WO2000024230A1 - Apparatus for lighting discharge lamp - Google Patents

Apparatus for lighting discharge lamp Download PDF

Info

Publication number
WO2000024230A1
WO2000024230A1 PCT/JP1999/005703 JP9905703W WO0024230A1 WO 2000024230 A1 WO2000024230 A1 WO 2000024230A1 JP 9905703 W JP9905703 W JP 9905703W WO 0024230 A1 WO0024230 A1 WO 0024230A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference voltage
circuit
discharge lamp
lighting device
current
Prior art date
Application number
PCT/JP1999/005703
Other languages
French (fr)
Japanese (ja)
Inventor
Osamu Takahashi
Yoshitaka Igarashi
Yoshiji Minagawa
Shinsuke Funayama
Kazuhiko Tsugita
Tetsuya Kobayashi
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Mitsubishi Lighting Fixture Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP29642198A external-priority patent/JP2000123982A/en
Priority claimed from JP31434998A external-priority patent/JP4083895B2/en
Priority claimed from JP32163698A external-priority patent/JP4040769B2/en
Application filed by Mitsubishi Denki Kabushiki Kaisha, Mitsubishi Lighting Fixture Co., Ltd. filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to EP99947921A priority Critical patent/EP1041862A4/en
Publication of WO2000024230A1 publication Critical patent/WO2000024230A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2825Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage
    • H05B41/2828Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage using control circuits for the switching elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3925Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations by frequency variation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/40Controlling the intensity of light discontinuously

Definitions

  • the present invention relates to a discharge lamp lighting device for lighting a discharge lamp with high frequency power from an inverter circuit.
  • FIG. 24 shows a circuit diagram of a conventional discharge lamp lighting device.
  • 1 is a DC power supply that rectifies and smoothes a commercial power supply to obtain a DC current
  • 2 is an inverter circuit composed of switching elements 2 a and 2 b such as MOSFETs
  • 3 is an inverter that drives the inverter circuit 2.
  • Overnight drive circuit 4 is a coupling capacitor connected to the output side of the inverter night circuit 2
  • 5 is a discharge lamp load circuit consisting of a choke coil 5a, a starting capacitor 5b, and a discharge lamp 5c
  • 6 is a detection resistor.
  • a current detection circuit configured to detect a net current supplied to the discharge lamp load circuit 5, including an integration circuit 8 (high-pass filter) including a resistor 8 a and a capacitor 8 b, 9 is an error amplifier, 10 a and 10b are a resistor and a capacitor for integration in the error amplifier 9, the output voltage of the integration circuit 8 is provided at the inverting input terminal of the error amplifier 9, and the output voltage of the integrating circuit 8 is stabilized at the non-inverting input terminal.
  • DC power supply for reference voltage A reference voltage is input from a reference voltage circuit 14 having split resistors 12 and 13, and a difference between the two voltages is amplified by an error amplifier 9 and sent to an inverter drive circuit 3 as a control signal. Feedback has been received.
  • FIG. 25 shows an example of the configuration of the DC power supply 1 for obtaining a DC current from a commercial power supply.
  • the AC current output from the commercial power supply 1a is After being full-wave rectified by the diode bridge 1b, it is smoothed by the smoothing capacitor 1c and output as a DC current to the load circuit.
  • the operation of the conventional circuit shown in FIG. 24 will be described below.
  • the inverter circuit 2 is driven by the inverter driver circuit 3
  • the DC current supplied from the DC power supply 1 is converted into a high-frequency current, which is supplied to the discharge lamp load circuit 5 and the discharge lamp 5c. Lights up.
  • the detection resistor 7 is connected to the ON and OFF of the switching elements 2a and 2b as shown in Fig. 26.
  • Such an alternating current flows in the forward and reverse directions (regenerative direction), and ignoring the circuit loss, this effective component (sum of forward and reverse currents; hereinafter referred to as net current) It is consumed as electric power by the discharge lamp 5c.
  • the sum (net current) of the forward and reverse currents is detected by the integration circuit 8, and the corresponding voltage is input to the inverting input terminal of the error amplifier 9. .
  • the reference voltage generated by dividing the voltage of the reference voltage DC power supply 11 from the reference voltage circuit 14 by the division resistors 12 and 13 is input to the non-inverting input terminal of the error amplifier 9.
  • the error amplifier 9 the voltage difference between the reference voltage and the output voltage from the integrating circuit 8 is amplified, and the error is integrated by the integrating resistor 10a and the capacitor 10b.
  • the switching frequency of the inverter circuit 2 is controlled by the inverter drive circuit 3, and the high-frequency current supplied from the DC power supply 1 to the discharge lamp load circuit 5 is adjusted.
  • the high-frequency current supplied to the discharge lamp load circuit 5 is controlled by the switching frequency of the impedance circuit 2, so that the output frequency of the integration circuit 8 is controlled by controlling the switching frequency of the impedance circuit 2.
  • the output voltage of the DC power supply 1 is kept constant, the power supplied to the discharge lamp 5c can be kept constant if the voltage is kept equal to the voltage.
  • the reference voltage output from the reference voltage circuit 14 is fixed for each lighting device, it is compatible with discharge lamps having different rated values. For this purpose, prepare several types of parts such as the choke coil 5a and the starting capacitor 5b in advance, change the circuit constants according to the rated value of the discharge lamp 5c to be installed, and change the product group.
  • a first object of the present invention is to provide a discharge lamp lighting device having a plurality of different rated values in a discharge lamp lighting device.
  • An object of the present invention is to provide a discharge lamp lighting device which can be applied and can reduce management costs such as component management during production.
  • a second object of the present invention is to provide a discharge lamp lighting device capable of responding to a change in the rated value of the discharge lamp even after installation.
  • a third object of the present invention is to provide a discharge lamp lighting device capable of easily changing the rated value of the discharge lamp.
  • a fourth object of the present invention is to automatically change the rated value of the discharge lamp, thereby making it easier to change the rated value and ensuring the rated value even when there is no electrical knowledge. It is an object of the present invention to provide a discharge lamp lighting device in which a value is changed and an excessive current exceeding a rated value is prevented from flowing through the discharge lamp, and there is no fear that the discharge lamp will have a short life.
  • a fifth object of the present invention is to provide a single discharge lamp having a plurality of rated values. It is an object of the present invention to provide a discharge lamp lighting device which can be adapted to a discharge lamp. Further, a sixth object of the present invention is to provide a discharge lamp lighting device which suppresses a sudden change in the brightness (light output) of the discharge lamp due to a change in the rated value and is excellent in comfort during use.
  • the purpose is to: Disclosure of the invention
  • a discharge lamp lighting device includes: a DC power supply; an inverter circuit for converting DC supplied from the DC power supply into a high-frequency current; and a high-frequency current from the inverter circuit for lighting the discharge lamp.
  • a discharge lamp load circuit a current detection circuit for detecting a current supplied from the chamber circuit to the discharge lamp load circuit, a reference voltage circuit capable of outputting a plurality of different reference voltages, An error amplifier for generating a control signal based on the output of the reference voltage circuit and a reference voltage output from the reference voltage circuit; and controlling the inverter circuit based on a control signal from the error amplifier.
  • An inverter drive circuit for controlling the current supplied to the inverter to a current value corresponding to the reference voltage output from the reference voltage circuit; and a reference voltage output from the reference voltage circuit.
  • a reference voltage selecting means for selecting. Further, in the discharge lamp lighting device according to the present invention, the reference voltage selection means is configured to select a reference voltage output from the reference voltage circuit by manual operation.
  • the reference voltage circuit includes: a reference voltage DC power supply; and a dividing resistor that divides the voltage of the reference voltage DC power supply, and a preset rated value of the discharge lamp.
  • a reference voltage generation unit that generates a plurality of different reference voltages corresponding to the reference voltage, and the reference voltage selection unit selects a reference voltage to be output from the reference voltages generated by the reference voltage generation unit. It is composed.
  • the reference voltage circuit is connected in parallel to the reference voltage DC power supply, a dividing resistor that divides the voltage of the reference voltage DC power supply, and the dividing resistor. In addition to the provision of the reference voltage selection means, the reference voltage selection means selects a bypass resistor to select a reference voltage output from the reference voltage circuit.
  • the discharge lamp lighting device uses a jumper wire as the reference voltage selecting means.
  • the discharge lamp lighting device includes: providing the jumper wire on a circuit board on which the error amplifier is mounted; and providing a work hole on the circuit board on which the jumper wire is mounted.
  • the configuration is such that the setting status of the jumper line can be confirmed and cut through the hole.
  • the reference voltage circuit is provided on a circuit board on which the error amplifier is mounted.
  • the discharge lamp lighting device includes: a circuit board on which the reference voltage selection unit is mounted; and a circuit board on which the reference voltage selection unit is mounted is housed in a metal case having an opening. It is configured so that the setting status can be checked and the setting can be changed.
  • the operation portions of the reference voltage selection means are arranged in the order of the reference voltage.
  • the reference voltage selecting means identifies a rated value of the discharge lamp mounted on the discharge lamp load circuit, and the rated voltage is used as a reference voltage output from the reference voltage circuit. It is configured to automatically select the reference voltage that matches the value.
  • the discharge lamp lighting device further includes an initial frequency setting unit that sets a switching frequency of the inverter circuit.
  • the reference voltage selection means identifies a rated value of the discharge lamp mounted on the discharge lamp load circuit based on an output from the current detection circuit when operating at the switching frequency set by the initial frequency setting means.
  • the reference voltage selection unit includes an A / D converter that digitally converts an output of the current detection circuit, and a switching frequency set by the initial frequency setting unit.
  • a storage circuit for storing the current value of the discharge lamp corresponding to the current value of the discharge lamp, and comparing the digital data detected by the A / D converter with the current value stored in the storage circuit in advance.
  • a switch control unit including an arithmetic circuit that identifies a value and outputs a control signal; and a switch unit that selects a reference voltage output from the reference voltage circuit in accordance with a control signal from the arithmetic circuit. is there.
  • the discharge lamp lighting device further comprises a frequency detecting means for detecting a switching frequency of the inverter circuit, wherein the reference voltage selecting means detects the switching frequency based on the switching frequency output from the frequency detecting means.
  • the present invention is configured to identify a rated value of a discharge lamp mounted on the discharge lamp load circuit.
  • the reference voltage selection unit may determine a switching frequency output from the frequency detection unit and a current value output from the current detection circuit and supplied to the discharge lamp load circuit.
  • the rated value of the discharge lamp mounted on the discharge lamp load circuit is identified based on the rated value.
  • the reference voltage selection unit may be configured to control the discharge lamp based on a reference voltage output from the reference voltage circuit and a switching frequency output from the frequency detection unit.
  • the load circuit It is configured to identify the rated value of the mounted discharge lamp.
  • the reference voltage selecting means stores an A / D converter for digitally converting an output of the frequency detecting means, and stores a switching frequency of the impulse overnight circuit. And a control circuit for comparing the digital data detected by the A / D converter with the switching frequency previously stored in the storage circuit to identify a rated value of the mounted discharge lamp, and to perform control.
  • a switch control unit including an arithmetic circuit that outputs a signal; and a switch unit that selects a reference voltage output from the reference voltage circuit based on a control signal from the arithmetic circuit.
  • the reference voltage selection unit may output a reference voltage corresponding to a minimum current value among reference voltages that can be output from the reference voltage circuit. It is configured to select ⁇ .
  • the discharge lamp lighting device is configured such that, when changing the reference voltage, the reference voltage selection means selects a reference voltage in order from a reference voltage close to the reference voltage selected at the time of the change. It was done.
  • the reference voltage selection means includes an external setting means capable of manually setting a reference voltage output from the reference voltage circuit.
  • the discharge lamp lighting device includes a buffer circuit between the reference voltage circuit and the error amplifier, which continuously changes a reference voltage input to the error amplifier. .
  • the discharge lamp lighting device includes: a reference voltage DC power supply; and a dividing resistor that divides the voltage of the reference voltage DC power supply, and a preset rated value of the discharge lamp.
  • a reference voltage generator that generates a plurality of different reference voltages corresponding to The selection means includes a switch unit for selecting a reference voltage to be output from the reference voltages generated by the reference voltage generation unit.
  • the reference voltage circuit includes: a reference voltage DC power supply; a division resistor for dividing a voltage of the reference voltage DC power supply; and a switch connected in parallel to the division resistance. And a reference voltage selection unit selects a switch in the switch unit, selects a bypass resistor, and selects a reference voltage output from the reference voltage circuit. It was done. Further, in the discharge lamp lighting device according to the present invention, the reference voltage circuit is provided on a circuit board on which the error amplifier is mounted, and the circuit board on which the reference voltage circuit and the error amplifier are mounted is made of metal. It was stored in the case. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a circuit diagram showing a configuration of Embodiment 1 of the present invention.
  • FIG. 2 is a circuit diagram showing a configuration of the second embodiment of the present invention.
  • FIG. 3 is a circuit diagram showing a configuration of Embodiment 3 of the present invention.
  • FIG. 4 is a configuration diagram showing a mounted state on a circuit board according to Embodiment 3 of the present invention.
  • FIG. 5 is a configuration diagram showing another state of mounting on a circuit board according to Embodiment 3 of the present invention.
  • FIG. 6 is a circuit diagram showing a configuration of the fourth embodiment of the present invention.
  • FIG. 7 is a flowchart showing the operation of the fourth embodiment of the present invention.
  • FIG. 8 is an explanatory diagram showing a method of identifying the rated value of the discharge lamp of the fourth embodiment of the present invention.
  • FIG. 9 is a characteristic diagram showing a relationship between a reference voltage and power consumption according to the fourth embodiment of the present invention.
  • FIG. 10 is a circuit diagram showing a configuration of the fifth embodiment of the present invention.
  • FIG. 11 is a flowchart showing the operation of the fifth embodiment of the present invention.
  • FIG. 12 is a circuit diagram showing a configuration of the sixth embodiment of the present invention.
  • FIG. 13 is a circuit diagram showing a configuration of the seventh embodiment of the present invention.
  • FIG. 14 is a circuit diagram showing a configuration of the eighth embodiment of the present invention.
  • FIG. 15 is a circuit diagram showing a configuration of the ninth embodiment of the present invention.
  • FIG. 16 is a flowchart showing the operation of the ninth embodiment of the present invention.
  • FIG. 17 is an explanatory diagram showing a method of identifying a rated value of a discharge lamp according to Embodiment 9 of the present invention.
  • FIG. 18 is a characteristic diagram illustrating a relationship between a reference voltage and power consumption according to Embodiment 9 of the present invention.
  • FIG. 19 is a circuit diagram showing a configuration of the tenth embodiment of the present invention.
  • FIG. 20 is an explanatory diagram showing a method of identifying the rated value of the discharge lamp according to Embodiment 10 of the present invention.
  • FIG. 21 is a circuit diagram showing a configuration of the embodiment 11 of the present invention.
  • FIG. 22 is a circuit diagram showing a configuration of Embodiment 12 of the present invention.
  • FIG. 23 is a circuit diagram showing a configuration of the thirteenth embodiment of the present invention.
  • FIG. 24 is a circuit diagram showing a configuration of a conventional discharge lamp lighting device.
  • FIG. 25 is a circuit diagram showing a configuration of a DC power supply of a conventional discharge lamp lighting device.
  • FIG. 26 is a waveform diagram of a current flowing through a detection resistor of a conventional discharge lamp lighting device.
  • Embodiment 1 Embodiment 1
  • FIG. 1 is a circuit diagram showing a configuration of a discharge lamp lighting device according to Embodiment 1 of the present invention.
  • 1 is a DC power supply that rectifies and smoothes a commercial power supply to obtain a DC current
  • 2 is an inverter circuit including switching elements 2a and 2b such as MOSFETs
  • 3 is a switching frequency controlled by an internal voltage.
  • Voltage-controlled oscillation circuit hereinafter referred to as “VCO”) and a driver
  • an inverter drive circuit that drives the inverter circuit 2.
  • 4 is a coupling connected to the output side of the inverter circuit 2.
  • a capacitor, 5 is a discharge lamp load circuit consisting of a choke coil 5a, a starting capacitor 5b and a discharge lamp 5c
  • 6 is a detection resistor 7, and an integration circuit 8 (high-pass filter) with a resistor 8a and a capacitor 8b
  • the current detection circuit is configured to detect the net current flowing through the discharge lamp load circuit 5
  • 9 is an error amplifier
  • 10a and 10b are resistors and capacitors for integration in the error amplifier 9
  • the output voltage of the integrator circuit 8 is input to the inverting input terminal and the reference voltage is input to the non-inverting input terminal from the reference voltage circuit 14. The difference between the two voltages is amplified by the error amplifier 9.
  • the control signal is fed back to the overnight drive circuit 3 as a control signal.
  • the reference voltage circuit 14 divides the voltage of the stabilized reference voltage DC power supply 11 by dividing resistors 12 a, 12 b, 12 c and 13.
  • a reference voltage generator 15 that presets and generates three reference voltages corresponding to the rated values of the discharge lamp 5c (for example, 32 W, 40 W, and 45 W), and a reference voltage generator 15 Select a reference voltage that matches the rated value of the discharge lamp 5c from the three reference voltages generated in Step 3, and input it to the error amplifier 9.
  • a switch 20 which is a reference voltage selection means 19.
  • the coupling capacitor 4 is connected to the discharge lamp load circuit 5
  • the discharge lamp load circuit 5 is connected to the ON and OFF of the switching elements 2 a and 2 b
  • the forward direction DC power supply —Switching element 2 a—Coupling capacitor 4—Discharge lamp load circuit 5 Detection resistor 7 ⁇ DC power supply 1) and AC current in the reverse direction (coupling capacitor 4 to switching element 2 b discharge lamp load circuit 5 ⁇ coupling capacitor 4)
  • an AC current similar to that shown in Fig. 26 flows through the detection resistor 7, and the integration circuit 8 detects the sum (net current) of the forward current and the reverse current of this AC current, The corresponding voltage is input to the inverting input terminal of the error amplifier 9. If the circuit loss is neglected, the effective component (net current) of this alternating current is consumed as electric power in the discharge lamp 5c, just as in the conventional example. Also, the non-inverting input terminal of the error amplifier 9 corresponds to the rated value of the mounted discharge lamp 5c from the three reference voltages generated by the reference voltage generator 15 of the reference voltage circuit 14. The selected reference voltage is selected and input by the switch 20 (in FIG. 1, the state of the uppermost switch is ON).
  • the error amplifier 9 outputs the reference voltage and the output from the integration circuit 8.
  • the voltage difference from the voltage is amplified and integrated by the integrating resistor 10a and capacitor 10b, fed back to the inverter drive circuit 3 as a control signal, and integrated by the inverter drive circuit 3.
  • the DC power supply 1 supplies the discharge lamp load circuit 5 with the rated value of the discharge lamp 5c.
  • a suitable high-frequency current (net current) is supplied and kept constant.
  • the configuration is such that the net current flowing through the discharge lamp load circuit 5 can be controlled by the reference voltage input from the reference voltage circuit 14, and the reference voltage can be controlled by switching the switch 20. Since the circuit 14 is configured to output a plurality of different reference voltages, the net current supplied to the discharge lamp load circuit 5 can be kept almost constant at a value suitable for the rated value of the discharge lamp 5c. By switching the switch 20, the same discharge lamp lighting device can be applied to discharge lamps having various rated values. In addition, this eliminates the need to provide various types of parts and discharge lamp lighting devices, and has the effect of reducing management costs such as parts management during production.
  • switching the switch 20 after installation of the discharge lamp lighting device makes it possible to adapt to discharge lamps with different rated values, so there is no need to replace or install a new discharge lamp lighting device. It has the effect of being cheap.
  • the reference voltage generated by the reference voltage generator 15 is set in advance in accordance with the rated value of the discharge lamp 5c (for example, 32 W, 40 W, 45 W), the reference voltage It is not necessary to adjust the voltage, and since the switch 20 is used as the reference voltage selecting means 19, there is an effect that a discharge lamp lighting device whose rated value can be easily changed is obtained. Further, since the reference voltage can be changed any number of times by the switch 20, there is an effect that a discharge lamp lighting device which can be used for a long time and has excellent resource efficiency can be obtained.
  • FIG. 2 shows an example in which the switch 20 is connected in parallel to the dividing resistors 12a, 12b, and 12c as the second embodiment of the present invention.
  • 16 is connected in series with the split resistors 12 &, 12 b, 12 c and 13
  • the switch 20 is connected in parallel with the divided resistors 12a, 12b, and 12c, and is turned on and off by turning on and off each switch of the switch 20.
  • 12 a, 12 b, and 12 c are bypassed to change the division ratio of the division resistors on both sides of the output terminal of the reference voltage connected to the error amplifier 9, thereby changing the reference voltage.
  • the same or corresponding parts as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted. Also, the operation is completely the same as that of the first embodiment, and the description is omitted.
  • the following effects can be obtained in addition to the effects obtained in the first embodiment. That is, since the input impedance of the error amplifier 9 is generally very large, in the example shown in the first embodiment, a minute current continues to flow through each contact of the switch 20 for a long time. In order to keep the reference voltage value stable for a long time, it is necessary to minimize the contact resistance against aging.For this purpose, use expensive switches such as gold-plated contacts. Needed. However, according to the second embodiment, since the switch 20 is connected in parallel with the divided resistors 12a, 12b, and 12c, the switch 20 is provided with the divided resistor from the DC power supply 11 for reference voltage. Since the flowing current flows and the current value necessary to maintain stability over time can be passed, a relatively inexpensive switch 20 can be used, which has advantages in terms of cost, Since it has high durability against aging, it also has the effect of improving reliability.
  • FIG. 2 shows an example in which each switch of the switch 20 is provided in parallel between the upstream side of each of the divided resistors 12a, 12b, and 12c and the ground, each switch has a divided resistor of 1 2a, 12b, and 12c may be connected in a bypass manner.
  • various types of switches can be used.
  • a discharge lamp lighting device which can support a larger rated value with a small number of divided resistors can be obtained.
  • FIG. 3 shows, as Embodiment 3 of the present invention, an example in which the reference voltage selecting means 19 is constituted by a conductive wire (jumper wire) 21.
  • reference numeral 21 denotes a conductive line (jumper line).
  • the reference voltage generating unit 15 A reference voltage suitable for the rated value of the mounted discharge lamp 5c is selected from among the three reference voltages generated in step (1), and is input to the error amplifier 9.
  • the same or corresponding parts as those in FIG. 1 are denoted by the same symbols and their description is omitted. The operation is also described in the above embodiment.
  • FIGS. 4 (a) and 4 (b) are a cross-sectional view and a plan view, respectively, showing a specific mounting state of the conductive wire 21 on the circuit board 22 in the third embodiment.
  • 21 is a conductive wire
  • 22 is a circuit board on which the conductive wire 21 is mounted
  • 23 is a working hole formed in a portion of the circuit board 22 on which the conductive wire 21 is mounted.
  • the holes 23 allow the conductive wires 21 to be visually checked and cut from the back surface (opposite to the mounting surface) of the circuit board 22.
  • the reference voltage circuit 14 composed of the conductive wire 21 and the reference voltage generator 15 is mounted on the same circuit board 22 as the error amplifier 9. Is a case made of metal, etc.
  • an inexpensive jumper wire 21 can be used instead, which has an advantage in terms of cost, and has high durability against aging, thereby improving reliability. Has the effect of doing
  • the reference voltage circuit 14 including the reference voltage selecting means 19 such as the conductive line 21 is mounted on the same circuit board as the circuit board 22 on which the error amplifier 9 is mounted.
  • the output of the discharge lamp 5c can be prevented from becoming unstable due to the fluctuation of the minute current that flows due to disturbance noise, and the noise countermeasure cost can be reduced compared to the case where the reference voltage selection means 19 is installed on a separate board.
  • the circuit board 22 is housed in the case 24, there is less danger of damaging the circuit board 22 when replacing the discharge lamp 5c, and the discharge lamp can be formed by forming the case 24 from metal. The effect of noise due to the discharge of 5c is further reduced.
  • the working hole 23 is formed in the portion of the circuit board 22 where the conductive wire 21 is mounted, the component mounting surface of the circuit board 22 is covered with the case 24. Even afterwards, without removing the case 24, the arrangement of the conductive wires 21 and the selection status of the reference voltage can be visually checked, and if necessary, the conductive wires 21 can be cut using the work holes 23. There is an effect that the rated value of the applicable discharge lamp can be changed.
  • FIG. 4 shows an example in which the work holes 23 are provided in the circuit board 22 to check the conductive wires 21 and the like, as shown in FIG.
  • An opening 25 may be provided in a portion corresponding to the mounting position of the reference voltage.In this case, even if the switch 20 is used as the reference voltage selection means 19, the reference voltage is selected with the case 24 attached. Check and change the reference voltage. Has an effect.
  • the opening 25 may be provided at another position, and the switch 20 may be operated by a string or the like.
  • the switch 20 and the conductive wire (jumper wire) 21 are used as the reference voltage selection means 19, but the semiconductor switch and the like are used.
  • at least one of the divided resistors 12a, 12b, 12c, and 13 is composed of a variable resistor, and the resistance value of the variable resistor is changed so that the reference voltage circuit 1 The reference voltage output from step 4 may be changed.
  • the operation part of the reference voltage selection means 19 such as the switch 20 (including the case of a one-piece switch) and the conductive wire (jumper wire) 21 (the operation part of the switch 20 ⁇ the operation part of the jumper wire 21) Arranging the arrays in the order of the reference voltage, that is, the rated value of the applicable discharge lamp, also has the advantage of reducing errors when operating the switch 20 or the conductive wire 21.
  • the switch 20 is mounted on the circuit board 22 on which the error amplifier 9 and the like are mounted, the switch 20 is completely different from the third embodiment in terms of improvement of noise resistance and the like. Of course, a similar effect can be obtained.
  • FIG. 6 is a circuit diagram illustrating a configuration of a discharge lamp lighting device according to a fourth embodiment of the present invention.
  • the rated value of the discharge lamp 5c attached to the discharge lamp load circuit 5 is automatically identified by the reference voltage selection means 19, and the reference voltage output from the reference voltage circuit 14 is The feature is that it is configured to automatically set the voltage corresponding to this rated value.
  • Fig. 6, 1 is a DC power supply that rectifies and smoothes a commercial power supply to obtain a DC current
  • 2 is an impeller circuit composed of switching elements 2a and 2b such as MOSFETs
  • 3 is a switching frequency that is internally controlled by voltage.
  • 5 is a discharge lamp load circuit including a choke coil 5a, a starting capacitor 5b and a discharge lamp 5c
  • 6 is a detection resistor 7, and an integration circuit 8 including a resistor 8a and a capacitor 8b.
  • a current detection circuit that detects the net current supplied to the discharge lamp load circuit 5, 9 is an error amplifier
  • 10a and 10b are resistors and capacitors for integration in the error amplifier 9.
  • the output voltage of the integrating circuit 8 is input to the inverting input terminal of the error amplifier 9 and the reference voltage from the reference voltage circuit 14 is input to the non-inverting input terminal, and the difference between the two voltages is amplified by the error amplifier 9.
  • the impeller overnight drive circuit 3 has a ROM 31a for storing the switching frequency of the inverter overnight circuit 2 when the discharge lamp lighting device is started up, and the ROM 31a for a fixed period from the start up.
  • R0M3 1 Initial frequency setting means 31 provided with control unit 3 1b that controls inverter driving circuit 3 to drive inverter circuit 2 at the switching frequency stored in a, and is connected. Have been.
  • the reference voltage circuit 14 divides the voltage of the stabilized reference voltage DC power supply 11 by dividing resistors 12a, 12b, 12c, and 13 to obtain the rated value of the discharge lamp 5c (for example, (32W, 40W, 45W) corresponding to each of the three reference voltages set in advance, and a reference voltage generator is selected from among the three reference voltages generated by the reference voltage generator and the reference voltage generator.
  • a switching section 20 composed of three switches 20a, 20b, and 20c that are input to the error amplifier 9, and a switching frequency at startup, which is connected to the current detection circuit 6 and set by the initial frequency setting means 31.
  • a switch control section 32 for automatically detecting the rated value of the discharge lamp 5c mounted on the discharge lamp load circuit 5 and automatically controlling the respective switches of the switch section 20. Further, the switch control section 32 and the switch section 20 constitute reference voltage selecting means 19 as a whole.
  • a specific configuration of the switch control section 32 includes an A / D converter 32 a for converting the output from the current detection circuit 6 into a digital signal, and a switching circuit for the amplifier circuit 2.
  • a storage circuit 32b storing the relationship between the frequency and the net current value flowing through the discharge lamp load circuit 5, an output from the A / D converter 32a and stored in the storage circuit 32b
  • An arithmetic circuit 32c for identifying the rated value of the discharge lamp 5c mounted on the discharge lamp load circuit 5 based on the current data and transmitting an ON / OFF signal to the switch 20 is provided.
  • the switch control section 32 is constituted by a microcomputer having a built-in A / D conversion function and memory, and the switch section 20 is constituted by a semiconductor switch.
  • step S1 when the discharge lamp lighting device is started, in step S1, a control signal is sent from the initial frequency setting means 31 to the inverter driving circuit 3, and the voltage control oscillator circuit in the inverter driving circuit 3 3a oscillates at the frequency stored in the ROM 31a in the initial frequency setting means 31, and this signal is amplified by the driver 3b and driven from the DC power supply 1 by driving the inverter circuit 2 DC current is converted to a high-frequency current and supplied to the discharge lamp load circuit 5, which turns on the discharge lamp 5c.
  • the signal of the net current supplied to the discharge lamp load circuit 5 is input to the switch control section 32 connected to the branch circuit 8.
  • the switch control section 32 converts the net current (ID) input from the current detection circuit 6 into an A / D converter 32 in step S2. a is detected, and in step S3, the arithmetic circuit 32c determines whether the current value is stable, that is, whether or not the operation has shifted to the steady operation state.
  • the stored current data and the data representing the relationship between the switching frequency and the net current as shown in Fig. 8 stored in the memory circuit 32b are compared, and the discharge lamp installed in the discharge lamp load circuit 5 is compared. 5 The rated value of c is identified.
  • step S5 the arithmetic circuit 32c controls the switch section 20 to select from among the three reference voltages generated by the reference voltage generation section 15.
  • a reference voltage suitable for the rated value of the mounted discharge lamp 5 c is selected, and this reference voltage is input to the error amplifier 9.
  • step S7 the elapsed time from the start is monitored, and when a predetermined time has elapsed, the process proceeds to step S8, in which the control by the initial frequency setting means 31 functioning at the start is performed. The operation stops and the control is switched to the control by the error amplifier 9 thereafter.
  • the horizontal axis is the switching frequency of the inverter circuit 2 and the vertical axis is the net current value when driven at each frequency.
  • the lines represented by the discharge lamps A and B are different rated power WL It is a characteristic curve of two types of discharge lamps having A and WLB (WL A> WLB).
  • the circuit system consisting of the coupling capacitor 4 and the discharge lamp load circuit 5 constitutes a resonance system consisting of an LCR, so that the current flowing inside by changing the switching frequency is It changes as shown in Fig. 8.
  • the net current IDA of discharge lamp A whose rated power is large due to the difference in impedance, is small when the rated power is small. It becomes larger than the net current IDB of the lamp B, and thus the net current value ID obtained by A / D conversion of the signal from the current detection circuit 6 is obtained at the switching frequency f 1 set by the initial frequency setting means 31.
  • the rated value of the mounted discharge lamp 5c can be identified.
  • the relationship between the switching frequency and the net current is expressed as a characteristic curve.However, in an actual discharge lamp lighting device, the set switching frequency f1 is determined because the switching frequency f1 at startup is fixed. Only the net currents IDA and IDB corresponding to the frequency are stored in the storage circuit 32b, and this value need only be compared with the net current value output from the current detection circuit 6.
  • FIG. 9 is a characteristic diagram showing the relationship between the reference voltage input to the error amplifier 9 and the power consumed by the discharge lamp load circuit 5. After a reference voltage that matches the rated value is selected, the output voltage of the current detection circuit 6 becomes equal to the reference voltage.
  • the switching frequency of the inverter circuit 2 is controlled so that a high-frequency current (net current) suitable for the rated value of the discharge lamp 5c is supplied from the DC power supply 1 to the discharge lamp load circuit 5, and circuit loss can be ignored.
  • the constant power (WLA or WLB) corresponding to the net current is consumed by the discharge lamp 5c, just like the conventional example.
  • the net current supplied to the discharge lamp load circuit 5 is controlled by the reference voltage input from the reference voltage circuit 14, and the discharge lamp load circuit 5
  • the switch controller 32 detects the rated value of the mounted discharge lamp 5c, and the switch 20 automatically switches the reference voltage output from the reference voltage circuit 14 to the mounted discharge lamp 5c. Since the net current conforming to the rated value of c is configured to be supplied to the discharge lamp load circuit 5, it is possible to obtain a discharge lamp lighting device applicable to discharge lamps having various rated values with the same discharge lamp lighting device. As a result, there is no need to provide various types of components and a discharge lamp lighting device, and this has the effect of reducing management costs such as component management during production. In addition, since the reference voltage is automatically changed according to the rated value of the discharge lamp 5c, there is an advantage that it is not necessary to operate the switch and manually set the rated value at the time of product shipment.
  • the reference voltage automatically switches according to the rated value of the discharge lamp 5c. It is possible to use discharge lamps with different rated values in the discharge lamp lighting device, eliminating the need to replace and install a new discharge lamp lighting device, which has the effect of reducing purchasing and operating costs. In addition, since the reference voltage can be changed at any time, a discharge lamp lighting device that can be used for a long time and has excellent resource efficiency can be obtained.
  • a reference voltage selection means 19 comprising a switch control section 32 and a switch section 20 determines the rated value of the installed discharge lamp 5c, and The pressure is automatically switched to supply a net current that is compatible with the rated value of the discharge lamp 5 C. Therefore, even without knowledge of electricity, a net current that is compatible with the rated value of the discharge lamp 5 c is always obtained.
  • the discharge lamp 5 c is replaced, etc., the discharge lamp 5 c has a short life due to an excessive current flowing through the discharge lamp 5 c due to a mistake in selection of the discharge lamp 5 c or a mistake in the setting of the switch part. This has the effect of preventing the occurrence of
  • the inverter circuit 2 is driven at the switching frequency f1 set by the initial frequency setting means 31 and the discharge lamp load circuit 5 is operated based on the net current data from the current detection circuit 6 at this time. Since the switch controller 32 detects the rated value of the discharge lamp 5c attached to the lamp, the rated value of the discharge lamp 5c can be identified by appropriately setting the switching frequency f1 at startup. Before the discharge, the current exceeding the rated value flows and the life of the discharge lamp 5c can be prevented from being shortened.
  • the reference voltage circuit 14 includes a DC power supply 11 for reference voltage and divided resistors 12a, 12b, 12c, and 13 and has a plurality corresponding to a preset discharge lamp rated value.
  • the reference voltage generator 15 generates different reference voltages and the switch 20 automatically selects the reference voltage generated by the reference voltage generator 15.
  • the circuit configuration is simpler, and there is an effect that an inexpensive reference voltage circuit can be obtained. This has the effect of making setting easier.
  • the switch control section 32 is composed of an AZD converter 32a, a storage circuit 32b and an arithmetic circuit 32c, and the output of the current detection circuit 6 is digitally output by the AZD converter 32a.
  • the arithmetic circuit 32c compares the digital data with the current data stored in the storage circuit 32b in advance to identify the rated value of the mounted discharge lamp 5c, Since the switch circuit 20 is controlled so that the reference voltage corresponding to the rated value is output from the voltage circuit 14, various types of discharge lamps can be obtained simply by changing the data in the memory circuit 32b. Therefore, there is an effect that a discharge lamp lighting device having a wide range of application and excellent flexibility can be obtained.
  • the switch control section 32 is formed by a microcomputer and the switch section 20 is formed by a semiconductor switch, the circuit of the reference voltage selection means 19 can be integrated, and the device can be downsized. .
  • the fourth embodiment as an example of the procedure at the time of startup, an example is shown in which driving is performed from the beginning at the switching frequency set by the initial frequency setting means 31 and a reference voltage is selected during this time.
  • the reference voltage circuit 14 and the error amplifier 9 once turn on the light at the reference voltage corresponding to the smallest net current, and are then driven at the switching frequency set by the initial frequency setting means 31.
  • the reference voltage may be identified and switched.
  • the fourth embodiment as an example of a method of obtaining a net current value, an example in which a signal output from the current detection circuit 6 to the error amplifier 9 is branched and input to the switch control unit 32 has been described.
  • a current detection circuit may be provided separately from the current detection circuit 6 and input to the switch control unit 32.
  • the inverter driving circuit 3 is configured by the voltage-controlled oscillation circuit 3a and the driver 3b, but a current-controlled oscillation circuit is applied instead of the voltage-controlled oscillation circuit 3a. The same effect as above can be obtained.
  • the switch control section 32 is constituted by a microcomputer and the switch section 20 is constituted by a semiconductor switch.
  • a relay which is turned ON and OFF by different voltages is shown.
  • the relay may be configured as a relay circuit with contacts ON / OFF, and analog processing may be performed.Also, as described above, a variable resistor may be used as the dividing resistor 12 to change the voltage dividing ratio. You may comprise.
  • the net current supplied to the discharge lamp load circuit 5 is detected by the A / D converter 32a and monitored by the arithmetic circuit 32c so that the transition to the steady operation state is achieved.
  • it may be configured so that the net current is detected after waiting for a certain time by a timer built in the microcomputer 32, and furthermore, control is passed from the initial frequency setting means 31 to the error amplifier 9. Instead of setting the time in advance, after the selection of the reference voltage is completed, a signal is sent from the switch control unit 32 to the initial frequency selecting means 31 and the control by the initial frequency selecting means 31 is stopped.
  • FIG. 10 is a circuit diagram showing a configuration of a discharge lamp lighting device according to a fifth embodiment of the present invention.
  • the inverter driving circuit 3 is composed of a current control oscillation circuit 3 c (described as “CCO” in the figure) whose oscillation frequency is controlled by a current, and a driver 3 b.
  • a frequency setting resistor 3 4 is provided between the inverter driving circuit 3 and the ground, and an error is set between the inverter driving circuit 3 and the inverter driving circuit 3.
  • a diode 35 is connected between the amplifiers 9.
  • the current control oscillation circuit 3c is an oscillation circuit whose oscillation frequency is controlled by a current value flowing from an internal power supply (not shown) built in the current control oscillation circuit 3c.
  • the oscillation frequency of the current control oscillation circuit 3c is controlled by the sum of the current flowing from the internal power supply to the ground via the frequency setting resistor 34 and the current drawn from the diode 35 to the error amplifier 9.
  • the switch control unit 32 controls the switches 20a, 20b, and 20c of the switch unit 20.
  • the switching frequency is kept at the constant frequency set by the frequency setting resistor 34 by keeping the current flowing out of the current control oscillation circuit 3c constant for a certain time after startup. To do that.
  • step S12 when the discharge lamp lighting device is started in the above state, the current control oscillation circuit 3c oscillates at a constant frequency corresponding to the current flowing to the ground through the frequency setting resistor 34, This signal is amplified by the driver 3b and the inverter circuit 2 is driven, so that the DC current supplied from the DC power supply 1 is converted into a high-frequency current, which is supplied to the discharge lamp load circuit 5 and the discharge lamp 5 c lights up.
  • the switch control unit 32 sets the current detection circuit in step S13.
  • the A / D converter 32a detects the net current value (ID) from the net current signal sent from 6, and subsequently, in step S14, it is determined whether the current value has stabilized. State Later, at step S15, this current data is compared with the net current data stored in the memory circuit 32b in the arithmetic circuit 32c to be mounted on the discharge lamp load circuit 5. The rated value of discharge lamp 5c is identified.
  • step S16 and step S17 when the switch section 20 selects a reference voltage suitable for the rated value of the mounted discharge lamp 5c, the diode 35
  • the current is drawn into the error amplifier 9 side from the inverter driving circuit 3 side, and thereafter, flows through the frequency setting resistor 34 from step S18.
  • the current and the current drawn into the error amplifier 9 control the current-controlled oscillation circuit 3c in the inverter-driving circuit 3 so that the net current supplied to the discharge lamp load circuit 5 is adjusted. Become.
  • the initial frequency setting means 3 for setting the switching frequency at the time of starting the discharge lamp lighting device. Since the frequency setting resistor 34 is provided as 1, the switching frequency at startup can be set by a simple circuit such as the frequency setting resistor 34 and the diode 35, so that the instantaneous driving circuit 3 as in the fourth embodiment is used. This eliminates the need for a separate control circuit for controlling the control, and has the effect of reducing costs.
  • FIG. 12 is a circuit diagram of a discharge lamp lighting device according to a sixth embodiment of the present invention.
  • the present invention has a plurality of rated values for the same discharge lamp (FHF32) such as an H: f fluorescent discharge lamp (model FHF32EX) manufactured by Mitsubishi Electric Osram Corporation. In the case of EX, it has two rated powers of 32 W and 45 W.)
  • FHF32 discharge lamp
  • EX fluorescent discharge lamp
  • it has two rated powers of 32 W and 45 W.
  • the switch control unit 32 alone operates this discharge lamp at 32 W, This was done to solve the problem of not being able to distinguish between driving at 45 W.
  • reference numeral 36 denotes external setting means for manually setting the rating of the discharge lamp 5c provided in the switch control unit 32 from the outside.
  • the "auto mode” It consists of an external setting switch that can switch between three modes: "32W mode” and "45W mode”. Have been.
  • the same or corresponding parts as those in FIG. 6 are denoted by the same symbols, and the description is omitted.
  • the inverter circuit 2 is driven at the switching frequency set by the initial frequency setting means 31, and the discharge lamp 5 c is set to this frequency. It is lit with the corresponding power.
  • the switch control unit 32 first detects the setting status of the external setting switch 36 and sets the switch to the "auto mode".
  • the rated value of the mounted discharge lamp 5c is automatically identified in the same procedure as in the fourth embodiment, and after a certain time, the discharge lamp 5c is switched to a reference voltage suitable for the rated value.
  • the switch control section 32 is provided with the external setting means 36 capable of manually setting the rated value.
  • the switch control section 32 is provided with the external setting means 36 capable of manually setting the rated value.
  • the switch control unit 32 selects “auto mode”, “32 W mode”, “45”.
  • An example was shown in which the processing corresponding to each of the ⁇ W mode '' was performed.However, if the switching frequency and the net current characteristic curve of a discharge lamp with multiple rated values are known, It may be configured to judge whether the lamp has multiple ratings based on the relationship between the switching frequency at the time and the net current, and to check the setting status of the external setting switch 36 if the lamp has multiple ratings. , In this case, multiple fixed For discharge lamps other than the rated ones, the rated values are automatically identified in the same manner as in the fourth embodiment.
  • the external setting switch 36 has an example of having two modes of “32 W mode” and “45 W mode” in addition to “auto mode”. It is clear that increasing the number of contacts can accommodate more than three rated values.
  • FIG. 13 shows, as Embodiment 7 of the present invention, a circuit diagram of a discharge lamp lighting device capable of continuously changing the brightness of discharge lamp 5c in accordance with switching of a reference voltage.
  • 37a, 37b and 38 are a buffering resistor, a buffering capacitor and a resistor, respectively.
  • the buffering resistor 37a and the buffering capacitor 37b as a whole are a buffering integration circuit. 3 7 Note that the same or corresponding parts as those in FIG.
  • the switch of the switch section 20 for selecting the reference voltage changes from the ON state of 20a to the ON state of 20b, the voltage of the switch is changed. Since the variation is integrated by the buffer integration circuit 37, the reference voltage input to the error amplifier 9 changes continuously with the integration constant of the buffer integration circuit 37, and this integration constant must be selected appropriately. If this is the case, the change in the reference voltage can be gradually changed, and the light output can be changed smoothly.
  • the buffer circuit 37 between the input terminal of the error amplifier 9 and the reference voltage circuit 14 The integration circuit 37 is provided to buffer the stepwise change in the output of the reference voltage circuit 14 due to the switching of the reference voltage, so that the signal input to the error amplifier 9 changes gradually and continuously.
  • Ki Suppressing the stair-like change in the light output (brightness) of the discharge lamp 5c which occurs when switching automatically from the switching frequency during operation to a reference voltage suitable for the rated value of the discharge lamp 5c. Since the light output from the start-up to the steady state can be smoothly changed, the user's discomfort and discomfort can be reduced, and the discharge lamp lighting device with excellent comfort can be obtained.
  • the switch unit 20 is switched, and the reference voltage is automatically selected, every time the device is started.
  • the brightness of the discharge lamp 5c changes, and a sudden change in the brightness every time greatly impairs the user's comfort.
  • the light output can be changed smoothly.
  • the discharge lamp lighting device has a very great advantage in practical use.
  • the switch control section 32 uses the 32 W-> 40 If switching is performed one step at a time in the order of W-> 45 W, the light output changes more continuously, in combination with the effect of the buffering integration circuit 37, and a more comfortable discharge lamp lighting device can be obtained. effective.
  • a buffer integration circuit 37 including a buffer resistor 37a and a buffer capacitor 37b is used as the buffer circuit 37 input to the error amplifier 9.
  • another configuration having an equivalent function, such as an integration circuit using an operational amplifier may be used.
  • FIG. 14 shows a circuit configuration diagram of the discharge lamp lighting device according to the eighth embodiment.
  • switch section 20 is arranged between reference voltage generating section 15 and error amplifier 9, and a plurality of reference sections generated by reference voltage generating section 15 are provided.
  • An example is shown in which the reference voltage input to the error amplifier 9 is selected by the switch unit 20 from the voltages.
  • the switches 20a, 20, and 20c of the switch section 20 are connected in parallel to the respective divided resistors 12a, 12b, and 12c.
  • the divided resistors 12a, 12b, and 12c are bypassed, and both sides of the reference voltage output terminal connected to the error amplifier 9 are connected.
  • the configuration may be such that the division ratio of the divisional resistance changes and the reference voltage changes.
  • reference numeral 16 denotes a divided resistor connected in series to the divided resistors 12 &, 12 b, 12 c, and 13, and the same or equivalent parts as those in FIG. The same symbols are given and the description is omitted. Further, the operation is completely the same as that of the fourth embodiment, and the description is omitted.
  • the following effects can be obtained in addition to the effects obtained in the fourth embodiment. That is, since the input impedance of the error amplifier 9 is generally very large, in the example shown in the fourth embodiment, a minute current continues to flow through each contact of the switch section 20 for a long time. It was difficult to keep the value of the reference voltage stable under long-term conditions.
  • the switch section 20 since the switch section 20 is connected in parallel with the divided resistors 12a, 12b, and 12c, the switch section 20 is connected to the reference voltage DC power supply 11 from the reference voltage DC power supply 11. Since the current flowing through the split resistor flows and the current required to maintain stability over time can flow, the discharge lamp lighting device has high durability and high reliability over time. The effect is obtained.
  • FIG. 14 shows an example in which the switches 20a, 20b, and 20c of the switch section 20 are provided in parallel between the upstream side of each of the divided resistors 12a, 12b, and 12c and the ground.
  • the switches 20a, 20b, and 20c of the switch section 20 may be connected to bypass the divided resistors 12a, 12b, and 12c, respectively.
  • Various types of switching It is possible to obtain a division ratio, and to obtain a discharge lamp lighting device capable of supporting a larger number of rated values with a small number of division resistors.
  • FIG. 15 is a circuit diagram showing a configuration of a discharge lamp lighting device according to Embodiment 9 of the present invention.
  • 1 is a DC power supply that rectifies and smoothes a commercial power supply to obtain a DC current
  • 2 is an impeller circuit composed of switching elements 2a and 2b such as MOSFETs
  • 3 is a switching frequency controlled by an internal voltage.
  • a voltage-controlled oscillator circuit 3a (shown as "VCO” in the figure) and a driver 3b, and a driver circuit for driving the receiver circuit 2 and 4 is connected to the output side of the inverter circuit 2 Connected coupling capacitor, 5 is a discharge lamp load circuit consisting of choke coil 5a, starting capacitor 5b and discharge lamp 5c, 6 is detection resistor 7, and integrating circuit 8 with resistor 8a and capacitor 8b (High-pass filter), which is a current detection circuit that detects the net current supplied to the discharge lamp load circuit 5, 9 is an error amplifier, 10a and 10b are resistors and capacitors for integration in the error amplifier 9.
  • the output voltage of the integration circuit 8 is input to the inverting input terminal of the error amplifier 9, and the reference voltage is input to the non-inverting input terminal from the reference voltage circuit 14 .
  • the difference between the two voltages is input to the error amplifier 9.
  • the amplified signal is fed back to the driver circuit 3 as a control signal.
  • the inverter driving circuit 3 has a frequency output terminal 4 1 a for outputting the oscillation frequency of the voltage controlled oscillation circuit 3 a, that is, the switching frequency of the inverter driving circuit 3 to the outside. And a frequency detecting means 41 for inputting information on the switching frequency to the switch control section 32 in the reference voltage circuit 14 together with the connection line 41b.
  • the reference voltage circuit 14 is connected to the stabilized DC power supply 11 for reference voltage.
  • the voltage is divided by the dividing resistors 12a, 12b, 12c and 13 and the three standards corresponding to the rated value of the discharge lamp 5c (for example, 32W, 40W, 45W)
  • a reference voltage generator 15 that sets and generates the voltage in advance and a reference voltage that matches the rated value of the mounted discharge lamp 5c is selected from the three reference voltages generated by the reference voltage generator 15
  • a reference voltage selecting means 19 to be input to the error amplifier 9.
  • the reference voltage selecting means 19 includes a switch section 20 comprising three switches 20 a, 20 b, and 20 c, and a connection line.
  • the rated value of the discharge lamp 5c attached to the discharge lamp load circuit 5 is identified based on the switching frequency of the inverter driving circuit 3 input from the frequency output terminal 4 1a by 4 1b, A switch control unit 32 for automatically controlling each switch of the switch unit 20 is provided.
  • a specific configuration of the switch control unit 32 includes an A7D converter 32 a for digitally converting the output from the frequency output terminal 41 a and a reference voltage circuit 14.
  • Storage circuit 32b that stores the relationship between the reference voltage output from the A / D converter and the switching frequency of the driving circuit 3, and the output from the A / D converter 32a and the storage circuit 32b.
  • the arithmetic circuit 32 c detects the rated value of the discharge lamp 5 c mounted on the discharge lamp load circuit 5 based on the frequency data stored in the switch circuit 20 and sends an ON / OFF signal to the switch 20.
  • the switch control unit 32 is configured by a microcomputer having an A / D conversion function and a memory
  • the switch unit 20 is configured by a semiconductor switch.
  • the switch control unit 32 switches the switch of the switch unit 20 to the switch 2 corresponding to the reference voltage that gives the smallest net current. 0a is ON, and other switches 20b, 20c are OFF Set to be.
  • the error amplifier 9 receives the reference voltage corresponding to the minimum net current from the reference voltage circuit 14, so that the error amplifier 9 receives the current detection circuit 6 from the current detection circuit 6.
  • the amplified signal is amplified and input to the overnight driver circuit 3, and the voltage controlled oscillator 3a in the overnight driver circuit 3 oscillates at the switching frequency corresponding to this voltage, and the driver 3b
  • the DC current supplied from the DC power supply 1 is converted into a high-frequency current by the driving of the inverter circuit 2 through the, and the DC current is supplied to the discharge lamp load circuit 5, and the discharge lamp 5c is turned on.
  • the reference voltage is input from the reference voltage circuit 14 to the non-inverting input terminal of the error amplifier 9, the difference between the output of the integration circuit 8 and the reference voltage after the start of the discharge lamp lighting device.
  • the feedback to the inverter driving circuit 3 via the error amplifier 9 causes the net current supplied to the discharge lamp load circuit 5 to become equal to the value set in the reference voltage circuit 14 until the net current becomes equal to the value set in the reference voltage circuit 14.
  • the switching frequency of the circuit 2 is adjusted, and as a result, the power corresponding to this minimum net current is consumed by the discharge lamp 5c, just as in the conventional example.
  • step S22 the discharge lamp lighting device is operated at a reference voltage corresponding to the minimum net current for a certain period of time, and the discharge lamp load circuit 5
  • the process proceeds to step S23 to switch the switching frequency (: fD) output from the frequency output terminal 41a.
  • this data is stored in the arithmetic circuit 32c in the storage circuit 32b in FIG.
  • the rated value of the discharge lamp 5c mounted on the discharge lamp load circuit 5 is identified by comparing the reference voltage and the switching frequency shown in FIG.
  • step S25 or step S26 the rated value of the mounted discharge lamp 5c is selected from the three reference voltages generated by the reference voltage generator 15
  • the selected reference voltage is selected by the arithmetic circuit 32c, and is automatically switched from the switch 20a initially set by the switch section 20, and thereafter, based on the newly set reference voltage.
  • the error amplifier 9 controls the driving circuit 3 and the net current suitable for the rated value of the discharge lamp 5c is supplied to the discharge lamp load circuit 5.
  • the rated value of the mounted discharge lamp 5c is identified from the relationship between the reference voltage and the switching frequency described above. The method is explained in detail.
  • the horizontal axis is the reference voltage output from the reference voltage circuit 14, the vertical axis is the switching frequency of the inverter drive circuit 3, and the lines represented by the discharge lamps A and B are 2 is a characteristic curve of two types of discharge lamps having different rated powers WLA and WLB (WLA> WLB).
  • the error amplifier 9 adjusts the switching frequency of the inverter overnight drive circuit 3 so that the output from the integration circuit 8 becomes equal to the reference voltage output from the reference voltage circuit 14.
  • the reference voltage output from the reference voltage circuit 14 is determined for control, in a steady state, the net current corresponding to this reference voltage and this net current are supplied.
  • the possible switching frequency is uniquely determined. Thus, if the reference voltage is changed for the same discharge lamp, the switching frequency and the net current change accordingly, and a characteristic curve as shown in FIG. 17 can be obtained.
  • the circuit system consisting of the coupling capacitor 4 and the discharge lamp load circuit 5 constitutes a resonance system consisting of the LCR
  • the switching frequency for supplying the same net current ie, the reference voltage
  • the switching frequency for supplying the same net current changes, and each has a different characteristic curve.
  • the discharge lamps A and B whose rated power is WLA> WLB are driven at the same reference voltage (VREF)
  • VREF reference voltage
  • the discharge lamp lighting device is operated with the frequency f DA being higher than the switching frequency f DB of the discharge lamp B having the smaller rated power, and thus maintaining the reference voltage at the reference voltage providing the smallest net current.
  • VREF reference voltage
  • FIG. 17 the relationship between the reference voltage and the switching frequency is expressed as a characteristic curve.
  • the reference voltage (VREF) at the time of start-up is determined. Only the switching frequencies f DA and f DB corresponding to the voltage are stored in the storage circuit 32b, and the rated value can be identified simply by comparing the switching frequency output from the frequency detection means 41 with this value. Also, no means for detecting the reference voltage is required.
  • FIG. 18 is a characteristic diagram showing the relationship between the reference voltage input to the error amplifier 9 and the power consumed by the discharge lamp load circuit 5.
  • the switching frequency is controlled by the error amplifier 9 and the inverter driving circuit 3 so that the newly set reference voltage and the output voltage of the current detection circuit 6 become equal.
  • a high-frequency current (net current) suitable for the rated value of the discharge lamp 5c is supplied from the DC power supply 1 to the discharge lamp load circuit 5, and if the circuit loss is ignored, a constant power corresponding to the net current (the In the example of FIG. 17, WLA) is consumed by the discharge lamp 5c.
  • the net current supplied to the discharge lamp load circuit 5 is controlled by the reference voltage output from the reference voltage circuit 14, and the operation is performed at the predetermined reference voltage. That is, when the switching frequency fD of the circuit 1 is detected by the frequency detecting means 41 when a predetermined net current is supplied, the discharge circuit mounted on the discharge lamp load circuit 5 is detected.
  • the switch controller 32 identifies the rated value of the lamp 5c, automatically switches the reference voltage output from the reference voltage circuit 14 by the switch 20, and sets the rated value of the mounted discharge lamp 5c. As a result, it is possible to obtain a discharge lamp lighting device applicable to discharge lamps having various rated values with the same discharge lamp lighting device.
  • the reference voltage automatically switches according to the rated value of the discharge lamp 5c.
  • Discharge lamps can be used, eliminating the need to replace and install new discharge lamp lighting devices, reducing purchasing costs and operating costs for replacing discharge lamp lighting devices, and using them for a long time. There is an effect that a discharge lamp lighting device with excellent resource efficiency can be obtained.
  • a reference voltage selecting means 19 comprising a switch control section 32 and a switch section 20 determines the rated value of the mounted discharge lamp 5c, and automatically switches the reference voltage to change the discharge lamp 5c. Is configured to supply a net current that conforms to the rated value of the discharge lamp 5c, so that a net current that conforms to the rated value of the discharge lamp 5c can flow without knowledge of electricity. However, there is an effect that it is possible to prevent the discharge lamp 5c from being shortened in life by applying an excessive current to the discharge lamp 5c due to a selection mistake of the discharge lamp 5c and a switch setting error.
  • the reference voltage circuit 14 includes a DC power supply 11 for reference voltage and divided resistors 12a, 12b, 12c, and 13 and has a plurality corresponding to a preset discharge lamp rated value. And a reference voltage selection means 19 that automatically selects the reference voltage generated by the reference voltage generator 15, thereby simplifying the circuit configuration. This has the effect of providing an inexpensive reference voltage circuit. Has the effect of being easier.
  • the switch control section 32 is composed of an A / D converter 32 a, a memory circuit 32 b and an arithmetic circuit 32 c, and the output of the current detection circuit 6 is output by the A / D converter 32 a.
  • the arithmetic circuit 32c identifies the rated value of the installed discharge lamp 5c by comparing the digital data with the frequency data stored in the storage circuit 32b in advance.
  • the data in the storage circuit 32b can be changed simply by changing the data. It is applicable to various types of discharge lamps, and has the effect of providing a discharge lamp lighting device with a wide range of applications and excellent flexibility.
  • the switch control unit 32 and the switch unit 20 are configured by a microcomputer and the switch unit 20 is configured by a semiconductor switch, the circuit of the reference voltage selection unit 19 can be integrated, and the device can be downsized. .
  • the reference voltage output at the time of starting the discharge lamp lighting device is set to the reference voltage corresponding to the smallest net current. This has the effect of preventing the lamp 5c from having a short life.
  • the frequency detecting means is configured to obtain a signal of the switching frequency from the frequency output terminal 41a in the inverter drive circuit 3, the response is fast and an accurate switching frequency can be obtained.
  • the switching frequency is detected after waiting for a certain time until the net current and the switching frequency supplied to the discharge lamp load circuit 5 reach a steady state.
  • the switching frequency is repeatedly detected by the frequency detecting means 41 and the switch control section 32 from the time of startup, and when the switching frequency becomes constant, it is determined that a steady state is reached, and the discharge lamp 5c is detected.
  • the rated value may be identified. In this case, there is no need to have a margin until a steady state is reached, so that the rated value can be changed quickly.
  • the switching frequency is detected with the switch 20a turned on.
  • the frequency may be detected by starting with the other switches being turned on. If the characteristic curve as shown in Fig. 17 is stored in the memory circuit 32b, turn on any switch to start, and the arithmetic circuit 32c detects the setting status of the switch section 20. The reference voltage and switching frequency corresponding to this setting From the discharge lamp 5c.
  • the switch control unit 32 is configured by a microcomputer and the switch unit 20 is configured by a semiconductor switch.
  • a relay that is turned ON and OFF by different voltages is used.
  • a relay circuit in which the contacts of the switches 20a, 20b, and 20c are turned ON / OFF by the output voltage from the frequency detecting means 41 may be processed by analog processing.
  • a variable resistor may be used as the dividing resistor 12 to change the voltage dividing ratio.
  • FIG. 15 an example is shown in which the switching frequency is detected from the frequency output terminal 41 a of the inverter overnight driving circuit 3 as the frequency detecting means 41. 2 and the current or voltage waveform flowing through the discharge lamp load circuit 5, etc., are input to the switch control unit 32, and digitalized by the A / D converter 32a in the switch control unit 32.
  • the arithmetic circuit 32c may perform a Fourier transform to detect the switching frequency.
  • the inverter driving circuit 3 is constituted by the voltage-controlled oscillation circuit 3a and the driver 3b has been described, but a current-controlled oscillation circuit is applied in place of the voltage-controlled oscillation circuit 3a. The same effect as above can be obtained.
  • FIG. 19 is a circuit diagram showing a configuration of a discharge lamp lighting device according to Embodiment 10 of the present invention.
  • the inverter drive circuit 3 includes a current control oscillator circuit 3c (described as “CCO” in the figure) whose oscillation frequency is controlled by a current, and a driver 3b.
  • a frequency setting resistor 34 is connected between the drive circuit 3 and the ground, and a diode 35 is connected between the drive circuit 3 and the error amplifier 9.
  • the switching control section 32 in the reference voltage circuit 14 receives the switching frequency from the frequency output terminal 41 a of the inverter drive circuit 3 via the connection line 41 b, and the switching frequency from the current detection circuit 6. Is an output corresponding to the net current supplied to the discharge lamp load circuit 5 via the connection line 39.
  • the current control oscillation circuit 3c is an oscillation circuit whose oscillation frequency is controlled by a current value flowing from an internal power supply (not shown) built in the current control oscillation circuit 3c.
  • the oscillation frequency of the current control oscillation circuit 3 c is controlled by the total current of the current flowing from the internal power supply to the ground via the frequency setting resistor 34 and the current drawn from the diode 35 to the error amplifier 9. Is done.
  • the switch control unit 32 sets the switch 20a corresponding to the smallest net current among the switches 20a, 20b, and 20c of the switch unit 20. Set to ON and the other switches 20b and 20c to OFF.
  • a current flows from the internal power supply (not shown) of the current control transmission circuit 3c to the ground through the frequency setting resistor 34 and the frequency setting resistor 3c. Since the potential on the error amplifier 9 side is lower than that on the upstream side of 4, current flows into the error amplifier 9 side via the diode 35.
  • the current control transmission circuit 3c oscillates at an oscillation frequency corresponding to the sum of the current flowing from the internal power supply to the ground via the frequency setting resistor 34 and the current drawn from the diode 35 to the error amplifier 9. This signal is amplified by driver 3b. Then, by driving the inverter circuit 2, the DC current supplied from the DC power supply 1 is converted into a high-frequency current, supplied to the discharge lamp load circuit 5, and the discharge lamp 5c is turned on.
  • the error amplifier 9 controls the switching frequency of the impeller overnight drive circuit 3, and
  • the net current supplied to the discharge lamp load circuit 5 is adjusted to a current value corresponding to the selected reference voltage.
  • the reference voltage, the net current, and the switching frequency are the same as in the ninth embodiment. Will uniquely correspond. Therefore, if the same relationship between the reference voltage and the switching frequency as in FIG. 17 is stored in the storage circuit 32b, the rating of the discharge lamp 5c mounted based on the switching frequency detected by the frequency detecting means 41 can be obtained. The value can be identified, and the switching to the reference voltage conforming to the rated value can be automatically performed by the arithmetic circuit 32c and the switch section 20.
  • the configuration and operation as described below are configured so that the rated value can be identified more precisely. That is, as described above, in the tenth embodiment, the current control oscillation circuit 3 c Since the current is controlled by the total current flowing to the number setting resistor 3 4 and the error amplifier 9, even if the reference voltage output from the reference voltage circuit 14 is set, the resistance value of the frequency setting resistor 34 varies. If this occurs, the value of the current flowing out of the current control oscillation circuit 3c changes, and as a result, the switching frequency of the inverter circuit 3 corresponding to a predetermined reference voltage varies, and the rated value is accurately identified. It becomes difficult to do.
  • the rated value of the discharge lamp 5c is directly identified not from the relationship between the reference voltage and the switching frequency but from the relationship between the net current value and the switching frequency as illustrated in FIG. It is configured to do so.
  • the switching frequency signal from the frequency detection means 41 and the net current signal from the current detection circuit 6 are input to the switch control section 32, and the A / D converter 3 2 of the switch control section 3 2
  • the switching frequency and the net current value are detected by a, and the rated value of the discharge lamp 5c is directly identified from the data of the net current value and the switching frequency stored in the memory circuit 32b.
  • the switch to the reference voltage conforming to this rated value is automatically performed by 2c and the switch section 20.
  • the rated value of the discharge lamp 5c can be identified from the relationship between the net current and the switching frequency.
  • the relationship between the net current value and the switching frequency is determined only by the characteristics of the inverter circuit 2 and the discharge lamp load circuit 5.
  • the rated value of the discharge lamp 5c can always be accurately identified without being affected by the variation of the set resistance 34 or the like.
  • FIG. 19 shows an example in which the switching frequency is detected from the frequency output terminal 41a of the inverter drive circuit 3, but the signal of the net current output from the current detection circuit 6 is If the signal is not completely smoothed and contains switching frequency components, this signal is digitized by the A / D converter 32a and then subjected to Fourier transform by the arithmetic circuit 32c to perform switching frequency conversion. May be detected. In this case, connection to the frequency output terminal 41a is not required, and the circuit is simplified.
  • Embodiment 11 1.
  • FIG. 21 shows a circuit diagram of a discharge lamp lighting device according to Embodiment 11 of the present invention.
  • the present invention has a plurality of rated values for the same discharge lamp, such as an Hf fluorescent discharge lamp (model name FHF32EX) manufactured by Mitsubishi Electric Osram Co., Ltd. In the case of EX, it has two rated powers of 3 2 ⁇ and 45 ⁇ .)
  • the switching frequency f D with respect to the reference voltage VREF Since there is only one characteristic curve representing It is intended to solve the problem that it is not possible to discriminate whether the discharge lamp 5c is operated at 32 W or at 45 W.
  • reference numeral 36 denotes external setting means for manually setting the rating of the discharge lamp 5 c provided in the switch control section 32 from the outside.
  • 32 W mode, and 45 W mode j which are external setting switches that can be switched between the three modes. Is omitted.
  • Embodiment 11 when the discharge lamp lighting device is started, first, a reference voltage corresponding to the smallest net current is output from the reference voltage circuit 14, and the error amplifier 9 is turned on by the inverter driving circuit 3. To control the switching frequency of the circuit 1 and adjust the current supplied to the discharge lamp load circuit 5 so that the output from the current detection circuit 6 becomes equal to the reference voltage.
  • the switch control section 32 first detects the setting state of the external setting switch 36, and if the switch is set to “automatic mode”, the ninth embodiment is performed.
  • the rated value of the installed discharge lamp 5c is automatically identified in the same procedure as in the above, and after a certain period of time, it is switched to the reference voltage that conforms to this rated value.
  • the setting of the external setting switch 36 is “32 W mode” or “45 W mode”
  • the automatic identification is not performed and the external setting switch 36 is released at the rated value set by the external setting switch 36.
  • Switch unit 20 is turned on so that light 5c is turned on.
  • the switch control section 32 is provided with the external setting means 36 capable of manually setting the rated value.
  • the external setting means 36 capable of manually setting the rated value.
  • the switch control unit 32 sets “auto mode”, “32 W mode”, An example is shown in which the processing corresponding to each of the "45 W mode" is performed.However, if the characteristic curves of the reference voltage and the switching frequency of a discharge lamp having a plurality of rated values are known, first, Judging from the relationship between the reference voltage at startup and the switching frequency whether or not the discharge lamp has multiple ratings, if it has multiple ratings, the configuration status of the external setting switch 36 may be checked. Frequently, in this case, automatic identification of the rated value is performed for discharge lamps other than the multiple rated ones in the same manner as in the ninth embodiment.
  • the external setting switch 36 has an example of having two modes of “32 W mode” and “45 W mode” in addition to “auto mode”. It is clear that increasing the number of contacts can accommodate more than three rated values.
  • Embodiment 1 2.
  • FIG. 22 is a circuit diagram of a discharge lamp lighting device according to Embodiment 12 of the present invention, which can continuously change the brightness of the discharge lamp 5c as the reference voltage is switched.
  • 37a, 37b and 38 are a buffering resistor, a buffering capacitor and a resistor, respectively.
  • the buffering resistor 37a and the buffering capacitor 37b as a whole are a buffering integration circuit. 3 7 Note that the same or corresponding parts as those in FIG.
  • the switch of the switch section 20 for selecting the reference voltage temporarily changes from the state where 20a is ON to the state where 20b is ON.
  • the voltage change is integrated by the buffer integration circuit 37, so that the reference voltage input to the error amplifier 9 changes continuously with the integration constant of the buffer integration circuit 37. If this integration constant is appropriately selected, the change in the reference voltage can be gradually changed, and the light output can be smoothly changed.
  • the buffer circuit 37 is provided between the input terminal of the error amplifier 9 and the reference voltage circuit 14.
  • a buffer integration circuit 37 is provided to buffer a stepwise change in the output of the reference voltage circuit 14 due to the switching of the reference voltage so that the signal input to the error amplifier 9 changes gradually and continuously. Due to the configuration, a sudden step-like change in the light output (brightness) of the discharge lamp 5c occurs when the reference voltage at startup is automatically switched to a reference voltage that matches the rated value of the discharge lamp 5c. Light output from start-up to steady state can be smoothly changed, which reduces the user's discomfort and discomfort, and has the effect of providing a discharge lamp lighting device with excellent comfort. is there.
  • the switch unit 20 is switched, and the reference voltage is automatically selected, every time the device is started.
  • the brightness of the discharge lamp 5c changes, and the sudden change in brightness every time greatly impairs the user's comfort.
  • the above-described embodiment 12 in which the light output can be changed smoothly.
  • the discharge lamp lighting device has a very great advantage in practical use.
  • the switch control unit 32 uses the 32 W 40 W ⁇ 45 W If the switching is performed one step at a time, the light output changes more continuously, in combination with the effect of the buffering integration circuit 37, and there is an effect that a more comfortable discharge lamp lighting device can be obtained.
  • the buffer integration circuit 37 including the buffer resistor 37 a and the buffer capacitor 37 b is used as the buffer circuit 37 input to the error amplifier 9.
  • another configuration having an equivalent function such as an integration circuit using an operational amplifier, may be used.
  • FIG. 23 shows a circuit configuration diagram of the discharge lamp lighting device according to the thirteenth embodiment.
  • the switch unit 20 is disposed between the reference voltage generation unit 15 and the error amplifier 9, and a plurality of reference voltages generated by the reference voltage generation unit 15 are provided.
  • An example has been shown in which the reference voltage to be input to the error amplifier 9 is selected by the switch unit 20 from among the voltages.
  • Switches 20a, 20 and 20c are connected in parallel with each of the split resistors 12a, 12b and 12c, and each switch of switch section 20 is turned ON and OFF to set the split resistors 12a, 12b and 12c.
  • the configuration may be such that c is bypassed, and the division ratio of the division resistors on both sides of the output terminal of the reference voltage connected to the error amplifier 9 changes to change the reference voltage.
  • reference numeral 16 denotes a divided resistor connected in series to the divided resistors 12 &, 12 b, 12 c and 13, and the same or corresponding parts as those in FIG. And description is omitted. Further, the operation is completely the same as that of the ninth embodiment, and the description is omitted.
  • the switch unit 20 is connected in parallel to the divided resistors 12a, 12b, and 12c.
  • the current flowing from the reference voltage DC power supply 11 through the divided resistor flows, and a sufficient current value can be supplied to maintain stability against aging. This is effective in obtaining a discharge lamp lighting device with high reliability and high reliability.
  • the switches 20a, 20b, and 20c of the switch section 20 are arranged in parallel between the upstream side of each of the divided resistors 12a, 12b, and 12c and the ground.
  • the switches 20a, 20b, and 20c of the switch section 20 are connected so as to bypass the divided resistors 12a, 12b, and 12c, respectively.
  • various types of division ratios can be obtained by switching the respective switches, and there is an effect that a discharge lamp lighting device that can correspond to a larger rated value with a smaller number of division resistors is obtained.
  • Embodiment 1 4.
  • the reference voltage circuit 14 including the reference voltage generation unit 15 and the switch unit 20 is mounted on the same circuit board as the error amplifier 9, the reference The output of the discharge lamp 5c can be prevented from becoming unstable due to the fluctuation of the minute current flowing through the voltage generation unit 15 ⁇ switch unit 20 due to disturbance noise caused by the discharge of the discharge lamp 5c.
  • the noise countermeasure cost can be reduced as compared with the case where it is installed on another board.
  • the integration capacitor 10b is added to the error amplifier 9 has been described, but if the integration constant of the integrating circuit 8 is appropriately selected, The integrating function of the error amplifier 9 becomes unnecessary, and the capacitor 10b can be replaced by an amplifying resistor. Further, the function of the integrating circuit 8 may be integrated in the error amplifier 9.
  • the number of reference voltages input to the error amplifier 9 is three, but the same effect can be obtained by using two or more than four types of reference voltages. can get.
  • the discharge lamp load circuit 5 is exemplified for one lamp, it may be applied to two or more lamps having the same rating. Further, if the reference voltage DC power supply 11 is configured to use the DC voltage supplied from the DC power supply 1 with further stabilization, the power supply can be shared and the number of parts / cost can be reduced.
  • the same effect can be obtained regardless of whether the oscillation circuit in the inverter drive circuit 3 is configured by a current-controlled oscillation circuit (CCO) or a voltage-controlled oscillation circuit (VCO).
  • CCO current-controlled oscillation circuit
  • VCO voltage-controlled oscillation circuit
  • the current supplied from the impedance circuit to the discharge lamp load circuit is controlled by the reference voltage output from the reference voltage circuit, and the reference voltage circuit can output a plurality of different reference voltages, With one discharge lamp lighting device, a discharge lamp lighting device capable of handling discharge lamps having various rated values can be obtained.
  • the reference voltage circuit is provided with a reference voltage DC power supply and a dividing resistor, and provided with a reference voltage generation unit that generates a plurality of reference voltages set in advance to the rated value of the discharge lamp, adjustment of the reference voltage is not necessary Thus, there is an effect that a discharge lamp lighting device whose rated value can be easily changed is obtained.
  • the reference voltage circuit is provided with a reference voltage DC power supply and a dividing resistor, and reference voltage selecting means for selecting a reference voltage output from the reference voltage circuit is connected in parallel to the dividing resistor. And stable operation is obtained, and a highly reliable discharge lamp lighting device is obtained.
  • the jumper wire is used as the reference voltage selection means, there is no deterioration of the contact due to a minute current, stable operation over time can be obtained, and an effect of obtaining a highly reliable discharge lamp lighting device can be obtained. is there.
  • the jumper wire is provided on the circuit board on which the error amplifier is mounted, and a work hole is provided on the circuit board on which the jumper wire is mounted, and the setting status of the jumper wire is confirmed from the work hole.
  • the arrangement of the jumper wires and the selection status of the reference voltage can be confirmed, and the rated value of the applicable discharge lamp can be changed from the back surface of the circuit board, and the components of the circuit board can be changed. Even after the mounting surface is covered with a case or the like, there is an effect that work can be performed without removing the case.
  • the reference voltage circuit is provided on the circuit board on which the error amplifier is mounted, it is possible to prevent the output of the discharge lamp from becoming unstable due to the influence of disturbance noise, and it is possible to prevent the output of the discharge lamp from being installed on a separate board. This has the effect of reducing noise countermeasure costs.
  • the circuit board on which the reference voltage selecting means is mounted is housed in a metal case and the case is provided with an opening, the influence of disturbance noise can be reduced, and the circuit board is prevented from being damaged. This has the effect that the setting status of the reference voltage selecting means can be checked and the setting can be changed without removing the case from the opening.
  • the operation portions of the reference voltage selection means are arranged in the order of the reference voltages, there is an effect that errors in selecting the reference voltage by the reference voltage selection means can be reduced.
  • the reference voltage selecting means identifies a rated value of the discharge lamp mounted on the discharge lamp load circuit, and automatically uses a reference voltage conforming to the rated value as a reference voltage output from the reference voltage circuit. This makes it easy to set the reference voltage, and makes it easier to discharge the lamp when replacing the discharge lamp. This has the effect of preventing erroneous selection of the lamp and erroneous setting of the reference voltage.
  • an initial frequency setting means for setting a switching frequency of the receiver circuit is provided, and the reference voltage selecting means operates at the switching frequency set by the initial frequency setting means. Since the rated value of the discharge lamp mounted on the discharge lamp load circuit is identified based on the output from the detection circuit, the rated value of the discharge lamp can be identified by appropriately setting the switching frequency at startup. Before the discharge, the current exceeding the rated value flows and the short life of the discharge lamp can be prevented.
  • the reference voltage selection means may include an A / D converter for digitally converting the output of the current detection circuit, and a discharge lamp current value corresponding to the switching frequency set by the initial frequency setting means.
  • a storage circuit for storing, and a comparison between the digital data detected by the A / D converter and a current value stored in the storage circuit in advance, to identify a rated value of the installed discharge lamp.
  • a switch control unit including an arithmetic circuit that outputs a control signal; and a switch unit that selects a reference voltage output from the reference voltage circuit based on a control signal from the arithmetic circuit
  • the storage unit includes:
  • Various types of discharge lamps can be handled simply by changing the data in the circuit, and this has the effect of providing a discharge lamp lighting device with a wide application range.
  • a frequency detecting means for detecting a switching frequency of the inverter circuit is provided, and the reference voltage selecting means outputs a switching frequency output from the frequency detecting means and a frequency output from the current detecting circuit. Since the rated value of the discharge lamp mounted on the discharge lamp load circuit is identified based on the current value supplied to the electric lamp load circuit, the rated value of the discharge lamp can be accurately identified.
  • the reference voltage selecting means digitally outputs an output of the frequency detecting means.
  • An A / D converter that converts the data into digital data; a storage circuit that stores the switching frequency of the inverter circuit; and a digital circuit that is detected by the A / D converter and that is stored in the storage circuit in advance.
  • a switching control unit having an arithmetic circuit for identifying a rated value of the mounted discharge lamp by comparing the switching frequency with the switching circuit and outputting a control signal; and an output from the reference voltage circuit according to a control signal from the arithmetic circuit.
  • the reference voltage selection unit is configured to select a reference voltage corresponding to the smallest current among the reference voltages that can be output from the reference voltage circuit. This has the effect of preventing an excessive current from flowing through the discharge lamp to shorten the life of the discharge lamp.
  • the reference voltage selection means is configured to select the reference voltage in order from the reference voltage that is close to the reference voltage selected at the time of the change, so that the light output accompanying the change in the reference voltage is changed. The amount of change can be reduced, and there is an effect that a more comfortable discharge lamp lighting device can be obtained. Further, since the reference voltage selection means is provided with external setting means capable of manually setting the reference voltage output from the reference voltage circuit, a discharge lamp lighting device capable of handling a discharge lamp having a plurality of rated values is provided. There is an effect that can be obtained.
  • the discharge lamp lighting device according to the present invention is useful, for example, as a home or business lighting device for lighting a discharge lamp using a commercial power supply.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

In an apparatus for lighting a discharge lamp, an inverter circuit (2) converts the current supplied from a direct current source (1) into high-frequency current, which lights a discharge lamp (5c) in a lamp load circuit (5). The apparatus comprises a current detection circuit (6) for detecting the current supplied to the lamp load circuit (5); a reference voltage circuit (14) for providing a plurality of different reference voltages; an error amplifier (9) for generating a control signal based on the output from the current detection circuit (6) and the reference voltage from the reference voltage circuit (14); an inverter driver circuit (3) for controlling the inverter circuit (2) based on the control signal from the error amplifier (9) to control the current supplied to the lamp load circuit (5); and reference voltage selection means (19) for selecting a reference voltage output from the reference voltage circuit (14). The apparatus alone is applicable to various discharge lamps having different ratings.

Description

明 細 書 放電灯点灯装置 技術分野  Description Discharge lamp lighting device Technical field
この発明は、 ィンバ一夕回路からの高周波電力によって放電灯を点灯 させる放電灯点灯装置に関するものである。 背景技術  The present invention relates to a discharge lamp lighting device for lighting a discharge lamp with high frequency power from an inverter circuit. Background art
第 2 4図に、 従来の放電灯点灯装置の回路図を示す。 図において、 1 は商用電源を整流、平滑化して直流電流を得る直流電源、 2は M O S F E T等のスイッチング素子 2 a、 2 bから成るインバー夕回路、 3はィ ンバ一夕回路 2を駆動するィンバ一夕駆動回路、 4はィンバ一夕回路 2 の出力側に接続された結合コンデンサ、 5はチョークコイル 5 a、 始動 コンデンサ 5 bおよび放電灯 5 cから成る放電灯負荷回路、 6は検出抵 抗 7と、 抵抗 8 aおよびコンデンサ 8 bを備えた積分回路 8 (ハイパス フィルタ—) から構成され放電灯負荷回路 5に供給される正味電流を検 出する電流検出回路、 9は誤差増幅器、 1 0 aおよび 1 0 bは誤差増幅 器 9での積分用の抵抗およびコンデンサであり、 誤差増幅器 9の反転入 力端には積分回路 8の出力電圧が、 また、 非反転入力端には安定化され た基準電圧用直流電源 1 1および分割抵抗 1 2、 1 3とを備えた基準電 圧回路 1 4から基準電圧が入力され、 上記の 2つの電圧の差が誤差増幅 器 9で増幅されて制御信号としてインバ一夕駆動回路 3にフィードバヅ クされている。  FIG. 24 shows a circuit diagram of a conventional discharge lamp lighting device. In the figure, 1 is a DC power supply that rectifies and smoothes a commercial power supply to obtain a DC current, 2 is an inverter circuit composed of switching elements 2 a and 2 b such as MOSFETs, and 3 is an inverter that drives the inverter circuit 2. Overnight drive circuit, 4 is a coupling capacitor connected to the output side of the inverter night circuit 2, 5 is a discharge lamp load circuit consisting of a choke coil 5a, a starting capacitor 5b, and a discharge lamp 5c, and 6 is a detection resistor. 7, a current detection circuit configured to detect a net current supplied to the discharge lamp load circuit 5, including an integration circuit 8 (high-pass filter) including a resistor 8 a and a capacitor 8 b, 9 is an error amplifier, 10 a and 10b are a resistor and a capacitor for integration in the error amplifier 9, the output voltage of the integration circuit 8 is provided at the inverting input terminal of the error amplifier 9, and the output voltage of the integrating circuit 8 is stabilized at the non-inverting input terminal. DC power supply for reference voltage A reference voltage is input from a reference voltage circuit 14 having split resistors 12 and 13, and a difference between the two voltages is amplified by an error amplifier 9 and sent to an inverter drive circuit 3 as a control signal. Feedback has been received.
なお、 商用電源から直流電流を得る場合の直流電源 1の構成例を第 2 5図に示す。 図に示すように、 商用電源 1 aから出力された交流電流は ダイォードブリッジ 1 bで全波整流された後、 平滑コンデンサ 1 cで平 滑化され、 直流電流として負荷回路に出力されるよう構成されている。 以下、 この第 2 4図に示した従来例の回路の動作について説明する。 図において、 ィンバ一夕駆動回路 3によりィンバ—夕回路 2が駆動され ると直流電源 1から供給される直流電流が高周波電流に変換され、 放電 灯負荷回路 5に供給されて、 放電灯 5 cが点灯する。 この時、 放電灯負 荷回路 5には結合コンデンサ 4が接続されているため、 スイッチング素 子 2 aおよび 2 bの O N、 O F Fに連動して、 検出抵抗 7には、 第 2 6 図に示すような順方向および逆方向 (回生方向) に交流電流が流れるこ とになり'、 回路損失を無視すると、 この有効成分 (順および逆方向の電 流の和。以下、 正味電流と呼ぶ) が放電灯 5 cで電力として消費される。 一方、 検出抵抗 7によって検出された電流は、 積分回路 8で順方向お よび逆方向の電流の和 (正味電流) が検出されて、 対応する電圧が誤差 増幅器 9の反転入力端に入力される。 また、 誤差増幅器 9の非反転入力 端には、 基準電圧回路 1 4から基準電圧用直流電源 1 1の電圧を分割抵 抗 1 2及び 1 3で分割して生成した基準電圧が入力されており、 誤差増 幅器 9では、 この基準電圧と積分回路 8からの出力電圧との電圧差が増 幅されるとともに、 積分用の抵抗 1 0 aおよびコンデンサ 1 0 bによつ て積分され、 インバー夕駆動回路 3に制御信号としてフィードバックさ れることにより、 インバー夕駆動回路 3でインバー夕回路 2のスィッチ ング周波数が制御され、 直流電源 1から放電灯負荷回路 5に供給される 高周波電流が調整される。 こうして、 放電灯負荷回路 5に供給される高 周波電流がィンパ一夕回路 2のスィツチング周波数で制御されるため、 ィンバ一夕回路 2のスィツチング周波数を制御して積分回路 8の出力電 圧が基準電圧に等しくなるよう保持すれば、 直流電源 1の出力電圧が一 定の場合、 放電灯 5 cに供給される電力を一定に保つことができる。 しかしながら、 上記第 2 4図に示した従来の放電灯点灯装置では、 基 準電圧回路 1 4から出力される基準電圧が点灯装置毎に固定されていた ため、 異なる定格値を有する放電灯に対応するためには、 チョークコィ ル 5 aや始動コンデンサ 5 b等の部品をあらかじめ複数種類用意してお き、 装着する放電灯 5 cの定格値に合わせて回路定数を変更したり、 商 品群をラインアップする場合に放電灯 5 cの定格値に対応した多種類の 放電灯点灯装置を用意しておく必要があり、 生産時の部品管理や製品の 在庫管理が煩雑になり、管理コス卜が高くなるといった問題点があった。 また、 放電灯点灯装置を設置した後に、 照度アップや省電力等の目的 で異なる定格値の放電灯に変更する場合には、 放電灯点灯装置を新たに 交換、 設置する必要があり、 購入費用や放電灯点灯装置の交換のための 運用コス卜が高くなるといった問題点も有していた。 FIG. 25 shows an example of the configuration of the DC power supply 1 for obtaining a DC current from a commercial power supply. As shown in the figure, the AC current output from the commercial power supply 1a is After being full-wave rectified by the diode bridge 1b, it is smoothed by the smoothing capacitor 1c and output as a DC current to the load circuit. The operation of the conventional circuit shown in FIG. 24 will be described below. In the figure, when the inverter circuit 2 is driven by the inverter driver circuit 3, the DC current supplied from the DC power supply 1 is converted into a high-frequency current, which is supplied to the discharge lamp load circuit 5 and the discharge lamp 5c. Lights up. At this time, since the coupling capacitor 4 is connected to the discharge lamp load circuit 5, the detection resistor 7 is connected to the ON and OFF of the switching elements 2a and 2b as shown in Fig. 26. Such an alternating current flows in the forward and reverse directions (regenerative direction), and ignoring the circuit loss, this effective component (sum of forward and reverse currents; hereinafter referred to as net current) It is consumed as electric power by the discharge lamp 5c. On the other hand, in the current detected by the detection resistor 7, the sum (net current) of the forward and reverse currents is detected by the integration circuit 8, and the corresponding voltage is input to the inverting input terminal of the error amplifier 9. . The reference voltage generated by dividing the voltage of the reference voltage DC power supply 11 from the reference voltage circuit 14 by the division resistors 12 and 13 is input to the non-inverting input terminal of the error amplifier 9. In the error amplifier 9, the voltage difference between the reference voltage and the output voltage from the integrating circuit 8 is amplified, and the error is integrated by the integrating resistor 10a and the capacitor 10b. By being fed back as a control signal to the evening drive circuit 3, the switching frequency of the inverter circuit 2 is controlled by the inverter drive circuit 3, and the high-frequency current supplied from the DC power supply 1 to the discharge lamp load circuit 5 is adjusted. You. In this way, the high-frequency current supplied to the discharge lamp load circuit 5 is controlled by the switching frequency of the impedance circuit 2, so that the output frequency of the integration circuit 8 is controlled by controlling the switching frequency of the impedance circuit 2. If the output voltage of the DC power supply 1 is kept constant, the power supplied to the discharge lamp 5c can be kept constant if the voltage is kept equal to the voltage. However, in the conventional discharge lamp lighting device shown in FIG. 24, since the reference voltage output from the reference voltage circuit 14 is fixed for each lighting device, it is compatible with discharge lamps having different rated values. For this purpose, prepare several types of parts such as the choke coil 5a and the starting capacitor 5b in advance, change the circuit constants according to the rated value of the discharge lamp 5c to be installed, and change the product group. When a line-up is required, it is necessary to prepare various types of discharge lamp lighting devices corresponding to the rated value of the discharge lamp 5c, which complicates parts management and product inventory management during production and reduces management costs. There was a problem that it became expensive. Also, if you change to a discharge lamp with a different rated value for the purpose of increasing illuminance or saving power after installing the discharge lamp lighting device, it is necessary to replace and install the discharge lamp lighting device anew, and purchase costs Also, there was a problem that the operation cost for replacing the discharge lamp lighting device became high.
この発明は、 従来装置の上記のような問題点を解消するためになされ たもので、 この発明の第 1の目的は、 1つの放電灯点灯装置で複数の異 なる定格値を有する放電灯に適用でき、 生産時の部品管理等の管理コス トの削減が可能な放電灯点灯装置を提供することを目的とする。  The present invention has been made in order to solve the above-described problems of the conventional apparatus. A first object of the present invention is to provide a discharge lamp lighting device having a plurality of different rated values in a discharge lamp lighting device. An object of the present invention is to provide a discharge lamp lighting device which can be applied and can reduce management costs such as component management during production.
また、 この発明の第 2の目的は、 設置後においても放電灯の定格値の 変更に対応できる放電灯点灯装置を提供することを目的とする。  Further, a second object of the present invention is to provide a discharge lamp lighting device capable of responding to a change in the rated value of the discharge lamp even after installation.
また、 この発明の第 3の目的は、 放電灯の定格値の変更を容易に行う ことができる放電灯点灯装置を提供することを目的とする。  Further, a third object of the present invention is to provide a discharge lamp lighting device capable of easily changing the rated value of the discharge lamp.
また、 この発明の第 4の目的は、 放電灯の定格値の変更を自動的に行 うことにより、 定格値の変更が一層容易であるとともに、 電気的な知識 がない場合にも確実に定格値が変更され、 放電灯に定格値を超える過大 な電流が流れることを防止して、 放電灯が短寿命となる心配のない放電 灯点灯装置を提供することを目的とする。  Further, a fourth object of the present invention is to automatically change the rated value of the discharge lamp, thereby making it easier to change the rated value and ensuring the rated value even when there is no electrical knowledge. It is an object of the present invention to provide a discharge lamp lighting device in which a value is changed and an excessive current exceeding a rated value is prevented from flowing through the discharge lamp, and there is no fear that the discharge lamp will have a short life.
また、 この発明の第 5の目的は、 同一の放電灯で複数の定格値を有す る放電灯にも適合できる放電灯点灯装置を提供することを目的とする。 さらに、 この発明の第 6の目的は、 定格値の変更に伴う放電灯の明る さ (光出力) の急激な変化を抑制し、 使用時の快適性にも優れた放電灯 点灯装置を提供することを目的とする。 発明の開示 A fifth object of the present invention is to provide a single discharge lamp having a plurality of rated values. It is an object of the present invention to provide a discharge lamp lighting device which can be adapted to a discharge lamp. Further, a sixth object of the present invention is to provide a discharge lamp lighting device which suppresses a sudden change in the brightness (light output) of the discharge lamp due to a change in the rated value and is excellent in comfort during use. The purpose is to: Disclosure of the invention
この発明に係る放電灯点灯装置は、 直流電源と、 前記直流電源から供 給される直流を高周波電流に変換するインバ一タ回路と、 前記ィンバ一 夕回路からの高周波電流により放電灯を点灯させる放電灯負荷回路と、 前記ィンバ一夕回路から前記放電灯負荷回路に供給される電流を検出す る電流検出回路と、複数の異なる基準電圧を出力可能な基準電圧回路と、 前記電流検出回路からの出力と前記基準電圧回路から出力される基準電 圧に基づいて制御信号を生成する誤差増幅器と、 前記誤差増幅器からの 制御信号に基づいて前記ィンバ一タ回路を制御し、 前記放電灯負荷回路 に供給される電流を前記基準電圧回路から出力される基準電圧に対応し た電流値に制御するィンバータ駆動回路と、 前記基準電圧回路から出力 される基準電圧を選択する基準電圧選択手段とを備えたものである。 また、 この発明に係る放電灯点灯装置は、 前記基準電圧選択手段が、 手動操作により前記基準電圧回路から出力される基準電圧を選択するよ う構成したものである。  A discharge lamp lighting device according to the present invention includes: a DC power supply; an inverter circuit for converting DC supplied from the DC power supply into a high-frequency current; and a high-frequency current from the inverter circuit for lighting the discharge lamp. A discharge lamp load circuit, a current detection circuit for detecting a current supplied from the chamber circuit to the discharge lamp load circuit, a reference voltage circuit capable of outputting a plurality of different reference voltages, An error amplifier for generating a control signal based on the output of the reference voltage circuit and a reference voltage output from the reference voltage circuit; and controlling the inverter circuit based on a control signal from the error amplifier. An inverter drive circuit for controlling the current supplied to the inverter to a current value corresponding to the reference voltage output from the reference voltage circuit; and a reference voltage output from the reference voltage circuit. And a reference voltage selecting means for selecting. Further, in the discharge lamp lighting device according to the present invention, the reference voltage selection means is configured to select a reference voltage output from the reference voltage circuit by manual operation.
また、 この発明に係る放電灯点灯装置は、 前記基準電圧回路が、 基準 電圧用直流電源と前記基準電圧用直流電源の電圧を分割する分割抵抗と を備え、 あらかじめ設定された放電灯の定格値に対応した複数の異なる 基準電圧を生成する基準電圧発生部を備えるとともに、 前記基準電圧選 択手段が、 前記基準電圧発生部によって生成された基準電圧の中から出 力する基準電圧を選択するよう構成したものである。 また、 この発明に係る放電灯点灯装置は、 前記基準電圧回路が、 基準 電圧用直流電源と、 前記基準電圧用直流電源の'電圧を分割する分割抵抗 と、 前記分割抵抗に並列に接続された前記基準電圧選択手段を備えると ともに、 前記基準電圧選択手段がバイパスする分割抵抗を選択すること により、 前記基準電圧回路から出力する基準電圧を選択するよう構成し たものである。 Also, the discharge lamp lighting device according to the present invention, wherein the reference voltage circuit includes: a reference voltage DC power supply; and a dividing resistor that divides the voltage of the reference voltage DC power supply, and a preset rated value of the discharge lamp. A reference voltage generation unit that generates a plurality of different reference voltages corresponding to the reference voltage, and the reference voltage selection unit selects a reference voltage to be output from the reference voltages generated by the reference voltage generation unit. It is composed. Further, in the discharge lamp lighting device according to the present invention, the reference voltage circuit is connected in parallel to the reference voltage DC power supply, a dividing resistor that divides the voltage of the reference voltage DC power supply, and the dividing resistor. In addition to the provision of the reference voltage selection means, the reference voltage selection means selects a bypass resistor to select a reference voltage output from the reference voltage circuit.
また、 この発明に係る放電灯点灯装置は、 前記基準電圧選択手段とし て、 ジヤンパ線を用いたものである。  Further, the discharge lamp lighting device according to the present invention uses a jumper wire as the reference voltage selecting means.
また、 この発明に係る放電灯点灯装置は、 前記ジヤンパ線を前記誤差 増幅器が実装された回路基板上に設けるとともに、 前記ジヤンパ線が実 装された前記回路基板上に作業孔を設け、 前記作業孔から前記ジヤンパ 線の設定状況の確認および切断が可能となるよう構成したものである。 また、 この発明に係る放電灯点灯装置は、 前記基準電圧回路を、 前記 誤差増幅器が実装された回路基板上に設けたものである。  In addition, the discharge lamp lighting device according to the present invention includes: providing the jumper wire on a circuit board on which the error amplifier is mounted; and providing a work hole on the circuit board on which the jumper wire is mounted. The configuration is such that the setting status of the jumper line can be confirmed and cut through the hole. Further, in the discharge lamp lighting device according to the present invention, the reference voltage circuit is provided on a circuit board on which the error amplifier is mounted.
また、 この発明に係る放電灯点灯装置は、 前記基準電圧選択手段が実 装された回路基板を開口部が形成された金属ケース内に収納するととも に、 前記開口部から前記基準電圧選択手段の設定状況の確認および設定 変更が可能となるよう構成したものである。  In addition, the discharge lamp lighting device according to the present invention includes: a circuit board on which the reference voltage selection unit is mounted; and a circuit board on which the reference voltage selection unit is mounted is housed in a metal case having an opening. It is configured so that the setting status can be checked and the setting can be changed.
また、 この発明に係る放電灯点灯装置は、 前記基準電圧選択手段の操 作部分を基準電圧の順に配置したものである。  Further, in the discharge lamp lighting device according to the present invention, the operation portions of the reference voltage selection means are arranged in the order of the reference voltage.
また、 この発明に係る放電灯点灯装置は、 前記基準電圧選択手段が、 前記放電灯負荷回路に装着された放電灯の定格値を識別し、 前記基準電 圧回路から出力する基準電圧としてこの定格値に適合した基準電圧を自 動的に選択するよう構成したものである。  Further, in the discharge lamp lighting device according to the present invention, the reference voltage selecting means identifies a rated value of the discharge lamp mounted on the discharge lamp load circuit, and the rated voltage is used as a reference voltage output from the reference voltage circuit. It is configured to automatically select the reference voltage that matches the value.
また、 この発明に係る放電灯点灯装置は、 前記インバー夕回路のスィ ッチング周波数を設定する初期周波数設定手段を備えるとともに、 前記 基準電圧選択手段が、 前記初期周波数設定手段によって設定されたスィ ッチング周波数で運転した時の前記電流検出回路からの出力に基づいて 前記放電灯負荷回路に装着された放電灯の定格値を識別するよう構成し たものである。 The discharge lamp lighting device according to the present invention further includes an initial frequency setting unit that sets a switching frequency of the inverter circuit. The reference voltage selection means identifies a rated value of the discharge lamp mounted on the discharge lamp load circuit based on an output from the current detection circuit when operating at the switching frequency set by the initial frequency setting means. The configuration is as follows.
また、 この発明に係る放電灯点灯装置は、 前記基準電圧選択手段が、 前記電流検出回路の出力をデジタルデ一夕化する A/D変換器と、 前記 初期周波数設定手段で設定されたスィッチング周波数に対応する放電灯 の電流値を記憶する記憶回路と、 前記 A/D変換器によって検出された デジタルデータと前記記憶回路にあらかじめ保存された電流値とを比較 して装着された放電灯の定格値を識別し、 制御信号を出力する演算回路 とを備えたスィツチ制御部と、 前記演算回路からの制御信号により前記 基準電圧回路から出力される基準電圧を選択するスィツチ部とを備えた ものである。  Further, in the discharge lamp lighting device according to the present invention, the reference voltage selection unit includes an A / D converter that digitally converts an output of the current detection circuit, and a switching frequency set by the initial frequency setting unit. A storage circuit for storing the current value of the discharge lamp corresponding to the current value of the discharge lamp, and comparing the digital data detected by the A / D converter with the current value stored in the storage circuit in advance. A switch control unit including an arithmetic circuit that identifies a value and outputs a control signal; and a switch unit that selects a reference voltage output from the reference voltage circuit in accordance with a control signal from the arithmetic circuit. is there.
また、 この発明に係る放電灯点灯装置は、 前記インバー夕回路のスィ ツチング周波数を検出する周波数検出手段を設け、 前記基準電圧選択手 段が、 前記周波数検出手段から出力されるスィツチング周波数に基づい て、 前記放電灯負荷回路に装着された放電灯の定格値を識別するよう構 成したものである。  Also, the discharge lamp lighting device according to the present invention further comprises a frequency detecting means for detecting a switching frequency of the inverter circuit, wherein the reference voltage selecting means detects the switching frequency based on the switching frequency output from the frequency detecting means. The present invention is configured to identify a rated value of a discharge lamp mounted on the discharge lamp load circuit.
また、 この発明に係る放電灯点灯装置は、 前記基準電圧選択手段が、 前記周波数検出手段から出力されるスィツチング周波数と電流検出回路 から出力される前記放電灯負荷回路に供給される電流値とに基づいて、 前記放電灯負荷回路に装着された放電灯の定格値を識別するよう構成し たものである。  Also, in the discharge lamp lighting device according to the present invention, the reference voltage selection unit may determine a switching frequency output from the frequency detection unit and a current value output from the current detection circuit and supplied to the discharge lamp load circuit. The rated value of the discharge lamp mounted on the discharge lamp load circuit is identified based on the rated value.
また、 この発明に係る放電灯点灯装置は、 前記基準電圧選択手段が、 前記基準電圧回路から出力されている基準電圧と前記周波数検出手段か ら出力されるスィツチング周波数とに基づいて、 前記放電灯負荷回路に 装着された放電灯の定格値を識別するよう構成したものである。 Further, in the discharge lamp lighting device according to the present invention, the reference voltage selection unit may be configured to control the discharge lamp based on a reference voltage output from the reference voltage circuit and a switching frequency output from the frequency detection unit. In the load circuit It is configured to identify the rated value of the mounted discharge lamp.
また、 この発明に係る放電灯点灯装置は、 前記基準電圧選択手段が、 前記周波数検出手段の出力をデジタルデ一夕化する A/D変換器と、 前 記ィンパ一夕回路のスィツチング周波数を記憶する記憶回路と、 前記 A /D変換器によって検出されたデジタルデータと前記記憶回路にあらか じめ保存されたスィツチング周波数とを比較して装着された放電灯の定 格値を識別し、 制御信号を出力する演算回路とを備えたスィツチ制御部 と、 前記演算回路からの制御信号により前記基準電圧回路から出力され る基準電圧を選択するスィツチ部とを備えたものである。  Further, in the discharge lamp lighting device according to the present invention, the reference voltage selecting means stores an A / D converter for digitally converting an output of the frequency detecting means, and stores a switching frequency of the impulse overnight circuit. And a control circuit for comparing the digital data detected by the A / D converter with the switching frequency previously stored in the storage circuit to identify a rated value of the mounted discharge lamp, and to perform control. A switch control unit including an arithmetic circuit that outputs a signal; and a switch unit that selects a reference voltage output from the reference voltage circuit based on a control signal from the arithmetic circuit.
また、 この発明に係る放電灯点灯装置は、 前記放電灯点灯装置の起動 時、 前記基準電圧選択手段が、 前記基準電圧回路から出力可能な基準電 圧のうち最小の電流値に対応した基準電圧を選択するよう構成したもの ^め 。  Also, in the discharge lamp lighting device according to the present invention, when the discharge lamp lighting device is started, the reference voltage selection unit may output a reference voltage corresponding to a minimum current value among reference voltages that can be output from the reference voltage circuit. It is configured to select ^^.
また、 この発明に係る放電灯点灯装置は、前記基準電圧を変更する際、 前記基準電圧選択手段が、 変更時点で選択されている基準電圧に近い基 準電圧から順に基準電圧を選択するよう構成したものである。  Further, the discharge lamp lighting device according to the present invention is configured such that, when changing the reference voltage, the reference voltage selection means selects a reference voltage in order from a reference voltage close to the reference voltage selected at the time of the change. It was done.
また、 この発明に係る放電灯点灯装置は、 前記基準電圧選択手段に、 前記基準電圧回路から出力される基準電圧を手動で設定可能な外部設定 手段を備えたものである。  Further, in the discharge lamp lighting device according to the present invention, the reference voltage selection means includes an external setting means capable of manually setting a reference voltage output from the reference voltage circuit.
また、 この発明に係る放電灯点灯装置は、 前記基準電圧回路と前記誤 差増幅器との間に、 前記誤差増幅器に入力される基準電圧を連続的に変 化させる緩衝回路を備えたものである。  Further, the discharge lamp lighting device according to the present invention includes a buffer circuit between the reference voltage circuit and the error amplifier, which continuously changes a reference voltage input to the error amplifier. .
また、 この発明に係る放電灯点灯装置は、 前記基準電圧回路が、 基準 電圧用直流電源と前記基準電圧用直流電源の電圧を分割する分割抵抗と を備え、 あらかじめ設定された放電灯の定格値に対応した複数の異なる 基準電圧を生成する基準電圧発生部を備えるとともに、 前記基準電圧選 択手段が、 前記基準電圧発生部によって生成された基準電圧の中から出 力する基準電圧を選択するスィツチ部を備えたものである。 Also, the discharge lamp lighting device according to the present invention, wherein the reference voltage circuit includes: a reference voltage DC power supply; and a dividing resistor that divides the voltage of the reference voltage DC power supply, and a preset rated value of the discharge lamp. A reference voltage generator that generates a plurality of different reference voltages corresponding to The selection means includes a switch unit for selecting a reference voltage to be output from the reference voltages generated by the reference voltage generation unit.
また、 この発明に係る放電灯点灯装置は、 前記基準電圧回路が、 基準 電圧用直流電源と、 前記基準電圧用直流電源の電圧を分割する分割抵抗 と、 前記分割抵抗に並列に接続されたスィッチから成るスィッチ部を備 えるとともに、 前記基準電圧選択手段が、 前記スィッチ部内のスィッチ を選択し、 バイパスする分割抵抗を選択することにより、 前記基準電圧 回路から出力される基準電圧を選択するよう構成したものである。 また、 この発明に係る放電灯点灯装置は、 前記基準電圧回路を、 前記 誤差増幅器が実装された回路基板上に設けるとともに、 前記基準電圧回 路および前記誤差増幅器が実装された前記回路基板を金属ケース内に収 納したものである。 図面の簡単な説明  Further, in the discharge lamp lighting device according to the present invention, the reference voltage circuit includes: a reference voltage DC power supply; a division resistor for dividing a voltage of the reference voltage DC power supply; and a switch connected in parallel to the division resistance. And a reference voltage selection unit selects a switch in the switch unit, selects a bypass resistor, and selects a reference voltage output from the reference voltage circuit. It was done. Further, in the discharge lamp lighting device according to the present invention, the reference voltage circuit is provided on a circuit board on which the error amplifier is mounted, and the circuit board on which the reference voltage circuit and the error amplifier are mounted is made of metal. It was stored in the case. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 この発明の実施の形態 1の構成を示す回路図である。 第 2図は、 この発明の実施の形態 2の構成を示す回路図である。 第 3図は、 この発明の実施の形態 3の構成を示す回路図である。 第 4図は、 この発明の実施の形態 3の回路基板への実装状態を示す構 成図である。  FIG. 1 is a circuit diagram showing a configuration of Embodiment 1 of the present invention. FIG. 2 is a circuit diagram showing a configuration of the second embodiment of the present invention. FIG. 3 is a circuit diagram showing a configuration of Embodiment 3 of the present invention. FIG. 4 is a configuration diagram showing a mounted state on a circuit board according to Embodiment 3 of the present invention.
第 5図は、 この発明の実施の形態 3の回路基板への他の実装状態を示 す構成図である。  FIG. 5 is a configuration diagram showing another state of mounting on a circuit board according to Embodiment 3 of the present invention.
第 6図は、 この発明の実施の形態 4の構成を示す回路図である。 第 7図は、 この発明の実施の形態 4の動作を示すフローチャートであ 第 8図は、 この発明の実施の形態 4の放電灯の定格値の識別方法を示 す説明図である。 第 9図は、 この発明の実施の形態 4の基準電圧と消費電力の関係を表 す特性図である。 FIG. 6 is a circuit diagram showing a configuration of the fourth embodiment of the present invention. FIG. 7 is a flowchart showing the operation of the fourth embodiment of the present invention. FIG. 8 is an explanatory diagram showing a method of identifying the rated value of the discharge lamp of the fourth embodiment of the present invention. FIG. 9 is a characteristic diagram showing a relationship between a reference voltage and power consumption according to the fourth embodiment of the present invention.
第 1 0図は、 この発明の実施の形態 5の構成を示す回路図である。 第 1 1図は、 この発明の実施の形態 5の動作を示すフローチャートで ある。  FIG. 10 is a circuit diagram showing a configuration of the fifth embodiment of the present invention. FIG. 11 is a flowchart showing the operation of the fifth embodiment of the present invention.
第 1 2図は、 この発明の実施の形態 6の構成を示す回路図である。 第 1 3図は、 この発明の実施の形態 7の構成を示す回路図である。 第 1 4図は、 この発明の実施の形態 8の構成を示す回路図である。 第 1 5図は、 この発明の実施の形態 9の構成を示す回路図である。 第 1 6図は、 この発明の実施の形態 9の動作を示すフローチャートで ある。  FIG. 12 is a circuit diagram showing a configuration of the sixth embodiment of the present invention. FIG. 13 is a circuit diagram showing a configuration of the seventh embodiment of the present invention. FIG. 14 is a circuit diagram showing a configuration of the eighth embodiment of the present invention. FIG. 15 is a circuit diagram showing a configuration of the ninth embodiment of the present invention. FIG. 16 is a flowchart showing the operation of the ninth embodiment of the present invention.
第 1 7図は、 この発明の実施の形態 9の放電灯の定格値の識別方法を 示す説明図である。  FIG. 17 is an explanatory diagram showing a method of identifying a rated value of a discharge lamp according to Embodiment 9 of the present invention.
第 1 8図は、 この発明の実施の形態 9の基準電圧と消費電力の関係を 表す特性図である。  FIG. 18 is a characteristic diagram illustrating a relationship between a reference voltage and power consumption according to Embodiment 9 of the present invention.
第 1 9図は、 この発明の実施の形態 1 0の構成を示す回路図である。 第 2 0図は、 この発明の実施の形態 1 0の放電灯の定格値の識別方法 を示す説明図である。  FIG. 19 is a circuit diagram showing a configuration of the tenth embodiment of the present invention. FIG. 20 is an explanatory diagram showing a method of identifying the rated value of the discharge lamp according to Embodiment 10 of the present invention.
第 2 1図は、 この発明の実施の形態 1 1の構成を示す回路図である。 第 2 2図は、 この発明の実施の形態 1 2の構成を示す回路図である。 第 2 3図は、 この発明の実施の形態 1 3の構成を示す回路図である。 第 2 4図は、 従来の放電灯点灯装置の構成を示す回路図である。 第 2 5図は、 従来の放電灯点灯装置の直流電源の構成を示す回路図で ある。  FIG. 21 is a circuit diagram showing a configuration of the embodiment 11 of the present invention. FIG. 22 is a circuit diagram showing a configuration of Embodiment 12 of the present invention. FIG. 23 is a circuit diagram showing a configuration of the thirteenth embodiment of the present invention. FIG. 24 is a circuit diagram showing a configuration of a conventional discharge lamp lighting device. FIG. 25 is a circuit diagram showing a configuration of a DC power supply of a conventional discharge lamp lighting device.
第 2 6図は、 従来の放電灯点灯装置の検出抵抗を流れる電流波形図で ある。 発明を実施するための最良の形態 FIG. 26 is a waveform diagram of a current flowing through a detection resistor of a conventional discharge lamp lighting device. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について添付図面を参照しつつ説明する。 実施の形態 1 .  Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. Embodiment 1
第 1図は、 この発明の実施の形態 1である放電灯点灯装置の構成を示 す回路図である。 図において、 1は商用電源を整流、 平滑化して直流電 流を得る直流電源、 2は M O S F E T等のスイッチング素子 2 a、 2 bから成るインバ—夕回路、 3は内部に電圧によってスィヅチング周波 数が制御される電圧制御発振回路 (以下、 「V C O」 と記載) とドライ バを備え、 インバ一タ回路 2を駆動するインパー夕駆動回路、 4はイン パ一夕回路 2の出力側に接続された結合コンデンサ、 5はチョークコィ ル 5 a、始動コンデンサ 5 bおよび放電灯 5 cから成る放電灯負荷回路、 6は検出抵抗 7と、 抵抗 8 aおよびコンデンサ 8 bを備えた積分回路 8 (ハイパスフィルター) から構成され放電灯負荷回路 5に流れる正味電 流を検出する電流検出回路、 9は誤差増幅器、 1 0 aおよび 1 0 bは誤 差増幅器 9での積分用の抵抗およびコンデンサであり、 誤差増幅器 9の 反転入力端には積分回路 8の出力電圧が、 また、 非反転入力端には基準 電圧回路 1 4から基準電圧が入力され、 上記の 2つの電圧の差が誤差増 幅器 9で増幅されて制御信号としてィンバ一夕駆動回路 3にフィードパ ックされている。  FIG. 1 is a circuit diagram showing a configuration of a discharge lamp lighting device according to Embodiment 1 of the present invention. In the figure, 1 is a DC power supply that rectifies and smoothes a commercial power supply to obtain a DC current, 2 is an inverter circuit including switching elements 2a and 2b such as MOSFETs, and 3 is a switching frequency controlled by an internal voltage. Voltage-controlled oscillation circuit (hereinafter referred to as “VCO”) and a driver, and an inverter drive circuit that drives the inverter circuit 2. 4 is a coupling connected to the output side of the inverter circuit 2. A capacitor, 5 is a discharge lamp load circuit consisting of a choke coil 5a, a starting capacitor 5b and a discharge lamp 5c, 6 is a detection resistor 7, and an integration circuit 8 (high-pass filter) with a resistor 8a and a capacitor 8b The current detection circuit is configured to detect the net current flowing through the discharge lamp load circuit 5, 9 is an error amplifier, 10a and 10b are resistors and capacitors for integration in the error amplifier 9, and the error amplifier 9 The output voltage of the integrator circuit 8 is input to the inverting input terminal and the reference voltage is input to the non-inverting input terminal from the reference voltage circuit 14.The difference between the two voltages is amplified by the error amplifier 9. The control signal is fed back to the overnight drive circuit 3 as a control signal.
なお、 この実施の形態 1では、 基準電圧回路 1 4は、 安定化された基 準電圧用直流電源 1 1の電圧を分割抵抗 1 2 a、 1 2 b、 1 2 cおよび 1 3で分割して放電灯 5 cの定格値(例えば、 3 2 W、 4 0 W、 4 5 W) に対応した 3つの基準電圧をあらかじめ設定、 生成する基準電圧発生部 1 5と、 基準電圧発生部 1 5で生成された 3つの基準電圧の中から放電 灯 5 cの定格値に適合した基準電圧を選択し、 誤差増幅器 9に入力する 基準電圧選択手段 1 9であるスィッチ 2 0とから構成されている。 In the first embodiment, the reference voltage circuit 14 divides the voltage of the stabilized reference voltage DC power supply 11 by dividing resistors 12 a, 12 b, 12 c and 13. A reference voltage generator 15 that presets and generates three reference voltages corresponding to the rated values of the discharge lamp 5c (for example, 32 W, 40 W, and 45 W), and a reference voltage generator 15 Select a reference voltage that matches the rated value of the discharge lamp 5c from the three reference voltages generated in Step 3, and input it to the error amplifier 9. And a switch 20 which is a reference voltage selection means 19.
以下、 この実施の形態 1の動作について説明する。 図において、 イン バ一夕駆動回路 3によりィンバ一夕回路 2が駆動されると直流電源 1か ら供給される直流電流が高周波電流に変換され、 放電灯負荷回路 5に供 給されて、 放電灯 5 cが点灯する。 この時、 放電灯負荷回路 5には結合 コンデンサ 4が接続されているため、 スィツチング素子 2 aおよび 2 b の O N、 O F Fに連動して、 放電灯負荷回路 5には、 順方向 (直流電源 1—スィツチング素子 2 a—結合コンデンサ 4—放電灯負荷回路 5 検 出抵抗 7→直流電源 1 ) および逆方向 (結合コンデンサ 4 ~ スィッチン グ素子 2 b 放電灯負荷回路 5→結合コンデンサ 4 ) の交流電流が流れ ることになる。  Hereinafter, the operation of the first embodiment will be described. In the figure, when the inverter circuit 2 is driven by the inverter driver circuit 3, the DC current supplied from the DC power supply 1 is converted into a high-frequency current, supplied to the discharge lamp load circuit 5, and discharged. The light 5 c lights up. At this time, since the coupling capacitor 4 is connected to the discharge lamp load circuit 5, the discharge lamp load circuit 5 is connected to the ON and OFF of the switching elements 2 a and 2 b, and the forward direction (DC power supply —Switching element 2 a—Coupling capacitor 4—Discharge lamp load circuit 5 Detection resistor 7 → DC power supply 1) and AC current in the reverse direction (coupling capacitor 4 to switching element 2 b discharge lamp load circuit 5 → coupling capacitor 4) Will flow.
—方、 この時、 検出抵抗 7には第 2 6図と同様の交流電流が流れ、 積 分回路 8でこの交流電流の順方向および逆方向の電流の和 (正味電流) が検出されて、対応する電圧が誤差増幅器 9の反転入力端に入力される。 なお、 回路損失を無視すれば、 この交流電流の有効成分 (正味電流) が、 放電灯 5 cで電力として消費されることは、 従来例と全く同様である。 また、 誤差増幅器 9の非反転入力端には、 基準電圧回路 1 4の基準電 圧発生部 1 5で生成された 3つの基準電圧の中から、 装着された放電灯 5 cの定格値に対応した基準電圧がスィッチ 2 0により選択、 入力 (第 1図中では、 最上段のスィヅチが O Nの状態を例示) されており、 こう して、 誤差増幅器 9では基準電圧と積分回路 8からの出力電圧との電圧 差が増幅されるとともに、 積分用の抵抗 1 0 aおよびコンデンサ 1 0 b によって積分され、 インバー夕駆動回路 3に制御信号としてフィードバ ックされて、 ィンバ一夕駆動回路 3で積分回路 8の出力電圧が基準電圧 に等しくなるようィンバ一夕回路 2のスィツチング周波数が制御される ことにより、 直流電源 1から放電灯負荷回路 5に放電灯 5 cの定格値に 適合した高周波電流 (正味電流) が供給され、 一定に保持される。 At this time, an AC current similar to that shown in Fig. 26 flows through the detection resistor 7, and the integration circuit 8 detects the sum (net current) of the forward current and the reverse current of this AC current, The corresponding voltage is input to the inverting input terminal of the error amplifier 9. If the circuit loss is neglected, the effective component (net current) of this alternating current is consumed as electric power in the discharge lamp 5c, just as in the conventional example. Also, the non-inverting input terminal of the error amplifier 9 corresponds to the rated value of the mounted discharge lamp 5c from the three reference voltages generated by the reference voltage generator 15 of the reference voltage circuit 14. The selected reference voltage is selected and input by the switch 20 (in FIG. 1, the state of the uppermost switch is ON). Thus, the error amplifier 9 outputs the reference voltage and the output from the integration circuit 8. The voltage difference from the voltage is amplified and integrated by the integrating resistor 10a and capacitor 10b, fed back to the inverter drive circuit 3 as a control signal, and integrated by the inverter drive circuit 3. By controlling the switching frequency of the circuit 1 and the circuit 2 so that the output voltage of the circuit 8 becomes equal to the reference voltage, the DC power supply 1 supplies the discharge lamp load circuit 5 with the rated value of the discharge lamp 5c. A suitable high-frequency current (net current) is supplied and kept constant.
以上、 この実施の形態 1によれば、 放電灯負荷回路 5を流れる正味電 流を基準電圧回路 1 4から入力される基準電圧によって制御できるよう 構成するとともに、 スィッチ 2 0を切り替えることにより基準電圧回路 1 4から複数の異なる基準電圧を出力できるよう構成したため、 放電灯 負荷回路 5に供給される正味電流を放電灯 5 cの定格値に適合した値に ほぼ一定に保つことができ、 しかも、 スィッチ 2 0を切り替えることに よって同一の放電灯点灯装置で種々の定格値を有する放電灯に適用する ことができる。 また、 これによつて、 多種類の部品や放電灯点灯装置を 備える必要がなくなり、 生産時の部品管理等の管理コストが安くなる効 果がある。  As described above, according to the first embodiment, the configuration is such that the net current flowing through the discharge lamp load circuit 5 can be controlled by the reference voltage input from the reference voltage circuit 14, and the reference voltage can be controlled by switching the switch 20. Since the circuit 14 is configured to output a plurality of different reference voltages, the net current supplied to the discharge lamp load circuit 5 can be kept almost constant at a value suitable for the rated value of the discharge lamp 5c. By switching the switch 20, the same discharge lamp lighting device can be applied to discharge lamps having various rated values. In addition, this eliminates the need to provide various types of parts and discharge lamp lighting devices, and has the effect of reducing management costs such as parts management during production.
また、 放電灯点灯装置を設置後にもスィツチ 2 0を切り替えることに より異なる定格値の放電灯に適合できるため、 放電灯点灯装置を新たに 交換、 設置する必要がなく、 購入費用や運用コストが安くなる効果があ る。  In addition, switching the switch 20 after installation of the discharge lamp lighting device makes it possible to adapt to discharge lamps with different rated values, so there is no need to replace or install a new discharge lamp lighting device. It has the effect of being cheap.
さらに、 基準電圧発生部 1 5で生成される基準電圧を、 あらかじめ放 電灯 5 cの定格値 (例えば、 3 2 W、 4 0 W、 4 5 W) に対応して設定 しているため基準電圧の調整が不要であり、 しかも、 基準電圧選択手段 1 9としてスィツチ 2 0を用いたため定格値の変更が容易な放電灯点灯 装置が得られる効果がある。 また、 スィッチ 2 0により何度でも基準電 圧の変更が可能なため、 長期にわたって使用可能な資源効率に優れた放 電灯点灯装置が得られる効果がある。  Furthermore, since the reference voltage generated by the reference voltage generator 15 is set in advance in accordance with the rated value of the discharge lamp 5c (for example, 32 W, 40 W, 45 W), the reference voltage It is not necessary to adjust the voltage, and since the switch 20 is used as the reference voltage selecting means 19, there is an effect that a discharge lamp lighting device whose rated value can be easily changed is obtained. Further, since the reference voltage can be changed any number of times by the switch 20, there is an effect that a discharge lamp lighting device which can be used for a long time and has excellent resource efficiency can be obtained.
実施の形態 2 . Embodiment 2
第 2図には、 この発明の実施の形態 2として、 上記スィッチ 2 0を分 割抵抗 1 2 a、 1 2 b、 1 2 cに並列に接続した例を示す。 図において、 1 6は、 分割抵抗1 2 &、 1 2 b、 1 2 cおよび 1 3に直列に接続され た分割抵抗であり、 この実施の形態 2においては、 スィッチ 20が分割 抵抗 1 2 a、 1 2 b、 12 cに並列に接続され、 スィッチ 20の各スィ ヅチを ON、 OFFすることにより分割抵抗 12 a、 12 b、 1 2 cが パイパスされて、 誤差増幅器 9に接続された基準電圧の出力端の両側の 分割抵抗の分割比が変化し、基準電圧が変更されるよう構成されている。 なお、第 1図と同一または相当部分は同一記号を付し、説明を省略する。 また、 動作についても、 上記の実施の形態 1と全く同様であり、 説明を 省略する。 FIG. 2 shows an example in which the switch 20 is connected in parallel to the dividing resistors 12a, 12b, and 12c as the second embodiment of the present invention. In the figure, 16 is connected in series with the split resistors 12 &, 12 b, 12 c and 13 In the second embodiment, the switch 20 is connected in parallel with the divided resistors 12a, 12b, and 12c, and is turned on and off by turning on and off each switch of the switch 20. 12 a, 12 b, and 12 c are bypassed to change the division ratio of the division resistors on both sides of the output terminal of the reference voltage connected to the error amplifier 9, thereby changing the reference voltage. The same or corresponding parts as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted. Also, the operation is completely the same as that of the first embodiment, and the description is omitted.
こうして、 この実施の形態 2によれば、 上記した実施の形態 1で得ら れた効果に加え、 以下のような効果が得られる。 すなわち、 一般に誤差 増幅器 9の入力インピーダンスは非常に大きいことから、 実施の形態 1 に示した例では、 スィツチ 20の各接点には長期間にわたって微少電流 が流れ続けることになり、 このような条件下で基準電圧の値を長期間安 定して保っためには、 接点の抵抗を経年変化に対して極力抑える必要が あり、 このためには、 接点に金メッキを施すなどした高価なスィッチを 使用する必要があった。 しかし、 この実施の形態 2によれば、 スィッチ 20を分割抵抗 1 2 a、 1 2 b、 12 cに並列に接続したため、 スイツ チ 20には、 基準電圧用直流電源 1 1からの分割抵抗を流れる電流が流 れることになり、 経年変化に対して安定を保っために必要な電流値を流 すことができるため、 比較的安価なスィッチ 20を使用でき、 コストの 点で利点があるほか、 経年変化に対しても耐久性が高いため信頼性も向 上する効果がある。  Thus, according to the second embodiment, the following effects can be obtained in addition to the effects obtained in the first embodiment. That is, since the input impedance of the error amplifier 9 is generally very large, in the example shown in the first embodiment, a minute current continues to flow through each contact of the switch 20 for a long time. In order to keep the reference voltage value stable for a long time, it is necessary to minimize the contact resistance against aging.For this purpose, use expensive switches such as gold-plated contacts. Needed. However, according to the second embodiment, since the switch 20 is connected in parallel with the divided resistors 12a, 12b, and 12c, the switch 20 is provided with the divided resistor from the DC power supply 11 for reference voltage. Since the flowing current flows and the current value necessary to maintain stability over time can be passed, a relatively inexpensive switch 20 can be used, which has advantages in terms of cost, Since it has high durability against aging, it also has the effect of improving reliability.
なお、 第 2図では、 スイッチ 20の各スィッチを各分割抵抗 12 a、 12 b、 12 cの上流側とグランド間に並列に設けた例を示したが、 各 スィッチが、 それぞれ、 分割抵抗 1 2 a、 12 b、 12 cをパイパスす るよう接続しても良く、 この場合、 各スィッチの切り替えにより多種類 の分割比を得ることができ、 少ない分割抵抗数でより多くの定格値に対 応できる放電灯点灯装置が得られる効果がある。 Although FIG. 2 shows an example in which each switch of the switch 20 is provided in parallel between the upstream side of each of the divided resistors 12a, 12b, and 12c and the ground, each switch has a divided resistor of 1 2a, 12b, and 12c may be connected in a bypass manner. In this case, various types of switches can be used. Thus, there is an effect that a discharge lamp lighting device which can support a larger rated value with a small number of divided resistors can be obtained.
実施の形態 3 . Embodiment 3.
第 3図には、 この発明の実施の形態 3として、 上記基準電圧選択手段 1 9を導電線(ジヤンパ線) 2 1により構成した例を示す。 図において、 2 1は導電線 (ジヤンパ線) であり、 基準電圧発生部 1 5の各出力端と 誤差増幅器 9を導電線 (ジヤンパ線) 2 1で接続することにより、 基準 電圧発生部 1 5で生成された 3つの基準電圧の中から、 装着された放電 灯 5 cの定格値に適合した基準電圧が選択され、 誤差増幅器 9に入力さ れるよう構成されている。 なお、 第 1図と同一または相当部分は同一記 号を付し、 説明を省略する。 また、 動作についても、 上記の実施の形態 FIG. 3 shows, as Embodiment 3 of the present invention, an example in which the reference voltage selecting means 19 is constituted by a conductive wire (jumper wire) 21. In the figure, reference numeral 21 denotes a conductive line (jumper line). By connecting each output terminal of the reference voltage generating unit 15 to the error amplifier 9 with a conductive line (jumper line) 21, the reference voltage generating unit 15 A reference voltage suitable for the rated value of the mounted discharge lamp 5c is selected from among the three reference voltages generated in step (1), and is input to the error amplifier 9. The same or corresponding parts as those in FIG. 1 are denoted by the same symbols and their description is omitted. The operation is also described in the above embodiment.
1と全く同様であり、 説明を省略する。 It is exactly the same as 1 and its explanation is omitted.
また、 第 4図 (a ) および (b ) には、 それぞれ、 上記実施の形態 3 における導電線 2 1の回路基板 2 2への具体的な実装状態を表す断面図 と平面図を示す。 図において、 2 1は導電線、 2 2は導電線 2 1が実装 された回路基板、 2 3は回路基板 2 2の導電線 2 1が実装された部分に 穿たれた作業孔であり、 作業孔 2 3によって回路基板 2 2の裏面 (実装 面の反対面) からも導電線 2 1の目視確認および切断等ができるよう構 成されている。 また、 この実施の形態 3では、 導電線 2 1および基準電 圧発生部 1 5から成る基準電圧回路 1 4は、 誤差増幅器 9と同一の回路 基板 2 2上に実装され、 この回路基板 2 2は金属等で形成されたケース FIGS. 4 (a) and 4 (b) are a cross-sectional view and a plan view, respectively, showing a specific mounting state of the conductive wire 21 on the circuit board 22 in the third embodiment. In the figure, 21 is a conductive wire, 22 is a circuit board on which the conductive wire 21 is mounted, and 23 is a working hole formed in a portion of the circuit board 22 on which the conductive wire 21 is mounted. The holes 23 allow the conductive wires 21 to be visually checked and cut from the back surface (opposite to the mounting surface) of the circuit board 22. In the third embodiment, the reference voltage circuit 14 composed of the conductive wire 21 and the reference voltage generator 15 is mounted on the same circuit board 22 as the error amplifier 9. Is a case made of metal, etc.
2 4内に収納されている。 It is stored in 24.
こうして、 この実施の形態 3によれば、 上記した実施の形態 1で得ら れた効果に加え、 以下のような効果が得られる。 すなわち、 すでに実施 の形態 2で指摘したように、 実施の形態 1に示した例では、 スィッチ 2 Thus, according to the third embodiment, the following effects can be obtained in addition to the effects obtained in the first embodiment. That is, as already pointed out in Embodiment 2, in the example shown in Embodiment 1, switch 2
0の各接点には長期間にわたって微少電流が流れ続けることになり、 こ のような条件下で経年変化に対して安定した動作を保っためには、 接点 に金メツキを施すなどした高価なスィツチを使用する必要があった。 し かし、 この実施の形態 3によれば、 安価なジヤンパ線 2 1でこれを代替 できるため、 コストの点で利点があるほか、 経年変化に対しても耐久性 が高いため信頼性も向上する効果がある。 A minute current will continue to flow through each of the 0 contacts for a long time. In order to maintain stable operation over time under such conditions, it was necessary to use an expensive switch with gold plated contacts. However, according to the third embodiment, an inexpensive jumper wire 21 can be used instead, which has an advantage in terms of cost, and has high durability against aging, thereby improving reliability. Has the effect of doing
また、 導電線 2 1等の基準電圧選択手段 1 9を含め、 基準電圧回路 1 4を誤差増幅器 9が実装された回路基板 2 2と同一の回路基板上に搭載 したため、導電線 2 1等に流れる微少電流が外乱ノイズの影響で変動し、 放電灯 5 cの出力が不安定になることを防止できるとともに、 基準電圧 選択手段 1 9を別基板に設置する場合に比べてノイズ対策費用が軽減で きる利点がある。  In addition, the reference voltage circuit 14 including the reference voltage selecting means 19 such as the conductive line 21 is mounted on the same circuit board as the circuit board 22 on which the error amplifier 9 is mounted. The output of the discharge lamp 5c can be prevented from becoming unstable due to the fluctuation of the minute current that flows due to disturbance noise, and the noise countermeasure cost can be reduced compared to the case where the reference voltage selection means 19 is installed on a separate board. There are advantages that can be achieved.
さらに、 上記回路基板 2 2をケース 2 4内に収納したため、 放電灯 5 cの取り替え時等に回路基板 2 2を損傷する危険が少なくなり、 また、 ケース 2 4を金属で形成すれば放電灯 5 cの放電によるノイズの影響が 一層軽減される効果もある。  Furthermore, since the circuit board 22 is housed in the case 24, there is less danger of damaging the circuit board 22 when replacing the discharge lamp 5c, and the discharge lamp can be formed by forming the case 24 from metal. The effect of noise due to the discharge of 5c is further reduced.
また、 この実施の形態 3では、 回路基板 2 2の導電線 2 1が実装され た部分に作業孔 2 3を形成したため、 回路基板 2 2の部品装着面がケ— ス 2 4で覆われた後でも、 ケース 2 4を取り外すことなく、 導電線 2 1 の配列および基準電圧の選択状況の目視確認ができるとともに、 必要が あれば、 作業孔 2 3を利用して導電線 2 1を切断し、 適合する放電灯の 定格値に変更できる効果がある。  Further, in the third embodiment, since the working hole 23 is formed in the portion of the circuit board 22 where the conductive wire 21 is mounted, the component mounting surface of the circuit board 22 is covered with the case 24. Even afterwards, without removing the case 24, the arrangement of the conductive wires 21 and the selection status of the reference voltage can be visually checked, and if necessary, the conductive wires 21 can be cut using the work holes 23. There is an effect that the rated value of the applicable discharge lamp can be changed.
なお、 上記第 4図では、 回路基板 2 2に作業孔 2 3を設けて導電線 2 1の確認等を行う例を示したが、 第 5図に示すようにケース 2 4の導電 線 2 1の実装位置に対応する部分に開口部 2 5を設けてもよく、 この場 合、 基準電圧選択手段 1 9としてスイッチ 2 0を利用しても、 ケース 2 4を取り付けたまま基準電圧の選択状況の確認や基準電圧の変更ができ る効果がある。 また、 開口部 2 5を別の位置に設け、 ひも等によってス イッチ 2 0を操作するよう構成してもよい。 Although FIG. 4 shows an example in which the work holes 23 are provided in the circuit board 22 to check the conductive wires 21 and the like, as shown in FIG. An opening 25 may be provided in a portion corresponding to the mounting position of the reference voltage.In this case, even if the switch 20 is used as the reference voltage selection means 19, the reference voltage is selected with the case 24 attached. Check and change the reference voltage. Has an effect. Alternatively, the opening 25 may be provided at another position, and the switch 20 may be operated by a string or the like.
また、 上記実施の形態 1ないし実施の形態 3においては、 基準電圧選 択手段 1 9としてスイッチ 2 0や導電線 (ジヤンパ線) 2 1を用いた例 を示したが、 半導体スィッチ等を用いても良く、 さらには、 分割抵抗 1 2 a、 1 2 b、 1 2 c、 1 3の少なくとも一つを可変抵抗で構成し、 こ の可変抵抗の抵抗値を変化させることにより、 基準電圧回路 1 4から出 力する基準電圧を変更するよう構成してもよい。  In the first to third embodiments, the switch 20 and the conductive wire (jumper wire) 21 are used as the reference voltage selection means 19, but the semiconductor switch and the like are used. In addition, at least one of the divided resistors 12a, 12b, 12c, and 13 is composed of a variable resistor, and the resistance value of the variable resistor is changed so that the reference voltage circuit 1 The reference voltage output from step 4 may be changed.
また、 スイッチ 2 0 (口一タリ一スィツチ等の場合も含む) や導電線 (ジヤンパ線) 2 1等の基準電圧選択手段 1 9の操作部分 (スィッチ 2 0の操作部分ゃジヤンパ線 2 1の配列等) の配列を、 基準電圧、 すなわ ち、 適合する放電灯の定格値順に配置すれば、 スィッチ 2 0や導電線 2 1を操作する際の錯誤を減少できる利点もある。  In addition, the operation part of the reference voltage selection means 19 such as the switch 20 (including the case of a one-piece switch) and the conductive wire (jumper wire) 21 (the operation part of the switch 20 の the operation part of the jumper wire 21) Arranging the arrays in the order of the reference voltage, that is, the rated value of the applicable discharge lamp, also has the advantage of reducing errors when operating the switch 20 or the conductive wire 21.
また、 上記実施の形態 1および実施の形態 2において、 スィッチ 2 0 を誤差増幅器 9等が搭載された回路基板 2 2上に搭載すれば、 耐ノイズ 性の向上等においてこの実施の形態 3と全く同様の効果が得られること はもちろんである。  Further, in the first and second embodiments, if the switch 20 is mounted on the circuit board 22 on which the error amplifier 9 and the like are mounted, the switch 20 is completely different from the third embodiment in terms of improvement of noise resistance and the like. Of course, a similar effect can be obtained.
実施の形態 4 . Embodiment 4.
第 6図には、 この発明の実施の形態 4である放電灯点灯装置の構成を 表す回路図を示す。 この実施の形態 4では、 放電灯負荷回路 5に装着さ れた放電灯 5 cの定格値が基準電圧選択手段 1 9によって自動的に識別 され、 基準電圧回路 1 4から出力される基準電圧がこの定格値に対応し た電圧に自動的に設定されるよう構成された点に特徴がある。  FIG. 6 is a circuit diagram illustrating a configuration of a discharge lamp lighting device according to a fourth embodiment of the present invention. In the fourth embodiment, the rated value of the discharge lamp 5c attached to the discharge lamp load circuit 5 is automatically identified by the reference voltage selection means 19, and the reference voltage output from the reference voltage circuit 14 is The feature is that it is configured to automatically set the voltage corresponding to this rated value.
第 6図において、 1は商用電源を整流、 平滑化して直流電流を得る直 流電源、 2は M O S F E T等のスイッチング素子 2 a、 2 bから成る インパー夕回路、 3は、 内部に電圧によってスイッチング周波数が制御 される電圧制御発振回路 3 a (図中、 「VCO」 と記載) およびドライ バ 3 bを備え、 インバ一夕回路 2を駆動するインバ一夕駆動回路、 4は ィンバ一夕回路 2の出力側に接続された結合コンデンサ、 5はチョーク コイル 5 a、 始動コンデンサ 5 bおよび放電灯 5 cから成る放電灯負荷 回路、 6は検出抵抗 7と、 抵抗 8 aおよびコンデンサ 8 bを備えた積分 回路 8 (ハイパスフィルタ—) から構成され放電灯負荷回路 5に供給さ れる正味電流を検出する電流検出回路、 9は誤差増幅器、 10 aおよび 10 bは誤差増幅器 9での積分用の抵抗およびコンデンサであり、 誤差 増幅器 9の反転入力端には積分回路 8の出力電圧が、 また、 非反転入力 端には基準電圧回路 14から基準電圧が入力され、 上記の 2つの電圧の 差が誤差増幅器 9で増幅されて制御信号としてィンバ一夕駆動回路 3に フィ一ドバックされている。 In Fig. 6, 1 is a DC power supply that rectifies and smoothes a commercial power supply to obtain a DC current, 2 is an impeller circuit composed of switching elements 2a and 2b such as MOSFETs, and 3 is a switching frequency that is internally controlled by voltage. Is controlled A voltage-controlled oscillator circuit 3a (shown as “VCO” in the figure) and a driver 3b that drive the inverter circuit 2 and 4 is the output side of the inverter circuit 2 5 is a discharge lamp load circuit including a choke coil 5a, a starting capacitor 5b and a discharge lamp 5c, 6 is a detection resistor 7, and an integration circuit 8 including a resistor 8a and a capacitor 8b. (High-pass filter), a current detection circuit that detects the net current supplied to the discharge lamp load circuit 5, 9 is an error amplifier, and 10a and 10b are resistors and capacitors for integration in the error amplifier 9. The output voltage of the integrating circuit 8 is input to the inverting input terminal of the error amplifier 9 and the reference voltage from the reference voltage circuit 14 is input to the non-inverting input terminal, and the difference between the two voltages is amplified by the error amplifier 9. The control signal. Is Fi one Dobakku the server Isseki drive circuit 3.
なお、 この実施の形態 4では、 インパ一夕駆動回路 3には、 この放電 灯点灯装置の起動時のィンバ一夕回路 2のスィツチング周波数を記憶す る ROM3 1 aと、 起動時から一定期間この R 0 M 3 1 a内に記憶され たスィツチング周波数でィンバ一夕回路 2を駆動するようインバ一夕駆 動回路 3を制御する制御部 3 1 bを備えた初期周波数設定手段 3 1が接 続されている。  In the fourth embodiment, the impeller overnight drive circuit 3 has a ROM 31a for storing the switching frequency of the inverter overnight circuit 2 when the discharge lamp lighting device is started up, and the ROM 31a for a fixed period from the start up. R0M3 1 Initial frequency setting means 31 provided with control unit 3 1b that controls inverter driving circuit 3 to drive inverter circuit 2 at the switching frequency stored in a, and is connected. Have been.
また、 基準電圧回路 14は、 安定化された基準電圧用直流電源 1 1の 電圧を分割抵抗 12 a、 1 2 b、 1 2 cおよび 13で分割して放電灯 5 cの定格値 (例えば、 32W、 40W、 45 W) に対応した 3つの基準 電圧をあらかじめ設定、 生成する基準電圧発生部 1 5と、 基準電圧発生 部 1 5で生成された 3つの基準電圧の中から基準電圧を選択し誤差増幅 器 9に入力する 3つのスイッチ 20 a、 20 b、 20 cから成るスイツ チ部 20と、 電流検出回路 6に接続され、 初期周波数設定手段 3 1で設 定された起動時のスィツチング周波数と電流検出回路 6からの出力に基 づいて放電灯負荷回路 5に装着された放電灯 5 cの定格値を検出し、 ス ィツチ部 2 0の各スィツチを自動制御するスィツチ制御部 3 2とを備え ている。 また、 このスイッチ制御部 3 2およびスイッチ部 2 0は、 全体 として基準電圧選択手段 1 9を構成している。 Further, the reference voltage circuit 14 divides the voltage of the stabilized reference voltage DC power supply 11 by dividing resistors 12a, 12b, 12c, and 13 to obtain the rated value of the discharge lamp 5c (for example, (32W, 40W, 45W) corresponding to each of the three reference voltages set in advance, and a reference voltage generator is selected from among the three reference voltages generated by the reference voltage generator and the reference voltage generator. A switching section 20 composed of three switches 20a, 20b, and 20c that are input to the error amplifier 9, and a switching frequency at startup, which is connected to the current detection circuit 6 and set by the initial frequency setting means 31. And the output from the current detection circuit 6 And a switch control section 32 for automatically detecting the rated value of the discharge lamp 5c mounted on the discharge lamp load circuit 5 and automatically controlling the respective switches of the switch section 20. Further, the switch control section 32 and the switch section 20 constitute reference voltage selecting means 19 as a whole.
さらに、 このスィッチ制御部 3 2の具体的構成は、 第 6図に示すよう に、 電流検出回路 6からの出力をデジタル変換する A/D変換器 3 2 a と、 ィンパ一夕回路 2のスィツチング周波数と放電灯負荷回路 5に流れ る正味電流値との関係を記憶した記憶回路 3 2 bと、 上記 A/D変換器 3 2 aからの出力と上記記憶回路 3 2 b内に保存された電流データに基 いて放電灯負荷回路 5に装着された放電灯 5 cの定格値を識別し、 スィ ヅチ部 2 0に O N/ O F F信号を送出する演算回路 3 2 cから構成され、 この実施の形態 4では、 スィツチ制御部 3 2を A/D変換機能およびメ モリを内蔵したマイコンで、 また、 スイッチ部 2 0を半導体スイッチに より構成している。  Further, as shown in FIG. 6, a specific configuration of the switch control section 32 includes an A / D converter 32 a for converting the output from the current detection circuit 6 into a digital signal, and a switching circuit for the amplifier circuit 2. A storage circuit 32b storing the relationship between the frequency and the net current value flowing through the discharge lamp load circuit 5, an output from the A / D converter 32a and stored in the storage circuit 32b An arithmetic circuit 32c for identifying the rated value of the discharge lamp 5c mounted on the discharge lamp load circuit 5 based on the current data and transmitting an ON / OFF signal to the switch 20 is provided. In the mode 4, the switch control section 32 is constituted by a microcomputer having a built-in A / D conversion function and memory, and the switch section 20 is constituted by a semiconductor switch.
以下、 この実施の形態 4の動作について第 6図の構成図と第 7図のフ 口—チャートを用いて説明する。 まず、 この放電灯点灯装置が起動され ると、 ステップ S 1において、 初期周波数設定手段 3 1からインバ一夕 駆動回路 3に制御信号が送出され、 ィンバ一夕駆動回路 3内の電圧制御 発振回路 3 aが初期周波数設定手段 3 1内の R O M 3 1 aに記憶された 周波数で発振し、 この信号がドライバ 3 bで増幅されてインバ一夕回路 2を駆動することにより、 直流電源 1から供給される直流電流が高周波 電流に変換されて、 放電灯負荷回路 5に供給され、 放電灯 5 cが点灯す  Hereinafter, the operation of the fourth embodiment will be described with reference to the configuration diagram of FIG. 6 and the flowchart of FIG. First, when the discharge lamp lighting device is started, in step S1, a control signal is sent from the initial frequency setting means 31 to the inverter driving circuit 3, and the voltage control oscillator circuit in the inverter driving circuit 3 3a oscillates at the frequency stored in the ROM 31a in the initial frequency setting means 31, and this signal is amplified by the driver 3b and driven from the DC power supply 1 by driving the inverter circuit 2 DC current is converted to a high-frequency current and supplied to the discharge lamp load circuit 5, which turns on the discharge lamp 5c.
この時、 放電灯負荷回路 5には結合コンデンサ 4が接続されているた め、 スイッチング素子 2 aおよび 2 bの O N、 O F Fに連動して、 放電 灯負荷回路 5には、 直流電源 1→スィツチング素子 2 a 結合コンデン サ 4→放電灯負荷回路 5—検出抵抗 7 直流電源 1なる右周りおよび結 合コンデンサ 4—スィツチング素子 2 b→放電灯負荷回路 5—結合コン デンサ 4なる左周りの交流電流が交互に流れることになり、 この結果、 検出抵抗 7には第 2 6図と同様の交流電流が流れて、 積分回路 8でこの 交流電流の順方向および逆方向の電流の和 (正味電流) が検出され、 積 分回路 8に接続されたスィツチ制御部 3 2に放電灯負荷回路 5に供給さ れている正味電流の信号が入力される。 At this time, since the coupling capacitor 4 is connected to the discharge lamp load circuit 5, the DC power supply 1 → switching is applied to the discharge lamp load circuit 5 in conjunction with ON / OFF of the switching elements 2a and 2b. Element 2 a Bonded condenser 4 → Discharge lamp load circuit 5—Detection resistor 7 DC power supply 1 clockwise and coupling capacitor 4—switching element 2 b → discharge lamp load circuit 5—coupling capacitor 4 Counterclockwise alternating current flows alternately As a result, an alternating current similar to that shown in FIG. 26 flows through the detecting resistor 7, and the integrating circuit 8 detects the sum (net current) of the forward and reverse currents of the alternating current, and the product The signal of the net current supplied to the discharge lamp load circuit 5 is input to the switch control section 32 connected to the branch circuit 8.
こうして、 放電灯点灯装置を起動後、 初期周波数設定手段 3 1によつ て設定された一定周波数 (f 1 ) でインバ一夕回路 2を駆動すれば、 放 電灯負荷回路 5にはこのスィッチング周波数に対応した正味電流が供給 されるようになり、 一方、 この間、 スィッチ制御部 3 2では、 ステヅプ S 2で、 電流検出回路 6から入力された正味電流 ( I D ) を A/D変換 器 3 2 aが検出し、 ステップ S 3で、 演算回路 3 2 cが、 電流値が安定 したか、 すなわち、 定常運転状態に移行したかが判断され、 定常状態に 移行した後、 ステップ S 4で、 検出された電流デ一夕と記憶回路 3 2 b に保存された第 8図に示すようなスィツチング周波数と正味電流の関係 を表すデータが比較されて、 放電灯負荷回路 5に装着されている放電灯 5 cの定格値が識別される。  In this way, after the discharge lamp lighting device is started, if the inverter circuit 2 is driven at the constant frequency (f 1) set by the initial frequency setting means 31, the discharge lamp load circuit 5 has this switching frequency. In the meantime, the switch control section 32 converts the net current (ID) input from the current detection circuit 6 into an A / D converter 32 in step S2. a is detected, and in step S3, the arithmetic circuit 32c determines whether the current value is stable, that is, whether or not the operation has shifted to the steady operation state. The stored current data and the data representing the relationship between the switching frequency and the net current as shown in Fig. 8 stored in the memory circuit 32b are compared, and the discharge lamp installed in the discharge lamp load circuit 5 is compared. 5 The rated value of c is identified.
そして、 この結果を基に、 ステップ S 5およびステップ S 6で、 演算 回路 3 2 cがスィツチ部 2 0を制御することにより、 基準電圧発生部 1 5で生成される 3つの基準電圧の中から、 装着された放電灯 5 cの定格 値に適合した基準電圧が選択され、 この基準電圧が誤差増幅器 9に入力 される。 一方、 ステップ S 7では、 起動時からの経過時間が監視されて おり、 あらかじめ設定された一定時間が経過したところで、 ステップ S 8に移行し、 起動時に機能する初期周波数設定手段 3 1による制御を停 止し、 以後、 誤差増幅器 9による制御へ切り替えられる。 ここで、 第 8図に示したスィツチング周波数と正味電流の関係を表す 回路特性図を用いて、 上記した正味電流とスィツチング周波数の関係か ら放電灯 5 cの定格値を識別する方法について詳しく説明する。 なお、 図中、 横軸はインバー夕回路 2のスイッチング周波数、 縦軸は各周波数 で駆動した場合の正味電流値であり、 放電灯 Aおよび放電灯 Bで表す線 は、 それぞれ、 異なる定格電力 WL Aおよび WLB (WL A>WLB) を有する 2種類の放電灯の特性曲線である。 Then, based on this result, in steps S5 and S6, the arithmetic circuit 32c controls the switch section 20 to select from among the three reference voltages generated by the reference voltage generation section 15. A reference voltage suitable for the rated value of the mounted discharge lamp 5 c is selected, and this reference voltage is input to the error amplifier 9. On the other hand, in step S7, the elapsed time from the start is monitored, and when a predetermined time has elapsed, the process proceeds to step S8, in which the control by the initial frequency setting means 31 functioning at the start is performed. The operation stops and the control is switched to the control by the error amplifier 9 thereafter. Here, the method for identifying the rated value of the discharge lamp 5c from the relationship between the net current and the switching frequency described above using the circuit characteristic diagram showing the relationship between the switching frequency and the net current shown in FIG. 8 will be described in detail. I do. In the figure, the horizontal axis is the switching frequency of the inverter circuit 2 and the vertical axis is the net current value when driven at each frequency.The lines represented by the discharge lamps A and B are different rated power WL It is a characteristic curve of two types of discharge lamps having A and WLB (WL A> WLB).
第 6図に示すように、 結合コンデンサ 4と放電灯負荷回路 5からなる 回路系は L CRから成る共振系を構成しているため、 スィツチング周波 数を変化させることにより内部を流れる電流は、 第 8図のように変化す る。 また、 定格電力が WLA>WLBである放電灯を同一周波数 f 1で 点灯させた場合の正味電流は、 インピーダンスの違いにより定格電力が 大なる放電灯 Aの正味電流 IDAが定格電力が小なる放電灯 Bの正味電 流 IDBより大きくなり、 こうして、 電流検出回路 6からの信号を A/ D変換して得られた正味電流値 I Dが、 初期周波数設定手段 31により 設定されたスィツチング周波数 f 1での各放電灯の電流値 I DAおよび I DBのどちらにより近いかを比較することにより、 装着された放電灯 5 cの定格値を識別することができる。 なお、 この第 8図では、 スイツ チング周波数と正味電流の関係を特性曲線として表現したが、 実際の放 電灯点灯装置では、 起動時のスイッチング周波数 f 1が定まっているた め、 設定されたスィツチング周波数に対応する正味電流 I D Aおよび I DBのみを記憶回路 32 bに保存しておき、 この値を電流検出回路 6か ら出力される正味電流の値と比較するだけでよい。  As shown in FIG. 6, the circuit system consisting of the coupling capacitor 4 and the discharge lamp load circuit 5 constitutes a resonance system consisting of an LCR, so that the current flowing inside by changing the switching frequency is It changes as shown in Fig. 8. In addition, when a discharge lamp with a rated power of WLA> WLB is lit at the same frequency f1, the net current IDA of discharge lamp A, whose rated power is large due to the difference in impedance, is small when the rated power is small. It becomes larger than the net current IDB of the lamp B, and thus the net current value ID obtained by A / D conversion of the signal from the current detection circuit 6 is obtained at the switching frequency f 1 set by the initial frequency setting means 31. By comparing which of the discharge lamps I DA and I DB is closer to the current value of each discharge lamp, the rated value of the mounted discharge lamp 5c can be identified. In FIG. 8, the relationship between the switching frequency and the net current is expressed as a characteristic curve.However, in an actual discharge lamp lighting device, the set switching frequency f1 is determined because the switching frequency f1 at startup is fixed. Only the net currents IDA and IDB corresponding to the frequency are stored in the storage circuit 32b, and this value need only be compared with the net current value output from the current detection circuit 6.
また、 第 9図には、 誤差増幅器 9に入力される基準電圧と放電灯負荷 回路 5で消費される電力の関係を表す特性図を示す。 定格値に適合した 基準電圧が選択された後、 電流検出回路 6の出力電圧が基準電圧に等し くなるようインバー夕回路 2のスィツチング周波数が制御され、 直流電 源 1から放電灯 5 cの定格値に適合した高周波電流 (正味電流) が放電 灯負荷回路 5に供給されて、 回路損失を無視すれば、 この正味電流に対 応した一定の電力 (W L Aまたは W L B ) が放電灯 5 cで消費されるこ とは、 従来例と全く同様である。 FIG. 9 is a characteristic diagram showing the relationship between the reference voltage input to the error amplifier 9 and the power consumed by the discharge lamp load circuit 5. After a reference voltage that matches the rated value is selected, the output voltage of the current detection circuit 6 becomes equal to the reference voltage. The switching frequency of the inverter circuit 2 is controlled so that a high-frequency current (net current) suitable for the rated value of the discharge lamp 5c is supplied from the DC power supply 1 to the discharge lamp load circuit 5, and circuit loss can be ignored. For example, the constant power (WLA or WLB) corresponding to the net current is consumed by the discharge lamp 5c, just like the conventional example.
以上、 この実施の形態 4によれば、 放電灯負荷回路 5に供給される正 味電流を基準電圧回路 1 4から入力される基準電圧によって制御するよ う構成するとともに、 放電灯負荷回路 5に装着されている放電灯 5 cの 定格値をスィツチ制御部 3 2で検知し、 スィッチ部 2 0で基準電圧回路 1 4から出力される基準電圧を自動的に切り替えて、 装着された放電灯 5 cの定格値に適合した正味電流が放電灯負荷回路 5に供給されるよう 構成したため、 同一の放電灯点灯装置で種々の定格値を有する放電灯に 適用可能な放電灯点灯装置を得ることができ、 この結果、 多種類の部品 や放電灯点灯装置を備える必要がなくなり、 生産時の部品管理等の管理 コストが安くなる効果がある。 また、 放電灯 5 cの定格値に合わせて自 動的に基準電圧が変更されるため、 製品出荷時等にスィツチを操作して 手動で定格値を設定する必要がないといった利点もある。  As described above, according to the fourth embodiment, the net current supplied to the discharge lamp load circuit 5 is controlled by the reference voltage input from the reference voltage circuit 14, and the discharge lamp load circuit 5 The switch controller 32 detects the rated value of the mounted discharge lamp 5c, and the switch 20 automatically switches the reference voltage output from the reference voltage circuit 14 to the mounted discharge lamp 5c. Since the net current conforming to the rated value of c is configured to be supplied to the discharge lamp load circuit 5, it is possible to obtain a discharge lamp lighting device applicable to discharge lamps having various rated values with the same discharge lamp lighting device. As a result, there is no need to provide various types of components and a discharge lamp lighting device, and this has the effect of reducing management costs such as component management during production. In addition, since the reference voltage is automatically changed according to the rated value of the discharge lamp 5c, there is an advantage that it is not necessary to operate the switch and manually set the rated value at the time of product shipment.
また、 放電灯点灯装置を設置した後に照度アップなどのために放電灯 5 cの定格値を変更する場合も、 放電灯 5 cの定格値に合わせて基準電 圧が自動的に切り替わるため、 同一の放電灯点灯装置で異なる定格値の 放電灯を使用することができ、 放電灯点灯装置を新たに交換、 設置する 必要がなくなって、 購入費用や運用コストが削減できる効果がある。 ま た、 いつでも基準電圧の変更が可能なため、 長期にわたって使用可能な 資源効率に優れた放電灯点灯装置が得られる効果がある。  Also, when the rated value of the discharge lamp 5c is changed to increase the illuminance after installing the discharge lamp lighting device, the reference voltage automatically switches according to the rated value of the discharge lamp 5c. It is possible to use discharge lamps with different rated values in the discharge lamp lighting device, eliminating the need to replace and install a new discharge lamp lighting device, which has the effect of reducing purchasing and operating costs. In addition, since the reference voltage can be changed at any time, a discharge lamp lighting device that can be used for a long time and has excellent resource efficiency can be obtained.
さらに、 スイッチ制御部 3 2およびスィッチ部 2 0からなる基準電圧 選択手段 1 9が、 装着されている放電灯 5 cの定格値を判断し、 基準電 圧を自動的に切り替えて放電灯 5 Cの定格値に適合した正味電流が供給 されるよう構成したため、 電気の知識がなくても、 常に、 放電灯 5 cの 定格値に適合した正味電流を流すことができ、 放電灯 5 cの交換時等に おいて、 放電灯 5 cの選択ミスゃスィツチ部の設定ミス等により放電灯 5 cに過大な電流を流して放電灯 5 cが短寿命となることを防止できる 効果がある。 Further, a reference voltage selection means 19 comprising a switch control section 32 and a switch section 20 determines the rated value of the installed discharge lamp 5c, and The pressure is automatically switched to supply a net current that is compatible with the rated value of the discharge lamp 5 C. Therefore, even without knowledge of electricity, a net current that is compatible with the rated value of the discharge lamp 5 c is always obtained. When the discharge lamp 5 c is replaced, etc., the discharge lamp 5 c has a short life due to an excessive current flowing through the discharge lamp 5 c due to a mistake in selection of the discharge lamp 5 c or a mistake in the setting of the switch part. This has the effect of preventing the occurrence of
また、 起動時に初期周波数設定手段 3 1で設定したスイッチング周波 数 f 1でインバ一夕回路 2を駆動し、 この時の電流検出回路 6からの正 味電流のデータに基いて放電灯負荷回路 5に装着されている放電灯 5 c の定格値をスィッチ制御部 3 2で検知するよう構成したため、 起動時の スィツチング周波数 f 1を適切に設定することにより、 放電灯 5 cの定 格値が識別される前に定格値を超える電流が流れて放電灯 5 cが短寿命 となることを防止できる効果がある。  Also, at the time of startup, the inverter circuit 2 is driven at the switching frequency f1 set by the initial frequency setting means 31 and the discharge lamp load circuit 5 is operated based on the net current data from the current detection circuit 6 at this time. Since the switch controller 32 detects the rated value of the discharge lamp 5c attached to the lamp, the rated value of the discharge lamp 5c can be identified by appropriately setting the switching frequency f1 at startup. Before the discharge, the current exceeding the rated value flows and the life of the discharge lamp 5c can be prevented from being shortened.
また、 基準電圧回路 1 4を、 基準電圧用直流電源 1 1と分割抵抗 1 2 a、 1 2 b、 1 2 cおよび 1 3とを備え、 あらかじめ設定された放電灯 の定格値に対応した複数の異なる基準電圧を生成する基準電圧発生部 1 5と、 基準電圧発生部 1 5で生成する基準電圧を自動的に選択するスィ ツチ部 2 0とで構成したため、 例えば、 分割抵抗 1 2を可変抵抗等によ つて構成し、 可変抵抗の抵抗を変えて電圧の分割比を変更する方式に比 ベて、 回路構成がシンプルになり、 安価な基準電圧回路が得られる効果 があるとともに、 基準電圧の設定が容易となる効果がある。  The reference voltage circuit 14 includes a DC power supply 11 for reference voltage and divided resistors 12a, 12b, 12c, and 13 and has a plurality corresponding to a preset discharge lamp rated value. The reference voltage generator 15 generates different reference voltages and the switch 20 automatically selects the reference voltage generated by the reference voltage generator 15. Compared to the method of changing the voltage division ratio by changing the resistance of the variable resistor, the circuit configuration is simpler, and there is an effect that an inexpensive reference voltage circuit can be obtained. This has the effect of making setting easier.
また、 スィヅチ制御部 3 2を、 AZD変換器 3 2 a、 記憶回路 3 2 b および演算回路 3 2 cとから構成し、 AZD変換器 3 2 aで電流検出回 路 6の出力をデジタルデ一夕化するとともに、演算回路 3 2 cにおいて、 このデジタルデータを記憶回路 3 2 bにあらかじめ保存された電流デ一 夕と比較することにより装着された放電灯 5 cの定格値を識別し、 基準 電圧回路 1 4からこの定格値に対応した基準電圧が出力されるよぅスィ ツチ部 2 0を制御するよう構成したため、 記憶回路 3 2 b内のデ一夕を 変更するだけで多種類の放電灯に対応でき、 適用範囲の広い柔軟性に優 れた放電灯点灯装置が得られる効果がある。 The switch control section 32 is composed of an AZD converter 32a, a storage circuit 32b and an arithmetic circuit 32c, and the output of the current detection circuit 6 is digitally output by the AZD converter 32a. At the same time, the arithmetic circuit 32c compares the digital data with the current data stored in the storage circuit 32b in advance to identify the rated value of the mounted discharge lamp 5c, Since the switch circuit 20 is controlled so that the reference voltage corresponding to the rated value is output from the voltage circuit 14, various types of discharge lamps can be obtained simply by changing the data in the memory circuit 32b. Therefore, there is an effect that a discharge lamp lighting device having a wide range of application and excellent flexibility can be obtained.
また、 スイッチ制御部 3 2をマイコンで、 また、 スィッチ部 2 0を半 導体スィツチで構成したため、 基準電圧選択手段 1 9の回路を集積化で き、 装置の小型化が可能となる効果がある。  In addition, since the switch control section 32 is formed by a microcomputer and the switch section 20 is formed by a semiconductor switch, the circuit of the reference voltage selection means 19 can be integrated, and the device can be downsized. .
なお、 この実施の形態 4においては、 起動時の手順として、 最初から 初期周波数設定手段 3 1で設定されたスイッチング周波数で駆動し、 こ の間に基準電圧を選択するよう構成した例を示したが、 例えば、 基準電 圧回路 1 4と誤差増幅器 9により、 一旦、 最も小さい正味電流に対応し た基準電圧で点灯した後、 初期周波数設定手段 3 1で設定されたスイツ チング周波数で駆動し、 この間に基準電圧を識別して切り替えるよう構 成してもよい。  Note that, in the fourth embodiment, as an example of the procedure at the time of startup, an example is shown in which driving is performed from the beginning at the switching frequency set by the initial frequency setting means 31 and a reference voltage is selected during this time. However, for example, the reference voltage circuit 14 and the error amplifier 9 once turn on the light at the reference voltage corresponding to the smallest net current, and are then driven at the switching frequency set by the initial frequency setting means 31. During this time, the reference voltage may be identified and switched.
また、 上記実施の形態 4では、 正味電流の値を得る方法として、 電流 検出回路 6から誤差増幅器 9へ出力される信号を分岐してスィツチ制御 部 3 2に入力した例を示したが、 上記の電流検出回路 6とは別に電流検 出回路を設けてスィツチ制御部 3 2に入力するよう構成してもよい。 また、 この実施の形態 4では、 インバー夕駆動回路 3を電圧制御発振 回路 3 aとドライバ 3 bで構成した例を示したが、 電圧制御発振回路 3 aの替りに電流制御発振回路を応用しても良く、 上記と全く同様の効果 が得られる。  Further, in the fourth embodiment, as an example of a method of obtaining a net current value, an example in which a signal output from the current detection circuit 6 to the error amplifier 9 is branched and input to the switch control unit 32 has been described. A current detection circuit may be provided separately from the current detection circuit 6 and input to the switch control unit 32. Further, in the fourth embodiment, an example is shown in which the inverter driving circuit 3 is configured by the voltage-controlled oscillation circuit 3a and the driver 3b, but a current-controlled oscillation circuit is applied instead of the voltage-controlled oscillation circuit 3a. The same effect as above can be obtained.
さらに、 基準電圧選択手段 1 9として、 スィツチ制御部 3 2をマイコ ンで、 また、スィツチ部 2 0を半導体スィツチで構成した例を示したが、 例えば、 異なる電圧で O N、 0 F Fされるリレーを組み合わせ、 電流検 出回路 6からの出力電圧によって各スィッチ 2 0 a、 2 0 b、 2 0 cの 接点が O N / 0 F Fされるリレ一回路で構成し、 アナログ処理してもよ く、 また、 上記したように、 分割抵抗 1 2として可変抵抗を用いて、 電 圧の分割比を変更するよう構成してもよい。 Further, as the reference voltage selecting means 19, an example is shown in which the switch control section 32 is constituted by a microcomputer and the switch section 20 is constituted by a semiconductor switch.For example, a relay which is turned ON and OFF by different voltages is shown. And switches 20a, 20b, and 20c for each switch according to the output voltage from the current detection circuit 6. The relay may be configured as a relay circuit with contacts ON / OFF, and analog processing may be performed.Also, as described above, a variable resistor may be used as the dividing resistor 12 to change the voltage dividing ratio. You may comprise.
また、 この実施の形態 4においては、 放電灯負荷回路 5に供給される 正味電流を A/ D変換器 3 2 aで検出、 演算回路 3 2 cで監視すること により定常運転状態への移行を判断したが、 マイコン 3 2内に内蔵され たタイマーで一定時間待機してから、 正味電流を検出するよう構成して もよく、 さらには、 初期周波数設定手段 3 1から誤差増幅器 9に制御を 渡す時間をあらかじめ設定するのではなく、 基準電圧の選択完了後に、 スィッチ制御部 3 2から初期周波数選択手段 3 1に信号を送出し、 初期 周波数選択手段 3 1での制御を停止するよう構成してもよく、この場合、 正味電流の値を監視することによって定常状態を判断するよう構成した ことともあいまって、 待機時間に裕度をもっておく必要がないため、 起 動から基準電圧の選択まで速やかに行える効果がある。  Also, in the fourth embodiment, the net current supplied to the discharge lamp load circuit 5 is detected by the A / D converter 32a and monitored by the arithmetic circuit 32c so that the transition to the steady operation state is achieved. However, it may be configured so that the net current is detected after waiting for a certain time by a timer built in the microcomputer 32, and furthermore, control is passed from the initial frequency setting means 31 to the error amplifier 9. Instead of setting the time in advance, after the selection of the reference voltage is completed, a signal is sent from the switch control unit 32 to the initial frequency selecting means 31 and the control by the initial frequency selecting means 31 is stopped. In this case, combined with the fact that the steady state is determined by monitoring the value of the net current, there is no need to allow for a sufficient amount of standby time, so that the time from startup to selection of the reference voltage can be reduced. There is an effect that can be performed.
実施の形態 5 . Embodiment 5
第 1 0図には、 この発明の実施の形態 5である放電灯点灯装置の構成 を表す回路図を示す。 この実施の形態 5では、 ィンバ一夕駆動回路 3は、 電流によって発振周波数が制御される電流制御発振回路 3 c (図中、 「C C O」 と記載) とドライバ 3 bから構成され、 さらに、 放電灯点灯装置 の起動時のスィツチング周波数を設定するための初期周波数設定手段 3 1として、 ィンバ一夕駆動回路 3とグランド間には周波数設定抵抗 3 4 が、 また、 インバ一夕駆動回路 3と誤差増幅器 9間にはダイオード 3 5 が接続されている。 なお、 図中、 第 6図と同一または相当部分は同一記 号を付し、 説明を省略する。  FIG. 10 is a circuit diagram showing a configuration of a discharge lamp lighting device according to a fifth embodiment of the present invention. In the fifth embodiment, the inverter driving circuit 3 is composed of a current control oscillation circuit 3 c (described as “CCO” in the figure) whose oscillation frequency is controlled by a current, and a driver 3 b. As an initial frequency setting means 31 for setting a switching frequency at the time of starting the lighting device, a frequency setting resistor 3 4 is provided between the inverter driving circuit 3 and the ground, and an error is set between the inverter driving circuit 3 and the inverter driving circuit 3. A diode 35 is connected between the amplifiers 9. In the figure, the same or corresponding parts as those in FIG.
以下、 この実施の形態 5の動作について、 電圧制御発振回路 3 aと電 流制御発振回路 3 cの動作の違い、 および、 周波数設定抵抗 3 4とダイ ォ一ド 3 5の動作を中心に、 第 1 0図の構成図と第 1 1図のフローチヤ ートを用いて説明する。 第 1 0図において、 電流制御発振回路 3 cは、 電流制御発振回路 3 cの内部に内蔵された内部電源 (図示せず) から流 れ出る電流値によって発振周波数が制御される発振回路であり、 この例 では、 内部電源から周波数設定抵抗 3 4を介してグランドに流れ出る電 流とダイォード 3 5から誤差増幅器 9に引き込まれる電流の合計電流に よって電流制御発振回路 3 cの発振周波数が制御される。 Hereinafter, regarding the operation of the fifth embodiment, the difference between the operations of the voltage controlled oscillator 3a and the current controlled oscillator 3c, the frequency setting resistor 34 and the die The operation of mode 35 will be mainly described with reference to the configuration diagram of FIG. 10 and the flowchart of FIG. In FIG. 10, the current control oscillation circuit 3c is an oscillation circuit whose oscillation frequency is controlled by a current value flowing from an internal power supply (not shown) built in the current control oscillation circuit 3c. In this example, the oscillation frequency of the current control oscillation circuit 3c is controlled by the sum of the current flowing from the internal power supply to the ground via the frequency setting resistor 34 and the current drawn from the diode 35 to the error amplifier 9. You.
まず、 第 1 1図のステップ S 1 1において、 この放電灯点灯装置の起 動前に、 スイッチ制御部 3 2によって、 スイッチ部 2 0のスイッチ 2 0 a、 2 0 b、 2 0 cのうち最も高い基準電圧に対応したスィッチ 2 0 c を O Nに、 また、 他のスィッチ 2 0 a、 2 0 bを 0 F Fに設定する。 こ れは、 誤差増幅器 9の出力側の電位を周波数設定抵抗 3 4の上流側の電 位より高く設定することにより、 ダイオード 3 5によって電流制御発振 回路 3 c側から誤差増幅器 9側に電流が流入することを防止し、 この結 果、 起動後一定時間の間、 電流制御発振回路 3 cから流れ出る電流を一 定に保つことにより、 スィツチング周波数を周波数設定抵抗 3 4で設定 した一定周波数に保持するためである。  First, in step S11 of FIG. 11, before the start of the discharge lamp lighting device, the switch control unit 32 controls the switches 20a, 20b, and 20c of the switch unit 20. Set the switch 20 c corresponding to the highest reference voltage to ON, and set the other switches 20 a and 20 b to 0 FF. This is because, by setting the potential on the output side of the error amplifier 9 higher than the potential on the upstream side of the frequency setting resistor 34, a current flows from the current control oscillation circuit 3c side to the error amplifier 9 side by the diode 35. The switching frequency is kept at the constant frequency set by the frequency setting resistor 34 by keeping the current flowing out of the current control oscillation circuit 3c constant for a certain time after startup. To do that.
次に、 ステップ S 1 2において、 上記の状態で放電灯点灯装置を起動 すると、 電流制御発振回路 3 cは周波数設定抵抗 3 4を通ってグランド に流れ出る電流に対応した一定の周波数で発振し、 この信号をドライバ 3 bで増幅して、 インバー夕回路 2を駆動することにより、 直流電源 1 から供給される直流電流が高周波電流に変換されて、 放電灯負荷回路 5 に供給され、 放電灯 5 cが点灯する。  Next, in step S12, when the discharge lamp lighting device is started in the above state, the current control oscillation circuit 3c oscillates at a constant frequency corresponding to the current flowing to the ground through the frequency setting resistor 34, This signal is amplified by the driver 3b and the inverter circuit 2 is driven, so that the DC current supplied from the DC power supply 1 is converted into a high-frequency current, which is supplied to the discharge lamp load circuit 5 and the discharge lamp 5 c lights up.
放電灯負荷回路 5に電流が流れ出すと、 検出抵抗 7には第 2 6図と同 様の交流電流が流れ、 積分回路 8でこの交流電流の順方向および逆方向 の電流の和 (正味電流) が検出されて、 放電灯負荷回路 5に供給されて いる正味電流に対応した信号が誤差増幅器 9の反転入力端に入力される とともに、 基準電圧選択手段 1 9内のスィツチ制御部 3 2内にも入力さ れる。 When a current starts to flow into the discharge lamp load circuit 5, an alternating current similar to that shown in Fig. 26 flows through the detection resistor 7, and the integrating circuit 8 sums the forward and reverse AC currents (net current). Is detected and supplied to the discharge lamp load circuit 5. The signal corresponding to the current net current is input to the inverting input terminal of the error amplifier 9 and also input to the switch control unit 32 in the reference voltage selection means 19.
なお、 上記したように、 周波数設定抵抗 3 4で設定されるスィッチン グ周波数と起動時の基準電圧を適当に選択しておけば、 定常状態におい ても、 電流制御発振回路 3 c側から誤差増幅器 9側へ電流が流入するこ とを防止でき、 この結果、 放電灯点灯装置を起動後、 周波数設定抵抗 3 4によって設定された一定周波数でィンバ一夕回路 2をスィツチングす ることができ、 放電灯負荷回路 5には周波数設定抵抗 3 4で設定された スィツチング周波数に対応した定常的な正味電流が供給されるようにな こうして、 スィッチ制御部 3 2では、 ステップ S 1 3において、 電流 検出回路 6から送出された正味電流の信号から A/ D変換器 3 2 aが正 味電流値 ( I D ) を検出し、 続いて、 ステップ S 1 4で、 電流値が安定 したかが判断され、 定常状態になった後に、 ステヅブ S 1 5で、 この電 流デ一夕を演算回路 3 2 cにおいて記憶回路 3 2 bに保存された正味電 流のデ一夕と比較することにより、 放電灯負荷回路 5に装着されている 放電灯 5 cの定格値が識別される。  As described above, if the switching frequency set by the frequency setting resistor 34 and the reference voltage at the time of startup are appropriately selected, even in the steady state, the error amplifier from the current control oscillation circuit 3c side can be used. As a result, it is possible to prevent the current from flowing into the 9 side, and as a result, after starting the discharge lamp lighting device, it is possible to switch the circuit circuit 2 at a constant frequency set by the frequency setting resistor 34, and The lamp load circuit 5 is supplied with a steady net current corresponding to the switching frequency set by the frequency setting resistor 34. Thus, the switch control unit 32 sets the current detection circuit in step S13. The A / D converter 32a detects the net current value (ID) from the net current signal sent from 6, and subsequently, in step S14, it is determined whether the current value has stabilized. State Later, at step S15, this current data is compared with the net current data stored in the memory circuit 32b in the arithmetic circuit 32c to be mounted on the discharge lamp load circuit 5. The rated value of discharge lamp 5c is identified.
そして、 この結果を基に、 ステップ S 1 6およびステップ S 1 7にお いて、 装着された放電灯 5 cの定格値に適合した基準電圧がスィッチ部 2 0によって選択されると、 ダイオード 3 5の誤差増幅器 9側の電位が 低くなつて、 ィンバ一夕駆動回路 3側から誤差増幅器 9側に電流が引き 込まれるようになり、 以後、 ステップ S 1 8以降では、 周波数設定抵抗 3 4を流れる電流と誤差増幅器 9に引き込まれる電流とによってィンバ —夕駆動回路 3内の電流制御発振回路 3 cが制御されるようになり、 放 電灯負荷回路 5に供給される正味電流が調整されることになる。 以上のように、 この実施の形態 5によれば、 上記実施の形態 4と全く 同様の効果が得られるとともに、 放電灯点灯装置の起動時のスィッチン グ周波数を設定するための初期周波数設定手段 3 1として周波数設定抵 抗 3 4を設けたため、 周波数設定抵抗 3 4とダイオード 3 5といった簡 単な回路で起動時のスイッチング周波数が設定できるため、 実施の形態 4のようにィンバ一夕駆動回路 3を制御するための別の制御回路が不要 となって、 コストが削減できる効果がある。 Then, based on this result, in step S16 and step S17, when the switch section 20 selects a reference voltage suitable for the rated value of the mounted discharge lamp 5c, the diode 35 When the potential on the side of the error amplifier 9 becomes lower, the current is drawn into the error amplifier 9 side from the inverter driving circuit 3 side, and thereafter, flows through the frequency setting resistor 34 from step S18. The current and the current drawn into the error amplifier 9 control the current-controlled oscillation circuit 3c in the inverter-driving circuit 3 so that the net current supplied to the discharge lamp load circuit 5 is adjusted. Become. As described above, according to the fifth embodiment, exactly the same effects as those of the fourth embodiment can be obtained, and the initial frequency setting means 3 for setting the switching frequency at the time of starting the discharge lamp lighting device. Since the frequency setting resistor 34 is provided as 1, the switching frequency at startup can be set by a simple circuit such as the frequency setting resistor 34 and the diode 35, so that the instantaneous driving circuit 3 as in the fourth embodiment is used. This eliminates the need for a separate control circuit for controlling the control, and has the effect of reducing costs.
なお、 以上の説明から明らかなように、 この実施の形態 5の電流制御 発振回路 3 cの替りに電圧制御発振回路を応用しても、 全く同様の効果 が得られる。  As is apparent from the above description, the same effect can be obtained by applying the voltage controlled oscillator to the current controlled oscillator 3c of the fifth embodiment.
実施の形態 6 . Embodiment 6
第 1 2図には、 この発明の実施の形態 6である放電灯点灯装置の回路図 を示す。 なお、 この発明は、 例えば、 三菱電機ォスラム株式会社製の H : f蛍光放電灯 (形名 F H F 3 2 E X )のように、 同一放電灯で複数の定格 値を有している (F H F 3 2 E Xの場合は、 3 2 Wと 4 5 Wの 2つの定 格電力を有する) 放電灯を、 実施の形態 4に示した放電灯点灯装置で駆 動した場合、 複数の定格値を持っていても、 スイッチング周波数 f lに 対する電流検出回路 6からの正味電流の出力 I Dを表す特性曲線が 1本 だけとなるため、 スィツチ制御部 3 2だけではこの放電灯を 3 2 Wで運 転するのか、 4 5 Wで運転するかの識別ができないといった問題点を解 決するためになされたものである。 FIG. 12 is a circuit diagram of a discharge lamp lighting device according to a sixth embodiment of the present invention. In addition, the present invention has a plurality of rated values for the same discharge lamp (FHF32) such as an H: f fluorescent discharge lamp (model FHF32EX) manufactured by Mitsubishi Electric Osram Corporation. In the case of EX, it has two rated powers of 32 W and 45 W.) When the discharge lamp is driven by the discharge lamp lighting device shown in Embodiment 4, it has multiple rated values. Also, since there is only one characteristic curve representing the output ID of the net current from the current detection circuit 6 with respect to the switching frequency fl, the switch control unit 32 alone operates this discharge lamp at 32 W, This was done to solve the problem of not being able to distinguish between driving at 45 W.
以下、 この実施の形態 6の構成および動作について第 1 2図を用いて 説明する。 第 1 2図において、 3 6は、 スイッチ制御部 3 2に設けられ た放電灯 5 cの定格を外部からマニュアル設定するための外部設定手段 であり、 この実施の形態では、 「自動モード」、 「3 2 Wモード」、 「4 5 Wモ一ド」 の 3つのモ一ドが切り替えられる外部設定スィツチで構成 されている。 なお、 第 6図と同一または相当部分は同一記号を付し、 説 明を省略する。 Hereinafter, the configuration and operation of the sixth embodiment will be described with reference to FIG. In FIG. 12, reference numeral 36 denotes external setting means for manually setting the rating of the discharge lamp 5c provided in the switch control unit 32 from the outside. In this embodiment, the "auto mode" It consists of an external setting switch that can switch between three modes: "32W mode" and "45W mode". Have been. The same or corresponding parts as those in FIG. 6 are denoted by the same symbols, and the description is omitted.
以下、 この実施の形態 6の動作について説明する。第 1 2図において、 この放電灯点灯装置が起動されると、 まず、 初期周波数設定手段 3 1に よって設定されたスィツチング周波数でィンパ一夕回路 2が駆動され、 放電灯 5 cはこの周波数に対応した電力で点灯される。 一方、 このスィ ツチング周波数で運転されている一定期間の間にスィツチ制御部 3 2で は、 最初に、 外部設定スィッチ 3 6の設定状況が検出され、 「自動モー ド」 に設定されている場合は、 実施の形態 4と同様の手順で装着された 放電灯 5 cの定格値が自動識別され、 一定時間後に、 この定格値に適合 した基準電圧に切り替えられる。 また、 外部設定スィッチ 3 6の設定が 「3 2 Wモ一ド」 あるいは 「4 5 Wモード」 である場合は、 自動識別を 行わず、 この外部設定スィツチ 3 6で設定された定格値で放電灯 5 cを 点灯するようスィツチ部 2 0を切り替える。  Hereinafter, the operation of the sixth embodiment will be described. In FIG. 12, when the discharge lamp lighting device is started, first, the inverter circuit 2 is driven at the switching frequency set by the initial frequency setting means 31, and the discharge lamp 5 c is set to this frequency. It is lit with the corresponding power. On the other hand, during a certain period of operation at the switching frequency, the switch control unit 32 first detects the setting status of the external setting switch 36 and sets the switch to the "auto mode". In the example, the rated value of the mounted discharge lamp 5c is automatically identified in the same procedure as in the fourth embodiment, and after a certain time, the discharge lamp 5c is switched to a reference voltage suitable for the rated value. When the setting of the external setting switch 36 is set to “32 W mode” or “45 W mode”, the automatic identification is not performed and the external setting switch 36 is released at the rated value set by the external setting switch 36. Switch the switch unit 20 so that the light 5c is turned on.
こうして、 この実施の形態 6によれば、 上記した実施の形態 4で得ら れた効果に加え、 スィッチ制御部 3 2に、 定格値の手動設定が可能な外 部設定手段 3 6を付加したため、 複数の定格値を有する放電灯に対して も対応できる放電灯点灯装置が得られる効果がある。  Thus, according to the sixth embodiment, in addition to the effects obtained in the fourth embodiment, the switch control section 32 is provided with the external setting means 36 capable of manually setting the rated value. However, there is an effect that a discharge lamp lighting device that can handle discharge lamps having a plurality of rated values can be obtained.
なお、 上記の実施の形態 6では、 まず、 外部設定スィッチ 3 6の設定 状況を検出し、 この設定状況によってスィッチ制御部 3 2で 「自動モー ド」 、 「3 2 Wモード」 、 「4 5 Wモード」 の、 それぞれに対応した処 理を行うよう構成した例を示したが、 複数の定格値を有する放電灯のス ィツチング周波数と正味電流の特性曲線が分かっている場合は、 まず、 起動時のスィツチング周波数と正味電流の関係から複数定格を有する放 電灯であるかどうかを判断し、 複数定格である場合に、 外部設定スイツ チ 3 6の設定状況を確認に行くよう構成してもよく、 この場合、 複数定 格以外の放電灯に対しては上記の実施の形態 4と同様にして定格値の自 動識別が行われる。 In the sixth embodiment, first, the setting status of the external setting switch 36 is detected, and according to the setting status, the switch control unit 32 selects “auto mode”, “32 W mode”, “45”. An example was shown in which the processing corresponding to each of the `` W mode '' was performed.However, if the switching frequency and the net current characteristic curve of a discharge lamp with multiple rated values are known, It may be configured to judge whether the lamp has multiple ratings based on the relationship between the switching frequency at the time and the net current, and to check the setting status of the external setting switch 36 if the lamp has multiple ratings. , In this case, multiple fixed For discharge lamps other than the rated ones, the rated values are automatically identified in the same manner as in the fourth embodiment.
また、 上記においては、 外部設定スィッチ 3 6として 「自動モード」 以外に、 「3 2 Wモード」 、 「4 5 Wモード」 の 2つのモードを持つ例 を示したが、 外部設定スィッチ 3 6の接点の数を増やせば、 3つ以上の 定格値にも対応できることは明らかである。  In the above description, the external setting switch 36 has an example of having two modes of “32 W mode” and “45 W mode” in addition to “auto mode”. It is clear that increasing the number of contacts can accommodate more than three rated values.
実施の形態 7 . Embodiment 7
第 1 3図には、 この発明の実施の形態 7として、 基準電圧の切り替え に伴って放電灯 5 cの明るさを連続的に変化させることが可能な放電灯 点灯装置の回路図を示す。 図において、 3 7 a、 3 7 bおよび 3 8は、 それぞれ、 緩衝用抵抗、 緩衝用コンデンサおよび抵抗であり、 緩衝用抵 抗 3 7 aと緩衝用コンデンサ 3 7 bは全体として緩衝用積分回路 3 7を 構成している。 なお、 第 6図と同一または相当部分は同一記号を付し、 説明を省略する。  FIG. 13 shows, as Embodiment 7 of the present invention, a circuit diagram of a discharge lamp lighting device capable of continuously changing the brightness of discharge lamp 5c in accordance with switching of a reference voltage. In the figure, 37a, 37b and 38 are a buffering resistor, a buffering capacitor and a resistor, respectively.The buffering resistor 37a and the buffering capacitor 37b as a whole are a buffering integration circuit. 3 7 Note that the same or corresponding parts as those in FIG.
このように、 この実施の形態 7では、 基準電圧を選択するスィッチ部 2 0のスィッチが、 仮に、 2 0 aが O Nの状態から 2 0 bが O Nの状態 に変化した場合に、 その電圧の変化分が緩衝用積分回路 3 7で積分され るので、 誤差増幅器 9に入力される基準電圧は緩衝用積分回路 3 7の積 分定数で連続的に変化し、 この積分定数を適当に選定すれば、 基準電圧 の変化を徐々に変化させることができ、 光出力をスムースに変化させる ことができる。  As described above, in the seventh embodiment, if the switch of the switch section 20 for selecting the reference voltage changes from the ON state of 20a to the ON state of 20b, the voltage of the switch is changed. Since the variation is integrated by the buffer integration circuit 37, the reference voltage input to the error amplifier 9 changes continuously with the integration constant of the buffer integration circuit 37, and this integration constant must be selected appropriately. If this is the case, the change in the reference voltage can be gradually changed, and the light output can be changed smoothly.
以上のように、 この実施の形態 7によれば、 上記した実施の形態 4で 得られた効果に加え、 誤差増幅器 9の入力端と基準電圧回路 1 4の間に 緩衝回路 3 7である緩衝用積分回路 3 7を設け、 基準電圧の切り替えに ともなう基準電圧回路 1 4の階段的な出力の変化を緩衝し、 誤差増幅器 9に入力される信号が徐々に、 連続的に変化するよう構成したため、 起 動時のスィツチング周波数から放電灯 5 cの定格値に適合した基準電圧 に自動的に切り替える際等に生じる、 放電灯 5 cの光出力 (明るさ) の 急激な階段状の変化を抑制することができ、 起動から定常状態に至る光 出力をスムースに変化させることができるため、 ユーザの違和感や不***を減少でき、 快適性に優れた放電灯点灯装置が得られる効果がある。 なお、 このように、 毎起動時に放電灯 5 cの定格値が識別されスイツ チ部 2 0が切り替えられて基準電圧の選択が自動で行われる放電灯点灯 装置においては、 装置を起動するたびに放電灯 5 cの明るさが変化する ことになり、 明るさが毎回急変することはユーザの快適性を大きく損な うもので、 光出力をスムースに変化させることのできる上記実施の形態 7の放電灯点灯装置は実用上非常に大きな利点となる。 As described above, according to the seventh embodiment, in addition to the effects obtained in the fourth embodiment, the buffer circuit 37 between the input terminal of the error amplifier 9 and the reference voltage circuit 14 The integration circuit 37 is provided to buffer the stepwise change in the output of the reference voltage circuit 14 due to the switching of the reference voltage, so that the signal input to the error amplifier 9 changes gradually and continuously. , Ki Suppressing the stair-like change in the light output (brightness) of the discharge lamp 5c, which occurs when switching automatically from the switching frequency during operation to a reference voltage suitable for the rated value of the discharge lamp 5c. Since the light output from the start-up to the steady state can be smoothly changed, the user's discomfort and discomfort can be reduced, and the discharge lamp lighting device with excellent comfort can be obtained. As described above, in the discharge lamp lighting device in which the rated value of the discharge lamp 5c is identified at each start, the switch unit 20 is switched, and the reference voltage is automatically selected, every time the device is started. The brightness of the discharge lamp 5c changes, and a sudden change in the brightness every time greatly impairs the user's comfort. In the seventh embodiment, the light output can be changed smoothly. The discharge lamp lighting device has a very great advantage in practical use.
さらに、 例えば、 起動時のスイッチング周波数から 4 5 W定格時に切 り替える際も、 直接 4 5 W定格の基準電圧に切り替えるのではなく、 ス ィツチ制御部 3 2で、 3 2 W-> 4 0 W-> 4 5 Wと順に 1段づっ切り替え るようにすれば、 緩衝用積分回路 3 7の効果ともあいまって、 光出力が より連続的に変化し、一層快適な放電灯点灯装置が得られる効果がある。 また、 上記の実施の形態 7では、 誤差増幅器 9に入力される緩衝回路 3 7として、 緩衝用抵抗 3 7 aと緩衝用コンデンサ 3 7 bからなる緩衝 用積分回路 3 7を用いた例を示したが、 例えば、 オペアンプによる積分 回路等の、 これと同等の機能を持つ他の構成でも良い。  Furthermore, for example, when switching from the switching frequency at start-up at the time of 45 W rating, instead of directly switching to the reference voltage of 45 W rating, the switch control section 32 uses the 32 W-> 40 If switching is performed one step at a time in the order of W-> 45 W, the light output changes more continuously, in combination with the effect of the buffering integration circuit 37, and a more comfortable discharge lamp lighting device can be obtained. effective. Further, in the above-described seventh embodiment, an example is shown in which a buffer integration circuit 37 including a buffer resistor 37a and a buffer capacitor 37b is used as the buffer circuit 37 input to the error amplifier 9. However, for example, another configuration having an equivalent function, such as an integration circuit using an operational amplifier, may be used.
実施の形態 8 . Embodiment 8
第 1 4図には、 実施の形態 8である放電灯点灯装置の回路構成図を示 す。 これまでの実施の形態 4ないし実施の形態 7においては、 スィッチ 部 2 0を基準電圧発生部 1 5と誤差増幅器 9の間に配置し、 基準電圧発 生部 1 5により生成された複数の基準電圧の中から、 スィッチ部 2 0に より誤差増幅器 9に入力する基準電圧を選択するよう構成した例を示し たが、 第 1 4図に示すこの実施の形態 8のように、 スイッチ部 20の各 スイッチ 20 a、 20、 20 cを各分割抵抗 1 2 a、 1 2 b、 1 2 cに 並列に接続し、 スイッチ部 2 0の各スィヅチを ON、 OF Fすることに よって分割抵抗 1 2 a、 1 2 b、 1 2 cがバイパスされ、 誤差増幅器 9 に接続された基準電圧の出力端の両側の分割抵抗の分割比が変化し、 基 準電圧が変更されるよう構成してもよい。 FIG. 14 shows a circuit configuration diagram of the discharge lamp lighting device according to the eighth embodiment. In Embodiments 4 to 7 described above, switch section 20 is arranged between reference voltage generating section 15 and error amplifier 9, and a plurality of reference sections generated by reference voltage generating section 15 are provided. An example is shown in which the reference voltage input to the error amplifier 9 is selected by the switch unit 20 from the voltages. However, as in Embodiment 8 shown in FIG. 14, the switches 20a, 20, and 20c of the switch section 20 are connected in parallel to the respective divided resistors 12a, 12b, and 12c. By turning each switch of the switch section 20 ON and OFF, the divided resistors 12a, 12b, and 12c are bypassed, and both sides of the reference voltage output terminal connected to the error amplifier 9 are connected. The configuration may be such that the division ratio of the divisional resistance changes and the reference voltage changes.
なお、 第 14図中、 1 6は、 分割抵抗1 2 &、 1 2 b、 1 2 cおよび 1 3に直列に接続された分割抵抗であり、 また、 第 6図と同一または相 当部分は同一記号を付し、 説明を省略する。 さらに、 動作についても、 上記の実施の形態 4と全く同様であり、 説明を省略する。  In FIG. 14, reference numeral 16 denotes a divided resistor connected in series to the divided resistors 12 &, 12 b, 12 c, and 13, and the same or equivalent parts as those in FIG. The same symbols are given and the description is omitted. Further, the operation is completely the same as that of the fourth embodiment, and the description is omitted.
こうして、 この実施の形態 8によれば、 上記した実施の形態 4で得ら れた効果に加え、 以下のような効果が得られる。 すなわち、 一般に誤差 増幅器 9の入力インピーダンスは非常に大きいことから、 実施の形態 4 に示した例では、 スィツチ部 20の各接点には長期間にわたって微少電 流が流れ続けることになり、 このような条件下で基準電圧の値を長期間 安定して保つことはなかなか困難であった。 しかし、 この実施の形態 8 によれば、 スィッチ部 20を分割抵抗 1 2 a、 1 2 b、 1 2 cに並列に 接続したため、 スィッチ部 20には、 基準電圧用直流電源 1 1からの分 割抵抗を流れる電流が流れることになり、 経年変化に対して安定を保つ ために必要な電流値を流すことができるため、 経年変化に対して耐久性 が高く、 信頼性の高い放電灯点灯装置が得られる効果がある。  Thus, according to the eighth embodiment, the following effects can be obtained in addition to the effects obtained in the fourth embodiment. That is, since the input impedance of the error amplifier 9 is generally very large, in the example shown in the fourth embodiment, a minute current continues to flow through each contact of the switch section 20 for a long time. It was difficult to keep the value of the reference voltage stable under long-term conditions. However, according to the eighth embodiment, since the switch section 20 is connected in parallel with the divided resistors 12a, 12b, and 12c, the switch section 20 is connected to the reference voltage DC power supply 11 from the reference voltage DC power supply 11. Since the current flowing through the split resistor flows and the current required to maintain stability over time can flow, the discharge lamp lighting device has high durability and high reliability over time. The effect is obtained.
なお、 第 14図では、 スィッチ部 20の各スィツチ 20 a, 2 0 b, 20 cを各分割抵抗 1 2 a、 1 2 b、 1 2 cの上流側とグランド間に並 列に設けた例を示したが、 スィヅチ部 2 0の各スィツチ 20 a、 20 b、 20 cが、 それぞれ、 分割抵抗 1 2 a、 1 2 b、 1 2 cをバイパスする よう接続しても良く、 この場合、 各スィッチの切り替えにより多種類の 分割比を得ることができ、 少ない分割抵抗数でより多くの定格値に対応 できる放電灯点灯装置が得られる効果がある。 FIG. 14 shows an example in which the switches 20a, 20b, and 20c of the switch section 20 are provided in parallel between the upstream side of each of the divided resistors 12a, 12b, and 12c and the ground. However, the switches 20a, 20b, and 20c of the switch section 20 may be connected to bypass the divided resistors 12a, 12b, and 12c, respectively. Various types of switching It is possible to obtain a division ratio, and to obtain a discharge lamp lighting device capable of supporting a larger number of rated values with a small number of division resistors.
実施の形態 9 . Embodiment 9
第 1 5図は、 この発明の実施の形態 9である放電灯点灯装置の構成を 示す回路図である。 図において、 1は商用電源を整流、 平滑化して直流 電流を得る直流電源、 2は M O S F E T等のスイッチング素子 2 a、 2 bから成るインパ一夕回路、 3は、 内部に電圧によってスィヅチング 周波数が制御される電圧制御発振回路 3 a (図中、 「V C O」 と記載) およびドライバ 3 bを備え、 ィンバ一夕回路 2を駆動するィンバ一夕駆 動回路、 4はインバー夕回路 2の出力側に接続された結合コンデンサ、 5はチョークコイル 5 a、 始動コンデンサ 5 bおよび放電灯 5 cから成 る放電灯負荷回路、 6は検出抵抗 7と、 抵抗 8 aおよびコンデンサ 8 b を備えた積分回路 8 (ハイパスフィルター) から構成され放電灯負荷回 路 5に供給される正味電流を検出する電流検出回路、 9は誤差増幅器、 1 0 aおよび 1 0 bは誤差増幅器 9での積分用の抵抗およびコンデンサ であり、誤差増幅器 9の反転入力端には積分回路 8の出力電圧が、 また、 非反転入力端には基準電圧回路 1 4から基準電圧が入力され、 上記の 2 つの電圧の差が誤差増幅器 9で増幅されて制御信号としてィンバ—夕駆 動回路 3にフィ一ドバックされている。  FIG. 15 is a circuit diagram showing a configuration of a discharge lamp lighting device according to Embodiment 9 of the present invention. In the figure, 1 is a DC power supply that rectifies and smoothes a commercial power supply to obtain a DC current, 2 is an impeller circuit composed of switching elements 2a and 2b such as MOSFETs, and 3 is a switching frequency controlled by an internal voltage. A voltage-controlled oscillator circuit 3a (shown as "VCO" in the figure) and a driver 3b, and a driver circuit for driving the receiver circuit 2 and 4 is connected to the output side of the inverter circuit 2 Connected coupling capacitor, 5 is a discharge lamp load circuit consisting of choke coil 5a, starting capacitor 5b and discharge lamp 5c, 6 is detection resistor 7, and integrating circuit 8 with resistor 8a and capacitor 8b (High-pass filter), which is a current detection circuit that detects the net current supplied to the discharge lamp load circuit 5, 9 is an error amplifier, 10a and 10b are resistors and capacitors for integration in the error amplifier 9. In The output voltage of the integration circuit 8 is input to the inverting input terminal of the error amplifier 9, and the reference voltage is input to the non-inverting input terminal from the reference voltage circuit 14 .The difference between the two voltages is input to the error amplifier 9. The amplified signal is fed back to the driver circuit 3 as a control signal.
—方、 この実施の形態 9では、 インバー夕駆動回路 3には、 電圧制御 発振回路 3 aの発振周波数、 すなわち、 インバー夕駆動回路 3のスイツ チング周波数を外部に出力する周波数出力端子 4 1 aが備えられ、 接続 線 4 1 bとともに、 このスィツチング周波数に関する情報を基準電圧回 路 1 4内のスィツチ制御部 3 2に入力する周波数検出手段 4 1を構成し ている。  On the other hand, in the ninth embodiment, the inverter driving circuit 3 has a frequency output terminal 4 1 a for outputting the oscillation frequency of the voltage controlled oscillation circuit 3 a, that is, the switching frequency of the inverter driving circuit 3 to the outside. And a frequency detecting means 41 for inputting information on the switching frequency to the switch control section 32 in the reference voltage circuit 14 together with the connection line 41b.
また、 基準電圧回路 1 4は、 安定化された基準電圧用直流電源 1 1の 電圧を分割抵抗 1 2 a、 1 2 b、 1 2 cおよび 1 3で分割して放電灯 5 cの定格値 (例えば、 3 2 W、 4 0 W、 4 5 W) に対応した 3つの基準 電圧をあらかじめ設定、 生成する基準電圧発生部 1 5と、 基準電圧発生 部 1 5で生成された 3つの基準電圧の中から装着された放電灯 5 cの定 格値に適合した基準電圧を選択し誤差増幅器 9に入力する基準電圧選択 手段 1 9から構成され、 この基準電圧選択手段 1 9は、 3つのスィッチ 2 0 a、 2 0 b , 2 0 cから成るスィッチ部 2 0と、 接続線 4 1 bによ り周波数出力端子 4 1 aから入力されたィンバ一夕駆動回路 3のスィッ チング周波数に基づいて放電灯負荷回路 5に装着された放電灯 5 cの定 格値を識別し、 スィッチ部 2 0の各スィッチを自動制御するスィッチ制 御部 3 2とを備えている。 In addition, the reference voltage circuit 14 is connected to the stabilized DC power supply 11 for reference voltage. The voltage is divided by the dividing resistors 12a, 12b, 12c and 13 and the three standards corresponding to the rated value of the discharge lamp 5c (for example, 32W, 40W, 45W) A reference voltage generator 15 that sets and generates the voltage in advance and a reference voltage that matches the rated value of the mounted discharge lamp 5c is selected from the three reference voltages generated by the reference voltage generator 15 And a reference voltage selecting means 19 to be input to the error amplifier 9. The reference voltage selecting means 19 includes a switch section 20 comprising three switches 20 a, 20 b, and 20 c, and a connection line. The rated value of the discharge lamp 5c attached to the discharge lamp load circuit 5 is identified based on the switching frequency of the inverter driving circuit 3 input from the frequency output terminal 4 1a by 4 1b, A switch control unit 32 for automatically controlling each switch of the switch unit 20 is provided.
さらに、 このスィッチ制御部 3 2の具体的構成は、 第 1 5図に示すよ うに、 周波数出力端子 4 1 aからの出力をデジタル変換する A7 D変換 器 3 2 aと、 基準電圧回路 1 4から出力される基準電圧とィンパ一夕駆 動回路 3のスィツチング周波数との関係を記憶した記憶回路 3 2 bと、 上記 A/D変換器 3 2 aからの出力と上記記憶回路 3 2 b内に保存され た周波数デ一夕に基いて放電灯負荷回路 5に装着された放電灯 5 cの定 格値を検出し、 スィツチ部 2 0に O N/O F F信号を送出する演算回路 3 2 cから構成され、 この実施の形態 9では、 スィヅチ制御部 3 2を A /D変換機能およびメモリを内蔵したマイコンで、 また、 スイッチ部 2 0を半導体スィツチにより構成している。  Further, as shown in FIG. 15, a specific configuration of the switch control unit 32 includes an A7D converter 32 a for digitally converting the output from the frequency output terminal 41 a and a reference voltage circuit 14. Storage circuit 32b that stores the relationship between the reference voltage output from the A / D converter and the switching frequency of the driving circuit 3, and the output from the A / D converter 32a and the storage circuit 32b. The arithmetic circuit 32 c detects the rated value of the discharge lamp 5 c mounted on the discharge lamp load circuit 5 based on the frequency data stored in the switch circuit 20 and sends an ON / OFF signal to the switch 20. In the ninth embodiment, the switch control unit 32 is configured by a microcomputer having an A / D conversion function and a memory, and the switch unit 20 is configured by a semiconductor switch.
以下、 この実施の形態 9の動作について第 1 5図の構成図と第 1 6図 のフローチャートを用いて説明する。 まず、 この放電灯点灯装置の起動 時には、 第 1 6図のステップ S 2 1で、 スィツチ制御部 3 2が、 スィヅ チ部 2 0のスィツチを最も小さな正味電流を与える基準電圧に対応した スィッチ 2 0 aが O Nに、 また、 他のスィッチ 2 0 b、 2 0 cが O F F になるよう設定する。 この状態で放電灯点灯装置を起動すると、 誤差増 幅器 9には、 基準電圧回路 1 4から最小の正味電流に対応する基準電圧 が入力されているため、 誤差増幅器 9では電流検出回路 6からの信号と の差が増幅されてィンバ一夕駆動回路 3に入力され、 ィンバ一夕駆動回 路 3内の電圧制御発振回路 3 aがこの電圧に対応したスィツチング周波 数で発振し、 ドライバ 3 bを介してィンバ一夕回路 2を駆動することに より、 直流電源 1から供給される直流電流が高周波電流に変換されて、 放電灯負荷回路 5に供給され、 放電灯 5 cが点灯する。 Hereinafter, the operation of the ninth embodiment will be described with reference to the configuration diagram of FIG. 15 and the flowchart of FIG. First, at the time of starting the discharge lamp lighting device, in step S21 of FIG. 16, the switch control unit 32 switches the switch of the switch unit 20 to the switch 2 corresponding to the reference voltage that gives the smallest net current. 0a is ON, and other switches 20b, 20c are OFF Set to be. When the discharge lamp lighting device is started in this state, the error amplifier 9 receives the reference voltage corresponding to the minimum net current from the reference voltage circuit 14, so that the error amplifier 9 receives the current detection circuit 6 from the current detection circuit 6. The amplified signal is amplified and input to the overnight driver circuit 3, and the voltage controlled oscillator 3a in the overnight driver circuit 3 oscillates at the switching frequency corresponding to this voltage, and the driver 3b The DC current supplied from the DC power supply 1 is converted into a high-frequency current by the driving of the inverter circuit 2 through the, and the DC current is supplied to the discharge lamp load circuit 5, and the discharge lamp 5c is turned on.
この時、 放電灯負荷回路 5には結合コンデンサ 4が接続されているた め、 スイッチング素子 2 aおよび 2 bの O N、 O F Fに連動して、 放電 灯負荷回路 5には、 直流電源 1 ~>スィツチング素子 2 a 結合コンデン サ 4 放電灯負荷回路 5 検出抵抗 7 直流電源 1なる右周りおよび結 合コンデンサ 4→スィツチング素子 2 b 放電灯負荷回路 5 結合コン デンサ 4なる左周りの交流電流が交互に流れることになり、 この結果、 検出抵抗 7には第 2 6図と同様の交流電流が流れて、 積分回路 8でこの 交流電流の順方向および逆方向の電流の和 (正味電流) が検出され、 対 応する電圧が誤差増幅器 9の反転入力端に入力される。  At this time, since the coupling capacitor 4 is connected to the discharge lamp load circuit 5, the discharge lamp load circuit 5 is connected to the DC power supply 1 to> in accordance with the ON and OFF of the switching elements 2a and 2b. Switching element 2 a Coupling capacitor 4 Discharge lamp load circuit 5 Detector resistor 7 DC power supply 1 Clockwise and coupling capacitor 4 → Switching element 2 b Discharge lamp load circuit 5 Coupling capacitor 4 Counterclockwise alternating current alternates As a result, an AC current similar to that shown in FIG. 26 flows through the detection resistor 7, and the integration circuit 8 detects the sum (net current) of the forward and reverse currents of the AC current. A corresponding voltage is input to the inverting input terminal of the error amplifier 9.
一方、 誤差増幅器 9の非反転入力端には基準電圧回路 1 4から基準電 圧が入力されているため、 放電灯点灯装置の起動後は、 積分回路 8の出 力と基準電圧との差が誤差増幅器 9を介してィンバ一夕駆動回路 3にフ イードバックされることにより、 放電灯負荷回路 5に供給される正味電 流が基準電圧回路 1 4で設定した値に等しくなるまでィンバ一夕回路 2 のスイッチング周波数が調整され、 この結果、 従来例と全く同様に、 こ の最小の正味電流に対応した電力が放電灯 5 cで消費される。  On the other hand, since the reference voltage is input from the reference voltage circuit 14 to the non-inverting input terminal of the error amplifier 9, the difference between the output of the integration circuit 8 and the reference voltage after the start of the discharge lamp lighting device. The feedback to the inverter driving circuit 3 via the error amplifier 9 causes the net current supplied to the discharge lamp load circuit 5 to become equal to the value set in the reference voltage circuit 14 until the net current becomes equal to the value set in the reference voltage circuit 14. The switching frequency of the circuit 2 is adjusted, and as a result, the power corresponding to this minimum net current is consumed by the discharge lamp 5c, just as in the conventional example.
こうして、 起動後、 ステップ S 2 2で、 一定時間上記の最小の正味電 流に対応した基準電圧で放電灯点灯装置を運転し、 放電灯負荷回路 5に 供給される正味電流が基準電圧に対応した電流値で一定になったところ で、 ステップ S 2 3に移行して、 周波数出力端子 4 1 aから出力される スィヅチング周波数 (: f D ) をスィツチ制御部 3 2内の A/D変換器 3 2 aで検出し、 続いてステップ S 2 4で、 このデ一夕を演算回路 3 2 c で記憶回路 3 2 bに保存された第 1 7図に示すような基準電圧とスィッ チング周波数との関係を表すデ一夕と比較することにより、 放電灯負荷 回路 5に装着されている放電灯 5 cの定格値が識別される。 In this way, after startup, in step S22, the discharge lamp lighting device is operated at a reference voltage corresponding to the minimum net current for a certain period of time, and the discharge lamp load circuit 5 When the supplied net current becomes constant at the current value corresponding to the reference voltage, the process proceeds to step S23 to switch the switching frequency (: fD) output from the frequency output terminal 41a. Detected by the A / D converter 32a in the unit 32, and then, in step S24, this data is stored in the arithmetic circuit 32c in the storage circuit 32b in FIG. The rated value of the discharge lamp 5c mounted on the discharge lamp load circuit 5 is identified by comparing the reference voltage and the switching frequency shown in FIG.
そして、 この識別結果に基いて、 ステップ S 2 5またはステップ S 2 6で、 基準電圧発生部 1 5で生成される 3つの基準電圧の中から、 装着 された放電灯 5 cの定格値に適合した基準電圧が演算回路 3 2 cによつ て選択され、 スィッチ部 2 0によって最初に設定したスィツチ 2 0 aか ら自動的に切り替えられると、 以後、 新しく設定された基準電圧にもと づいて誤差増幅器 9がィンパ一夕駆動回路 3を制御し、 放電灯 5 cの定 格値に適合した正味電流が放電灯負荷回路 5に供給されるようになる。 ここで、 第 1 7図に示した基準電圧とスイッチング周波数との関係を 表す特性図を用いて、 上記した基準電圧とスィツチング周波数の関係か ら装着された放電灯 5 cの定格値を識別する方法について詳しく説明す る。 なお、 図中、 横軸は基準電圧回路 1 4から出力される基準電圧、 縦 軸はインバー夕駆動回路 3のスィツチング周波数であり、 放電灯 Aおよ び放電灯 Bで表す線は、 それぞれ、 異なる定格電力 W L Aおよび W L B (W L A >W L B ) を有する 2種類の放電灯の特性曲線である。  Then, based on this identification result, in step S25 or step S26, the rated value of the mounted discharge lamp 5c is selected from the three reference voltages generated by the reference voltage generator 15 The selected reference voltage is selected by the arithmetic circuit 32c, and is automatically switched from the switch 20a initially set by the switch section 20, and thereafter, based on the newly set reference voltage. As a result, the error amplifier 9 controls the driving circuit 3 and the net current suitable for the rated value of the discharge lamp 5c is supplied to the discharge lamp load circuit 5. Here, using the characteristic diagram showing the relationship between the reference voltage and the switching frequency shown in FIG. 17, the rated value of the mounted discharge lamp 5c is identified from the relationship between the reference voltage and the switching frequency described above. The method is explained in detail. In the figure, the horizontal axis is the reference voltage output from the reference voltage circuit 14, the vertical axis is the switching frequency of the inverter drive circuit 3, and the lines represented by the discharge lamps A and B are 2 is a characteristic curve of two types of discharge lamps having different rated powers WLA and WLB (WLA> WLB).
上記したように、 この放電灯点灯装置では、 積分回路 8からの出力が 基準電圧回路 1 4から出力される基準電圧に等しくなるよう、 誤差増幅 器 9がィンバ一夕駆動回路 3のスィツチング周波数を制御するため、 基 準電圧回路 1 4から出力される基準電圧が定められると、 定常状態にお いては、 この基準電圧に対応する正味電流およびこの正味電流を供給し うるスイッチング周波数が一義的に決定される。 こうして、 同一の放電 灯に対して、 基準電圧を変更すれば、 これに伴って、 スイッチング周波 数と正味電流が変化し、 第 17図に示したような特性曲線を得ることが できる。 As described above, in this discharge lamp lighting device, the error amplifier 9 adjusts the switching frequency of the inverter overnight drive circuit 3 so that the output from the integration circuit 8 becomes equal to the reference voltage output from the reference voltage circuit 14. When the reference voltage output from the reference voltage circuit 14 is determined for control, in a steady state, the net current corresponding to this reference voltage and this net current are supplied. The possible switching frequency is uniquely determined. Thus, if the reference voltage is changed for the same discharge lamp, the switching frequency and the net current change accordingly, and a characteristic curve as shown in FIG. 17 can be obtained.
一方、 結合コンデンサ 4と放電灯負荷回路 5からなる回路系は L CR から成る共振系を構成しているため、 定格値の異なる放電灯を装着した 場合、 放電灯 5 cのインピーダンスの違いに起因して同一正味電流 (す なわち、 基準電圧) を供給するスィツチング周波数が変化し、 それぞれ、 異なる特性曲線を有することになる。 例えば、 第 17図に示す例では、 定格電力が WL A >WL Bである放電灯 Aおよび Bを同一の基準電圧 (VRE F) で駆動した場合、 定格電力が大なる放電灯 Aのスィッチン グ周波数 f D Aが、 定格電力が小なる放電灯 Bのスィツチング周波数 f DBより大きくなり、 こうして、 基準電圧を最も小さい正味電流を与え る基準電圧に一定に保った状態で放電灯点灯装置を運転しながら、 周波 数検出手段 41から出力された信号を A/D変換してスィツチング周波 数 f Dを検出し、 この周波数がこの基準電圧 (VREF) に対応した各 放電灯のスィツチング周波数 f D Aおよび f D Bのどちらにより近いか を比較することにより、 装着された放電灯 5 cの定格値を識別すること ができる。  On the other hand, since the circuit system consisting of the coupling capacitor 4 and the discharge lamp load circuit 5 constitutes a resonance system consisting of the LCR, when a discharge lamp with a different rated value is installed, it is caused by the difference in impedance of the discharge lamp 5c. As a result, the switching frequency for supplying the same net current (ie, the reference voltage) changes, and each has a different characteristic curve. For example, in the example shown in Fig. 17, when the discharge lamps A and B whose rated power is WLA> WLB are driven at the same reference voltage (VREF), the switching of the discharge lamp A with the higher rated power is performed. The discharge lamp lighting device is operated with the frequency f DA being higher than the switching frequency f DB of the discharge lamp B having the smaller rated power, and thus maintaining the reference voltage at the reference voltage providing the smallest net current. A / D-converts the signal output from the frequency detecting means 41 to detect a switching frequency f D, and this frequency is the switching frequency f DA and f D of each discharge lamp corresponding to this reference voltage (VREF). By comparing the closer to the DB, the rated value of the mounted discharge lamp 5c can be identified.
なお、 この第 17図では、 基準電圧とスイッチング周波数との関係を 特性曲線として表現したが、 実際の放電灯点灯装置では、 起動時の基準 電圧 (VREF) が定まっているため、 設定された基準電圧に対応する スィツチング周波数 f D Aおよび f DBのみを記憶回路 32 bに保存し ておき、 周波数検出手段 41から出力されたスィツチング周波数をこの 値と比較するだけで定格値の識別ができ、 この場合、 基準電圧を検知す る手段も不要である。 また、 第 1 8図には、 誤差増幅器 9に入力される基準電圧と放電灯負 荷回路 5で消費される電力の関係を表す特性図を示す。 定格値に適合し た基準電圧が選択された後、 新たに設定された基準電圧と電流検出回路 6の出力電圧が等しくなるよう誤差増幅器 9およびィンバ一夕駆動回路 3によりスイッチング周波数が制御され、 直流電源 1から放電灯 5 cの 定格値に適合した高周波電流 (正味電流) が放電灯負荷回路 5に供給さ れて、 回路損失を無視すれば、 この正味電流に対応した一定の電力 (第 1 7図の例では、 W L A ) が放電灯 5 cで消費される。 In FIG. 17, the relationship between the reference voltage and the switching frequency is expressed as a characteristic curve. However, in an actual discharge lamp lighting device, the reference voltage (VREF) at the time of start-up is determined. Only the switching frequencies f DA and f DB corresponding to the voltage are stored in the storage circuit 32b, and the rated value can be identified simply by comparing the switching frequency output from the frequency detection means 41 with this value. Also, no means for detecting the reference voltage is required. FIG. 18 is a characteristic diagram showing the relationship between the reference voltage input to the error amplifier 9 and the power consumed by the discharge lamp load circuit 5. After a reference voltage that matches the rated value is selected, the switching frequency is controlled by the error amplifier 9 and the inverter driving circuit 3 so that the newly set reference voltage and the output voltage of the current detection circuit 6 become equal. A high-frequency current (net current) suitable for the rated value of the discharge lamp 5c is supplied from the DC power supply 1 to the discharge lamp load circuit 5, and if the circuit loss is ignored, a constant power corresponding to the net current (the In the example of FIG. 17, WLA) is consumed by the discharge lamp 5c.
以上、 この実施の形態 9によれば、 放電灯負荷回路 5に供給される正 味電流を基準電圧回路 1 4から出力される基準電圧によって制御するよ う構成するとともに、 所定の基準電圧で運転した時、 すなわち、 所定の 正味電流が供給されている時のィンバ一夕回路 2のスィツチング周波数 f Dを周波数検出手段 4 1によって検出することにより、 放電灯負荷回 路 5に装着されている放電灯 5 cの定格値をスィツチ制御部 3 2で識別 して、 スィッチ部 2 0で基準電圧回路 1 4から出力される基準電圧を自 動的に切り替え、 装着された放電灯 5 cの定格値に適合した正味電流を 放電灯負荷回路 5に供給するよう構成したため、 同一の放電灯点灯装置 で種々の定格値を有する放電灯に適用可能な放電灯点灯装置を得ること ができ、 この結果、 多種類の部品や放電灯点灯装置を備える必要がなく なり、 生産時の部品管理等の管理コス トが安くなる効果がある。 また、 放電灯 5 cの定格値に合わせて自動的に基準電圧が変更されるため、 製 品出荷時等にスィツチを操作して手動で定格値を設定する必要がないと いった利点もある。  As described above, according to the ninth embodiment, the net current supplied to the discharge lamp load circuit 5 is controlled by the reference voltage output from the reference voltage circuit 14, and the operation is performed at the predetermined reference voltage. That is, when the switching frequency fD of the circuit 1 is detected by the frequency detecting means 41 when a predetermined net current is supplied, the discharge circuit mounted on the discharge lamp load circuit 5 is detected. The switch controller 32 identifies the rated value of the lamp 5c, automatically switches the reference voltage output from the reference voltage circuit 14 by the switch 20, and sets the rated value of the mounted discharge lamp 5c. As a result, it is possible to obtain a discharge lamp lighting device applicable to discharge lamps having various rated values with the same discharge lamp lighting device. Many kinds of parts And a discharge lamp lighting device will not need to include a certain management costs become cheaper effect of parts management and the like at the time of production. In addition, since the reference voltage is automatically changed according to the rated value of the discharge lamp 5c, there is an advantage that it is not necessary to operate the switch and manually set the rated value at the time of product shipment. .
また、 放電灯点灯装置を設置した後に照度アップなどのために放電灯 5 cの定格値を変更する場合も、 放電灯 5 cの定格値に合わせて基準電 圧が自動的に切り替わるため、 同一の放電灯点灯装置で異なる定格値の 放電灯を使用することができ、 放電灯点灯装置を新たに交換、 設置する 必要がなくなって、 購入費用や放電灯点灯装置の交換のための運用コス トが削減できるとともに、 長期にわたつて使用可能な資源効率に優れた 放電灯点灯装置が得られる効果がある。 Also, when the rated value of the discharge lamp 5c is changed to increase the illuminance after installing the discharge lamp lighting device, the reference voltage automatically switches according to the rated value of the discharge lamp 5c. Of different rated values Discharge lamps can be used, eliminating the need to replace and install new discharge lamp lighting devices, reducing purchasing costs and operating costs for replacing discharge lamp lighting devices, and using them for a long time. There is an effect that a discharge lamp lighting device with excellent resource efficiency can be obtained.
さらに、 スイッチ制御部 3 2およびスイッチ部 2 0からなる基準電圧 選択手段 1 9が、 装着されている放電灯 5 cの定格値を判断し、 基準電 圧を自動的に切り替えて放電灯 5 cの定格値に適合した正味電流を供給 するよう構成したため、 電気の知識がなくても放電灯 5 cの定格値に適 合した正味電流を流すことができ、 放電灯 5 cの交換時等において、 放 電灯 5 cの選択ミスゃスィツチの設定ミス等により放電灯 5 cに過大な 電流を印加して放電灯 5 cが短寿命となることを防止できる効果がある。 また、 基準電圧回路 1 4を、 基準電圧用直流電源 1 1と分割抵抗 1 2 a、 1 2 b、 1 2 cおよび 1 3とを備え、 あらかじめ設定された放電灯 の定格値に対応した複数の異なる基準電圧を生成する基準電圧発生部 1 5と、 基準電圧発生部 1 5で生成した基準電圧を自動的に選択する基準 電圧選択手段 1 9とで構成したため、 回路構成がシンプルになり、 安価 な基準電圧回路が得られる効果があるとともに、 例えば、 分割抵抗 1 2 を可変抵抗等によって構成し、 可変抵抗の抵抗を変えて電圧の分割比を 変更する方式に比べて、 基準電圧の設定が容易となる効果がある。  Further, a reference voltage selecting means 19 comprising a switch control section 32 and a switch section 20 determines the rated value of the mounted discharge lamp 5c, and automatically switches the reference voltage to change the discharge lamp 5c. Is configured to supply a net current that conforms to the rated value of the discharge lamp 5c, so that a net current that conforms to the rated value of the discharge lamp 5c can flow without knowledge of electricity. However, there is an effect that it is possible to prevent the discharge lamp 5c from being shortened in life by applying an excessive current to the discharge lamp 5c due to a selection mistake of the discharge lamp 5c and a switch setting error. The reference voltage circuit 14 includes a DC power supply 11 for reference voltage and divided resistors 12a, 12b, 12c, and 13 and has a plurality corresponding to a preset discharge lamp rated value. And a reference voltage selection means 19 that automatically selects the reference voltage generated by the reference voltage generator 15, thereby simplifying the circuit configuration. This has the effect of providing an inexpensive reference voltage circuit. Has the effect of being easier.
また、 スィヅチ制御部 3 2を、 A/ D変換器 3 2 a、 記憶回路 3 2 b および演算回路 3 2 cとから構成し、 A/ D変換器 3 2 aで電流検出回 路 6の出力をデジタルデ一夕化するとともに、 演算回路 3 2 cが、 この デジタルデータを記憶回路 3 2 bにあらかじめ保存された周波数データ と比較することにより装着された放電灯 5 cの定格値を識別し、 基準電 圧回路 1 4からこの定格値に対応した基準電圧を出力するようスィツチ 部 2 0を制御するため、 記憶回路 3 2 b内のデータを変更するだけで多 種類の放電灯に対応でき、 適用範囲の広い柔軟性に優れた放電灯点灯装 置が得られる効果がある。 The switch control section 32 is composed of an A / D converter 32 a, a memory circuit 32 b and an arithmetic circuit 32 c, and the output of the current detection circuit 6 is output by the A / D converter 32 a. The arithmetic circuit 32c identifies the rated value of the installed discharge lamp 5c by comparing the digital data with the frequency data stored in the storage circuit 32b in advance. In order to control the switch unit 20 so that the reference voltage circuit 14 outputs a reference voltage corresponding to the rated value, the data in the storage circuit 32b can be changed simply by changing the data. It is applicable to various types of discharge lamps, and has the effect of providing a discharge lamp lighting device with a wide range of applications and excellent flexibility.
また、 スイッチ制御部 3 2をマイコンで、 また、 スィッチ部 2 0を半 導体スィッチで構成したため、 基準電圧選択手段 1 9の回路を集積化で き、 装置の小型化が可能となる効果がある。  In addition, since the switch control unit 32 and the switch unit 20 are configured by a microcomputer and the switch unit 20 is configured by a semiconductor switch, the circuit of the reference voltage selection unit 19 can be integrated, and the device can be downsized. .
さらに、 この実施の形態 9では、 放電灯点灯装置の起動時に出力され る基準電圧を、最も小さい正味電流に対応した基準電圧に設定したため、 定格値の小さな放電灯に過大な電流を流して放電灯 5 cが短寿命となる ことを防止できる効果がある。  Further, in the ninth embodiment, the reference voltage output at the time of starting the discharge lamp lighting device is set to the reference voltage corresponding to the smallest net current. This has the effect of preventing the lamp 5c from having a short life.
また、 周波数検出手段として、 インバー夕駆動回路 3内の周波数出力 端子 4 1 aからスィツチング周波数の信号を得るよう構成したため、 応 答が速く、 正確なスィツチング周波数が得られる効果がある。  Further, since the frequency detecting means is configured to obtain a signal of the switching frequency from the frequency output terminal 41a in the inverter drive circuit 3, the response is fast and an accurate switching frequency can be obtained.
なお、 この実施の形態 9においては、 放電灯負荷回路 5に供給される 正味電流およびスィツチング周波数が定常状態になるまで、 一定時間待 機してからスィツチング周波数を検出するよう構成した例を示したが、 起動時から周波数検出手段 4 1およびスィツチ制御部 3 2でスィッチン グ周波数を繰り返し検知し、 スィツチング周波数が一定となったところ で定常状態になったものと判断して、 放電灯 5 cの定格値を識別するよ うにしてもよく、 この場合、 定常状態になるまでの裕度をもっておく必 要がないため、 速やかに定格値の変更ができる効果がある。  In the ninth embodiment, an example has been described in which the switching frequency is detected after waiting for a certain time until the net current and the switching frequency supplied to the discharge lamp load circuit 5 reach a steady state. However, the switching frequency is repeatedly detected by the frequency detecting means 41 and the switch control section 32 from the time of startup, and when the switching frequency becomes constant, it is determined that a steady state is reached, and the discharge lamp 5c is detected. The rated value may be identified. In this case, there is no need to have a margin until a steady state is reached, so that the rated value can be changed quickly.
また、 上記では、 スイッチ 2 0 aを O Nにした状態でスイッチング周 波数を検出する場合について説明したが、 その他のスィヅチを O Nにし た状態で起動して周波数を検出してもよく、 さらには、 記憶回路 3 2 b に第 1 7図のような特性曲線が保存されている場合は、 任意のスィツチ を O Nにして起動し、 演算回路 3 2 cによってスィッチ部 2 0の設定状 況を検知し、 この設定状況に対応した基準電圧とスィツチング周波数か ら放電灯 5 cの定格値を識別するよう構成してもよい。 In the above description, the case where the switching frequency is detected with the switch 20a turned on has been described. However, the frequency may be detected by starting with the other switches being turned on. If the characteristic curve as shown in Fig. 17 is stored in the memory circuit 32b, turn on any switch to start, and the arithmetic circuit 32c detects the setting status of the switch section 20. The reference voltage and switching frequency corresponding to this setting From the discharge lamp 5c.
また、 基準電圧選択手段 1 9として、 スィツチ制御部 3 2をマイコン で、 また、 スィッチ部 2 0を半導体スィッチで構成した例を示したが、 例えば、 異なる電圧で O N、 0 F Fされるリレーを組み合わせ、 周波数 検出手段 4 1からの出力電圧によって各スィッチ 2 0 a、 2 0 b、 2 0 cの接点が O N/ O F Fされるリレー回路で構成し、 アナログ処理して もよく、 また、 上記したように、 分割抵抗 1 2として可変抵抗を用いて、 電圧の分割比を変更するよう構成してもよい。  In addition, as the reference voltage selection means 19, an example is shown in which the switch control unit 32 is configured by a microcomputer and the switch unit 20 is configured by a semiconductor switch.For example, a relay that is turned ON and OFF by different voltages is used. Combination, a relay circuit in which the contacts of the switches 20a, 20b, and 20c are turned ON / OFF by the output voltage from the frequency detecting means 41 may be processed by analog processing. As described above, a variable resistor may be used as the dividing resistor 12 to change the voltage dividing ratio.
さらに、 上記第 1 5図では、 周波数検出手段 4 1として、 スィッチン グ周波数をィンバ一夕駆動回路 3の周波数出力端子 4 1 aから検出する よう構成した例を示したが、 例えば、 インバー夕回路 2や放電灯負荷回 路 5等に流れる電流または電圧波形をスィツチ制御部 3 2に入力し、 ス ィツチ制御部 3 2内の A / D変換器 3 2 aでデジタルデ一夕化した後、 演算回路 3 2 cでフーリエ変換してスィツチング周波数を検出するよう 構成してもよい。  Further, in FIG. 15 described above, an example is shown in which the switching frequency is detected from the frequency output terminal 41 a of the inverter overnight driving circuit 3 as the frequency detecting means 41. 2 and the current or voltage waveform flowing through the discharge lamp load circuit 5, etc., are input to the switch control unit 32, and digitalized by the A / D converter 32a in the switch control unit 32. The arithmetic circuit 32c may perform a Fourier transform to detect the switching frequency.
また、 この実施の形態 9では、 インバ一夕駆動回路 3を電圧制御発振 回路 3 aとドライバ 3 bで構成した例を示したが、 電圧制御発振回路 3 aの替りに電流制御発振回路を応用しても良く、 上記と全く同様の効果 が得られる。  Further, in the ninth embodiment, an example in which the inverter driving circuit 3 is constituted by the voltage-controlled oscillation circuit 3a and the driver 3b has been described, but a current-controlled oscillation circuit is applied in place of the voltage-controlled oscillation circuit 3a. The same effect as above can be obtained.
実施の形態 1 0 . Embodiment 10
第 1 9図には、 この発明の実施の形態 1 0である放電灯点灯装置の構 成を表す回路図を示す。 この実施の形態 1 0では、 インバー夕駆動回路 3は、 電流によって発振周波数が制御される電流制御発振回路 3 c (図 中、 「C C O」 と記載) とドライバ 3 bから構成されるとともに、 イン バ一夕駆動回路 3とグランド間には周波数設定抵抗 3 4が、 また、 イン パ一夕駆動回路 3と誤差増幅器 9間にはダイオード 3 5が接続されてい る。 また、 基準電圧回路 1 4内のスィッチ制御部 3 2には、 インバー夕 駆動回路 3の周波数出力端子 4 1 aから接続線 4 1 bを介してスィツチ ング周波数が、 さらに、 電流検出回路 6からは接続線 3 9を介して放電 灯負荷回路 5に供給される正味電流に対応した出力が入力されている。 なお、 図中、 第 1 5図と同一または相当部分は同一記号を付し、 説明を 省略する。 FIG. 19 is a circuit diagram showing a configuration of a discharge lamp lighting device according to Embodiment 10 of the present invention. In the tenth embodiment, the inverter drive circuit 3 includes a current control oscillator circuit 3c (described as “CCO” in the figure) whose oscillation frequency is controlled by a current, and a driver 3b. A frequency setting resistor 34 is connected between the drive circuit 3 and the ground, and a diode 35 is connected between the drive circuit 3 and the error amplifier 9. You. In addition, the switching control section 32 in the reference voltage circuit 14 receives the switching frequency from the frequency output terminal 41 a of the inverter drive circuit 3 via the connection line 41 b, and the switching frequency from the current detection circuit 6. Is an output corresponding to the net current supplied to the discharge lamp load circuit 5 via the connection line 39. In the drawings, the same or corresponding parts as those in FIG.
以下、 この実施の形態 1 0の動作について、 電圧制御発振回路 3 aと 電流制御発振回路 3 cの動作の違い、 および、 電流検出回路 6から出力 される正味電流データの利用方法を中心に説明する。第 1 9図において、 電流制御発振回路 3 cは、 電流制御発振回路 3 cの内部に内蔵された内 部電源 (図示せず) から流れ出る電流値によって発振周波数が制御され る発振回路であり、 この例では、 内部電源から周波数設定抵抗 3 4を介 してグランドに流れ出る電流とダイォ一ド 3 5から誤差増幅器 9に引き 込まれる電流の合計電流によって電流制御発振回路 3 cの発振周波数が 制御される。  Hereinafter, the operation of the tenth embodiment will be described focusing on the difference between the operations of the voltage-controlled oscillation circuit 3a and the current-controlled oscillation circuit 3c, and the method of using the net current data output from the current detection circuit 6. I do. In FIG. 19, the current control oscillation circuit 3c is an oscillation circuit whose oscillation frequency is controlled by a current value flowing from an internal power supply (not shown) built in the current control oscillation circuit 3c. In this example, the oscillation frequency of the current control oscillation circuit 3 c is controlled by the total current of the current flowing from the internal power supply to the ground via the frequency setting resistor 34 and the current drawn from the diode 35 to the error amplifier 9. Is done.
まず、 この放電灯点灯装置の起動時に、スィツチ制御部 3 2によって、 スィッチ部 2 0のスイッチ 2 0 a、 2 0 b、 2 0 cのうち最も小さい正 味電流に対応したスィヅチ 2 0 aを O Nに、 また、他のスィツチ 2 0 b、 2 0 cを O F Fに設定しておく。 この状態で、 放電灯点灯装置を動作さ せると、 電流制御発信回路 3 cの内部電源 (図示せず) から、 周波数設 定抵抗 3 4を通ってグランドに電流が流れるとともに、 周波数設定抵抗 3 4の上流側に比べて誤差増幅器 9側の電位が低いためダイォ一ド 3 5 を通って誤差増幅器 9側にも電流が流入する。 こうして、 電流制御発信 回路 3 cは、 内部電源から周波数設定抵抗 3 4を介してグランドに流れ 出る電流とダイォ一ド 3 5から誤差増幅器 9に引き込まれる電流の合計 電流に対応した発振周波数で発振し、 この信号をドライバ 3 bで増幅し て、 インバー夕回路 2を駆動することにより、 直流電源 1から供給され る直流電流が高周波電流に変換されて、 放電灯負荷回路 5に供給され、 放電灯 5 cが点灯する。 First, at the time of starting the discharge lamp lighting device, the switch control unit 32 sets the switch 20a corresponding to the smallest net current among the switches 20a, 20b, and 20c of the switch unit 20. Set to ON and the other switches 20b and 20c to OFF. In this state, when the discharge lamp lighting device is operated, a current flows from the internal power supply (not shown) of the current control transmission circuit 3c to the ground through the frequency setting resistor 34 and the frequency setting resistor 3c. Since the potential on the error amplifier 9 side is lower than that on the upstream side of 4, current flows into the error amplifier 9 side via the diode 35. Thus, the current control transmission circuit 3c oscillates at an oscillation frequency corresponding to the sum of the current flowing from the internal power supply to the ground via the frequency setting resistor 34 and the current drawn from the diode 35 to the error amplifier 9. This signal is amplified by driver 3b. Then, by driving the inverter circuit 2, the DC current supplied from the DC power supply 1 is converted into a high-frequency current, supplied to the discharge lamp load circuit 5, and the discharge lamp 5c is turned on.
一方、 放電灯負荷回路 5に電流が流れ出すと、 検出抵抗 7には第 2 6 図と同様の交流電流が流れ、 積分回路 8でこの交流電流の順方向および 逆方向の電流の和 (正味電流) が検出されて誤差増幅器 9の反転入力端 に入力され、 非反転入力端に入力された基準電圧との差が誤差増幅器 9 で増幅されて出力されることにより、 ダイォ一ド 3 5の下流側の電位が 変化し、 この結果、 電流制御発振回路 3 cから誤差増幅器 9側へ流出す る電流量が変化して、 電流制御発振回路 3 cの発振周波数が制御され、 電流検出回路 6からの出力が基準電圧に等しくなるまでスィツチング周 波数が制御されて、 定常状態に移行する。  On the other hand, when a current flows into the discharge lamp load circuit 5, an alternating current similar to that shown in FIG. 26 flows through the detecting resistor 7, and the integrating circuit 8 sums the forward and reverse currents of the alternating current (net current). ) Is detected and input to the inverting input terminal of the error amplifier 9, and the difference from the reference voltage input to the non-inverting input terminal is amplified by the error amplifier 9 and output. As a result, the amount of current flowing from the current control oscillation circuit 3c to the error amplifier 9 changes, and the oscillation frequency of the current control oscillation circuit 3c is controlled. The switching frequency is controlled until the output becomes equal to the reference voltage, and the state shifts to the steady state.
こうして、 この実施の形態 1 0においても、 スイッチ部 2 0により最 も小さい正味電流に対応した基準電圧が選択されると、 誤差増幅器 9が インパ一夕駆動回路 3のスイッチング周波数を制御して、 放電灯負荷回 路 5に供給される正味電流が選択された基準電圧に対応した電流値とな るよう調整され、 定常状態においては、 実施の形態 9と同様に基準電圧 と正味電流およびスイッチング周波数が一義的に対応することとなる。 従って、 第 1 7図と同様の基準電圧とスィツチング周波数の関係を記憶 回路 3 2 bに保存しておけば、 周波数検出手段 4 1によって検出された スィツチング周波数から装着された放電灯 5 cの定格値が識別でき、 演 算回路 3 2 cとスィツチ部 2 0によりこの定格値に適合した基準電圧へ の切り替えを自動的に行うことができる。  Thus, also in this embodiment 10, when the reference voltage corresponding to the smallest net current is selected by the switch section 20, the error amplifier 9 controls the switching frequency of the impeller overnight drive circuit 3, and The net current supplied to the discharge lamp load circuit 5 is adjusted to a current value corresponding to the selected reference voltage. In the steady state, the reference voltage, the net current, and the switching frequency are the same as in the ninth embodiment. Will uniquely correspond. Therefore, if the same relationship between the reference voltage and the switching frequency as in FIG. 17 is stored in the storage circuit 32b, the rating of the discharge lamp 5c mounted based on the switching frequency detected by the frequency detecting means 41 can be obtained. The value can be identified, and the switching to the reference voltage conforming to the rated value can be automatically performed by the arithmetic circuit 32c and the switch section 20.
しかしながら、 この実施の形態 1 0では、 以下のような構成と動作に より一層精密に定格値の識別が行えるよう構成している。 すなわち、 上 記したように、 この実施の形態 1 0では、 電流制御発振回路 3 cが周波 数設定抵抗 3 4および誤差増幅器 9へ流出する合計電流によつて制御さ れるため、 基準電圧回路 1 4から出力される基準電圧を設定しても周波 数設定抵抗 3 4の抵抗値にばらつきがあると、 電流制御発振回路 3 cか ら流出する電流値が変化し、 この結果、 所定の基準電圧に対応したイン バ一夕回路 3のスイッチング周波数にばらつきが生じて、 定格値を精密 に識別することが困難になる。 However, in the tenth embodiment, the configuration and operation as described below are configured so that the rated value can be identified more precisely. That is, as described above, in the tenth embodiment, the current control oscillation circuit 3 c Since the current is controlled by the total current flowing to the number setting resistor 3 4 and the error amplifier 9, even if the reference voltage output from the reference voltage circuit 14 is set, the resistance value of the frequency setting resistor 34 varies. If this occurs, the value of the current flowing out of the current control oscillation circuit 3c changes, and as a result, the switching frequency of the inverter circuit 3 corresponding to a predetermined reference voltage varies, and the rated value is accurately identified. It becomes difficult to do.
そこで、 この実施の形態 1 0では、 基準電圧とスイッチング周波数の 関係からではなく、 第 2 0図に例示したような正味電流値とスィッチン グ周波数の関係から放電灯 5 cの定格値を直接識別するよう構成してい る。 具体的には、 周波数検出手段 4 1からのスイッチング周波数の信号 と電流検出回路 6からの正味電流の信号をスィツチ制御部 3 2に入力し、 スィツチ制御部 3 2の A/ D変換器 3 2 aでスィツチング周波数と正味 電流値を検出するとともに、 記憶回路 3 2 bに保存された正味電流値と スィツチング周波数のデ一夕から放電灯 5 cの定格値を直接識別し、 演 算回路 3. 2 cとスィッチ部 2 0によりこの定格値に適合した基準電圧へ の切り替えを自動的に行うのである。  Therefore, in the tenth embodiment, the rated value of the discharge lamp 5c is directly identified not from the relationship between the reference voltage and the switching frequency but from the relationship between the net current value and the switching frequency as illustrated in FIG. It is configured to do so. Specifically, the switching frequency signal from the frequency detection means 41 and the net current signal from the current detection circuit 6 are input to the switch control section 32, and the A / D converter 3 2 of the switch control section 3 2 The switching frequency and the net current value are detected by a, and the rated value of the discharge lamp 5c is directly identified from the data of the net current value and the switching frequency stored in the memory circuit 32b. The switch to the reference voltage conforming to this rated value is automatically performed by 2c and the switch section 20.
上記したように、 定常状態においては基準電圧と正味電流およびスィ ツチング周波数が 1対 1の関係にあるため、 正味電流とスィツチング周 波数の関係からも放電灯 5 cの定格値を識別することが可能であり、 特 に、 正味電流値とスイッチング周波数の関係は、 インバー夕回路 2およ び放電灯負荷回路 5の特性のみによって決定されるため、 このような識 別方法を採用すれば、周波数設定抵抗 3 4のばらつき等に影響されずに、 常に放電灯 5 cの定格値を精密に識別できるようになる。  As described above, since the reference voltage, the net current, and the switching frequency have a one-to-one relationship in the steady state, the rated value of the discharge lamp 5c can be identified from the relationship between the net current and the switching frequency. In particular, the relationship between the net current value and the switching frequency is determined only by the characteristics of the inverter circuit 2 and the discharge lamp load circuit 5. The rated value of the discharge lamp 5c can always be accurately identified without being affected by the variation of the set resistance 34 or the like.
以上のように、 この実施の形態 1 0によれば、 上記の実施の形態 9と 全く同様の効果が得られるとともに、 電流検出回路 6から出力される正 味電流のデータと周波数検出手段 4 1からのスィツチング周波数のデ一 夕から放電灯 5 Cの定格値を直接識別し、 基準電圧を選択するよう構成 したため、 周波数設定抵抗 3 4のばらつき等に影響されずに一層精密に 定格値を識別できる効果がある。 As described above, according to the tenth embodiment, exactly the same effects as in the ninth embodiment can be obtained, and the net current data output from the current detection circuit 6 and the frequency detection means 41 Of switching frequency from Since the rated value of the discharge lamp 5C is identified directly from the evening and the reference voltage is selected, there is an effect that the rated value can be identified more accurately without being affected by the variation of the frequency setting resistor 34 and the like.
なお、 上記の説明から明らかなように、 この実施の形態 1 0の電流制 御発振回路 3 cを電圧制御発振回路で構成しても、 正味電流とスィッチ ング周波数の関係から定格値を識別するよう構成することにより、 全く 同様の効果が得られる。 また、 上記の実施の形態 1 0では、 正味電流の 値を得る方法として、 電流検出回路 6から誤差増幅器 9へ出力される信 号を分岐してスィツチ制御部 3 2に入力した例を示したが、 上記の電流 検出回路 6とは別に電流検出回路を設けてスィツチ制御部 3 2に入力す るよう構成してもよい。  As is clear from the above description, even when the current control oscillation circuit 3c of the tenth embodiment is configured by a voltage control oscillation circuit, the rated value is identified from the relationship between the net current and the switching frequency. With such a configuration, exactly the same effect can be obtained. Further, in Embodiment 10 described above, as an example of a method of obtaining a net current value, an example in which a signal output from the current detection circuit 6 to the error amplifier 9 is branched and input to the switch control unit 32 has been described. However, a configuration may be adopted in which a current detection circuit is provided separately from the current detection circuit 6 so as to input the current to the switch control unit 32.
さらに、 上記第 1 9図では、 スイッチング周波数をインバー夕駆動回 路 3の周波数出力端子 4 1 aから検出するよう構成した例を示したが、 電流検出回路 6から出力される正味電流の信号が完全に平滑化されてお らず、 スイッチング周波数成分が含まれている場合は、 この信号を A/ D変換器 3 2 aでデジタル化した後、 演算回路 3 2 cでフーリエ変換し てスイッチング周波数を検出してもよく、 この場合、 周波数出力端子 4 1 aへの接続等が不要となって、 回路が簡単になる効果がある。  Further, FIG. 19 shows an example in which the switching frequency is detected from the frequency output terminal 41a of the inverter drive circuit 3, but the signal of the net current output from the current detection circuit 6 is If the signal is not completely smoothed and contains switching frequency components, this signal is digitized by the A / D converter 32a and then subjected to Fourier transform by the arithmetic circuit 32c to perform switching frequency conversion. May be detected. In this case, connection to the frequency output terminal 41a is not required, and the circuit is simplified.
実施の形態 1 1 . Embodiment 11 1.
第 2 1図には、 この発明の実施の形態 1 1である放電灯点灯装置の回 路図を示す。 なお、 この発明は、 例えば、 三菱電機ォスラム株式会社製 の H f 蛍光放電灯 (形名 F H F 3 2 E X)のように、 同一の放電灯で複数 の定格値を有している (F H F 3 2 E Xの場合は、 3 2 ^^と4 5 ¥の2 つの定格電力を有する) 放電灯を、 実施の形態 9に示した放電灯点灯装 置で駆動した場合、 基準電圧 V R E Fに対するスイッチング周波数 f D を表す特性曲線が 1本だけとなるため、 スィツチ制御部 3 2だけではこ の放電灯 5 cを 3 2 Wで運転するのか、 4 5 Wで運転するかの識別がで きないといった問題点を解決するためになされたものである。 FIG. 21 shows a circuit diagram of a discharge lamp lighting device according to Embodiment 11 of the present invention. In addition, the present invention has a plurality of rated values for the same discharge lamp, such as an Hf fluorescent discharge lamp (model name FHF32EX) manufactured by Mitsubishi Electric Osram Co., Ltd. In the case of EX, it has two rated powers of 3 2 ^^ and 45 ¥.) When the discharge lamp is driven by the discharge lamp lighting device described in Embodiment 9, the switching frequency f D with respect to the reference voltage VREF Since there is only one characteristic curve representing It is intended to solve the problem that it is not possible to discriminate whether the discharge lamp 5c is operated at 32 W or at 45 W.
以下、 この実施の形態 1 1の構成および動作について第 2 1図を用い て説明する。 第 2 1図において、 3 6は、 スィツチ制御部 3 2に設けら れた放電灯 5 cの定格を外部から手動で設定するための外部設定手段で あり、 この実施の形態では、 「自動モード」 、 「3 2 Wモード」 、 「4 5 Wモード j の 3つのモードが切り替えられる外部設定スィツチで構成 されている。 なお、 第 1 5図と同一または相当部分は同一記号を付し、 説明を省略する。  Hereinafter, the configuration and operation of Embodiment 11 will be described with reference to FIG. In FIG. 21, reference numeral 36 denotes external setting means for manually setting the rating of the discharge lamp 5 c provided in the switch control section 32 from the outside. , 32 W mode, and 45 W mode j, which are external setting switches that can be switched between the three modes. Is omitted.
以下、 この実施の形態 1 1の動作について説明する。 第 2 1図におい て、 この放電灯点灯装置が起動されると、 まず、 基準電圧回路 1 4から 最も小さい正味電流に対応した基準電圧が出力され、 誤差増幅器 9がィ ンバ一夕駆動回路 3に制御信号を送出してィンバ一夕回路 2のスィヅチ ング周波数を制御し、 電流検出回路 6からの出力が基準電圧と等しくな るよう放電灯負荷回路 5に供給される電流を調整する。 一方、 この基準 電圧で運転されている間にスィッチ制御部 3 2では、 最初に、 外部設定 スイッチ 3 6の設定状況が検出され、 「自動モード」 に設定されている 場合は、 実施の形態 9と同様の手順で装着された放電灯 5 cの定格値が 自動識別され、 一定時間後に、 この定格値に適合した基準電圧に切り替 えられる。 また、 外部設定スィツチ 3 6の設定が 「 3 2 Wモード」 ある いは 「4 5 Wモード」 である場合は、 自動識別を行わず、 この外部設定 スィッチ 3 6で設定された定格値で放電灯 5 cを点灯するようスィツチ 部 2 0を切り替える。  Hereinafter, the operation of Embodiment 11 will be described. In FIG. 21, when the discharge lamp lighting device is started, first, a reference voltage corresponding to the smallest net current is output from the reference voltage circuit 14, and the error amplifier 9 is turned on by the inverter driving circuit 3. To control the switching frequency of the circuit 1 and adjust the current supplied to the discharge lamp load circuit 5 so that the output from the current detection circuit 6 becomes equal to the reference voltage. On the other hand, during the operation at this reference voltage, the switch control section 32 first detects the setting state of the external setting switch 36, and if the switch is set to “automatic mode”, the ninth embodiment is performed. The rated value of the installed discharge lamp 5c is automatically identified in the same procedure as in the above, and after a certain period of time, it is switched to the reference voltage that conforms to this rated value. In addition, when the setting of the external setting switch 36 is “32 W mode” or “45 W mode”, the automatic identification is not performed and the external setting switch 36 is released at the rated value set by the external setting switch 36. Switch unit 20 is turned on so that light 5c is turned on.
こうして、 この実施の形態 1 1によれば、 上記した実施の形態 9で得 られた効果に加え、 スイッチ制御部 3 2に、 定格値のマニュアル設定が 可能な外部設定手段 3 6を付加したため、 同一放電灯で複数の定格値を 有する放電灯に対しても対応できる放電灯点灯装置が得られる効果があ る Thus, according to Embodiment 11, in addition to the effects obtained in Embodiment 9 described above, the switch control section 32 is provided with the external setting means 36 capable of manually setting the rated value. Multiple rated values for the same discharge lamp Discharge lamp lighting device that can handle discharge lamps
なお、 上記の実施の形態 1 1では、 まず、 外部設定スィッチ 3 6の設 定状況を検出し、 この設定状況によってスィッチ制御部 3 2で 「自動モ 一ド」 、 「3 2 Wモード」 、 「4 5 Wモード」 の、 それぞれに対応した 処理を行うよう構成した例を示したが、 複数の定格値を有する放電灯の 基準電圧とスィツチング周波数の特性曲線が分かっている場合は、まず、 起動時の基準電圧とスィツチング周波数の関係から複数定格を有する放 電灯であるかどうかを判断し、 複数定格である場合に、 外部設定スイツ チ 3 6の設定状況を確認に行くよう構成してもよく、 この場合、 複数定 格以外の放電灯に対しては上記の実施の形態 9と同様にして定格値の自 動識別が行われる。  In the above-described embodiment 11, first, the setting status of the external setting switch 36 is detected, and according to the setting status, the switch control unit 32 sets “auto mode”, “32 W mode”, An example is shown in which the processing corresponding to each of the "45 W mode" is performed.However, if the characteristic curves of the reference voltage and the switching frequency of a discharge lamp having a plurality of rated values are known, first, Judging from the relationship between the reference voltage at startup and the switching frequency whether or not the discharge lamp has multiple ratings, if it has multiple ratings, the configuration status of the external setting switch 36 may be checked. Frequently, in this case, automatic identification of the rated value is performed for discharge lamps other than the multiple rated ones in the same manner as in the ninth embodiment.
また、 上記においては、 外部設定スィッチ 3 6として 「自動モード」 以外に、 「3 2 Wモード」 、 「4 5 Wモード」 の 2つのモードを持つ例 を示したが、 外部設定スィッチ 3 6の接点の数を増やせば、 3つ以上の 定格値にも対応できることは明らかである。  In the above description, the external setting switch 36 has an example of having two modes of “32 W mode” and “45 W mode” in addition to “auto mode”. It is clear that increasing the number of contacts can accommodate more than three rated values.
実施の形態 1 2 . Embodiment 1 2.
第 2 2図には、 この発明の実施の形態 1 2として、 基準電圧の切り替 えに伴つて放電灯 5 cの明るさを連続的に変化させることが可能な放電 灯点灯装置の回路図を示す。 図において、 3 7 a、 3 7 bおよび 3 8は、 それぞれ、 緩衝用抵抗、 緩衝用コンデンサおよび抵抗であり、 緩衝用抵 抗 3 7 aと緩衝用コンデンサ 3 7 bは全体として緩衝用積分回路 3 7を 構成している。なお、第 1 5図と同一または相当部分は同一記号を付し、 説明を省略する。  FIG. 22 is a circuit diagram of a discharge lamp lighting device according to Embodiment 12 of the present invention, which can continuously change the brightness of the discharge lamp 5c as the reference voltage is switched. Show. In the figure, 37a, 37b and 38 are a buffering resistor, a buffering capacitor and a resistor, respectively.The buffering resistor 37a and the buffering capacitor 37b as a whole are a buffering integration circuit. 3 7 Note that the same or corresponding parts as those in FIG.
このように、 この実施の形態 1 2では、 基準電圧を選択するスィッチ 部 2 0のスィヅチが、 仮に、 2 0 aが O Nの状態から 2 0 bが O Nの状 態に変化した場合に、 その電圧の変化分が緩衝用積分回路 3 7で積分さ れるので、 誤差増幅器 9に入力される基準電圧は緩衝用積分回路 3 7の 積分定数で連続的に変化し、 この積分定数を適当に選定すれば、 基準電 圧の変化を徐々に変化させることができ、 光出力をスムースに変化させ ることができる。 As described above, in the embodiment 12, the switch of the switch section 20 for selecting the reference voltage temporarily changes from the state where 20a is ON to the state where 20b is ON. When the state changes, the voltage change is integrated by the buffer integration circuit 37, so that the reference voltage input to the error amplifier 9 changes continuously with the integration constant of the buffer integration circuit 37. If this integration constant is appropriately selected, the change in the reference voltage can be gradually changed, and the light output can be smoothly changed.
以上のように、 この実施の形態 1 2によれば、 上記した実施の形態 9 で得られた効果に加え、 誤差増幅器 9の入力端と基準電圧回路 1 4の間 に緩衝回路 3 7である緩衝用積分回路 3 7を設け、 基準電圧の切り替え にともなう基準電圧回路 1 4の階段的な出力の変化を緩衝し、 誤差増幅 器 9に入力される信号が徐々に、 連続的に変化するよう構成したため、 起動時の基準電圧から放電灯 5 cの定格値に適合した基準電圧に自動的 に切り替える際等に生じる、 放電灯 5 cの光出力 (明るさ) の急激な階 段状の変化を抑制することができ、 起動から定常状態に至る光出力をス ムースに変化させることができるため、 ユーザの違和感ゃ不快感を減少 でき、 快適性に優れた放電灯点灯装置が得られる効果がある。  As described above, according to Embodiment 12, in addition to the effects obtained in Embodiment 9 described above, the buffer circuit 37 is provided between the input terminal of the error amplifier 9 and the reference voltage circuit 14. A buffer integration circuit 37 is provided to buffer a stepwise change in the output of the reference voltage circuit 14 due to the switching of the reference voltage so that the signal input to the error amplifier 9 changes gradually and continuously. Due to the configuration, a sudden step-like change in the light output (brightness) of the discharge lamp 5c occurs when the reference voltage at startup is automatically switched to a reference voltage that matches the rated value of the discharge lamp 5c. Light output from start-up to steady state can be smoothly changed, which reduces the user's discomfort and discomfort, and has the effect of providing a discharge lamp lighting device with excellent comfort. is there.
なお、 このように、 毎起動時に放電灯 5 cの定格値が識別されスイツ チ部 2 0が切り替えられて基準電圧の選択が自動で行われる放電灯点灯 装置においては、 装置を起動するたびに放電灯 5 cの明るさが変化する ことになり、 明るさが毎回急変することはユーザの快適性を大きく損な うもので、 光出力をスムースに変化させることのできる上記実施の形態 1 2の放電灯点灯装置は実用上非常に大きな利点を有する。  As described above, in the discharge lamp lighting device in which the rated value of the discharge lamp 5c is identified at each start, the switch unit 20 is switched, and the reference voltage is automatically selected, every time the device is started. The brightness of the discharge lamp 5c changes, and the sudden change in brightness every time greatly impairs the user's comfort. The above-described embodiment 12 in which the light output can be changed smoothly. The discharge lamp lighting device has a very great advantage in practical use.
また、例えば、起動時の基準電圧から 4 5 W定格時に切り替える際も、 直接 4 5 W定格の基準電圧に切り替えるのではなく、 スィツチ制御部 3 2で、 3 2 W 4 0 W→4 5 Wと順に 1段づっ切り替えるようにすれば、 緩衝用積分回路 3 7の効果ともあいまって、 光出力がより連続的に変化 し、 一層快適な放電灯点灯装置が得られる効果がある。 さらに、 上記の実施の形態 1 2では、 誤差増幅器 9に入力される緩衝 回路 37として、 緩衝用抵抗 37 aと緩衝用コンデンサ 37 bからなる 緩衝用積分回路 37を用いた例を示したが、 例えば、 オペアンプによる 積分回路等の、 これと同等の機能を持つ他の構成でも良い。 Also, for example, when switching from the reference voltage at the time of startup to the rating of 45 W, instead of directly switching to the reference voltage of 45 W rating, the switch control unit 32 uses the 32 W 40 W → 45 W If the switching is performed one step at a time, the light output changes more continuously, in combination with the effect of the buffering integration circuit 37, and there is an effect that a more comfortable discharge lamp lighting device can be obtained. Further, in the above-described Embodiment 12, an example is shown in which the buffer integration circuit 37 including the buffer resistor 37 a and the buffer capacitor 37 b is used as the buffer circuit 37 input to the error amplifier 9. For example, another configuration having an equivalent function, such as an integration circuit using an operational amplifier, may be used.
実施の形態 13. Embodiment 13.
第 23図には、 実施の形態 1 3である放電灯点灯装置の回路構成図を 示す。 これまでの実施の形態 9ないし実施の形態 12においては、 スィ ツチ部 20を基準電圧発生部 1 5と誤差増幅器 9の間に配置し、 基準電 圧発生部 1 5により生成された複数の基準電圧の中から、 スィツチ部 2 0により誤差増幅器 9に入力する基準電圧を選択するよう構成した例を 示したが、 第 23図に示すこの実施の形態 13のように、 スィッチ部 2 0の各スイッチ 20 a、 20、 20 cを各分割抵抗 1 2 a、 12 b、 1 2 cに並列に接続し、 スィッチ部 20の各スイッチを ON、 OFFする ことによって分割抵抗 12 a、 12 b、 12 cがバイパスされ、 誤差増 幅器 9に接続された基準電圧の出力端の両側の分割抵抗の分割比が変化 して、 基準電圧が変更されるよう構成してもよい。  FIG. 23 shows a circuit configuration diagram of the discharge lamp lighting device according to the thirteenth embodiment. In the ninth to twelfth embodiments described above, the switch unit 20 is disposed between the reference voltage generation unit 15 and the error amplifier 9, and a plurality of reference voltages generated by the reference voltage generation unit 15 are provided. An example has been shown in which the reference voltage to be input to the error amplifier 9 is selected by the switch unit 20 from among the voltages. However, as in the thirteenth embodiment shown in FIG. Switches 20a, 20 and 20c are connected in parallel with each of the split resistors 12a, 12b and 12c, and each switch of switch section 20 is turned ON and OFF to set the split resistors 12a, 12b and 12c. The configuration may be such that c is bypassed, and the division ratio of the division resistors on both sides of the output terminal of the reference voltage connected to the error amplifier 9 changes to change the reference voltage.
なお、 第 23図中、 1 6は、 分割抵抗12 &、 1 2 b、 12 cおよび 13に直列に接続された分割抵抗であり、 また、 第 1 5図と同一または 相当部分は同一記号を付し、 説明を省略する。 さらに、 動作についても、 上記の実施の形態 9と全く同様であり、 説明を省略する。  In FIG. 23, reference numeral 16 denotes a divided resistor connected in series to the divided resistors 12 &, 12 b, 12 c and 13, and the same or corresponding parts as those in FIG. And description is omitted. Further, the operation is completely the same as that of the ninth embodiment, and the description is omitted.
こうして、 この実施の形態 13によれば、 上記した実施の形態 9で得 られた効果に加え、 スィッチ部 20を分割抵抗 12 a、 12 b、 12 c に並列に接続したため、 スィッチ部 20には、 基準電圧用直流電源 1 1 からの分割抵抗を流れる電流が流れることになり、 経年変化に対して安 定を保っために必要十分な電流値を流すことができるため、 経年変化に 対して耐久性が高く、 信頼性の高い放電灯点灯装置が得られる効果があ る o Thus, according to the thirteenth embodiment, in addition to the effect obtained in the ninth embodiment, the switch unit 20 is connected in parallel to the divided resistors 12a, 12b, and 12c. The current flowing from the reference voltage DC power supply 11 through the divided resistor flows, and a sufficient current value can be supplied to maintain stability against aging. This is effective in obtaining a discharge lamp lighting device with high reliability and high reliability. O
なお、 第 2 3図では、 スイッチ部 2 0の各スィッチ 2 0 a、 2 0 b、 2 0 cを各分割抵抗 1 2 a、 1 2 b、 1 2 cの上流側とグランド間に並 列に設けた例を示したが、 スィツチ部 2 0の各スィツチ 2 0 a、 2 0 b、 2 0 cが、 それぞれ、 分割抵抗 1 2 a、 1 2 b、 1 2 cをバイパスする よう接続しても良く、 この場合、 各スィッチの切り替えにより多種類の 分割比を得ることができ、 少ない分割抵抗数でより多くの定格値に対応 できる放電灯点灯装置が得られる効果がある。  In FIG. 23, the switches 20a, 20b, and 20c of the switch section 20 are arranged in parallel between the upstream side of each of the divided resistors 12a, 12b, and 12c and the ground. The switches 20a, 20b, and 20c of the switch section 20 are connected so as to bypass the divided resistors 12a, 12b, and 12c, respectively. In this case, various types of division ratios can be obtained by switching the respective switches, and there is an effect that a discharge lamp lighting device that can correspond to a larger rated value with a smaller number of division resistors is obtained.
実施の形態 1 4 . Embodiment 1 4.
また、 上記実施の形態 4ないし実施の形態 1 3においても、 基準電圧 発生部 1 5ゃスィツチ部 2 0を含む基準電圧回路 1 4を誤差増幅器 9と 同一の回路基板上に実装すれば、 基準電圧発生部 1 5ゃスィツチ部 2 0 を流れる微少電流が放電灯 5 cの放電による外乱ノィズの影響で変動し、 放電灯 5 cの出力が不安定になることを防止できるとともに、 スィッチ 部を別基板に設置する場合に比べてノイズ対策費用が軽減できる利点が ある。  Also, in the above-described fourth to thirteenth embodiments, if the reference voltage circuit 14 including the reference voltage generation unit 15 and the switch unit 20 is mounted on the same circuit board as the error amplifier 9, the reference The output of the discharge lamp 5c can be prevented from becoming unstable due to the fluctuation of the minute current flowing through the voltage generation unit 15 ゃ switch unit 20 due to disturbance noise caused by the discharge of the discharge lamp 5c. There is an advantage that the noise countermeasure cost can be reduced as compared with the case where it is installed on another board.
実施の形態 1 5 . Embodiment 15
さらに、 回路基板を第 4図、 第 5図で示したように、 ケース 2 4内に 収納すれば、 放電灯 5 cの取り替え時等に回路基板を損傷する危険が少 なくなり、 また、 このケースを金属で形成すれば放電灯 5 cの放電によ るノイズの影響が一層軽減される効果もある。  Furthermore, as shown in FIGS. 4 and 5, if the circuit board is housed in the case 24, there is less danger of damaging the circuit board when replacing the discharge lamp 5c, etc. If is formed of metal, the effect of noise due to the discharge of the discharge lamp 5c is further reduced.
なお、 上記実施の形態 1ないし実施の形態 1 3においては、 誤差増幅 器 9に積分用のコンデンサ 1 0 bを付加した例を示したが、 積分回路 8 の積分定数を適当に選定すれば、 誤差増幅器 9の積分の機能は不要とな り、コンデンサ 1 0 bは増幅用の抵抗によって置き換えることができる。 また、 積分回路 8の機能を誤差増幅器 9内に一体化してもよい。 また、 上記の実施の形態 1ないし実施の形態 1 3では、 誤差増幅器 9 に入力される基準電圧の数を 3種類としたが、 これを 2種類または 4種 類以上としても全く同様の効果が得られる。 さらに、 放電灯負荷回路 5 として 1灯用のものを例示したが、 同一定格を持つ 2灯用以上のものに 適用しても良い。 また、 基準電圧用直流電源 1 1を直流電源 1から供給 される直流電圧を一層安定化して使用するよう構成すれば、 電源の共用 化が図られ、 部品点数ゃコストが削減できる効果がある。 In the above-described first to thirteenth embodiments, the example in which the integrating capacitor 10b is added to the error amplifier 9 has been described, but if the integration constant of the integrating circuit 8 is appropriately selected, The integrating function of the error amplifier 9 becomes unnecessary, and the capacitor 10b can be replaced by an amplifying resistor. Further, the function of the integrating circuit 8 may be integrated in the error amplifier 9. In Embodiments 1 to 13 described above, the number of reference voltages input to the error amplifier 9 is three, but the same effect can be obtained by using two or more than four types of reference voltages. can get. Further, although the discharge lamp load circuit 5 is exemplified for one lamp, it may be applied to two or more lamps having the same rating. Further, if the reference voltage DC power supply 11 is configured to use the DC voltage supplied from the DC power supply 1 with further stabilization, the power supply can be shared and the number of parts / cost can be reduced.
また、 インバー夕駆動回路 3内の発振回路を、 電流制御発振回路 (C C O ) または電圧制御発振回路 (V C O ) のどちらで構成しても同様の 効果が得られることは、 上記した通りである。  As described above, the same effect can be obtained regardless of whether the oscillation circuit in the inverter drive circuit 3 is configured by a current-controlled oscillation circuit (CCO) or a voltage-controlled oscillation circuit (VCO).
この発明は、 以上説明したように構成されているので、 以下に示すよ うな効果を奏する。  Since the present invention is configured as described above, it has the following effects.
ィンパ一夕回路から放電灯負荷回路に供給される電流を基準電圧回路 から出力される基準電圧によって制御するよう構成するとともに、 前記 基準電圧回路から複数の異なる基準電圧を出力できるよう構成したため、 1つの放電灯点灯装置で種々の定格値を有する放電灯に対応可能な放電 灯点灯装置を得ることができる。  Since the current supplied from the impedance circuit to the discharge lamp load circuit is controlled by the reference voltage output from the reference voltage circuit, and the reference voltage circuit can output a plurality of different reference voltages, With one discharge lamp lighting device, a discharge lamp lighting device capable of handling discharge lamps having various rated values can be obtained.
また、 前記基準電圧回路に、 基準電圧用直流電源と分割抵抗を備え、 あらかじめ放電灯の定格値に設定された複数の基準電圧を生成する基準 電圧発生部を設けたため、 基準電圧の調整が不要となり、 定格値の変更 が容易な放電灯点灯装置が得られる効果がある。  In addition, since the reference voltage circuit is provided with a reference voltage DC power supply and a dividing resistor, and provided with a reference voltage generation unit that generates a plurality of reference voltages set in advance to the rated value of the discharge lamp, adjustment of the reference voltage is not necessary Thus, there is an effect that a discharge lamp lighting device whose rated value can be easily changed is obtained.
また、 前記基準電圧回路に、 基準電圧用直流電源と分割抵抗を設ける とともに、 前記基準電圧回路から出力される基準電圧を選択する基準電 圧選択手段を前記分割抵抗に並列に接続したため、 経年変化に対して安 定した動作が得られ、 信頼性の高い放電灯点灯装置が得られる効果があ る また、 前記基準電圧選択手段としてジヤンパ線を用いたため、 微少電 流による接点の劣化等がなく、経年変化に対して安定した動作が得られ、 信頼性の高い放電灯点灯装置が得られる効果がある。 In addition, the reference voltage circuit is provided with a reference voltage DC power supply and a dividing resistor, and reference voltage selecting means for selecting a reference voltage output from the reference voltage circuit is connected in parallel to the dividing resistor. And stable operation is obtained, and a highly reliable discharge lamp lighting device is obtained. In addition, since the jumper wire is used as the reference voltage selection means, there is no deterioration of the contact due to a minute current, stable operation over time can be obtained, and an effect of obtaining a highly reliable discharge lamp lighting device can be obtained. is there.
また、 前記ジヤンパ線を前記誤差増幅器が実装された回路基板上に設 けるとともに、 前記ジヤンパ線が実装された前記回路基板上に作業孔を 設け、 前記作業孔から前記ジヤンパ線の設定状況の確認および切断が可 能となるよう構成したため、 前記ジヤンパ線の配列および基準電圧の選 択状況の確認や適合する放電灯の定格値を前記回路基板の裏面からも変 更でき、 前記回路基板の部品装着面がケース等で覆われた後でも、 前記 ケースを取り外すことなく作業できる効果がある。  In addition, the jumper wire is provided on the circuit board on which the error amplifier is mounted, and a work hole is provided on the circuit board on which the jumper wire is mounted, and the setting status of the jumper wire is confirmed from the work hole. In addition, the arrangement of the jumper wires and the selection status of the reference voltage can be confirmed, and the rated value of the applicable discharge lamp can be changed from the back surface of the circuit board, and the components of the circuit board can be changed. Even after the mounting surface is covered with a case or the like, there is an effect that work can be performed without removing the case.
また、 前記基準電圧回路を、 前記誤差増幅器が実装された回路基板上 に設けたため、 外乱ノイズの影響によって放電灯の出力が不安定になる ことを防止できるとともに、 別基板に設置する場合に比べてノイズ対策 費用が軽減できる効果がある。  Further, since the reference voltage circuit is provided on the circuit board on which the error amplifier is mounted, it is possible to prevent the output of the discharge lamp from becoming unstable due to the influence of disturbance noise, and it is possible to prevent the output of the discharge lamp from being installed on a separate board. This has the effect of reducing noise countermeasure costs.
また、 前記基準電圧選択手段を実装した回路基板を金属ケース内に収 納するとともに、 前記ケースに開口部を設けたため、 外乱ノイズの影響 を低減できるとともに、 前記回路基板の損傷が防止され、 さらに、 前記 開口部から前記ケースを取りはずすことなく前記基準電圧選択手段の設 定状況の確認および設定変更が可能となる効果がある。  In addition, since the circuit board on which the reference voltage selecting means is mounted is housed in a metal case and the case is provided with an opening, the influence of disturbance noise can be reduced, and the circuit board is prevented from being damaged. This has the effect that the setting status of the reference voltage selecting means can be checked and the setting can be changed without removing the case from the opening.
また、 前記基準電圧選択手段の操作部分を基準電圧の順に配置したた め、 前記基準電圧選択手段で基準電圧を選択する際の錯誤を軽減できる 効果がある。  Further, since the operation portions of the reference voltage selection means are arranged in the order of the reference voltages, there is an effect that errors in selecting the reference voltage by the reference voltage selection means can be reduced.
また、 前記基準電圧選択手段が、 前記放電灯負荷回路に装着された放 電灯の定格値を識別し、 前記基準電圧回路から出力される基準電圧とし てこの定格値に適合した基準電圧を自動的に選択するよう構成したため、 基準電圧の設定が容易になるとともに、 放電灯の交換時等において、 放 電灯の選択ミスや基準電圧の設定ミスを防止できる効果がある。 Further, the reference voltage selecting means identifies a rated value of the discharge lamp mounted on the discharge lamp load circuit, and automatically uses a reference voltage conforming to the rated value as a reference voltage output from the reference voltage circuit. This makes it easy to set the reference voltage, and makes it easier to discharge the lamp when replacing the discharge lamp. This has the effect of preventing erroneous selection of the lamp and erroneous setting of the reference voltage.
また、 前記ィンバ一夕回路のスィツチング周波数を設定する初期周波 数設定手段を備えるとともに、 前記基準電圧選択手段が、 前記初期周波 数設定手段によつて設定されたスィッチング周波数で運転した時の前記 電流検出回路からの出力に基づいて前記放電灯負荷回路に装着された放 電灯の定格値を識別するよう構成したため、 起動時のスィツチング周波 数を適切に設定することにより、 放電灯の定格値が識別される前に、 定 格値を超える電流が流れて放電灯が短寿命となることを防止できる効果 がある。  In addition, an initial frequency setting means for setting a switching frequency of the receiver circuit is provided, and the reference voltage selecting means operates at the switching frequency set by the initial frequency setting means. Since the rated value of the discharge lamp mounted on the discharge lamp load circuit is identified based on the output from the detection circuit, the rated value of the discharge lamp can be identified by appropriately setting the switching frequency at startup. Before the discharge, the current exceeding the rated value flows and the short life of the discharge lamp can be prevented.
また、 前記基準電圧選択手段が、 前記電流検出回路の出力をデジタル デ一夕化する A/D変換器と、 前記初期周波数設定手段で設定されたス ィツチング周波数に対応する放電灯の電流値を記憶する記憶回路と、 前 記 A/D変換器によって検出されたデジタルデ一夕と前記記憶回路にあ らかじめ保存された電流値とを比較して装着された放電灯の定格値を識 別し、 制御信号を出力する演算回路とを備えたスィッチ制御部と、 前記 演算回路からの制御信号により前記基準電圧回路から出力される基準電 圧を選択するスィツチ部とを備えたため、 前記記憶回路内のデータを変 更するだけで多種類の放電灯に対応でき、 適用範囲の広い放電灯点灯装 置が得られる効果がある。  Also, the reference voltage selection means may include an A / D converter for digitally converting the output of the current detection circuit, and a discharge lamp current value corresponding to the switching frequency set by the initial frequency setting means. A storage circuit for storing, and a comparison between the digital data detected by the A / D converter and a current value stored in the storage circuit in advance, to identify a rated value of the installed discharge lamp. Separately, a switch control unit including an arithmetic circuit that outputs a control signal; and a switch unit that selects a reference voltage output from the reference voltage circuit based on a control signal from the arithmetic circuit, the storage unit includes: Various types of discharge lamps can be handled simply by changing the data in the circuit, and this has the effect of providing a discharge lamp lighting device with a wide application range.
また、 前記インバ一夕回路のスイッチング周波数を検出する周波数検 出手段を設けるとともに、 前記基準電圧選択手段が、 前記周波数検出手 段から出力されるスィツチング周波数と電流検出回路から出力される前 記放電灯負荷回路に供給される電流値とに基づいて、 前記放電灯負荷回 路に装着された放電灯の定格値を識別するよう構成したため、 放電灯の 定格値を正確に識別できる効果がある。  In addition, a frequency detecting means for detecting a switching frequency of the inverter circuit is provided, and the reference voltage selecting means outputs a switching frequency output from the frequency detecting means and a frequency output from the current detecting circuit. Since the rated value of the discharge lamp mounted on the discharge lamp load circuit is identified based on the current value supplied to the electric lamp load circuit, the rated value of the discharge lamp can be accurately identified.
また、 前記基準電圧選択手段が、 前記周波数検出手段の出力をデジ夕 ルデータ化する A/D変換器と、 前記ィンバ一夕回路のスィツチング周 波数を記憶する記憶回路と、 前記 A/D変換器によって検出されたデジ 夕ルデ一夕と前記記憶回路にあらかじめ保存されたスィツチング周波数 とを比較して装着された放電灯の定格値を識別し、 制御信号を出力する 演算回路とを備えたスィツチ制御部と、 前記演算回路からの制御信号に より前記基準電圧回路から出力される基準電圧を選択するスィツチ部と を備えたため、 前記記憶回路内のデータを変更するだけで多種類の放電 灯に対応でき、 適用範囲の広い放電灯点灯装置が得られる効果がある。 また、 放電灯点灯装置の起動時に、 前記基準電圧選択手段が、 前記基 準電圧回路から出力可能な基準電圧のうち最も小さい電流に対応した基 準電圧を選択するよう構成したため、 定格値の小さな放電灯に過大な電 流を流して放電灯が短寿命となることを防止できる効果がある。 Further, the reference voltage selecting means digitally outputs an output of the frequency detecting means. An A / D converter that converts the data into digital data; a storage circuit that stores the switching frequency of the inverter circuit; and a digital circuit that is detected by the A / D converter and that is stored in the storage circuit in advance. A switching control unit having an arithmetic circuit for identifying a rated value of the mounted discharge lamp by comparing the switching frequency with the switching circuit and outputting a control signal; and an output from the reference voltage circuit according to a control signal from the arithmetic circuit. Since a switch unit for selecting a reference voltage to be used is provided, it is possible to cope with various types of discharge lamps only by changing data in the storage circuit, and it is possible to obtain a discharge lamp lighting device having a wide applicable range. In addition, when the discharge lamp lighting device is started, the reference voltage selection unit is configured to select a reference voltage corresponding to the smallest current among the reference voltages that can be output from the reference voltage circuit. This has the effect of preventing an excessive current from flowing through the discharge lamp to shorten the life of the discharge lamp.
また、 基準電圧を変更する際、 前記基準電圧選択手段が、 変更時点で 選択されている基準電圧に近い基準電圧から順に基準電圧を選択するよ う構成したため、 基準電圧の変化に伴う光出力の変化量を小さくするこ とができ、 より快適性に優れた放電灯点灯装置が得られる効果がある。 また、 前記基準電圧選択手段に、 前記基準電圧回路から出力される基 準電圧を手動で設定可能な外部設定手段を設けたため、 複数の定格値を 有する放電灯にも対応できる放電灯点灯装置が得られる効果がある。 また、 前記基準電圧回路と前記誤差増幅器との間に、 前記誤差増幅器 に入力される基準電圧を連続的に変化させる緩衝回路を設けたため、 基 準電圧の変更に伴う放電灯の光出力の急激な変化を抑制することができ、 光出力がスムースに変化するため、 ユーザの違和感ゃ不快感を一層減少 することができ、快適性に優れた放電灯点灯装置が得られる効果がある。 産業上の利用可能性 以上のように、 本発明にかかる放電灯点灯装置は、 例えば、 商用電源 によって放電灯を点灯させる家庭用あるいは業務用等の照明装置として 有用である。 Further, when changing the reference voltage, the reference voltage selection means is configured to select the reference voltage in order from the reference voltage that is close to the reference voltage selected at the time of the change, so that the light output accompanying the change in the reference voltage is changed. The amount of change can be reduced, and there is an effect that a more comfortable discharge lamp lighting device can be obtained. Further, since the reference voltage selection means is provided with external setting means capable of manually setting the reference voltage output from the reference voltage circuit, a discharge lamp lighting device capable of handling a discharge lamp having a plurality of rated values is provided. There is an effect that can be obtained. Further, since a buffer circuit for continuously changing the reference voltage input to the error amplifier is provided between the reference voltage circuit and the error amplifier, the light output of the discharge lamp suddenly increases due to the change of the reference voltage. Since the light output changes smoothly, the user's discomfort and discomfort can be further reduced, and the discharge lamp lighting device with excellent comfort can be obtained. Industrial applicability As described above, the discharge lamp lighting device according to the present invention is useful, for example, as a home or business lighting device for lighting a discharge lamp using a commercial power supply.

Claims

請 求 の 範 囲 The scope of the claims
1 . 直流電源と、 1. DC power supply,
前記直流電源から供給される直流を高周波電流に変換するインパ一夕回 路と、 An imperial circuit for converting a DC supplied from the DC power supply into a high-frequency current,
前記ィンバ一タ回路からの高周波電流により放電灯を点灯させる放電灯 負荷回路と、 A discharge lamp load circuit for lighting a discharge lamp by high frequency current from the inverter circuit;
前記ィンバ一夕回路から前記放電灯負荷回路に供給される電流を検出す る電流検出回路と、 A current detection circuit for detecting a current supplied from the chamber circuit to the discharge lamp load circuit;
複数の異なる基準電圧を出力可能な基準電圧回路と、 A reference voltage circuit capable of outputting a plurality of different reference voltages,
前記電流検出回路からの出力と前記基準電圧回路から出力される基準電 圧に基づいて制御信号を生成する誤差増幅器と、 An error amplifier that generates a control signal based on an output from the current detection circuit and a reference voltage output from the reference voltage circuit;
前記誤差増幅器からの制御信号に基づいて前記ィンバ一夕回路を制御し、 前記放電灯負荷回路に供給される電流を前記基準電圧回路から出力され る基準電圧に対応した電流値に制御するインバ一夕駆動回路と、 前記基準電圧回路から出力される基準電圧を選択する基準電圧選択手段 とを備えたことを特徴とする放電灯点灯装置。 An inverter that controls the inverter circuit based on a control signal from the error amplifier, and controls a current supplied to the discharge lamp load circuit to a current value corresponding to a reference voltage output from the reference voltage circuit. A discharge lamp lighting device comprising: an evening driving circuit; and a reference voltage selection unit that selects a reference voltage output from the reference voltage circuit.
2 . 前記基準電圧選択手段が、 手動操作により前記基準電圧回路から 出力される基準電圧を選択するよう構成したことを特徴とする請求項 1 に記載の放電灯点灯装置。  2. The discharge lamp lighting device according to claim 1, wherein the reference voltage selection means is configured to manually select a reference voltage output from the reference voltage circuit.
3 . 前記基準電圧回路が、 基準電圧用直流電源と前記基準電圧用直流 電源の電圧を分割する分割抵抗とを備え、 あらかじめ設定された放電灯 の定格値に対応した複数の異なる基準電圧を生成する基準電圧発生部を 備えるとともに、 前記基準電圧選択手段が、 前記基準電圧発生部によつ て生成された基準電圧の中から出力する基準電圧を選択するよう構成し たことを特徴とする請求項 2に記載の放電灯点灯装置。 3. The reference voltage circuit includes a DC power supply for a reference voltage and a dividing resistor for dividing the voltage of the DC power supply for the reference voltage, and generates a plurality of different reference voltages corresponding to a preset rated value of the discharge lamp. A reference voltage generating unit configured to select the reference voltage to be output from the reference voltages generated by the reference voltage generating unit. The discharge lamp lighting device according to claim 2, wherein:
4 . 前記基準電圧回路が、 基準電圧用直流電源と、 前記基準電圧用直 流電源の電圧を分割する分割抵抗と、 前記分割抵抗に並列に接続された 前記基準電圧選択手段を備えるとともに、 前記基準電圧選択手段がバイ パスする分割抵抗を選択することにより、 前記基準電圧回路から出力す る基準電圧を選択するよう構成したことを特徴とする請求項 2に記載の 放電灯点灯装置。  4. The reference voltage circuit includes a DC power supply for reference voltage, a dividing resistor for dividing the voltage of the DC power supply for reference voltage, and the reference voltage selecting means connected in parallel to the dividing resistor. 3. The discharge lamp lighting device according to claim 2, wherein a reference voltage output from the reference voltage circuit is selected by selecting a bypass resistor divided by a reference voltage selection unit.
5 . 前記基準電圧選択手段として、 ジヤンパ線を用いたことを特徴と する請求項 3に記載の放電灯点灯装置。  5. The discharge lamp lighting device according to claim 3, wherein a jumper wire is used as the reference voltage selection means.
6 . 前記ジヤンパ線を前記誤差増幅器が実装された回路基板上に設け るとともに、 前記ジヤンパ線が実装された前記回路基板上に作業孔を設 け、 前記作業孔から前記ジヤンパ線の設定状況の確認および切断が可能 となるよう構成したことを特徴とする請求項 5に記載の放電灯点灯装置。  6. The jumper wire is provided on the circuit board on which the error amplifier is mounted, and a work hole is provided on the circuit board on which the jumper wire is mounted, and a setting state of the jumper wire is set from the work hole. The discharge lamp lighting device according to claim 5, wherein the discharge lamp lighting device is configured to be capable of checking and cutting.
7 . 前記基準電圧回路を、 前記誤差増幅器が実装された回路基板上に 設けたことを特徴とする請求項 2に記載の放電灯点灯装置。  7. The discharge lamp lighting device according to claim 2, wherein the reference voltage circuit is provided on a circuit board on which the error amplifier is mounted.
8 . 前記基準電圧選択手段が実装された回路基板を開口部が形成され た金属ケース内に収納するとともに、 前記開口部から前記基準電圧選択 手段の設定状況の確認および設定変更が可能となるよう構成したことを 特徴とする請求項 2に記載の放電灯点灯装置。  8. The circuit board on which the reference voltage selection means is mounted is housed in a metal case having an opening, and the setting status of the reference voltage selection means can be checked and changed from the opening. The discharge lamp lighting device according to claim 2, wherein the discharge lamp lighting device is configured.
9 . 前記基準電圧選択手段の操作部分を基準電圧の順に配置したこと を特徴とする請求項 2に記載の放電灯点灯装置。  9. The discharge lamp lighting device according to claim 2, wherein the operation portions of the reference voltage selection means are arranged in the order of the reference voltage.
1 0 . 前記基準電圧選択手段が、 前記放電灯負荷回路に装着された放 電灯の定格値を識別し、 前記基準電圧回路から出力する基準電圧として この定格値に適合した基準電圧を自動的に選択するよう構成したことを 特徴とする請求項 1に記載の放電灯点灯装置。  10. The reference voltage selecting means identifies a rated value of the discharge lamp mounted on the discharge lamp load circuit, and automatically sets a reference voltage conforming to the rated value as a reference voltage output from the reference voltage circuit. The discharge lamp lighting device according to claim 1, wherein the discharge lamp lighting device is configured to be selected.
1 1 . 前記ィンバ一夕回路のスィツチング周波数を設定する初期周波 数設定手段を備えるとともに、 前記基準電圧選択手段が、 前記初期周波 数設定手段によって設定されたスィッチング周波数で運転した時の前記 電流検出回路からの出力に基づいて前記放電灯負荷回路に装着された放 電灯の定格値を識別するよう構成したことを特徴とする請求項 1 0に記 載の放電灯点灯装置。 1 1. Initial frequency for setting the switching frequency of the above-mentioned circuit. And a reference voltage selection means mounted on the discharge lamp load circuit based on an output from the current detection circuit when operating at the switching frequency set by the initial frequency setting means. 10. The discharge lamp lighting device according to claim 10, wherein the rated value of the discharge lamp is identified.
1 2 . 前記基準電圧選択手段が、 前記電流検出回路の出力をデジタル データ化する A/D変換器と、 前記初期周波数設定手段で設定されたス ィツチング周波数に対応する放電灯の電流値を記憶する記憶回路と、 前 記 A/D変換器によって検出されたデジタルデータと前記記憶回路にあ らかじめ保存された電流値とを比較して装着された放電灯の定格値を識 別し、 制御信号を出力する演算回路とを備えたスィッチ制御部と、 前記 演算回路からの制御信号により前記基準電圧回路から出力される基準電 圧を選択するスィツチ部とを備えたことを特徴とする請求項 1 1に記載 の放電灯点灯装置。  12. The reference voltage selection means stores an A / D converter for converting the output of the current detection circuit into digital data, and a discharge lamp current value corresponding to the switching frequency set by the initial frequency setting means. The digital data detected by the A / D converter and the current value stored in the storage circuit in advance to identify the rated value of the installed discharge lamp, A switch control unit comprising an arithmetic circuit for outputting a control signal, and a switch unit for selecting a reference voltage output from the reference voltage circuit according to a control signal from the arithmetic circuit. Item 11. The discharge lamp lighting device according to item 11.
1 3 . 前記インバ一夕回路のスイッチング周波数を検出する周波数検 出手段を設け、 前記基準電圧選択手段が、 前記周波数検出手段から出力 されるスィツチング周波数に基づいて、 前記放電灯負荷回路に装着され た放電灯の定格値を識別するよう構成したことを特徴とする請求項 1 0 に記載の放電灯点灯装置。  13. A frequency detecting means for detecting a switching frequency of the inverter circuit is provided, and the reference voltage selecting means is mounted on the discharge lamp load circuit based on a switching frequency outputted from the frequency detecting means. 10. The discharge lamp lighting device according to claim 10, wherein the rated value of the discharge lamp is identified.
1 4 . 前記基準電圧選択手段が、 前記周波数検出手段から出力される スィツチング周波数と電流検出回路から出力される前記放電灯負荷回路 に供給される電流値とに基づいて、 前記放電灯負荷回路に装着された放 電灯の定格値を識別するよう構成したことを特徴とする請求項 1 3に記 載の放電灯点灯装置。  14. The reference voltage selection means, based on a switching frequency output from the frequency detection means and a current value output from the current detection circuit and supplied to the discharge lamp load circuit, supplies the discharge lamp load circuit with 14. The discharge lamp lighting device according to claim 13, wherein a rating value of the mounted discharge lamp is identified.
1 5 . 前記基準電圧選択手段が、 前記基準電圧回路から出力されてい る基準電圧と前記周波数検出手段から出力されるスィツチング周波数と に基づいて、 前記放電灯負荷回路に装着された放電灯の定格値を識別す るよう構成したことを特徴とする請求項 1 3に記載の放電灯点灯装置。 15. The reference voltage selection means outputs the reference voltage output from the reference voltage circuit and the switching frequency output from the frequency detection means. 14. The discharge lamp lighting device according to claim 13, wherein a rated value of the discharge lamp mounted on the discharge lamp load circuit is identified based on the following.
1 6 . 前記基準電圧選択手段が、 前記周波数検出手段の出力をデジ夕 ルデ一夕化する A/D変換器と、 前記ィンバ一夕回路のスィツチング周 波数を記憶する記憶回路と、 前記 A/D変換器によって検出されたデジ タルデータと前記記憶回路にあらかじめ保存されたスィツチング周波数 とを比較して装着された放電灯の定格値を識別し、 制御信号を出力する 演算回路とを備えたスィツチ制御部と、 前記演算回路からの制御信号に より前記基準電圧回路から出力される基準電圧を選択するスィツチ部と を備えたことを特徴とする請求項 1 3に記載の放電灯点灯装置。  16. An A / D converter for digitizing the output of the frequency detection means, a storage circuit for storing a switching frequency of the inverter circuit, and the A / D converter. A switch comprising: an arithmetic circuit for identifying a rated value of a mounted discharge lamp by comparing digital data detected by the D converter with a switching frequency stored in the storage circuit in advance, and outputting a control signal. 14. The discharge lamp lighting device according to claim 13, further comprising: a control unit; and a switch unit that selects a reference voltage output from the reference voltage circuit according to a control signal from the arithmetic circuit.
1 7 . 前記放電灯点灯装置の起動時、 前記基準電圧選択手段が、 前記 基準電圧回路から出力可能な基準電圧のうち最小の電流値に対応した基 準電圧を選択するよう構成したことを特徴とする請求項 1 3に記載の放 電灯点灯装置。  17. When the discharge lamp lighting device is started, the reference voltage selecting means is configured to select a reference voltage corresponding to a minimum current value among reference voltages that can be output from the reference voltage circuit. 14. The discharge lamp lighting device according to claim 13, wherein:
1 8 . 前記基準電圧を変更する際、 前記基準電圧選択手段が、 変更時 点で選択されている基準電圧に近い基準電圧から順に基準電圧を選択す るよう構成したことを特徴とする請求項 1 0に記載の放電灯点灯装置。  18. When changing the reference voltage, the reference voltage selecting means is configured to select a reference voltage in order from a reference voltage close to the reference voltage selected at the time of the change. 10. The discharge lamp lighting device according to item 10.
1 9 . 前記基準電圧選択手段に、 前記基準電圧回路から出力される基 準電圧を手動で設定可能な外部設定手段を備えたことを特徴とする請求 項 1 0に記載の放電灯点灯装置。  19. The discharge lamp lighting device according to claim 10, wherein the reference voltage selection means includes an external setting means capable of manually setting a reference voltage output from the reference voltage circuit.
2 0 . 前記基準電圧回路と前記誤差増幅器との間に、 前記誤差増幅器 に入力される基準電圧を連続的に変化させる緩衝回路を備えたことを特 徴とする請求項 1 0に記載の放電灯点灯装置。  20. The discharge device according to claim 10, further comprising a buffer circuit between the reference voltage circuit and the error amplifier, the buffer circuit continuously changing a reference voltage input to the error amplifier. Lighting device.
2 1 . 前記基準電圧回路が、 基準電圧用直流電源と前記基準電圧用直 流電源の電圧を分割する分割抵抗とを備え、 あらかじめ設定された放電 灯の定格値に対応した複数の異なる基準電圧を生成する基準電圧発生部 を備えるとともに、 前記基準電圧選択手段が、 前記基準電圧発生部によ つて生成された基準電圧の中から出力する基準電圧を選択するスィツチ 部を備えたことを特徴とする請求項 1 0に記載の放電灯点灯装置。 2 1. The reference voltage circuit includes a DC power supply for reference voltage and a dividing resistor for dividing the voltage of the DC power supply for reference voltage, and a plurality of different reference voltages corresponding to a preset rated value of the discharge lamp. Reference voltage generator that generates 10. The device according to claim 10, wherein the reference voltage selecting means includes a switch for selecting a reference voltage to be output from the reference voltages generated by the reference voltage generator. Discharge lamp lighting device.
2 2 . 前記基準電圧回路が、 基準電圧用直流電源と、 前記基準電圧用 直流電源の電圧を分割する分割抵抗と、 前記分割抵抗に並列に接続され たスィッチから成るスィツチ部を備えるとともに、 前記基準電圧選択手 段が、 前記スィッチ部内のスィッチを選択し、 パイパスする分割抵抗を 選択することにより、 前記基準電圧回路から出力される基準電圧を選択 するよう構成したことを特徴とする請求項 1 0に記載の放電灯点灯装置。  22. The reference voltage circuit, comprising: a reference voltage DC power supply; a dividing resistor for dividing a voltage of the reference voltage DC power supply; and a switch portion including a switch connected in parallel to the dividing resistor. The reference voltage selection means is configured to select a switch in the switch section, select a divided resistor to bypass, and thereby select a reference voltage output from the reference voltage circuit. The discharge lamp lighting device according to 0.
2 3 . 前記基準電圧回路を、 前記誤差増幅器が実装された回路基板上 に設けるとともに、 前記基準電圧回路および前記誤差増幅器が実装され た前記回路基板を金属ケース内に収納したことを特徴とする請求項 1 0 に記載の放電灯点灯装置。  23. The reference voltage circuit is provided on a circuit board on which the error amplifier is mounted, and the reference voltage circuit and the circuit board on which the error amplifier is mounted are housed in a metal case. The discharge lamp lighting device according to claim 10.
PCT/JP1999/005703 1998-10-19 1999-10-15 Apparatus for lighting discharge lamp WO2000024230A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP99947921A EP1041862A4 (en) 1998-10-19 1999-10-15 Apparatus for lighting discharge lamp

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP10/296421 1998-10-19
JP29642198A JP2000123982A (en) 1998-10-19 1998-10-19 Discharge lamp lighting device
JP10/314349 1998-11-05
JP31434998A JP4083895B2 (en) 1998-11-05 1998-11-05 Discharge lamp lighting device
JP10/321636 1998-11-12
JP32163698A JP4040769B2 (en) 1998-11-12 1998-11-12 Discharge lamp lighting device

Publications (1)

Publication Number Publication Date
WO2000024230A1 true WO2000024230A1 (en) 2000-04-27

Family

ID=27338052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/005703 WO2000024230A1 (en) 1998-10-19 1999-10-15 Apparatus for lighting discharge lamp

Country Status (3)

Country Link
EP (1) EP1041862A4 (en)
TW (1) TW538654B (en)
WO (1) WO2000024230A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1189489A1 (en) * 2000-09-15 2002-03-20 Tridonic Bauelemente GmbH Control circuit with configuration intput
CN104797065A (en) * 2015-04-10 2015-07-22 浙江宇光照明科技有限公司 Electrodeless lamp circuit

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6577076B2 (en) * 2001-09-04 2003-06-10 Koninklijke Philips Electronics N.V. Adaptive control for half-bridge universal lamp drivers
FR2944669A1 (en) * 2009-04-21 2010-10-22 Peugeot Citroen Automobiles Sa Electric voltage or current supply controlling method for lamp in e.g. headlight of car, involves reducing setpoint of voltage/current supplied to high performance lamp when measurement shows increasing level of resistance
JP5807331B2 (en) * 2011-01-11 2015-11-10 セイコーエプソン株式会社 Discharge lamp driving device, projector, and discharge lamp driving method
JP2013004268A (en) * 2011-06-15 2013-01-07 Shimadzu Corp Lamp driving device
US9785041B2 (en) * 2015-05-01 2017-10-10 Seiko Epson Corporation Discharge lamp driving device, projector, and discharge lamp driving method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254396A (en) * 1986-04-07 1987-11-06 増田電機株式会社 Fluorescent light lighting circuit
JPH0359995A (en) * 1989-07-28 1991-03-14 Toshiba Lighting & Technol Corp Discharge lamp lighting device
JPH08106988A (en) * 1994-09-30 1996-04-23 Toshiba Lighting & Technol Corp Discharge lamp lighting device and lighting system
JPH10106784A (en) * 1996-09-25 1998-04-24 Matsushita Electric Works Ltd Discharge lamp lighting device
JPH10228991A (en) * 1997-02-13 1998-08-25 Hitachi Ltd Power supply device and discharge lamp lighting device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2587716B2 (en) * 1990-09-25 1997-03-05 株式会社小糸製作所 Lighting circuit for vehicle discharge lamps
JP3280475B2 (en) * 1993-08-03 2002-05-13 池田デンソー株式会社 Discharge lamp lighting device
JP2949268B2 (en) * 1994-03-24 1999-09-13 株式会社三社電機製作所 Power supply for lighting high-intensity discharge lamps

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254396A (en) * 1986-04-07 1987-11-06 増田電機株式会社 Fluorescent light lighting circuit
JPH0359995A (en) * 1989-07-28 1991-03-14 Toshiba Lighting & Technol Corp Discharge lamp lighting device
JPH08106988A (en) * 1994-09-30 1996-04-23 Toshiba Lighting & Technol Corp Discharge lamp lighting device and lighting system
JPH10106784A (en) * 1996-09-25 1998-04-24 Matsushita Electric Works Ltd Discharge lamp lighting device
JPH10228991A (en) * 1997-02-13 1998-08-25 Hitachi Ltd Power supply device and discharge lamp lighting device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1041862A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1189489A1 (en) * 2000-09-15 2002-03-20 Tridonic Bauelemente GmbH Control circuit with configuration intput
CN104797065A (en) * 2015-04-10 2015-07-22 浙江宇光照明科技有限公司 Electrodeless lamp circuit
CN104797065B (en) * 2015-04-10 2018-05-01 浙江宇光照明科技有限公司 A kind of nonpolar lamp circuit

Also Published As

Publication number Publication date
EP1041862A4 (en) 2001-11-07
EP1041862A1 (en) 2000-10-04
TW538654B (en) 2003-06-21

Similar Documents

Publication Publication Date Title
JP4944899B2 (en) Discharge lamp lighting device, lighting system, and method thereof
JP4762134B2 (en) Resonant switching power supply
US10277133B2 (en) Isolated DC/DC converter, primary side controller, power adapter, and electronic device
US7336057B2 (en) DC/DC converter
US8169151B2 (en) DC/AC converter and controller thereof
US20090295300A1 (en) Methods and apparatus for a dimmable ballast for use with led based light sources
US20090129134A1 (en) Controlled class-e dc ac converter
WO2000024230A1 (en) Apparatus for lighting discharge lamp
US10389256B2 (en) Isolated DC/DC converter and primary side controller thereof, control method and power adaptor and electronic device using the same
JP2006060953A (en) Power supply unit
CA2051164A1 (en) Universal electronic ballast system
JP6101626B2 (en) Magnetron power supply equipment
JP4040769B2 (en) Discharge lamp lighting device
JP4083895B2 (en) Discharge lamp lighting device
JPH11262256A (en) Power unit and electric discharge lamp turning-on device
JPH11144887A (en) Electronic ballast device for high pressure discharge lamp
JPH1141914A (en) Dc-dc converter
US20030011326A1 (en) Fluorescent lamp brightness controller
JP2006505918A (en) Circuit device for operating a high pressure discharge lamp
JP3726651B2 (en) Power supply
JPH0898518A (en) Transformerless dc power supply
JP2000012269A (en) Discharge lamp lighting device
JPH11135288A (en) Lighting device for discharge lamp
JP2004355859A (en) Lighting device for discharge lamp
KR100509750B1 (en) Circuit for discriminately boosting output voltage between in normal range and in wide range

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1999947921

Country of ref document: EP

Ref document number: 09597916

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999947921

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999947921

Country of ref document: EP