WO2000033737A1 - Dispositif de mesure de respiration - Google Patents

Dispositif de mesure de respiration Download PDF

Info

Publication number
WO2000033737A1
WO2000033737A1 PCT/FR1999/003044 FR9903044W WO0033737A1 WO 2000033737 A1 WO2000033737 A1 WO 2000033737A1 FR 9903044 W FR9903044 W FR 9903044W WO 0033737 A1 WO0033737 A1 WO 0033737A1
Authority
WO
WIPO (PCT)
Prior art keywords
patient
vest
turns
posture
position sensor
Prior art date
Application number
PCT/FR1999/003044
Other languages
English (en)
Inventor
Ramin Baghai
Original Assignee
R.B.I.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by R.B.I. filed Critical R.B.I.
Publication of WO2000033737A1 publication Critical patent/WO2000033737A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • A61B5/1135Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing by monitoring thoracic expansion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes

Definitions

  • the present invention relates to an apparatus for monitoring the respiration of a person, and more particularly to a device for measuring respiration.
  • a patient's breathing is recorded during sleep to detect, for example, night apnea which causes the patient to be tired.
  • Figure 1 illustrates part of a recording made with commonly used means.
  • a DNZ signal is provided by a nasal pressure sensor or "nasal cannula".
  • a nasal cannula provides a relatively accurate indication of absolute flow. In fact, in monitoring breathing during sleep, we seek to know the absolute value of a patient's ventilation, in order to determine, for example, the degree of severity of the apnea phases.
  • the nasal cannula is generally used in combination with other sensors used to validate the measurements provided by the nasal cannula.
  • a NEZ nasal flow detector and a BOU oral flow detector are used which provide purely qualitative signals, that is to say signals which do not allow the breathing rate to be measured.
  • the BOU oral flow detector is used to confirm that the patient is breathing exclusively through the nose or not.
  • the DNZ signal from the nasal cannula is no longer representative of the total breath flow.
  • the buccal detector BOU provides a characteristic signal when the patient breathes through the mouth, indicating that the signal provided by the nasal cannula is then distorted or that a drop in amplitude is visible in the DNZ signal of Figure 1 should not be considered as a decrease in patient ventilation.
  • Figure 2 shows another type of breathing measurement device that one could consider using. It is a plethysmograph with inductive turns such as that described in English patent 1,596,298.
  • the apparatus is composed of a strip comprising a thoracic turn 10 and a strip comprising an abdominal turn 11. Each of the turns is of variable section and determines the frequency of an associated oscillator 13, integral with the strip. The turns are of variable section thanks to a sinusoidal arrangement in the width of the bands.
  • the oscillators 13 are connected to a processing circuit 14 comprising a frequency-voltage converter per oscillator, respectively 15 with gain Kl and 16 with gain K2.
  • the converter 15 supplies a voltage T representative of the cross section of the thorax and the converter 16 supplies a voltage A representative of the section of the abdomen.
  • the voltages T, A and their sum S are supplied to a recorder 20.
  • the sum S can be made representative of the patient's lung volume by adjusting the coefficients K1 and K2 appropriately.
  • the coefficients K1 and K2 must be adjusted before each measurement since they depend on many factors, in particular the build of the patient and the position in height of the turns 10 and 11.
  • An object of the present invention is to provide a system for monitoring the breathing of a patient which makes it possible to provide reliable absolute ventilation measurements even if the patient is moving, while causing slight discomfort to the patient.
  • the present invention provides an inextensible vest in the direction of the height integrating thoracic and abdominal turns of measurement of respiration, and a position sensor indicating the posture of a person wearing the vest.
  • the senor indicates whether the posture is lateral, flat or raised.
  • the sensor indicates whether the posture is on the back, on the left side, on the right side, on the belly, or raised.
  • the vest comprises a crotch.
  • the present invention also provides a sensor comprising a metal ball rolling by gravity in a sphere or a cylinder provided with electrical contacts corresponding to the postures to be detected.
  • the present invention further provides a method of monitoring a patient's breathing during sleep, using a vest of the aforementioned type, comprising the steps of calibrating the turns for each posture of the patient to provide ventilation; and measuring the patient's breathing using the calibration corresponding to the position provided by the position sensor.
  • FIG. 3 represents a vest incorporating the turns of a plethysmograph, intended to preserve the position of the turns;
  • FIG. 4 represents a first embodiment of a position sensor to be used according to the invention in combination with the vest of FIG. 3; and
  • FIG. 5 represents a second embodiment of a position sensor.
  • FIG. 3 represents a solution used according to the invention to avoid the displacement of the turns during the sleep of a patient.
  • the thoracic 10 and abdominal 11 turns of a plethysmograph are integrated into a vest 22 which is made of an inextensible fabric in the height direction.
  • the waistcoat is provided with a crotch 24 which may be a piece of the fabric of the waistcoat to be fastened by pressures or else a strap which can be stretched.
  • the oscillators 13, which are preferably arranged close to the turns, will be attached to the vest 22. It is not essential that the vest be worn directly on the skin: it can be worn on fabric pajamas thin or on a T-shirt.
  • a patient wearing such a vest 22 will be able to move during his sleep without the turns 10 and 11 moving, which leads a priori to assume that the absolute measurements made using the turns will always be correct.
  • the vest with a position sensor 30 and to correct the calibration of the turns of the plethysmograph as a function of the position detected by the sensor.
  • the measurement device is calibrated so that it reflects the ventilation absolute of the patient, independent of posture.
  • the patient is asked to breathe, for example, in a syringe provided for this purpose.
  • the position sensor must therefore be able to detect each of these four postures.
  • the four possible calibrations are stored in a processing system 14 ′ to which the position sensor 30 and the oscillators 13 are connected.
  • the processing system 14 ′ monitors the information supplied by the position sensor.
  • the processing system 14 ′ modifies, for example, the coefficients K1 and K2 (FIG. 2) in accordance with the calibration previously stored for the new posture.
  • a position sensor any conventional sensor can be used, for example in a mercury bath. Position sensors particularly well suited to the present invention are described below.
  • FIG. 4 represents a first embodiment of a position sensor adapted to the invention.
  • This sensor comprises a hollow cylindrical pellet 40 in which a metallic ball 42 of smaller diameter rolls freely.
  • Contact cylinders 44 with axes parallel to that of the pad 40, are arranged at the periphery of the pad 40, grouped in four couples at 90 ° from each other. As shown, the cylinders 44 slightly penetrate into the pad 40 so as to be able to establish electrical contact with the ball 42.
  • a first contact cylinder of each pair is connected to a respective contact terminal A, B, C, D.
  • the second contact cylinders of the couples are all connected to a common terminal N.
  • the position shown in Figure 4 corresponds, for example, to the back posture.
  • the pairs of contact cylinders 44 are arranged, as shown, at 45 ° relative to the vertical.
  • the diameter of the ball 42 is such that it rests, by gravity, on the two lowest cylinders 44, belonging to two adjacent pairs.
  • the ball 42 establishes, in FIG. 4, an electrical circuit between the common terminal N and the terminal C, which electrical circuit indicates the back posture in the present example.
  • the sensor of figure 4 rotates 90 ° to the left or to the right, depending on which side the patient stands on, and the ball 42 will establish an electrical circuit between the common terminal N and terminal D or B, depending on the side. If the patient lies on his stomach, the sensor rotates 180 ° and the ball 42 establishes an electrical circuit between the common terminal N and the terminal A.
  • the sensor of Figure 4 may be small so as not to interfere with the patient. It will be fixed, for example by sewing, next to one of the oscillators 13, so that the pairs of contact cylinders 44 are at 45 ° relative to the vertical, as shown in FIG. 4, for a posture patient data.
  • FIG. 5 shows another embodiment of a position sensor. It also includes a metal ball
  • metal parts 46 arranged at 90 ° from each other respectively form the sides of a hollow square, which sides lie at least partially inside the pad 40 in order to be able to establish an electrical contact with the ball 42.
  • Each of the metal parts 46 is connected to a respective terminal E, F, G, H.
  • ball 42 establishes an electrical circuit between terminals E and H or F and G. If the patient rotates 180 °, ball 42 establishes an electrical circuit between terminals E and F.
  • a spherical sensor comprising cones for receiving the ball at the different positions to be detected, each cone being formed of two metal parts capable of being electrically connected by the ball.
  • Such a sensor would detect intermediate postures, for example i-lateral.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Dentistry (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Physiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

L'invention concerne un gilet inextensible dans le sens de la hauteur intégrant des spires thoracique (10) et abdominale (11) de mesure de respiration, et un capteur de position (30) indiquant la posture d'une personne portant le gilet.

Description

DISPOSITIF DE MESURE DE RESPIRATION
La présente invention concerne un appareil de surveillance de la respiration d'une personne, et plus particulièrement un dispositif de mesure de la respiration.
On enregistre la respiration d'un patient pendant son sommeil pour détecter, par exemple, des apnées nocturnes qui provoquent la fatigue du patient.
La figure 1 illustre une partie d'un enregistrement effectué avec des moyens couramment utilisés. Un signal DNZ est fourni par un capteur de pression nasale ou "lunette nasale". Une lunette nasale fournit une indication de débit absolu relativement précise. En effet, dans la surveillance de la respiration pendant le sommeil, on cherche à connaître la valeur absolue de la ventilation d'un patient, afin de déterminer, par exemple, le degré de gravité des phases d'apnée. La lunette nasale est généralement utilisée en combinaison avec d'autres capteurs servant à valider les mesures fournies par la lunette nasale. On utilise notamment un détecteur de débit nasal NEZ et un détecteur de débit buccal BOU qui fournissent des signaux purement qualitatifs, c'est-à-dire ne permettant pas de mesurer le débit respiré. Il s'agit le plus souvent de thermistances qui détectent la présence de flux d'air chaud (expiration) et froid (inspiration) . Le détecteur de débit buccal BOU est utilisé pour confirmer que le patient respire exclusivement par le nez ou non. En effet, lorsque le patient respire par la bouche, le signal DNZ de la lunette nasale n'est plus représentatif du débit respiré total. Comme le montre la figure 1, le détecteur buccal BOU fournit un signal caractéristique lorsque le patient respire par la bouche, indiquant que le signal fourni par la lunette nasale est alors faussé ou encore qu'une baisse d'amplitude visible dans le signal DNZ de la figure 1 ne doit pas être considérée comme une diminution de la ventilation du patient.
Il n'est pas envisageable d'utiliser un capteur de pression pour mesurer le débit buccal, d'où il résulte des difficultés d'appréciation des mesures lorsque le patient respire par la bouche au cours du sommeil. Les capteurs mentionnés en relation avec la figure 1 sont ceux utilisés les plus couramment car ils sont peu invasifs et ne gênent pas le sommeil du patient. Il existe bien entendu des dispositifs de mesure, tels que le spirographe, permettant de mesurer les débits nasal et buccal, mais ce type de dispositif, généralement constitué d'un masque, est trop contraignant à porter.
La figure 2 représente un autre type de dispositif de mesure de respiration que l'on pourrait envisager d'utiliser. Il s'agit d'un pléthysmographe à spires inductives tel que celui décrit dans le brevet anglais 1 596 298. L'appareil est composé d'une bande comprenant une spire thoracique 10 et d'une bande comprenant une spire abdominale 11. Chacune des spires est à section variable et détermine la fréquence d'un oscillateur 13 associé, solidaire de la bande. Les spires sont à section variable grâce à une disposition en sinusoïde dans la largeur des bandes. Les oscillateurs 13 sont reliés à un circuit de traitement 14 comprenant un convertisseur fréquence-tension par oscillateur, respectivement 15 de gain Kl et 16 de gain K2. Le convertisseur 15 fournit une tension T représentative de la section du thorax et le convertisseur 16 fournit une tension A représentative de la section de l'abdomen. Les tensions T, A et leur somme S sont fournies à un enregistreur 20.
La somme S peut être rendue représentative du volume pulmonaire du patient en réglant convenablement les coefficients Kl et K2. En général, les coefficients Kl et K2 doivent être réglés avant chaque mesure car ils dépendent de nombreux facteurs, notamment de la corpulence du patient et de la position en hauteur des spires 10 et 11.
Bien que les valeurs absolues des coefficients Kl et K2 doivent être réajustées au début de chaque mesure, il s'avère que le choix d'un rapport K1/K2 sensiblement égal à 2 fournit souvent de bons résultats.
Il n'est toutefois pas envisageable d'utiliser les bandes de la figure 2 pour surveiller la respiration d'un patient pendant son sommeil, car le patient est susceptible de bouger et donc de déplacer les bandes, ce qui fausse les mesures.
Un objet de la présente invention est de prévoir un système de surveillance de la respiration d'un patient qui permette de fournir des mesures de ventilation absolues fiables même si le patient bouge, tout en occasionnant une faible gêne au patient .
Pour atteindre cet objet, la présente invention prévoit un gilet inextensible dans le sens de la hauteur intégrant des spires thoracique et abdominale de mesure de respiration, et un capteur de position indiquant la posture d'une personne portant le gilet.
Selon un mode de réalisation de la présente invention, le capteur indique si la posture est latérale, à plat ou relevée.
Selon un mode de réalisation de la présente invention, le capteur indique si la posture est sur le dos, sur le côté gauche, sur le côté droit, sur le ventre, ou relevée.
Selon un mode de réalisation de la présente invention, le gilet comprend un entrejambe.
La présente invention prévoit également un capteur comprenant une bille métallique roulant par gravité dans une sphère ou un cylindre muni de contacts électriques correspondant aux postures à détecter.
La présente invention prévoit en outre un procédé de surveillance de la respiration d'un patient pendant le sommeil, utilisant un gilet du type susmentionné, comprenant les étapes consistant à étalonner les spires pour chaque posture du patient pour fournir la ventilation ; et à mesurer la respiration du patient en utilisant l'étalonnage correspondant à la position fournie par le capteur de position. Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles : la figure 1, précédemment décrite, représente partiellement un enregistrement de signaux fournis par des capteurs couramment utilisés dans la surveillance du sommeil ; la figure 2 représente schématiquement un plethysmographe à spires classique pouvant servir à fournir une mesure quantitative de la respiration ; la figure 3 représente un gilet intégrant les spires d'un plethysmographe, destiné à conserver la position des spires ; la figure 4 représente un premier mode de réalisation de capteur de position à utiliser selon l'invention en combinaison avec le gilet de la figure 3 ; et la figure 5 représente un deuxième mode de réalisation de capteur de position.
Selon la présente invention on propose d'utiliser un plethysmographe à spires du type de celui de la figure 2 pour mesurer la ventilation absolue d'un patient pendant son sommeil.
Comme on l'a précédemment indiqué, il n'est pas envisageable d'utiliser le plethysmographe classique de la figure 2 dans le cadre de mesures effectuées pendant le sommeil d'un patient, car les déplacements du patient provoqueraient des déplacements des spires, faussant les mesures.
La figure 3 représente une solution utilisée selon 1 ' invention pour éviter le déplacement des spires pendant le sommeil d'un patient. Les spires thoracique 10 et abdominale 11 d'un plethysmographe sont intégrées à un gilet 22 qui est fabriqué en un tissu inextensible dans le sens de la hauteur. Pour éviter tout retroussèment du gilet qui provoquerait un déplacement des spires vers le haut, le gilet est muni d'un entrejambe 24 qui pourra être un morceau du tissu du gilet à fixer par pressions ou bien une sangle que 1 ' on peut tendre .
Comme cela est représenté, les oscillateurs 13, qui sont de préférence disposés à proximité des spires, seront fixés au gilet 22. II n'est pas indispensable que le gilet soit porté directement sur la peau : il peut être porté sur un pyjama en tissu fin ou sur un tee-shirt.
Ce type de gilet est décrit dans la demande de brevet PCT WO-93/10707 dans le cadre d'une rééducation respiratoire à domicile, dans le but de ne pas avoir à reétalonner l'appareil d'une séance à l'autre. Le gilet n'est pas utilisé pour fournir une mesure de ventilation absolue.
Un patient portant un tel gilet 22 pourra bouger pendant son sommeil sans que les spires 10 et 11 ne se déplacent, ce qui conduit a priori à présumer que les mesures absolues effectuées à l'aide des spires seront toujours correctes.
Toutefois, des essais effectués par l'inventeur ont révélé que les mesures absolues étaient correctes tant que le patient restait dans une posture donnée, par exemple couché sur le dos, mais devenaient erronées dès que le patient changeait de posture, par exemple se mettait sur le côté ou sur le ventre.
Pour résoudre cet inconvénient, on prévoit selon la présente invention de munir le gilet d'un capteur de position 30 et de corriger 1 'étalonnage des spires du plethysmographe en fonction de la position détectée par le capteur. En pratique, au début d'une séance de mesure, on demande au patient de prendre les postures sur le dos, latérales et sur le ventre, et, pour chaque posture, on étalonne l'appareil de mesure pour qu'il reflète la ventilation absolue du patient, indépendante de la posture. Pour l'étalonnage, on demande au patient de respirer, par exemple, dans une seringue prévue à cet effet . On fait alors correspondre à 1 ' amplitude relevée du signal somme S (figure 2) le volume de la seringue.
Bien entendu, on peut utiliser d'autres appareils de mesure pour l'étalonnage, tel qu'un spirographe.
De préférence, on effectuera quatre étalonnages, un pour la posture de dos, un pour chacune des deux postures latérales, et un pour la posture ventrale. Le capteur de position doit donc pouvoir détecter chacune de ces quatre postures. Les quatre étalonnages possibles sont stockés dans un système de traitement 14' auquel sont reliés le capteur de position 30 et les oscillateurs 13.
Le système de traitement 14 ' , constitué par exemple d'un micro-ordinateur convenablement programmé, surveille les informations fournies par le capteur de position. Lorsque le capteur de position indique une nouvelle posture, le système de traitement 14' modifie, par exemple, les coefficients Kl et K2 (figure 2) conformément à l'étalonnage préalablement stocké pour la nouvelle posture. En tant que capteur de position, on peut utiliser tout capteur classique, par exemple à bain de mercure. On décrit ci- dessous des capteurs de position particulièrement bien adaptés à la présente invention.
La figure 4 représente un premier mode de réalisation de capteur de position adapté à l'invention. Ce capteur comprend une pastille cylindrique creuse 40 dans laquelle roule librement une bille métallique 42 de plus faible diamètre. Des cylindres de contact 44, d'axes parallèles à celui de la pastille 40, sont disposés à la périphérie de la pastille 40, regroupés en quatre couples à 90° les uns des autres. Comme cela est représenté, les cylindres 44 pénètrent légèrement dans la pastille 40 afin de pouvoir établir un contact électrique avec la bille 42. Un premier cylindre de contact de chaque couple est relié à une borne de contact respective A, B, C, D. Les deuxièmes cylindres de contact des couples sont tous reliés à une borne commune N.
La position représentée en figure 4 correspond, par exemple, à la posture de dos. Les couples de cylindres de contact 44 sont disposés, comme cela est représenté, à 45° par rapport à la verticale. Le diamètre de la bille 42 est tel qu'elle repose, par gravité, sur les deux cylindres 44 les plus bas, appartenant à deux couples adjacents. La bille 42 établit, à la figure 4, un circuit électrique entre la borne commune N et la borne C, lequel circuit électrique indique la posture de dos dans le présent exemple. Lorsque le patient se met sur le côté, le capteur de la figure 4 tourne de 90° vers la gauche ou vers la droite, selon le côté sur lequel se met le patient, et la bille 42 établira un circuit électrique entre la borne commune N et la borne D ou B, selon le côté. Si le patient se met sur le ventre, le capteur tourne de 180° et la bille 42 établit un circuit électrique entre la borne commune N et la borne A.
Le capteur de la figure 4 pourra être de petite taille de manière à ne pas gêner le patient. Il sera fixé, par exemple par couture, à côté de l'un des oscillateurs 13, de manière que les couples de cylindres de contact 44 soient à 45° par rapport à la verticale, comme cela est représenté en figure 4, pour une posture donnée du patient.
La figure 5 représente un autre mode de réalisation de capteur de position. Il comprend également une bille métallique
42 qui roule librement à l'intérieur d'une pastille cylindrique creuse 40. Quatre pièces métalliques 46 disposées à 90° les unes des autres forment respectivement les côtés d'un carré creux, lesquels côtés se trouvent au moins partiellement à l'intérieur de la pastille 40 afin de pouvoir établir un contact électrique avec la bille 42. Chacune des pièces métalliques 46 est connectée à une borne respective E, F, G, H.
A la position de la figure 5, qui correspond à la position de la figure 4, les côtés du carré sont à 45° par rapport à la verticale et la bille 42 est en contact avec les deux côtés inférieurs, établissant un circuit électrique entre les bornes G et H.
Si le patient tourne de 90°, la bille 42 établit un circuit électrique entre les bornes E et H ou F et G. Si le patient tourne de 180°, la bille 42 établit un circuit électrique entre les bornes E et F.
De nombreuses variantes et modifications de la présente invention apparaîtront à l'homme du métier. Par exemple, s'il s ' avère que les étalonnages pour les postures sur le dos et sur le ventre, ou pour les postures sur le côté gauche ou droit, sont peu différents, on pourra se contenter de détecter deux ou trois positions seulement.
Par ailleurs, on peut envisager de détecter des postures supplémentaires, par exemple relevée. Dans ce cas, on peut utiliser un deuxième capteur similaire à celui de la figure
4 ou 5, placé à la verticale et à 90° par rapport au premier capteur, en supposant que le patient est à plat (sur le ventre ou le dos) . On peut alors aussi envisager un capteur sphérique comportant des cônes pour recevoir la bille aux différentes positions à détecter, chaque cône étant formé de deux parties métalliques susceptibles d'être connectées électriquement par la bille. Un tel capteur permettrait de détecter des postures intermédiaires, par exemple se i-latérale.

Claims

REVENDICATIONS
1. Gilet inextensible dans le sens de la hauteur intégrant des spires thoracique (10) et abdominale (11) de mesure de respiration, et un capteur de position (30) indiquant si la posture d'une personne portant le gilet est sur le dos, sur le côté gauche, sur le côté droit, sur le ventre, ou relevée.
2. Gilet selon la revendication 1, caractérisé en ce qu'il comprend un entrejambe (24) .
3. Capteur de position pour un gilet selon la revendication 1 ou 2, caractérisé en ce qu'il comprend une bille métallique (42) roulant par gravité dans une sphère ou un cylindre
(40) muni de contacts électriques (44, 46) correspondant aux postures à détecter.
4. Procédé de surveillance de la respiration d'un patient pendant le sommeil, utilisant un gilet selon la revendi- cation 1, caractérisé en ce qu'il comprend les étapes suivantes :
- étalonner les spires pour chaque posture du patient pour fournir la ventilation ,- et
- mesurer la respiration du patient en utilisant 1 ' étalonnage correspondant à la position fournie par le capteur de position.
PCT/FR1999/003044 1998-12-09 1999-12-07 Dispositif de mesure de respiration WO2000033737A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR98/15712 1998-12-09
FR9815712A FR2787008B1 (fr) 1998-12-09 1998-12-09 Dispositif de mesure de respiration

Publications (1)

Publication Number Publication Date
WO2000033737A1 true WO2000033737A1 (fr) 2000-06-15

Family

ID=9533904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/003044 WO2000033737A1 (fr) 1998-12-09 1999-12-07 Dispositif de mesure de respiration

Country Status (2)

Country Link
FR (1) FR2787008B1 (fr)
WO (1) WO2000033737A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2408342A (en) * 2003-11-19 2005-05-25 Denso Corp Sleeping posture detection
CN104138259A (zh) * 2014-07-02 2014-11-12 中山大学 不受睡眠姿势影响的胸部呼吸信号采集方法及***
CN104688239A (zh) * 2015-03-26 2015-06-10 北京怡和嘉业医疗科技有限公司 睡眠呼吸事件的种类的确定方法及***
US20180256074A1 (en) * 2014-05-07 2018-09-13 Prana Tech Llc System and method to monitor, guide, and evaluate breathing, utilizing posture and diaphragm sensor signals

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2811214B1 (fr) 2000-07-05 2003-01-31 R B I Procede et dispositif de determination de parametres physiologiques cardio-respiratoires

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1596298A (en) * 1977-04-07 1981-08-26 Morgan Ltd P K Method of and apparatus for detecting or measuring changes in the cross-sectional area of a non-magnetic object
WO1983003747A1 (fr) * 1982-04-23 1983-11-10 Kaj Laserow Ab Dispositif d'avertissement permettant de controler la position d'une partie du corps humain
WO1988002237A1 (fr) * 1986-09-23 1988-04-07 Advanced Medical Technologies, Inc. Systeme portatif a canaux multiples pour le controle de donnees physiologiques
US5159935A (en) * 1990-03-08 1992-11-03 Nims, Inc. Non-invasive estimation of individual lung function
WO1993010707A1 (fr) * 1991-11-28 1993-06-10 Universite Joseph Fourier Procede et dispositif de reeducation respiratoire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1596298A (en) * 1977-04-07 1981-08-26 Morgan Ltd P K Method of and apparatus for detecting or measuring changes in the cross-sectional area of a non-magnetic object
US4308872A (en) * 1977-04-07 1982-01-05 Respitrace Corporation Method and apparatus for monitoring respiration
WO1983003747A1 (fr) * 1982-04-23 1983-11-10 Kaj Laserow Ab Dispositif d'avertissement permettant de controler la position d'une partie du corps humain
WO1988002237A1 (fr) * 1986-09-23 1988-04-07 Advanced Medical Technologies, Inc. Systeme portatif a canaux multiples pour le controle de donnees physiologiques
US5159935A (en) * 1990-03-08 1992-11-03 Nims, Inc. Non-invasive estimation of individual lung function
WO1993010707A1 (fr) * 1991-11-28 1993-06-10 Universite Joseph Fourier Procede et dispositif de reeducation respiratoire

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2408342A (en) * 2003-11-19 2005-05-25 Denso Corp Sleeping posture detection
GB2408342B (en) * 2003-11-19 2007-01-10 Denso Corp Living body posture and position detection apparatus
US20180256074A1 (en) * 2014-05-07 2018-09-13 Prana Tech Llc System and method to monitor, guide, and evaluate breathing, utilizing posture and diaphragm sensor signals
US11172850B2 (en) * 2014-05-07 2021-11-16 Prana Tech Llc System and method to monitor, guide, and evaluate breathing, utilizing posture and diaphragm sensor signals
CN104138259A (zh) * 2014-07-02 2014-11-12 中山大学 不受睡眠姿势影响的胸部呼吸信号采集方法及***
CN104688239A (zh) * 2015-03-26 2015-06-10 北京怡和嘉业医疗科技有限公司 睡眠呼吸事件的种类的确定方法及***

Also Published As

Publication number Publication date
FR2787008A1 (fr) 2000-06-16
FR2787008B1 (fr) 2001-04-13

Similar Documents

Publication Publication Date Title
CN110383021B (zh) 使用电阻式力传感器阵列的血压测量***
US11172850B2 (en) System and method to monitor, guide, and evaluate breathing, utilizing posture and diaphragm sensor signals
US6878121B2 (en) Sleep scoring apparatus and method
US9311825B2 (en) Biometric sensing and processing apparatus for mobile gaming, education, and wellness applications
EP2247235B1 (fr) Système et coffret de gestion du stress et de la relaxation
KR101765423B1 (ko) 폐기능 검사장치 및 그 방법
JP6118333B2 (ja) 生理学的パラメータセンシングのための調整可能なセンサデバイス
US20100105992A1 (en) Pressure-sensitive conductive yarn and biological information-measuring garment
KR101352479B1 (ko) 심박수 및 맥박수의 측정을 통한 스트레스 측정 시스템 및 그 측정 방법
JP2018503446A (ja) 被験者の呼吸努力を決定及び/又は監視するための装置並びに方法
US20220400961A1 (en) Wrist-Worn Electronic Device, Wrist Size Measurement Method, and Blood Pressure Measurement Method
WO2013076656A1 (fr) Dispositif de mesure portable destiné à mesurer un paramètre physiologique d'un utilisateur
EP0597032B1 (fr) Dispositif de reveil biologique programmable en fonction des phases du sommeil
US10123724B2 (en) Breath volume monitoring system and method
JP2009507574A (ja) 使い捨ての多目的な心血管自律神経障害検査装置
WO2000033737A1 (fr) Dispositif de mesure de respiration
WO2015189687A1 (fr) Dispositif intégré pour calculer la fréquence cardiaque et l'activité corporelle avec précision
EP1296594B1 (fr) Procede et dispositif de determination de parametres physiologiques cardio-respiratoires
JP3363224B2 (ja) 手首血圧計
Massaroni et al. Continuous respiratory rate estimation with a wearable temperature sensor during cycling exercise: a feasibility study
JP6482583B2 (ja) めまい患者のめまいの病因の診断補助方法
CN113854980B (zh) 腹式呼吸降压治疗仪及治疗***
CN114173643B (zh) 便携式脱水监视***
FR2948008A1 (fr) Appareil d'evaluation de la capacite musculaire de la sangle abdominale d'un sujet
US20090156910A1 (en) Noninvasive glucose monitor and method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase