WO2000040769A1 - Sputtering target - Google Patents

Sputtering target Download PDF

Info

Publication number
WO2000040769A1
WO2000040769A1 PCT/JP1999/006566 JP9906566W WO0040769A1 WO 2000040769 A1 WO2000040769 A1 WO 2000040769A1 JP 9906566 W JP9906566 W JP 9906566W WO 0040769 A1 WO0040769 A1 WO 0040769A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering target
target
sputtering
less
ceramic
Prior art date
Application number
PCT/JP1999/006566
Other languages
French (fr)
Japanese (ja)
Inventor
Koichi Nakashima
Yoshikazu Kumahara
Keiichi Ishizuka
Original Assignee
Japan Energy Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corporation filed Critical Japan Energy Corporation
Publication of WO2000040769A1 publication Critical patent/WO2000040769A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics

Definitions

  • the present invention is a sputtering target manufactured by a powder metallurgy method made of ceramics such as "indium tin oxide" called IT ⁇ , which generates a small amount of nodules on the target during film formation by sputtering. It relates to a sputtering target in which abnormal discharge and particles are unlikely to occur. Background art
  • “Indium tin oxide” film called “ ⁇ ⁇ ⁇ film” has high conductivity and visible light transmission
  • a sputtering target composed of ceramics having the same composition is generally used, and an oxide powder is usually used as the ceramic sputtering target.
  • the material is integrated by powder metallurgy and densified.
  • a target composed of indium oxide and tin oxide is used when forming an I-O film, and a powder mixture of indium oxide and tin oxide or a dopant is used for this ITO target.
  • the added powder mixture is press-molded at room temperature, sintered in air at 125 ° C to 160 ° C, and then subjected to further machining such as surface grinding.
  • Nodules increase in number and increase as the sputtering time increases, gradually covering the target surface. Nodules have poor conductivity compared to other parts. If the nodules are generated in a large amount, abnormal discharge (arcing) occurs frequently during sputtering, particles are generated in the IT ⁇ film, and the sputtering is maintained. There was a problem that it was difficult to continue.
  • this nodule is caused by the adhesion of the initial particles to the target, but in either case, both increase rapidly with the progress of film formation by sputtering, and abnormal discharge occurs. Tend to increase.
  • the generation of nodules is a problem that appears particularly strongly in ITO sputtering targets for forming transparent conductive films. If the nodules increase abnormally on the target surface, the sputtering operation is temporarily stopped to generate on the target surface. Regeneration treatment, such as scraping off the nodules, has been performed, but such interruption of sputtering has been a factor that significantly reduces productivity in continuous operation. And while this regeneration work itself is simple, it requires a certain amount of skill and time, and is inevitably complicated.
  • An ITO sputtering target is generally obtained by grinding a sintered body with a surface grinder or the like, but grinding powder of I ⁇ adhering to the target surface is generated by nodules. It is presumed to be one of the raw causes. Therefore, it is expected that reducing the amount of ITO grinding powder could reduce the amount of nodules generated. In addition, it was difficult to know and to reduce the amount of ITO grinding powder to its limit on the scale of actual operation.
  • the present invention remarkably improves the above-mentioned problems by adjusting the roughness of the target surface, and more preferably adjusts the density, bulk resistance value and average crystal grain size of the target within an appropriate range to clean the surface.
  • Ceramic sputter which suppresses the generation of nodules during film formation by sputtering and prevents abnormal discharge and particles. Provide the target.
  • the present invention is a.
  • a sputtering target which is a ceramic sputtering target manufactured by a powder metallurgy method, wherein the sputtering target has a center line average roughness Ra of 0.1 ⁇ or less.
  • “Surface center line surface roughness Ra” refers to the surface roughness defined by JIS B0601. Needless to say, in the ceramic sputtering target according to the present invention, the center line surface roughness Ra of the sputter surface is 0.1 ⁇ or less, preferably 0.05 ⁇ or less, more preferably 0.005 / Adjusted to m or less.
  • the “sintering of the compression-molded oxide powder mixture” must be performed using a high oxygen content of 0.1 MPa (1 atm) or more.
  • the density of the target can be increased to a level exceeding 7 gZcm 3 (about 97 to 99% of the theoretical density), and the effect of further suppressing the generation of nodules is brought about.
  • the bulk resistance of the target is also closely related to the sputtering workability, and if the density and the Banolek resistance are adjusted to specific areas, the stability of the film forming operation is further improved, and the high performance IT ⁇ The formability of the film is further improved.
  • the density D of the IT sputtering target is less than 6.70 g / cm 3 , the above effect cannot be sufficiently obtained, while the density is increased to a region exceeding 7.30 g / cm 3 because The sintering method in a high oxygen partial pressure atmosphere is also very difficult, resulting in cost disadvantages.
  • the bulk resistance value p of the ITO sputtering target tends to greatly depend on the density D, and tends to sharply decrease as the density increases.
  • Balta resistance the less the occurrence of peaking during sputtering is preferable.
  • P ⁇ 0.10761 D Achieving +0.66 can be achieved in a high oxygen partial pressure atmosphere.
  • the sintering method is also very difficult.
  • the Balta resistance value p of the ITO sputtering target is in the range of p> —0.067 6D + 0.887, not only the occurrence of abnormal discharge during sputtering increases, but also the stability of the film forming operation is impaired, The phenomenon that the film forming rate becomes unstable and the film forming rate decreases with the progress of sputtering becomes remarkable.
  • the density and bulk resistance of the ITO sputtering target can be adjusted by adjusting the pressing pressure during press molding of the raw material powder, the atmosphere during sintering (oxygen partial pressure), and the sintering temperature. is there.
  • the average crystal grain size of the ITO sputtering target is 4 ⁇ or more, the amount of nodules generated during sputtering cannot be suppressed to a satisfactory level, and abnormal discharge cannot be sufficiently suppressed, and the desired film formation operation and film quality can be improved. Can not secure.
  • a close examination of the ITO sputtering target with an average grain size of 4 ⁇ m or more reveals that there are many voids with an average diameter of 10 ⁇ m or more in the target.
  • the average crystal grain size of the ITO sputtering target is particularly reduced to less than 4 ⁇ , nodule generation and abnormal discharge on the target surface are drastically reduced, and the gas adsorption amount is also reduced. Extremely small, significantly improving film forming operability and film quality.
  • the average crystal grain size of the ITO sputtering target was limited to less than 4 ⁇ .
  • the average crystal grain size will be increased after sintering. Although less than 4 m cannot be achieved, the average particle size is smaller, By sintering with the holding time set to about 10 hours or less or 0, it is possible to achieve an average grain size of less than 4 / im (the maximum grain size at this time is only 8 m) become.
  • Figure 1 shows the integrated power (Wh / cm 2 ) and the nodule coverage. It is a figure (graph) which shows the relationship of / 0 .
  • Figure 2 is an enlarged view of up integrated electricity 40 Wh / cm 2 in FIG. 1 (graph).
  • Fig. 3 is a graph (graph) showing the relationship between the accumulated power (WhZcm 2 ) and the number of abnormal discharges (times).
  • Fig. 4 is an enlarged view (graph) up to the integrated electric energy 4 OWhZcni 2 in Fig. 3.
  • Figure 5 is a diagram showing the relationship between integrated electricity (WhZcm 2) and particle generation number (X 10 2 Quai Zm m 2) (graph).
  • Figure 6 is an enlarged view of up integrated electricity 4 OWhZcm 2 in FIG. 5 (graph).
  • ITO sputtering target for example, indium oxide powder having an average particle size of 2 m and tin oxide powder having the same particle size are weighed so as to have a weight ratio of 90:10, and a molding binder is added thereto. Mix evenly. Next, the mixed powder is filled in a mold, pressed, and sintered at a high temperature.
  • the sintered body of the ITO sputtering target thus obtained is ground with a surface grinder to obtain an ITO target material.
  • the sputter surface of the ITO sputtering target is mirror-finished to have an average surface roughness Ra of 0.1 // m or less, preferably 0.05 m or less, more preferably 0.005 ⁇ or less. .
  • polishing techniques such as mechanical polishing, chemical polishing, and mechanochemical polishing (combination of mechanical polishing and chemical polishing) can be used.
  • abrasive is diamond It can be obtained by wrapping instead of pasting.
  • polishing method There is no particular limitation on such a polishing method, and other polishing methods may be employed as long as the average surface roughness Ra of the present invention can be achieved.
  • the adhering particles (IT ⁇ ground powder) with an average diameter of 0.2 m or more in the 1 mm XI mm area (1 mm square surface) of the sputtered surface of the IT ⁇ sputtering target , The number of which can be 50 or less.
  • the ⁇ average diameter '' means that the attached particles themselves are not circular but have an irregular shape in many cases. I do.
  • the I ⁇ sputtering target obtained by the above operation can significantly reduce the nodule coverage, particles, and abnormal discharge.
  • the sputtering operation is temporarily stopped, and the nodules generated on the target surface are scraped off and regenerated. Even if the treatment is no longer necessary or necessary, the number of such treatments can be reduced, and the productivity can be significantly increased. Examples and comparative examples
  • tin oxide powder having the same particle size as indium oxide powder having an average particle size of 2 / xm was weighed so as to have a weight ratio of 90:10, and this was used for molding.
  • the binder was added and mixed uniformly.
  • this raw material mixed powder was uniformly filled in a mold (165 WX 520 L), and was molded under a pressure of 78.5 MPa (800 kgf / cm 2 ) using a hydraulic press.
  • the compact thus obtained was sintered at 1640 ° C. for 7 hours in a pure oxygen gas atmosphere of 0.1 IMP a (1 atm: absolute pressure) in a high-pressure low-pressure sintering furnace.
  • the sputtered surface of the sintered body thus obtained was ground with a surface grinder, and the sides were cut with a diamond cutter to obtain an ITO target material.
  • the density of this IT target material was 7.05 g / cm 3 .
  • this ITO target material is bonded to a backing plate.
  • polishing was performed with a fixed abrasive polisher (polish liquid: water) to # 2000 or more to obtain an average surface roughness Ra of 0.05 ⁇ .
  • lapping was performed by changing the abrasive material to diamond paste to obtain an average surface roughness Ra of 0.005 m. .
  • the sputter surface was blown with air, and ultrasonic cleaning was performed for 3 minutes by oscillating 12 types of frequencies at 25 kHz intervals in a frequency range of 25 to 300 kHz.
  • the respective frequencies are 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300 kHz.
  • it was air-dried to obtain an IT sputtering target of Examples 1 and 2 of the present invention.
  • a sputtering test was performed on the sputtering target under the following conditions.
  • Sputtering was performed under the above conditions, and changes in the nodule coverage, the number of abnormal discharges, and the number of particles were observed for each integrated power (WhZcm 2 ).
  • Table 1 shows the results of the nodule coverage.
  • “nodule coverage” is the percentage of “nodule area Z erosion area” on the sputtering target surface. Also, this table
  • FIG. 1 To make the results easier to understand, they are shown in Figures 1 and 2.
  • the vertical axis shows the nodule coverage%, and the horizontal axis shows the integrated electric energy (WhZcm 2 ).
  • FIG. 2 is an enlarged view of FIG. 1 in which the integrated power amount is between 0 and 4 OWh / cm 2 .
  • Table 2 shows the results of the abnormal discharge occurrence frequency.
  • the number of times of occurrence of abnormal discharge indicates the number of times of integration at each integrated power amount (Wh / cm 2 ).
  • FIGS. 3 and 4 show the results in Table 2 easier to understand.
  • the vertical axis shows the number of abnormal discharge occurrences (times), and the horizontal axis shows the integrated electric energy (WhZ cm 2 ).
  • FIG. 4 is an enlarged view of FIG. 3 in which the integrated electric energy is between 0 and 4 OWh / cm 2 .
  • Table 3 shows the results of the number of generated particles.
  • the number of generated particles is the number of particles of a size larger than 0.1 observed on the film surface when a film with a thickness of 1 ⁇ is formed at each integrated power (Wh / cm 2 ). Is shown. Similarly, to make the results of Table 3 easier to understand, they are shown in Figs. 5 and 6.
  • the vertical axis Party cycle generation number (X 10 2 Ke / mm 2), the horizontal axis represents the cumulative amount of power (Wh / cm 2).
  • FIG. 6 is an enlarged view of FIG. 5 in which the integrated electric energy is between 0 and 4 OWh / cm 2 .
  • Examples 1 and 2 of the present invention and Comparative Examples 1 and 2 were compared from the initial stage of sputtering. There is a large difference in the number of abnormal discharge occurrences, and Examples 1 and 2 It can be seen that the number of generated particles is suppressed.
  • the characteristics of the example are excellent, but the superiority is particularly remarkable in the target integrated initial electric energy (40 WhZcm 2 or less).
  • the density, the Balta resistance value and the average crystal grain size of the ITO sputtering target are adjusted to appropriate ranges, a more uniform and dense sputtering surface can be obtained, so that the effect of the present invention can be further enhanced.
  • the multi-oscillation ultrasonic cleaning method in which the sputter surface of the ITO sputtering target used in the embodiment of the present invention oscillates multiple times at a frequency of 25 to 300 kHz is effective in suppressing nodules, abnormal discharge, and particles. It has a great effect. The combined use of this is even more effective.
  • the film is formed by sputtering. It is possible to obtain an ITO sputtering target for forming a transparent conductive film, which suppresses the generation of nodules and is resistant to abnormal discharge and particles.

Abstract

A ceramic sputtering target on which few nodules are produced during film formation by sputtering and which hardly causes abnormal discharge and particles to be produced. The surface to be sputtered has an average surface roughness Ra of 0.1 νm or less, preferably 0.05 νm or less, or more preferably 0.005 νm or less.

Description

明 細 書 スパッタリングターゲッ ト 技術分野  Description Sputtering target Technical field
この発明は、 I T〇と呼ばれる 「酸化インジウム一酸化錫」 等のセラミックスか らなる粉末冶金法により製造されたスパッタリングターゲットであり、 スパッタリ ングによる成膜中にターゲット上のノジュールの発生量が少なく、 異常放電やパー ティクルが生じにくいスパッタリングターゲッ卜に関する。 背景技術  The present invention is a sputtering target manufactured by a powder metallurgy method made of ceramics such as "indium tin oxide" called IT〇, which generates a small amount of nodules on the target during film formation by sputtering. It relates to a sputtering target in which abnormal discharge and particles are unlikely to occur. Background art
近年、 電子機器類の分野を中心に、 「スパッタリング法」 によって基材表面にセ ラミックス薄膜を形成させる技術が大いに適用されるようになってきた。 例えば In recent years, the technique of forming a ceramic thin film on the surface of a base material by the “sputtering method” has been widely applied, mainly in the field of electronic equipment. For example
「Ι Τ Ο膜」 と呼ばれる 「酸化インジウム一酸化錫」 膜は高導電性と可視光透過性“Indium tin oxide” film called “Ι Τ Ο film” has high conductivity and visible light transmission
(透明性) を有していることから、 最近では液晶表示装置、 薄膜エレク トロノレミネ ッセンス表示装置、 放射線検出素子、 端末機器の透明タブレット、 窓ガラスの結露 防止用発熱膜、 帯電防止膜あるいは太陽光集熱機器用選択透過膜等といった多岐に わたる用途に供されているが、 この I丁〇膜の形成手段として、 大面積で品質の良 い膜を再現性良く成膜できるスパッタリング法の採用が広まってきている。 (Transparency), these days, liquid crystal display devices, thin-film electroluminescence display devices, radiation detectors, transparent tablets for terminal equipment, heating films for preventing condensation on window glass, antistatic films, or sunlight It is used in a wide variety of applications, such as selective permeation membranes for heat collectors. Is spreading.
ところで、 このスパッタリング法によってセラミックス薄膜を形成する場合には、 一般に同様組成のセラミックスで構成されたスパッタリングタ一ゲッ卜が使用され ており、 またこのセラミックススパッタリングタ一ゲットとしては通常は酸化物粉 末^料を粉末冶金法にて一体化し緻密化したものが用いられている。 (例えば I Τ ο膜を形成する場合には酸化インジィゥムと酸化錫から成るターゲッ卜が使用され るが、 この I T Oターゲッ卜には酸化インジウムと酸化錫の粉末混合体あるいはこ れにド一パントを添加した粉末混合体を常温でプレス成形し、 これを大気中にて 1 2 5 0 ° C〜l 6 5 0 ° Cで焼結してから更に平面研削等の機械加工を施したもの が一般に用いられる。 ) し力 しながら、 上述のようなセラミックスタ一ゲットを使用したスパッタリング 成膜の需要増に伴い 「スパッタリング時にターゲット表面にノジュール (針状の突 起物) が発生する現象」 に注目がなされ、 これが異常放電やパーティクルの発生に つながって作業性低下や形成される薄膜の品質劣化を引き起こす原因になっている として問題視されるようになった。 When a ceramic thin film is formed by this sputtering method, a sputtering target composed of ceramics having the same composition is generally used, and an oxide powder is usually used as the ceramic sputtering target. The material is integrated by powder metallurgy and densified. (For example, a target composed of indium oxide and tin oxide is used when forming an I-O film, and a powder mixture of indium oxide and tin oxide or a dopant is used for this ITO target. The added powder mixture is press-molded at room temperature, sintered in air at 125 ° C to 160 ° C, and then subjected to further machining such as surface grinding. Used.) However, attention has been paid to the phenomenon of “nodules (needle-like projections) on the target surface during sputtering” due to the increased demand for sputtering film formation using ceramic targets as described above. It has been regarded as a problem because it leads to abnormal discharge and generation of particles, which leads to deterioration of workability and deterioration of quality of the formed thin film.
ノジュールはスパッタリング時間が長くなるに従って数が増えると同時に大きく なっていき、 次第にターゲット表面を覆っていく。 ノジュールは他の部分に比べて 導電性が悪く、 このノジュールの発生量が多いとスパッタリング中に異常放電 (ァ —キング) が多発し、 I T〇膜中にパーティクルが生じたり、 ひいてはスパッタリ ングを維続することが困難となるという問題があった。  Nodules increase in number and increase as the sputtering time increases, gradually covering the target surface. Nodules have poor conductivity compared to other parts. If the nodules are generated in a large amount, abnormal discharge (arcing) occurs frequently during sputtering, particles are generated in the IT〇 film, and the sputtering is maintained. There was a problem that it was difficult to continue.
また、 このノジュールの発生は初期パーティクルのターゲットへの付着が原因で あるとも言われているが、 いずれが原因であるにしてもスパッタリングによる成膜 の進行とともに両者が急速に増加し、 また異常放電も多くなるという傾向がある。 ノジュールの発生は、 透明導電膜形成用 I T Oスパッタリングターゲットに特に 強く現われる問題であり、 タ一ゲット面にノジュールが異常に増加してきた場合に は、 スパッタリング操作を一時停止して、 ターゲッ ト表面に生成したノジュールを 削り落とすなどの再生処理がとられているが、 このようなスパッタリングの中断は 連続操業においては、 著しく生産性を落とす要因となっている。 そして、 この再生 作業自体も単純ではあるが、 それなりの技能と時間を要するもので、 煩雑さを免れ ない。  It is also said that the generation of this nodule is caused by the adhesion of the initial particles to the target, but in either case, both increase rapidly with the progress of film formation by sputtering, and abnormal discharge occurs. Tend to increase. The generation of nodules is a problem that appears particularly strongly in ITO sputtering targets for forming transparent conductive films.If the nodules increase abnormally on the target surface, the sputtering operation is temporarily stopped to generate on the target surface. Regeneration treatment, such as scraping off the nodules, has been performed, but such interruption of sputtering has been a factor that significantly reduces productivity in continuous operation. And while this regeneration work itself is simple, it requires a certain amount of skill and time, and is inevitably complicated.
また、 上記のノジュールを削り落とすという再生処理には限界があり、 新しく作 成した I T Oスパッタリングターゲッ卜と同程度までの再生は、 実際には困難であ る。.その結果、 ターゲットを使いきる (通常の状態で消耗していくターゲットの寿 命) 前に、 ノジュール発生量増加が原因でターゲット使用不能になる場合も多い。 このため、 生産性および材料コス トの両面からノジュールの発生量が少ない I T O スパッタリングターゲットが求められている。  Also, there is a limit to the regeneration process of scraping off the above-mentioned nodules, and it is actually difficult to regenerate to the same extent as a newly created ITO sputtering target. As a result, the target often becomes unusable due to an increase in nodule generation before the target is exhausted (lifetime of the target being consumed under normal conditions). For this reason, there is a need for an ITO sputtering target with low nodule generation in terms of both productivity and material cost.
I T Oスパッタリングターゲットは一般に焼結体を平面研削盤などにより研削加 ェして得られるが、 ターゲット表面に付着している I τ〇の研削粉がノジュール発 生原因の一つであると推測されている。 そこで、 この I T Oの研削粉の量を減らす ことによってノジュ一ル発生量を減少させることができるのではないかと期待され ているが、 これまでノジュール低減効果が現れ始める I T Oの研削粉量の限界値を 知ること、 また実操業規模でその限界値まで I T Oの研削粉量を減少させることは 困難であった。 An ITO sputtering target is generally obtained by grinding a sintered body with a surface grinder or the like, but grinding powder of I τ〇 adhering to the target surface is generated by nodules. It is presumed to be one of the raw causes. Therefore, it is expected that reducing the amount of ITO grinding powder could reduce the amount of nodules generated. In addition, it was difficult to know and to reduce the amount of ITO grinding powder to its limit on the scale of actual operation.
そのため、 試行錯誤的にターゲット表面に付着している研削粉の量を減少させよ うとして、 湿式回転研磨機を用いて研磨する技術が提案されたり (特開平 8— 6 0 3 5 2号公報) 、 またサンドブラス トにより研削屑を減少させる工夫がなされた (特開平 9— 1 0 4 9 7 3号公報) 。  For this reason, there has been proposed a technique of polishing using a wet rotary polishing machine in an attempt to reduce the amount of grinding powder adhering to the target surface by trial and error (Japanese Patent Application Laid-Open No. 8-63052). In addition, a device was devised to reduce grinding debris by sand blasting (Japanese Patent Application Laid-Open No. 9-104793).
しかし、 これらの方法はある程度、 研削粉の量を減らすことはできる力 依然と して研削された I T Oの屑などが多量に付着しており、 充分とは言えなかった。 し たがって、 このように研削粉の量の限界値が不明である以上、 ターゲット表面に付 着している研削粉の量がノジュール発生原因の一^ 3であるという確証も、 実際のと ころ得られていなかったと言う方が正しいと思われる。  However, these methods were not sufficient, because to a certain extent, they could reduce the amount of grinding powder, but still had a large amount of ground ITO debris attached. Therefore, since the limit value of the amount of grinding powder is unknown, it is actually confirmed that the amount of grinding powder adhering to the target surface is one of the causes of nodule generation. It would be more correct to say that they had not been obtained.
以上の問題点は、 ターゲット表面の清浄度を中心に述べてきたが、 I T Oスパッ タリングターゲットの粗度 (粗さ) 力 ノジュール、 パーティクルあるいは異常放 電の発生に関連していると考えることは従来全くなかった。  Although the above problems have been described with a focus on the cleanliness of the target surface, it has not been considered that these problems are related to the generation of nodules, particles, or abnormal discharges of the ITO sputtering target. Not at all.
しかし、 後述するように、 ターゲット表面の清浄度に増して、 さらに表面の粗さ が直接的にかつ大きく影響し、 とくにタ一ゲット使用初期から中期段階でのでの影 響が著しいことが分かった。 従来は I丁〇スパッタリングターゲットにおいてこの ような現象及びこれらを解明したものは存在せず、 ノジュール、 パーティクルある レ、は異常放電が多発し、 根本的解決に至つていないのが現状である。 発明の開示  However, as will be described later, it was found that the roughness of the surface directly and greatly affected the cleanliness of the target surface, especially in the early to middle stages of target use. . Conventionally, there has been no such phenomenon and no clarification of such phenomena in the I target sputtering target, and nodules, particles, and other abnormal discharges have occurred frequently, and the fundamental solution has not been reached. Disclosure of the invention
本発明は、 ターゲット表面の粗さを調整することにより上記問題点を飛躍的に改 善し、 さらに好ましくはターゲットの密度及びバルク抵抗値、 平均結晶粒径を適性 範囲に調整し、 表面の清浄化を進め、 スパッタリングによる成膜の際のノジュール の発生を抑制し、 異常放電やパーティクルが生じにくいセラミックススパッタリン グターゲットを提供する。 The present invention remarkably improves the above-mentioned problems by adjusting the roughness of the target surface, and more preferably adjusts the density, bulk resistance value and average crystal grain size of the target within an appropriate range to clean the surface. Ceramic sputter, which suppresses the generation of nodules during film formation by sputtering and prevents abnormal discharge and particles. Provide the target.
本発明は、  The present invention
1 粉末冶金法により製造されたセラミックススパッタリングタ一ゲットであって、 スパッタ表面の中心線平均粗さ R aが 0. 1 μπι以下であることを特徴とするスパ ッタリングターゲット  1 A sputtering target, which is a ceramic sputtering target manufactured by a powder metallurgy method, wherein the sputtering target has a center line average roughness Ra of 0.1 μπι or less.
2 粉末冶金法により製造されたセラミックススパッタリングターゲッ卜であって、 スパッタ表面の中心線平均粗さ R aが 0. 05 m以下であることを特徴とするス ノ ッタリングタ一ゲッ卜  (2) A ceramic sputtering target manufactured by a powder metallurgy method, wherein a center line average roughness Ra of a sputtering surface is 0.05 m or less.
3 粉末冶金法により製造されたセラミックススパッタリングターゲットであって、 スパッタ表面の中心線平均粗さ R aが 0. 005 μπι以下であることを特徴とする スノ ッタリングターゲット  (3) A ceramic sputtering target manufactured by a powder metallurgy method, wherein the center line average roughness Ra of the sputtering surface is 0.005 μπι or less.
4 前記セラミックスが I TO、 I n:03、 S ηθ: 、 Ζ ηΟ、 MgO、 A 1 ι O S b 20s, Ga 2〇3、 S i C 、 Τ i C 等の酸化物セラミックス又はこれ らの複合セラミックスであることを特徴とする上記 1から 3までのそれぞれに記載 のスパッタリングターゲット 4 wherein the ceramic I TO, I n: 0 3 , S ηθ:, Ζ ηΟ, MgO, A 1 ι OS b 20s, Ga 2 Rei_3, S i C, oxides such as T i C ceramics or these The sputtering target according to any one of the above items 1 to 3, which is a composite ceramic.
5 密度 D (gZcm3 ) とバルタ抵抗値 p (mQ c m) が下記 2つの式を同時 に満たして成ることを特徴とする上記 4記載の I TOスパッタリングタ一ゲット(5) The ITO sputtering target as described in (4) above, wherein the density D (gZcm 3 ) and the Balta resistance value p (mQ cm) satisfy the following two equations simultaneously.
(a) 6. 70≤D≤ 7. 30 (a) 6.70≤D≤7.30
(b) — 0. 0676D+ 0. 887≥ p≥-0. 0761 D+0. 666  (b) — 0.0676D + 0.887≥ p≥-0. 0761 D + 0.666
6 ターゲットの平均結晶粒径が 4 μ m未満であることを特徴とする上記 4又は 5 記載のスパッタリングタ一ゲット  (6) The sputtering target as described in (4) or (5) above, wherein the average crystal grain size of the target is less than 4 μm.
、 を提供する。 , I will provide a.
¾下、 本発明において、 セラミックススパッタリングターゲットのスパッタ表面 の 「中心線表面粗さ Ra」 及び I T〇スパッタリングターゲットのスパッタ表面の In the present invention, the “center line surface roughness Ra” of the sputter surface of the ceramic sputtering target and the “
「中心線表面粗さ Ra」 、 その 「密度 D」 及び 「バルク抵抗値 <0」 並びに 「平均結 晶粒径」 をそれぞれ前記の如くに限定した理由を、 その作用と共に説明する。 The reason why the “center line surface roughness Ra”, the “density D”, the “bulk resistance value <0”, and the “average crystal grain size” are each limited as described above will be described together with the operation thereof.
A) 表面の中心線表面粗さ R a A) Surface center line surface roughness Ra
「表面の中心線表面粗さ R a」 とは J I Sの B 0601で定義される表面粗さを指 すことは言うまでもないが、 本発明の係わるセラミックススパッタリングタ一ゲッ トではスパッタ表面の中心線表面粗さ R aは 0. 1 μπι以下、 好ましくは 0. 05 μπι以下、 さらに好ましくは 0. 005 / m以下に調整される。 "Surface center line surface roughness Ra" refers to the surface roughness defined by JIS B0601. Needless to say, in the ceramic sputtering target according to the present invention, the center line surface roughness Ra of the sputter surface is 0.1 μπι or less, preferably 0.05 μπι or less, more preferably 0.005 / Adjusted to m or less.
これは、 スパッタリング中のノジュールや異常放電やパーティクルの発生量がス パッタ表面の中心線表面粗さ R aに依存するためであり、 上記 Raが 0. 1 mを 超えるとノジュール、 異常放電及びパーティクルの発生量を十分に抑制できなくな る上、 スパッタリング装置からのァゥトガスに起因してタ一ゲット表面に吸着する ガスの量も多くなり、 高性能膜の安定形成が困難となるためである。  This is because the amount of nodules, abnormal discharges, and particles generated during sputtering depends on the center line surface roughness Ra of the sputter surface, and when Ra exceeds 0.1 m, nodules, abnormal discharges, and particles are generated. This is because the amount of gas generated cannot be sufficiently suppressed, and the amount of gas adsorbed on the target surface due to the art gas from the sputtering device also increases, making it difficult to form a high-performance film stably.
B) 密度及びバルタ抵抗値 B) Density and Balta resistance
セラミックススパッタリングタ一ゲットが I T〇スパッタリングタ一ゲッ 卜の場 合には、 その製造に当たって 「圧縮成形した酸化物粉末混合体の焼結」 を 0. 1M P a (1気圧) 以上の高い酸素分圧雰囲気中で実施すると得られるターゲットの密 度を 7 gZcm3 を超える程度 (理論密度の 97〜 99%程度) にまで高めるこ とができ、 ノジュール発生をより一層抑える効果がもたらされる。 In the case where the ceramic sputtering target is an IT sputtering target, the “sintering of the compression-molded oxide powder mixture” must be performed using a high oxygen content of 0.1 MPa (1 atm) or more. When the test is performed in a pressurized atmosphere, the density of the target can be increased to a level exceeding 7 gZcm 3 (about 97 to 99% of the theoretical density), and the effect of further suppressing the generation of nodules is brought about.
更に、 タ一ゲットのバルク抵抗値もスパッタリング作業性と密接に関係しており、 密度とバノレク抵抗値が特定の領域に調整されると成膜操作の安定性が一段と改善さ れ、 高性能 I T〇膜の形成性はより一層向上する。  Furthermore, the bulk resistance of the target is also closely related to the sputtering workability, and if the density and the Banolek resistance are adjusted to specific areas, the stability of the film forming operation is further improved, and the high performance IT 〇 The formability of the film is further improved.
したがって、 I TOスパッタリングターゲットにおいては、 その密度 D及びバル ク抵抗値 Pを調整することも推奨されることである。  Therefore, it is recommended to adjust the density D and bulk resistance value P of the ITO sputtering target.
ただし、 I T〇スパッタリングターゲットの密度 Dが 6. 70 g/cm3 を下 回ると前記効果が十分に得られず、 一方 7. 30 g/cm3 を上回る領域にまで 密度を上昇させるのは 「高酸素分圧雰囲気中焼結法」 によっても非常に困難で、 コ ス ト的な不利を招く。 However, if the density D of the IT sputtering target is less than 6.70 g / cm 3 , the above effect cannot be sufficiently obtained, while the density is increased to a region exceeding 7.30 g / cm 3 because The sintering method in a high oxygen partial pressure atmosphere is also very difficult, resulting in cost disadvantages.
また、 I TOスパッタリングタ一ゲットのバルク抵抗値 pはその密度 Dに大きく 依存する傾向があり、 密度が高くなると急激に低下する傾向を示す。  In addition, the bulk resistance value p of the ITO sputtering target tends to greatly depend on the density D, and tends to sharply decrease as the density increases.
そして、 このバルタ抵抗値が低い程スパッタ時におけるァ一キンングの発生が少 ないので好ましいが、 密度 6. 70 g/cm3 〜7. 30 g/cm3 の領域で P <一 0. 0761 D+0. 666を達成することは 「高酸素分圧雰囲気中 焼結法」 によっても非常に困難である。 The lower the Balta resistance is, the less the occurrence of peaking during sputtering is preferable. However, in the range of the density of 6.70 g / cm 3 to 7.30 g / cm 3 , P <0.10761 D Achieving +0.66 can be achieved in a high oxygen partial pressure atmosphere. The sintering method is also very difficult.
一方、 I TOスパッタリングターゲットのバルタ抵抗値 pが p >— 0. 067 6D+0. 887の領域になるとスパッタ時における異常放電の発生が多くなって 成膜操作の安定性が損なわれるばかりか、 成膜速度の不安定となってスパッタの進 行に伴い成膜速度が低下する現象が著しくなる。  On the other hand, when the Balta resistance value p of the ITO sputtering target is in the range of p> —0.067 6D + 0.887, not only the occurrence of abnormal discharge during sputtering increases, but also the stability of the film forming operation is impaired, The phenomenon that the film forming rate becomes unstable and the film forming rate decreases with the progress of sputtering becomes remarkable.
従って、 I TOスパッタリングターゲッ卜のバルタ抵抗値 ρは  Therefore, the Balta resistance ρ of the ITO sputtering target is
一 0. 0676D+0. 887≥ ρ ≥ー0. 0761 D+0. 666 の範囲に調整するのが望ましい。  It is desirable to adjust to the range of 0.0676D + 0.887≥ρ≥-0.0761D + 0.6666.
また、 I TOスパッタリングターゲットの密度及びバルク抵抗値の調整は、 原料 粉をプレス成形する際のプレス圧、 焼結時の雰囲気 (酸素分圧) 、 焼結温度等を調 節することによって可能である。  In addition, the density and bulk resistance of the ITO sputtering target can be adjusted by adjusting the pressing pressure during press molding of the raw material powder, the atmosphere during sintering (oxygen partial pressure), and the sintering temperature. is there.
C) 平均結晶粒径  C) Average grain size
I TOスパッタリングターゲットの平均結晶粒径が 4 μιη以上ではスパッタリン グ時のノジュール発生量を満足できる程に抑えることができずに異常放電も十分に 抑制されず、 所望の成膜操業、 膜質を確保することができない。  If the average crystal grain size of the ITO sputtering target is 4 μιη or more, the amount of nodules generated during sputtering cannot be suppressed to a satisfactory level, and abnormal discharge cannot be sufficiently suppressed, and the desired film formation operation and film quality can be improved. Can not secure.
なお、 平均結晶粒径が 4 μ m以上の I TOスパッタリングタ一ゲットを仔細に調 査すると、 ターゲット中に存在する平均直径 10 μ m以上のボイ ドが多いようにも 認められる。  A close examination of the ITO sputtering target with an average grain size of 4 μm or more reveals that there are many voids with an average diameter of 10 μm or more in the target.
これに対して、 I TOスパッタリングタ一ゲッ 卜の平均結晶粒径を特に 4 μπι未 満にまで微細化した場合には、 ターゲット表面でのノジュール発生や異常放電が激 減すると同時にガス吸着量も極めて少なく、 成膜操業性や形成される膜質が顕著に 改善される。  On the other hand, when the average crystal grain size of the ITO sputtering target is particularly reduced to less than 4 μπι, nodule generation and abnormal discharge on the target surface are drastically reduced, and the gas adsorption amount is also reduced. Extremely small, significantly improving film forming operability and film quality.
従って、 I TOスパッタリングタ一ゲッ卜の平均結晶粒径を 4 μπι未満と限定し た。  Therefore, the average crystal grain size of the ITO sputtering target was limited to less than 4 μπι.
なお、 一般的な原料を用い従来の考え方に従って 「焼結時間は長いほど良い」 と して、 10時間を超える焼結を施したのでは、 粒成長が起きて焼結後に平均結晶粒 径が 4 m未満を達成することができないが、 平均粒径のより小さレ、原料を用レ、保 持時間を 10時間以下程度あるいは 0に設定して焼結を行なうことで、 平均結晶粒 径が 4 /im未満 (この時の最大結晶粒径は 8 m止まりである) を達成することが 可能になる。 図面の簡単な説明 In addition, if sintering is performed for more than 10 hours using conventional raw materials and sintering for longer than 10 hours according to the conventional concept, the average crystal grain size will be increased after sintering. Although less than 4 m cannot be achieved, the average particle size is smaller, By sintering with the holding time set to about 10 hours or less or 0, it is possible to achieve an average grain size of less than 4 / im (the maximum grain size at this time is only 8 m) become. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 積算電力量 (Wh/cm2 ) とノジュール被覆率。 /0の関係を示す図 (グラフ) である。 Figure 1 shows the integrated power (Wh / cm 2 ) and the nodule coverage. It is a figure (graph) which shows the relationship of / 0 .
図 2は、 図 1の積算電力量 40 Wh/cm2 までの拡大図 (グラフ) である。 図 3は、 積算電力量 (WhZcm2 ) と異常放電発生回数 (回) の関係を示す 図 (グラフ) である。 Figure 2 is an enlarged view of up integrated electricity 40 Wh / cm 2 in FIG. 1 (graph). Fig. 3 is a graph (graph) showing the relationship between the accumulated power (WhZcm 2 ) and the number of abnormal discharges (times).
図 4は、 図 3の積算電力量 4 OWhZcni2 までの拡大図 (グラフ) である。 図 5は、 積算電力量 (WhZcm2 ) とパーティクル発生数 (X 102 ケ Zm m2 ) の関係を示す図 (グラフ) である。 Fig. 4 is an enlarged view (graph) up to the integrated electric energy 4 OWhZcni 2 in Fig. 3. Figure 5 is a diagram showing the relationship between integrated electricity (WhZcm 2) and particle generation number (X 10 2 Quai Zm m 2) (graph).
図 6は、 図 5の積算電力量 4 OWhZcm2 までの拡大図 (グラフ) である。 発明の実施の形態 Figure 6 is an enlarged view of up integrated electricity 4 OWhZcm 2 in FIG. 5 (graph). Embodiment of the Invention
I TOスパッタリングターゲットの製造に際しては、 例えば平均粒径が 2 mの 酸化インジウム粉と同粒径の酸化錫粉を重量比 90 : 10となるように秤量し、 こ れに成形用バインダーを加えて均一に混合する。 次に、 この混合粉を金型に充填し、 加圧成形した後、 高温で焼結して得る。  When manufacturing an ITO sputtering target, for example, indium oxide powder having an average particle size of 2 m and tin oxide powder having the same particle size are weighed so as to have a weight ratio of 90:10, and a molding binder is added thereto. Mix evenly. Next, the mixed powder is filled in a mold, pressed, and sintered at a high temperature.
このようにして得た I T〇スパッタリングタ一ゲット焼結体を平面研削盤で研削 して I TOタ一ゲット素材とする。  The sintered body of the ITO sputtering target thus obtained is ground with a surface grinder to obtain an ITO target material.
ここで、 I TOスパッタリングターゲットのスパッタ面に鏡面加工を施して、 平 均表面粗さ Raが 0. 1 //m以下、 好ましくは 0. 05 m以下、 より好ましくは 0. 005 μπι以下とする。  Here, the sputter surface of the ITO sputtering target is mirror-finished to have an average surface roughness Ra of 0.1 // m or less, preferably 0.05 m or less, more preferably 0.005 μπι or less. .
この鏡面加工 (研磨) は機械的な研磨、 化学研磨、 メカノケミカル研磨 (機械的 な研磨と化学研磨の併用) 等の、 すでに知られている研磨技術を用いることができ る。 例えば、 固定砥粒ポリッシャ一 (ポリッシュ液:水) で # 2 0 0 0以上にポリッ シングしたり、 又は遊離砥粒ラップ (研磨材: S i Cペースト等) にてラッピング 後、 研磨材をダイヤモンドペース卜に換えてラッピングすることによって得ること ができる。 このような研磨方法には特に制限はなく、 上記本発明の平均表面粗さ R aが達せられれば、 他の研磨方法を採用してもよい。 For this mirror finishing (polishing), known polishing techniques such as mechanical polishing, chemical polishing, and mechanochemical polishing (combination of mechanical polishing and chemical polishing) can be used. For example, after polishing with a fixed abrasive polisher (polishing liquid: water) to # 200 or more, or lapping with loose abrasive wrap (abrasive: ic paste etc.), the abrasive is diamond It can be obtained by wrapping instead of pasting. There is no particular limitation on such a polishing method, and other polishing methods may be employed as long as the average surface roughness Ra of the present invention can be achieved.
次に、 エアーブローあるいは流水洗浄などの清浄処理を行なった後に、 超音波洗 浄等を行なう。 この超音波洗浄は周波数 2 5 k H z〜 1 . 5 MH zの間で多重発振 させて行なう方法が有効である。 例えば周波数 2 5 k H z〜 3 0 0 k H zの間で、 2 5 k H z刻みに 1 2種類の周波数を多重発振させて超音波洗浄を行なうのが良レ、。 以上の操作により、 I T〇スパッタリングタ一ゲットのスパッタされる表面の 1 mm X I mmのエリア (1 mm平方の面) に存在する平均直径 0 . 2 m以上の付 着粒子 (I T〇研削粉) の数、 5 0個以下とすることができる。  Next, after performing cleaning processing such as air blow or running water cleaning, ultrasonic cleaning or the like is performed. It is effective to carry out this ultrasonic cleaning by performing multiple oscillations at a frequency of 25 kHz to 1.5 MHz. For example, it is good to perform ultrasonic cleaning by oscillating 12 types of frequencies in multiples of 25 kHz at a frequency of 25 kHz to 300 kHz. By the above operation, the adhering particles (IT〇 ground powder) with an average diameter of 0.2 m or more in the 1 mm XI mm area (1 mm square surface) of the sputtered surface of the IT〇 sputtering target , The number of which can be 50 or less.
なお、 ここで 「平均直径」 とは、 付着粒子そのものが円形ではなく異形を呈して いることが多いので、 粒子の差し渡し寸法の平均値を円形に置き換えた場合の径の 直径とすることを意味する。  Here, the `` average diameter '' means that the attached particles themselves are not circular but have an irregular shape in many cases. I do.
以上の操作により得た I Τ〇スパッタリングタ一ゲットはノジュールの被覆率、 パーティクル及び異常放電を著しく減少させることができ、 スパッタリング操作を 一時停止させてターゲット表面に生成したノジュールを削り落とすなどの再生処理 が不要となり、 あるいは必要とされた場合でも、 その回数を減少することができ、 生産性を著しく高めることが可能となつた。 実施例および比較例  The I Τ〇 sputtering target obtained by the above operation can significantly reduce the nodule coverage, particles, and abnormal discharge.The sputtering operation is temporarily stopped, and the nodules generated on the target surface are scraped off and regenerated. Even if the treatment is no longer necessary or necessary, the number of such treatments can be reduced, and the productivity can be significantly increased. Examples and comparative examples
続いて、 本発明を実施例により比較例と対比しながら説明する。  Next, the present invention will be described with reference to examples and comparative examples.
(実施例 1及び実施例 2 )  (Examples 1 and 2)
I Τ〇スパッタリングターゲッ卜の製造に際しては、 まず平均粒径が 2 /x mの酸 化インジウム粉と同粒度の酸化錫粉を重量比 9 0 : 1 0となるように秤量し、 これ に成形用バインダーを加えて均一に混合した。 次に、 この原料混合粉を金型 (165WX 520 L) へ均一に充填し、 油圧プレ スにて 78. 5MP a ( 800 K g f / c m2) の圧力で加圧成形した。 このよう にして得た成形体を力. Π圧焼結炉により、 0. IMP a (1気圧:絶対圧) の純酸素 ガス雰囲気中にて 1640° Cで 7時間焼結した。 I に 際 し て When manufacturing a sputtering target, first, tin oxide powder having the same particle size as indium oxide powder having an average particle size of 2 / xm was weighed so as to have a weight ratio of 90:10, and this was used for molding. The binder was added and mixed uniformly. Next, this raw material mixed powder was uniformly filled in a mold (165 WX 520 L), and was molded under a pressure of 78.5 MPa (800 kgf / cm 2 ) using a hydraulic press. The compact thus obtained was sintered at 1640 ° C. for 7 hours in a pure oxygen gas atmosphere of 0.1 IMP a (1 atm: absolute pressure) in a high-pressure low-pressure sintering furnace.
このようにして得られた焼結体のスパッタ表面を平面研削盤で研削し、 さらに側 辺をダイヤモンドカッターで切断して、 I TOターゲット素材とした。 この I T〇 タ一ゲット素材の密度は 7. 05 g/cm3 であった。 The sputtered surface of the sintered body thus obtained was ground with a surface grinder, and the sides were cut with a diamond cutter to obtain an ITO target material. The density of this IT target material was 7.05 g / cm 3 .
次に、 この I TOターゲット素材をバッキングプレートにボンディングする。 ボ ンデイング後の表面仕上げ工程で、 実施例 1では固定砥粒ポリツシャ一 (ポリッシ ュ液:水) で # 2000以上にポリツシング (表面研磨) して平均表面粗さ R a 0. 05 μπιとし、 実施例 2では遊離砥粒ラップ (研磨材: S i Cペースト等) にてラ ッピング後、 研磨材をダイヤモンドペーストに換えてラッピング (表面研磨) して 平均表面粗さ R a 0. 005 mとした。  Next, this ITO target material is bonded to a backing plate. In the surface finishing process after bonding, in Example 1, polishing was performed with a fixed abrasive polisher (polish liquid: water) to # 2000 or more to obtain an average surface roughness Ra of 0.05 μπι. In Example 2, after lapping with loose abrasive wrap (abrasive material: SiC paste, etc.), lapping (surface polishing) was performed by changing the abrasive material to diamond paste to obtain an average surface roughness Ra of 0.005 m. .
次に、 スパッタ面をエア一ブローし、 さらに周波数 25〜300 kH zの間で 2 5 kHz刻みに 12種類の周波数を多重発振させて 3分間超音波洗浄を行なった。 それぞれの周波数は、 25、 50、 75、 100、 125、 150、 175、 20 0、 225、 250、 275、 300 kHzである。 この後、 自然乾燥して本発明 の実施例 1及び 2である I T〇スパッタリングターゲットを得た。  Next, the sputter surface was blown with air, and ultrasonic cleaning was performed for 3 minutes by oscillating 12 types of frequencies at 25 kHz intervals in a frequency range of 25 to 300 kHz. The respective frequencies are 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300 kHz. Thereafter, it was air-dried to obtain an IT sputtering target of Examples 1 and 2 of the present invention.
(比較例 1及び比較例 2 )  (Comparative Example 1 and Comparative Example 2)
実施例 1及び 2と同一の I Τ〇スパッタリングターゲット焼結体素材を用い、 比 較例 1ではサンドペーパーを用いて加工し平均表面粗さ Ra 1. O /zmとし、 また 比較例 2ではサンドブラストを用いて加工し平均表面粗さ R a 2. Ομπιとした。 この後の洗浄処理は実施例 1及び 2と同一の多重発振超音波洗浄を行なった。 (すなわち、 比較例 1及び比較例 2は平均表面粗さとその処理条件が異なるのみで、 他の処理は全て実施例と同一の条件とした。 ) O 00/40769 The same IΤ〇 sputtering target material as in Examples 1 and 2 was used. In Comparative Example 1, processing was performed using sandpaper to obtain an average surface roughness Ra 1. O / zm. In Comparative Example 2, sand blasting was performed. To obtain an average surface roughness R a 2. Ομπι. In the subsequent cleaning treatment, the same multi-oscillation ultrasonic cleaning as in Examples 1 and 2 was performed. (That is, Comparative Example 1 and Comparative Example 2 differed only in the average surface roughness and the processing conditions, and all other processing was performed under the same conditions as the examples.) O 00/40769
10 Ten
(実施例 1及び実施例 2並びに比較例 1及び比較例 2との比較テストと対比) 上記の通りに作成した実施例 1及び 2並びに比較例 1及び 2の I  (Comparison with Comparative Tests of Examples 1 and 2 and Comparative Examples 1 and 2) I of Examples 1 and 2 and Comparative Examples 1 and 2 prepared as described above
ングターゲットを次の条件で、 スパッタリング試験を行なった。 A sputtering test was performed on the sputtering target under the following conditions.
A r +Οι  A r + Οι
スパッタガス圧 0. 5 P a  Sputter gas pressure 0.5 Pa
スパッタガス流量 300 S C CM (Standard Cubic Centimeter per Minute)  Sputter gas flow rate 300 S C CM (Standard Cubic Centimeter per Minute)
スパッタガス中の酸素濃度 1%  Oxygen concentration in sputtering gas 1%
漏洩磁束密度 0. IT (l O O OGa u s s)  Leakage magnetic flux density 0. IT (l O O OGauss)
投入スパッタパヮ一密度 1 W/ c m2 Input sputter density 1 W / cm 2
上記の条件でスパッタリングし、 積算電力量 (WhZcm2 ) ごとにノジュール 被覆率、 異常放電発生回数及びパーティクルの発生数の推移を見た。 Sputtering was performed under the above conditions, and changes in the nodule coverage, the number of abnormal discharges, and the number of particles were observed for each integrated power (WhZcm 2 ).
そのノジュール被覆率の結果を表 1に示す。  Table 1 shows the results of the nodule coverage.
表 1 table 1
Figure imgf000012_0001
表 1で 「ノジュール被覆率」 とはスパッタリングターゲット表面における 「ノジ ユール面積 Zエロージョン部面積」 の比率を%表示したものである。 また、 この表
Figure imgf000012_0001
In Table 1, “nodule coverage” is the percentage of “nodule area Z erosion area” on the sputtering target surface. Also, this table
1結果を分かりやすくするために、 図 1と図 2に示す。 縦軸はノジュール被覆率%、 横軸は積算電力量 (WhZcm2 ) を示す。 なお、 図 2は図 1の積算電力量が 0〜 4 OWh/cm2 の間を拡大したものである。 1 To make the results easier to understand, they are shown in Figures 1 and 2. The vertical axis shows the nodule coverage%, and the horizontal axis shows the integrated electric energy (WhZcm 2 ). FIG. 2 is an enlarged view of FIG. 1 in which the integrated power amount is between 0 and 4 OWh / cm 2 .
この表 1及び図 1と図 2から明らかなように、 スパッタリング初期の段階から本 発明の実施例 1及び 2と比較例 1及ぴ 2とのノジュール被覆率0 /0に差が生じており、 11 Table 1 and is clear from FIGS. 1 and 2, a difference in nodule coverage 0/0 has occurred in Examples 1 and 2 and Comparative Example 1及Pi 2 of the present invention from the sputtering initial stage, 11
実施例 1及ぴ 2はレ、ずれもノジュールの発生量が抑制されているのが分かる。 In Examples 1 and 2, it can be seen that the generation amount of nodules is also suppressed.
次に、 異常放電発生回数の結果を表 2に示す。 ここで、 異常放電発生回数とは各 積算電力量 (Wh/cm2 ) における積算回数を示している。 Next, Table 2 shows the results of the abnormal discharge occurrence frequency. Here, the number of times of occurrence of abnormal discharge indicates the number of times of integration at each integrated power amount (Wh / cm 2 ).
また、 同様にこの表 2結果を分かりやすくするために、 図 3と図 4に示す。 縦軸 は異常放電発生回数 (回) 、 横軸は積算電力量 (WhZ c m2 ) を示す。 なお、 図Similarly, to make the results in Table 2 easier to understand, they are shown in FIGS. 3 and 4. The vertical axis shows the number of abnormal discharge occurrences (times), and the horizontal axis shows the integrated electric energy (WhZ cm 2 ). The figure
4は図 3の積算電力量が 0〜4 OWh/cm2 の間を拡大したものである。 4 is an enlarged view of FIG. 3 in which the integrated electric energy is between 0 and 4 OWh / cm 2 .
この表 2及び図 3と図 4から明らかなように、 上記と同様にスパッタリング初期 の段階から本発明の実施例 1及び 2と比較例 1及び 2との異常放電発生回数に差が 生じており、 実施例 1及び 2はいずれも異常放電発生回数が抑制されているのが分 かる。  As is clear from Table 2 and FIGS. 3 and 4, similarly to the above, there was a difference in the number of abnormal discharges between Examples 1 and 2 of the present invention and Comparative Examples 1 and 2 from the initial stage of sputtering. It can be seen that both Examples 1 and 2 suppress the abnormal discharge occurrence frequency.
表 2 Table 2
Figure imgf000013_0001
次に、 パーティクル発生数の結果を表 3に示す。 ここで、 パーティクル発生数と は各積算電力量 (Wh/cm2 ) において厚さ 1 μπιの膜を成膜した時に、 膜表 面で観察された 0. 1 以上の大きさのパ一テイクノレ数を示している。 また、 同 様にこの表 3結果を分かりやすくするために、 図 5と図 6に示す。 縦軸はパーティ クル発生数 (X 102 ケ /mm2 ) 、 横軸は積算電力量 (Wh/cm2 ) を示す。 なお、 図 6は図 5の積算電力量が 0〜 4 OWh/cm2 の間を拡大したものであ る。
Figure imgf000013_0001
Next, Table 3 shows the results of the number of generated particles. Here, the number of generated particles is the number of particles of a size larger than 0.1 observed on the film surface when a film with a thickness of 1 μπι is formed at each integrated power (Wh / cm 2 ). Is shown. Similarly, to make the results of Table 3 easier to understand, they are shown in Figs. 5 and 6. The vertical axis Party cycle generation number (X 10 2 Ke / mm 2), the horizontal axis represents the cumulative amount of power (Wh / cm 2). FIG. 6 is an enlarged view of FIG. 5 in which the integrated electric energy is between 0 and 4 OWh / cm 2 .
この表 3及ぴ図 5と図 6から明らかなように、 上記ノジュール発生量及び異常放 電発生回数と同様にスパッタリング初期の段階から本発明の実施例 1及び 2と比較 例 1及び 2との異常放電発生回数に大きな差が生じており、 実施例 1及び 2はレ、ず れもパーティクル発生数が抑制されているのが分かる。 As is clear from Table 3 and FIGS. 5 and 6, similar to the above-mentioned nodule generation amount and abnormal discharge generation frequency, Examples 1 and 2 of the present invention and Comparative Examples 1 and 2 were compared from the initial stage of sputtering. There is a large difference in the number of abnormal discharge occurrences, and Examples 1 and 2 It can be seen that the number of generated particles is suppressed.
以上に示すように、 いずれの試験結果においても、 実施例の特性が優れているが、 特にターゲット使用初期積算電力量 (40WhZcm2 以下) での優位性は顕著 である。 As described above, in all the test results, the characteristics of the example are excellent, but the superiority is particularly remarkable in the target integrated initial electric energy (40 WhZcm 2 or less).
また、 I TOスパッタリングターゲットの密度及びバルタ抵抗値並びに平均結晶 粒径を適性範囲に調整した ^においては、 さらに均一かつ緻密なスパッタ面が得 られるので、 本発明の効果をさらに増すことができる。  Further, in the case where the density, the Balta resistance value and the average crystal grain size of the ITO sputtering target are adjusted to appropriate ranges, a more uniform and dense sputtering surface can be obtained, so that the effect of the present invention can be further enhanced.
【表 3】  [Table 3]
Figure imgf000014_0001
本発明の実施例で使用した I TOスパッタリングターゲットのスパッタ面を、 周 波数 25〜 300 kHzの間で多重発振させる多重発振超音波洗浄方法は、 ノジュ ール、 異常放電及びパーティクルを抑制する上で大きな効果がある。 これを、 併用 することは一層効果をもつものである。
Figure imgf000014_0001
The multi-oscillation ultrasonic cleaning method in which the sputter surface of the ITO sputtering target used in the embodiment of the present invention oscillates multiple times at a frequency of 25 to 300 kHz is effective in suppressing nodules, abnormal discharge, and particles. It has a great effect. The combined use of this is even more effective.
この表面清浄ィ匕 (クリーニング) 方法の発明については、 本発明者等がすでに出 願しているものである (特願平 9一 293151) ので、 ここでの詳細は省略する。 しかし、 本発明においては、 このような洗浄方法を適用した比較例との対比におい て、 なお一層ノジュール、 異常放電及びパーティクルの抑制効果があることが分か る。 発明の効果 Since the present inventors have already applied for the invention of this method of cleaning the surface (cleaning), the details thereof are omitted here since they have been filed (Japanese Patent Application No. 9-1293151). However, in the present invention, it can be seen that there are still more effects of suppressing nodules, abnormal discharge, and particles as compared with a comparative example to which such a cleaning method is applied. The invention's effect
スパッタされる表面の平均表面粗さ R aを 0. 1 μηι以下、 特に R aが 0. 05 m以下、 好ましくは R aが 0. 005 μπι以下とすることにより、 スパッタリン グによる成膜中のノジュールの発生を抑制し、 異常放電やパーティクルが生じにく い優れた透明導電膜形成用 I TOスパッタリングタ一ゲットが得られる。  By setting the average surface roughness Ra of the surface to be sputtered to 0.1 μηι or less, particularly Ra to 0.05 m or less, and preferably Ra to 0.005 μπι or less, the film is formed by sputtering. It is possible to obtain an ITO sputtering target for forming a transparent conductive film, which suppresses the generation of nodules and is resistant to abnormal discharge and particles.

Claims

請 求 の 範 囲 The scope of the claims
1. 粉末冶金法により製造されたセラミックススパッタリングターゲットであって、 スパッタ表面の中心線平均粗さ R aが 0. 1 / m以下であることを特徴とするスパ ッタリングタ一ゲット。  1. A sputtering target which is a ceramic sputtering target manufactured by a powder metallurgy method, wherein a sputter surface has a center line average roughness Ra of 0.1 / m or less.
2. 粉末冶金法により製造されたセラミックススパッタリングタ一ゲッ卜であって、 スパッタ表面の中心線平均粗さ R aが 0. 05 / m以下であることを特徴とするス パッタリングターゲット。  2. A sputtering target manufactured by a powder metallurgy method, wherein the sputtering target has a center line average roughness Ra of 0.05 / m or less.
3. 粉末冶金法により製造されたセラミックススパッタリングタ一ゲッ卜であって、 スパッタ表面の中心線平均粗さ R aが 0. 005 μιη以下であることを特徴とする スパッタリングターゲット。  3. A ceramic sputtering target produced by a powder metallurgy method, wherein the sputtering target has a center line average roughness Ra of 0.005 μιη or less.
4. 前記セラミックスが I TO、 I ri 2〇3、 S η θ 2 、 Ζη〇、 Mg〇、 A 12 Ο 3 ,4. The ceramic I TO, I ri 2_Rei 3, S η θ 2, Zetaita_〇, Mg_〇, A 12 Omicron 3,
5 b Ga ;03、 S i O:、 T i O2 等の酸化物セラミックス又はこれらの複 合セラミックスであることを特徴とする請求項 1から 3までのそれぞれに記载のス パッタリングターゲット。 5 b Ga; 0 3, S i O :, T i O2 such as an oxide ceramic or Ki载scan sputtering target to each of claims 1 to 3, characterized in that it is these double engagement ceramics.
5. 密度 D (gノ cm3 ) とバルク抵抗値 Ρ (πιΩ cm) が下記 2つの式を同時 に満たして成ることを特徴とする請求項 4記載の I TOスパッタリングターゲット。5. The ITO sputtering target according to claim 4, wherein the density D (g cm 3 ) and the bulk resistance Ρ (πιΩ cm) satisfy the following two equations simultaneously.
(a) 6. 70≤D≤ 7. 30 (a) 6.70≤D≤7.30
(b) -0. 0676D+0. 887≥ p≥- 0. 0761 D+ 0. 666  (b) -0.067D + 0.887≥p≥-0.0761D + 0.666
6. ターゲットの平均結晶粒径が 4 μπι未満であることを特徴とする請求項 4又は 5記載のスパッタリングターゲット。  6. The sputtering target according to claim 4, wherein the average crystal grain size of the target is less than 4 μπι.
PCT/JP1999/006566 1998-12-28 1999-11-25 Sputtering target WO2000040769A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP37200298 1998-12-28
JP10/372002 1998-12-28

Publications (1)

Publication Number Publication Date
WO2000040769A1 true WO2000040769A1 (en) 2000-07-13

Family

ID=18499677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006566 WO2000040769A1 (en) 1998-12-28 1999-11-25 Sputtering target

Country Status (1)

Country Link
WO (1) WO2000040769A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069627A (en) * 2000-08-30 2002-03-08 Toshiba Corp Sputtering target and sputtering apparatus using the same
WO2003014409A1 (en) * 2001-08-02 2003-02-20 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive film, and their manufacturing method
JP2003073819A (en) * 2001-09-07 2003-03-12 Vacuum Metallurgical Co Ltd Target of tin - antimony oxide sintered compact, and manufacturing method therefor
JPWO2006059429A1 (en) * 2004-11-30 2008-08-07 日鉱金属株式会社 Sb-Te based alloy sintered body sputtering target
EP2096188A1 (en) 2006-12-13 2009-09-02 Idemitsu Kosan Co., Ltd. Sputtering target and oxide semiconductor film
WO2012014688A1 (en) * 2010-07-30 2012-02-02 Jx日鉱日石金属株式会社 Sintered material for zno-mgo-based sputtering target
JP2014029032A (en) * 2007-12-13 2014-02-13 Idemitsu Kosan Co Ltd Sputtering target and method for manufacturing the same
US8882975B2 (en) 2006-10-13 2014-11-11 Jx Nippon Mining & Metals Corporation Sb-Te base alloy sinter sputtering target
WO2019177086A1 (en) * 2018-03-15 2019-09-19 宇部マテリアルズ株式会社 MgO SINTERED BODY AND SPUTTERING TARGET

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0374931A2 (en) * 1988-12-21 1990-06-27 Kabushiki Kaisha Toshiba Sputtering target and method of manufacturing the same
JPH03257158A (en) * 1990-03-07 1991-11-15 Toshiba Corp Sputtering target
JPH05148635A (en) * 1991-11-26 1993-06-15 Nikko Kyodo Co Ltd Ito sputtering target
JPH07243036A (en) * 1994-03-07 1995-09-19 Japan Energy Corp Ito sputtering target
JPH09104973A (en) * 1995-05-30 1997-04-22 Japan Energy Corp Sputtering target and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0374931A2 (en) * 1988-12-21 1990-06-27 Kabushiki Kaisha Toshiba Sputtering target and method of manufacturing the same
JPH03257158A (en) * 1990-03-07 1991-11-15 Toshiba Corp Sputtering target
JPH05148635A (en) * 1991-11-26 1993-06-15 Nikko Kyodo Co Ltd Ito sputtering target
JPH07243036A (en) * 1994-03-07 1995-09-19 Japan Energy Corp Ito sputtering target
JPH09104973A (en) * 1995-05-30 1997-04-22 Japan Energy Corp Sputtering target and its production

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4709358B2 (en) * 2000-08-30 2011-06-22 株式会社東芝 Sputtering target and sputtering apparatus, thin film, and electronic component using the same
JP2002069627A (en) * 2000-08-30 2002-03-08 Toshiba Corp Sputtering target and sputtering apparatus using the same
WO2003014409A1 (en) * 2001-08-02 2003-02-20 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive film, and their manufacturing method
JP2003073819A (en) * 2001-09-07 2003-03-12 Vacuum Metallurgical Co Ltd Target of tin - antimony oxide sintered compact, and manufacturing method therefor
JPWO2006059429A1 (en) * 2004-11-30 2008-08-07 日鉱金属株式会社 Sb-Te based alloy sintered body sputtering target
US7803209B2 (en) 2004-11-30 2010-09-28 Nippon Mining & Metals Co., Ltd Sb-Te alloy sintered compact sputtering target
JP4708361B2 (en) * 2004-11-30 2011-06-22 Jx日鉱日石金属株式会社 Sb—Te alloy sintered compact sputtering target
US8882975B2 (en) 2006-10-13 2014-11-11 Jx Nippon Mining & Metals Corporation Sb-Te base alloy sinter sputtering target
EP2096188A1 (en) 2006-12-13 2009-09-02 Idemitsu Kosan Co., Ltd. Sputtering target and oxide semiconductor film
US8784700B2 (en) 2006-12-13 2014-07-22 Idemitsu Kosan Co., Ltd. Sputtering target and oxide semiconductor film
JP2014029032A (en) * 2007-12-13 2014-02-13 Idemitsu Kosan Co Ltd Sputtering target and method for manufacturing the same
WO2012014688A1 (en) * 2010-07-30 2012-02-02 Jx日鉱日石金属株式会社 Sintered material for zno-mgo-based sputtering target
JPWO2012014688A1 (en) * 2010-07-30 2013-09-12 Jx日鉱日石金属株式会社 Sintered body for ZnO-MgO sputtering target
JP5583771B2 (en) * 2010-07-30 2014-09-03 Jx日鉱日石金属株式会社 Sintered body for ZnO-MgO sputtering target
WO2019177086A1 (en) * 2018-03-15 2019-09-19 宇部マテリアルズ株式会社 MgO SINTERED BODY AND SPUTTERING TARGET

Similar Documents

Publication Publication Date Title
KR940008020B1 (en) Target for sputtering apparatus and manufacturing method the same
US6074279A (en) Process for producing sputtering target
TW200844244A (en) Process for producing molybdenum-based sputtering target plate
US6033620A (en) Process of preparing high-density sintered ITO compact and sputtering target
WO2000040769A1 (en) Sputtering target
JPH0860352A (en) Ito sputtering target
JP2001131736A (en) Sputtering target and method of manufacture
KR101955746B1 (en) Sputtering target and method for producing same
JP3576364B2 (en) Cleaning method for ITO sputtering target
KR100880174B1 (en) ITO sputtering target
JPH09125236A (en) Indium oxide sintered compact, its production and indium oxide target
JP4813182B2 (en) ITO sputtering target
JPH07243036A (en) Ito sputtering target
JP2003089869A (en) Sputtering target, and production method therefor
JP2001011617A (en) Sputtering target
WO2005031028A1 (en) Sputtering target and process for producing si oxide film therewith
JPH1161395A (en) Ito sputtering target
JPH09104973A (en) Sputtering target and its production
JP5540948B2 (en) Sputtering target
JP4213611B2 (en) ITO sputtering target
JPH10297964A (en) Production of zno-ga2o3-based sintered compact for sputtering target
JP2020158811A (en) TaWSi TARGET AND METHOD FOR MANUFACTURING THE SAME
WO2022137646A1 (en) Composite substrate and elastic surface wave element
JPH10297966A (en) Production of zno-ga2o3-based sintered compact for sputtering target
JP2001335925A (en) Method for producing ito thin film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 2000592461

Format of ref document f/p: F