sheet Glass Co., Ltd.
Publication of WO2000041980A1 publication Critical patent/WO2000041980A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/6612Evacuated glazing units
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66304Discrete spacing elements, e.g. for evacuated glazing units
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/677Evacuating or filling the gap between the panes ; Equilibration of inside and outside pressure; Preventing condensation in the gap between the panes; Cleaning the gap between the panes
    • E06B3/6775Evacuating or filling the gap during assembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/249Glazing, e.g. vacuum glazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/22Glazing, e.g. vaccum glazing

Definitions

  • a pair of plate glasses is arranged at intervals in the thickness direction, and a vacuum portion between the two plate glasses is reduced and hermetically sealed through a suction port formed in one of the pair of plate glasses.
  • a glass panel main body, and forming the suction port providing a through-hole in the one sheet glass, erecting a suction glass tube in the through-hole, and connecting a base end portion of the glass tube and the one end of the glass tube.
  • the present invention relates to a glass panel provided with a low-melting-point glass seal portion over the periphery of the through-hole of the sheet glass and a closed portion formed by heating and melting the front end portion of the glass tube.
  • a double-layer glass integrally formed by interposing an air layer serving as a heat insulating layer between a pair of sheet glasses is known.
  • the thickness of the glass panel itself becomes large and the aesthetics including the sash are easily impaired. Therefore, assuming that the thickness is thinner and the heat insulating property is higher, a plurality of spacers are arranged between a pair of glass sheets, and the outer periphery of each of the glass sheets is provided over the entire circumference. It has been considered that a sealing panel made of a melting point glass is integrally provided, and the gap is made to be in a reduced pressure state, whereby a thinner glass panel having a small heat transmission coefficient is obtained.
  • a low-melting glass is applied around the glass tube in a state where a glass tube is erected in the through-hole formed in one of the glass plates.
  • a sintering temperature the temperature lower than the softening point of the glass tube or glass plate
  • the ambient temperature the ambient temperature and depressurizing the void, as shown in Figs.
  • the glass tube 7 is heated and melted at a temperature higher than the softening point of the glass tube 7 and closed.
  • the glass tube 7 has a protruding amount from the glass plate surface so as not to impair the aesthetics and manageability of the glass panel.
  • a heat shield plate 10 is interposed between the glass tubes 7 to heat the tip of the glass tube 7.
  • the glass tube for suction, the low melting glass, and the thermal expansion coefficient of the one plate glass are set to the same value.
  • the suction port protrudes from the surface of the glass plate, and easily hits the suction port when another object comes into contact with the surface of the glass panel. ⁇ The seal may fall off.
  • the seal portion has a lower strength than the glass plate, and thus tends to come off.
  • a method of putting a cap on the suction port may be considered.
  • the seal portion is hardly detached from the sheet glass regardless of the presence or absence of the cap.
  • an object of the present invention is to provide a glass panel which can be expected to strengthen the sealing portion and can easily maintain the sealing effect. Disclosure of the invention
  • the glass panel of the present invention arranges a pair of plate glasses 1 ⁇ with an interval in the thickness direction, and A glass panel main body P 1 is provided through which a vacuum V between the two glass sheets 1 is reduced and hermetically sealed through a suction port 6 formed in one of the glass sheets 1 A.
  • a through-hole 1a is provided in the one plate glass 1A, a suction glass tube 7 is erected in the through-hole 1a, and a base end of the glass tube 7 and the through-hole in the one plate glass 1A.
  • a glass panel provided with a low-melting-point glass seal portion S over the periphery and a closed portion H in which the front end portion of the glass tube 7 is closed by heating and melting.
  • the first sealing portion S1 corresponding to the one sheet glass 1A is configured.
  • the thermal expansion coefficient of the low-melting glass, there is to which the is set smaller than the thermal expansion coefficient of the one plate glass 1 A.
  • the sintering of the sealing part is performed by lowering the ambient temperature of the glass The temperature is raised to the sintering temperature, but the volume of the seal part and the sheet glass at that time is used as a reference, and the seal part and the sheet glass undergo thermal contraction with subsequent cooling. is there.
  • the first seal portion since the first seal portion has a smaller thermal expansion coefficient than the sheet glass, the first seal portion has a lower ambient temperature after sintering the seal portion.
  • the shrinkage of the sheet glass is larger than that of the first seal part. Accordingly, the first seal portion is in a state of being compressed by the contraction of the sheet glass, and as a result, the strength of the seal portion is improved.
  • the strength of the seal portion is higher than that of the conventional one, and it is possible to make the suction port itself difficult to break, and to ensure a good sealing property, and to reduce the pressure in the gap portion. Can be maintained over a long period of time.
  • a second seal portion S2 corresponding to the glass tube 7 is formed.
  • the thermal expansion coefficient of the low-melting point glass is set to be larger than the thermal expansion coefficient of the glass tube.
  • the sealing effect of the sealing portion not only the relationship between the sealing portion and the sheet glass described above, but also the relationship between the sealing portion and the glass tube is deep. That is, as the glass tube tip is heated and melted at a high temperature to seal off, the heat is transmitted from the glass tube to the seal portion. Naturally, there is a heat source on the glass tube side As described above, there is a temperature gradient between the glass tube and the seal portion, and the temperature of the glass tube is higher than that of the seal portion. Then, in the case of a conventional glass panel in which the thermal expansion coefficient of the glass tube and that of the seal portion are the same value, the expansion amount of the high-temperature glass tube is larger than that of the low-temperature seal portion, and the expansion amount is large. There is a problem that the sealing portion restrains the expansion of the glass tube due to the difference between them, and as a result, the glass tube is cracked, and the sealing effect is reduced or the sealing effect cannot be expected.
  • the coefficient is set to be larger than the coefficient of thermal expansion of the glass tube, the temperature of the glass tube is higher than that of the seal portion due to the heating and closing of the glass tube.
  • the amount of thermal expansion of the seal is close to (or larger than) the amount of thermal expansion of the glass tube, the difference in the amount of thermal expansion between the glass tube and the seal decreases, and the When a crack occurs, it becomes easier to prevent the accident.
  • the seal portion S includes the first seal portion S 1 and the second seal portion S. 2 having a different coefficient of thermal expansion, and having a different coefficient of thermal expansion between the first seal portion S 1 and the second seal portion S 2.
  • S3 is provided between the first seal portion S1 and the second seal portion S2.
  • the heat of the first seal portion and the second seal portion in the seal portion can be achieved.
  • the difference in expansion can be buffered by the coefficient slope. That is, even if a thermal expansion (thermal shrinkage) distortion due to a temperature change occurs in the seal portion due to a difference in thermal expansion coefficient between the first seal portion and the second seal portion, the distortion is caused by the coefficient gradient portion. It is possible to alleviate the occurrence of stress concentration at a local portion in the seal portion. As a result, it is possible to prevent a decrease in the durability of the seal portion, and it is easy to maintain the sealing effect for a longer period.
  • FIG. 1 is a partially cutaway perspective view showing a glass panel.
  • FIG. 2 is a cross-sectional view showing a main part of the glass panel.
  • FIG. 3 is a cross-sectional view showing a main part of the glass panel.
  • FIG. 4 is a cross-sectional view showing a main part of the glass panel.
  • FIG. 5 is a cross-sectional view of a main part showing a seal portion of another embodiment
  • FIG. 6 is a cross-sectional view of a main part showing a seal portion of another embodiment
  • FIG. 7 is a cross-sectional view of a principal part showing a seal portion of another embodiment.
  • FIGS. 1 to 4 show one embodiment of the glass panel of the present invention.
  • a glass panel P includes a plurality of spacers 2 between a pair of glass sheets 1 at intervals along a sheet surface.
  • the gap V between the two glass sheets 1A and 1B is reduced and hermetically sealed with respect to the glass panel main body P1 interposed therebetween.
  • the pair of glass sheets 1 are each made of a transparent float glass sheet having a thickness of 3 mm (3 mm sheet glass according to the JIS standard, which is substantially 2.7 to 3.3 mm when the thickness error is considered).
  • a sealing portion 4 of low melting point glass (for example, solder glass) is provided around the entire outer edge of both glass sheets 1 to seal the gap V. Then, the voids V are are constituted in a state which develops a reduced pressure environment (1. 0 X 1 0- 2 T orr less) by the method of sucking the suction ⁇ 6 formed on one of the glass sheets 1 A.
  • the outer peripheral edges of the two glass sheets 1 are arranged so that one of the glass sheets 1A protrudes along the sheet surface direction.
  • the sealing member for example, the low melting point glass
  • the outer periphery of the gap V can be efficiently and reliably sealed.
  • the spacer 2 is made of Inconel 718 and is formed in a cylindrical shape, the diameter is 0.30 to 1.00 mm, and the height is 0.1 to 0.5 mm. It has been set. And, by forming the portion in contact with the sheet glass in a circular shape, it is possible to prevent the sheet glass 1 from being broken easily without forming a corner portion where stress concentration is likely to occur in the contact portion with the both sheet glass 1. Can be.
  • the spacing between the spacers 2 is set to a dimension of 10 to 25 mm.
  • any one of the pair of glass sheets 1 has a gap V in the glass sheet 1A.
  • a suction port 6 for reducing the pressure is provided.
  • a glass tube 7 is disposed in the through hole 1a formed in the one plate glass 1A, and a low melting glass is provided between the peripheral wall of the through hole 1a and the glass tube 7. It is hermetically connected by 8.
  • the distal end portion 7a of the glass tube 7 is configured as a closed portion H which is heated and melted and closed after decompression.
  • a low-melting glass 8 is applied around the through-hole la so as to cover the glass tube 7 and one of the glass sheets 1A (see FIG. 2), and the environmental temperature is set to 500 ° C.
  • the low melting point glass 8 is sintered by raising the temperature to such a degree that the seal portion S is formed.
  • the sealing portion 4 on the outer periphery of the plate glass is also sealed by sintering the applied low melting glass under the same environment.
  • the gas in the gap V is sucked from the glass tube 7 to a sufficiently reduced pressure state, and then the distal end portion 7a of the glass tube 7 is heated and melted to form the closed portion. H is formed.
  • the distal end portion 7a is locally heated (approximately 1000 ° C.), but is melted when the heat rays directly hit the sintered seal portion S. In order to prevent this, as shown in FIG. 3, the process is performed in a state where the heat shield plate 10 is arranged so as to cover the seal portion S.
  • a protective cap 9 is adhered to the one glass plate 1A so as to cover the suction port 6.
  • the glass tube 7 preferably has a thickness of 0.1 to 1.0 mm.
  • the thickness exceeds 1.0 mm, it takes a long time from temperature rise to self-fusion when the tip 7a is closed, and the temperature rises to unnecessary parts around. In severe cases, there is a risk of cracks in the sheet glass 1 or the low-melting glass 8 due to the resulting temperature gradient. If the thickness is less than 0.1 mm, the temperature can be easily raised, but it is difficult to maintain the shape by self-melting, and the strength is weak, so that it is extremely susceptible to breakage.
  • the outer diameter of the glass tube 7 is set to 1 to 1 O mm, and the height is set to 6 mm or less.
  • the glass tube 7 of the embodiment '- sheet glass 1 A respective thermal expansion coefficients of the square is, 9 2 X 1 0- 7 / ° C ( glass tube 7), 8 7 X 1 0 "7 / ° C (One plate glass 1 A).
  • the low-melting glass 8 when the low-melting glass 8 is applied to the seal portion S, two types of low-melting glasses 8 a and 8 b having different coefficients of thermal expansion are stacked, and after sintering, As shown in FIG. 3, a first seal portion S1 corresponding to the one glass sheet 1A and a second seal portion S2 corresponding to the glass tube 7 are formed.
  • the thermal expansion coefficient of the first seal portion S 1 is, 8 5 X 1 0 7.
  • the coefficient of thermal expansion of the second seal part S2 is 96 X 10?
  • the low-melting glasses 8a and 8b are mixed with each other between the first and second seal portions, and the thermal expansion coefficients of the first seal portion S1 and the second seal portion S2 are mixed.
  • a coefficient slope S3 in which the coefficient of thermal expansion changes in a gradient is formed. That is, the coefficient of thermal expansion of the coefficient inclined portion S3 is 85 X 10 0 on the first seal portion S1 side. Near, close to the second seal portion S 2 side is 9 6 X 1 0- 7 / ° C, the intermediate portion is gradually increased Doconnection from the first seal portion S 1 side over the second seal portion S 2 side I have.
  • the distal end side of the glass tube 7 expands and expands, while the second seal portion S2 in contact with the glass tube 7 is low.
  • the coefficient of thermal expansion is larger than the glass tube 7, so it is easy to spread as in the case of the glass tube 7, so that a large tightening force can be prevented from acting on the glass tube 7, and the glass tube 7 and the seal S are cracked. It is possible to prevent the occurrence or occurrence of the sealing effect when the sealing effect is reduced.
  • the glass panel P shrinks after sintering the seal portion S, so that the sheet glass 1A shrinks from the first seal portion S1 as it cools.
  • the first seal portion S1 compressive internal stress acts upon the contraction force from the glass sheet 1A, the strength is increased, and an increase in the adhesive force with the glass sheet 1A can be expected. That is, according to the glass panel of the present embodiment, it is possible to easily maintain the sealing effect around the glass tube 7 for a long time, and it is possible to expect a heat insulating effect for many years by maintaining the reduced pressure environment of the void. Become.
  • the sheet glass is not limited to the sheet glass having a thickness of 3 mm described in the above embodiment, and may be a sheet glass having another thickness.
  • the type of glass can be arbitrarily selected, for example, template glass, ground glass (glass having a function of diffusing light by surface treatment), netted glass or tempered glass, heat ray absorption, ultraviolet absorption, It may be a sheet glass provided with a function such as heat ray reflection or a combination thereof.
  • the composition of the glass may be soda silicate glass (soda lime silica glass), borosilicate glass, aluminosilicate glass, or various types of crystallized glass.
  • the glass sheet is not limited to the one glass sheet and the other glass sheet having different lengths and widths, and is not limited to those having the same size. You may.
  • the two glass sheets may be overlapped so that the edges are aligned.
  • a glass panel may be configured by combining one sheet glass and the other sheet glass having different thickness dimensions.
  • the spacing member is not limited to the Inconel 718 spacer described in the above embodiment.
  • stainless steel or other metal or quartz glass may be used. 'Ceramics or the like may be used. In short, any material may be used as long as it is not easily deformed so that both glass sheets do not come into contact with each other under external force.
  • the coefficient of thermal expansion of the low-melting glass 8 and the glass tube 7 of the seal portion S, and one of the plate glasses 1A is not limited to the values described in the above embodiment.
  • the thermal expansion coefficient of the first seal portion S 1 and the thermal expansion coefficient of the second seal portion S 2 may be set to be smaller than the thermal expansion coefficient of the first seal portion S 1.
  • the setting may be larger than the thermal expansion coefficient of the second seal portion S2, or the setting may be equal (or substantially equal) for both. Therefore, a configuration in which the coefficient slope is not provided is also possible.
  • the coefficient of thermal expansion refers to the average coefficient of thermal expansion in the temperature range from room temperature to the yield point of low-melting glass (low-melting glass used for the sealing part) for both the sealing part and the glass tube.
  • a ring-shaped low-melting-point glass molded body 15 is previously formed. It is also possible to adopt a method in which it is formed, fitted to the glass tube 7 and sintered.
  • the ring-shaped molded product 15 made of low melting point glass may be in the shape of a cylindrical tube or a truncated cone as shown in FIGS. Further, as shown in FIG. 7, low-melting glasses 8a and 8b having different coefficients of thermal expansion may be formed into a single body, or may be formed separately. Industrial applicability
  • the glass panel of the present invention can be used for a wide variety of applications, for example, for architectural use, for vehicles (windows for automobiles, windows for railway vehicles, windowpanes for ships), and for device elements (plasma displays). Surface glass, refrigerator doors and walls, and heat insulation doors and walls).

Abstract

Glass panel provided with a glass panel body (P1) comprising a pair of sheets of flat glass (1) disposed with a thickness-direction gap between them, a suction port (6) formed in one sheet (1A) of the pair of sheets of flat glass (1) and a clearance (V), between the pair of sheets (1), vacuum-sealed through the suction port (6); the suction port (6) being constituted by providing a through hole (1a) in the one sheet (1A), erecting a suction glass tube (7) on the hole (1a), providing a low-melting-point glass seal (S) covering the base end of the tube (7) and the peripheral edge of the hole (1a) in the one sheet (1A), and providing a closed portion (H) formed by closing the tip end of the tube (7) by heating and melting; wherein low-melting-point glass constituting a first seal (S1), corresponding to the one sheet (1A), of the seal is set smaller in thermal expansion coefficient than one sheet (1A).

Description

明 細 書 ガラスパネル 技術分野  Description Glass panel Technical field
本発明は、 一対の板ガラスを、 厚み方向に間隔をあけて配置すると共に、 前記 一対の板ガラスのうちの何れか一方の板ガラスに形成した吸引口を通して前記両 板ガラス間の空隙部の減圧密閉を図ってあるガラスパネル本体を設け、 前記吸引 口を構成するに、 前記一方の板ガラスに貫通孔を設け、 前記貫通孔に吸引用ガラ ス管を立設し、 前記ガラス管の基端部と前記一方の板ガラスの前記貫通孔周縁部 とにわたつて低融点ガラス製シール部を設け、 前記ガラス管の先端部を加熱溶融 して閉塞した閉塞部を設けてあるガラスパネルに関する。 背景技術  In the present invention, a pair of plate glasses is arranged at intervals in the thickness direction, and a vacuum portion between the two plate glasses is reduced and hermetically sealed through a suction port formed in one of the pair of plate glasses. A glass panel main body, and forming the suction port, providing a through-hole in the one sheet glass, erecting a suction glass tube in the through-hole, and connecting a base end portion of the glass tube and the one end of the glass tube. The present invention relates to a glass panel provided with a low-melting-point glass seal portion over the periphery of the through-hole of the sheet glass and a closed portion formed by heating and melting the front end portion of the glass tube. Background art
一枚の板ガラスより断熱性能の高い板ガラスとして、 一対の板ガラスの間に断 熱層となる空気層を介在させて一体的に構成してある複層ガラスが知られている 力 S、 この種のガラスパネルにおいては、 そのものの厚みが大きくなり、 サッシュ を含めて美観性を損ない易い問題がある。 そこで、 厚みが薄くて、 より断熱性が 高いものと して、 一対の板ガラス間に複数のスぺーサを配置すると共に、 両板ガ ラス夫々の外縁部間に、 全周にわたって、 例えば、 低融点ガラス製の封止部材を 一体的に設け、 前記空隙部を減圧状態とすることで、 より薄く、 且つ、 熱貫流率 の小さなガラスパネルとすることが考えられている。  As a sheet glass having higher heat insulation performance than a single sheet of glass, a double-layer glass integrally formed by interposing an air layer serving as a heat insulating layer between a pair of sheet glasses is known. In glass panels, there is a problem that the thickness of the glass panel itself becomes large and the aesthetics including the sash are easily impaired. Therefore, assuming that the thickness is thinner and the heat insulating property is higher, a plurality of spacers are arranged between a pair of glass sheets, and the outer periphery of each of the glass sheets is provided over the entire circumference. It has been considered that a sealing panel made of a melting point glass is integrally provided, and the gap is made to be in a reduced pressure state, whereby a thinner glass panel having a small heat transmission coefficient is obtained.
そして、 前記空隙部を減圧状態にするについては、 一方のガラス板に形成した 前記貫通孔にガラス管を立設した状態でその周囲に低融点ガラスを塗布した後、 雰囲気温度を低融点ガラスの焼結温度 (ガラス管やガラス板の軟化点より低い温 度) まで上げて前記シール部を形成した後、 雰囲気温度を下げて、 前記空隙部の 減圧を実施した後、 図 3 · 4に示すように、 前記ガラス管 7の先端部をガラス管 7の軟化点以上の温度で加熱溶融して閉塞するものである。 また、 ガラス管 7は、 ガラスパネルの美観性や取极性を損なわないためにガラス板面からの突出量をで きるだけ小さくするのが好ましいから、 ガラス管 7の加熱に際しては、 前記シー ル部 Sに熱が作用する危険性が高く、 これを防止するために、 ガラス管 7先端部 とシール部 Sとの間に遮熱板 1 0を配置してガラス管 7先端部を加熱するもので ある。 Then, in order to reduce the pressure in the gap, a low-melting glass is applied around the glass tube in a state where a glass tube is erected in the through-hole formed in one of the glass plates. After raising the sintering temperature (the temperature lower than the softening point of the glass tube or glass plate) to form the seal part, lowering the ambient temperature and depressurizing the void, as shown in Figs. Thus, the glass tube 7 is heated and melted at a temperature higher than the softening point of the glass tube 7 and closed. Also, the glass tube 7 has a protruding amount from the glass plate surface so as not to impair the aesthetics and manageability of the glass panel. Since it is preferable that the temperature is as small as possible, when the glass tube 7 is heated, there is a high risk that heat acts on the seal portion S. In order to prevent this, the gap between the end portion of the glass tube 7 and the seal portion S is required. A heat shield plate 10 is interposed between the glass tubes 7 to heat the tip of the glass tube 7.
この種の従来のガラスパネルと しては、 前記吸引用ガラス管、 及び、 前記低融 点ガラス、 及び、 前記一方の板ガラスの熱膨張係数は、 同じ値に設定してあった。 上述した従来のガラスパネルによれば、 前記吸引口は、 ガラス板の表面に突出 した状態となり、 他物がガラスパネル表面に接触した際にこの吸引口にぶつかり 易く、 吸引口を構成するガラス管 · シール部が脱落することもある。 特に、 シー ル部は、 ガラス板に比べて強度が低いため外れ易い。  As a conventional glass panel of this type, the glass tube for suction, the low melting glass, and the thermal expansion coefficient of the one plate glass are set to the same value. According to the above-mentioned conventional glass panel, the suction port protrudes from the surface of the glass plate, and easily hits the suction port when another object comes into contact with the surface of the glass panel. · The seal may fall off. In particular, the seal portion has a lower strength than the glass plate, and thus tends to come off.
その防止策としては、 吸引口の上にキャップを被せる方法をとることも考えら れるが、 キャップの有無に拘わらず、 前記シール部を板ガラスから外れ難くする ことが望まれる。  As a preventive measure, a method of putting a cap on the suction port may be considered. However, it is desired that the seal portion is hardly detached from the sheet glass regardless of the presence or absence of the cap.
従って、 本発明の目的は、 シール部の強化が期待でき、 シール効果の維持を図 り易いガラスパネルを提供するところにある。 発明の開示  Accordingly, an object of the present invention is to provide a glass panel which can be expected to strengthen the sealing portion and can easily maintain the sealing effect. Disclosure of the invention
本発明のガラスパネルは、 請求の範囲第 1項に示すように、 図 4に例示するご とく、 一対の板ガラス 1 Αを、 厚み方向に間隔をあけて配置すると共に、 前記一 対の板ガラス 1のうちの何れか一方の板ガラス 1 Aに形成した吸引口 6を通して 前記両板ガラス 1間の空隙部 Vの減圧密閉を図ってあるガラスパネル本体 P 1を 設け、前記吸引口 6を構成するに、前記一方の板ガラス 1 Aに貫通孔 1 aを設け、 前記貫通孔 1 aに吸引用ガラス管 7を立設し、 前記ガラス管 7の基端部と前記一 方の板ガラス 1 Aの前記貫通孔 1 a周縁部とにわたつて低融点ガラス製シール部 Sを設け、 前記ガラス管 7の先端部を加熱溶融して閉塞した閉塞部 Hを設けてあ るガラスパネルにおいて、 前記シール部 Sの内、 前記一方の板ガラス 1 Aに対応 する第一シール部 S 1を構成する低融点ガラスの熱膨張係数を、 前記一方の板ガ ラス 1 Aの熱膨張係数より小さく設定してあるところにある。  As shown in claim 1, the glass panel of the present invention, as exemplified in FIG. 4, arranges a pair of plate glasses 1 を with an interval in the thickness direction, and A glass panel main body P 1 is provided through which a vacuum V between the two glass sheets 1 is reduced and hermetically sealed through a suction port 6 formed in one of the glass sheets 1 A. A through-hole 1a is provided in the one plate glass 1A, a suction glass tube 7 is erected in the through-hole 1a, and a base end of the glass tube 7 and the through-hole in the one plate glass 1A. 1a In a glass panel provided with a low-melting-point glass seal portion S over the periphery and a closed portion H in which the front end portion of the glass tube 7 is closed by heating and melting. The first sealing portion S1 corresponding to the one sheet glass 1A is configured. The thermal expansion coefficient of the low-melting glass, there is to which the is set smaller than the thermal expansion coefficient of the one plate glass 1 A.
シール部の焼結は、 前述のとおりガラスパネルの雰囲気温度を低融点ガラスの 焼結温度まで上げて実施されるわけであるが、 その時点でのシール部 ·板ガラス の夫々の体積が基準となり、 その後の除冷に伴ってシール部 ·板ガラスはそれぞ れ熱収縮するものである。 As described above, the sintering of the sealing part is performed by lowering the ambient temperature of the glass The temperature is raised to the sintering temperature, but the volume of the seal part and the sheet glass at that time is used as a reference, and the seal part and the sheet glass undergo thermal contraction with subsequent cooling. is there.
請求項 1 に係わる本発明の特徴構成によれば、 第一シール部の方が板ガラスよ り熱膨張係数を小さく設定してあるから、 シール部の焼結後に雰囲気温度が常温 まで下がった状態においては、 第一シール部より板ガラスの方が収縮量が多くな る。 従って、 第一シール部は、 板ガラスの収縮によって圧縮された状態となり、 それに伴って、 シール部としての強度が向上する結果となる。  According to the characteristic configuration of the present invention according to claim 1, since the first seal portion has a smaller thermal expansion coefficient than the sheet glass, the first seal portion has a lower ambient temperature after sintering the seal portion. The shrinkage of the sheet glass is larger than that of the first seal part. Accordingly, the first seal portion is in a state of being compressed by the contraction of the sheet glass, and as a result, the strength of the seal portion is improved.
よって、 シール部としての強度を、 従来のものより高く期待することが可能と なり、 吸引口そのものを壊れ難くすることができると共に、 良好なシール性を確 保して、 前記空隙部の減圧状態を長期間にわたって維持することが可能となる。 また、 本発明のガラスパネルにおいては、 請求の範囲第 2項に示すように、 図 4に例示するごとく、 前記シール部 Sの内、 前記ガラス管 7に対応する第二シー ル部 S 2を構成する低融点ガラスの熱膨張係数を、 前記ガラス管 Ίの熱膨張係数 より大きく設定してあるところにある。  Therefore, it is possible to expect the strength of the seal portion to be higher than that of the conventional one, and it is possible to make the suction port itself difficult to break, and to ensure a good sealing property, and to reduce the pressure in the gap portion. Can be maintained over a long period of time. Further, in the glass panel of the present invention, as shown in claim 2, as shown in FIG. 4, among the seal portions S, a second seal portion S2 corresponding to the glass tube 7 is formed. The thermal expansion coefficient of the low-melting point glass is set to be larger than the thermal expansion coefficient of the glass tube.
ところで、 シール部のシール効果に関しては、 上述のシール部と板ガラスとの 関係のみならず、 シール部とガラス管との関係も深い。 即ち、 ガラス管先端部を 封じ切りのために高温で加熱溶融するに伴って、 その熱がガラス管から前記シー ル部に伝わるわけであるが、 当然のことながら、 ガラス管側に熱源がある以上、 ガラス管とシール部との間には温度勾配があり、 ガラス管の方がシール部より高 温の状態になっている。 そして、 ガラス管とシール部との熱膨張係数が同じ値で ある従来のガラスパネルの場合は、 高温であるガラス管の方が、 低温であるシー ル部より膨張量が大きくなり、 その膨張量の違いによってシール部がガラス管の 膨張を拘束し、 結果的に締め付けて、 ガラス管に亀裂が発生してシール効果が低 下したり、 シール効果が期待できなくなり易いという問題点がある。  By the way, regarding the sealing effect of the sealing portion, not only the relationship between the sealing portion and the sheet glass described above, but also the relationship between the sealing portion and the glass tube is deep. That is, as the glass tube tip is heated and melted at a high temperature to seal off, the heat is transmitted from the glass tube to the seal portion. Naturally, there is a heat source on the glass tube side As described above, there is a temperature gradient between the glass tube and the seal portion, and the temperature of the glass tube is higher than that of the seal portion. Then, in the case of a conventional glass panel in which the thermal expansion coefficient of the glass tube and that of the seal portion are the same value, the expansion amount of the high-temperature glass tube is larger than that of the low-temperature seal portion, and the expansion amount is large. There is a problem that the sealing portion restrains the expansion of the glass tube due to the difference between them, and as a result, the glass tube is cracked, and the sealing effect is reduced or the sealing effect cannot be expected.
請求項 2に係わる本発明の特徴構成によれば、 請求項 1に記載の発明による作 用効果を叶えることができるのに加えて、 前記第二シール部を構成する低融点ガ ラスの熱膨張係数を、 前記ガラス管の熱膨張係数より大きく設定してあるから、 ガラス管の加熱閉塞に伴ってガラス管の方がシール部より高温の状態になってい ても、 シール部の熱膨張量がガラス管の熱膨張量に近くなる (又は、 大きくなる) から、 ガラス管 ' シール部の熱膨張量の差が小さくなり、 従来のように、 ガラス 管に亀裂が発生するといつたことを防止し易くなる。 According to the characteristic configuration of the present invention according to claim 2, in addition to being able to achieve the operational effects of the invention according to claim 1, in addition to the thermal expansion of the low melting point glass that forms the second seal portion, Since the coefficient is set to be larger than the coefficient of thermal expansion of the glass tube, the temperature of the glass tube is higher than that of the seal portion due to the heating and closing of the glass tube. However, since the amount of thermal expansion of the seal is close to (or larger than) the amount of thermal expansion of the glass tube, the difference in the amount of thermal expansion between the glass tube and the seal decreases, and the When a crack occurs, it becomes easier to prevent the accident.
その結果、 前記シール部のシール不良を減少させ、 前記空隙部の減圧状態を長 期間にわたって維持することが可能となる。  As a result, it is possible to reduce defective sealing of the seal portion and maintain the reduced pressure state of the gap portion for a long time.
また、 本発明のガラスパネルにおいては、 請求の範囲第 3項に示すように、 図 4に例示するごとく、 前記シール部 Sは、 前記第一シール部 S 1 と前記第二シ一 ル部 S 2との熱膨張係数を異ならせてあり、 且つ、 前記第一シール部 S 1 と前記 第二シール部 S 2との熱膨張係数間で傾斜的に熱膨張係数を異ならせてある係数 傾斜部 S 3を、 前記第一シール部 S 1 と前記第二シール部 S 2との間に設けてあ るところにある。  Further, in the glass panel of the present invention, as shown in claim 3, as illustrated in FIG. 4, the seal portion S includes the first seal portion S 1 and the second seal portion S. 2 having a different coefficient of thermal expansion, and having a different coefficient of thermal expansion between the first seal portion S 1 and the second seal portion S 2. S3 is provided between the first seal portion S1 and the second seal portion S2.
請求項 3に係わる本発明の特徴構成によれば、 請求項 2に記載の発明による作 用効果を叶えることができるのに加えて、 シール部内における第一シール部と第 二シール部との熱膨張の違いを前記係数傾斜部によって緩衝することが可能とな る。 即ち、 第一シール部と第二シール部との熱膨張係数が異なることによって、 温度変化に伴う熱膨張 (熱収縮) 歪みがシール部内に発生するにしても、 その歪 みを前記係数傾斜部で分散して、 シール部内の局部に応力集中が生じるのを緩和 することが可能となる。 その結果、 シール部の耐久性の低下を防止することが可 能となり、 シール効果をより長期間にわたって維持し易くなる。  According to the characteristic configuration of the present invention according to claim 3, in addition to achieving the operational effects of the invention described in claim 2, the heat of the first seal portion and the second seal portion in the seal portion can be achieved. The difference in expansion can be buffered by the coefficient slope. That is, even if a thermal expansion (thermal shrinkage) distortion due to a temperature change occurs in the seal portion due to a difference in thermal expansion coefficient between the first seal portion and the second seal portion, the distortion is caused by the coefficient gradient portion. It is possible to alleviate the occurrence of stress concentration at a local portion in the seal portion. As a result, it is possible to prevent a decrease in the durability of the seal portion, and it is easy to maintain the sealing effect for a longer period.
尚、 上述のように、 図面との対照を便利にするために符号を記したが、 該記入 により本発明は添付図面の構成に限定されるものではない。 図面の簡単な説明  Note that, as described above, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration shown in the accompanying drawings. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 ガラスパネルを示す一部切欠き斜視図であり、  FIG. 1 is a partially cutaway perspective view showing a glass panel.
図 2は、 ガラスパネルの要部を示す断面図であり、  FIG. 2 is a cross-sectional view showing a main part of the glass panel.
図 3は、 ガラスパネルの要部を示す断面図であり、  FIG. 3 is a cross-sectional view showing a main part of the glass panel.
図 4は、 ガラスパネルの要部を示す断面図であり、  FIG. 4 is a cross-sectional view showing a main part of the glass panel.
図 5は、 別実施形態のシール部を示す要部断面図であり、  FIG. 5 is a cross-sectional view of a main part showing a seal portion of another embodiment,
図 6は、 別実施形態のシール部を示す要部断面図であり、 図 7は、 別実施形態のシール部を示す要部断面図である。 発明を実施するための最良の形態 FIG. 6 is a cross-sectional view of a main part showing a seal portion of another embodiment, FIG. 7 is a cross-sectional view of a principal part showing a seal portion of another embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明の実施の形態を図面に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1〜4は、 本発明のガラスパネルの実施形態の一つを示すもので、 ガラスパ ネル Pは、 一対の板ガラス 1間に、 板面に沿って間隔をあけて複数のスぺーサ 2 を介在させて形成してあるガラスパネル本体 P 1に対して、 両板ガラス 1 A, 1 B間の空隙部 Vを減圧密閉することで構成してある。  FIGS. 1 to 4 show one embodiment of the glass panel of the present invention. A glass panel P includes a plurality of spacers 2 between a pair of glass sheets 1 at intervals along a sheet surface. The gap V between the two glass sheets 1A and 1B is reduced and hermetically sealed with respect to the glass panel main body P1 interposed therebetween.
前記一対の板ガラス 1は、 それぞれ厚み寸法 3 mm (J I S規格でいう 3 mm 板ガラスで、 実質的には、 厚み誤差を考盧すると、 2. 7〜 3. 3mmとなる) で透明なフロート板ガラスで構成してあり、 両板ガラス 1の外縁全周にわたって は低融点ガラス (例えば、 はんだガラス) の封止部 4を設けて、 前記空隙部 Vの 密閉を図ってある。 そして、 前記空隙部 Vは、 一方の板ガラス 1 Aに形成した吸 引口 6から吸引する方法によって減圧環境 ( 1. 0 X 1 0— 2T o r r以下) を呈 する状態に構成してある。 The pair of glass sheets 1 are each made of a transparent float glass sheet having a thickness of 3 mm (3 mm sheet glass according to the JIS standard, which is substantially 2.7 to 3.3 mm when the thickness error is considered). A sealing portion 4 of low melting point glass (for example, solder glass) is provided around the entire outer edge of both glass sheets 1 to seal the gap V. Then, the voids V are are constituted in a state which develops a reduced pressure environment (1. 0 X 1 0- 2 T orr less) by the method of sucking the suction引口6 formed on one of the glass sheets 1 A.
因みに、 両板ガラス 1の外周縁部は、 一方の板ガラス 1 Aが板面方向に沿って 突出する状態に配置してあり、 この突出部 5を形成してあることによって、 前記 封止部 4の形成時に、 この突出部 5に封止部材 (例えば、 前記低融点ガラス) を 载置した状態で、 効率的に且つ確実に空隙部 V外周部を密閉することが可能とな る。  Incidentally, the outer peripheral edges of the two glass sheets 1 are arranged so that one of the glass sheets 1A protrudes along the sheet surface direction. When the sealing member (for example, the low melting point glass) is placed on the protruding portion 5 at the time of formation, the outer periphery of the gap V can be efficiently and reliably sealed.
前記スぺーサ 2は、 インコネル 7 1 8製で円柱形状に形成してあり、 その寸法 は直径が 0. 3 0〜 1. 00 mmであり、 高さ寸法が 0. 1〜0. 5mmに設定 してある。 そして、 板ガラスと接触する部分を円形状に形成してあることによつ て、 両板ガラス 1に対する接当部分に応力集中を生じ易い角部を造らず、 板ガラ ス 1を破壊し難くすることができる。  The spacer 2 is made of Inconel 718 and is formed in a cylindrical shape, the diameter is 0.30 to 1.00 mm, and the height is 0.1 to 0.5 mm. It has been set. And, by forming the portion in contact with the sheet glass in a circular shape, it is possible to prevent the sheet glass 1 from being broken easily without forming a corner portion where stress concentration is likely to occur in the contact portion with the both sheet glass 1. Can be.
一方、 前記スぺーサ 2の設置間隔に関しては、 1 0〜 2 5mmの寸法に設定し てある。  On the other hand, the spacing between the spacers 2 is set to a dimension of 10 to 25 mm.
次に、 前記空隙部 Vの減圧に関する構成を、 図 4によって説明する。  Next, the configuration related to the decompression of the gap V will be described with reference to FIG.
前記一対の板ガラス 1のうちの何れか一方の板ガラス 1 Aには、 前記空隙部 V の減圧を行うための吸引口 6を設けてある。 この吸引口 6を構成するに、 前記一 方の板ガラス 1 Aに形成した貫通孔 1 aに、 ガラス管 7を配置し、 貫通孔 1 a周 壁とガラス管 7 との間を、 低融点ガラス 8によって密閉連結してある。 そして、 前記ガラス管 7の先端部 7 aは、 減圧後に加熱溶融して閉塞した閉塞部 Hに構成 してある。 Any one of the pair of glass sheets 1 has a gap V in the glass sheet 1A. A suction port 6 for reducing the pressure is provided. To form the suction port 6, a glass tube 7 is disposed in the through hole 1a formed in the one plate glass 1A, and a low melting glass is provided between the peripheral wall of the through hole 1a and the glass tube 7. It is hermetically connected by 8. The distal end portion 7a of the glass tube 7 is configured as a closed portion H which is heated and melted and closed after decompression.
具体的には、 貫通孔 l a周りに、 前記ガラス管 7 と一方の板ガラス 1 Aとにわ たる状態に低融点ガラス 8を塗布しておき (図 2参照)、環境温度を 5 0 0 °C程度 まで上昇させることによって前記低融点ガラス 8を焼結し、 シール部 Sを形成す るものである。 因みに、 前記板ガラス外周部の前記封止部 4についても、 塗布し た低融点ガラスを同じ環境下で焼結して封止するものである。  Specifically, a low-melting glass 8 is applied around the through-hole la so as to cover the glass tube 7 and one of the glass sheets 1A (see FIG. 2), and the environmental temperature is set to 500 ° C. The low melting point glass 8 is sintered by raising the temperature to such a degree that the seal portion S is formed. Incidentally, the sealing portion 4 on the outer periphery of the plate glass is also sealed by sintering the applied low melting glass under the same environment.
そして、 環境温度の低下を待って前記ガラス管 7から前記空隙部 Vの気体を吸 引して充分な減圧状態にしてから、 前記ガラス管 7の先端部 7 aを加熱融解して 前記閉塞部 Hを形成してある。  Then, after waiting for a drop in the environmental temperature, the gas in the gap V is sucked from the glass tube 7 to a sufficiently reduced pressure state, and then the distal end portion 7a of the glass tube 7 is heated and melted to form the closed portion. H is formed.
この先端部 7 aの閉塞に関しては、 先端部 7 aを局部加熱 (約 1 0 0 0 °C ) す るわけであるが、 その熱線が焼結した前記シール部 Sに直接あたることによって 溶融するのを防止するために、 図 3に示すように、 前記シール部 Sを覆い隠す状 態に遮熱板 1 0を配置した状態で実施される。  Regarding the blockage of the distal end portion 7a, the distal end portion 7a is locally heated (approximately 1000 ° C.), but is melted when the heat rays directly hit the sintered seal portion S. In order to prevent this, as shown in FIG. 3, the process is performed in a state where the heat shield plate 10 is arranged so as to cover the seal portion S.
また、 前記ガラス管 7の封着後には、 吸引口 6を覆う状態に保護用キャップ 9 が前記一方の板ガラス 1 Aに接着される。  After the glass tube 7 is sealed, a protective cap 9 is adhered to the one glass plate 1A so as to cover the suction port 6.
前記ガラス管 7は、 その厚みが 0 . 1〜 1 . O m mのものを使用するのが好ま しい。  The glass tube 7 preferably has a thickness of 0.1 to 1.0 mm.
即ち、 厚みが 1 . O m mを越えるものを使用すると、 先端部 7 aの閉塞時に、 昇温から自己融着までに時間を要すことになり、 周囲の不要な部位まで温度が上 昇し、 甚だしい場合にはその結果生じる温度勾配のために板ガラス 1又は低融点 ガラス 8にクラックを生じてしまう危険性がある。 また、 厚みが 0 . 1 m m未満 のものを使用すると、 昇温は容易に実施できるものの、 自己融解して形状を保つ のが困難となる上、 強度が弱いから極めて破損し易くなる。 因みに、 当該実施形 態においては、 ガラス管 7の外径は 1〜 1 O m m、 高さは 6 m m以下に設定して ある。 また、 当該実施形態の前記ガラス管 7 ' —方の板ガラス 1 Aそれぞれの熱膨張 係数は、 9 2 X 1 0— 7 /°C (ガラス管 7 )、 8 7 X 1 0 " 7 /°C (一方の板ガラス 1 A ) である。 In other words, if the thickness exceeds 1.0 mm, it takes a long time from temperature rise to self-fusion when the tip 7a is closed, and the temperature rises to unnecessary parts around. In severe cases, there is a risk of cracks in the sheet glass 1 or the low-melting glass 8 due to the resulting temperature gradient. If the thickness is less than 0.1 mm, the temperature can be easily raised, but it is difficult to maintain the shape by self-melting, and the strength is weak, so that it is extremely susceptible to breakage. Incidentally, in this embodiment, the outer diameter of the glass tube 7 is set to 1 to 1 O mm, and the height is set to 6 mm or less. Further, the glass tube 7 of the embodiment '- sheet glass 1 A respective thermal expansion coefficients of the square is, 9 2 X 1 0- 7 / ° C ( glass tube 7), 8 7 X 1 0 "7 / ° C (One plate glass 1 A).
そして、 シール部 Sについては、 低融点ガラス 8を塗布するときに、 図 2に示 すように、 熱膨張係数の異なる二種類の低融点ガラス 8 a · 8 bを重ねてあり、 焼結後には、 図 3に示すように、 前記一方の板ガラス 1 Aに対応する第一シール 部 S 1 と、 前記ガラス管 7に対応する第二シール部 S 2とが形成されている。 因みに、 第一シール部 S 1の熱膨張係数は、 8 5 X 1 0 7 。 Cで、 第二シール 部 S 2の熱膨張係数は、 9 6 X 1 0 ?ノ であり、 第一 '第二シール部間には、 互いの低融点ガラス 8 a · 8 bが混ざり合って、 前記第一シール部 S 1 と前記第 二シール部 S 2との熱膨張係数の間で傾斜的に熱膨張係数が変化している係数傾 斜部 S 3が形成されている。 つまり、 前記係数傾斜部 S 3の熱膨張係数は、 第一 シール部 S 1側が 8 5 X 1 0 ? に近く、 第二シール部 S 2側が 9 6 X 1 0— 7 /°Cに近く、 中間部分は、 第一シール部 S 1側から第二シール部 S 2側に かけて徐々に大きくなつている。 As shown in FIG. 2, when the low-melting glass 8 is applied to the seal portion S, two types of low-melting glasses 8 a and 8 b having different coefficients of thermal expansion are stacked, and after sintering, As shown in FIG. 3, a first seal portion S1 corresponding to the one glass sheet 1A and a second seal portion S2 corresponding to the glass tube 7 are formed. Incidentally, the thermal expansion coefficient of the first seal portion S 1 is, 8 5 X 1 0 7. In C, the coefficient of thermal expansion of the second seal part S2 is 96 X 10? The low-melting glasses 8a and 8b are mixed with each other between the first and second seal portions, and the thermal expansion coefficients of the first seal portion S1 and the second seal portion S2 are mixed. A coefficient slope S3 in which the coefficient of thermal expansion changes in a gradient is formed. That is, the coefficient of thermal expansion of the coefficient inclined portion S3 is 85 X 10 0 on the first seal portion S1 side. Near, close to the second seal portion S 2 side is 9 6 X 1 0- 7 / ° C, the intermediate portion is gradually increased Do connexion from the first seal portion S 1 side over the second seal portion S 2 side I have.
従って、 前記ガラス管 7の先端部 7 a封着時においては、 ガラス管 7の先端側 が膨張して広がるのに対して、そのガラス管 7に接している第二シール部 S 2は、 低い温度であるけれども熱膨張係数がガラス管 7より大きいためガラス管 7と同 様に広がり易く、 ガラス管 7に大きな締付力が作用するのを回避でき、 ガラス管 7やシール部 Sに亀裂が発生したり、 それに伴ってシール効果が低下するといつ たことを防止することが可能となる。  Therefore, at the time of sealing the distal end portion 7a of the glass tube 7, the distal end side of the glass tube 7 expands and expands, while the second seal portion S2 in contact with the glass tube 7 is low. Despite the temperature, the coefficient of thermal expansion is larger than the glass tube 7, so it is easy to spread as in the case of the glass tube 7, so that a large tightening force can be prevented from acting on the glass tube 7, and the glass tube 7 and the seal S are cracked. It is possible to prevent the occurrence or occurrence of the sealing effect when the sealing effect is reduced.
また、 当該ガラスパネル Pは、 シール部 Sを焼結した後、 冷えるに伴って、 板 ガラス 1 Aが第一シール部 S 1より収縮することになり、 この状態における第一 シール部 S 1は、 板ガラス 1 Aからの収縮力を受けて圧縮内部応力が作用し、 強 度アップが図られ、板ガラス 1 Aとの接着力の増加を期待することが可能となる。 即ち、 本実施形態のガラスパネルによれば、 ガラス管 7周りのシール効果を長 い間にわたって維持しやすく、 前記空隙部の減圧環境の維持によって永年にわた つて断熱効果を期待することが可能となる。  In addition, the glass panel P shrinks after sintering the seal portion S, so that the sheet glass 1A shrinks from the first seal portion S1 as it cools. In this state, the first seal portion S1 However, compressive internal stress acts upon the contraction force from the glass sheet 1A, the strength is increased, and an increase in the adhesive force with the glass sheet 1A can be expected. That is, according to the glass panel of the present embodiment, it is possible to easily maintain the sealing effect around the glass tube 7 for a long time, and it is possible to expect a heat insulating effect for many years by maintaining the reduced pressure environment of the void. Become.
〔別実施の形態〕 〈 1〉 前記板ガラスは、 先の実施形態で説明した厚み 3 m mの板ガラスに限るも のではなく、 他の厚みの板ガラスであってもよい。 また、 ガラスの種別は任 意に選定することが可能であり、 例えば型板ガラス、 すりガラス (表面処理 により光を拡散させる機能を付与したガラス)、網入りガラス又は強化ガラス や熱線吸収、 紫外線吸収、 熱線反射等の機能を付与した板ガラスや、 それら との組み合わせであつてもよい。 [Another embodiment] <1> The sheet glass is not limited to the sheet glass having a thickness of 3 mm described in the above embodiment, and may be a sheet glass having another thickness. In addition, the type of glass can be arbitrarily selected, for example, template glass, ground glass (glass having a function of diffusing light by surface treatment), netted glass or tempered glass, heat ray absorption, ultraviolet absorption, It may be a sheet glass provided with a function such as heat ray reflection or a combination thereof.
また、 ガラスの組成については、 ソーダ珪酸ガラス (ソ一ダ石灰シリカガ ラス) や、 ホウ珪酸ガラスや、 アルミノ珪酸ガラスや、 各種結晶化ガラスで あってもよレヽ。  The composition of the glass may be soda silicate glass (soda lime silica glass), borosilicate glass, aluminosilicate glass, or various types of crystallized glass.
〈 2〉 前記板ガラスは、 一方の板ガラスと他方の板ガラスとが、 長さや巾寸法が 異なるものを使用するのに限定されるものではなく、 同寸法に形成してある ものを使用するものであってもよい。 そして、 両板ガラスの重ね方は、 端縁 部どう しが揃う状態に重ね合わせてあってもよい。 また、 一方の板ガラスと 他方の板ガラスとの厚み寸法が異なるものを組み合わせてガラスパネルを構 成してあってもよレ、。 <2> The glass sheet is not limited to the one glass sheet and the other glass sheet having different lengths and widths, and is not limited to those having the same size. You may. The two glass sheets may be overlapped so that the edges are aligned. Also, a glass panel may be configured by combining one sheet glass and the other sheet glass having different thickness dimensions.
〈 3〉 前記間隔保持部材は、 先の実施形態で説明したインコネル 7 1 8製のスぺ —ザに限るものではなく、 例えば、 ステンレス鋼や、 それ以外にも、 他の金 属 ·石英ガラス 'セラミ ックス等であってもよく、 要するに、 外力を受けて 両板ガラスどう しが接することがないように変形しにくいものであればよい。 〈 4〉 前記シール部 Sの低融点ガラス 8、 及び、 ガラス管 7、 一方の板ガラス 1 Aの熱膨張係数は、 先の実施形態で説明した値に限るものではない。  <3> The spacing member is not limited to the Inconel 718 spacer described in the above embodiment. For example, stainless steel or other metal or quartz glass may be used. 'Ceramics or the like may be used. In short, any material may be used as long as it is not easily deformed so that both glass sheets do not come into contact with each other under external force. <4> The coefficient of thermal expansion of the low-melting glass 8 and the glass tube 7 of the seal portion S, and one of the plate glasses 1A is not limited to the values described in the above embodiment.
例えば、 先の実施形態で説明したように、 第一シール部 S 1の熱膨張係数 、 第二シール部 S 2の熱膨張係数より小さい設定以外にも、 第一シール部 S 1 の熱膨張係数が、 第二シール部 S 2の熱膨張係数より大きい設定や、 両 者が等しい (または、 ほぼ等しい) 設定であってもよい。 従って、 前記係数 傾斜部を設けない構成も可能である。 但し、 熱膨張係数とは、 シール部 · ガ ラス管 ' 一方の板ガラス何れについても、 室温から低融点ガラス (シール部 に使用する低融点ガラス) の屈伏点までの温度範囲における平均熱膨張係数 をいう。 また、 シール部 Sの形成にあたっては、 先の実施形態で説明したペース ト 状の低融点ガラスを塗布して焼結する方法以外に、 予め、 リング形状の低融 点ガラス製成形体 1 5を形成しておき、 それをガラス管 7に外嵌させて焼結 する方法をとることも可能である。 For example, as described in the previous embodiment, the thermal expansion coefficient of the first seal portion S 1 and the thermal expansion coefficient of the second seal portion S 2 may be set to be smaller than the thermal expansion coefficient of the first seal portion S 1. However, the setting may be larger than the thermal expansion coefficient of the second seal portion S2, or the setting may be equal (or substantially equal) for both. Therefore, a configuration in which the coefficient slope is not provided is also possible. However, the coefficient of thermal expansion refers to the average coefficient of thermal expansion in the temperature range from room temperature to the yield point of low-melting glass (low-melting glass used for the sealing part) for both the sealing part and the glass tube. Say. In forming the seal portion S, in addition to the method of applying and sintering the paste-like low-melting glass described in the previous embodiment, a ring-shaped low-melting-point glass molded body 15 is previously formed. It is also possible to adopt a method in which it is formed, fitted to the glass tube 7 and sintered.
その際、 リング形状の低融点ガラス製成形体 1 5は、 図 5 · 図 6に示すよ うに、 円柱状筒や円錐台状筒の形状であってもよい。 また、 図 7に示すよう に、熱膨張係数の異なる低融点ガラス 8 a · 8 bがー体に成形されたものや、 又は、 別体に成形されたものであってもよい。 産業上の利用可能性  At this time, the ring-shaped molded product 15 made of low melting point glass may be in the shape of a cylindrical tube or a truncated cone as shown in FIGS. Further, as shown in FIG. 7, low-melting glasses 8a and 8b having different coefficients of thermal expansion may be formed into a single body, or may be formed separately. Industrial applicability
本発明のガラスパネルは、多種にわたる用途に使用することが可能で、例えば、 建築用 ·乗物用 (自動車の窓ガラス、 鉄道車両の窓ガラス、 船舶の窓ガラス) ·機 器要素用 (プラズマディスプレイの表面ガラスや、 冷蔵庫の開閉扉や壁部、 保温 装置の開閉扉や壁部) 等に用いることが可能である。  The glass panel of the present invention can be used for a wide variety of applications, for example, for architectural use, for vehicles (windows for automobiles, windows for railway vehicles, windowpanes for ships), and for device elements (plasma displays). Surface glass, refrigerator doors and walls, and heat insulation doors and walls).

Claims

請 求 の 範 囲 The scope of the claims
1. 一対の板ガラス ( 1 ) を、 厚み方向に間隔をあけて配置すると共に、 前記一 対の板ガラス ( 1 )のうちの何れか一方の板ガラス ( 1 A) に形成した吸引口 ( 6 ) を通して前記両板ガラス (1 ) 間の空隙部 (V) の減圧密閉を図ってあるガラス パネル本体 (P 1 ) を設け、 前記吸引口 (6) を構成するに、 前記一方の板ガラ ス ( 1 A) に貫通孔 ( l a ) を設け、 前記貫通孔 ( l a ) に吸引用ガラス管 (7) を立設し、 前記ガラス管 (7) の基端部と前記一方の板ガラス ( 1 A) の前記貫 通孔 ( l a ) 周縁部とにわたつて低融点ガラス製シール部 (S) を設け、 前記ガ ラス管 (7 ) の先端部を加熱溶融して閉塞した閉塞部 (H) を設けてあるガラス パネルであって、 1. A pair of plate glasses (1) are arranged at intervals in the thickness direction, and are passed through a suction port (6) formed in one of the pair of plate glasses (1A). A glass panel body (P 1) is provided in which a gap (V) between the two glass sheets (1) is depressurized and hermetically sealed to form the suction port (6). ) Is provided with a through hole (la), a suction glass tube (7) is erected in the through hole (la), and a base end of the glass tube (7) and the one glass plate (1 A) are provided. A low melting point glass seal portion (S) is provided over the periphery of the through hole (la), and a closing portion (H) is provided by heating and melting the front end of the glass tube (7) to close it. A glass panel,
前記シール部 (S) の内、 前記一方の板ガラス ( 1 A) に対応する第一シール 部 (S 1 ) を構成する低融点ガラスの熱膨張係数を、 前記一方の板ガラス ( 1 A) の熱膨張係数より小さく設定してあるガラスパネル。  The thermal expansion coefficient of the low melting point glass constituting the first seal portion (S 1) corresponding to the one glass plate (1A) among the seal portions (S) is determined by the heat of the one glass plate (1A). Glass panel set smaller than the expansion coefficient.
2. 前記シール部 (S) の内、 前記ガラス管 (7) に対応する第二シール部2. A second seal portion corresponding to the glass tube (7) in the seal portion (S)
(S 2 ) を構成する低融点ガラスの熱膨張係数を、 前記ガラス管 (7) の熱膨張 係数より大きく設定してある請求項 1に記載のガラスパネル。 The glass panel according to claim 1, wherein a coefficient of thermal expansion of the low-melting glass constituting (S2) is set to be larger than a coefficient of thermal expansion of the glass tube (7).
3. 前記シール部 (S) は、 前記第一シール部 (S 1 ) と前記第二シール部 (S 2) との熱膨張係数を異ならせてあり、 且つ、 前記第一シール部 (S 1 ) と 前記第二シール部 (S 2) との間で傾斜的に熱膨張係数が異なる傾斜係数部を設 けてある請求項 2に記載のガラスパネル。 3. The seal part (S) has a different coefficient of thermal expansion between the first seal part (S 1) and the second seal part (S 2), and the first seal part (S 1) 3. The glass panel according to claim 2, wherein a gradient coefficient part having a different thermal expansion coefficient is provided between the second seal part (S2) and the second seal part (S2).
PCT/JP2000/000142 1999-01-18 2000-01-13 Glass panel WO2000041980A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11009022A JP2000203892A (en) 1999-01-18 1999-01-18 Glass panel
JP11/9022 1999-01-18

Publications (1)

Publication Number Publication Date
WO2000041980A1 true WO2000041980A1 (en) 2000-07-20

Family

ID=11709043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000142 WO2000041980A1 (en) 1999-01-18 2000-01-13 Glass panel

Country Status (2)

Country Link
JP (1) JP2000203892A (en)
WO (1) WO2000041980A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1160217A4 (en) * 1999-12-24 2002-05-22 Nippon Sheet Glass Co Ltd Production method of glass panel and glass panel
WO2003055819A1 (en) * 2001-12-25 2003-07-10 Nippon Sheet Glass Co., Ltd. Double glazing
WO2004048286A1 (en) * 2002-11-22 2004-06-10 Nippon Sheet Glass Co., Ltd. Heat shielding device
CN104411908A (en) * 2012-05-08 2015-03-11 葛迪恩实业公司 Vacuum insulated glass (VIG) window unit including pump-out tube protection ring and/or cap and methods for making same
EP3307977A4 (en) * 2015-06-11 2018-12-05 The University Of Sydney Pump out tube preform
US10358861B2 (en) 2017-02-17 2019-07-23 Vkr Holding A/S Vacuum insulated glazing unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9371683B2 (en) * 2012-05-18 2016-06-21 Guardian Industries Corp. Method and apparatus for making vacuum insulated glass (VIG) window unit including pump-out tube

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002878A1 (en) * 1989-08-23 1991-03-07 The University Of Sydney A thermally insulating glass panel and method of construction
WO1997048650A1 (en) * 1996-06-17 1997-12-24 Nippon Sheet Glass Co., Ltd. Vacuum double glazing unit and method of manufacturing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002878A1 (en) * 1989-08-23 1991-03-07 The University Of Sydney A thermally insulating glass panel and method of construction
WO1997048650A1 (en) * 1996-06-17 1997-12-24 Nippon Sheet Glass Co., Ltd. Vacuum double glazing unit and method of manufacturing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1160217A4 (en) * 1999-12-24 2002-05-22 Nippon Sheet Glass Co Ltd Production method of glass panel and glass panel
WO2003055819A1 (en) * 2001-12-25 2003-07-10 Nippon Sheet Glass Co., Ltd. Double glazing
WO2004048286A1 (en) * 2002-11-22 2004-06-10 Nippon Sheet Glass Co., Ltd. Heat shielding device
CN104411908A (en) * 2012-05-08 2015-03-11 葛迪恩实业公司 Vacuum insulated glass (VIG) window unit including pump-out tube protection ring and/or cap and methods for making same
EP3307977A4 (en) * 2015-06-11 2018-12-05 The University Of Sydney Pump out tube preform
AU2016275569B2 (en) * 2015-06-11 2020-02-27 The University Of Sydney Pump out tube preform
US10358861B2 (en) 2017-02-17 2019-07-23 Vkr Holding A/S Vacuum insulated glazing unit

Also Published As

Publication number Publication date
JP2000203892A (en) 2000-07-25

Similar Documents

Publication Publication Date Title
US7244480B2 (en) Glass panel
JP4819999B2 (en) Double glazing
EP1506945B1 (en) Translucent glass panel
JP4049607B2 (en) Glass panel manufacturing method and glass panel manufactured by the method
US7045181B2 (en) Double glazing
US20020106463A1 (en) Vacuum IG window unit with polymer spacers
WO2001096255A1 (en) Glass panel
EP3508460B1 (en) Glass panel unit and glass window
WO2000004268A1 (en) Glass panel and method of forming the same
US20020064610A1 (en) Glass panel
WO2000041980A1 (en) Glass panel
JPH11311069A (en) Glass panel
JP3312159B2 (en) Glass panel
KR20200130682A (en) Asymmetric vacuum-insulated gauging unit
WO2000041979A1 (en) Glass panel
JP2002255593A (en) Method for manufacturing low pressure double glazing
JP2001335346A (en) Glass panel
JP2000054744A (en) Clearance holding member for glass panel
JP2001180986A (en) Low pressure double glazing
JP2003095680A (en) Method for attaching glass tube
JPH11270242A (en) Double glazing
JPH11324509A (en) Glass panel
JP3295917B2 (en) Fireproof glass panel
JP2005035835A (en) Method for forming discharge port of glass panel and discharge port forming member
JPH11311067A (en) Glass panel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase