WO2000034181A1 - High surface microporous materials having an activity in oxidation reactions - Google Patents

High surface microporous materials having an activity in oxidation reactions Download PDF

Info

Publication number
WO2000034181A1
WO2000034181A1 PCT/ES1999/000393 ES9900393W WO0034181A1 WO 2000034181 A1 WO2000034181 A1 WO 2000034181A1 ES 9900393 W ES9900393 W ES 9900393W WO 0034181 A1 WO0034181 A1 WO 0034181A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
materials
titanium
inorganic peroxides
zirconium
Prior art date
Application number
PCT/ES1999/000393
Other languages
Spanish (es)
French (fr)
Inventor
Marcelo Eduardo Domine
Avelino Corma Canos
Vicente Fornes Segui
Urbano Diaz Morales
José Luis Jorda Moret
Fernando Rey Garcia
Original Assignee
Consejo Superior De Investigaciones Cientificas
Universidad Politecnica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Cientificas, Universidad Politecnica De Valencia filed Critical Consejo Superior De Investigaciones Cientificas
Publication of WO2000034181A1 publication Critical patent/WO2000034181A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/19Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic hydroperoxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/36Silicates having base-exchange properties but not having molecular sieve properties
    • C01B33/38Layered base-exchange silicates, e.g. clays, micas or alkali metal silicates of kenyaite or magadiite type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/02Crystalline silica-polymorphs, e.g. silicalites dealuminated aluminosilicate zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • C01B39/08Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis the aluminium atoms being wholly replaced
    • C01B39/085Group IVB- metallosilicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/12Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids

Definitions

  • titanium based catalysts anchored on silicas US Pat. 3 923 843, 1975.
  • An adequate selection of the titanium reagent as well as the anchoring conditions allows to obtain catalysts in which the titanium centers are separated and immobilized, decreasing or rather canceling the possibilities of catalyst deactivation by dimerization of the titanium species.
  • these catalysts can suffer during the catalytic processes a loss of titanium content by extraction during the reaction which causes the activity of the catalyst to decrease over time. It has been proposed that titanium species can be anchored on mesoporous silicas (T. Maschmeyer et al. Nature, 378, 159, (1995)).
  • TIQ-2 with high external surface that are formed by atoms of by M, T and O
  • T can be Si, Ge, Sn, Al, B and / or Ga
  • M will be Ti and / or Zr
  • This material may or may not be subsequently modified by treatment with organosilane agents giving rise to a solid that we call METIQ-2 formed by M, T, O and R where T can be Si, Ge, Sn, Al, B and / or Ga, M will be Ti and / or Zr and R represents organic groups the same or different from each other and may be H or alkyl or aryl groups that may or may not be functionalized with amines, thiols, sulfonic groups, tetraalkylammoniums or acids
  • the laminar precursor is obtained by stopping the synthesis of the zeolite in question before the three-way structure is formed by joining the sheets that compose it.
  • the zeolite ITQ-1 Pan Es. P 9502306, 1995
  • the ferrierite sheet precursor Schott al., Chem. Commun., 2183 (1995)
  • the sheets of the PL precursor are separated by intercalating organic bulky species such as alkylammoniums, amines, esters, alcohols, dimethylformamide, sulfoxides, urea, amine hydrochlorides, alone or mixtures thereof in solution.
  • organic bulky species such as alkylammoniums, amines, esters, alcohols, dimethylformamide, sulfoxides, urea, amine hydrochlorides, alone or mixtures thereof in solution.
  • the solvent is generally water, but other organic solvents such as alcohols, ketones, esters, alkanes alone, mixtures thereof in the absence or in the presence of water can also be used.
  • the intercalation conditions are as follows: the laminar precursor is dispersed in an aqueous solution of CTAB and a tetraalkylammonium hydroxide or an alkaline or alkaline earth hydroxide, with tetraalkylammonium hydroxides such as tetrapropylammonium hydroxide (TPAOH) being preferred, the pH of the mixture being greater than 11.
  • CTAB cetyltrimethylammonium bromide
  • TPAOH tetrapropylammonium hydroxide
  • the resulting dispersion is heated at temperatures between 5 and 200 ° C for times between 0.5 and 90 hours while stirring the suspension between 20 and 2000 rpm
  • the resulting suspension is filtered to remove excess CTAB and the resulting solid is dispersed in an excess of water, then stirred at speeds between 20 and 200 ° rpm for no time. less than an hour.
  • delamination methods such as for example ultrasonic treatment, lyophilization and atomization (spray-drying) or strong mechanical agitation can be used successfully.
  • the solids are separated and washed thoroughly to remove excess CTAB or exchanged for alkaline, alkaline earth, cation, ammonium or proton cations.
  • the product obtained is dried and calcined at a temperature sufficient to remove the organic matter occluded in the material, or at least the organic matter present on the surface of the material.
  • the materials obtained are characterized by having an elevated external surface greater than 500 m 2 -g _1 and a pore volume greater than 0.5 cm 3 * g " ⁇ Likewise, they are characterized by having a highly hydroxylated surface as deduced from the presence of a band in the very intense IR spectrum centered at approximately 3745 cm '1 .
  • the resulting solid is dehydrated and contacted with a titanium or zirconium compound in the gas phase or in an organic solution, where a catalyst is present, which favors the reaction between the Si-OH groups of the delaminated material and the titanium or zirconium compound, the catalyst being an amine, ammonia or an organic or inorganic hydroxide.
  • titanium or zirconium compounds are: titanium or zirconium halides, titanium or zirconium alkoxides, dichlorotitanocene or dichlorozirconocene or titanium or zirconium complexes in which the titanium or zirconium atom is coordinated by a dionate group such as acetylacetonate, ammonium or sodium hexafluorotitanate or ammonium or sodium hexafluorozirconate and any complex or ionic salt that contains titanium or zirconium in its composition and may be capable of reacting with an Si-OH group under the conditions of preparation of the claimed material. Excess reagents are removed by washing and / or heat treatment in an inert atmosphere, followed by calcination in air under conditions in which organic matter or halogens that may be present in the material are removed.
  • a dionate group such as acetylacetonate, ammonium or sodium hexafluorotitanate
  • TIQ-2 has a formula expressed as oxides SiO 2 : z Z0 2 : m MO 2 : n N 2 O 3 : a H 2 O
  • Z can be Ge
  • Sn can be Ti or Zr
  • m can vary between 0.00001 and 0.25, preferably between 0.0001 and 0J
  • N can be Al
  • Ga or B and n can vary between 0 and 1 and depends on the degree of hydration of the material can vary between 0 and 2.
  • the specific surface of this material is greater than 500 m 2 -g _1 and the pore volume is greater than 0.5 cm -g " .
  • the ultraviolet-visible spectrum of TIQ-2 materials containing Ti or Zr is characterized by the presence of a M ⁇ -O charge transfer band between 200 and 220 nm.
  • TIQ-2 The resulting product (TIQ-2) containing Ti or Zr is active and selective in oxotransfer reactions and more specifically for the epoxidation of definas, oxidation of alkalis and alcohols, hydroxylation of aromatics, amoximation of ketones, oxidation of sulphides and organic sulfoxides with organic or inorganic peroxides.
  • the material called TIQ-2 prepared from a laminar precursor of an ITQ-2 zeolite containing 0.5% by weight of TiO 2 is capable of epoxidating cyclohexene at 60 ° C with conversions of 80% and selectivities at 93% epoxide after five hours of reaction using terbutylhydroperoxide (TBHP) as oxidant and 5% by weight of TIQ-2 as catalyst.
  • TBHP terbutylhydroperoxide
  • the TIQ-2 material can be treated with a methylating agent.
  • This methylation is carried out using RiR 2 R 3 (R ') Y, R ⁇ O ⁇ Y, Ri (R') 3 Y or RiRaR-jY-NH-Y RiR 2 R 3
  • Ri, R 2 and R 3 are organic groups the same or different from each other and can be H or alkyl or aryl groups that may or may not be functionalized with amines, thiols, sulfonic groups, tetraalkylammoniums or acids
  • R ' is a hydrolyzable group under the conditions of preparation such as groups alkoxide or halide.
  • METIQ-2 is a metal among which Si, Ge, Sn or Ti is preferred. Being the methylation procedures well known in the art. In this way, most of the Si-OH and M-OH groups present in the TIQ-2 material are functionalized.
  • the chemical composition of the resulting material, METIQ-2 is defined as: SiO 2 : and YR, ⁇ 2-p / 2: z Z0 2 : m MO: n N 2 O 3 : a H 2 O where R is hydrogen or a alkyl, aryl or polyaromatic group, the same or different from each other, which may or may not be functionalized with acid, amino, thiol, etc. groups and is directly linked to the atoms that make up the structure by means of CY, Y bonds.
  • p can vary between 1 and 3, and can take values between 0.0001 and 1
  • Z can be Ge or Sn
  • z can be between 0 and 0.25 mol-mol "1
  • M can be Ti or Zr
  • m can vary between 0.00001 and 0.25, preferably between 0.0001 and 0.1
  • N can be Al
  • Ga or B and n can vary between 0 and 1 and depends on the degree of hydration of the material and can vary between 0 and 2.
  • the METIQ-2 material has a specific surface area greater than 500 m 2 -g "1 , the pore volume is greater than 0.5 cm 3 -g " ⁇
  • the ultraviolet-visible spectrum of METIQ-2 materials containing Ti or Zr is characterized by the presence of an M IV -O load transfer band between 200 and 220 nm.
  • the METIQ-2 material is active and selective in oxotransfer reactions and more specifically for the epoxidation of definas, oxidation of alkanes and alcohols, hydroxylation of aromatics, amoximation of ketones, oxidation of sulphides and organic synoxides with organic or inorganic peroxides.
  • a METIQ-2 material containing 0.5% by weight of TIO 2 is capable of epoxidating cyclohexene at 60 ° C with conversions of 85% and selectivities to 99.5% epoxide after five hours of reaction using terbutylhydroperoxide (TBHP) as oxidizer and 5% by weight of METIQ-2 as catalyst.
  • TBHP terbutylhydroperoxide
  • Example 1 Preparation of the zeolite laminar precursor called ITQ-1.
  • ITQ-1 zeolite laminar precursor
  • 6J64 g of hexamethyleneimine (HMI) and 1J88 g of NaCl are dissolved in 131,395 g of a 0.38M solution of trimethylamantamonium hydroxide (TMAdaOH).
  • TMAdaOH trimethylamantamonium hydroxide
  • the resulting gel is mechanically stirred at room temperature for 90 minutes and introduced into Teflon-coated stainless steel autoclaves.
  • the crystallization of sheet material is carried out at 150 ° C for 5 days with constant stirring at 60 r.p.m.
  • the resulting sheet material is recovered by filtration, thorough washing with water and drying at 100 ° C for 12 hours.
  • Example 2 Preparation of purely siliceous delaminated precursor.
  • This material has a specific surface area of approximately 800 m 2 / g, a pore volume of 0.98 cm 3 -g "1 and a narrow pore distribution centered at 4 nm in diameter.
  • Example 3 Preparation of the TIQ-2 material containing Ti in its composition.
  • the incorporation of titanium is carried out by anchoring a titanium compound on the surface of the siliceous precursor described in example 2. 5 g of the material described in example 2 are dehydrated at 300 ° C and vacuum 10 "3 mm Hg for 2 hours, adding a solution containing 0.079 g of titanocene dichloride in 45 g of anhydrous chloroform The resulting suspension is stirred at room temperature for 1 hour under an Ar atmosphere. To this suspension is added a solution containing 0.063 g of triethylamine in 10 g of chloroform. White gas evolution is observed and the color of the solution changes from red-orange to yellow-orange. Stirring is prolonged for one hour.
  • the solid is recovered by filtration and the excess reagents are removed by thorough washing with dichloromethane
  • the resulting solid is calcined at 540 ° C under an atmosphere of N2 for 1 hour, prolonging the heat treatment for a maximum of 6 hours. s in air Under these conditions all the organic present in the material is removed.
  • the TIQ-2 material does not show significant textural differences with respect to the purely siliceous precursor, responding to the following molar composition: SiO 2 : 0.004 TiO 2 : 0.8H 2 O
  • the UV-vis spectrum of this material has a narrow band at 220 nm assigned to the formation of monomeric species of titanium.
  • Example 4 Preparation of the TIQ-2 material containing Zr in its composition.
  • zirconium is carried out by anchoring a zirconium compound on the surface of the siliceous precursor described in example 2.
  • the TIQ-2 material does not show significant textural differences with respect to the purely siliceous precursor, responding to the following molar composition after being calcined: SiO 2 : 0.004 ZrO 2 : 0.8H 2 O
  • the UN-vis spectrum of this material has a narrow band at 210 nm assigned to the formation of monomeric species of zirconium.
  • the silanization of the TIQ-2 material which gives rise to the material called METIQ-2, is carried out by reacting organosilane compounds on the surface of a material as described in examples 3 and 4. This process can be carried out as follows shape:
  • Example 6 Catalytic activity in the epoxidation of cyclohexene of the TIQ-2 material containing Ti in its composition.
  • Example 7 Catalytic activity in the epoxidation of cyclohexene of the TIQ-2 material containing Zr in its composition.
  • Example 8 Catalytic activity of the METIQ-2 material in the epoxidation of cyclohexene containing Ti in its composition.
  • Example 9 Catalytic activity in terpinolene epoxidation of METIQ-2 material containing Ti in its composition.
  • 150 mg of the material described in example 5, are introduced into a glass reactor at 60 ° C, containing 1135 mg of cyclohexene and 1380 mg of tertbutylhydroperoxide.
  • the reaction mixture is stirred, and a reaction sample is taken at 7 hours.
  • the conversion of terpinolene with respect to the maximum possible is 54% with a selectivity to the different epoxy of 82%.
  • 3 g of the laminar precursor described in example 9 are dispersed in 12 g of water. Over this dispersion, 60 g of cetyltrimethylammonium hydroxide (wealth: 29% by weight, water remainder) and 18.5 g of tetrapropylammonium hydroxide (wealth: 40% by weight, water remainder) are added, the final pH being 12.5. These hydroxides were prepared by ion exchange of their respective bromide salts using a DOWEX SBR resin. The bromide exchange level in both cases was approximately 70%. The resulting dispersion was heated at 80 ° C for 16 hours to favor the separation of the sheets that make up the precursor material.
  • This material has a specific surface area of approximately 800 m 2 / g, a pore volume of 0.8 cm 3 -g ' ⁇
  • Example 12 Preparation of the TIQ-2 material containing Ti and AI in its composition.
  • the incorporation of titanium is carried out by anchoring a titanium compound on the surface of the precursor described in example 10.
  • 5 g of the material described in example 10 was dehydrated at 300 ° C and vacuum 10 -3 mm Hg for 2 hours, adding a solution containing 0.079 g of titanocene dichloride in 45 g of anhydrous chloroform.
  • the resulting suspension is stirred at room temperature for 1 hour under Ar.
  • a solution containing 0.063 g of triethylamine in 10 g of chloroform White gas evolution is observed and the color of the solution changes from red-orange to yellow-orange. Stirring is prolonged for one hour.
  • the solid is recovered by filtration and the excess reagents are removed by thorough washing with dichloromethane.
  • the resulting solid is calcined at 540 ° C under an N2 atmosphere for 1 hour and the heat treatment is prolonged for a further 6 hours in air. Under these conditions all the organic present in the material is removed.
  • the TIQ-2 material does not show significant textural differences with respect to the precursor described in example 10, responding to the following molar composition: SiO 2 : 0.01 Al 2 O 3: 0.004 TiO 2 : 0.8H 2 O
  • UV-vis spectrum of this material has a narrow band at 220 nm assigned to the formation of monomeric species of titanium.
  • Example 13 Catalytic activity in the epoxidation of cyclohexene of the TIQ-2 material containing Ti and Al in its composition.
  • Example 14 Preparation of a laminar precursor of a purely silicic ferrierite zeolite.
  • silica (Aerosil 200, Degussa) are added to an aqueous solution containing 9.2 g of ammonium fluoride (NH F, Aldrich of 98% purity), 3J g of hydrofluoric acid (HF, Aldrich of 49.8% purity), 26 g of 4-amino-2,2,6,6-tetramethylpiperidine (Fluka, 98% purity) and 27.9 g of deionized water (MillipoQ Millipore Quality).
  • the pH of the synthesis gel is 8.5. This reaction mixture is vigorously stirred for one hour at room temperature before being placed in an autoclave at 175 ° C for 5 days. The resulting solid is filtered, washed thoroughly with water to pH close to 7 and dried at 60 ° C for 12 hours.
  • Example 15 Delamination of a purely silicic ferrite laminar precursor.
  • 1 g of the laminar precursor described in example 13 are dispersed in 30 g of an aqueous solution containing 5.8 g of cetyltrimethylammonium hydroxide and 2.4 g of tetrapropylammonium hydroxide, the final pH being 12.5.
  • These hydroxides were prepared by ion exchange of their respective bromide salts using a DOWEX SBR resin. The bromide exchange level in both cases was approximately 70%.
  • the resulting dispersion was heated at 95 ° C for 16 hours to favor the separation of the sheets that make up the precursor material.
  • This material has a specific surface area of approximately 580 m 2 / g, a pore volume of 0.7 cm 3 -g "1 .
  • Example 16 Preparation of TIQ-2 material from delaminated ferrite.
  • the incorporation of titanium is carried out by anchoring a titanium compound on the surface of the precursor described in Example 14. 5 g of the material described in example 14 are dehydrated at 300 ° C and vacuum 10 -3 mm Hg for 2 hours, adding a solution containing 0.079 g of titanocene dichloride in 45 g of anhydrous chloroform. The resulting suspension is stirred at room temperature for 1 hour under Ar. To this suspension is added a solution containing 0.063 g of triethylamine in 10 g of chloroform. White gas evolution is observed and the color of the solution changes from red-orange to yellow-orange. Stirring is prolonged for one hour.
  • the solid is recovered by filtration and the excess reagents are removed by thorough washing with dichloromethane.
  • the resulting solid is calcined at 540 ° C under an N2 atmosphere for 1 hour and the heat treatment is prolonged for a further 6 hours in air. Under these conditions all the organic present in the material is removed.
  • the TIQ-2 material does not present significant textural differences with respect to the precursor described in example 10, responding to the following molar composition: SiO 2 : 0.004 TiO 2 : 0.8H 2 O
  • the UV-vis spectrum of this material has a narrow band at 220 nm assigned to the formation of monomeric species of titanium.
  • Example 17 Catalytic activity of TIQ-2 material derived from delaminated ferrierite.

Abstract

The present invention relates to a microporous material formed by oxygen, silicon, germanium, aluminium, boron, gallium, zirconium and/or titanium and is called TIQ-2. The invention also relates to the process for its preparation and to catalytic applications in oxidation reactions. The preparation method for the TIQ-2 material is based on the incorporation of titanium and/or zirconium species by means of a post-synthesis process to a solid which has been prepared by delamination of the laminar zeolitic precursor. The invention claims a material with similar characteristics to those of TIQ-2 but which, additionally, has organic groups anchored at its surface and called METIQ-2, to the preparation process and to its application as a catalyst in oxidation reactions. The incorporation of organic species during the synthesis of the material called METIQ-2 is carried out through a post-synthesis process on the TIQ-2 material.

Description

TituloTitle
Materiales microporosos de alta superficie activos en reacciones de oxidación.High-surface microporous materials active in oxidation reactions.
Campo de la Técnica Materiales catalíticosTechnical Field Catalytic Materials
Antecedentes:Background:
La epoxidación de olefinas utilizando hidroperóxidos orgánicos se lleva a cabo utilizando catalizadores basados en titanio anclado sobre sílices (US Pat. 3 923 843, 1975 ). Una adecuada selección del reactivo de titanio asi como de las condiciones de anclaje permite obtener catalizadores en los que los centros de titanio se encuentran separados e inmovilizados, disminuyendo o más bien anulando las posibilidades de desactivación del catalizador por dimerización de las especies de titanio. Sin embargo, estos catalizadores pueden sufrir durante los procesos catalíticos una perdida de contenido en titanio por extracción durante la reacción que hace que la actividad del catalizador disminuya con el tiempo. Se ha propuesto que las especies de titanio pueden ser ancladas sobre sílices mesoporosas (T. Maschmeyer y col. Nature, 378, 159, (1995)). En este caso cantidades de titanio del orden del 8% en peso pueden ser ancladas presentando buenos resultados como catalizadores de epoxidación de definas utilizando peróxidos orgánicos como agentes oxidantes. Desafortunadamente, la naturaleza amorfa de estas sílices mesoporosas y la elevada concentración y proximidad de grupos silanoles hacen que estos materiales sean poco estables y resulte problemático conseguir dispersiones adecuadas de las especies activas de titanio sobre la superficie del material mesoporoso.The epoxidation of olefins using organic hydroperoxides is carried out using titanium based catalysts anchored on silicas (US Pat. 3 923 843, 1975). An adequate selection of the titanium reagent as well as the anchoring conditions allows to obtain catalysts in which the titanium centers are separated and immobilized, decreasing or rather canceling the possibilities of catalyst deactivation by dimerization of the titanium species. However, these catalysts can suffer during the catalytic processes a loss of titanium content by extraction during the reaction which causes the activity of the catalyst to decrease over time. It has been proposed that titanium species can be anchored on mesoporous silicas (T. Maschmeyer et al. Nature, 378, 159, (1995)). In this case, amounts of titanium of the order of 8% by weight can be anchored, presenting good results as epoxy oxidation catalysts using organic peroxides as oxidizing agents. Unfortunately, the amorphous nature of these mesoporous silicas and the high concentration and proximity of silanole groups make these materials unstable and it is problematic to achieve adequate dispersions of the active titanium species on the surface of the mesoporous material.
En la presente invención se muestra que cuando especies activas para la epoxidación se anclan sobre un material con una elevada superficie externa y una distribución regular y espaciada de grupos T-OH se obtiene un material formado por M, T y O donde T puede ser Si, Ge, Al, B y/o Ga y M será Ti y/o Zr activo y selectivo en reacciones de oxidación. Asimismo, se muestra que una modificación de la superficie que de lugar a la formación de especies orgánicas ligadas a la superficie mejoran notablemente la actividad y selectividad de estos materiales en procesos de oxidación. Descripción de la invenciónIn the present invention it is shown that when active species for epoxidation are anchored on a material with a high external surface and a regular and spaced distribution of T-OH groups, a material formed by M, T and O is obtained where T can be Si , Ge, Al, B and / or Ga and M will be Ti and / or Zr active and selective in oxidation reactions. Likewise, it is shown that a modification of the surface that leads to the formation of organic species linked to the surface significantly improves the activity and selectivity of these materials in oxidation processes. Description of the invention
En la presente invención se obtiene un material que denominamos TIQ-2 con alta superficie externa que están formado por átomos de por M, T y O donde T puede ser Si, Ge, Sn, Al, B y/o Ga y M será Ti y/o ZrIn the present invention a material is obtained that we call TIQ-2 with high external surface that are formed by atoms of by M, T and O where T can be Si, Ge, Sn, Al, B and / or Ga and M will be Ti and / or Zr
Este material puede ser o no posteriormente modificados por medio de tratamiento con agentes organosilanos dando lugar a un sólido que denominamos METIQ-2 formado por M, T, O y R donde T puede ser Si, Ge, Sn, Al, B y/o Ga, M será Ti y/o Zr y R representa a grupos orgánicos iguales o distintos entre sí y pueden ser H o grupos alquilo o arilo que pueden estar o no funcionalizados con aminas, tioles, grupos sulfónicos, tetraalquilamonios o ácidosThis material may or may not be subsequently modified by treatment with organosilane agents giving rise to a solid that we call METIQ-2 formed by M, T, O and R where T can be Si, Ge, Sn, Al, B and / or Ga, M will be Ti and / or Zr and R represents organic groups the same or different from each other and may be H or alkyl or aryl groups that may or may not be functionalized with amines, thiols, sulfonic groups, tetraalkylammoniums or acids
Este nuevo material se puede obtenera partir de precursores laminares de zeolitas, y más específicamente precursores laminares de zeolitas con estructura MWW (MCM- 22 e ITQ-1) o FER (ferrierita) que se deslaminan. Estos materiales son tratados con un precursor de titanio y/o zirconio que reacciona con los grupos silanoles de los materiales deslaminados, lo que da lugar a la formación de enlaces Si-O-M (M = Ti o Zr), generando especies de titanio o zirconio altamente dispersas, aisladas y activas en procesos de oxidación selectiva de compuestos orgánicos con peróxidos orgánicos o inorgánicos, y en general en procesos que conlleven el uso de centros ácidos Lewis.This new material can be obtained from lamellar precursors of zeolites, and more specifically laminar precursors of zeolites with MWW structure (MCM-22 and ITQ-1) or FER (ferrierite) that are delaminated. These materials are treated with a titanium and / or zirconium precursor that reacts with the silanoles groups of the delaminated materials, which results in the formation of Si-OM bonds (M = Ti or Zr), generating titanium or zirconium species highly dispersed, isolated and active in processes of selective oxidation of organic compounds with organic or inorganic peroxides, and in general in processes that involve the use of Lewis acid centers.
Más específicamente, el precursor laminar se obtiene deteniendo la síntesis de la zeolita en cuestión antes de que se forme la estructura tridireccional por unión de las láminas que la componen. Así por ejemplo, en el caso de la preparación de la zeolita MCM-22 (US Pat. 4992615, 1991; US Pat. 5107047, 1992, US Pat. 4956514, 1990 y WO Pat. 92/11934, 1992), la zeolita ITQ-1 (Pat Es. P 9502306, 1995) y en la preparación del precursor laminar de la ferrierita (Schreyeck et al., Chem. Commun., 2183 (1995)), se evita el proceso de calcinación a través del cual el precursor laminar (PL) se transforma en la estructura zeolítica. Las láminas del precursor PL se separan intercalando especies voluminosas orgánicas tales como alquilamonios, aminas, esteres, alcoholes, dimetilformamida, sulfóxidos, urea, clorhidratos de aminas, solos o mezclas de ellos en disolución. El disolvente generalmente es agua, pero también puede emplearse otros disolventes orgánicos tales como alcoholes, cetonas, esteres, alcanos solos, mezclas de ellos en ausencia o en presencia de agua. Más específicamente, y cuando se emplea por ejemplo, sin ser por ello limitante, bromuro de cetiltrimetilamonio (CTAB) como agente hinchante, las condiciones de intercalación son las siguientes: el precursor laminar se dispersa en una disolución acuosa de CTAB y un hidróxido de tetraalquilamonio o un hidróxido alcalino o alcalino-térreo, prefiriéndose hidróxidos de tetraalquilamonio como el hidróxido de tetrapropilamonio (TPAOH), siendo el pH de la mezcla superior a 11. La dispersión resultante se calienta a temperaturas entre 5 y 200°C durante tiempos entre 0.5 y 90 horas mientras se agita la suspensión entre 20 y 2000 r.p.m. La suspensión resultante se filtra para eliminar el exceso de CTAB y el sólido resultante se dispersa en un exceso de agua, agitándose a continuación a velocidades comprendidas entre 20 y 200° r.p.m durante tiempos no inferiores a una hora. Estas condiciones son suficientes para llevar a cabo la deslaminación del material precursor. Sin embargo, se pueden utilizar con éxito otros métodos de deslaminación tales como por ejemplo tratamiento de la muestra con ultrasonidos, liofilización y atomización (spray-drying) o fuerte agitación mecánica..More specifically, the laminar precursor is obtained by stopping the synthesis of the zeolite in question before the three-way structure is formed by joining the sheets that compose it. For example, in the case of the preparation of the MCM-22 zeolite (US Pat. 4992615, 1991; US Pat. 5107047, 1992, US Pat. 4956514, 1990 and WO Pat. 92/11934, 1992), the zeolite ITQ-1 (Pat Es. P 9502306, 1995) and in the preparation of the ferrierite sheet precursor (Schreyeck et al., Chem. Commun., 2183 (1995)), the calcination process through which the Laminar precursor (PL) is transformed into the zeolitic structure. The sheets of the PL precursor are separated by intercalating organic bulky species such as alkylammoniums, amines, esters, alcohols, dimethylformamide, sulfoxides, urea, amine hydrochlorides, alone or mixtures thereof in solution. The solvent is generally water, but other organic solvents such as alcohols, ketones, esters, alkanes alone, mixtures thereof in the absence or in the presence of water can also be used. More specifically, and when used, for example, without being limiting, cetyltrimethylammonium bromide (CTAB) as a swelling agent, the intercalation conditions are as follows: the laminar precursor is dispersed in an aqueous solution of CTAB and a tetraalkylammonium hydroxide or an alkaline or alkaline earth hydroxide, with tetraalkylammonium hydroxides such as tetrapropylammonium hydroxide (TPAOH) being preferred, the pH of the mixture being greater than 11. The resulting dispersion is heated at temperatures between 5 and 200 ° C for times between 0.5 and 90 hours while stirring the suspension between 20 and 2000 rpm The resulting suspension is filtered to remove excess CTAB and the resulting solid is dispersed in an excess of water, then stirred at speeds between 20 and 200 ° rpm for no time. less than an hour. These conditions are sufficient to carry out the delamination of the precursor material. However, other delamination methods such as for example ultrasonic treatment, lyophilization and atomization (spray-drying) or strong mechanical agitation can be used successfully.
Una vez realizada la deslaminización se separan los sólidos y se lavan exhaustivamente para eliminar el exceso de CTAB o se intercambia por cationes alcalinos, alcalino-terreos, amonio o protones. El producto obtenido se seca y se calcina a temperatura suficiente para eliminar la materia orgánica ocluida en el material, o al menos la materia orgánica presente en la superficie del material.Once the delamination has been carried out, the solids are separated and washed thoroughly to remove excess CTAB or exchanged for alkaline, alkaline earth, cation, ammonium or proton cations. The product obtained is dried and calcined at a temperature sufficient to remove the organic matter occluded in the material, or at least the organic matter present on the surface of the material.
Los materiales obtenidos se caracterizan por tener una superficie externa elevada superior a 500 m2-g_1 y un volumen de poro superior a 0.5 cm3*g"\ Asimismo, se caracterizan por tener una superficie altamente hidroxilada como se deduce de la presencia de una banda en el espectro IR muy intensa centrada a 3745 cm'1 aproximadamente.The materials obtained are characterized by having an elevated external surface greater than 500 m 2 -g _1 and a pore volume greater than 0.5 cm 3 * g " \ Likewise, they are characterized by having a highly hydroxylated surface as deduced from the presence of a band in the very intense IR spectrum centered at approximately 3745 cm '1 .
El sólido resultante se deshidrata y se pone en contacto con un compuesto de titanio o zirconio en fase gas o en disolución orgánica estando presente eventualmente un catalizador que favorezca la reacción entre los grupos Si-OH del material deslaminado y el compuesto de titanio o zirconio, siendo el catalizador una amina, amoniaco o un hidróxido orgánico o inorgánico. Como compuestos de titanio o zirconio se prefieren: haluros de titanio o zirconio, alcóxidos de titanio o zirconio, diclorotitanoceno o diclorozirconoceno o complejos de titanio o zirconio en los que el átomo de titanio o zirconio está coordinado por un grupo dionato como acetilacetonato, hexafluorotitanato amónico o sódico o hexafluorozirconato amónico o sódico y cualquier complejo o sal iónica que contenga titanio o zirconio en su composición y pueda ser susceptible de reaccionar con un grupo Si-OH en las condiciones de preparación del material reivindicado. El exceso de reactivos se elimina por lavado y/o tratamiento térmico en atmósfera inerte, seguido por calcinación en aire en condiciones tales en las que se elimina la materia orgánica o halógenos que pudieran estar presentes en el material.The resulting solid is dehydrated and contacted with a titanium or zirconium compound in the gas phase or in an organic solution, where a catalyst is present, which favors the reaction between the Si-OH groups of the delaminated material and the titanium or zirconium compound, the catalyst being an amine, ammonia or an organic or inorganic hydroxide. Preferred as titanium or zirconium compounds are: titanium or zirconium halides, titanium or zirconium alkoxides, dichlorotitanocene or dichlorozirconocene or titanium or zirconium complexes in which the titanium or zirconium atom is coordinated by a dionate group such as acetylacetonate, ammonium or sodium hexafluorotitanate or ammonium or sodium hexafluorozirconate and any complex or ionic salt that contains titanium or zirconium in its composition and may be capable of reacting with an Si-OH group under the conditions of preparation of the claimed material. Excess reagents are removed by washing and / or heat treatment in an inert atmosphere, followed by calcination in air under conditions in which organic matter or halogens that may be present in the material are removed.
El material resultante (TIQ-2) tiene una fórmula expresada como óxidos SiO2 : z Z02 : m MO2 : n N2O3 : a H2O donde Z puede ser Ge, Sn, z puede estar comprendida entre 0 y 0.25 mol-mol"1, M puede ser Ti o Zr, m puede variar entre 0.00001 y 0.25, preferentemente entre 0.0001 y 0J, N puede ser Al, Ga o B y n puede variar entre 0 y 1 y a depende del grado de hidratación del material pudiendo variar entre 0 y 2. La superficie específica de este material es superior a 500 m2-g_1 y el volumen de poro es superior a 0.5 cm -g" . El espectro ultravioleta- visible de los materiales TIQ-2 que contienen Ti o Zr se caracterizan por la presencia de un banda de transferencia de carga M^-O entre 200 y 220 nm.The resulting material (TIQ-2) has a formula expressed as oxides SiO 2 : z Z0 2 : m MO 2 : n N 2 O 3 : a H 2 O where Z can be Ge, Sn, z can be between 0 and 0.25 mol-mol "1 , M can be Ti or Zr, m can vary between 0.00001 and 0.25, preferably between 0.0001 and 0J, N can be Al, Ga or B and n can vary between 0 and 1 and depends on the degree of hydration of the material can vary between 0 and 2. The specific surface of this material is greater than 500 m 2 -g _1 and the pore volume is greater than 0.5 cm -g " . The ultraviolet-visible spectrum of TIQ-2 materials containing Ti or Zr is characterized by the presence of a M ^ -O charge transfer band between 200 and 220 nm.
El producto resultante (TIQ-2) conteniendo Ti o Zr es activo y selectivo en reacciones de oxotransferencia y más específicamente para la epoxidación de definas, oxidación de aléanos y alcoholes, hidroxilación de aromáticos, amoximación de cetonas, oxidación de sulfuras y sulfóxidos orgánicos con peróxidos orgánicos o inorgánicos. Así, por ejemplo el material denominado TIQ-2 preparado a partir de un precursor laminar de una zeolita ITQ-2 conteniendo un 0.5 % en peso de TiO2 es capaz de epoxidar el ciclohexeno a 60°C con conversiones del 80% y selectividades al epóxido del 93% tras cinco horas de reacción utilizando terbutilhidroperóxido (TBHP) como oxidante y un 5% en peso de TIQ-2 como catalizador.The resulting product (TIQ-2) containing Ti or Zr is active and selective in oxotransfer reactions and more specifically for the epoxidation of definas, oxidation of alkalis and alcohols, hydroxylation of aromatics, amoximation of ketones, oxidation of sulphides and organic sulfoxides with organic or inorganic peroxides. Thus, for example, the material called TIQ-2 prepared from a laminar precursor of an ITQ-2 zeolite containing 0.5% by weight of TiO 2 is capable of epoxidating cyclohexene at 60 ° C with conversions of 80% and selectivities at 93% epoxide after five hours of reaction using terbutylhydroperoxide (TBHP) as oxidant and 5% by weight of TIQ-2 as catalyst.
En una etapa adicional el material TIQ-2 puede ser tratado con un agente metilante. Esta metilación se lleva a cabo utilizando RiR2R3(R')Y, R^O^Y, Ri(R')3Y o RiRaR-jY-NH-Y RiR2R3 en donde Ri, R2 y R3 son grupos orgánicos iguales o distintos entre sí y pueden ser H o grupos alquilo o arilo que pueden estar o no funcionalizados con aminas, tioles, grupos sulfónicos, tetraalquilamonios o ácidos, R' es un grupo hidrolizable en las condiciones de preparación como por ejemplo grupos alcóxido o haluro. Y es un metal entre los que se prefiere Si, Ge, Sn o Ti. Siendo los procedimientos de metilación bien conocidos en el arte. De esta manera se funcionalizan la mayor parte del los grupos Si-OH y M-OH presentes en el material TIQ-2. La composición química del material resultante, METIQ-2, viene definida como: SiO2 : y YR,θ2-p/2 : z Z02 : m MO : n N2O3 : a H2O donde R es hidrógeno o un grupo alquilo, arilo o poliaromático, iguales o distintos entre si, que puede o no estar funcionalizado con grupos ácido, amino, tiol, etc y se encuentra unido directamente a los átomos que componen la estructura por medio de enlaces C-Y, Y puede ser Si, Ge, Sn o Ti, p puede variarse entre 1 y 3, y puede tomar valores comprendidos entre 0.0001 y 1, Z puede ser Ge o Sn, z puede estar comprendido entre 0 y 0.25 mol-mol"1, M puede ser Ti o Zr, m puede variar entre 0.00001 y 0.25, preferentemente entre 0.0001 y 0.1, N puede ser Al, Ga o B y n puede variar entre 0 y 1 y a depende del grado de hidratación del material pudiendo variar entre 0 y 2.In a further step the TIQ-2 material can be treated with a methylating agent. This methylation is carried out using RiR 2 R 3 (R ') Y, R ^ O ^ Y, Ri (R') 3 Y or RiRaR-jY-NH-Y RiR 2 R 3 where Ri, R 2 and R 3 are organic groups the same or different from each other and can be H or alkyl or aryl groups that may or may not be functionalized with amines, thiols, sulfonic groups, tetraalkylammoniums or acids, R 'is a hydrolyzable group under the conditions of preparation such as groups alkoxide or halide. And it is a metal among which Si, Ge, Sn or Ti is preferred. Being the methylation procedures well known in the art. In this way, most of the Si-OH and M-OH groups present in the TIQ-2 material are functionalized. The chemical composition of the resulting material, METIQ-2, is defined as: SiO 2 : and YR, θ2-p / 2: z Z0 2 : m MO: n N 2 O 3 : a H 2 O where R is hydrogen or a alkyl, aryl or polyaromatic group, the same or different from each other, which may or may not be functionalized with acid, amino, thiol, etc. groups and is directly linked to the atoms that make up the structure by means of CY, Y bonds. , Ge, Sn or Ti, p can vary between 1 and 3, and can take values between 0.0001 and 1, Z can be Ge or Sn, z can be between 0 and 0.25 mol-mol "1 , M can be Ti or Zr, m can vary between 0.00001 and 0.25, preferably between 0.0001 and 0.1, N can be Al, Ga or B and n can vary between 0 and 1 and depends on the degree of hydration of the material and can vary between 0 and 2.
El material METIQ-2 posee una superficie específica superior a 500 m2-g"1, el volumen de poro es superior a 0.5 cm3-g"\ El espectro ultravioleta- visible de los materiales METIQ-2 que contienen Ti o Zr se caracteriza por la presencia de un banda de transferencia de carga MIV-O entre 200 y 220 nm.The METIQ-2 material has a specific surface area greater than 500 m 2 -g "1 , the pore volume is greater than 0.5 cm 3 -g " \ The ultraviolet-visible spectrum of METIQ-2 materials containing Ti or Zr is characterized by the presence of an M IV -O load transfer band between 200 and 220 nm.
El material METIQ-2 es activo y selectivo en reacciones de oxotransferencia y más específicamente para la epoxidación de definas, oxidación de aléanos y alcoholes, hidroxilación de aromáticos, amoximación de cetonas, oxidación de sulfuras y silfóxidos orgánicos con peróxidos orgánicos o inorgánicos. Así por ejemplo un material METIQ-2 conteniendo un 0.5 % en peso de TÍO2 es capaz de epoxidar el ciclohexeno a 60°C con conversiones del 85% y selectividades al epóxido del 99.5% tras cinco horas de reacción utilizando terbutilhidroperóxido (TBHP) como oxidante y un 5% en peso de METIQ-2 como catalizador.The METIQ-2 material is active and selective in oxotransfer reactions and more specifically for the epoxidation of definas, oxidation of alkanes and alcohols, hydroxylation of aromatics, amoximation of ketones, oxidation of sulphides and organic synoxides with organic or inorganic peroxides. Thus, for example, a METIQ-2 material containing 0.5% by weight of TIO 2 is capable of epoxidating cyclohexene at 60 ° C with conversions of 85% and selectivities to 99.5% epoxide after five hours of reaction using terbutylhydroperoxide (TBHP) as oxidizer and 5% by weight of METIQ-2 as catalyst.
Los siguientes ejemplos ilustran la preparación de estos materiales así como sus aplicaciones como catalizadores en procesos de oxidación.The following examples illustrate the preparation of these materials as well as their applications as catalysts in oxidation processes.
EjemplosExamples
Ejemplo 1: Preparación del precursor laminar de la zeolita denominada ITQ-1. Para la preparación del precursor laminar de una zeolita ITQ-1 se disuelven 6J64 g de hexametilenimina (HMI) y 1J88 g de NaCl en 131.395 g de una disolución 0.38M de hidróxido de trimetiladamantamonio (TMAdaOH). A esta disolución se le adicionaron 37.564 g más de agua y 12.02 g de sílice (Aerosil 200), obteniéndose un gel cuya composición puede ser expresada como:Example 1: Preparation of the zeolite laminar precursor called ITQ-1. For the preparation of the laminar precursor of an ITQ-1 zeolite, 6J64 g of hexamethyleneimine (HMI) and 1J88 g of NaCl are dissolved in 131,395 g of a 0.38M solution of trimethylamantamonium hydroxide (TMAdaOH). To this solution 37.564 g more of water and 12.02 g of silica (Aerosil 200) were added, obtaining a gel whose composition can be expressed as:
1 SiO2 : 0.25 TMAdaOH : 0.31 HMI : 0.1 NaCl : 44 H2O1 SiO 2 : 0.25 TMAdaOH: 0.31 HMI: 0.1 NaCl: 44 H 2 O
El gel resultante se agita mecánicamente a temperatura ambiente durante 90 minutos y se introduce en autoclaves de acero inoxidable recubiertos de Teflon. La cristalización de material laminar se lleva a cabo a 150 °C durante 5 días con agitación constante a 60 r.p.m.The resulting gel is mechanically stirred at room temperature for 90 minutes and introduced into Teflon-coated stainless steel autoclaves. The crystallization of sheet material is carried out at 150 ° C for 5 days with constant stirring at 60 r.p.m.
El material laminar resultante se recupera por filtración, lavado exhaustivo con agua y secado a 100 °C durante 12 horas.The resulting sheet material is recovered by filtration, thorough washing with water and drying at 100 ° C for 12 hours.
Ejemplo 2: Preparación del precursor puramente silíceo deslaminado.Example 2: Preparation of purely siliceous delaminated precursor.
10 g del precursor laminar descrito en el ejemplo 1 son dispersados en 40 g de agua. Sobre esta dispersión se adicionan 200 g de disolución de hidróxido de cetiltrimetilamonio (29% en peso) y 50 g de disolución hidróxido de tetrapropilamonio (50% en peso) siendo el pH final de 12.5. Estos hidróxidos fueron preparados por intercambio iónico de sus respectivas sales de bromuro empleando una resina DOWEX SBR. El nivel de intercambio de bromuro en ambos casos fue de aproximadamente el 70%.10 g of the laminar precursor described in example 1 are dispersed in 40 g of water. Over this dispersion, 200 g of cetyltrimethylammonium hydroxide solution (29% by weight) and 50 g of tetrapropylammonium hydroxide solution (50% by weight) are added, the final pH being 12.5. These hydroxides were prepared by ion exchange of their respective bromide salts using a DOWEX SBR resin. The bromide exchange level in both cases was approximately 70%.
La dispersión resultante fue calentada a 50 °C durante 16 horas para favorecer la separación de las láminas que componen el material precursor. Pasado este tiempo, la suspensión resultante se filtra para eliminar el exceso de CTAB y el sólido resultante se dispersa en un exceso de agua, agitándose a continuación a velocidades entre 20 y 2000 r.p.m. durante tiempos no inferiores a 1 hora. Posteriormente la dispersión se somete a un tratamiento de ultrasonidos durante una hora y el pH se disminuye hasta un valor de pH = 3 adicionando HC1 (6M) para favorecer la floculación del sólido. Este se recupera por centrifugación y se lava exhaustivamente con agua destilada. El sólido final se seca a 60 °C durante 12 horas y se calcina a 540°C en atmósfera de nitrógeno durante 3 horas, prolongándose el tratamiento térmico durante 6 horas más en aire, eliminándose completamente toda la materia orgánica ocluida en los poros del sólido.The resulting dispersion was heated at 50 ° C for 16 hours to favor the separation of the sheets that make up the precursor material. After this time, the resulting suspension is filtered to remove excess CTAB and the resulting solid is dispersed in an excess of water, then stirred at speeds between 20 and 2000 rpm for times not less than 1 hour. Subsequently, the dispersion is subjected to an ultrasonic treatment for one hour and the pH is lowered to a value of pH = 3 by adding HC1 (6M) to favor the flocculation of the solid. This is recovered by centrifugation and washed thoroughly with distilled water. The final solid is dried at 60 ° C for 12 hours and calcined at 540 ° C under a nitrogen atmosphere for 3 hours, prolonging the treatment thermal for 6 hours more in air, completely eliminating all the organic matter occluded in the pores of the solid.
Este material presenta una superficie específica de aproximadamente 800 m2/g, un volumen de poro de 0.98 cm3-g"1 y una distribución de poro estrecha centrada en 4 nm de diámetro.This material has a specific surface area of approximately 800 m 2 / g, a pore volume of 0.98 cm 3 -g "1 and a narrow pore distribution centered at 4 nm in diameter.
Ejemplo 3: Preparación del material TIQ-2 conteniendo Ti en su composición.Example 3: Preparation of the TIQ-2 material containing Ti in its composition.
La incorporación de titanio se lleva a cabo mediante anclaje de un compuesto de titanio sobre la superficie del precursor silíceo descrito en el ejemplo 2. 5 g del material descrito en el ejemplo 2 se deshidratan a 300 °C y vacío 10"3 mm de Hg durante 2 horas, adicionándose una disolución que contiene 0.079 g de dicloruro de titanoceno en 45 g de cloroformo anhidro. La suspensión resultante se agita a temperatura ambiente durante 1 hora bajo atmósfera de Ar. A esta suspensión se le adiciona una disolución que contiene 0.063 g de trietilamina en 10 g de cloroformo. Se observa desprendimiento de gases blancos y el color de la disolución cambia de rojo-anaranjado a amarillo-anaranjado. Se prolonga la agitación durante una hora. El sólido se recupera por filtración y el exceso de reactivos se elimina por lavado exhaustivo con diclorometano. El sólido resultante se calcina a 540 °C en atmósfera de N2 durante 1 hora prolongándose el tratamiento térmico durante 6 horas más en aire. En estas condiciones todo el orgánico presente en el material es eliminado.The incorporation of titanium is carried out by anchoring a titanium compound on the surface of the siliceous precursor described in example 2. 5 g of the material described in example 2 are dehydrated at 300 ° C and vacuum 10 "3 mm Hg for 2 hours, adding a solution containing 0.079 g of titanocene dichloride in 45 g of anhydrous chloroform The resulting suspension is stirred at room temperature for 1 hour under an Ar atmosphere. To this suspension is added a solution containing 0.063 g of triethylamine in 10 g of chloroform. White gas evolution is observed and the color of the solution changes from red-orange to yellow-orange. Stirring is prolonged for one hour. The solid is recovered by filtration and the excess reagents are removed by thorough washing with dichloromethane The resulting solid is calcined at 540 ° C under an atmosphere of N2 for 1 hour, prolonging the heat treatment for a maximum of 6 hours. s in air Under these conditions all the organic present in the material is removed.
El material TIQ-2 no presenta diferencias texturales significativas respecto del precursor puramente silíceo, respondiendo a la siguiente composición molar: SiO2 : 0.004 TiO2 : 0.8H2O El espectro UV-vis de este material presenta una banda estrecha a 220 nm asignada a la formación de especies monoméricas de titanio.The TIQ-2 material does not show significant textural differences with respect to the purely siliceous precursor, responding to the following molar composition: SiO 2 : 0.004 TiO 2 : 0.8H 2 O The UV-vis spectrum of this material has a narrow band at 220 nm assigned to the formation of monomeric species of titanium.
Ejemplo 4: Preparación del material TIQ-2 conteniendo Zr en su composición.Example 4: Preparation of the TIQ-2 material containing Zr in its composition.
La incorporación de zirconio se lleva a cabo mediante anclaje de un compuesto de zirconio sobre la superficie del precursor silíceo descrito en el ejemplo 2.The incorporation of zirconium is carried out by anchoring a zirconium compound on the surface of the siliceous precursor described in example 2.
5 g del material descrito en el ejemplo 2 se deshidratan a 300 °C y vacío 10"3 mm de Hg durante 2 horas, adicionándose una disolución que contiene 0.093 g de dicloruro de zirconoceno en 45 g de cloroformo anhidro. La suspensión resultante se agita a temperatura ambiente durante 1 hora bajo atmósfera de Ar. A esta suspensión se le adiciona una disolución que contiene 0.063 g de trietilamina en 10 g de cloroformo. Se prolonga la agitación durante una hora. El sólido se recupera por filtración y el exceso de reactivos se elimina por lavado exhaustivo con diclorometano. Si se desea, el sólido resultante se puede calcinar a 540 °C en atmósfera de N2 durante 1 hora prolongándose el tratamiento térmico durante 6 horas más en aire. En estas condiciones todo el orgánico presente en el material es eliminado.5 g of the material described in example 2 are dehydrated at 300 ° C and vacuum 10 "3 mm Hg for 2 hours, adding a solution containing 0.093 g of zirconocene dichloride in 45 g of anhydrous chloroform. The resulting suspension is stirred to room temperature for 1 hour under Ar. To this suspension is added a solution containing 0.063 g of triethylamine in 10 g of chloroform. Stirring is prolonged for one hour. The solid is recovered by filtration and the excess reagents are removed by thorough washing with dichloromethane. If desired, the resulting solid can be calcined at 540 ° C under an atmosphere of N 2 for 1 hour by prolonging the heat treatment for a further 6 hours in air. Under these conditions all the organic present in the material is removed.
El material TIQ-2 no presenta diferencias texturales significativas respecto del precursor puramente silíceo, respondiendo a la siguiente composición molar después de ser calcinado: SiO2 : 0.004 ZrO2 : 0.8H2OThe TIQ-2 material does not show significant textural differences with respect to the purely siliceous precursor, responding to the following molar composition after being calcined: SiO 2 : 0.004 ZrO 2 : 0.8H 2 O
El espectro UN- vis de este material presenta una banda estrecha a 210 nm asignada a la formación de especies monoméricas de zirconio.The UN-vis spectrum of this material has a narrow band at 210 nm assigned to the formation of monomeric species of zirconium.
Ejemplo 5: Preparación del material denominado METIQ-2Example 5: Preparation of the material called METIQ-2
La silanización del material TIQ-2, que da lugar al material denominado METIQ-2, se realiza haciendo reaccionar compuestos organosilanos en la superficie de un material como los descritos en los ejemplos 3 y 4. Este proceso se puede llevar a cabo de la siguiente forma:The silanization of the TIQ-2 material, which gives rise to the material called METIQ-2, is carried out by reacting organosilane compounds on the surface of a material as described in examples 3 and 4. This process can be carried out as follows shape:
3 g del material TIQ-2 descrito en el ejemplo 3 se deshidratan a 300°C y 10"3 mm de Hg durante 2 horas. Sobre este sólido se adiciona una disolución que contiene 1.9 g de trimetilclorosilano en 27 g de cloroformo. La suspensión resultante se agita vigorosamente durante una hora bajo atmósfera de argón, adicionándose posteriormente 1.28 g de trietilamina disuelta en 3 g de cloroformo. Esta suspensión se agita durante 1 hora a temperatura ambiente y se filtra, se lava con diclorometano y se seca a 60°C durante 12 horas. El material METIQ-2 resultante presenta la siguiente composición molar: Si(CH3)o.24θι.88 : 0.004 TiO2 : 0.3 H2O Este material no presenta diferencias significativas ni estructurales ni texturales con el material TIQ-2 descrito en el ejemplo 3. El espectro UN- vis de este material presenta una banda estrecha a 220 nm asignada a la formación de especies monoméricas de titanio. La presencia de grupos Si-CH3 se evidencia por la presencia de una banda en el espectro IR a 710 cm"1 y una línea de resonancia en el espectro de 29Si-MAS-RMN a 15 ppm.3 g of the TIQ-2 material described in example 3 are dehydrated at 300 ° C and 10 "3 mm Hg for 2 hours. On this solid a solution containing 1.9 g of trimethylchlorosilane in 27 g of chloroform is added. The resulting mixture is vigorously stirred for one hour under an argon atmosphere, with 1.28 g of triethylamine dissolved in 3 g of chloroform being added later, this suspension is stirred for 1 hour at room temperature and filtered, washed with dichloromethane and dried at 60 ° C for 12 hours The resulting METIQ-2 material has the following molar composition: Yes (CH 3 ) o.24θι. 88 : 0.004 TiO 2 : 0.3 H 2 O This material has no significant structural or textural differences with the TIQ- material 2 described in example 3. The UN-vis spectrum of this material has a narrow band at 220 nm assigned to the formation of monomeric species of titanium.The presence of Si-CH 3 groups is evidenced by the presence of a band in the IR spectrum at 710 cm "1 and a resonance line in the spectrum of 29 Si-MAS-NMR at 15 ppm.
Ejemplo 6: Actividad catalítica en la epoxidación de ciclohexeno del material TIQ-2 conteniendo Ti en su composición.Example 6: Catalytic activity in the epoxidation of cyclohexene of the TIQ-2 material containing Ti in its composition.
En este ejemplo se describe la actividad catalítica del material preparado en el ejemplo 3 para la epoxidación de ciclohexeno.In this example, the catalytic activity of the material prepared in example 3 for the epoxidation of cyclohexene is described.
300mg del material descrito en el ejemplo 3, se introducen en un reactor de vidrio a 60°C, que contiene 4500 mg de ciclohexeno y 1538 mg de tertbutilhidroperóxido. La mezcla de reacción se agita, y se toma una muestra de reacción a 5h. La conversión de ciclohexeno con respecto al máximo posible, es del300mg of the material described in example 3, are introduced into a glass reactor at 60 ° C, containing 4500 mg of cyclohexene and 1538 mg of tertbutylhydroperoxide. The reaction mixture is stirred, and a reaction sample is taken at 5h. The conversion of cyclohexene with respect to the maximum possible is of
80% con una selectividad al epóxido del 93%.80% with an epoxide selectivity of 93%.
Ejemplo 7: Actividad catalítica en la epoxidación de ciclohexeno del material TIQ-2 conteniendo Zr en su composición.Example 7: Catalytic activity in the epoxidation of cyclohexene of the TIQ-2 material containing Zr in its composition.
En este ejemplo se describe la actividad catalítica del material preparado en el ejemplo 4 para la epoxidación de ciclohexeno.In this example, the catalytic activity of the material prepared in Example 4 for cyclohexene epoxidation is described.
300mg del material descrito en el ejemplo 4, se introducen en un reactor de vidrio a 60°C, que contiene 4500 mg de ciclohexeno y 1538 mg de tertbutilhidroperóxido. La mezcla de reacción se agita, y se toma una muestra de reacción a 5h. La conversión de ciclohexeno con respecto al máximo posible, es del300mg of the material described in example 4, are introduced into a glass reactor at 60 ° C, which contains 4500 mg of cyclohexene and 1538 mg of tertbutylhydroperoxide. The reaction mixture is stirred, and a reaction sample is taken at 5h. The conversion of cyclohexene with respect to the maximum possible is of
55% con una selectividad al epóxido del 40%.55% with an epoxy selectivity of 40%.
Ejemplo 8: Actividad catalítica del material METIQ-2 en la epoxidación de ciclohexeno conteniendo Ti en su composición.Example 8: Catalytic activity of the METIQ-2 material in the epoxidation of cyclohexene containing Ti in its composition.
En este ejemplo se describe la actividad catalítica del material preparado en el ejemplo 5 para la epoxidación de ciclohexeno.In this example, the catalytic activity of the material prepared in Example 5 for the epoxidation of cyclohexene is described.
300mg del material descrito en el ejemplo 5, se introducen en un reactor de vidrio a 60°C, que contiene 4500 mg de ciclohexeno y 1538 mg de tertbutilhidroperóxido. La mezcla de reacción se agita, y se toma una muestra de reacción a 5h. La conversión de ciclohexeno con respecto al máximo posible, es del300mg of the material described in example 5, are introduced into a glass reactor at 60 ° C, containing 4500 mg of cyclohexene and 1538 mg of tertbutylhydroperoxide. The reaction mixture is stirred, and a reaction sample is taken at 5h. The conversion of cyclohexene with respect to the maximum possible is of
85% con una selectividad al epóxido del 99.5%. Ejemplo 9: Actividad catalítica en la epoxidación de terpinoleno del material METIQ-2 conteniendo Ti en su composición.85% with an epoxide selectivity of 99.5%. Example 9: Catalytic activity in terpinolene epoxidation of METIQ-2 material containing Ti in its composition.
En este ejemplo se describe la actividad catalítica del material preparado en el ejemplo 5 para la epoxidación de terpinoleno.In this example, the catalytic activity of the material prepared in example 5 for terpinolene epoxidation is described.
150 mg del material descrito en el ejemplo 5, se introducen en un reactor de vidrio a 60°C, que contiene 1135 mg de ciclohexeno y 1380 mg de tertbutilhidroperóxido. La mezcla de reacción se agita, y se toma una muestra de reacción a 7 horas. La conversión de terpinoleno con respecto al máximo posible, es del 54% con una selectividad a los distintos epóxido del 82%.150 mg of the material described in example 5, are introduced into a glass reactor at 60 ° C, containing 1135 mg of cyclohexene and 1380 mg of tertbutylhydroperoxide. The reaction mixture is stirred, and a reaction sample is taken at 7 hours. The conversion of terpinolene with respect to the maximum possible is 54% with a selectivity to the different epoxy of 82%.
Ejemplo 10: Preparación de un precursor laminar de zeolita MCM-22 con relación Si/Al = 50.Example 10: Preparation of a MCM-22 zeolite laminar precursor with Si / Al ratio = 50.
En este ejemplo se describe la preparación de un silicoaluminato laminar con relación Si Al = 50.In this example, the preparation of a laminar silicoaluminate with Si Al = 50 ratio is described.
0.233 g de aluminato sódico (56 % Al2O3, 37 % Na O, Cario Erba) y 0.810 de hidróxido de sodio son disueltos en 103.4 g de agua. A esta disolución son adicionados 6.347 g de hexametilenimina y 7.68 g de sílice (Aerosil 200, Degussa). La mezcla resultante se agita vigorosamente durante 30 min y se introduce en un autoclave a 135°C durante 11 días con una velocidad de rotación de 60 r.p.m.0.233 g of sodium aluminate (56% Al 2 O 3 , 37% Na O, Cario Erba) and 0.810 of sodium hydroxide are dissolved in 103.4 g of water. To this solution are added 6.347 g of hexamethyleneimine and 7.68 g of silica (Aerosil 200, Degussa). The resulting mixture is vigorously stirred for 30 min and placed in an autoclave at 135 ° C for 11 days with a rotation speed of 60 rpm.
El sólido resultante se recupera mediante centrifugación a 10.000 r.p.m. y se lava exhaustivamente hasta pH = 9, secándose a continuación a 100°C durante 12 horas.The resulting solid is recovered by centrifugation at 10,000 rpm. and wash thoroughly until pH = 9, then drying at 100 ° C for 12 hours.
Ejemplo 11: Deslaminación de un precursor de zeolita MCM-22 de relación Si Al = 50.Example 11: Delamination of a MCM-22 zeolite precursor of Si Al = 50 ratio.
3 g del precursor laminar descrito en el ejemplo 9 son dispersados en 12 g de agua. Sobre esta dispersión se adicionan 60 g de hidróxido de cetiltrimetilamonio (riqueza: 29 % en peso, resto agua) y 18.5 g de hidróxido de tetrapropilamonio (riqueza: 40% en peso, resto agua) siendo el pH final de 12.5. Estos hidróxidos fueron preparados por intercambio iónico de sus respectivas sales de bromuro empleando una resina DOWEX SBR. El nivel de intercambio de bromuro en ambos casos fue de aproximadamente el 70%. La dispersión resultante fue calentada a 80 °C durante 16 horas para favorecer la separación de las láminas que componen el material precursor. Pasado este tiempo, la suspensión resultante se filtra para eliminar el exceso de CTAB y el sólido resultante se dispersa en un exceso de agua, agitándose a continuación a velocidades entre 20 y 2000 r.p.m. durante tiempos no inferiores a 1 hora. Posteriormente la dispersión se somete a un tratamiento de untrasonidos durante una hora y el pH se disminuye hasta un valor de pH = 3 adicionando HC1 (6M) para favorecer la floculación del sólido. Este se recupera por centrifugación y se lava exhaustivamente con agua destilada. El sólido final se seca a 60 °C durante 12 horas y se calcina a 540°C en atmósfera de nitrógeno durante 3 horas, prolongándose el tratamiento térmico durante 6 horas más en aire, eliminándose completamente toda la materia orgánica ocluida en los poros del sólido.3 g of the laminar precursor described in example 9 are dispersed in 12 g of water. Over this dispersion, 60 g of cetyltrimethylammonium hydroxide (wealth: 29% by weight, water remainder) and 18.5 g of tetrapropylammonium hydroxide (wealth: 40% by weight, water remainder) are added, the final pH being 12.5. These hydroxides were prepared by ion exchange of their respective bromide salts using a DOWEX SBR resin. The bromide exchange level in both cases was approximately 70%. The resulting dispersion was heated at 80 ° C for 16 hours to favor the separation of the sheets that make up the precursor material. After this time, the resulting suspension is filtered to remove excess CTAB and the resulting solid is dispersed in an excess of water, then stirred at speeds between 20 and 2000 rpm for times not less than 1 hour. Subsequently, the dispersion is subjected to an untrasound treatment for one hour and the pH is lowered to a value of pH = 3 by adding HC1 (6M) to favor the flocculation of the solid. This is recovered by centrifugation and washed thoroughly with distilled water. The final solid is dried at 60 ° C for 12 hours and calcined at 540 ° C under a nitrogen atmosphere for 3 hours, the heat treatment being prolonged for a further 6 hours in air, completely removing all the organic matter occluded in the pores of the solid .
Este material presenta una superficie específica de aproximadamente 800 m2/g, un volumen de poro de 0.8 cm3-g'\This material has a specific surface area of approximately 800 m 2 / g, a pore volume of 0.8 cm 3 -g ' \
Ejemplo 12: Preparación del material TIQ-2 conteniendo Ti y AI en su composición.Example 12: Preparation of the TIQ-2 material containing Ti and AI in its composition.
La incorporación de titanio se lleva a cabo mediante anclaje de un compuesto de titanio sobre la superficie del precursor descrito en el ejemplo 10. 5 g del material descrito en el ejemplo 10 se deshidratan a 300 °C y vacío 10'3 mm de Hg durante 2 horas, adicionándose una disolución que contiene 0.079 g de dicloruro de titanoceno en 45 g de cloroformo anhidro. La suspensión resultante se agita a temperatura ambiente durante 1 hora bajo atmósfera de Ar. A esta suspensión se le adiciona una disolución que contiene 0.063 g de trietilamina en 10 g de cloroformo. Se observa desprendimiento de gases blancos y el color de la disolución cambia de rojo-anaranjado a amarillo-anaranjado. Se prolonga la agitación durante una hora. El sólido se recupera por filtración y el exceso de reactivos se elimina por lavado exhaustivo con diclorometano. El sólido resultante se calcina a 540 °C en atmósfera de N2 durante 1 hora prolongándose el tratamiento térmico durante 6 horas más en aire. En estas condiciones todo el orgánico presente en el material es eliminado.The incorporation of titanium is carried out by anchoring a titanium compound on the surface of the precursor described in example 10. 5 g of the material described in example 10 was dehydrated at 300 ° C and vacuum 10 -3 mm Hg for 2 hours, adding a solution containing 0.079 g of titanocene dichloride in 45 g of anhydrous chloroform. The resulting suspension is stirred at room temperature for 1 hour under Ar. To this suspension is added a solution containing 0.063 g of triethylamine in 10 g of chloroform. White gas evolution is observed and the color of the solution changes from red-orange to yellow-orange. Stirring is prolonged for one hour. The solid is recovered by filtration and the excess reagents are removed by thorough washing with dichloromethane. The resulting solid is calcined at 540 ° C under an N2 atmosphere for 1 hour and the heat treatment is prolonged for a further 6 hours in air. Under these conditions all the organic present in the material is removed.
El material TIQ-2 no presenta diferencias texturales significativas respecto del precursor descrito en el ejemplo 10, respondiendo a la siguiente composición molar: SiO2 : 0.01 Al2O3 : 0.004 TiO2 : 0.8H2OThe TIQ-2 material does not show significant textural differences with respect to the precursor described in example 10, responding to the following molar composition: SiO 2 : 0.01 Al 2 O 3: 0.004 TiO 2 : 0.8H 2 O
El espectro UV-vis de este material presenta una banda estrecha a 220 nm asignada a la formación de especies monoméricas de titanio.The UV-vis spectrum of this material has a narrow band at 220 nm assigned to the formation of monomeric species of titanium.
Ejemplo 13: Actividad catalítica en la epoxidación de ciclohexeno del material TIQ-2 conteniendo Ti y Al en su composición.Example 13: Catalytic activity in the epoxidation of cyclohexene of the TIQ-2 material containing Ti and Al in its composition.
En este ejemplo se describe la actividad catalítica del material preparado en el ejemplo 11 para la epoxidación de ciclohexeno.In this example, the catalytic activity of the material prepared in example 11 for the epoxidation of cyclohexene is described.
300mg del material descrito en el ejemplo 11, se introducen en un reactor de vidrio a 60°C, que contiene 4500 mg de ciclohexeno y 1538 mg de tertbutilhidroperóxido. La mezcla de reacción se agita, y se toma una muestra de reacción a 5h. La conversión de ciclohexeno con respecto al máximo posible, es del300mg of the material described in example 11, are introduced into a glass reactor at 60 ° C, containing 4500 mg of cyclohexene and 1538 mg of tertbutylhydroperoxide. The reaction mixture is stirred, and a reaction sample is taken at 5h. The conversion of cyclohexene with respect to the maximum possible is of
8% con una selectividad al epóxido del 4%.8% with an epoxy selectivity of 4%.
Ejemplo 14: Preparación de un precursor laminar de una zeolita ferrierita puramente silícico.Example 14: Preparation of a laminar precursor of a purely silicic ferrierite zeolite.
10 g de sílice (Aerosil 200, Degussa) se adicionan a disolución acuosa que contiene 9.2 g de fluoruro amónico (NH F, Aldrich del 98% de pureza), 3J g de ácido fluorhídrico (HF, Aldrich del 49.8 % de pureza), 26 g de 4-amino-2,2,6,6- tetrametilpiperidina (Fluka, 98% de pureza) y 27.9 g de agua desionizada (Calidad MilliQ de Millipore). El pH del gel de síntesis es de 8.5. Esta mezcla reactiva se agita vigorosamente durante una hora a temperatura ambiente antes de introducirla en un autoclave a 175°C durante 5 días. El sólido resultante se filtra, se lava con exhaustivamente con agua hasta pH cercano a 7 y se seca a 60°C durante 12 horas.10 g of silica (Aerosil 200, Degussa) are added to an aqueous solution containing 9.2 g of ammonium fluoride (NH F, Aldrich of 98% purity), 3J g of hydrofluoric acid (HF, Aldrich of 49.8% purity), 26 g of 4-amino-2,2,6,6-tetramethylpiperidine (Fluka, 98% purity) and 27.9 g of deionized water (MillipoQ Millipore Quality). The pH of the synthesis gel is 8.5. This reaction mixture is vigorously stirred for one hour at room temperature before being placed in an autoclave at 175 ° C for 5 days. The resulting solid is filtered, washed thoroughly with water to pH close to 7 and dried at 60 ° C for 12 hours.
Ejemplo 15: Deslaminación de un precursor laminar ferrierita puramente silícica.Example 15: Delamination of a purely silicic ferrite laminar precursor.
1 g del precursor laminar descrito en el ejemplo 13 son dispersados en 30 g de una disolución acuosa que contiene 5.8 g de hidróxido de cetiltrimetilamonio y 2.4 g de hidróxido de tetrapropilamonio siendo el pH final de 12.5. Estos hidróxidos fueron preparados por intercambio iónico de sus respectivas sales de bromuro empleando una resina DOWEX SBR. El nivel de intercambio de bromuro en ambos casos fue de aproximadamente el 70%. La dispersión resultante fue calentada a 95°C durante 16 horas para favorecer la separación de las láminas que componen el material precursor. Pasado este tiempo, la suspensión resultante se filtra para eliminar el exceso de CTAB y el sólido resultante se dispersa en un exceso de agua, agitándose a continuación a velocidades entre 20 y 2000 r.p.m. durante tiempos no inferiores a 1 hora. Posteriormente la dispersión se somete a un tratamiento de untrasonidos durante una hora y el pH se disminuye hasta un valor de pH = 3 adicionando HC1 (6M) para favorecer la floculación del sólido. Este se recupera por centrifugación y se lava exhaustivamente con agua destilada. El sólido final se seca a 60 °C durante 12 horas y se calcina a 580°C en atmósfera de nitrógeno durante 3 horas, prolongándose el tratamiento térmico durante 6 horas más en aire, eliminándose completamente toda la materia orgánica ocluida en los poros del sólido.1 g of the laminar precursor described in example 13 are dispersed in 30 g of an aqueous solution containing 5.8 g of cetyltrimethylammonium hydroxide and 2.4 g of tetrapropylammonium hydroxide, the final pH being 12.5. These hydroxides were prepared by ion exchange of their respective bromide salts using a DOWEX SBR resin. The bromide exchange level in both cases was approximately 70%. The resulting dispersion was heated at 95 ° C for 16 hours to favor the separation of the sheets that make up the precursor material. After this time, the resulting suspension is filtered to remove excess CTAB and the resulting solid is dispersed in an excess of water, then stirred at speeds between 20 and 2000 rpm for times not less than 1 hour. Subsequently, the dispersion is subjected to an untrasound treatment for one hour and the pH is lowered to a value of pH = 3 by adding HC1 (6M) to favor the flocculation of the solid. This is recovered by centrifugation and washed thoroughly with distilled water. The final solid is dried at 60 ° C for 12 hours and calcined at 580 ° C under a nitrogen atmosphere for 3 hours, the heat treatment being prolonged for a further 6 hours in air, completely removing all the organic matter occluded in the pores of the solid .
Este material presenta una superficie específica de aproximadamente 580 m2/g, un volumen de poro de 0.7 cm3-g"1.This material has a specific surface area of approximately 580 m 2 / g, a pore volume of 0.7 cm 3 -g "1 .
Ejemplo 16: Preparación del material TIQ-2 a partir de ferrierita deslaminada. La incorporación de titanio se lleva a cabo mediante anclaje de un compuesto de titanio sobre la superficie del precursor descrito en el ejemplo 14. 5 g del material descrito en el ejemplo 14 se deshidratan a 300 °C y vacío 10'3 mm de Hg durante 2 horas, adicionándose una disolución que contiene 0.079 g de dicloruro de titanoceno en 45 g de cloroformo anhidro. La suspensión resultante se agita a temperatura ambiente durante 1 hora bajo atmósfera de Ar. A esta suspensión se le adiciona una disolución que contiene 0.063 g de trietilamina en 10 g de cloroformo. Se observa desprendimiento de gases blancos y el color de la disolución cambia de rojo-anaranjado a amarillo-anaranjado. Se prolonga la agitación durante una hora. El sólido se recupera por filtración y el exceso de reactivos se elimina por lavado exhaustivo con diclorometano. El sólido resultante se calcina a 540 °C en atmósfera de N2 durante 1 hora prolongándose el tratamiento térmico durante 6 horas más en aire. En estas condiciones todo el orgánico presente en el material es eliminado. El material TIQ-2 no presenta diferencias texturales significativas respecto del precursor descrito en el ejemplo 10, respondiendo a la siguiente composición molar: SiO2 : 0.004 TiO2 : 0.8H2O El espectro UV-vis de este material presenta una banda estrecha a 220 nm asignada a la formación de especies monoméricas de titanio.Example 16: Preparation of TIQ-2 material from delaminated ferrite. The incorporation of titanium is carried out by anchoring a titanium compound on the surface of the precursor described in Example 14. 5 g of the material described in example 14 are dehydrated at 300 ° C and vacuum 10 -3 mm Hg for 2 hours, adding a solution containing 0.079 g of titanocene dichloride in 45 g of anhydrous chloroform. The resulting suspension is stirred at room temperature for 1 hour under Ar. To this suspension is added a solution containing 0.063 g of triethylamine in 10 g of chloroform. White gas evolution is observed and the color of the solution changes from red-orange to yellow-orange. Stirring is prolonged for one hour. The solid is recovered by filtration and the excess reagents are removed by thorough washing with dichloromethane. The resulting solid is calcined at 540 ° C under an N2 atmosphere for 1 hour and the heat treatment is prolonged for a further 6 hours in air. Under these conditions all the organic present in the material is removed. The TIQ-2 material does not present significant textural differences with respect to the precursor described in example 10, responding to the following molar composition: SiO 2 : 0.004 TiO 2 : 0.8H 2 O The UV-vis spectrum of this material has a narrow band at 220 nm assigned to the formation of monomeric species of titanium.
Ejemplo 17: Actividad catalítica del material TIQ-2 derivado de ferrierita deslaminada.Example 17: Catalytic activity of TIQ-2 material derived from delaminated ferrierite.
En este ejemplo se describe la actividad catalítica del material preparado en el ejemplo 15 para la epoxidación de ciclo hexeno.In this example, the catalytic activity of the material prepared in example 15 for the epoxidation of hexene cycle is described.
300mg del material descrito en el ejemplo 15, se introducen en un reactor de vidrio a 60°C, que contiene 4500 mg de ciclohexeno y 1538 mg de tertbutilhidroperóxido. La mezcla de reacción se agita, y se toma una muestra de reacción a 5h. La conversión de ciclohexeno con respecto al máximo posible, es del300mg of the material described in example 15 are introduced into a glass reactor at 60 ° C, which contains 4500 mg of cyclohexene and 1538 mg of tertbutylhydroperoxide. The reaction mixture is stirred, and a reaction sample is taken at 5h. The conversion of cyclohexene with respect to the maximum possible is of
62% con una selectividad al epóxido del 93%. 62% with an epoxide selectivity of 93%.

Claims

Reivindicaciones: Claims:
1.- En la presente invención se reivindica un material formado por tetraedros de Si y/o Ge, Ti y/o Zr y que puede además contener o no Al, B, y/o Ga, cuya composición química viene dada por: SiO2 : z Z02 : MO2 : n N2O3 : a H2O donde Z puede ser Ge, Sn, z puede estar comprendida entre 0 y 0.25 mol-mol"1, M puede ser Ti o Zr, m puede variar entre 0.00001 y 0.25, preferentemente entre 0.0001 y 0J, N puede ser Al, Ga o B y n puede variar entre 0 y 1 y a depende del grado de hidratación del material pudiendo variar entre 0 y 2 y que se denomina TIQ- 21.- The present invention claims a material formed by tetrahedra of Si and / or Ge, Ti and / or Zr and which may also contain or not Al, B, and / or Ga, whose chemical composition is given by: SiO 2 : z Z0 2 : MO 2 : n N 2 O 3 : a H 2 O where Z can be Ge, Sn, z can be between 0 and 0.25 mol-mol "1 , M can be Ti or Zr, m can vary between 0.00001 and 0.25, preferably between 0.0001 and 0J, N can be Al, Ga or B and n can vary between 0 and 1 and depends on the degree of hydration of the material can vary between 0 and 2 and is called TIQ-2
2.- Un material según reivindicación 1 caracterizado por poseer una superficie específica y un volumen de poro superiores a 500 m2-g'1 y 0.5 cm3-g"1, respectivamente y una banda de transferencia de carga en el espectro UN-vis alrededor de 220 nm.2. A material according to claim 1 characterized by having a specific surface and a pore volume greater than 500 m 2 -g '1 and 0.5 cm 3 -g "1 , respectively and a load transfer band in the spectrum UN- vis around 220 nm.
3.- Un material microporoso formado por tetraedros de Si, Ge, Sn, C, H, Ti y/o Zr, que puede además contener o no O, Ν, S, Al, B, y/o Ga y cuya composición química viene definida como:3.- A microporous material formed by tetrahedra of Si, Ge, Sn, C, H, Ti and / or Zr, which may also contain or not contain O, Ν, S, Al, B, and / or Ga and whose chemical composition It is defined as:
SiO2 : v Y p02.pn : z ZO2 : m MO2 : n Ν2O3 : a H2O donde R es hidrógeno o un grupo alquilo, arilo o poliaromático, iguales o distintos entre si, que puede o no estar funcionalizado con grupos ácido, amino, tiol, etc y se encuentra unido directamente a los átomos que componen la estructura por medio de enlaces C-Y, Y puede ser Si, Ge, Sn o Ti, p puede variarse entre 1 y 3, y puede tomar valores comprendidos entre 0.0001 y 1, Z puede ser Ge o Sn, z puede estar comprendido entre 0 y 0.25 mol-mol"1, M puede ser Ti o Zr, m puede variar entre 0.00001 y 0.25, preferentemente entre 0.0001 y 0J, Ν puede ser Al, Ga o B y n puede variar entre 0 y 1 y a depende del grado de hidratación del material pudiendo variar entre 0 y 2 y que se denomina METIQ-2.SiO 2 : v Y p 0 2 . p n: z ZO 2 : m MO 2 : n Ν 2 O 3 : a H 2 O where R is hydrogen or an alkyl, aryl or polyaromatic group, the same or different from each other, which may or may not be functionalized with acid groups, amino, thiol, etc. and is directly linked to the atoms that make up the structure by means of CY bonds, Y can be Si, Ge, Sn or Ti, p can be varied between 1 and 3, and can take values between 0.0001 and 1, Z can be Ge or Sn, z can be between 0 and 0.25 mol-mol "1 , M can be Ti or Zr, m can vary between 0.00001 and 0.25, preferably between 0.0001 and 0J, Ν can be Al, Ga or B and n can vary between 0 and 1 and depends on the degree of hydration of the material can vary between 0 and 2 and is called METIQ-2.
4.- Un material según reivindicación 3 caracterizado por poseer una superficie específica y un volumen de poro superiores a 500 m2-g"1 y 0.5 cm3-g*1, respectivamente y una banda de transferencia de carga en el espectro UN-vis alrededor de 220 nm.4. A material according to claim 3 characterized by having a specific surface and a pore volume greater than 500 m 2 -g "1 and 0.5 cm 3 -g * 1 , respectively and a load transfer band in the UN-vis spectrum around 220 nm.
5.- Un procedimiento para la preparación del material TIQ-2 según reivindicación 1, caracterizado por que el titanio y/o zirconio se incorpora en una etapa postsíntesis sobre un precursor laminar que se deslamina y cuya composición viene definida por: SiO2 : z ZO2 : n Ν2O3 : a H2O puede ser Al, Ga o B y n puede variar entre 0 y 1 y a depende del grado de donde Z puede ser Ge, Sn, z puede estar comprendida entre 0 y 0.25 mol-mol"1, Ν hidratación del material pudiendo variar entre 0 y 2.5. A process for the preparation of the TIQ-2 material according to claim 1, characterized in that the titanium and / or zirconium is incorporated in a post-synthesis stage on a laminar precursor that is delaminated and whose composition is defined by: SiO 2 : z ZO 2 : n Ν 2 O 3 : a H 2 O can be Al, Ga or B and n can vary between 0 and 1 and depends on the degree of where Z can be Ge, Sn, z can be between 0 and 0.25 mol- mol "1 , Ν hydration of the material may vary between 0 and 2.
6.- Un procedimiento de preparación de un material TIQ-2 según reivindicación 1 y 5 por el que los compuestos de titanio empleados en su preparación pueden ser alcóxidos de titanio y/o zirconio, haluros de titanio y/o zirconio, diclorotitanoceno y/o diclorozirconoceno, difenóxido de titanoceno y/o zirconoceno y otros derivados del titanoceno y/o del zirconoceno, lactato de titanio y/o zirconio, compuestos de titanio y/o zirconio que poseen el grupo dionato6. A process for preparing a TIQ-2 material according to claim 1 and 5 wherein the titanium compounds used in its preparation can be alkoxides of titanium and / or zirconium, halides of titanium and / or zirconium, dichlorotitanocene and / or dichlorozirconocene, titanocene and / or zirconocene diphenoxide and other derivatives of titanocene and / or zirconocene, titanium lactate and / or zirconium, titanium and / or zirconium compounds that possess the dionate group
Figure imgf000018_0001
Figure imgf000018_0001
donde R y R' puede ser hidrógeno, grupos orgánicos alquilos o aromáticos funcionalizados o no y X puede ser un haluro, oxígeno, alcóxido o un grupo capaz de reaccionar con grupos Si-OH, hexafluorotitanato y/o hexafluorozirconato amónico o sódico, y cualquier complejo o sal iónica que contenga titanio y/o zirconio en su composición y pueda ser susceptible de reaccionar con un grupo Si-OH .where R and R 'may be hydrogen, functionalized alkyl or aromatic organic groups or not and X may be a halide, oxygen, alkoxide or a group capable of reacting with Si-OH, ammonium or sodium hexafluorozirconate and / or groups complex or ionic salt that contains titanium and / or zirconium in its composition and may be capable of reacting with a Si-OH group.
1 - Un procedimiento por el que el anclaje de los compuestos reivindicados según 5 y 6 se lleva a cabo en disolución empleando disolventes acuosos u orgánicos en presencia o ausencia de catalizadores que favorezcan la reacción del precursor de titanio con los grupos Si-OH.1 - A process whereby the anchoring of the compounds claimed according to 5 and 6 is carried out in solution using aqueous or organic solvents in presence or absence of catalysts that favor the reaction of the titanium precursor with the Si-OH groups.
8.- Un procedimiento por el que^el anclaje de los compuestos reivindicados según 5 y 6 se lleva a cabo en fase gas a una temperatura comprendida entre 0 y 400°C.8.- A process whereby the anchoring of the compounds claimed according to 5 and 6 is carried out in the gas phase at a temperature between 0 and 400 ° C.
9.- Un procedimiento por el que los materiales preparados según reivindicaciones 5, 6, 7 y 8 se calcinan a temperaturas superiores a 100°C.9. A process whereby the materials prepared according to claims 5, 6, 7 and 8 are calcined at temperatures above 100 ° C.
10.- Un procedimiento por el que se silanizan los materiales como los descritos en las reivindicaciones 5, 6, 7, 8 y 9 mediante una modificación tal en la que se generan especies orgánicas ancladas en la superficie de los materiales descritos en las reivindicaciones 5, 6, 7, 8 y 9. El material resultante se denomina METIQ-2.10. A method by which materials such as those described in claims 5, 6, 7, 8 and 9 are silanized by such a modification in which organic species anchored on the surface of the materials described in claims 5 are generated. , 6, 7, 8 and 9. The resulting material is called METIQ-2.
11.- Un procedimiento para la obtención del material METIQ-2 descrito en la reivindicación 10. La silanización se lleva cabo utilizando RjιR2R3(R')Y,
Figure imgf000019_0001
Ri(R')3Y o RιR2R3Y-NH-Y RiR2R3 como agentes silanizantes en donde Ri, R2 y R3 son grupos orgánicos iguales o distintos entre sí y pueden ser H o grupos alquilo o arilo que pueden estar o no funcionalizados con aminas, tioles, grupos sulfónicos, trialquilamonios o ácidos, R' es un grupo alcóxido o haluro hidrolizable en las condiciones de preparación. M es un metal entre los que se prefiere Si, Ge, Sn o Ti.
11. A method for obtaining the METIQ-2 material described in claim 10. Silanization is carried out using RjιR2R 3 (R ') Y,
Figure imgf000019_0001
Ri (R ') 3 Y or RιR 2 R 3 Y-NH-Y RiR 2 R 3 as silanizing agents where Ri, R 2 and R 3 are organic groups the same or different from each other and can be H or alkyl or aryl groups which may or may not be functionalized with amines, thiols, sulfonic groups, trialkylammoniums or acids, R 'is an alkoxide or hydrolysable halide group under the conditions of preparation. M is a metal among which Si, Ge, Sn or Ti is preferred.
12.- Un procedimiento por el que el anclaje de los compuestos reivindicados en 10 y 11 se lleva a cabo en disolución empleando disolventes acuosos u orgánicos en presencia o ausencia de catalizadores que favorezcan la reacción del compuesto alquilsilano, alquilgermano u organometálico en general con los grupos Si-OH.12.- A process whereby the anchoring of the compounds claimed in 10 and 11 is carried out in solution using aqueous or organic solvents in the presence or absence of catalysts that favor the reaction of the alkylsilane, alkyl-human or organometallic compound in general with the Si-OH groups.
13.- Un procedimiento por el que el anclaje de los compuestos reivindicados en 10 y 11 se lleva a cabo en fase gas a temperaturas comprendidas entre 0 y 400°C,13.- A process whereby the anchoring of the compounds claimed in 10 and 11 is carried out in the gas phase at temperatures between 0 and 400 ° C,
14.- El uso de los materiales reivindicados en 5, 6, 7, 8 y 9 en reacciones de epoxidación de definas empleando peróxidos orgánicos o inorgánicos, como por ejemplo en la epoxidación de propileno, etileno, limoneno, α-pineno, terpinoleno, longifoleno, cariofileno, α-cedreno, isopreno, estireno, estireno sustituidos, ácidos y esteres grasos, alcoholes alílicos y alcoholes vinílicos con agua oxigenada, tercbutilhidroperóxido o hidroperóxido de eumeno.14.- The use of the materials claimed in 5, 6, 7, 8 and 9 in epoxidation reactions of definas using organic or inorganic peroxides, as per example in the epoxidation of propylene, ethylene, limonene, α-pinene, terpinolene, longifolene, karyophylene, α-cedrene, isoprene, styrene, substituted styrene, fatty acids and esters, allylic alcohols and vinyl alcohols with hydrogen peroxide, tert-hydroperoxide or hydroperoxide Eumeno.
15.- El uso de los materiales reivindicados en 10, 11, 12 y 13 en reacciones de epoxidación de olefinas empleando peróxidos orgánicos o inorgánicos, como por ejemplo en la epoxidación de propileno, etileno, limoneno, α-pineno, terpinoleno, longifoleno, cariofileno, α-cedreno, isopreno, estireno y estírenos sustituidos, ácidos y esteres grasos, alcoholes alílicos y alcoholes vinílicos con agua oxigenada, tercbutilhidroperóxido o hidroperóxido de eumeno.15.- The use of the materials claimed in 10, 11, 12 and 13 in epoxidation reactions of olefins using organic or inorganic peroxides, such as for example the epoxidation of propylene, ethylene, limonene, α-pinene, terpinolene, longiphene, Caryophylene, α-cedrene, isoprene, styrene and substituted styrenes, fatty acids and esters, allyl alcohols and vinyl alcohols with hydrogen peroxide, tert-butylhydroperoxide or eumene hydroperoxide.
16.- El uso de los materiales reivindicados en 5, 6, 7, 8 y 9 en la oxidación de alcoholes a cetonas, aldehidos o ácidos empleando peróxidos orgánicos o inorgánicos, como por ejemplo la oxidación de geraniol a citral.16.- The use of the materials claimed in 5, 6, 7, 8 and 9 in the oxidation of alcohols to ketones, aldehydes or acids using organic or inorganic peroxides, such as for example the oxidation of geraniol to citral.
17.- El uso de los materiales reivindicados en 10, 11, 12 y 13 en la oxidación de alcoholes a cetonas, aldehidos o ácidos empleando peróxidos orgánicos o inorgánicos, como por ejemplo la oxidación de geraniol a citral.17.- The use of the materials claimed in 10, 11, 12 and 13 in the oxidation of alcohols to ketones, aldehydes or acids using organic or inorganic peroxides, such as for example the oxidation of geraniol to citral.
18.- El uso de los materiales reivindicados en 5, 6, 7, 8 y 9 en la oxidación de tioles orgánicos a las correspondientes sulfóxidos y sulfonas con peróxidos orgánicos o inorgánicos.18.- The use of the materials claimed in 5, 6, 7, 8 and 9 in the oxidation of organic thiols to the corresponding sulfoxides and sulfones with organic or inorganic peroxides.
19.- El uso de los materiales reivindicados en 10, 11, 12 y 13 en la oxidación de tioles orgánicos a las correspondientes sulfóxidos y sulfonas con peróxidos orgánicos o inorgánicos.19.- The use of the materials claimed in 10, 11, 12 and 13 in the oxidation of organic thiols to the corresponding sulfoxides and sulfones with organic or inorganic peroxides.
20.- El uso de los materiales reivindicados en 5, 6, 7, 8 y 9 en la hidroxilación de compuestos aromáticos empleando peróxidos orgánicos o inorgánicos.20.- The use of the materials claimed in 5, 6, 7, 8 and 9 in the hydroxylation of aromatic compounds using organic or inorganic peroxides.
21.- El uso de los materiales reivindicados en 10, 11, 12 y 13 en la hidroxilación de compuestos aromáticos empleando peróxidos orgánicos o inorgánicos. 21.- The use of the materials claimed in 10, 11, 12 and 13 in the hydroxylation of aromatic compounds using organic or inorganic peroxides.
22.- El uso de los materiales reivindicados en 5, 6, 7, 8 y 9 en la amoxidación de cetonas empleando peróxidos orgánicos o inorgánicos.22.- The use of the materials claimed in 5, 6, 7, 8 and 9 in the amoxidation of ketones using organic or inorganic peroxides.
23.- El uso de los materiales reivindicados en 10, 11, 12 y 13 en la amoxidación de cetonas empleando peróxidos orgánicos o inorgánicos. 23.- The use of the materials claimed in 10, 11, 12 and 13 in the amoxidation of ketones using organic or inorganic peroxides.
PCT/ES1999/000393 1998-12-04 1999-12-03 High surface microporous materials having an activity in oxidation reactions WO2000034181A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP9802567 1998-12-04
ES9802567A ES2156514B1 (en) 1998-12-04 1998-12-04 HIGH SURFACE MICROPOROUS MATERIALS ACTIVE IN OXIDATION REACTIONS.

Publications (1)

Publication Number Publication Date
WO2000034181A1 true WO2000034181A1 (en) 2000-06-15

Family

ID=8306040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1999/000393 WO2000034181A1 (en) 1998-12-04 1999-12-03 High surface microporous materials having an activity in oxidation reactions

Country Status (2)

Country Link
ES (1) ES2156514B1 (en)
WO (1) WO2000034181A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001024926A1 (en) * 1999-10-04 2001-04-12 Mobil Oil Corporation Olefin epoxidation catalysts
WO2001037629A2 (en) * 1999-11-24 2001-05-31 Consejo Superior De Investigaciones Cientificas High surface microporous materials which are active in oxidation reactions. tiq-6 and metiq-6
WO2002031086A1 (en) * 2000-10-11 2002-04-18 Consejo Superior De Investigaciones Cientificas Process and catalysts for eliminating sulfur compounds from the gasoline fraction
WO2002083819A1 (en) * 2001-04-12 2002-10-24 Consejo Superior De Investigaciones Cientificas Method and catalysts for the elimination of sulfur compounds from the diesel fraction
WO2006056007A1 (en) * 2004-11-23 2006-06-01 Adelaide Research & Innovation Pty Ltd Inhibitors of biotin protein ligase

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5137861A (en) * 1991-01-22 1992-08-11 Mobil Oil Corp. Catalyst comprising a hydrogenation metal and a delaminated layered silicate
WO1997017290A1 (en) * 1995-11-08 1997-05-15 Shell Internationale Research Maatschappij B.V. Oxide materials and catalyst compositions containing them

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5137861A (en) * 1991-01-22 1992-08-11 Mobil Oil Corp. Catalyst comprising a hydrogenation metal and a delaminated layered silicate
WO1997017290A1 (en) * 1995-11-08 1997-05-15 Shell Internationale Research Maatschappij B.V. Oxide materials and catalyst compositions containing them

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CORMA A. ET AL.: "Strategies to improve the epoxidation activity and selectivity of Ti-MCM-41", CHEM. COMMUN.,, vol. 20, 21 October 1998 (1998-10-21), (CAMBRIDGE),, pages 2211 - 2212 *
MASCHMEYER T.: "Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica", NATURE,, vol. 378, 9 November 1995 (1995-11-09), pages 159 - 162 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001024926A1 (en) * 1999-10-04 2001-04-12 Mobil Oil Corporation Olefin epoxidation catalysts
WO2001037629A2 (en) * 1999-11-24 2001-05-31 Consejo Superior De Investigaciones Cientificas High surface microporous materials which are active in oxidation reactions. tiq-6 and metiq-6
WO2001037629A3 (en) * 1999-11-24 2002-03-14 Consejo Superior Investigacion High surface microporous materials which are active in oxidation reactions. tiq-6 and metiq-6
JP2003514751A (en) * 1999-11-24 2003-04-22 コンセホ・スペリオール・デ・インベスティガシオネス・シエンティフィカス High surface area microporous material active in oxidation reaction (TIQ-6 and METIQ-6)
US6843978B2 (en) 1999-11-24 2005-01-18 Consejo Superior De Investigaciones Cientificas Microporous materials (TIQ-6 and METIQ-6) of high surface area active in oxidation reactions
WO2002031086A1 (en) * 2000-10-11 2002-04-18 Consejo Superior De Investigaciones Cientificas Process and catalysts for eliminating sulfur compounds from the gasoline fraction
ES2179753A1 (en) * 2000-10-11 2003-01-16 Univ Valencia Politecnica Process and catalysts for eliminating sulfur compounds from the gasoline fraction
US6846406B2 (en) 2000-10-11 2005-01-25 Consejo Superior De Investigaciones Cientificas Process and catalysts for eliminating sulphur compounds from the gasoline fraction
WO2002083819A1 (en) * 2001-04-12 2002-10-24 Consejo Superior De Investigaciones Cientificas Method and catalysts for the elimination of sulfur compounds from the diesel fraction
ES2183710A1 (en) * 2001-04-12 2003-03-16 Univ Valencia Politecnica Method and catalysts for the elimination of sulfur compounds from the diesel fraction
US7371318B2 (en) 2001-04-12 2008-05-13 Consejo Superior De Investigaciones Cientificas Method and catalysts for the elimination of sulphur compounds from the diesel fraction
WO2006056007A1 (en) * 2004-11-23 2006-06-01 Adelaide Research & Innovation Pty Ltd Inhibitors of biotin protein ligase

Also Published As

Publication number Publication date
ES2156514A1 (en) 2001-06-16
ES2156514B1 (en) 2002-02-16

Similar Documents

Publication Publication Date Title
US6710193B2 (en) Process for preparing crystalline microporous and mesoporous metal silicates, products obtainable by said process and their use
WO2001037629A2 (en) High surface microporous materials which are active in oxidation reactions. tiq-6 and metiq-6
JP3839662B2 (en) Titanium silicalite molecular sieve and method for producing the same
Wu et al. Hydrothermal synthesis of a novel titanosilicate with MWW topology
Zhou et al. Hierarchical mesoporous TS-1 zeolite: a highly active and extraordinarily stable catalyst for the selective oxidation of 2, 3, 6-trimethylphenol
US5968473A (en) Stannosilicate molecular sieves
RU2299854C2 (en) Modified laminated silicate-metal material and the method of its production
US5785946A (en) Crystalline inorganic oxide compositions prepared by neutral templating route
WO1994029022A1 (en) Structure material of the zeolite type with ultralarge pores and a lattice comprised of silicone and titanium oxides; its synthesis and utilization for the selective oxidation of organic products
JP3166904B2 (en) Process for producing microporous metal silicate or mesoporous metal silicate, binder-free shaped body, and oxidation catalyst comprising the compound
WO2002031086A1 (en) Process and catalysts for eliminating sulfur compounds from the gasoline fraction
US5474754A (en) Preparation of an aluminosilicotitanate isomorphous with zeolite beta
JP2003514751A5 (en)
CN101307039B (en) Method for producing epoxide
JP5070665B2 (en) Porous body and method for producing the same
EP1002764B1 (en) Method for preparation of small zeotype crytals
CN111017946B (en) Preparation method of titanium-containing molecular sieve for olefin epoxidation process
WO2000034181A1 (en) High surface microporous materials having an activity in oxidation reactions
JP2002522401A (en) Hydrocarbon oxidation process
JP2000109312A (en) Amorphous silicic acid and metallic silicate having narrow mesopore radius distribution produced by precipitation method, their production, method for modifying silicic acid and metallic silicate and their use
US6746660B1 (en) Process for the production of ultra-fine zeolite crystals and their aggregates
JPH0967115A (en) Mesoporous metallosilicate and its production
WO2000054880A1 (en) MCM-41 TYPE MICROPOROUS MATERIALS CONTAINING TITANIUM AND THEIR UTILIZATION AS CATALYSTS IN α-PINENE OXIDATION
RU2803369C1 (en) Method for producing hierarchical iron-comprising silicalite with the possibility of controlling the ratio of micromesopores for the process of complete oxidation of phenol with hydrogen peroxide
WO2000007710A2 (en) Process for preparing mesoporous silicates containing ti and organic compounds directly linked to network atoms, and use thereof as catalyst

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN JP MX NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA