WO2000028202A1 - Heat exchanger in composite material and method for making same - Google Patents

Heat exchanger in composite material and method for making same Download PDF

Info

Publication number
WO2000028202A1
WO2000028202A1 PCT/FR1999/002708 FR9902708W WO0028202A1 WO 2000028202 A1 WO2000028202 A1 WO 2000028202A1 FR 9902708 W FR9902708 W FR 9902708W WO 0028202 A1 WO0028202 A1 WO 0028202A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
heat exchanger
fluid circulation
intermediate part
circulation channels
Prior art date
Application number
PCT/FR1999/002708
Other languages
French (fr)
Inventor
Jean-Pierre Vidal
Jean-Michel Larrieu
Jean-Pierre Ciais
Original Assignee
Societe Nationale D'etude Et De Construction De Moteurs D'aviation - S.N.E.C.M.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to UA2000073957A priority Critical patent/UA55499C2/en
Application filed by Societe Nationale D'etude Et De Construction De Moteurs D'aviation - S.N.E.C.M.A. filed Critical Societe Nationale D'etude Et De Construction De Moteurs D'aviation - S.N.E.C.M.A.
Priority to AT99954068T priority patent/ATE263916T1/en
Priority to JP2000581354A priority patent/JP4249396B2/en
Priority to US09/582,855 priority patent/US6397581B1/en
Priority to CA002317707A priority patent/CA2317707C/en
Priority to IL13709799A priority patent/IL137097A/en
Priority to KR1020007007433A priority patent/KR100613827B1/en
Priority to EP99954068A priority patent/EP1045971B1/en
Priority to DE69916240T priority patent/DE69916240T2/en
Publication of WO2000028202A1 publication Critical patent/WO2000028202A1/en
Priority to NO20003477A priority patent/NO323992B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/78Other construction of jet pipes
    • F02K1/82Jet pipe walls, e.g. liners
    • F02K1/822Heat insulating structures or liners, cooling arrangements, e.g. post combustion liners; Infrared radiation suppressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/005Combined with pressure or heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/007Continuous combustion chambers using liquid or gaseous fuel constructed mainly of ceramic components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • Heat exchanger made of composite material and process for its production.
  • the invention relates to heat exchangers which use heat exchange assemblies based on fluid circulation, and which are intended to be used in a thermally harsh environment.
  • Particular, but not limiting, fields of application of the invention are systems for transforming matter, for example nuclear fusion reactors, and propulsion systems, in particular the elements of the combustion chamber wall of, reactors, particularly ramjet engines.
  • the heat exchangers used in these applications are generally metallic, at least in part.
  • the thermal and mechanical properties of metals and metal alloys limit their field of use, as well as performance and safety.
  • metal heat exchangers are heavy and bulky, which penalizes their use at least in certain applications.
  • the object of the invention is to provide a heat exchanger capable of being used in a severe thermal environment.
  • Another object of the invention is to provide a heat exchanger in which the performance of the various thermal and structural functions can be optimized in order to reduce the mass, the bulk and the cost as much as possible.
  • Another object of the invention is to provide a heat exchanger capable of being produced easily.
  • the invention also relates to a method of manufacturing such a heat exchanger.
  • a heat exchanger according to the invention is characterized in that it comprises an intermediate part made of refractory composite material in which fluid circulation channels are formed, the intermediate part being interposed between a part made of refractory composite material forming a heat shield and a part made of thermostructural composite material forming the exchanger holding structure, the constituent parts of the heat exchanger being assembled by brazing.
  • a thermostructural composite material is a composite material which has mechanical properties making it suitable for constituting structural elements and which retains these properties up to high temperatures.
  • Thermostructural composite materials are typically composite materials having a fibrous reinforcement in refractory fibers, such as carbon or ceramic fibers, densified by a refractory matrix, such as a carbon or ceramic matrix.
  • Examples of thermostructural composite materials are carbon / carbon (C / C) composite materials with reinforcing fibers and carbon matrix, and ceramic matrix composite materials (CMC), for example with silicon carbide (SiC) matrix.
  • thermostructural composite material forming the structure for maintaining the exchanger is a C / C composite material. It can be in the form of a honeycomb or a composite material in which the fibrous reinforcement is formed of superposed fibrous layers linked together by fibers extending transversely relative to the layers, as can be obtained by needling, as described for example in US Pat. No. 4,790,052.
  • the material of the intermediate part is also a composite material C / C which is then used more for its refractory qualities than structural.
  • the material of the part forming a heat shield is a material of CMC type, for example a composite material C / SiC or SiC / SiC (reinforcement in carbon fibers or in silicon carbide densified by a matrix of silicon carbide) , better able than C / C composite materials to be exposed to an intense thermal flux, in particular in an oxidizing atmosphere.
  • An advantage of the heat exchanger according to the invention lies in the possibility of selecting the most suitable materials for ensuring the thermal and mechanical functions of the exchanger, therefore of optimizing the production thereof in terms of performance and of space.
  • the fluid circulation channels are formed, for example by machining, in one face of the intermediate piece and are delimited in part by the adjacent wall of a of the other two parties.
  • the realization of the fluid circulation channels is therefore particularly simple. If necessary, the watertightness of the channels can be ensured by forming a coating on their wall, for example a metallic coating in a thin layer. Such a coating can be formed on all of the facing faces of the parts to be assembled in order to facilitate brazing by also constituting a bonding layer for the brazing.
  • FIG. 1 illustrates in section a heat exchanger element according to a first embodiment of the invention
  • FIG. 2 shows the steps of a method of producing the heat exchanger element of Figure 1;
  • FIG. 3 illustrates an exploded view of a reactor combustion chamber element forming a heat exchanger according to a second embodiment of the invention.
  • FIG. 4 illustrates very schematically a ramjet chamber with a detailed view of a wall element of the combustion chamber forming a heat exchanger according to a third embodiment of the invention.
  • Figure 1 is a sectional view of a unit block 10 constituting a heat exchanger element.
  • the block 10 can constitute a wall element of an enclosure where severe thermal conditions prevail, for example a wall element of a plasma confinement chamber in a nuclear fusion reactor.
  • the heat exchanger block 10 includes a thermal screen
  • the intermediate part is interposed between the thermal screen 12 and the structure of holding 18 and is linked to the latter by brazing.
  • the fluid circulation channels 16 are machined in the face of the intermediate part situated on the side of the thermal screen 12 and covered by the internal face 12b of the thermal screen, which internal face 12b thus partially delimits the channels 16.
  • the channels 16 are intended to be connected to a circuit for circulation of a heat transfer fluid.
  • the heat shield 12 exposed to the most severe thermal conditions is made of a refractory composite material, preferably a ceramic matrix composite material (CMC), for example a composite material of type C / SiC, with fibrous reinforcement of fibers of carbon densified by a silicon carbide matrix.
  • CMC ceramic matrix composite material
  • the intermediate part is also a refractory composite material, for example a C / C composite material with fibrous reinforcement made of carbon fibers densified by a carbon matrix.
  • the retaining structure is made of a thermostructural composite material and is produced to ensure the structural function of the block 10.
  • a retaining structure will be used in the form of a honeycomb structure made of composite material C / C. A method of manufacturing such a structure is described in US Pat. No. 5,415,715. It is also possible to use a retaining structure in the form of a composite C / C material in which the fibrous reinforcement is formed of flat layers of fibrous texture. linked together by fibers extending transversely to the layers.
  • the layers are for example layers of fabric, unidirectional layers superimposed with different directions, layers of felt, etc., and they are preferably linked together by needling.
  • a process for manufacturing such a C / C composite material is described in US Pat. No. 4,790,052.
  • FIG. 2 shows the steps of a method for manufacturing the heat exchanger block 10.
  • the heat shield made of CMC material for example made of C / SiC composite material, the intermediate part made of C / C composite material and the holding structure made of C / C composite material are produced separately (steps 20, 22, 24).
  • the methods for manufacturing parts of composite material of C / C or C / SiC type by developing a fibrous reinforcement, or preform, and densification of the fibrous reinforcement by a matrix are well known. Densification can be carried out by chemical vapor infiltration, or by impregnation with a precursor of the matrix in the liquid state and transformation of the precursor by heat treatment.
  • the channels 16 are machined in one face of the intermediate part 14 (step 26).
  • a metal coating can be formed on all of the faces opposite the intermediate part, the heat shield and the holding truster (step 28).
  • the metal coating is chosen to improve the wettability with respect to the solder then used for the assembly of the different parts and therefore favor the attachment of the solder.
  • the metal coating also seals the walls of the fluid circulation channels. Indeed, C / C composite materials or CMC materials obtained as indicated above inevitably have a residual porosity which should be closed at the surface to ensure the eta ⁇ chéity of the channels.
  • the metallic coating for example made of titanium, chromium, zirconium, hafnium or beryllium can be deposited by chemical vapor deposition or by spraying under vacuum.
  • sealing layer is deposited by chemical vapor deposition. It is metallic or non-metallic, for example carbon or ceramic.
  • Brazing (step 29) is carried out by depositing a layer of brazing on the faces to be assembled of the intermediate part of the heat shield and of the support structure and by bringing the assembly, maintained in a tool, to the temperature of soldering required given the solder used.
  • the brazing used is chosen from those known for brazing ceramics or refractory composites with one another or on metals, for example the brazing sold under the names "TiCuSil” or "Cu-ABA" by the company from the United States of America Wesgo, Inc.
  • FIG. 3 illustrates in exploded form another embodiment of a heat exchanger according to the invention constituting an element 30 of the reactor combustion chamber.
  • the heat shield 32 is an axisymmetric annular part comprising a cylindrical front part extended towards the rear by a frustoconical part.
  • the heat shield 32 is made in a single piece of CMC composite material, for example C / SiC composite material.
  • the fibrous reinforcement of the composite material is produced by winding a fibrous texture on a mandrel of suitable shape, and the preform obtained is densified by the matrix of the composite material.
  • the fluid circulation channels 36 are formed in the axial direction by machining the face of an intermediate part 34 located opposite the heat shield 32.
  • the intermediate part 34 is made of composite material C / C.
  • the heat transfer fluid is a fuel which is heated by passage through the heat exchanger before being injected into the combustion chamber.
  • Inlets and outlets 33a, 33b for the fluid are formed through the heat shield 32, in the vicinity of its axial ends, and at the level of grooves, such as 37, machined circumferentially at the front and at the rear of the intermediate part to distribute the fluid in the channels 36, at one end, and collect it, at the other end of the channels.
  • the intermediate part 34 is integral with a holding structure 38 in the form of an annular structure in C / C composite material. It is formed by winding a fibrous texture in layers superimposed on a mandrel and bonding the layers together by fibers extending transversely with respect to the layers, for example by needling, the annular preform obtained being densified by a carbon matrix.
  • An embodiment of needled annular preforms to constitute reinforcements of structural parts made of composite material C / C is described in US Pat. No. 4,790,052 already cited.
  • the holding structure 38 and the intermediate part can be made in two parts assembled by brazing or, as in the example illustrated, in a single part.
  • the heat shield 32 is brazed on the face of the intermediate part having the channels 36 and grooves 37.
  • FIG. 4 very schematically illustrates a ramjet structure, the wall 40 of which constitutes a heat exchanger according to the invention.
  • the wall 40 has a structure similar to that of the block 10 of FIG. 1 and is manufactured in a similar manner.
  • the heat shield 42 located on the internal side of the wall is made of CMC material, for example C / SiC. It is brazed on an intermediate part 44 in a face of which are machined channels 46, the face of the intermediate portion 44 having the channels being covered by the heat shield 42.
  • the channels 46 are traversed by a fluid constituting a fuel injected into the combustion chamber after having been heated by passage through the wall 40.
  • the intermediate part 44 is made of C / C composite material and is brazed to a holding structure 48 also made of C / C composite material.
  • the support structure is advantageously in the form of a honeycomb in order to lighten the assembly as much as possible.
  • the brazing, the possible formation of a metallic attachment coating on the faces to be brazed, and the formation of a sealing coating on the walls of the fluid circulation channels are carried out as described with reference to FIGS. 1 and 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Ceramic Products (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Moulding By Coating Moulds (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

The invention concerns a heat exchanger comprising an intermediate part (14) made of refractory composite material, for instance of C/C composite, wherein are formed ducts for fluid (16) circulation, and which is interposed between a part made of refractory composite material, for instance with a ceramic matrix, such as a C/SiC composite, forming a thermal screen (12) and a part made of thermostructural composite material, for instance a C/C composite, forming a structure maintaining the exchanger (18), the components of the exchanger being assembled by brazing. The heat exchanger is useful as wall element exposed to an intense heat flow particularly in a nuclear fusion reactor and a ramjet combustion chamber.

Description

Titre de l'inventionTitle of invention
Echangeur de chaleur en matériau composite et procédé pour sa fabrication.Heat exchanger made of composite material and process for its production.
Domaine de l'inventionField of the invention
L'invention concerne les échangeurs de chaleur qui utilisent des ensembles d'échanges thermiques basés sur une circulation de fluide, et qui sont destinés à être employés dans un environnement thermiquement sévère. Des domaines particuliers, mais non limitatifs, d'application de l'invention sont les systèmes de transformation de la matière, par exemple les réacteurs de fusion nucléaire, et les systèmes de propulsion, en particulier les éléments de paroi de chambre de combustion de, réacteurs, notamment de statoréacteurs.The invention relates to heat exchangers which use heat exchange assemblies based on fluid circulation, and which are intended to be used in a thermally harsh environment. Particular, but not limiting, fields of application of the invention are systems for transforming matter, for example nuclear fusion reactors, and propulsion systems, in particular the elements of the combustion chamber wall of, reactors, particularly ramjet engines.
Arrière-plan de l'inventionInvention background
Les échangeurs de chaleur utilisés dans ces applications sont généralement métalliques, au moins en partie. Or, les propriétés thermiques et mécaniques des métaux et alliages métalliques limitent leur champ d'utilisation, ainsi que les per ormances et la sécurité. De plus, les échangeurs de chaleur métalliques sont lourds et encombrants, ce qui pénalise leur utilisation au moins dans certaines applications.The heat exchangers used in these applications are generally metallic, at least in part. However, the thermal and mechanical properties of metals and metal alloys limit their field of use, as well as performance and safety. In addition, metal heat exchangers are heavy and bulky, which penalizes their use at least in certain applications.
L'utilisation de matériaux composites réfractaires seuls ou en combinaison avec des métaux, a été envisagée pour réaliser des échangeurs de chaleur destinés à être utilisés dans un environnement thermique sévère, notamment pour paroi de réacteur de fusion nucléaire. Ainsi, la demande de brevet WO 98/03 297 décrit la réalisation d'un tel echangeur par brasage de pièces en matériau composite carbone/carbone (C/C) sur un substrat métallique (cuivre) refroidi par circulation de fluide. On retrouve ici l'utilisation du métal. On connaît aussi le brevet US 5 583 895 qui, pour une même application, décrit une structure d'échangeur sous forme d'un bloc de matériau composite C/C dans lequel sont formés des passages de circulation de fluide. Les parois des passages sont rendues étanches par une garniture métallique, par exemple en cuivre, brasée sur le matériau composite C/C. Objet et résumé de l'inventionThe use of refractory composite materials alone or in combination with metals has been envisaged for producing heat exchangers intended for use in a severe thermal environment, in particular for the wall of a nuclear fusion reactor. Thus, patent application WO 98/03 297 describes the production of such an exchanger by brazing parts made of carbon / carbon composite material (C / C) on a metal substrate (copper) cooled by circulation of fluid. Here we find the use of metal. Also known is US Pat. No. 5,583,895 which, for the same application, describes an exchanger structure in the form of a block of composite material C / C in which fluid circulation passages are formed. The walls of the passages are sealed by a metal lining, for example copper, brazed on the C / C composite material. Subject and summary of the invention
L'invention a pour objet de fournir un echangeur de chaleur capable d'être utilisé dans un environnement thermique sévère.The object of the invention is to provide a heat exchanger capable of being used in a severe thermal environment.
L'invention a aussi pour objet de fournir un echangeur de chaleur dans lequel la réalisation des différentes fonctions thermiques et structurelles peut être optimisée pour réduire autant que possible la masse, l'encombrement et le coût.Another object of the invention is to provide a heat exchanger in which the performance of the various thermal and structural functions can be optimized in order to reduce the mass, the bulk and the cost as much as possible.
L'invention a aussi pour objet de fournir un echangeur de chaleur susceptible d'être réalisé aisément. L'invention a encore pour objet un procédé de fabrication d'un tel echangeur de chaleur.Another object of the invention is to provide a heat exchanger capable of being produced easily. The invention also relates to a method of manufacturing such a heat exchanger.
Un echangeur de chaleur conforme à l'invention est caractérisé en ce qu'il comprend une partie intermédiaire en matériau composite réfractaire dans laquelle sont formés des canaux de circulation de fluide, la partie intermédiaire étant intercalée entre une partie en matériau composite réfractaire formant écran thermique et une partie en matériau composite thermostructural formant structure de maintien de l'échangeur, les parties constitutives de l'échangeur de chaleur étant assemblées par brasage. Un matériau composite thermostructural est un matériau composite qui présente des propriétés mécaniques le rendant apte à constituer des éléments de structure et qui conserve ces propriétés jusqu'à des températures élevées. Des matériaux composites thermostructuraux sont typiquement des matériaux composites ayant un renfort fibreux en fibres réfractaires, telles que des fibres en carbone ou céramique, densifié par une matrice réfractaire, telle une matrice en carbone ou céramique. Des exemples de matériaux composites thermostructuraux sont les matériaux composites carbone/carbone (C/C) à fibres de renfort et matrice en carbone, et les matériaux composites à matrice céramique (CMC), par exemple à matrice en carbure de silicium (SiC).A heat exchanger according to the invention is characterized in that it comprises an intermediate part made of refractory composite material in which fluid circulation channels are formed, the intermediate part being interposed between a part made of refractory composite material forming a heat shield and a part made of thermostructural composite material forming the exchanger holding structure, the constituent parts of the heat exchanger being assembled by brazing. A thermostructural composite material is a composite material which has mechanical properties making it suitable for constituting structural elements and which retains these properties up to high temperatures. Thermostructural composite materials are typically composite materials having a fibrous reinforcement in refractory fibers, such as carbon or ceramic fibers, densified by a refractory matrix, such as a carbon or ceramic matrix. Examples of thermostructural composite materials are carbon / carbon (C / C) composite materials with reinforcing fibers and carbon matrix, and ceramic matrix composite materials (CMC), for example with silicon carbide (SiC) matrix.
Avantageusement, le matériau composite thermostructural formant la structure de maintien de l'échangeur est un matériau composite C/C. Il peut être sous forme d'un nid d'abeilles ou d'un matériau composite dans lequel le renfort fibreux est formé de couches fibreuses superposées liées entre elles par des fibres s'étendant transversalement par rapport aux couches, comme cela peut être obtenu par aiguilletage, tel que décrit par exemple dans le brevet US 4 790 052.Advantageously, the thermostructural composite material forming the structure for maintaining the exchanger is a C / C composite material. It can be in the form of a honeycomb or a composite material in which the fibrous reinforcement is formed of superposed fibrous layers linked together by fibers extending transversely relative to the layers, as can be obtained by needling, as described for example in US Pat. No. 4,790,052.
Avantageusement encore, le matériau de la partie intermédiaire est également un matériau composite C/C qui est alors utilisé plus pour ses qualités réfractaires que structurales.Advantageously still, the material of the intermediate part is also a composite material C / C which is then used more for its refractory qualities than structural.
Il est envisageable de réaliser la partie formant structure de maintien et la partie intermédiaire dans un même bloc de matériau composite C/C auquel la partie formant écran thermique est brasée.It is conceivable to produce the part forming the holding structure and the intermediate part in the same block of C / C composite material to which the part forming the heat shield is brazed.
Avantageusement encore, le matériau de la partie formant écran thermique est un matériau de type CMC, par exemple un matériau composite C/SiC ou SiC/SiC (renfort en fibres de carbone ou de carbure de siiicium densifié par une matrice de carbure de silicium), pius aptes que les matériaux composites C/C à être exposés à un flux thermique intense notamment en atmosphère oxydante. Un avantage de l'échangeur de chaleur selon l'invention réside dans la possibilité de sélectionner les matériaux les plus adaptés pour assurer les fonctions thermiques et mécaniques de l'échangeur, donc d'optimiser la réalisation de celui-ci en termes de performances et d'encombrement.Advantageously also, the material of the part forming a heat shield is a material of CMC type, for example a composite material C / SiC or SiC / SiC (reinforcement in carbon fibers or in silicon carbide densified by a matrix of silicon carbide) , better able than C / C composite materials to be exposed to an intense thermal flux, in particular in an oxidizing atmosphere. An advantage of the heat exchanger according to the invention lies in the possibility of selecting the most suitable materials for ensuring the thermal and mechanical functions of the exchanger, therefore of optimizing the production thereof in terms of performance and of space.
Selon encore une autre particularité de l'échangeur de chaleur conforme à l'invention, les canaux de circulation de fluide sont formés, par exemple par usinage, dans une face de la pièce intermédiaire et sont délimités en partie par la paroi adjacente d'une des deux autres parties. La réalisation des canaux de circulation de fluide est donc particulièrement simple. Si nécessaire, l'étanchéité des canaux peut être assurée par formation d'un revêtement sur leur paroi, par exemple un revêtement métallique en couche mince. Un tel revêtement pourra être formé sur la totalité des faces en regard des parties à assembler afin de faciliter le brasage en constituant aussi une couche d'accrochage pour la brasure.According to yet another feature of the heat exchanger according to the invention, the fluid circulation channels are formed, for example by machining, in one face of the intermediate piece and are delimited in part by the adjacent wall of a of the other two parties. The realization of the fluid circulation channels is therefore particularly simple. If necessary, the watertightness of the channels can be ensured by forming a coating on their wall, for example a metallic coating in a thin layer. Such a coating can be formed on all of the facing faces of the parts to be assembled in order to facilitate brazing by also constituting a bonding layer for the brazing.
Brève description des dessinsBrief description of the drawings
Il sera ci-après fait référence aux dessins annexés sur lesquelsReference will be made below to the appended drawings in which
- la figure 1 illustre en coupe un élément d'échangeur de chaleur selon un premier mode de réalisation de l'invention ; - la figure 2 montre les étapes d'un procédé de réalisation de l'élément d'échangeur de chaleur de la figure 1 ;- Figure 1 illustrates in section a heat exchanger element according to a first embodiment of the invention; - Figure 2 shows the steps of a method of producing the heat exchanger element of Figure 1;
- la figure 3 illustre de façon éclatée un élément de chambre de combustion de réacteur formant echangeur de chaleur selon un deuxième mode de réalisation de l'invention ; et- Figure 3 illustrates an exploded view of a reactor combustion chamber element forming a heat exchanger according to a second embodiment of the invention; and
- la figure 4 illustre très schématiquement une chambre de statoréacteur avec une vue de détail d'un élément de paroi de la chambre de combustion formant echangeur de chaleur selon un troisième mode de réalisation de l'invention.- Figure 4 illustrates very schematically a ramjet chamber with a detailed view of a wall element of the combustion chamber forming a heat exchanger according to a third embodiment of the invention.
Description détaillée de modes de réalisation préférésDetailed description of preferred embodiments
La figure 1 est une vue en coupe d'un bloc unitaire 10 constituant un élément d'échangeur de chaleur. Le bloc 10 peut constituer un élément de paroi d'une enceinte où régnent des conditions thermiques sévères, par exemple un élément de paroi d'une chambre de confinement de plasma dans un réacteur de fusion nucléaire.Figure 1 is a sectional view of a unit block 10 constituting a heat exchanger element. The block 10 can constitute a wall element of an enclosure where severe thermal conditions prevail, for example a wall element of a plasma confinement chamber in a nuclear fusion reactor.
Le bloc echangeur de chaleur 10 comprend un écran thermiqueThe heat exchanger block 10 includes a thermal screen
12 dont la face externe 12a est destinée à être exposée à un flux thermique, une partie intermédiaire 14 présentant des canaux 16 de circulation de fluide et une structure de maintien 18. La partie intermédiaire est intercalée entre l'écran thermique 12 et la structure de maintien 18 et est liée à ces derniers par brasage. Les canaux de circulation de fluide 16 sont usinés dans la face de la partie intermédiaire située du côté de l'écran thermique 12 et recouverte par la face interne 12b de l'écran thermique, laquelle face interne 12b délimite ainsi partiellement les canaux 16. Les canaux 16 sont destinés à être reliés à un circuit de circulation d'un fluide caloporteur.12, the external face 12a of which is intended to be exposed to a thermal flow, an intermediate part 14 having channels 16 for circulation of fluid and a holding structure 18. The intermediate part is interposed between the thermal screen 12 and the structure of holding 18 and is linked to the latter by brazing. The fluid circulation channels 16 are machined in the face of the intermediate part situated on the side of the thermal screen 12 and covered by the internal face 12b of the thermal screen, which internal face 12b thus partially delimits the channels 16. The channels 16 are intended to be connected to a circuit for circulation of a heat transfer fluid.
L'écran thermique 12, exposé aux conditions thermiques les plus sévères, est en un matériau composite réfractaire, de préférence un matériau composite à matrice céramique (CMC), par exemple un matériau composite de type C/SiC, à renfort fibreux en fibres de carbone densifié par une matrice de carbure de siiicium.The heat shield 12, exposed to the most severe thermal conditions, is made of a refractory composite material, preferably a ceramic matrix composite material (CMC), for example a composite material of type C / SiC, with fibrous reinforcement of fibers of carbon densified by a silicon carbide matrix.
La partie intermédiaire est également un matériau composite réfractaire, par exemple un matériau composite C/C à renfort fibreux en fibres de carbone densifié par une matrice en carbone. La structure de maintien est en un matériau composite thermostructural et est réalisée pour assurer la fonction structurale du bloc 10. On utilisera par exemple une structure de maintien sous forme de structure en nid d'abeilles en matériau composite C/C. Un procédé de fabrication d'une telle structure est décrit dans le brevet US 5 415 715. On pourra aussi utiliser une structure de maintien sous forme d'un matériau composite C/C dans lequel le renfort fibreux est formé de couches planes de texture fibreuse liées entre elles par des fibres s'étendant transversalement par rapport aux couches. Les couches sont par exemple des couches de tissu, des nappes unidirectionnelles superposées avec des directions différentes, des couches de feutre..., et elles sont de préférence liées entre elles par aiguilletage. Un procédé de fabrication d'un tel matériau composite C/C est décrit dans le brevet US 4 790 052.The intermediate part is also a refractory composite material, for example a C / C composite material with fibrous reinforcement made of carbon fibers densified by a carbon matrix. The retaining structure is made of a thermostructural composite material and is produced to ensure the structural function of the block 10. For example, a retaining structure will be used in the form of a honeycomb structure made of composite material C / C. A method of manufacturing such a structure is described in US Pat. No. 5,415,715. It is also possible to use a retaining structure in the form of a composite C / C material in which the fibrous reinforcement is formed of flat layers of fibrous texture. linked together by fibers extending transversely to the layers. The layers are for example layers of fabric, unidirectional layers superimposed with different directions, layers of felt, etc., and they are preferably linked together by needling. A process for manufacturing such a C / C composite material is described in US Pat. No. 4,790,052.
La figure 2 indique les étapes d'un procédé de fabrication du bloc 10 d'échangeur de chaleur.FIG. 2 shows the steps of a method for manufacturing the heat exchanger block 10.
L'écran thermique en matériau CMC, par exemple en matériau composite C/SiC, la partie intermédiaire en matériau composite C/C et la structure de maintien en matériau composite C/C sont réalisés séparément (étapes 20, 22, 24). Les procédés de fabrication de pièces en matériau composite de type C/C ou C/SiC par élaboration d'un renfort fibreux, ou préforme, et densification du renfort fibreux par une matrice sont bien connus. La densification peut être réalisée par infiltration chimique en phase vapeur, ou par imprégnation par un précurseur de la matrice à l'état liquide et transformation du précurseur par traitement thermique.The heat shield made of CMC material, for example made of C / SiC composite material, the intermediate part made of C / C composite material and the holding structure made of C / C composite material are produced separately (steps 20, 22, 24). The methods for manufacturing parts of composite material of C / C or C / SiC type by developing a fibrous reinforcement, or preform, and densification of the fibrous reinforcement by a matrix are well known. Densification can be carried out by chemical vapor infiltration, or by impregnation with a precursor of the matrix in the liquid state and transformation of the precursor by heat treatment.
Les canaux 16 sont usinés dans une face de la partie intermédiaire 14 (étape 26).The channels 16 are machined in one face of the intermediate part 14 (step 26).
Ensuite, un revêtement métallique peut être formé sur l'intégralité des faces en regard de la partie intermédiaire, de l'écran thermique et de la truster de maintien (étape 28). Le revêtement métallique est choisi pour améliorer la mouillabiiité vis-à-vis de la brasure utilisée ensuite pour l'assemblage des différentes parties et donc favoriser l'accrochage de la brasure. Le revêtement métallique assure en outre l'étanchéité des parois des canaux de circulation de fluide. En effet, les matériaux composites C/C ou des matériaux CMC obtenus comme indiqué ci-avant présentent inévitablement une porosité résiduelle qu'il convient d'obturer en surface pour assurer l'étaπchéité des canaux.Then, a metal coating can be formed on all of the faces opposite the intermediate part, the heat shield and the holding truster (step 28). The metal coating is chosen to improve the wettability with respect to the solder then used for the assembly of the different parts and therefore favor the attachment of the solder. The metal coating also seals the walls of the fluid circulation channels. Indeed, C / C composite materials or CMC materials obtained as indicated above inevitably have a residual porosity which should be closed at the surface to ensure the etaπchéity of the channels.
Le revêtement métallique, par exemple en titane, chrome, zirconium, hafnium ou béryllium peut être déposé par dépôt chimique en phase vapeur ou par projection sous vide.The metallic coating, for example made of titanium, chromium, zirconium, hafnium or beryllium can be deposited by chemical vapor deposition or by spraying under vacuum.
Dans le cas où un revêtement métallique d'accrochage de la brasure n'est pas nécessaire, il convient néanmoins d'assurer l'étanchéité des parois des canaux 16. Cette étanchéité est alors assurée par dépôt d'une couche d'étanchéité, au moins sur les portions usinées de la partie intermédiaire et sur les portions de la face adjacente de l'écran thermique situées en regard. La couche d'étanchéité est déposée par dépôt chimique en phase vapeur. Elle est métallique ou non métallique, par exemple en carbone ou céramique.In the case where a metal coating for attaching the solder is not necessary, it is nevertheless necessary to ensure the sealing of the walls of the channels 16. This sealing is then ensured by depositing a sealing layer, at the less on the machined portions of the intermediate part and on the portions of the adjacent face of the heat shield located opposite. The sealing layer is deposited by chemical vapor deposition. It is metallic or non-metallic, for example carbon or ceramic.
Le brasage (étape 29) est réalisé en déposant une couche de brasure sur les faces à assembler de la partie intermédiaire de l'écran thermique et de la structure de maintien et en portant l'ensemble, maintenu dans un outillage, à la température de brasage voulue compte tenu de la brasure utilisée. La brasure utilisée est choisie parmi celles connues pour le brasage de céramiques ou composites réfractaires entre eux ou sur des métaux, par exemple les brasures commercialisées sous les dénominations "TiCuSil" ou "Cu-ABA" par la société des Etats-Unis d'Amérique Wesgo, Inc. On pourra se référer à la demande de brevet WO 98/03 297 déjà citée, ainsi qu'à un article de A.G. Foley et D.J. Andrews "Active métal brazing for joining ceramics to metals" GEC ALSTHOM TECHNICAL REVIEW, n° 13, février 1994, France, p. 49-64.Brazing (step 29) is carried out by depositing a layer of brazing on the faces to be assembled of the intermediate part of the heat shield and of the support structure and by bringing the assembly, maintained in a tool, to the temperature of soldering required given the solder used. The brazing used is chosen from those known for brazing ceramics or refractory composites with one another or on metals, for example the brazing sold under the names "TiCuSil" or "Cu-ABA" by the company from the United States of America Wesgo, Inc. Reference may be made to the patent application WO 98/03 297 already cited, as well as to an article by AG Foley and DJ Andrews "Active metal brazing for joining ceramics to metals" GEC ALSTHOM TECHNICAL REVIEW, no. 13, February 1994, France, p. 49-64.
La figure 3 illustre de façon éclatée un autre mode de réalisation d'un echangeur de chaleur selon l'invention constituant un élément 30 de chambre de combustion de réacteur. L'écran thermique 32 est une pièce annulaire axisymétrique comportant une partie avant cylindrique prolongée vers l'arrière par une partie tronconique. L'écran thermique 32 est réalisé en une seule pièce de matériau composite CMC, par exemple en matériau composite C/SiC. Le renfort fibreux du matériau composite est réaiisé par enroulement d'une texture fibreuse sur un mandrin de forme adaptée, et la préforme obtenue est densifiée par la matrice du matériau composite. Les canaux 36 de circulation de fluide sont formés en direction axiale par usinage de la face d'une partie intermédiaire 34 située en regard de l'écran thermique 32. La partie intermédiaire 34 est en matériau composite C/C. Le fluide caloporteur est un combustible qui est réchauffé par passage dans l'échangeur de chaleur avant d'être injecté dans la chambre de combustion. Des orifices d'admission et de sortie 33a, 33b du fluide sont formés à travers l'écran thermique 32, au voisinage de ses extrémités axiales, et au niveau de rainures, telles que 37, usinées circonférentiellement à l'avant et à l'arrière de la partie intermédiaire pour distribuer le fluide dans les canaux 36, à une extrémité, et le collecter, à l'autre extrémité des canaux.FIG. 3 illustrates in exploded form another embodiment of a heat exchanger according to the invention constituting an element 30 of the reactor combustion chamber. The heat shield 32 is an axisymmetric annular part comprising a cylindrical front part extended towards the rear by a frustoconical part. The heat shield 32 is made in a single piece of CMC composite material, for example C / SiC composite material. The fibrous reinforcement of the composite material is produced by winding a fibrous texture on a mandrel of suitable shape, and the preform obtained is densified by the matrix of the composite material. The fluid circulation channels 36 are formed in the axial direction by machining the face of an intermediate part 34 located opposite the heat shield 32. The intermediate part 34 is made of composite material C / C. The heat transfer fluid is a fuel which is heated by passage through the heat exchanger before being injected into the combustion chamber. Inlets and outlets 33a, 33b for the fluid are formed through the heat shield 32, in the vicinity of its axial ends, and at the level of grooves, such as 37, machined circumferentially at the front and at the rear of the intermediate part to distribute the fluid in the channels 36, at one end, and collect it, at the other end of the channels.
La partie intermédiaire 34 est solidaire d'une structure de maintien 38 sous forme de structure annulaire en matériau composite C/C. Elle est formée par enroulement d'une texture fibreuse en couches superposées sur un mandrin et liaison des couches entre elles par des fibres s'étendant transversalement par rapport aux couches, par exemple par aiguilletage, la préforme annulaire obtenue étant densifiée par une matrice carbone. Un mode de réalisation de préformes annulaires aiguilletées pour constituer des renforts de pièces structurales en matériau composite C/C est décrit dans le brevet US 4 790 052 déjà cité. La structure de maintien 38 et la partie intermédiaire peuvent être réalisées en deux parties assemblées par brasage ou, comme dans l'exemple illustré, en une seule partie.The intermediate part 34 is integral with a holding structure 38 in the form of an annular structure in C / C composite material. It is formed by winding a fibrous texture in layers superimposed on a mandrel and bonding the layers together by fibers extending transversely with respect to the layers, for example by needling, the annular preform obtained being densified by a carbon matrix. An embodiment of needled annular preforms to constitute reinforcements of structural parts made of composite material C / C is described in US Pat. No. 4,790,052 already cited. The holding structure 38 and the intermediate part can be made in two parts assembled by brazing or, as in the example illustrated, in a single part.
L'écran thermique 32 est brasé sur la face de la partie intermédiaire présentant les canaux 36 et rainures 37.The heat shield 32 is brazed on the face of the intermediate part having the channels 36 and grooves 37.
Le brasage est réalisé comme décrit ci-dessus en référence aux figures 1 et 2, éventuellement après formation de revêtement métallique d'accrochage de la brasure, au moins après formation d'un revêtement d'étanchéité sur les parois des canaux 36 et rainures 37. La figure 4 illustre très schématiquement une structure de statoréacteur dont la paroi 40 constitue un echangeur de chaleur conforme à l'invention.Brazing is carried out as described above with reference to FIGS. 1 and 2, optionally after formation of a metallic coating for attachment of the brazing, at least after formation of a sealing coating on the walls of the channels 36 and grooves 37 FIG. 4 very schematically illustrates a ramjet structure, the wall 40 of which constitutes a heat exchanger according to the invention.
La paroi 40 a une structure analogue à celle du bloc 10 de la figure 1 et est fabriquée de façon semblable. L'écran thermique 42 situé du côté interne de la paroi est réalisé en matériau CMC, par exemple en C/SiC. Il est brasé sur une partie intermédiaire 44 dans une face de laquelle sont usinés des canaux 46, la face de la partie intermédiaire 44 présentant les canaux étant recouverte par l'écran thermique 42. Les canaux 46 sont parcourus par un fluide constituant un combustible injecté dans la chambre de combustion après avoir été réchauffé par passage dans la paroi 40.The wall 40 has a structure similar to that of the block 10 of FIG. 1 and is manufactured in a similar manner. The heat shield 42 located on the internal side of the wall is made of CMC material, for example C / SiC. It is brazed on an intermediate part 44 in a face of which are machined channels 46, the face of the intermediate portion 44 having the channels being covered by the heat shield 42. The channels 46 are traversed by a fluid constituting a fuel injected into the combustion chamber after having been heated by passage through the wall 40.
La partie intermédiaire 44 est en matériau composite C/C et est brasée sur une structure de maintien 48 également en matériau composite C/C. La structure de maintien est avantageusement en forme de nid d'abeilles afin d'alléger au maximum l'ensemble. Le brasage, la formation éventuelle d'un revêtement métallique d'accrochage sur les faces à braser, et la formation d'un revêtement d'étanchéité sur les parois des canaux de circulation de fluide sont réalisés comme décrit en référence aux figures 1 et 2.The intermediate part 44 is made of C / C composite material and is brazed to a holding structure 48 also made of C / C composite material. The support structure is advantageously in the form of a honeycomb in order to lighten the assembly as much as possible. The brazing, the possible formation of a metallic attachment coating on the faces to be brazed, and the formation of a sealing coating on the walls of the fluid circulation channels are carried out as described with reference to FIGS. 1 and 2 .
Dans ce qui précède, on a envisagé la formation de canaux de circulation de fluide dans la face de la partie intermédiaire située du côté de l'écran thermique. Il s'agit là d'une disposition préférée. La formation des canaux dans la face de la partie intermédiaire située du côté de la structure de maintien n'est toutefois pas exclue. In the foregoing, the formation of fluid circulation channels has been envisaged in the face of the intermediate part located on the side of the heat shield. This is a preferred arrangement. The formation of channels in the face of the intermediate part located on the side of the holding structure is however not excluded.

Claims

R E V E N D I C A T I O N S
1. Echangeur de chaleur en matériau composite, caractérisé en ce qu'il comprend une partie intermédiaire (14 ; 34 ; 44) en matériau composite réfractaire dans laquelle sont formés des canaux de circulation de fluide (16 ; 36 ; 46), la partie intermédiaire étant intercalée entre une partie en matériau composite réfractaire formant écran thermique (12 ; 32 ; 42) et une partie en matériau composite thermostructural formant structure de maintien de l'échangeur (18 ; 38 ; 48), les parties constitutives de l'échangeur de chaleur étant assemblées par brasage.1. Heat exchanger made of composite material, characterized in that it comprises an intermediate part (14; 34; 44) made of refractory composite material in which are formed fluid circulation channels (16; 36; 46), the part intermediate being interposed between a part of refractory composite material forming a heat shield (12; 32; 42) and a part of thermostructural composite material forming a structure for holding the exchanger (18; 38; 48), the constituent parts of the exchanger of heat being assembled by brazing.
2. Echangeur de chaleur selon la revendication 1 , caractérisé en ce que la partie intermédiaire (14 ; 34 ; 44) est en matériau composite C/C.2. Heat exchanger according to claim 1, characterized in that the intermediate part (14; 34; 44) is made of C / C composite material.
3. Echangeur de chaleur selon l'une quelconque des revendications 1 et 2, caractérisé en ce que la partie formant écran thermique (12 ; 32 ; 42) est en matériau composite à matrice céramique.3. Heat exchanger according to any one of claims 1 and 2, characterized in that the part forming a heat shield (12; 32; 42) is made of a ceramic matrix composite material.
4. Echangeur de chaleur selon la revendication 3, caractérisé en ce que la partie formant écran thermique (12 ; 32 ; 42) est en matériau composite C/SiC. 4. Heat exchanger according to claim 3, characterized in that the part forming a heat shield (12; 32; 42) is made of C / SiC composite material.
5. Echangeur de chaleur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la partie formant structure de maintien (18 ; 38 ; 48) est en matériau composite C/C.5. Heat exchanger according to any one of claims 1 to 4, characterized in that the part forming the support structure (18; 38; 48) is made of C / C composite material.
6. Echangeur de chaleur selon l'une quelconque des revendications 1 à 5, caractérisé en ce que les canaux de circulation de fluide (16 ; 36 ; 46) sont formés dans une face de la partie intermédiaire (14 ; 34 ; 44) et sont délimités en partie par la paroi adjacente d'une des deux autres parties.6. Heat exchanger according to any one of claims 1 to 5, characterized in that the fluid circulation channels (16; 36; 46) are formed in one face of the intermediate part (14; 34; 44) and are delimited in part by the adjacent wall of one of the other two parts.
7. Echangeur de chaleur selon l'une quelconque des revendications 1 à 6, caractérisé en ce que les canaux de circulation de fluide (16 ; 36 ; 46) sont munis d'un revêtement étanche.7. Heat exchanger according to any one of claims 1 to 6, characterized in that the fluid circulation channels (16; 36; 46) are provided with a waterproof coating.
8. Echangeur de chaleur selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la partie formant structure de maintien est en nid d'abeilles.8. Heat exchanger according to any one of claims 1 to 7, characterized in that the part forming the holding structure is honeycomb.
9. Echangeur de chaleur selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la partie formant structure de maintien (18 ; 38 ; 48) est en un matériau composite comprenant un renfort fibreux ayant plusieurs couches fibreuses superposées liées entre elles par des fibres s'étendant transversalement par rapport aux couches.9. Heat exchanger according to any one of claims 1 to 7, characterized in that the part forming the holding structure (18; 38; 48) is made of a composite material comprising a fibrous reinforcement having several superposed fibrous layers linked together by fibers extending transversely with respect to the layers.
10. Elément (30 ; 40) de paroi de chambre de combustion de stator réacteur, caractérisé en ce qu'il incorpore un echangeur de chaleur selon l'une quelconque des revendications 1 à 8.10. Element (30; 40) of the wall of the reactor stator combustion chamber, characterized in that it incorporates a heat exchanger according to any one of claims 1 to 8.
11. Procédé de fabrication d'un echangeur de chaleur en matériau composite, caractérisé en ce qu'il comprend11. Method for manufacturing a heat exchanger made of composite material, characterized in that it comprises
- la réalisation d'une partie intermédiaire en matériau composite réfractaire munie de canaux de circulation de fluide, - la réalisation d'une partie d'écran thermique en matériau composite réfractaire,- the production of an intermediate part in refractory composite material provided with fluid circulation channels, - the production of a part of heat shield in refractory composite material,
- la réalisation d'une partie de structure en matériau composite thermostructural, et- the production of a structural part in thermostructural composite material, and
- l'assemblage des différentes parties par brasage en interposant la partie intermédiaire entre la partie d'écran thermique et la partie de structure.- The assembly of the different parts by brazing by interposing the intermediate part between the heat shield part and the structural part.
12. Procédé selon la revendication 11 , caractérisé en ce que les canaux de circulation de fluide sont formés par usinage dans une face de la partie intermédiaire. 12. Method according to claim 11, characterized in that the fluid circulation channels are formed by machining in one face of the intermediate part.
13. Procédé selon l'une quelconque des revendications 11 et13. Method according to any one of claims 11 and
12, caractérisé en ce que l'on réalise la partie intermédiaire en matériau composite C/C.12, characterized in that the intermediate part is made of C / C composite material.
14. Procédé selon l'une quelconque des revendications 11 et14. Method according to any one of claims 11 and
13, caractérisé en ce que l'on forme un revêtement étanche sur les parois des canaux de circulation de fluide.13, characterized in that a sealed coating is formed on the walls of the fluid circulation channels.
15. Procédé selon la revendication 14, caractérisé en ce que le revêtement étanche est formé par dépôt d'une couche métallique.15. The method of claim 14, characterized in that the waterproof coating is formed by depositing a metal layer.
16. Procédé selon l'une quelconque des revendications 11 à16. Method according to any one of claims 11 to
15, caractérisé en ce que l'on réalise la partie d'écran thermique en matériau composite à matrice céramique.15, characterized in that the heat shield part is made of composite material with a ceramic matrix.
17. Procédé selon l'une quelconque des revendications 11 à17. Method according to any one of claims 11 to
16, caractérisé en ce que l'on réalise la partie de structure en matériau composite C/C.16, characterized in that the structural part is made of C / C composite material.
18. Procédé selon l'une quelconque des revendications 11 à 17, caractérisé en ce que l'on réalise une partie de structure en nid d'abeilles. 18. Method according to any one of claims 11 to 17, characterized in that a part of the honeycomb structure is produced.
19 Procédé selon l'une quelconque des revendications 11 a19 Method according to any one of claims 11 a
17, caractérise en ce que l'on réaiise la partie de structure en un matériau composite ayant un renfort fibreux densifié par une matrice, et en ce que le renfort fibreux est réalisé par superposition et aiguilletage de plusieurs couches fibreuses.17, characterized in that the structure part is reaiized in a composite material having a fibrous reinforcement densified by a matrix, and in that the fibrous reinforcement is produced by superposition and needling of several fibrous layers.
20. Procédé selon l'une quelconque des revendications 11 à 19, caractérisé en ce que l'on forme une couche métallique d'accrochage de brasure sur les faces en regard des parties à assembler par brasage.20. Method according to any one of claims 11 to 19, characterized in that a metallic layer for bonding solder is formed on the opposite faces of the parts to be assembled by brazing.
21 Procédé selon la revendication 20, caractérisé en ce que les canaux de circulation de fluide sont formés par usinage dans une face de la partie intermédiaire qui est recouverte par une face adjacente d'une autre partie, et la couche métallique est formée sur la face de la partie intermédiaire, après usinage des canaux, et sur la face adjacente, de sorte que la couche métallique constitue également un revêtement étanche des parois des canaux de circulation de fluide. 21 Method according to claim 20, characterized in that the fluid circulation channels are formed by machining in one face of the intermediate part which is covered by an adjacent face of another part, and the metallic layer is formed on the face of the intermediate part, after machining the channels, and on the adjacent face, so that the metal layer also constitutes a sealed coating of the walls of the fluid circulation channels.
PCT/FR1999/002708 1998-11-05 1999-11-05 Heat exchanger in composite material and method for making same WO2000028202A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
UA2000073957A UA55499C2 (en) 1998-11-05 1999-05-11 Heat exchanger in composite material and method for making it
AT99954068T ATE263916T1 (en) 1998-11-05 1999-11-05 COMPOSITE HEAT EXCHANGER AND PRODUCTION PROCESS THEREOF
JP2000581354A JP4249396B2 (en) 1998-11-05 1999-11-05 Heat exchanger made of composite material and method of manufacturing the same
US09/582,855 US6397581B1 (en) 1998-11-05 1999-11-05 Heat exchanger in composite material and method for making same
CA002317707A CA2317707C (en) 1998-11-05 1999-11-05 Heat exchanger in composite material and method for making same
IL13709799A IL137097A (en) 1998-11-05 1999-11-05 Heat exchanger in composite material and method for making same
KR1020007007433A KR100613827B1 (en) 1998-11-05 1999-11-05 Heat exchanger in composite material and method for making same
EP99954068A EP1045971B1 (en) 1998-11-05 1999-11-05 Heat exchanger in composite material and method for making same
DE69916240T DE69916240T2 (en) 1998-11-05 1999-11-05 HEAT EXCHANGER OF COMPOSITE MATERIAL AND ITS MANUFACTURING PROCESS
NO20003477A NO323992B1 (en) 1998-11-05 2000-07-05 Heat exchanger in composite material and process for its manufacture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR98/13923 1998-11-05
FR9813923A FR2785664B1 (en) 1998-11-05 1998-11-05 COMPOSITE MATERIAL HEAT EXCHANGER AND METHOD FOR THE PRODUCTION THEREOF

Publications (1)

Publication Number Publication Date
WO2000028202A1 true WO2000028202A1 (en) 2000-05-18

Family

ID=9532395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/002708 WO2000028202A1 (en) 1998-11-05 1999-11-05 Heat exchanger in composite material and method for making same

Country Status (14)

Country Link
US (1) US6397581B1 (en)
EP (1) EP1045971B1 (en)
JP (1) JP4249396B2 (en)
KR (1) KR100613827B1 (en)
CN (1) CN1113164C (en)
AT (1) ATE263916T1 (en)
CA (1) CA2317707C (en)
DE (1) DE69916240T2 (en)
FR (1) FR2785664B1 (en)
IL (1) IL137097A (en)
NO (1) NO323992B1 (en)
RU (1) RU2249166C2 (en)
UA (1) UA55499C2 (en)
WO (1) WO2000028202A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2399163A (en) * 2003-01-30 2004-09-08 Snecma Propulsion Solide A cooling panel made of thermostructural composite material and a method of its manufacture

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6800828B2 (en) * 2001-03-31 2004-10-05 Honeywell International Inc. Electrical discharge machining of carbon-containing work pieces
AT5079U1 (en) 2001-04-30 2002-03-25 Plansee Ag METHOD FOR JOINING A HIGH TEMPERATURE MATERIAL COMPONENT COMPOSITE
US6907920B2 (en) * 2002-01-29 2005-06-21 United Technologies Corporation Heat exchanger panel
US6715293B2 (en) * 2002-03-28 2004-04-06 United Technologies Corporation Scram jet engine design
FR2840974B1 (en) * 2002-06-13 2005-12-30 Snecma Propulsion Solide SEAL RING FOR COMBUSTION CAHMBERS AND COMBUSTION CHAMBER COMPRISING SUCH A RING
FR2850741B1 (en) * 2003-01-30 2005-09-23 Snecma Propulsion Solide PROCESS FOR MANUFACTURING AN ACTIVE COOLING PANEL OF THERMOSTRUCTURAL COMPOSITE MATERIAL
KR20050004524A (en) * 2003-07-02 2005-01-12 최동민 Combustor for efficiently burning liquid including impurities by coating surface with gold and silver
FR2871847B1 (en) * 2004-06-17 2006-09-29 Snecma Moteurs Sa MOUNTING A TURBINE DISPENSER ON A COMBUSTION CHAMBER WITH CMC WALLS IN A GAS TURBINE
FR2872072B1 (en) * 2004-06-24 2006-09-29 Snecma Propulsion Solide Sa METHOD OF BRAZING PARTS OF SILICURE THERMOSTRUCTURAL COMPOSITE MATERIAL
EP1672281A1 (en) * 2004-12-16 2006-06-21 Siemens Aktiengesellschaft Thermal shield element
US7431074B1 (en) 2006-03-20 2008-10-07 Fellman Michael L Radiator structure
DE102006021539A1 (en) * 2006-05-08 2007-11-15 Eads Space Transportation Gmbh Method for producing components for rocket construction
JP5029257B2 (en) * 2007-01-17 2012-09-19 東京エレクトロン株式会社 Mounting table structure and processing device
US8127555B2 (en) * 2007-12-13 2012-03-06 Pratt & Whitney Rocketdyne, Inc. Flowpath heat exchanger for thermal management and power generation within a hypersonic vehicle
US7914904B2 (en) * 2008-03-25 2011-03-29 General Electric Company Component in a combustion system, and process for preventing slag, ash, and char buildup
DE102010032612A1 (en) * 2010-07-28 2012-03-29 Martin GmbH für Umwelt- und Energietechnik Process for protecting heat exchanger tubes in steam boiler plants, shaped bodies, heat exchanger tubes and steam boiler plants
JP5769519B2 (en) * 2011-06-30 2015-08-26 コバレントマテリアル株式会社 Fiber material for reinforcement, fiber-reinforced ceramic composite material using fiber material for reinforcement, and method for producing the same
CN102784987B (en) * 2012-06-18 2014-11-19 航天材料及工艺研究所 Method for welding built-in Ni-based high-temperature alloy pipe of C/C composite material
FR3001409B1 (en) * 2013-01-29 2015-07-03 Herakles METHOD FOR MANUFACTURING ALVEOLAR STRUCTURE OF CURVED SHAPE IN COMPOSITE MATERIAL
US9018511B2 (en) 2013-03-08 2015-04-28 Hamilton Sundstrand Space Systems International, Inc. Spring-loaded heat exchanger fins
US9624786B2 (en) 2013-03-15 2017-04-18 Rolls-Royce Corporation Braze materials and method for joining of ceramic matrix composites
EP3055530B1 (en) * 2013-10-07 2020-08-12 United Technologies Corporation Bonded combustor wall for a turbine engine
JP2016142484A (en) * 2015-02-03 2016-08-08 イビデン株式会社 Sub-capsule molten salt heat storage material
US10520193B2 (en) * 2015-10-28 2019-12-31 General Electric Company Cooling patch for hot gas path components
US10947162B2 (en) 2017-04-13 2021-03-16 Rolls-Royce Corporation Braze alloys for joining or repairing ceramic matrix composite (CMC) components
CN108644028B (en) * 2018-03-12 2020-01-24 上海卫星工程研究所 High-thrust bidirectional swinging rail-controlled engine high-temperature heat shield
CN109336630B (en) * 2018-08-29 2021-06-11 宁波华源精特金属制品有限公司 Support and preparation method thereof
GB2595744B (en) * 2020-06-01 2022-11-16 Desmond Lewis Stephen Reduced velocity ramjet
US11371702B2 (en) 2020-08-31 2022-06-28 General Electric Company Impingement panel for a turbomachine
US11994292B2 (en) 2020-08-31 2024-05-28 General Electric Company Impingement cooling apparatus for turbomachine
US11460191B2 (en) 2020-08-31 2022-10-04 General Electric Company Cooling insert for a turbomachine
US11994293B2 (en) 2020-08-31 2024-05-28 General Electric Company Impingement cooling apparatus support structure and method of manufacture
US11614233B2 (en) 2020-08-31 2023-03-28 General Electric Company Impingement panel support structure and method of manufacture
US11255545B1 (en) 2020-10-26 2022-02-22 General Electric Company Integrated combustion nozzle having a unified head end
US11767766B1 (en) 2022-07-29 2023-09-26 General Electric Company Turbomachine airfoil having impingement cooling passages

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4488920A (en) * 1982-05-18 1984-12-18 Williams International Corporation Process of making a ceramic heat exchanger element
EP0314261A1 (en) * 1987-10-27 1989-05-03 Avco Corporation Honeycomb structure assemblies
US4838031A (en) * 1987-08-06 1989-06-13 Avco Corporation Internally cooled combustion chamber liner
US5174368A (en) * 1990-07-13 1992-12-29 Societe Europeenne De Propulsion Cooled refractory structure and manufacturing process therefor
US5352529A (en) * 1991-05-13 1994-10-04 Auto-Air Composites, Inc. Lightweight thrust vectoring panel
GB2279734A (en) * 1993-07-06 1995-01-11 Mtu Muenchen Gmbh Cooling structure for a wall of a propulsion plant
US5583895A (en) * 1991-12-31 1996-12-10 Societe Europeenne De Propulsion Method for making a sealed passage in a refractory composite part, and application to the production of a refractory composite structure cooled by fluid circulation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998003297A1 (en) 1996-07-24 1998-01-29 Mcdonnell Douglas Corporation Two-step brazing process for joining materials with different coefficients of thermal expansion
DE19804232C2 (en) * 1998-02-04 2000-06-29 Daimler Chrysler Ag Combustion chamber for high-performance engines and nozzles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4488920A (en) * 1982-05-18 1984-12-18 Williams International Corporation Process of making a ceramic heat exchanger element
US4838031A (en) * 1987-08-06 1989-06-13 Avco Corporation Internally cooled combustion chamber liner
EP0314261A1 (en) * 1987-10-27 1989-05-03 Avco Corporation Honeycomb structure assemblies
US5174368A (en) * 1990-07-13 1992-12-29 Societe Europeenne De Propulsion Cooled refractory structure and manufacturing process therefor
US5352529A (en) * 1991-05-13 1994-10-04 Auto-Air Composites, Inc. Lightweight thrust vectoring panel
US5583895A (en) * 1991-12-31 1996-12-10 Societe Europeenne De Propulsion Method for making a sealed passage in a refractory composite part, and application to the production of a refractory composite structure cooled by fluid circulation
GB2279734A (en) * 1993-07-06 1995-01-11 Mtu Muenchen Gmbh Cooling structure for a wall of a propulsion plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2399163A (en) * 2003-01-30 2004-09-08 Snecma Propulsion Solide A cooling panel made of thermostructural composite material and a method of its manufacture

Also Published As

Publication number Publication date
RU2249166C2 (en) 2005-03-27
FR2785664A1 (en) 2000-05-12
ATE263916T1 (en) 2004-04-15
EP1045971A1 (en) 2000-10-25
CA2317707C (en) 2007-01-09
IL137097A0 (en) 2001-06-14
CN1287592A (en) 2001-03-14
IL137097A (en) 2003-07-31
DE69916240T2 (en) 2005-04-14
JP2002529679A (en) 2002-09-10
KR20010033870A (en) 2001-04-25
CA2317707A1 (en) 2000-05-18
KR100613827B1 (en) 2006-08-18
JP4249396B2 (en) 2009-04-02
NO20003477L (en) 2000-09-04
DE69916240D1 (en) 2004-05-13
FR2785664B1 (en) 2001-02-02
NO20003477D0 (en) 2000-07-05
NO323992B1 (en) 2007-07-30
EP1045971B1 (en) 2004-04-07
US6397581B1 (en) 2002-06-04
UA55499C2 (en) 2003-04-15
CN1113164C (en) 2003-07-02

Similar Documents

Publication Publication Date Title
EP1045971B1 (en) Heat exchanger in composite material and method for making same
EP2132426B1 (en) Cmc mixer with structural outer cowling
EP3551593B1 (en) Shaping equipment and facility for gas-phase chemical infiltration of fibrous preforms
EP1797310B1 (en) Mixer for separate-flow nozzle
EP2137384B1 (en) Turbine ring assembly for gas turbine
EP2815118B1 (en) Exhaust cone with acoustic attenuation system
EP2831382B1 (en) Afterbody assembly of an aircraft engine, corresponding aircraft engine and aircraft
FR2850741A1 (en) Manufacturing e.g. fuel-cooled panel for rocket motor wall, assembles sections by joining their internal faces under hot pressure
FR2857660A1 (en) THERMOSTRUCTURAL COMPOSITE STRUCTURE HAVING A COMPOSITION GRADIENT AND METHOD FOR MANUFACTURING THE SAME
EP3114324A2 (en) Stator section for a turbomachine and method for producing the same
FR2738304A1 (en) TURBINE OF THERMOSTRUCTURAL COMPOSITE MATERIAL, IN PARTICULAR A LARGE DIAMETER, AND PROCESS FOR MANUFACTURING THE SAME
FR2872072A1 (en) METHOD OF BRAZING PARTS OF SILICURE THERMOSTRUCTURAL COMPOSITE MATERIAL
FR2850742A1 (en) Panel forming e.g. fuel-cooled wall of rocket motor, includes additional sealing layer connected to first and second sections remotely from their internal faces
FR2787514A1 (en) PROPELLER
FR2782378A1 (en) STRUCTURAL PART COMPRISING A PART OF THERMOSTRUCTURAL COMPOSITE MATERIAL COOLED BY FLUID CIRCULATION
FR2664585A1 (en) COOLED REFRACTORY STRUCTURES AND METHOD FOR THEIR MANUFACTURE.
EP3478956B1 (en) Rocket motor with composite divergent nozzle section
EP0401106B1 (en) Reactor chamber and method of manufacture

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 137097

Country of ref document: IL

Ref document number: 99802025.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN IL IN JP KR NO RU UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 2317707

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020007007433

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2000/00082/DE

Country of ref document: IN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999954068

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09582855

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999954068

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007007433

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999954068

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020007007433

Country of ref document: KR