WO2000028353A1 - Objectif de projection a correction des couleurs utilisant des surfaces optiques de diffraction - Google Patents

Objectif de projection a correction des couleurs utilisant des surfaces optiques de diffraction Download PDF

Info

Publication number
WO2000028353A1
WO2000028353A1 PCT/US1999/026645 US9926645W WO0028353A1 WO 2000028353 A1 WO2000028353 A1 WO 2000028353A1 US 9926645 W US9926645 W US 9926645W WO 0028353 A1 WO0028353 A1 WO 0028353A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens system
projection
diffractive optical
projection lens
Prior art date
Application number
PCT/US1999/026645
Other languages
English (en)
Inventor
Melvyn H. Kreitzer
Original Assignee
U.S. Precision Lens Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by U.S. Precision Lens Incorporated filed Critical U.S. Precision Lens Incorporated
Priority to US09/831,597 priority Critical patent/US6529336B1/en
Priority to JP2000581480A priority patent/JP2002529781A/ja
Priority to EP99960270A priority patent/EP1129370B1/fr
Priority to DE69929824T priority patent/DE69929824T2/de
Publication of WO2000028353A1 publication Critical patent/WO2000028353A1/fr
Priority to HK02103736.1A priority patent/HK1041925B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • G02B27/4211Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant correcting chromatic aberrations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/16Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0037Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration with diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • G02B27/4216Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant correcting geometrical aberrations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4272Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path

Definitions

  • This invention relates to projection lens systems for use in projection televisions and, in particular, to color corrected, wide field of view, high numerical aperture projection lens systems for use with cathode ray tubes (CRTs), including cathode ray tubes having curved faceplates.
  • CRTs cathode ray tubes
  • a typical color corrected lens used with a flat faceplate CRT consists from long conjugate to short of a front weak aspherical unit, a main power unit which includes a color correcting doublet and a strong positive element having most of the power of the lens, a corrector unit following the main power unit and having at least one aspherical surface, and a strong negative power unit associated with the CRT faceplate and providing most of the correction for the field curvature of the lens. See Kreitzer, U.S. Patent No. 4,900,139.
  • the main power unit typically has a negative element followed by a positive element of similar focal length but of opposite sign. These two elements provide color correction for the lens and their combined shape is typically meniscus towards the long conjugate.
  • the single positive element providing most of the power of the lens usually follows the color correcting doublet.
  • a projection lens system which (1) has a large aperture, i.e., a f/number of about 1.2 or less, (2) has a wide field of view, i.e., a half field of view of at least 35°, (3) provides a high level of correction of both chromatic and monochromatic aberrations when used with cathode ray tubes, including cathode ray tubes having curved faceplates, and (4) achieves chromatic aberration correction with a minimum of additional lens elements and in some cases no additional lens elements.
  • C a corrector lens unit (UCR) comprising at least one aspherical element (i.e., an element having at least one aspherical surface), and (D) a strong negative power unit (third lens unit; U3) associated with the CRT faceplate having a strong concave surface (Sll in Tables 1 and 2) facing the long conjugate and providing most of the correction of the field curvature of the lens, said strong negative power unit having a long conjugate side (Sll in Tables 1 and 2), wherein the lens system includes at least one diffractive optical surface (DOS) which at least partially corrects the axial color of the lens system and which is located between the short conjugate side of the front lens unit and the long conjugate side of the strong negative power unit.
  • DOS diffractive optical surface
  • the diffractive optical surface will in general have positive optical power. Accordingly, unlike the use of a high dispersion negative lens element to achieve color correction, the use of a diffractive optical surface does not require the incorporation of additional positive power into the system to balance added negative power. Indeed, the use of a positive diffractive optical surface can allow for at least some reduction in the power of one or more positive elements in the system which, in turn, can facilitate the overall correction of the system's aberrations.
  • the at least one diffractive optical surface can be a blazed kinoform or a binary approximation to a blazed kinoform and can comprise (1) a surface of a separate optical element (e.g., a diffractive optical element
  • DOE which is piano on one side and has a diffractive optical surface on the other
  • U2 positive power lens unit
  • UR corrector lens unit
  • the diffractive optical surface When formed as part of the positive power lens unit or the corrector unit, the diffractive optical surface provides color correction to the lens system without the need for any additional lens elements. When formed as a surface of a DOE, only one element is required. Accordingly, in either case, the diffractive optical surface of the invention is able to provide color correction for a projection lens system with a minimum increase in the system's complexity, cost, and weight. Although less preferred, multiple diffractive optical surfaces can be used if desired.
  • Figures 1-2 are schematic side views of lens systems constructed in accordance with the invention.
  • Figure 3 is a schematic side view of a lens system having a comparable construction to the lens systems of Figures 1 and 2, but without a diffractive optical surface.
  • Figures 4A, 4B, and 4C are calculated plots of lateral aberration versus relative entrance pupil coordinates for the lenses of Figures 1, 2, and 3, respectively, for an image to object magnification of -0.117.
  • the parameters for these figures appear in Table 4.
  • Figures 5A, 5B, and 5C are calculated plots of lateral aberration versus relative entrance pupil coordinates for the lenses of Figures 1, 2, and
  • FIG. 6 is a schematic diagram of a rear projection TV employing a lens system constructed in accordance with the invention.
  • the lens systems of the invention preferably include a first lens unit, a second lens unit, a third lens unit, and a corrector lens unit wherein: 1) the first lens unit includes at least one aspherical surface; 2) the second lens unit has a strong positive optical power; 3) the third lens unit corrects for the field curvature of the lens system and has a relatively strong negative optical power; and 4) the corrector lens unit provides correction for, among other things, aberrations due to off-axis rays and has a relatively weak optical power.
  • the systems also include at least one diffractive optical surface for providing at least partial color correction to the lens system.
  • the first lens unit serves to correct aperture type aberrations, including spherical aberration and coma, and can be composed of one or more lens elements.
  • the element or elements of this unit are formed from plastic materials, e.g., acrylic plastics.
  • the second lens unit preferably provides the majority of the lens system's positive optical power.
  • this unit can include multiple lens elements and can have one or more aspherical surfaces, preferably the unit consists of a single glass element having spherical surfaces.
  • the corrector unit and third lens unit serve to correct off-axis aperture dependent aberrations and field dependent aberrations, respectively.
  • the corrector unit is effective in dealing with oblique spherical aberrations, while the third lens unit is effective in reducing the system's field curvature.
  • the corrector lens unit can be composed of one or more lens elements.
  • the element or elements of this unit are composed of plastic materials.
  • the third lens unit is preferably composed of an aspherical plastic lens element which contacts the fluid which couples the lens system to the faceplate of the CRT.
  • the aspherical plastic lens element of the third lens unit can include an absorptive color filter material in accordance with Wessling, U.S. Patent No. 5,055,922.
  • the ratio of the absolute value of the focal length (fi) of the first lens unit to the overall focal length (fo) of the projection lens is preferably greater than 2.5; the ratio of the focal length (f 2 ) of the second lens unit to the overall focal length of the projection lens is preferably less than 1.5; the ratio of the absolute value of the focal length (fcR) of the corrector lens unit to the overall focal length of the projection lens is preferably greater than 2.0; and the ratio of the absolute value of the focal length (f 3 ) of the third lens unit to the overall focal length of the projection lens is preferably less than 2.5.
  • the diffractive optical surface (DOS) provides at least partial axial color correction for the projection lens.
  • the Sweatt model can be used wherein the diffractive surface is treated as a refractive surface having a very large index of refraction (typically 9999) and a V-number of, for example, -3.4 for lenses which are to be used in the 0.486 to 0.656 micron range.
  • a very large index of refraction typically 9999
  • V-number typically -3.4 for lenses which are to be used in the 0.486 to 0.656 micron range.
  • the first order theory of thin lens achromatic doublets is used to calculate the diffractive power required for achromatization. See, for example, Warren J. Smith, Modern Optical Engineering, Second Edition, McGraw-Hill, Inc., New York, New York, 1990, pages 372-375.
  • This theory gives the following relationship between the optical power ⁇ DOS of the diffractive optical surface, the optical power ⁇ L of the rest of the lens, and VL and VDOS, the Abbe numbers of the average lens glass or plastic (typically about 60) and the diffractive element (e.g., -3.4), respectively:
  • ⁇ DOS/ ⁇ L -VDOS/VL
  • the total optical power which the lenses were designed to provide was approximately 0.014 mm "1 .
  • Application of the above formula then gave a value of about 0.0007 mm "1 for the power of the diffractive element required to achieve total color correction.
  • the diffractive optical surface is located between the object side of the first lens unit and the image side of the third lens unit, i.e., between surfaces S2 and Sll in these figures.
  • the DOS is located in the vicinity of the projection lens' aperture stop (AS).
  • AS projection lens' aperture stop
  • the ratio d/fo is preferably less than 0.1 and most preferably less than 0.05. Increasing the d/fo ratio above 0.1 is undesirable since it leads to unacceptably high levels of lateral color. For the projection lenses of Figures 1 and 2, this ratio is approximately 0.01.
  • the DOS can be made using a variety of techniques now known or subsequently developed.
  • FIG. 1 illustrate various projection lenses constructed in accordance with the invention.
  • Figure 3 shows a projection lens having a comparable construction to the lens systems of Figures 1 and 2, but without a diffractive optical surface. Corresponding prescriptions appear in Tables 1-3.
  • HOYA or SCHOTT designations are used for the glasses employed in the lens systems. Equivalent glasses made by other manufacturers can be used in the practice of the invention. Industry acceptable materials are used for the plastic elements.
  • the designation "a" associated with various surfaces in the tables represents an aspheric surface, i.e., a surface for which at least one of D, E, F, G, H, or I in the above equation is not zero. All dimensions given in the tables are in millimeters. Tables 1-3 are constructed on the assumption that light travels from left to right in the figures. In actual practice, the viewing screen will be on the left and the CRT will be on the right, and light will travel from right to left.
  • the CRT faceplate constitutes surfaces 13-14 in Tables 1-2 and surfaces 11-12 in Table 3.
  • a coupling fluid is located between surfaces 12- 13 in Tables 1-2 and surfaces 10-11 in Table 3.
  • the material designations for these components are set forth as six digit numbers in the tables, where a N e value for the material is obtained by adding 1,000 to the first three digits of the designation, and a V e value is obtained from the last three digits by placing a decimal point before the last digit.
  • the asterisks in Tables 1 and 2 represent the index of refraction and the Abbe numbers used in the Sweatt model for the DOS, i.e., a N e value of 9999 and a V e value of -3.4.
  • the first lens unit comprises surfaces 1-2
  • the second lens unit comprises surfaces 4-5
  • the DOE comprises surfaces 6-8
  • the corrector lens unit comprises surfaces 9-10
  • the third lens unit comprises surfaces 11-14.
  • Surface 3 is an optional vignetting aperture.
  • the first lens unit comprises surfaces 1-2
  • the second lens unit comprises surfaces 3-4
  • the DOE comprises surfaces 5-7
  • the corrector lens unit comprises surfaces 9-10
  • the third lens unit comprises surfaces 11-14.
  • Surface 8 is an optional vignetting aperture.
  • Table 6 summarizes various properties of the lens systems of the invention. As shown therein, the lens systems of Tables 1-2 have the various preferred properties referred to above. In this table, the designation "1/2 w" represents the half field of view of the lens system.
  • Figures 4 and 5 compare the chromatic aberration of the lenses of Figures 1 and 2 which employ the invention with the chromatic aberration of the lens of Figure 3 which has a comparable construction but without a DOS. As can be seen in these figures, the DOS substantially reduces the chromatic aberration of the system.
  • the calculated monochromatic optical transfer functions (not shown) for the lenses of Figures 1 and 2 were comparable to those for the lens of Figure 3.
  • the projection lens of Table 1 was prepared and tested.
  • the DOS was a 16-level binary approximation kinoform prepared using photolithography techniques.
  • the DOE was a blazed kinoform prepared by diamond turning.
  • the projection lenses were found to work successfully except that they exhibited a somewhat lower than desired level of contrast. Some of this contrast loss is believed to be due to the fact that the kinoforms were not made perfectly. Another source of contrast loss is believed to be the extent of the spectral range over which the lens had reduced axial color, i.e., 480 to 640 nanometers.
  • FIG. 6 is a schematic diagram of a CRT projection television 10 constructed in accordance with the invention.
  • projection television 10 includes cabinet 12 having projection screen 14 along its front face and slanted mirror 18 along its back face.
  • Module 13 schematically illustrates a lens system constructed in accordance with the invention and module 16 illustrates its associated CRT tube.
  • three lens systems 13 and three CRT tubes 16 are used to project red, green, and blue images onto screen 14.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

L'invention se rapporte à un système de projection d'images TV (10) qui comporte un tube cathodique (16) et un système d'objectif de projection (13) permettant de former une image sur un écran (14). Le système d'objectif de projection (13) est caractérisé par une surface optique de diffraction (DOS) qui assure la correction des couleurs du système d'objectif. La surface optique de diffraction (DOS) peut être intégrée à un élément optique de diffraction (DOE) ou à un élément d'objectif existant du système d'objectif. Cette surface optique de diffraction (DOS) est située entre le côté objet (S2) de la première unité de lentille (U1) de l'objectif et le côté image (S11) de la troisième unité de lentille (U3) de l'objectif. La distance entre la surface optique de diffraction (DOS) et l'ouverture relative (AS) de l'objectif est inférieur à 0,1.f0, où f0 est la distance focale de l'objectif de projection (13).
PCT/US1999/026645 1998-11-12 1999-11-12 Objectif de projection a correction des couleurs utilisant des surfaces optiques de diffraction WO2000028353A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09/831,597 US6529336B1 (en) 1998-11-12 1999-11-12 Color corrected projection lenses employing diffractive optical surfaces
JP2000581480A JP2002529781A (ja) 1998-11-12 1999-11-12 光回折面を用いる色補正された投写レンズ
EP99960270A EP1129370B1 (fr) 1998-11-12 1999-11-12 Objectif de projection a correction des couleurs utilisant des surfaces optiques de diffraction
DE69929824T DE69929824T2 (de) 1998-11-12 1999-11-12 Farbkorrigierte projektionslinsen mit verwendung von diffraktiven optischen oberflächen
HK02103736.1A HK1041925B (zh) 1998-11-12 2002-05-17 使用衍射光學表面的彩色校正投影透鏡

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10814398P 1998-11-12 1998-11-12
US60/108,143 1998-11-12

Publications (1)

Publication Number Publication Date
WO2000028353A1 true WO2000028353A1 (fr) 2000-05-18

Family

ID=22320554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/026645 WO2000028353A1 (fr) 1998-11-12 1999-11-12 Objectif de projection a correction des couleurs utilisant des surfaces optiques de diffraction

Country Status (8)

Country Link
US (1) US6529336B1 (fr)
EP (1) EP1129370B1 (fr)
JP (1) JP2002529781A (fr)
KR (1) KR100600197B1 (fr)
CN (1) CN1145045C (fr)
DE (1) DE69929824T2 (fr)
HK (1) HK1041925B (fr)
WO (1) WO2000028353A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002079858A2 (fr) * 2001-03-29 2002-10-10 Elumens Corporation Procede et systeme pour projeter des images a des angles superieurs a 180°
KR100403509B1 (ko) * 2001-10-09 2003-10-30 주식회사 대우일렉트로닉스 색불균일성을 보상한 프로젝션 텔레비젼
EP1380872A2 (fr) * 2002-07-12 2004-01-14 Chengdu Crystal Technology Co., Ltd. Système de projection utilisé dans un appareil d'affichage d'images

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6803902B2 (en) * 2002-04-02 2004-10-12 Koninklijke Philips Electronics N.V. Variable rate row addressing method
US6741403B2 (en) * 2002-05-31 2004-05-25 Largan Precision Co., Ltd. Hybrid lens system
US6950241B1 (en) 2002-09-18 2005-09-27 Dmetrix, Inc. Miniature microscope objective for an array microscope
KR100571934B1 (ko) * 2003-07-01 2006-04-17 삼성전자주식회사 투사광학계, 프로젝션 텔레비전 및 투사광학계의 렌즈제조 방법
EP1639817A4 (fr) * 2003-07-01 2010-03-31 Samsung Electronics Co Ltd Systeme optique de projection, teleprojecteur, et procede de fabrication de lentilles comprises dans un systeme optique de projection
GB0522968D0 (en) 2005-11-11 2005-12-21 Popovich Milan M Holographic illumination device
GB0718706D0 (en) 2007-09-25 2007-11-07 Creative Physics Ltd Method and apparatus for reducing laser speckle
US7857463B2 (en) * 2007-03-29 2010-12-28 Texas Instruments Incorporated Optical system for a thin, low-chin, projection television
JP4967873B2 (ja) * 2007-07-13 2012-07-04 ソニー株式会社 撮像装置
WO2010032409A1 (fr) * 2008-09-17 2010-03-25 パナソニック株式会社 Dispositif de traitement d'image, dispositif d'imagerie, dispositif d'évaluation, procédé de traitement d'image et procédé d'évaluation de système optique
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US9335604B2 (en) 2013-12-11 2016-05-10 Milan Momcilo Popovich Holographic waveguide display
US11204540B2 (en) 2009-10-09 2021-12-21 Digilens Inc. Diffractive waveguide providing a retinal image
WO2012136970A1 (fr) 2011-04-07 2012-10-11 Milan Momcilo Popovich Dispositif d'élimination de la granularité laser basé sur une diversité angulaire
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
US20140204455A1 (en) 2011-08-24 2014-07-24 Milan Momcilo Popovich Wearable data display
WO2016020630A2 (fr) 2014-08-08 2016-02-11 Milan Momcilo Popovich Illuminateur laser en guide d'ondes comprenant un dispositif de déchatoiement
WO2013102759A2 (fr) 2012-01-06 2013-07-11 Milan Momcilo Popovich Capteur d'image à contact utilisant des réseaux de bragg commutables
CN103562802B (zh) 2012-04-25 2016-08-17 罗克韦尔柯林斯公司 全息广角显示器
WO2013167864A1 (fr) 2012-05-11 2013-11-14 Milan Momcilo Popovich Dispositif de suivi d'un œil
US9933684B2 (en) 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
JP6021617B2 (ja) * 2012-12-05 2016-11-09 カンタツ株式会社 撮像レンズ
US10209517B2 (en) 2013-05-20 2019-02-19 Digilens, Inc. Holographic waveguide eye tracker
WO2015015138A1 (fr) 2013-07-31 2015-02-05 Milan Momcilo Popovich Méthode et appareil de détection d'une image par contact
WO2016020632A1 (fr) 2014-08-08 2016-02-11 Milan Momcilo Popovich Procédé pour gravure par pressage et réplication holographique
WO2016042283A1 (fr) 2014-09-19 2016-03-24 Milan Momcilo Popovich Procédé et appareil de production d'images d'entrée pour affichages à guides d'ondes holographiques
US10423222B2 (en) 2014-09-26 2019-09-24 Digilens Inc. Holographic waveguide optical tracker
JP6489134B2 (ja) 2015-01-09 2019-03-27 株式会社ニコン 撮像レンズおよび撮像装置
WO2016113533A2 (fr) 2015-01-12 2016-07-21 Milan Momcilo Popovich Afficheurs à champ lumineux et à guide d'ondes holographiques
US10437064B2 (en) 2015-01-12 2019-10-08 Digilens Inc. Environmentally isolated waveguide display
JP6867947B2 (ja) 2015-01-20 2021-05-12 ディジレンズ インコーポレイテッド ホログラフィック導波路ライダー
US9632226B2 (en) 2015-02-12 2017-04-25 Digilens Inc. Waveguide grating device
US10459145B2 (en) 2015-03-16 2019-10-29 Digilens Inc. Waveguide device incorporating a light pipe
WO2016156776A1 (fr) 2015-03-31 2016-10-06 Milan Momcilo Popovich Procédé et appareil de détection d'une image par contact
CN105116518B (zh) * 2015-09-21 2018-02-27 浙江水晶光电科技股份有限公司 一种基于波前编码的免调焦投影物镜及投影仪
WO2017060665A1 (fr) 2015-10-05 2017-04-13 Milan Momcilo Popovich Afficheur à guide d'ondes
EP3398007A1 (fr) 2016-02-04 2018-11-07 DigiLens, Inc. Dispositif de poursuite optique de guide d'onde holographique
JP6895451B2 (ja) 2016-03-24 2021-06-30 ディジレンズ インコーポレイテッド 偏光選択ホログラフィー導波管デバイスを提供するための方法および装置
CN109154717B (zh) 2016-04-11 2022-05-13 迪吉伦斯公司 用于结构光投射的全息波导设备
WO2018102834A2 (fr) 2016-12-02 2018-06-07 Digilens, Inc. Dispositif de guide d'ondes à éclairage de sortie uniforme
US10545346B2 (en) 2017-01-05 2020-01-28 Digilens Inc. Wearable heads up displays
JP7399084B2 (ja) 2017-10-16 2023-12-15 ディジレンズ インコーポレイテッド ピクセル化されたディスプレイの画像分解能を倍増させるためのシステムおよび方法
KR20200108030A (ko) 2018-01-08 2020-09-16 디지렌즈 인코포레이티드. 도파관 셀 내의 홀로그래픽 격자의 높은 처리능력의 레코딩을 위한 시스템 및 방법
US10914950B2 (en) 2018-01-08 2021-02-09 Digilens Inc. Waveguide architectures and related methods of manufacturing
EP3765897B1 (fr) 2018-03-16 2024-01-17 Digilens Inc. Guides d'ondes holographiques incorporant une commande de biréfringence et procédés pour leur réalisation
US11402801B2 (en) 2018-07-25 2022-08-02 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
EP3924759A4 (fr) 2019-02-15 2022-12-28 Digilens Inc. Procédés et appareils pour fournir un affichage de guide d'ondes holographique à l'aide de réseaux intégrés
KR20210134763A (ko) 2019-03-12 2021-11-10 디지렌즈 인코포레이티드. 홀로그래픽 도파관 백라이트 및 관련된 제조 방법
CN114207492A (zh) 2019-06-07 2022-03-18 迪吉伦斯公司 带透射光栅和反射光栅的波导及其生产方法
EP4004646A4 (fr) 2019-07-29 2023-09-06 Digilens Inc. Procédés et appareils de multiplication de la résolution d'image et du champ de vision d'un écran d'affichage pixélisé
US11442222B2 (en) 2019-08-29 2022-09-13 Digilens Inc. Evacuated gratings and methods of manufacturing
CN110579877B (zh) * 2019-09-23 2024-03-26 中国科学院上海技术物理研究所 共轭校正检验非球面镜的光学***及理论
EP3842874B1 (fr) * 2019-12-23 2023-09-20 Blancpain SA Dispositif optique permettant de creer des effets optiques esthetiques et techniques

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4755028A (en) * 1986-10-14 1988-07-05 U.S Precision Lens, Incorporated Projection lens with an aspherical corrector lens element
US4776681A (en) * 1986-01-17 1988-10-11 U.S. Precision Lens, Incorporated Projection lens
US5946142A (en) * 1995-12-11 1999-08-31 Hitachi Ltd. Projection lens system and projection image display apparatus using the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900139A (en) 1987-05-11 1990-02-13 U. S. Precision Lens, Inc. Color corrected projection lens
US4963007A (en) 1989-09-05 1990-10-16 U.S. Precision Lens, Inc. Color corrected projection lens
US5055922A (en) 1990-03-07 1991-10-08 U.S. Precision Lens Incorporated Color tv projection lens system
US5148314A (en) * 1991-06-06 1992-09-15 Chen Chungte W Optical systems employing refractive and diffractive optical elements to correct for chromatic aberration
US5691847A (en) * 1994-08-08 1997-11-25 Hughes Aircraft Company Athermalized and achromatized optical systems employing diffractive optical element
AU686511B2 (en) 1995-05-15 1998-02-05 Raytheon Company Low-cost light-weight head-mounted virtual-image projection display with low moments of inertia and low center of gravity
US5619381A (en) 1995-06-02 1997-04-08 Texas Instruments Incorporated Offset zoom lens for reflective light modulators
US6025959A (en) 1997-01-13 2000-02-15 U.S. Precision Lens Inc. Color corrected projection lenses for use with curved faceplate cathode ray tubes
JP3417273B2 (ja) 1997-10-13 2003-06-16 ミノルタ株式会社 変倍光学系
EP1075150A3 (fr) * 1999-07-31 2005-04-27 Lg Electronics Inc. Système de lentilles de projection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4776681A (en) * 1986-01-17 1988-10-11 U.S. Precision Lens, Incorporated Projection lens
US4755028A (en) * 1986-10-14 1988-07-05 U.S Precision Lens, Incorporated Projection lens with an aspherical corrector lens element
US5946142A (en) * 1995-12-11 1999-08-31 Hitachi Ltd. Projection lens system and projection image display apparatus using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1129370A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002079858A2 (fr) * 2001-03-29 2002-10-10 Elumens Corporation Procede et systeme pour projeter des images a des angles superieurs a 180°
WO2002079858A3 (fr) * 2001-03-29 2003-05-22 Elumens Corp Procede et systeme pour projeter des images a des angles superieurs a 180°
US6880939B2 (en) 2001-03-29 2005-04-19 Elumens Corporation Methods and systems for projecting images at greater than 180 degrees
KR100881417B1 (ko) * 2001-03-29 2009-02-05 엘루먼스 코포레이션 180°보다 큰 각도로 이미지를 투사하기 위한 방법 및시스템
JP2009282535A (ja) * 2001-03-29 2009-12-03 Elumens Corp 光学的投影システム及び方法
KR100403509B1 (ko) * 2001-10-09 2003-10-30 주식회사 대우일렉트로닉스 색불균일성을 보상한 프로젝션 텔레비젼
EP1380872A2 (fr) * 2002-07-12 2004-01-14 Chengdu Crystal Technology Co., Ltd. Système de projection utilisé dans un appareil d'affichage d'images
EP1380872A3 (fr) * 2002-07-12 2004-03-17 Chengdu Crystal Technology Co., Ltd. Système de projection utilisé dans un appareil d'affichage d'images

Also Published As

Publication number Publication date
JP2002529781A (ja) 2002-09-10
HK1041925B (zh) 2005-02-04
EP1129370B1 (fr) 2006-02-08
US6529336B1 (en) 2003-03-04
HK1041925A1 (en) 2002-07-26
KR100600197B1 (ko) 2006-07-13
DE69929824T2 (de) 2006-08-31
EP1129370A1 (fr) 2001-09-05
KR20010080981A (ko) 2001-08-25
CN1145045C (zh) 2004-04-07
CN1326553A (zh) 2001-12-12
DE69929824D1 (de) 2006-04-20
EP1129370A4 (fr) 2002-07-24

Similar Documents

Publication Publication Date Title
US6529336B1 (en) Color corrected projection lenses employing diffractive optical surfaces
US6445512B1 (en) Projection television lens systems having improved modulation transfer functions
US6509937B1 (en) High performance projection television lens systems
US6297860B1 (en) Partial color-corrected projection lens system
US5296967A (en) High speed wide angle projection TV lens system
US5329363A (en) Projection lens systems having reduced spherochromatism
US6301057B1 (en) Long focal length projection lenses
US6791629B2 (en) Lens systems for projection televisions
US6417971B1 (en) Zoom projection lens having a lens correction unit
US6853493B2 (en) Folded, telecentric projection lenses for use with pixelized panels
USRE39911E1 (en) Wide field of view projection lenses for compact projection lens systems employing pixelized panels
US6301056B1 (en) High speed retrofocus projection television lens systems
US6765731B1 (en) Low element count projection lenses for use with pixelized panels
EP0896679A1 (fr) Lentille de projection pour affichage a cristaux liquides
US4603950A (en) Projection lens
JPH05210054A (ja) 回折および屈折光学素子を使用する双接眼レンズ光学システム
US5742439A (en) Apochromatic wide-angle objective
US6025959A (en) Color corrected projection lenses for use with curved faceplate cathode ray tubes
US4733953A (en) Color corrected projection lens
US5452132A (en) Projection lens system for rear type projection television
JPH045608A (ja) 投写レンズ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99813237.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999960270

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020017005896

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09831597

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2000 581480

Country of ref document: JP

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1020017005896

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1999960270

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999960270

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017005896

Country of ref document: KR