WO2000037132A1 - Pulverisateur - Google Patents

Pulverisateur Download PDF

Info

Publication number
WO2000037132A1
WO2000037132A1 PCT/JP1999/006665 JP9906665W WO0037132A1 WO 2000037132 A1 WO2000037132 A1 WO 2000037132A1 JP 9906665 W JP9906665 W JP 9906665W WO 0037132 A1 WO0037132 A1 WO 0037132A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
piezoelectric element
spray
spraying
unit
Prior art date
Application number
PCT/JP1999/006665
Other languages
English (en)
French (fr)
Inventor
Yoshihide Onishi
Shinya Tanaka
Masashi Osuga
Takao Terada
Original Assignee
Omron Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corporation filed Critical Omron Corporation
Priority to KR10-2001-7007406A priority Critical patent/KR100404720B1/ko
Priority to AU14122/00A priority patent/AU1412200A/en
Priority to US09/868,185 priority patent/US6679436B1/en
Priority to EP99973475A priority patent/EP1142600A4/en
Publication of WO2000037132A1 publication Critical patent/WO2000037132A1/ja
Priority to HK02103393.5A priority patent/HK1041658A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0638Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers spray being produced by discharging the liquid or other fluent material through a plate comprising a plurality of orifices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/005Sprayers or atomisers specially adapted for therapeutic purposes using ultrasonics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0653Details
    • B05B17/0676Feeding means

Definitions

  • the present invention relates to a spray device for an inhaler.
  • some spray devices such as inhalers supply a chemical solution from a liquid storage portion such as a chemical solution tank to a spray portion, which is a vibrating surface of a vibrator, to atomize the chemical solution.
  • This type of spray device has a function that allows the user to manually adjust the spray amount, or adjusts the spray amount according to the application at the time of shipment from the factory to achieve the optimum spray amount.
  • medical inhalers used for treatment and prevention of diseases such as sighing
  • various types of chemicals, ie, sprays are used depending on the disease state of the patient. For medical inhalers, if the amount of spray is large, it is difficult to chop and inhale.
  • the present invention has been made in view of the above problems, and adjusts the power supplied to the spraying unit so that the liquid supply interval to the spraying unit is constant. It is intended to provide a spray device that can automatically adjust the spray amount per unit time to a constant amount. In addition, the purpose is to promptly notify the user when a spray abnormality is detected by monitoring the spray state. Disclosure of the invention
  • a spray device includes a first liquid storage unit and a second liquid storage unit for storing a spray liquid, a spray unit that sprays the spray liquid in the second liquid storage unit, and a first liquid storage unit.
  • a liquid supply unit for supplying a constant amount of the spray liquid from the city to the second storage unit, a liquid detection unit for detecting the presence or absence or increase or decrease of the spray liquid in the second liquid storage unit, and based on an output from the liquid detection unit.
  • a liquid supply judging unit for judging whether liquid supply to the second liquid storage unit is necessary, and a liquid supply interval of the spray liquid supplied to the second liquid storage unit is set to a predetermined time. The supply rate to the spraying section is adjusted so that
  • the spray amount per one time supplied to the second liquid storage unit can be automatically adjusted to a constant amount.
  • the spraying device of the present invention uses a vibration of a vibrator, and constitutes a self-excited oscillation circuit using a resonance characteristic of the vibrator as a vibrator driving circuit, and includes a vibrator driving circuit and a power supply unit.
  • a circuit such as a coil with high impedance in the oscillation frequency band to be inserted on the GND line side, and add a circuit to rectify and smooth the oscillator drive frequency current and convert it to voltage. Status monitoring is realized.
  • FIG. 1 is a side view of a medical inhaler according to one embodiment of the present invention.
  • FIG. 2 is a side view of the medical inhaler with a cover removed from a main body case.
  • FIG. 3 is a front view of the inhaler shown in FIG.
  • FIG. 4 is a top view of the inhaler shown in FIG.
  • FIG. 5 is a sectional view of a main part of the inhaler.
  • 6A and 6B are partially cutaway cross-sectional views of the inhaler with the body cover partially removed from the body case.
  • FIG. 7 is a perspective view showing a piezoelectric element and a circuit board used in the inhaler.
  • FIG. 8 is a perspective view showing a piezoelectric element used in the inhaler.
  • FIG. 9 is a flowchart for explaining the control processing operation of the inhaler.
  • FIG. 10 is a diagram showing characteristics of frequency impedance of a piezoelectric element used in the inhaler.
  • FIG. 11A—11C is a diagram for explaining liquid reduction and liquid detection at the spraying part of the inhaler.
  • Figs. 12A and 12B are diagrams for explaining the detection of the presence or absence of liquid in the spray section in the inhaler.
  • FIGS. 13A and 13B are waveform diagrams for explaining noise removal in the inhaler.
  • FIG. 14 is a circuit diagram showing a piezoelectric element drive circuit of the inhaler.
  • FIG. 15 is a diagram illustrating the timing of the liquid detection process in the inhaler.
  • FIGS. 16A and 16B are diagrams showing another example of the liquid detection electrode that can be used in the inhaler.
  • FIG. 17 is a view showing still another example of the liquid detection electrode that can be used in the inhaler.
  • FIG. 18 is a flowchart for explaining another control process that can be used for the inhaler.
  • FIGS. 19A to 19J are diagrams showing still another example of the shape of the liquid detecting electrode that can be used in the inhaler.
  • FIG. 2OA-D shows another example of a piezoelectric element holding structure that can be used in the inhaler.
  • the spray device has a prismatic main body case (main body portion) 1 and a detachable main body case 1. And a cover 2 attached to the vehicle.
  • the main body case 1 has a protruding portion 1a protruding rearward on the upper rear surface thereof, and an operation switch 9 for power supply ONZOFF on the upper front surface corresponding to the protruding portion 1a.
  • the main body cover part 10 When the cover 2 is removed from the main body case 1, the main body cover part 10 appears at the top of the main body case 1, the main body cover part 10 can be attached to and detached from the main body case 1, and the main body cover part 10 has the piezoelectric An element 50, a mesh member 40, a liquid storage part and a liquid supply part are arranged.
  • the main body cover section 10 has a chemical liquid bottle 20 as a first liquid storage section for storing a liquid (for example, a chemical liquid).
  • the chemical liquid bottle 20 is composed of an upper part 21 and a lower part 22. You.
  • the upper and lower parts 2 1 and 2 2 are fitted with each other, and the upper part 21 is provided with a cap 23 that seals the chemical inlet 21 a so as to be openable and closable.
  • the chemical can be poured into the chemical bottle 20 from the chemical inlet 21a.
  • a diaphragm 24 is attached to the bottom of the chemical liquid bottle 20 (lower part 22), and a liquid supply pipe 25 is attached to the lower part of the lower part 22 on the inclined side.
  • a solenoid 26 for pressing the diaphragm 24 is arranged below the chemical liquid bottle 20, a solenoid 26 for pressing the diaphragm 24 is arranged below the chemical liquid bottle 20, a solenoid 26 for pressing the diaphragm 24 is arranged below the chemical liquid bottle 20, a solenoid 26 for pressing the diaphragm 24 is arranged below the chemical liquid bottle 20, a solenoid 26 for pressing the diaphragm 24 is arranged below the chemical liquid bottle 20, a solenoid 26 for pressing the diaphragm 24 is arranged below the chemical liquid bottle 20, a solenoid 26 for pressing the diaphragm 24 is arranged below the chemical liquid bottle 20, a solenoid 26 for pressing the diaphragm 24 is
  • the solenoid shaft 26 a pushes the pin 27, and the pin 27 presses the diaphragm 24, so that the chemical in the chemical bottle 20 is discharged.
  • An appropriate amount is discharged from the liquid supply pipe 25.
  • the liquid supply section is composed of the liquid supply pipe 25, the solenoid 26, and the pin 27.
  • an optimal amount of the chemical can be supplied by appropriately setting the amount of displacement of the diaphragm 24 due to the pressing of the pin portion 27, and problems such as clogging of the supply can be prevented. be able to.
  • the pin 27 may be operated by using a motor, or the pin 27 may be operated by air pressure.
  • the spray part 30 is provided in the lower part 22 of the chemical liquid bottle 20.
  • the spraying section 30 includes an upper case 31 and a lower case 32.
  • the upper and lower cases 31 and 32 are fitted together, and the upper and lower cases 31 and 32 constitute a mesh member case.
  • the mesh member 40 having a large number of minute holes is arranged on the 32 and a coil-shaped spring 34 for pressing the mesh member 40 against the lower case 32 is provided.
  • One end of the spring 34 is engaged with the upper case 31, and the other end is engaged around the mesh member 40. Therefore, the mesh member 40 is always pressed and held by the lower case 32.
  • the mesh member 40 is made of metal or ceramic. This is to suppress the absorption of vibration energy propagating through the chemical solution, to increase the spraying effect, and to increase the strength against impact when the main body cover 10 is dropped. In other words, the chemical liquid comes into contact with the mesh member 40 at the time of spraying, but at the same time, the mesh member cage that holds the mesh member 40.
  • -Contacts (upper and lower cases 3 1, 3 2).
  • a piezoelectric element 50 described later is similarly positioned obliquely and closely.
  • the mesh member 40 and the piezoelectric element 50 intersect at an acute angle with each other so that the liquid medicine L from the liquid supply pipe 25 is supplied from the opening side of both.
  • the space between the mesh member 40 and the piezoelectric element 50 constitutes a second liquid storage section 30a.
  • a liquid amount detecting unit for detecting the amount of the chemical liquid is provided on the piezoelectric element 50, and the pressing operation of the diaphragm 24 is controlled based on the output of the liquid amount detecting unit. This will be described in detail later.
  • the piezoelectric element 50 has a comb-shaped electrode in which one electrode 51 and the other electrode 52 are alternately formed on one side, and a liquid supply pipe 25 on the same surface. And liquid detection electrodes 55 and 56 for detecting a chemical solution formed at positions where the chemical solution supplied from the device comes into contact.
  • the piezoelectric element 50 is arranged such that the surface (non-electrode forming surface) opposite to the surface on which the electrodes 51, 52, 55, 56 are formed faces the mesh member 40. This is because, in this spraying device, the vibration wave of the piezoelectric element 50 used for atomization is not a surface wave 60 as in the conventional case but a bulk wave 61 passing through the inside.
  • the electrode does not come into contact with the chemical solution, and it can protect the electrode from corrosion, electrical corrosion, and electrical short-circuit due to the chemical solution. Increase.
  • the material of the piezoelectric element 50 is not particularly limited. However, since a bulk wave is used as a vibration wave as described later, lithium niobate is used as the material. , The propagation direction of the Y-axis projection.
  • the peripheral end of the piezoelectric element 50 is pressed and held by waterproof packing.
  • the portion where the comb-shaped electrodes 51 and 52 are formed vibrates, and the peripheral end vibrates less than the electrode-formed portion. Therefore, the piezoelectric element By pressing and holding only the peripheral end of 50, vibration attenuation of the piezoelectric element 50 can be minimized. Further, the chemical supplied to the non-electrode forming surface of the piezoelectric element 50 flows out of the piezoelectric element 50, and corrosion, deformation, discoloration, and the like inside the spray device can be prevented by the waterproof packing.
  • a circuit board 70 on which a circuit such as a CPU is mounted is arranged.
  • the circuit board 70, the comb-shaped electrodes 51 and 52 of the piezoelectric element 50 and the liquid detecting electrodes 55 and 56 are electrically conductive coil springs. (Elastic body) 7 1 electrically connected.
  • the vibration operation of the piezoelectric element 50 will be described.
  • an AC current having a frequency of, for example, 6 ⁇ m is applied to the electrodes 51 and 52 of the piezoelectric element 50, a surface wave (elastic surface wave) 60 passing through the surface and a bulk wave 61 passing through the inside are generated.
  • the piezoelectric element 50 converts electric energy into vibration energy, and specifically, the electrodes 51 and 52 convert electric energy into mechanical vibration energy.
  • the vibration sources of the piezoelectric element 50 are alternately formed comb-shaped electrodes 51 and 52, and the generated vibration waves are a surface wave 60 and a bulk wave 61.
  • the bulk wave 61 propagates obliquely in the longitudinal direction of the piezoelectric element 50, and when the normal direction of the equiphase surface of the displaced bulk wave is assumed to be, ⁇ is given by the following equation. However, the traveling direction of the recording wave changes with the frequency.
  • Vb is the phase velocity of the bulk wave
  • P is the pitch between the comb electrodes 51 and 52
  • f is the frequency
  • the bulk wave propagates while reflecting on the boundary surface of the piezoelectric element 50.
  • the vibration frequency of the surface waves oscillated by the comb-shaped electrodes 51 and 52 is mainly the force determined by the sound velocity Vs of the surface waves and the pitch P.
  • the vibration frequency of the bulk wave is the thickness of the piezoelectric element 50. Determined by t.
  • the most appropriate drug solution for treatment and prevention is prescribed as a spray, depending on the degree of the patient's disease. Since these chemicals have various properties and their spraying ability changes, the amount of spray per unit time differs depending on the chemical.
  • the medicinal solution bottle 20 serving as the first storage unit has a therapeutic / preventive effect. Pour the required amount of spray liquid. At this time, if the amount of liquid supplied per time supplied from the first liquid storage unit 20 to the second liquid storage unit 30a is constant, the spray unit 3 is controlled so that the liquid supply interval is constant. The spray amount per unit time can be controlled to an optimum value by adjusting the supply level to zero.
  • the spray amount per unit time is calculated from the following formula.
  • Step 1 When the spraying is started (ST 1), the power supplied to the spraying section is set to the initial value, and the liquid is supplied from the first liquid storing section 20 to the second liquid storing section 30 a (ST 2). .
  • the liquid supply interval measurement timer is started (ST3).
  • the amount of liquid in the second liquid storage section 30a is detected, and it is determined whether or not liquid supply to the second liquid storage section 30a is necessary, that is, whether or not the flow rate is insufficient (ST4). If not necessary, the operation is maintained. If it is determined in Step ST4 that the liquid supply is necessary, the liquid supply interval measurement timer is stopped (ST5), and the spraying unit is set according to the relationship between the liquid supply interval and the target liquid supply interval.
  • the control amount of the power supplied to the tank is calculated (ST6), the supply power is changed, and the liquid is supplied to the second liquid storage section 30a (ST7), and the process returns to step ST3.
  • the liquid supply interval by the timer is longer than the target liquid supply interval, the supply power to the spray unit 30 is increased, and when it is short, the supply power is decreased.
  • the piezoelectric element 50 of the inhaler of this embodiment has the liquid detecting electrodes 55 and 56 shown in FIG. 7, when the liquid detecting electrode directly contacts the spray liquid, the impedance component of the spray liquid is affected.
  • the operation of the liquid detection circuit becomes unstable, but here the liquid detection electrodes 55, 56 Since it is formed on the opposite side to the pooling part and is not in direct contact with the chemical, stable liquid detection can be realized regardless of the properties of the chemical.
  • the liquid detecting electrodes 55 and 56 are connected to the liquid detecting circuit by a conductive elastic body 71 to prevent attenuation of vibration of the piezoelectric element.
  • the piezoelectric element 50 is also provided with a comb-shaped electrode in which one electrode 51 and the other electrode 52 are alternately formed for driving.
  • the comb-shaped electrode and the piezoelectric element drive circuit are also connected by a conductive elastic body 71.
  • the piezoelectric element 50 used here is unique depending on its size and electrode shape as shown in FIG. There are many resonance frequencies determined by When the spray liquid accumulates in the second liquid storage section 30a, the impedance between the liquid detection electrodes changes, and this resonance state changes.
  • An oscillation circuit using this resonance characteristic is configured as a liquid detection circuit, and it is determined whether a chemical liquid exists on the liquid detection electrode by detecting a change in the oscillation frequency and the start and stop of oscillation. Thus, stable liquid detection can be realized.
  • the piezoelectric element 50 used as a spraying part is arranged to be inclined with respect to the horizontal, and the chemical solution 58 in the second liquid storage part decreases from a higher one to a lower one. .
  • the spray amount it is necessary to supply the liquid before the spray liquid (chemical liquid) 58 is completely exhausted.
  • the liquid is detected in a positional relationship as shown in Fig. 11A-11C
  • By arranging the electrodes it is possible to set the liquid supply timing with high sensitivity. Also, as shown in Figs.
  • the dielectric constant of the spray liquid is usually large, so that the capacitance between the two electrodes of the spray liquid is such that the spray liquid is straddled between the electrodes ( It changes greatly at the moment when it changes from the state shown in Fig. 11A and Fig. 12A) to the state where it does not straddle (Fig. 11C and Fig. 12B).
  • the capacitance between the liquid detection electrodes is several p to several tens of pF, and the influence of the stray capacitance and the fluctuation of the liquid detection circuit increases. It is effective to make the liquid detection electrode shape that changes.
  • stable liquid detection can be realized by arranging two liquid supply timings in parallel in the direction perpendicular to the liquid decreasing direction. Also, by adjusting the position of the liquid detection electrode, the liquid detection timing can be set arbitrarily.
  • the capacitance between the detection electrodes 55 and 56 constitutes a CR oscillator, the output of this CR oscillator is counted by a power counter, and the change in the counted value according to the frequency change due to the capacitance change. From this, the liquid level is detected.
  • the capacitance detection unit is often used to convert the capacitance to frequency as described above, and the liquid detection circuit is often configured with a frequency output.
  • the output frequency of the liquid detection circuit approaches the drive (vibration) frequency of the piezoelectric element, they interfere with each other and hinder stable operation. Therefore, in this embodiment of the inhaler, the frequency of Akata is Are set sufficiently separated.
  • the piezoelectric element drive circuit is often configured to be driven at the resonance point of the piezoelectric element having the lowest impedance. Therefore, piezoelectric element drive noise is generated at an integral multiple of this drive frequency, and if the output frequency of the liquid detection circuit is higher than the piezoelectric element drive frequency, the influence of this noise is large. Therefore, in the inhaler of this embodiment, the frequency band of the liquid detection circuit is sufficiently lower than the driving frequency of the piezoelectric element and has less noise, and is constituted by a low frequency band having no resonance point unique to the piezoelectric element shown in FIG. Liquid detection is stabilized.
  • a means for automatically adjusting the spray amount there is a method of changing the supply voltage or the current itself to the piezoelectric element driving circuit, and a method of changing the supply voltage (current) while keeping the supply voltage (current) constant, for example, PWM (Pulse Width Modulat ion) 4)
  • PWM Pulse Width Modulat ion
  • pulsing control method in which control is performed by changing the ratio between the on-state and the off-state, as in wholesalers.
  • the inhaler of this embodiment by adopting pulse control, in addition to the function of adjusting the amount of spray, the function of detecting the liquid can be stabilized, so that a simple and cost-effective system can be configured.
  • the fog is stopped. If this stop time is made sufficiently short, the user does not feel that the spraying is stopped periodically, and it becomes possible to inhale the chemical solution without feeling uncomfortable.
  • the optimal spray volume is about 0.3 ml per minute, and at such a spray volume, if the spray stop time exceeds about 15 ms, atomization stops. I get a feeling. Therefore, if the stop time is set to 15 ms or less, inhalation without discomfort can be achieved.
  • stable liquid detection can be realized by arranging two liquid detection electrodes used for liquid detection in parallel in the direction perpendicular to the liquid decreasing direction.
  • the direction of the liquid detection electrode has an optimal direction for the liquid detection function, but this may be orthogonal to the vibration wave of the piezoelectric element as shown in FIG.
  • the piezoelectric element vibration frequency noise appears most on the liquid detection electrode.
  • the noise of the liquid detection circuit becomes large or the impedance of the liquid detection electrode is high, the liquid detection electrode becomes an antenna, and the radiation noise increases.
  • the supplied spray liquid is present in the second liquid storage portion on the surface of the piezoelectric element opposite to the liquid detection electrode, and radiation noise of the piezoelectric element driving frequency is generated through the spray liquid.
  • the spray liquid contains physiological saline having high conductivity, the radiated noise increases.
  • an electrode for connecting to a low impedance circuit GND 57 or the like may be provided separately from the liquid detection electrode.
  • the spray liquid and the circuit G ND are capacitively connected through the piezoelectric element, and as a result, the high frequency (piezo element driving frequency) impedance of the spray liquid is reduced, and the radiation noise can be reduced.
  • this effect can also be obtained by connecting one or more of the electrodes for liquid detection that exist in a few wells to a fixed potential with low impedance to form a liquid detection circuit.
  • the fixed electrode is arranged not at a right angle to the direction of the vibration wave of the piezoelectric element generated by driving the piezoelectric element but at a slight inclination, it is as described above. .
  • the amount of spray liquid to be sprayed at a time is about 2 to 3 m1, and the optimum spray amount per unit time is 0.3 m1 in. About. Therefore, when the spray liquid is 2 ml, the total spray time is about 7 minutes. If the amount of one liquid supplied to the second liquid storage section 30a is 100 ⁇ 1, the time required to spray this 1001 is about 20 seconds. In the present invention, since the interval of spraying the spray liquid in the second liquid storage section 30a is controlled to be constant, If the time is too long, control delay becomes a problem.
  • the control value can be controlled to around the optimal unit spray amount by changing the control value about three times, the spray amount settles down after about 1 minute, and the shortest total spray time is about 7 minutes. However, this is the limit. However, even if the amount of liquid supply is too small, it will be difficult to control the amount of liquid supply this time, so the amount of liquid supply can be sprayed in 50 ⁇ 1, that is, about 10 seconds in balance with control. Desirably, it is an amount.
  • the power to the spraying unit should be started from the maximum value.
  • the larger the power is the sooner the spray liquid supplied to the second liquid storage section becomes, and the sooner the next control power can be determined, the sooner it is possible to converge to the target unit spray amount.
  • the spray volume per unit time is controlled to be almost constant for any device, making it difficult to grasp the spray capability of the device even during the inspection process during device manufacturing.
  • rough determination is possible from the relationship between the input power to the spraying device and the spray amount, but if the determination is made based on the stabilized input power and the total spray amount, an error due to the control delay described above appears.
  • the automatic adjustment mode by providing a mode for testing the ability to spray with fixed power such as the maximum power, it is possible to compare the spray amount between the devices, and the spray manufactured based on this information It is easy to determine whether the device is good or not.
  • the sprayer is equipped with a power supply voltage monitoring function and shifts to the fixed power mode when a predetermined power supply voltage fluctuates, it is possible to set the sprayer to the fixed power mode only when inspecting the equipment. . By preventing the specified voltage fluctuation from occurring in actual use, it is possible to prevent erroneous transition to the fixed power mode.
  • the spraying device a large current is used for the spraying function, and particularly in the device for automatically adjusting the spraying amount as in the present invention, the power supply voltage fluctuation and the power supply noise are large, so that the When there is a specified voltage fluctuation before the ⁇ It is possible to prevent erroneous transitions more reliably than by switching to the fixed mode.
  • the spray liquid supplied to the second shell liquid section 30a also runs out, and the spray stops and enters an idling state. It is desirable to provide a device for monitoring the liquid amount of the liquid part 20. However, even if the liquid supply operation to the second liquid storage unit 30a is repeated a predetermined number of times or for a predetermined time from the first liquid storage unit 20 power, the liquid supply determination unit of the second liquid storage unit 30a supplies the liquid. When it is determined that the liquid is necessary, it is determined that all of the spray liquid in the first liquid storage section 20 has been sprayed, and if the operation of the spraying device is stopped, the liquid detection section of the first liquid storage section 20 becomes unnecessary. Become.
  • a spray device that uses the vibration of a vibrator, and an automatic oscillation circuit that uses the resonance characteristics of the vibrator as a drive circuit for the vibrator.
  • a high-impedance element such as a coil L0 is inserted into the GND line side, and as shown in Fig. 14, the high-frequency current of the oscillation circuit 33, that is, the vibrator drive frequency current is supplied from the diodes Dl and D2. If a circuit for rectifying and smoothing is converted into a voltage by using a circuit, the magnitude of this voltage is almost equal to the energy used for spraying, and the voltage applied to the spraying section is set so that this voltage level becomes a predetermined value. By adjusting the supply power, it is possible to automatically adjust the spray amount.
  • the liquid detection electrodes 55, 56 in FIGS. 7 and 17 are L-shaped, but the liquid detection electrodes 55, 56, 57 instead have the shape shown in FIG. 9A—The ones shown in 19J or other shapes can be used.
  • FIG. 20A to 20D are views showing another mounting structure of a piezoelectric element that can be used in the inhaler according to the embodiment of the present invention.
  • FIG. 20 is a cross-sectional view of the piezoelectric element 50.
  • the piezoelectric element 50 is integrally held by the piezoelectric element holding portion 63 with an adhesive 65.
  • FIG. 20B shows the liquid detecting electrodes 55 and 56. It has a hole 6 3 a where a part of the comb-shaped electrode 51 can be seen, and Fig. 20C shows the liquid detection electrodes 55, 56 and a part of the comb-shaped electrodes 51, 52. In this case, only the liquid detection electrodes 55, 56 can be seen from above. It has holes 63c.
  • Metal or ceramic is used as the material of the piezoelectric element holding portion 63.
  • a heat-resistant resin may be used as a material of the piezoelectric element holding portion 63. By using a heat-resistant resin, it is possible to prevent the temperature from rising due to the absorption of ultrasonic energy and to cause deformation or the like.
  • the piezoelectric element holding portion 63 may be provided with a water-repellent coating. By increasing the water repellency, the absorption rate of ultrasonic waves can be further reduced, and dirt with liquid can be easily removed.
  • the piezoelectric element holding portion 63 shown in FIGS. 20B, 20C and 20D covers a part or the whole of the comb-shaped electrode 51, the liquid adheres to the comb-shaped electrode 51 and the vibration occurs. Can be prevented from greatly attenuating.
  • the metal shield 64 is connected to the low impedance portion of the piezoelectric element drive circuit of the substrate 70.
  • the metal shield 63 may be composed of the piezoelectric element holding portion 64. Industrial applicability
  • the spraying is performed such that the interval between the spraying times of the spraying liquid supplied to the storage section of the spraying section, which holds the chemical solution immediately before spraying, becomes a predetermined time. Since the power supplied to the section is adjusted, it is possible to provide a spray device capable of automatically adjusting the spray amount per spray to a constant amount.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Special Spraying Apparatus (AREA)
  • Catching Or Destruction (AREA)

Description

明細書
技術分野
この発明は吸入器の噴霧装置に関する。 背景技術
従来、 吸入器等の噴霧装置には、 薬液タンク等の貯液部から振動子の振動面で ある噴霧部に薬液を供給して、 薬液を霧化するものがある。 この種の噴霧装置で は、 使用者が手動で噴霧量を調整できる機能を持たせるか、 または工場出荷時に、 その用途に応じて噴霧量を調整することによって、 最適な噴霧量を実現している。 嘆息などの疾患の治療 ·予防用途に用いる医療用吸入器などでは、 患者の疾患 の状態によって様々な種類の薬液、 すなわち噴霧液が使用されることになる。 医 療用吸入器では、 噴霧量が多ければ噎せて吸いにくく、 また少なすぎれば薬液の 噴霧時間が長くなつて、 患者の治療 ·拘束時間が長くなるため、 最適な噴霧量が 存在する。 噴霧液の性質によって噴霧能力が変わってく ろので、 従来、 患者はそ れぞれの噴霧量に応じて、 手動で最適な噴霧量に調節するか、 あるいは調節機能 を持たせないものにおいては、 最適な噴霧量に対して多め、 または少なめの噴霧 量でも我慢することが必要であった。 また、 従来の喷霧装置では、 機器の異常
(過度の劣化、 故障など) によって噴霧能力が低下しても、 その状態を判定する 手段を持たないので、 使用者が異常に気づくのに時間がかかるなどの問題点があ つた。
この発明は上記問題点に着目してなされたものであって、 噴霧部への給液間隔 が一定になるように噴霧部への供給パワーを調節することで、 様々な性質の噴霧 液に対して単位時間あたりの噴霧量を自動的に一定量に調整できる噴霧装置を供 給することを目的としている。 また、 噴霧状態を監視することによって、 噴霧異 常が検出された場合は、 速やかに使用者に報知することを目的としている。 発明の開示
この発明の噴霧装置は、 噴霧液を貯留するための第 1の貯液部及び第 2の貯液 部と、 第 2の貯液部内の噴霧液を噴霧する噴霧部と、 第 1の貯液都から第 2の貯 液部に噴霧液を定量供給する給液部と、 第 2の貯液部の噴霧液の有無または増減 を検出する液検知部と、 この液検知部からの出力に基づいて、 第 2の貯液部に液 供給が必要であるかどうかを判定するための給液判断部とを備え、 第 2の貯液部 に給液される噴霧液の給液間隔が所定時間になるように、 噴霧部への供給パヮ一 を調節するようにしている。
その結果、 第 2の貯液部に供給される 1回当たりの噴霧量を自動的に一定量に 調整できる。
また、 こ 発明の噴霧装置は、 振動子の振動を利用するもので、 振動子の駆動 回路として振動子の持つ共振特性を利用した自励発振回路を構成し、 振動子駆動 回路と電源供給部を分離する目的で、 挿入する発振周波数帯域で高いインピーダ ンスを持つコイルなどの素子を G N Dライン側に挿入し、 振動子駆動周波数電流 を整流平滑して電圧に変換する回路を付加し、 霧化状態の監視を実現している。 図面の簡単な説明
図 1は、 この発明の一実施形態に係る医療用吸入器の側面図である。
図 2は、 同医療用吸入器の本体ケースからカバーを外した状態の側面図である。 図 3は図 2に示す吸入器の正面図である。
図 4は図 2に示す吸入器の上面図である。
図 5は同吸入器の要部断面図である。
図 6 A, 6 Bは同吸入器の本体ケースから本体カバ一部を取り外した状態の一 部破断断面図である。
図 7は同吸入器に使用される圧電素子及び回路基板を示す斜視図である。
図 8は同吸入器に使用される圧電素子を示す斜視図である。
図 9は同吸入器の制御処理動作を説明するためのフローチャートである。
図 1 0は同吸入器に使用される圧電素子の周波数インピーダンスの特性を示す 図である。 図 1 1 A— 1 1 Cは同吸入器の噴霧部の液減と液検知を説明する図である。 図 1 2 A, 1 2 Bは同吸入器における噴霧部の液有無の検知を説明する図であ る。
図 1 3 A , 1 3 Bは同吸入器において、 ノイズ除去を説明するための波形図で ある。
図 1 4は同吸入器の圧電素子駆動回路を示す回路図である。
図 1 5は同吸入器における液検知処理のタイミングを説明する図である。
図 1 6 A , 1 6 Bは同吸入器に使用し得る液検知電極の他の例を示す図である。 図 1 7は同吸入器に使用し得る液検知電極のさらに他の例を示す図である。 図 1 8は同吸入器に使用し得る他の制御処理を説明するためのフローチヤ一ト である。
図 1 9 A— 1 9 Jは同吸入器に使用し得る液検知電極のさらに他の形状の例を 示す図である。
図 2 O A— 2 0 Dは同吸入器に使用し得る圧電素子保持構造の他の例を示す図 である。 発明を実施するための最良の形態
以下、 実施の形態により、 この発明を図面を参照して詳細に説明する。 実施形 態に係る医療用吸入器 (噴霧装置) を示す図 1〜図 6 Bを参照して、 この噴霧装 笸では、 角柱形の本体ケース (本体部) 1 と、 本体ケース 1に着脱自在に取り付 けられるカバー 2とを備える。 本体ケース 1は、 その上部背面に後方に***する 突部 1 aと、 突部 1 aに対応する上部前面に電源 O NZ O F F用の操作スィッチ 9とを有する。
本体ケース 1からカバー 2を取り外すと、 本体ケース 1の上部に本体カバー部 1 0が現れ、 本体カバー部 1 0は本体ケース 1に着脱可能であり、 本体カバー部 1 0には、 後記の圧電素子 5 0、 メ ッシュ部材 4 0、 貯液部及び液供給部が配置 されている。
本体カバー部 1 0は、 液体 (例えば薬液) を貯留する第 1の貯液部である薬液 ボトル 2 0を有し、 薬液ボトル 2 0は上パーツ 2 1と下パーツ 2 2とで構成され る。 上下のパーツ 2 1、 2 2は互いに嵌合しており、 上パーツ 2 1には薬液注入 口 2 1 aを密閉するキャップ体 2 3が開閉可能に取り付けられ、 このキャップ体
2 3を開けて、 薬液注入口 2 1 aから薬液ボトル 2 0に薬液を入れることができ る。 薬液ボトル 2 0 (下パーツ 2 2 ) の底部には、 ダイヤフラム 2 4が取り付け られ、 下パーツ 2 2の傾斜下方側には、 給液パイプ 2 5が取り付けられている。 薬液ボトル 2 0の下方には、 ダイヤフラム 2 4を押圧操作するためのソレノィ ド 2 6が配置されている。 ソレノィ ド 2 6はソレノィ ド保持部 2 8に取り付けら れ、 ンレノイ ド軸 2 6 aがピン部 2 7を押すようになつている。 ビン部 2 7は常 態ではダイヤフラム 2 4に接触している。 したがって、 ソレノイ ド 2 6が作動す ると、 ソレノイ ド軸 2 6 aがピン部 2 7を押し、 さらにピン部 2 7がダイヤフラ ム 2 4を押圧することで、 薬液ボトル 2 0内の薬液が給液パイプ 2 5から適量排 出される。 給液パイプ 2 5、 ソレノイ ド 2 6、 ピン部 2 7等で給液部を構成して いる。
この薬液供給構造によると、 ピン部 2 7の押圧によるダイヤフラム 2 4の変位 量を適切に設定しておくことで、 最適な薬液量を供給することができ、 供給詰ま り等の不具合を防止することができる。
なお、 ソレノイ ド 2 6を利用する代わりに、 モータを利用してピン部 2 7を操 作してもよいし、 空気圧によりピン部 2 7を操作するようにしても構わない。 薬液ボトル 2 0の下パーツ 2 2には、 噴霧部 3 0が配備されている。 噴霧部 3 0は、 上ケース 3 1 と下ケース 3 2を備え、 上下のケース 3 1、 3 2は互いに嵌 合され、 上下のケース 3 1、 3 2でメッシュ部材ケースが構成される。 下ケース
3 2には、 多数の微小孔を有するメ ッシュ部材 4 0が配置されるとともに、 メッ シュ部材 4 0を下ケース 3 2に押圧するコイル状のバネ 3 4が設けられている。 バネ 3 4の一端は上ケース 3 1に係合し、 他端はメッシュ部材 4 0の周囲に係合 する。 したがって、 メッシュ部材 4 0は下ケース 3 2に常時押圧 .保持される。 メッシュ部材 4 0は、 金属またはセラミックからなる。 これは、 薬液を伝搬する 振動エネルギーの吸収を抑え、 噴霧効果を高めるためと、 本体カバー部 1 0を落 とした時等の衝撃に対する強度を高めるためである。 つまり、 噴霧時に薬液はメ ッシュ部材 4 0に接するが、 同時にメッシュ部材 4 0を保持するメッシュ部材ケ —ス (上下のケース 3 1 、 3 2 ) にも接触することとなる。 従来は、 メッシュ部 材ケースは樹脂で構成していたため、 薬液とメッシュ部材の振動が樹脂製のメッ シュ部材ケースにより滅衰することになる。 しかしながら、 メッシュ部材ケース を金属またはセラミックで構成することにより、 そのような問題点を解消するこ とができる。
水平面に対して斜めに位置するメシシュ部材 4 0の下方には、 後記の圧電素子 5 0が同じく斜めに近接して位置決めされている。 メッシュ部材 4 0と圧電素子 5 0は、 互いの対向面が鋭角に交差し、 給液パイプ 2 5からの薬液 Lが両者の開 口側から供給されるようになつている。 このメッシュ部材 4 0と圧電素子 5 0の 間の空間で第 2の貯液部 3 0 aを構成している。
圧電素子 5 0上に薬液量を検知する液量検知部を設け、 この液量検知部の出力 に基づいて、 ダイヤフラム 2 4の押圧操作を制御する。 この点については後に詳 述する。
圧電素子 5 0は、 図 7及び図 8に示すように、 一方の電極 5 1と他方の電極 5 2が互い違い状に片面に形成された櫛形電極と、 同一面であって給液パイプ 2 5 から供給される薬液が接触する位置に形成された薬液検知用の液検知電極 5 5、 5 6とを有する。 この圧電素子 5 0は、 電極 5 1 、 5 2、 5 5、 5 6の形成面と は反対側の面 (非電極形成面) がメッシュ部材 4 0と対向するように配置される。 これは、 この噴霧装置では、 霧化に使用する圧電素子 5 0の振動波が従来のよう に表面波 6 0ではなく、 内部を通過するバルク波 6 1であるからである。 圧電素 子 5 0の非電極形成面をメッシュ部材 4 0と対向させることで、 電極に薬液が接 触せず、 薬液による電極の腐食 ·電気腐食 ·電気短絡から保護することができ、 信頼性が増す。
なお、 圧電素子 5 0の材料は特に限定されないが、 後述のようにバルク波を振 動波として利用することなどから、 材料としてニオブ酸リチウムを用レ、、 4 1士 1 5 ° 回転 Yカット、 Y軸投影の伝搬方向であることが好ましい。
図面には示していないが、 圧電素子 5 0は、 その周端部が防水パッキンで圧迫 保持されている。 圧電素子 5 0においては、 櫛形電極 5 1 、 5 2が形成されてい る部分が振動し、 周端部は電極形成部分より振動が小さい。 このため、 圧電素子 5 0の周端部のみを圧迫保持することで、 圧電素子 5 0の振動減衰を最小限にす ることができる。 また、 圧電素子 5 ϋの非電極形成面に供給される薬液が圧電素 子 5 0の外に流下し、 噴霧装置内部の腐食 '変形 ·変色等を防水パッキンにより、 防止することができる。
圧電素子 5◦の電極形成面の下方には液検知回路、 圧電素子駆動回路、 制御用
C P U等の回路が搭載される基板 7 0が配置され、 この回路基板 7 0と、 圧電素 子 5 0の櫛形電極 5 1 、 5 2及び液検知電極 5 5、 5 6とは導電性のコィルバネ (弾性体) 7 1で電気的に接続されている。
次に、 圧電素子 5 0の振動動作について説明する。 圧電素子 5 0の電極 5 1 、 5 2に、 例えば周波数 6 ΜΗ ζの交流電流を流すと、 表面を通過する表面波 (弾 性表面波) 6 0と、 内部を通過するバルク波 6 1が発生する。 つまり、 圧電素子 5 0は電気的エネルギーを振動エネルギーに変換するもので、 具体的には電極 5 1 、 5 2が電気的エネルギーを機械的振動エネルギーに変換すろ。
この圧電素子 5 0において、 圧電素子 5 0の振動源は、 互い違い状に形成され た櫛形電極 5 1 、 5 2であり、 発生振動波は表面波 6 0とバルク波 6 1である。 バルク波 6 1は、 圧電素子 5 0の長手方向に対して内部を斜めに伝搬し、 礪振さ れたバルク波の等位相面の法線方向を とすると、 Θは次の式で与えられ、 ノくノレ ク波の進行方向は周波数によって変化する。
Θ = s i n ( V b / P - f )
ここで、 V bはバルク波の位相速度、 Pは櫛形電極 5 1 、 5 2のピッチ、 f は 周波数である。
バルク波は、 圧電素子 5 0の境界面で反射しながら伝搬していく。 また、 櫛形 電極 5 1 、 5 2で礪振された表面波の振動周波数は、 主に表面波の音速 V sとピ ツチ Pによって决定される力 バルク波の振動周波数は圧電素子 5 0の厚み tに よって決定される。
一般に医療用吸入器では、 患者の疾患の程度に応じて治療 ·予防に最適な薬液 が噴霧液として処方される。 これらの薬液は様々な性質を持っており、 噴霧能力 が変わるので、 薬液によって単位時間当たりの噴霧量が異なってくる。 この実施 形態吸入器では、 第 1の貯液部である薬液ボトル 2 0には治療 ·予防の効果を得 るのに必要十分な量の噴霧液を入れる。 この時、 第 1の貯液部 2 0から第 2の貯 液部 3 0 aに供給される 1回当たりの給液量が一定であれば、 給液間隔が一定に なるように噴霧部 3 0への供給バヮ一を調節することで、 単位時間当たりの噴霧 量を最適値に制御可能である。 単位時間当たりの噴霧量は、 以下の式から算出さ れる。
(単位時間当たりの噴霧量) 二 ( 1回当たりの給液量) / (給液間隔) よって、 給液間隔を一定にすることで、 単位時間当たりの喰霧量を一定量に調 節できることがわかる。 この実施形態吸入器では、 単位時間当たりの噴霧量を一 定に自動調節するため、 図 9に示すフローチヤ一卜の処理を行う。
噴霧がスタートすると (S T 1 ) 、 噴霧部への供給パワーを初期値に設定する とともに、 第 1の貯液部 2 0より第 2の貯液部 3 0 aに給液を行う ( S T 2 ) 。 同時に給液間隔測定タイマをスタートさせる (S T 3 ) 。 次に、 第 2の貯液部 3 0 aの液量を検知し、 第 2の貯液部 3 0 aへ液供給が必要か否か、 つまり流量が 不足がどうか判定する (S T 4 ) 。 必要でなければそのまま動作を維持する。 ス テツプ S T 4で液供給が必要であると判定されると、 給液間隔測定タイマをスト ップし ( S T 5 ) 、 この給液間隔と目標給液間隔との関係に応じて、 噴霧部への 供給パワーの制御量を計算し (S T 6 ) 、 供給パワーを変更するともに、 第 2の 貯液部 3 0 aに給液を行い (S T 7 ) 、 ステップ S T 3に戻る。 タイマによる給 液間隔が目標給液間隔よりも長い場合は噴霧部 3 0への供給パワーを上げること になるし、 逆に短い場合は供給パワーを下げる。
この実施形態吸入器の圧電素子 5 0は、 図 7に示す液検知電極 5 5、 5 6を有 するので、 液検知電極が噴霧液と直接触れると、 噴霧液の持つインピーダンス成 分の影饗を受けることになり、 医療用吸入器など様々な性質の噴霧液が使用され る用途では、 液検知回路の動作が不安定になるが、 ここでは液検知電極 5 5、 5 6は噴霧液が溜まるる部分とは反対面に形成されており、 薬液とは直接接してい ないので、 薬液の性質に依存されず、 安定的な液検知を実現すろことができる。 まだ、 液検知電極 5 5、 5 6は導電性の弾性体 7 1で液検知回路と接続され、 圧 電素子の振動の減衰を防ぐ構成となっている。 なお、 圧電素子 5 0には駆動用と して、 一方の電極 5 1と他方の電極 5 2が互い違い状に形成した櫛形電極も形成 され、 この櫛形電極と圧電素子駆動回路も導電性の弾性体 7 1で接続されている c ここで使用する圧電素子 5 0は、 図 1 0に示すように、 その寸法や電極形状に より固有に決定される共振周波数が多数存在する。 噴霧液が第 2の貯液部 3 0 a に溜まると、 液検知電極間のインピーダンスが変化するので、 この共振状態が変 化する。 液検知回路として、 この共振特性を利用した発振回路を構成し、 発振周 波数の変化や発振の開始、 停止を検出することで、 液検知電極上に薬液が存在す るかどうかを判定することで、 安定した液検知を実現できる。
この実施形態吸入器では: 噴霧部として利用されろ圧電素子 5 0は水平に対し て傾いて配置されており、 第 2の貯液部内の薬液 5 8は高い方から低い方へ減つ ていく。 噴霧量を一定に保っためには、 噴霧液 (薬液) 5 8が完全になくなる前 に給液させることが必要であるが、 例えば図 1 1 A— 1 1 Cのような位置関係に 液検知電極を配置することによって、 感度良く給液タイミングを設定することが 可能である。 また、 図 1 2 A, 1 2 Bに示すように、 噴霧液の誘電率は通常大き いので、 嘖霧液の 2本の電極間の静電容量は電極間に噴霧液がまたがった状態 (図 1 1 A、 図 1 2 A) から、 またがらない状態 (図 1 1 C、 図 1 2 B ) に変わ る瞬間に大きく変化する。 このような構成の場合、 液検知電極間の静電容量は数 p〜数十 p Fになり、 浮遊容量や液検知回路のばらつきの影響も大きくなるので、 このように液検知タイミングで最も大きく変化するような液検知電極形状にして おくことは有効である。 すなわち、 給液タイミングを液減少方向に対して垂直方 向に平行に 2本配置することで、 安定した液検知を実現できる。 また、 液検知電 極の位置を調節することで、 任意に液検知タイミングも設定できる。 この検知電 極 5 5、 5 6間の静電容量は、 C R発振器を構成し、 この C R発振器の出力を力 ゥンタで計数して、 静電容量変化による周波数変化に応じたその計数値の変化か ら液減を検知する。
液検知回路に液検知電極間の容量変化を利用する場合でも、 上記のように容量 の検出部として容量を周波数に変換する用途が多く、 液検知回路を周波数出力で 構成する場合は多い。 ここで、 液検知回路の出力周波数が圧電素子の駆動 (振 動) 周波数に近づくと、 互いに干渉し安定した動作を妨げる。 よって、 この実施 形態吸入器では、 それぞれの動作の安定化のためには、 阿方の周波数はそれぞれ の帯域を十分分離して設定している。
通常、 圧電素子駆動回路は圧電素子の最もインピーダンスの低い共振点で駆動 させるように構成されることが多い。 よって、 この駆動周波数の整数倍では圧電 素子駆動ノイズが発生しており、 液検知回路の出力周波数が圧電素子駆動周波数 より高ければ、 このノイズの影響を大きく受けることになる。 したがって、 この 実施形態吸入器では、 液検知回路の周波数帯域は圧電素子駆動周波数よりも十分 低くノイズの少ない、 また図 1 0でも示した圧電素子固有の共振点のない低周波 帯域で構成し、 液検知が安定するようにしている。
液検知回路の出力周波数を、 圧電素子駆動周波数より十分低く しても、 図 1 3 Αに示すように、 圧電素子駆動周波数のノイズが載ってくる場合があるが、 周波 数帯域が十分分離されているので、 出力にコンデンサ Cと抵抗 Rからなる L P F 回路を付加することで、 簡単に安定した液検知回路出力を得ることができる。 また、 圧電素子駆動周波数ノイズが問題となる場合がある。 この場合は、 周波 数帯域の分離や、 L P F (Low Pass Fi lter)の追加の他に、 図 1 5のように周期 的に圧電素子駆動回路へのパワー供給を停止し、 圧電素子駆動の停止期問内の液 検知回路出力に基づいて液検知を判定すれば、 液検知回路にはノイズが発生せず、 安定した液検知が可能になる u
噴霧量の自動調節の手段としては、 圧電素子駆動回路への供給電圧、 あるいは 電流そのものを変える方法と、 供給電圧 (電流) は一定のまま、 例えば P WM (Pu l se Wi dth Modu l at ion) 制 4卸のように、 オン状態とオフ状態の比率を変更す ることによつて制御を行うバルス制御方法が考えられる。 この実施形態吸入器の 場合は、 パルス制御を採用することで、 噴霧量の調整機能に加え、 液検知機能の 安定化も図れるので, 簡便かつ口一コス 卜のシステムを構成できる。
圧電素子駆動の停止期間内は嘖霧が停止することになる。 この停止時間を十分 短くすれば、 使用者は定期的に噴霧が停止している感覚を受けず、 違和感のない 薬液吸入が可能になる。 医療用吸入器の場合、 最適な噴霧量は毎分 0 . 3 m l程 度であり、 この程度の噴霧量の場合、 噴霧停止時間が約 1 5 m sを越えると、 霧 化が停止している感覚を受けてしまう。 よって、 停止時間を 1 5 m s以下とすれ ば、 違和感のない吸入が可能になる。 液検知に使用する液検知電極は液減少方向に対して垂直方向に平行に 2本配置 することで、 安定した液検知を実現できることは前述している。 このように液検 知電極の方向は、 液検知機能として最適な方向があるが、 これが図 8のように、 圧電素子の振動波に対して直交してしまう場合がある。 しかしながら、 直交した 場合は、 圧電素子振動周波数ノィズが液検知電極上に最も大きく現れることにな る。 結果として、 液検知回路のノイズが大きくなつたり、 または液検知電極のィ ンピーダンスが高い場合は、 液検知電極がアンテナとなり、 放射ノイズも増大し てしまうという悪影響がある。 この悪影響を低減するためには、 図 1 6 Bで示す ように、 垂直方向から意図的に傾けて配置すればよい。
また、 圧電素子の液検知電極反対表面の第 2の貯液部には供給された噴霧液が 存在するが、 この噴霧液を通して圧電素子駆動周波数の放射ノィズが発生する。 特に、 噴霧液に導電性の高い生理食塩水などが含まれる場合には、 放射ノイズが 大きくなる。 この放射ノイズを低減するためには、 図 1 7のように、 液検知電極 とは別にインピーダンスの低い回路 G N D 5 7などに接続するための電極を持て ばよい。 噴霧液と回路 G N Dは圧電素子を通して容量接続され、 結果、 噴霧液の 高周波 (圧電素子駆動周波数) ィンピーダンスが低くなって放射ノィズを低減で きる。
もちろん、 福数本存在する液検知のための電極の 1本以上をインピーダンスの 低い固定電位に接続して、 液検知回路を構成することでも、 この効果は得られる ことになる。
ここで、 固定電極を圧電素子駆動により発生する圧電素子の振動波の方向に対 して、 完全に垂直には配置せず、 やや傾けて配置すると、 さらに効果があるのは 前述の通りである。
また、 噴霧装置が医療用吸入器の場合は、 1回に噴霧する噴霧液の量は 2〜 3 m 1程度であり、 また最適な単位時間当たりの最適な噴霧量は 0 . 3 m 1 i n . 程度である。 よって、 噴霧液が 2 m l の場合、 噴霧総時間は 7分程度となる。 第 2の貯液部 3 0 aに給液される 1回の給液量が 1 0 0 μ 1 の場合、 この 1 0 0 1を噴霧するのに要する時間は 2 0秒程度となる。 本発明においては、 第 2の 貯液部 3 0 aの噴霧液が噴霧される間隔が一定となるように制御するので、 この 時間が長すぎると制御の遅れが問題になってくる。 3回程度の制御値の変更で、 最適単位噴霧量付近に制御できるとしても、 噴霧量が落ち着くのは約 1分後とな り、 総噴霧時間の最短が約 7分であることを考えると、 この程度が限界である。 しかしながら、 給液量が少なすぎても、 今度は逆に給液量のコントロールが困難 になるので、 制御とのバランスをとつて給液量は 5 0 μ 1、 すなわち 1 0秒程度 で噴霧できる量であることが望ましい。
また、 前述の制御の遅れを改善するには、 噴霧部へのパワーは最大値から制御 をスタートさせればよレ、。 パワーが大きいほど第 2の貯液部に給液された噴霧液 は早くなくなり、 次の制御パワーを早く決定できるので、 目標単位噴霧量に早く 収束させることが可能になる。
噴霧量の自動調節を行う吸入器においては、 単位時間噴霧量がどの装置でもほ ぼ一定に制御されるため、 装置の製造時の検査行程などにおいても、 装置の持つ 噴霧能力の把握が困難になる。 実際には、 噴霧装置への入力電力と噴霧量の関係 から大まかな判定は可能であるが、 安定後の入力電力と総噴霧量で判定すると、 前述した制御の遅れ分の誤差が出ることになる。 これに対して、 自動調節モード とは別に、 最大パワーなどパワー固定で嘖霧する能力検査用のモードを持つこと で装置間の噴霧量の比較が可能になり、 この情報に基づき製造された噴霧装置が 良品か否かを容易に判定できる。
ところで、 噴霧装置の構成としては使用者の操作スィツチは少ない方が簡単で よい。 よって、 簡単な噴霧装置では操作スィッチは噴霧開始 Ζ停止用の 1つのみ であり、 このような場合、 パワー固定モード設定スィッチは設けない方が使用者 にとつては分かりやすい。 そこで、 噴霧装置に電源電圧監視機能を備え、 所定の 電源電圧変動があった時にパワー固定モードに移行するようにしておけば、 装置 の検査時に限ってパワー固定モードに設定することが可能になる。 所定の電圧変 動は実使用では起こり得ないようにしておくことで、 パワー固定モードへの誤移 行も防止できる。
また、 噴霧装置においては、 噴霧機能に大電流を使用し、 特に本発明のように 噴霧量の自動調節を行う機器においては、 電源電圧変動や電源ノイズが大きくな つているので、 電源投入直後の噴露動作開始前に規定の電圧変動があった時にパ ヮ一固定モードに移行するようにしておくほう力 より確実に誤移行を防止でき る。
噴霧装置の使い方によっては、 噴霧を一時中断する場面が存在する。 医療用吸 入器では、 患者が自分の呼吸に合わせて噴霧を開始 停止させる使い方をするこ とがある。 このようにすることで、 呼吸できない無駄な噴霧液 (治療 ·予防用の 薬液) を減らすことが可能になる。 このような場面では、 他の実施形態吸入器と して、 図 1 8に示すフローチャートの処理を実行し、 短時間の所定時間内の噴霧 停止時には、 噴霧停止直前の供給パワーで噴霧を開始することが有効である。 この場合、 噴霧停止で (ST 1 1) 、 停止時の供給パワーを記憶するとともに、 所定時間計測用のタイマをスタートさせる (ST 1 2) 。 そして、 嘖霧再開要求 有りか否かを判定する (ST 1 3) 。 この判定は停止ノ開始のスィッチが押され たか否かで判定する。 判定 YE Sであると、 所定時間計測用のタイマがタイムァ ップする以前のスィツチ操作なので、 この場合は記憶している供給パワーで噴霧 を再開する (ST 14) 。 ST 1 3において、 噴霧再開の要求がない場合は、 所 定時間経過したか、 つまり所定時間計測用タイマがタイムアップしたか否かを判 定し (ST 1 5) 、 判定 NOであれば、 ST 1 3に戻り、 噴霧再開要求を待つ。 再開要求がないまま、 ST 1 5でタイマがタイムアップすると、 噴霧装置の電源 を停止する (S T 1 6) 。
ここでは、 噴霧停止直前の供給パワーを記憶しておくために、 機器の電源を保 持しておく必要があるが、 所定時間が経過した後は、 噴霧停止直前の供給パワー で噴霧を開始する必要はないので、 機器の電源を切断することで少電力化を図る ことができる。
第 1の貯液部 20の噴霧液がなくなった場合は、 第 2の貝宁液部 30 aに供給さ れる噴霧液もなくなり、 噴霧が停止して空運転状態となるので、 第 1の貯液部 2 0の液量を監視する装置を設けることが望ましい。 しかしながら、 第 1の貯液部 20力ゝら第 2の貯液部 30 aへの給液動作を所定回数または所定時間繰り返して も、 第 2の貯液部 30 aの給液判断部が給液を必要と判断した時は、 第 1の貯液 部 20の噴霧液はすべて噴霧されたと判断し、 噴霧装置の動作を停止すれば、 第 1の貯液部 20の液検知部は不要になる。 振動子の振動を利用する噴霧装置で、 振動子の駆動回路として振動子の持つ共 振特性を利用した自動発振回路を構成したものにおいて、 電源供給部を分離する 目的で揷入する発振周波数帯域で高いインピーダンスを持つコイル L 0 などの素 子を G N Dライン側に挿入し、 図 1 4のように、 発振回路 3 3の高周波電流、 す なわち振動子駆動周波数電流をダイオード D l 、 D2 からなる回路で整流平滑し て電圧に変換する回路を構成すれば、 この電圧の大きさは噴霧に使用されるエネ ルギ一にほぼ等しくなり、 この電圧レベルが所定値となるように噴霧部への供給 パヮーを調節することによって、 噴霧量を自動調節することが可能になる。
噴霧が停止、 すなわち回路の発振が停止した時は、 高周波電流が存在しないの で電圧は発生しない。 この電圧が所定値以下になった時は、 噴霧が過度に減衰ま たは完全に停止した状態であり、 特に医療用の吸入器などでは速やかに対処する 必要があり、 表示や音などによって使用者に異常を報知することは有効である。 また、 落下などによって故障したような場合は、 内部回路が露出している可能 性もあり、 火傷、 感電などの危険が発生していることも想定されるので、 故障を 検出した時は発振回路への電源供給を停止すれば、 使用者の安全性も確保できる。 図 7、 図 1 7の液検知電極 5 5、 5 6は、 形状が L字形のものであるが、 液検 知電極 5 5、 5 6、 5 7の形状は、 これに代えて、 図 1 9 A— 1 9 Jに示すもの や、 さらに他の形状のものを使用することができる。
図 2 0 A— 2 0 Dは、 この発明の実施形態吸入器に使用し得る圧電素子の他の 取り付け構造を示す図である。 図 2 0 Λは、 その断面図であり、 圧電素子 5 0は 接着剤 6 5で圧電素子保持部 6 3に一体的に保持されている。 圧電素子 5 0の圧 電素子保持部 6 3に接着される側とは逆の側の面に、 櫛形電極 5 1、 5 2及び液 検知電極 5 5、 5 6が形成されている u 圧電素子 5 0は、 電極 5 1、 5 2、 5 5、 5 6を下面として、 基台 6 6に載置され、 電極 5 1、 5 2、 5 5、 5 6は導電性 の弾性体 7 1により、 基板 7 0の回路部に接続されている。 圧電素子 5 0の上面 は、 金属のシールド体 6 4によって覆われている。 図 2 0 B、 2 0 Cおよび 2 0 Dは、 いずれも圧電素子保持部 6 3を上方から見たいくつかの例を示しており、 図 2 0 Bは液検知電極 5 5 , 5 6と櫛形電極 5 1の一部が見える穴部 6 3 aを有 するものであり、 図 2 0 Cは液検知電極 5 5、 5 6と櫛形電極 5 1、 5 2の一部 が見える穴部 6 3 aと櫛形電極 5 1、 5 2の大部分が見える穴部 6 3 bを有する ものであり、 図 2 O Dは液検知電極 5 5、 5 6のみが上方から目視し得る穴 6 3 cを有するものである。
圧電素子保持部 6 3の素材として、 金属あるいはセラミックを使用する。 これ らの素材を使用することにより、 霧化液が周辺の保持部に付着した時、 液を介し て超音波振動が保持体に収拾されにくく し、 噴霧効率を高めることができる。 ま た、 圧電素子保持部 6 3の素材として、 耐熱性樹脂を使用してもよい。 耐熱性樹 脂を使用することにより、 超音波エネルギーの吸収で温度が上昇し、 変形等が起 きないようにすることができる。
圧電素子保持 6 3に圧電素子 5 0を接着剤で接着することにより、 簡易な方法 で確実に保持できる。 また、 圧電素子保持部 6 3に撥水性コーティングを施して もよい。 撥水性を高めることで、 超音波の吸収率をさらに低減及び液での汚れを 落ちやすくすることができる。
図 2 0 B , 2 0 Cおよび 2 0 Dに示す圧電素子保持部 6 3によって櫛形電極 5 1の一部もしくは全体を覆うようにしているので、 櫛形電極 5 1に液が付着して、 振動が大きく減衰するのを防止できる。
金属のシールド体 6 4は、 基板 7 0の圧電素子駆動回路の低インピーダンス部 に接続されている。
金属のシールド体 6 3は、 圧電素子保持部 6 4からなるものであってもよい。 産業上の利用可能性
以上のように、 この発明にかかる噴霧装置においては、 噴霧部の、 噴霧する直 前の薬液を保持する貯液部に給液される噴霧液の給液間隔が所定時間になるよう に、 噴霧部への供給パワーを調節するようにしたので、 1回あたりの噴霧量を自 動的に一定量に調整できる噴霧装置が提供できる。

Claims

請求の範囲
1 . 噴霧液を貯留するための第】の貯液部及び第 2の貯液部と、 前記第 2の貯液 部内の噴霧液を噴霧する噴霧部と、 前記第 1の貯液部から前記第 2の貯液部に噴 霧液を定量供給する給液部と、 前記第 2の貯液部の噴霧液の有無または増減を検 出する液検知部と、 この液検知部からの出力に基づいて、 前記第 2の貯液部に液 供給が必要であるかどうかを判定するための給液判断部とを備え、 前記第 2の貯 液部に給液される噴霧液の給液間隔が所定時間になるように、 噴霧部への供給パ ヮーを調節することで噴霧量の自動調節を行うことを特徴とする噴霧装置。
2 . 前記噴霧部を圧電素子と圧電素子駆動手段で構成し、 前記圧電素子表面の一 部を用いて、 前記第 2の貯液部が構成され、 前記第 2の貯液部の前記圧電素子反 対表面に液検知のための電極を有し、 液検知電極出力に基づいて貯液部の液の有 無または増減を検知する液検知回路を備えたことを特徴とする請求項 1記載の噴
3 . 前記液検知回路は、 前記圧電素子の寸法、 前記液検知電極の形状などから固 有に決定される共振特性を利用した発振回路を構成し、 発振の有無または発振周 波数の変化を検出することで液検知を行うことを特徴とする請求項 2記載の噴霧
4 . 前記液検知電極は、 形状を液減少方向に対して垂直方向に平行に複数本配置 し、 電極間の静電容量変化を検出することで液検知を行うことを特徴とする請求 項 2記載の噴霧装置。
5 . 前記液検知回路は周波数出力で構成し、 圧電素子駆動周波数帯域と液検知回 路出力周波数帯域を分離したことを特徴とする請求項 2記載の噴霧装置。
6 . 前記圧電素子駆動周波数帯域に対して、 前記液検知回路出力周波数帯域を十 分低くすることを特徴とする請求項 5記載の噴霧装置。
7 . 前記液検知回路の出力にローパスフィルタ回路を付加し、 圧電素子駆動周波 数帯域のノイズを力ッ卜することを特徴とする請求項 6記載の噴霧装置。
8 . 周期的に圧電素子駆動を停止し、 停止期問中の液検知回路出力に基づいて圧 電素子への駆動パワーを調節することにより、 単位時間あたりの噴霧量の自動調 節を行うことを特徴とする請求項 2記載の噴霧装置。
9 . 噴霧量の調節として、 圧電素子への駆動パワーをオン、 オフさせるパルス制 御を用い、 オフ期間中の液検知回路出力に基づいて単位時間をあたりの噴霧量の 自動調節を行うことを特徴とする請求項 2記載の噴霧装置。
1 0 . 吸入用途であり、 前記圧電素子への駆動パワーをオフしている時間が 1 5 m s以下であることを特徴とする請求項 8または請求項 9記載の噴霧装置。
1 1 . 前記液検知電極を圧電素子駆動により発生する圧電素子の振動波の方向に 対して、 垂直の配置より、 やや傾けて配置することを特徴とする請求項 2記載の 1 2 . 前記第 2の貯液都の圧電素子反対表面に液検知のための電極とは別に、 ィ ンピーダンスの低い固定電位に接続するための電極を配置することを特徴とする 請求項 2記載の噴霧装置。
1 3 . 前記液検知電極の少なくとも 1本をインピーダンスの低い固定電位に接続 して構成したことを特徴とする請求項 2記載の噴霧装置。
1 4 . 前記固定電位接続用電極を圧電素子駆動により発生する圧電素子の振動波 の方向に対して、 垂直の配置より、 やや傾けて配置することを特徴とする請求項 1 2または請求項 1 3記載の噴霧装置。
1 5 . 吸入用途であり、 第 2の貯液部に給液される 1回の噴霧液が 1 0 0 μ 1以 下であることを特徴とする請求項 1記載の噴霧装置。
1 6 . 噴霧部への供給パワーの初期値を最大パヮ一とすることを特徴とする請求 項丄 5記載の噴霧装置。
1 7 . 噴霧能力検査のため、 パワー固定モードを持つことを特徴とする請求項 1 記載の噴霧装置。
1 8 . 電源電圧監視機能を備え、 所定の電源電圧変動があった時、 パワー固定モ ードへ移行することを特徴とする請求項 1 7記載の噴霧装置。
1 9 . 機器電源投入の直後の噴霧開始前に規定の電源電圧変動があった時、 パヮ 一固定モ一ドへ移行することを特徴とする請求項 1 8記載の噴霧装置。
2 0 . —且、 噴霧が停止してから所定時間以内は噴霧停止直前の噴霧部への供給 パワーを記憶し、 所定時間以内に噴霧再開する場合は、 記憶した供給パワーで噴 霧を開始することを特徴とする請求項 1記載の噴霧装置。
2 1 . 所定時間以内は本体電源を保持することによって、 噴霧停止直前の噴霧部 への供給パワーの記憶を実現し、 所定時間が経過した後は、 電源を完全切断する ことを特徴とする請求項 2 0記載の噴霧装置。
2 2 . 前記第 1の貯液部から前記第 2の貯液部への給液動作を所定回数または所 定時間繰り返しても、 前記第 2の貯液部の前記給液判断部が給液必要と判断した 時は、 前記第 1の貯液部の噴霧液がなくなつたと判断し、 前記噴霧部へのパワー 供給を切断することを特徴とする請求項 1記載の噴霧装置。
2 3 . 振動子の振動を利用する噴霧装置で、 振動子の駆動回路として振動子の持 つ共振特性を利用した自励発振回路を構成し、 振動子駆動回路と電源供給部を分 離する目的で、 挿入する発振周波数帯域で高いィンピ一ダンスを持つコィルなど の素子を G N Dライン側に挿入し、 振動子駆動周波数電流を整流平滑して電圧に 変換する回路を構成し、 この電圧レベルが所定値となるように噴霧部への供給パ ヮーを調節することによって、 単位時間あたりの噴霧量を自動調節することを特 徵とする噴霧装置。
2 4 . 前記整流平滑回路の出力の電圧レベルが所定値以下になった時は霧化が停 止、 または過度に減衰した故障状態と判定する判定部を備え、 使用者に異常を報 知することを特徴とする請求項 2 3記載の噴霧装置。
2 5 . 電圧レベルが所定値以下になった時は、 発振回路への電源供給を停止すろ ことを特徴とする、 請求項 2 3記載の噴霧装置。
2 6 . 片面に一方の電極と他方の電極を互い違いに形成した櫛形電極を有する圧 電素子と、 この圧電素子を駆動する発振手段と、 液体を貯留する貯液部と、 圧電 素子を有する噴霧部と前記貯液部との間に貯液部の液体を供給する液供給手段と、 前記圧電素子を保持する圧電素子保持部とを備えたことを特徴とする噴霧装置。
2 7 . 前記圧電素子保持部は金属で構成されていることを特徴とする請求項 2 6 記載の噴霧装置。
2 8 . 前記圧電素子保持部はセラミックで構成されていることを特徴とする請求 項 2 6記載の噴霧装置。
2 9 . 前記圧電素子保持部は耐熱性樹脂で構成されていることを特徴とする請求 項 2 6記載の噴霧装置。
3 0 . 前記圧電素子と前記圧電素子保持部は接着剤で固定することを特徵とする 請求項 2 6、 請求項 2 7、 請求項 2 8または請求項 2 9記載の噴霧装置。
3 1 . 前記圧電素子保持部に撥水性のコーティングを施したことを特徴とする請 求項 2 6、 請求項 2 7、 請求項 2 8または請求項 2 9記載の噴霧装置。
3 2 . 前記圧電素子保持部は櫛形電極の一部もしくは全体を覆うように形成され たことを特徴とする請求項 2 6、 請求項 2 7、 請求項 2 8または請求項 2 9記載 の噴霧装置。
3 3 . 前記圧電素子保持部の周辺に、 金属製のシールド体を配置し、 これを圧電 素子駆動回路の低インピーダンス部に接続したことを特徵とする請求項 2 6、 請 求項 2 7、 請求項 2 8または請求項 2 9記載の噴霧装置。
3 4 . 前記シール ド体が金属製の圧電素子保持部からなることを特徴とする請求 項 3 3記載の噴霧装置。
補正書の請求の範囲
[ 2 0 0 0年 5月 1 0日 (1 0 . 0 5 . 0 0 ) 国際事務局受理:出願当初の請求の範囲 2 9 , 3 1及び 3 3は補正された;出願当初の請求の範囲 2 6— 2 8,3 0及び 3 2は取 り下げられた;他の請求の範囲は変更なし。 (2頁) ]
霧を開始することを特徴とする請求項 1記載の噴霧装置。
2 1 . 所定時間以内は本体電源を保持することによって、 噴霧停止直前の噴霧部 への供給パワーの記憶を実現し、 所定時間が経過した後は、 電源を完全切断する ことを特徴とする請求項 2 0記載の噴霧装置。
2 2 . 前記第 1の貯液部から前記第 2の貯液部への給液動作を所定回数または所 定時間繰り返しても、 前記第 2の貯液部の前記給液判断部が給液必要と判断した 時は、 前記第 1の貯液部の噴霧液がなくなつたと判断し、 前記噴霧部へのパワー 供給を切断することを特徴とする請求項 1記載の噴霧装置。
2 3 . 振動子の振動を利用する噴霧装置で、 振動子の駆動回路として振動子の持 つ共振特性を利用した自励発振回路を構成し、 振動子駆動回路と電源供給部を分 離する目的で、 揷入する発振周波数帯域で高いインピーダンスを持つコイルなど の素子を G N Dライン側に挿入し、 振動子駆動周波数電流を整流平滑して電圧に 変換する回路を構成し、 この電圧レベルが所定値となるように噴霧部への供給パ ヮ一を調節することによって、 単位時間あたりの噴霧量を自動調節することを特 徴とする噴霧装置。
2 4 . 前記整流平滑回路の出力の電圧レベルが所定値以下になった時は霧化が停 止、 または過度に減衰した故障状態と判定する判定部を備え、 使用者に異常を報 知することを特徴とする請求項 2 3記載の噴霧装置。
2 5 . 電圧レベルが所定値以下になった時は、 発振回路への電源供給を停止する ことを特徴とする、 請求項 2 3記載の噴霧装置。
2 6 . (削除)
2 7 . (削除)
2 8 . (削除)
2 9 . (捕正後) 片面に一方の電極と他方の電極を互い違いに形成した櫛形電極 を有する圧電素子と、 この圧電素子を駆動する発振手段と、 液体を貯留する貯液 部と、 圧電素子を有する噴霧部と前記貯液部との間に貯液部の液体を供給する液 供給手段と、 前記圧電素子を保持する圧電素子保持部とを備え、
前記圧電素子保持部は耐熱性榭脂で構成されていることを特徴とする噴霧装置。
3 0 . (削除)
19
捕正された用紙 (条約第 19条〉
3 1 . (補正後) 片面に一方の電極と他方の電極を互い違いに形成した櫛形電極 を有する圧電素子と、 この圧電素子を駆動する発振手段と、 液体を貯留する貯液 部と、 圧電素子を有する噴霧部と前記貯液部との間に貯液部の液体を供給する液 供給手段と、 前記圧電素子を保持する圧電素子保持部とを備え、
前記圧電素子保持部に撥水性のコーティングを施したことを特徴とする噴霧装 置。
3 2 . (削除)
3 3 . (補正後) 前記圧電素子保持部の周辺に、 金属製のシールド体を配置し、 これを圧電素子駆動回路の低インピーダンス部に接続したことを特徴とする請求 項 2 9記載の噴霧装置。
3 4 . 前記シールド体が金属製の圧電素子保持部からなることを特徴とする請求 項 3 3記載の噴霧装置。
20
補正された用紙 (条約第 19条)
PCT/JP1999/006665 1998-12-18 1999-11-29 Pulverisateur WO2000037132A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR10-2001-7007406A KR100404720B1 (ko) 1998-12-18 1999-11-29 분무 장치
AU14122/00A AU1412200A (en) 1998-12-18 1999-11-29 Sprayer
US09/868,185 US6679436B1 (en) 1998-12-18 1999-11-29 Sprayer
EP99973475A EP1142600A4 (en) 1998-12-18 1999-11-29 ATOMIZERS
HK02103393.5A HK1041658A1 (zh) 1998-12-18 2002-05-04 噴霧裝置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/361161 1998-12-18
JP36116198A JP3312216B2 (ja) 1998-12-18 1998-12-18 噴霧装置

Publications (1)

Publication Number Publication Date
WO2000037132A1 true WO2000037132A1 (fr) 2000-06-29

Family

ID=18472449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006665 WO2000037132A1 (fr) 1998-12-18 1999-11-29 Pulverisateur

Country Status (8)

Country Link
US (1) US6679436B1 (ja)
EP (1) EP1142600A4 (ja)
JP (1) JP3312216B2 (ja)
KR (1) KR100404720B1 (ja)
CN (1) CN1330563A (ja)
AU (1) AU1412200A (ja)
HK (1) HK1041658A1 (ja)
WO (1) WO2000037132A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1370129A1 (en) * 2001-03-13 2003-12-17 AeroGen, Inc. Methods and apparatus for controlling piezoelectric vibration
US9108211B2 (en) 2005-05-25 2015-08-18 Nektar Therapeutics Vibration systems and methods

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5758637A (en) 1995-08-31 1998-06-02 Aerogen, Inc. Liquid dispensing apparatus and methods
US6235177B1 (en) 1999-09-09 2001-05-22 Aerogen, Inc. Method for the construction of an aperture plate for dispensing liquid droplets
US7971588B2 (en) 2000-05-05 2011-07-05 Novartis Ag Methods and systems for operating an aerosol generator
AU2003202925B2 (en) 2002-01-07 2008-12-18 Aerogen, Inc. Devices and methods for nebulizing fluids for inhalation
US7677467B2 (en) 2002-01-07 2010-03-16 Novartis Pharma Ag Methods and devices for aerosolizing medicament
AU2003203043A1 (en) 2002-01-15 2003-07-30 Aerogen, Inc. Methods and systems for operating an aerosol generator
GB2384198B (en) 2002-01-18 2005-03-02 Profile Drug Delivery Ltd Nebulizer metering
WO2003097126A2 (en) 2002-05-20 2003-11-27 Aerogen, Inc. Aerosol for medical treatment and methods
TW562704B (en) * 2002-11-12 2003-11-21 Purzer Pharmaceutical Co Ltd Ultrasonic atomizer device for generating high contents of sub-micron atomized droplets
GB2396825B (en) 2002-11-20 2004-12-08 Profile Respiratory Systems Lt Improved inhalation method and apparatus
GB2395437C (en) 2002-11-20 2010-10-20 Profile Respiratory Systems Ltd Improved inhalation method and apparatus
US20100222752A1 (en) * 2003-05-20 2010-09-02 Collins Jr James F Ophthalmic fluid delivery system
DE602004031829D1 (de) * 2003-05-20 2011-04-28 Collins Ophthalmisches arzneimittelabgabesystem
US8545463B2 (en) * 2003-05-20 2013-10-01 Optimyst Systems Inc. Ophthalmic fluid reservoir assembly for use with an ophthalmic fluid delivery device
US8616195B2 (en) 2003-07-18 2013-12-31 Novartis Ag Nebuliser for the production of aerosolized medication
FR2864231B1 (fr) * 2003-12-19 2006-05-19 Valois Sas Dispositif de distribution de produit fluide
US20070235555A1 (en) * 2006-04-11 2007-10-11 Helf Thomas A Electronic aerosol device
JP2007523700A (ja) 2004-02-24 2007-08-23 マイクロドース・テクノロジーズ・インコーポレーテッド 流動方向検出吸入器
US7946291B2 (en) 2004-04-20 2011-05-24 Novartis Ag Ventilation systems and methods employing aerosol generators
FR2879482B1 (fr) * 2004-12-20 2007-03-30 Oreal Dispositif de pulverisation d'un produit, notamment d'un parfum
CA2606935A1 (en) * 2005-05-05 2006-11-16 Pulmatrix Inc. Ultrasonic aerosol generator
EP1927373B1 (en) * 2006-11-30 2012-08-22 PARI Pharma GmbH Inhalation nebulizer
FR2910254B1 (fr) * 2006-12-20 2009-04-17 Oreal Systeme de pulverisation piezoelectrique et recharge correspondante
FR2910253B1 (fr) * 2006-12-20 2010-03-12 Oreal Procede de distribution d'un produit pulverise par un systeme de pulverisation piezoelectrique et systeme de pulverisation pour la mise en oeuvre d'un tel procede
US20090114737A1 (en) * 2007-11-07 2009-05-07 Health & Life Co., Ltd. Aerosolization device
US20090212133A1 (en) * 2008-01-25 2009-08-27 Collins Jr James F Ophthalmic fluid delivery device and method of operation
FR2927240B1 (fr) * 2008-02-13 2011-11-11 Oreal Tete de pulverisation comportant une sonotrode, parcourue par un canal d'amenee du produit
FR2927237B1 (fr) * 2008-02-13 2011-12-23 Oreal Dispositif de pulverisation d'un produit cosmetique avec soufflage d'air chaud ou froid
FR2927238B1 (fr) * 2008-02-13 2012-08-31 Oreal Dispositif de pulverisation comportant une sonotrode
JP5426109B2 (ja) * 2008-04-23 2014-02-26 エステー株式会社 噴霧装置
JP2010099169A (ja) * 2008-10-22 2010-05-06 Koshin Kogyo:Kk ネブライザ
US20130079733A1 (en) * 2009-11-18 2013-03-28 Reckitt Benckiser Llc Surface Treatment Device and Method
US10154923B2 (en) 2010-07-15 2018-12-18 Eyenovia, Inc. Drop generating device
JP2013531548A (ja) 2010-07-15 2013-08-08 コリンシアン オフサルミック,インコーポレイティド 遠隔治療及び遠隔モニタリングを実施する方法及びシステム
CA2805426C (en) 2010-07-15 2020-03-24 Corinthian Ophthalmic, Inc. Drop generating device
CA2805425C (en) 2010-07-15 2019-07-23 Corinthian Ophthalmic, Inc. Ophthalmic drug delivery
JP5296030B2 (ja) * 2010-09-24 2013-09-25 パナソニック株式会社 電動式吸入器
CA2812414C (en) 2010-09-29 2020-09-22 Pulmatrix, Inc. Monovalent metal cation dry powders for inhalation
EP2744541B1 (en) * 2011-11-15 2017-11-08 Koninklijke Philips N.V. A nebulizer, a control unit for controlling the same and a method of operating a nebulizer
US8944343B2 (en) * 2011-11-16 2015-02-03 Spraying Systems Co. Spraying system with flow sensing and monitoring device
WO2013090459A1 (en) 2011-12-12 2013-06-20 Corinthian Ophthalmic, Inc. Ejector mechanism, ejector device, and methods of use
WO2013100167A1 (en) * 2011-12-29 2013-07-04 Sumitomo Chemical Company Limited Ultrasonic atomizing device and pest control method
US9494506B2 (en) * 2012-03-07 2016-11-15 Koninklijke Philips N.V. Apparatus for use with a nebulizer and a method of operating a nebulizer
GB2502055A (en) 2012-05-14 2013-11-20 Nicoventures Holdings Ltd Modular electronic smoking device
EP2708219A1 (en) * 2012-09-12 2014-03-19 PARI Pharma GmbH Opening element for opening an ampoule in an aerosol generation device and aerosol generation device comprising the opening element
GB2507104A (en) 2012-10-19 2014-04-23 Nicoventures Holdings Ltd Electronic inhalation device
GB2507103A (en) 2012-10-19 2014-04-23 Nicoventures Holdings Ltd Electronic inhalation device
JP6473738B2 (ja) 2013-04-01 2019-02-20 パルマトリックス,インコーポレイテッド チオトロピウム乾燥粉末
GB2519101A (en) * 2013-10-09 2015-04-15 Nicoventures Holdings Ltd Electronic vapour provision system
EP2883564A1 (en) 2013-12-16 2015-06-17 PARI Pharma GmbH Aerosol delivery device and method of operating the aerosol delivery device
US9278365B2 (en) 2014-03-26 2016-03-08 S.C. Johnson & Son, Inc. Volatile material dispenser and method of emitting a volatile material
CN105079925A (zh) * 2014-05-08 2015-11-25 广东北航技术转移有限公司 一种具有引导功能的雾化设备
DE102014215064A1 (de) 2014-07-31 2016-02-04 Pari GmbH Spezialisten für effektive Inhalation Vernebler
CN104548289B (zh) * 2014-12-16 2017-06-23 摩易国际股份有限公司 可更换喷雾头的雾化器异常自动检知结构
WO2016179664A1 (en) * 2015-05-13 2016-11-17 Rmit University Acoustic wave microfluidic devices with increased acoustic wave energy utilisation
WO2017051006A1 (en) * 2015-09-24 2017-03-30 Philip Morris Products S.A. Aerosol-generating device with electrodes for measuring an electrical load
CA2999214A1 (en) 2015-09-24 2017-03-30 Philip Morris Products S.A. Aerosol-generating article with capacitor
JP6811184B2 (ja) * 2015-11-04 2021-01-13 住友化学株式会社 駆動装置及び該駆動装置を用いた噴霧装置
JP2018538093A (ja) * 2015-12-23 2018-12-27 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 音響発生を低減させたエアロゾル発生
JP7026628B2 (ja) * 2016-02-25 2022-02-28 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 傾斜センサーを備えた電気的に作動するエアロゾル発生システム
US10932495B2 (en) 2016-02-25 2021-03-02 Altria Client Services Llc Electrically operated aerosol-generating system with temperature sensor
CN106178202B (zh) * 2016-08-20 2022-05-31 宁波市舜业医疗器材有限公司 一种手持微网雾化器及其应用方法
JP6144398B1 (ja) * 2016-09-26 2017-06-07 株式会社タカラトミー 液体霧化装置
CN111093742B (zh) 2017-06-10 2022-09-16 艾诺维亚股份有限公司 用于处理流体并将流体输送到眼睛的方法和设备
US11707429B2 (en) 2017-10-26 2023-07-25 Royal Melbourne Institute Of Technology Method and device for acoustically mediated intracellular delivery
AU2019248020A1 (en) * 2018-04-05 2020-10-15 Royal Melbourne Institute Of Technology Multi surface acoustic nebuliser
WO2019198162A1 (ja) * 2018-04-10 2019-10-17 日本たばこ産業株式会社 霧化ユニット
CN109498920B (zh) * 2018-07-17 2024-04-26 上海合微智能科技有限公司 便携式多功能雾化器
CN109759268B (zh) * 2018-12-29 2021-03-12 北京福兆朗风科技有限公司 一种液体容器
EP4037740A4 (en) * 2019-10-04 2023-11-01 Royal Melbourne Institute of Technology ACOUSTIC NEBULIZER FOR DELIVERY OF ACTIVE AGENTS
JP7241980B2 (ja) 2019-12-15 2023-03-17 シャヒーン イノベーションズ ホールディング リミテッド ミスト吸入器
WO2021123871A1 (en) 2019-12-15 2021-06-24 Shaheen Innovations Holding Limited Ultrasonic mist inhaler
US11730191B2 (en) 2019-12-15 2023-08-22 Shaheen Innovations Holding Limited Hookah device
US11730193B2 (en) 2019-12-15 2023-08-22 Shaheen Innovations Holding Limited Hookah device
US11666713B2 (en) 2019-12-15 2023-06-06 Shaheen Innovations Holding Limited Mist inhaler devices
US11911559B2 (en) 2019-12-15 2024-02-27 Shaheen Innovations Holding Limited Ultrasonic mist inhaler
EP3856304B1 (en) 2019-12-15 2023-11-08 Shaheen Innovations Holding Limited Ultrasonic mist inhaler
US11589610B2 (en) 2019-12-15 2023-02-28 Shaheen Innovations Holding Limited Nicotine delivery device having a mist generator device and a driver device
US11181451B1 (en) 2020-06-01 2021-11-23 Shaheen Innovations Holding Limited Infectious disease screening system
JP2023527574A (ja) 2020-06-01 2023-06-29 シャヒーン イノベーションズ ホールディング リミテッド 感染症検査装置
WO2023108316A1 (zh) * 2021-12-13 2023-06-22 中国科学院深圳先进技术研究院 基于声表面波技术的便携式精准可视化雾化递送设备
US20230188901A1 (en) 2021-12-15 2023-06-15 Shaheen Innovations Holding Limited Apparatus for transmitting ultrasonic waves

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3122682C1 (de) * 1981-06-06 1982-12-09 Rowenta-Werke Gmbh, 6050 Offenbach Fördereinrichtung für Ultraschallinhalatoren o.ä.
JPS6125900Y2 (ja) * 1979-10-11 1986-08-04
JPH0221079Y2 (ja) * 1985-06-30 1990-06-07
JPH07231938A (ja) * 1994-02-24 1995-09-05 Omron Corp 吸入器
JPH0852216A (ja) * 1994-08-13 1996-02-27 Koji Toda 超音波吸入装置
JPH08281165A (ja) * 1995-04-14 1996-10-29 Koji Toda 超音波霧化装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4373820A (en) * 1981-03-17 1983-02-15 Jesse Browning Apparatus for mixing reclaimed and virgin powder for use in spray booths
NL8202262A (nl) 1981-06-06 1983-01-03 Rowenta Werke Gmbh Transportmiddel voor ultrasonore respirators en dergelijke.
US4568428A (en) * 1983-07-05 1986-02-04 General Signal Corporation Method and apparatus for vacuum distillation
JPS6125900A (ja) 1984-07-16 1986-02-04 米田織物株式会社 彩漆蒔絵処理法
US4799945A (en) * 1987-10-27 1989-01-24 Polar Spring Corporation Dual freezing chamber system and method for water purification
JPH0221079A (ja) 1988-06-27 1990-01-24 Matsushita Electric Works Ltd 排気装置
US4958747A (en) * 1988-08-15 1990-09-25 Sheets Kerney T Bottled water dispenser
GB9416581D0 (en) * 1993-09-02 1994-10-12 Ici Plc Electrostatic spraying device
US5741238A (en) * 1995-03-02 1998-04-21 Steris Corporation Medical and biological fluid collection and disposal system
US5758637A (en) * 1995-08-31 1998-06-02 Aerogen, Inc. Liquid dispensing apparatus and methods
EP0844027B1 (en) * 1995-08-07 2005-09-21 Omron Healthcare Co., Ltd. Atomization apparatus and method utilizing surface acoustic waves
ES2294819T3 (es) * 1997-10-06 2008-04-01 Omron Healthcare Co., Ltd. Atomizador.
US6056154A (en) * 1998-09-23 2000-05-02 Fowler; Ruth Christine Fluid refilling and dispensing system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6125900Y2 (ja) * 1979-10-11 1986-08-04
DE3122682C1 (de) * 1981-06-06 1982-12-09 Rowenta-Werke Gmbh, 6050 Offenbach Fördereinrichtung für Ultraschallinhalatoren o.ä.
JPH0221079Y2 (ja) * 1985-06-30 1990-06-07
JPH07231938A (ja) * 1994-02-24 1995-09-05 Omron Corp 吸入器
JPH0852216A (ja) * 1994-08-13 1996-02-27 Koji Toda 超音波吸入装置
JPH08281165A (ja) * 1995-04-14 1996-10-29 Koji Toda 超音波霧化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1142600A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1370129A1 (en) * 2001-03-13 2003-12-17 AeroGen, Inc. Methods and apparatus for controlling piezoelectric vibration
EP1370129A4 (en) * 2001-03-13 2004-09-29 Aerogen Inc METHOD AND APPARATUS FOR CONTROLLING PIEZOELECTRIC VIBRATIONS
US9108211B2 (en) 2005-05-25 2015-08-18 Nektar Therapeutics Vibration systems and methods

Also Published As

Publication number Publication date
HK1041658A1 (zh) 2002-07-19
US6679436B1 (en) 2004-01-20
EP1142600A1 (en) 2001-10-10
KR20010083956A (ko) 2001-09-03
JP2000176014A (ja) 2000-06-27
JP3312216B2 (ja) 2002-08-05
AU1412200A (en) 2000-07-12
EP1142600A4 (en) 2009-05-27
CN1330563A (zh) 2002-01-09
KR100404720B1 (ko) 2003-11-07

Similar Documents

Publication Publication Date Title
WO2000037132A1 (fr) Pulverisateur
JP3386050B2 (ja) 噴霧装置
US7458372B2 (en) Inhalation therapy device
US7059320B2 (en) Inhalation therapy apparatus
CN108296087B (zh) 雾化装置的洁净方法及其雾化装置
CN102355915B (zh) 雾化器及能够相对于雾化器装卸的功能单元
TWI592780B (zh) 藉由自動補償提供恆定電力之方法及其霧化模組
JPH04100557A (ja) 噴霧器及び噴霧方法
US20130119151A1 (en) Aerosol generator assembly
CA2814983A1 (en) Liquid droplet spray device
EP2744541B1 (en) A nebulizer, a control unit for controlling the same and a method of operating a nebulizer
JP2008132495A (ja) 液滴スプレーデバイス
US20220401662A1 (en) Acoustic nebuliser for delivery of active agents
JP2004330104A (ja) 超音波振動子、超音波振動子の制御装置およびこれを用いた超音波霧化装置
JP2023500985A (ja) 水タバコ装置
EP4197646A1 (en) A nebulizer with plume detection
JP2020099848A (ja) 霧化用振動子及び霧化装置
CN115400299B (zh) 医用雾化器和医用雾化器的雾化方法
US20220233789A1 (en) Surface acoustic wave atomizer with fluid direction and migration prevention
WO2023110407A1 (en) A nebulizer with plume detection
JP2023541757A (ja) エアロゾル生成装置
JPS605255A (ja) 超音波霧化装置
JPS6115748B2 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99814594.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2000 14122

Country of ref document: AU

Kind code of ref document: A

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020017007406

Country of ref document: KR

Ref document number: 14122/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 09868185

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999973475

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017007406

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1999973475

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017007406

Country of ref document: KR