WO2000008314A1 - Abgasanlage mit einer vorrichtung zur katalytischen nox-reduktion und einem aus fasern bestehenden katalysatorträgerkörper - Google Patents

Abgasanlage mit einer vorrichtung zur katalytischen nox-reduktion und einem aus fasern bestehenden katalysatorträgerkörper Download PDF

Info

Publication number
WO2000008314A1
WO2000008314A1 PCT/DE1999/002319 DE9902319W WO0008314A1 WO 2000008314 A1 WO2000008314 A1 WO 2000008314A1 DE 9902319 W DE9902319 W DE 9902319W WO 0008314 A1 WO0008314 A1 WO 0008314A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust system
ammonia
catalyst
layers
injection device
Prior art date
Application number
PCT/DE1999/002319
Other languages
English (en)
French (fr)
Inventor
Alfred Buck
Axel Hartenstein
Original Assignee
Alfred Buck
Axel Hartenstein
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alfred Buck, Axel Hartenstein filed Critical Alfred Buck
Priority to AU61876/99A priority Critical patent/AU6187699A/en
Publication of WO2000008314A1 publication Critical patent/WO2000008314A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/0217Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters the filtering elements having the form of hollow cylindrical bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0226Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2835Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • F01N3/32Arrangements for supply of additional air using air pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/10Fibrous material, e.g. mineral or metallic wool
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/12Metallic wire mesh fabric or knitting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/12Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/08Adding substances to exhaust gases with prior mixing of the substances with a gas, e.g. air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • So-called SCR catalysts are used to largely remove the nitrogen oxide from the exhaust gas stream.
  • SCR catalysts are particularly suitable for practically completely eliminating very high levels of nitrogen oxide. At high nitrogen oxide loads in the exhaust gas, they work more effectively than catalysts in which the catalyst material is firmly seated on a substrate.
  • SCR catalysts have also advantages in internal combustion engines, which have a considerable amount of carbon black because the Rußanceil to rial down strike in the catalyst bodies' with applied also in the surface of catalyst material on the Katalysacormate- and make it ineffective. That's why SCR catalytic converter devices are particularly advantageous for diesel engines.
  • the exhaust gas stream loaded with the urea reaches a swirling device in which a particularly good mixing of the exhaust gas stream with the solution is to be achieved.
  • the droplet size of the lost solution is reduced in the swirling device in order to obtain a corresponding increase in surface area.
  • part of the NO : ⁇ already reacts with the ammonia.
  • a reduction catalytic converter connects to the outlet of the swirling device, the subscrat of which is coated with vanadium pentoxide or platinum.
  • the substrate of this catalyst is a monolith with a variety of gas channels.
  • the reduction catalyst is followed by an oxide acion catalyst, the substrate of which is also a perforated brick which is coated with platinum or palladium.
  • the fiber-based catalyst device also acts as a particle or soot filter in which the soot is trapped and is also oxidized to carbon dioxide with the aid of the catalytic coating.
  • the fibers with the catalytic coating act as an equal carrier for the previously unused amount of ammonia-containing solution, which is deposited extremely finely on the fibers and thus forms a very large reaction surface for nitrogen oxide that is still present.
  • the fibers are preferably processed into a textile fabric in which they are firmly anchored. It has turned demonstrated that a knitted fabric is a textile fabric that is particularly suitable for catalytic converters, that holds the fibers very well and does not dissolve even when the thread breaks. A knitted fabric can be laid very well even with stubborn fibers, without forming unwanted small folds that create large-volume gas channels through which the exhaust gas can flow uncleaned.
  • a particularly good filter and catalyst effect is achieved if the knitted fabric forms layers which lie directly on top of one another and are preferably connected to one another along one edge, if appropriate.
  • Such layers are obtained when the knitted fabric is manufactured as a continuous tubular material, which is then laid flat to form a band.
  • the double-layer tape obtained is folded in a zigzag shape in order to obtain the desired layers stacked one on top of the other.
  • the stack of knitted layers obtained in this way is arranged in the catalyst device in such a way that the gas flow is forced to flow through between the layers of the knitted fabric.
  • Another possibility of obtaining the desired layers of knitted fabric is to compress the knitted tube in the longitudinal direction of the tube, which creates annular layers which are also one above the other and are connected to one another on the inside and outside edge.
  • the knitted fabric can be made of metallic and / or mineral fibers which are coated accordingly with catalyst material, for example vanadium pentoxide, or contain this material.
  • a nozzle which has very favorable properties has slit-shaped outlets for the air and essentially circular outlets for the ammonia-donating agent, the slit-shaped nozzle outlets for the ammonia-donating agent surrounding it.
  • ammonia itself is toxic, it is advantageous not to keep the ammonia in the immediate form in the vehicle or in the vicinity of the internal combustion engine. Even the smallest leakage could lead to a hazard. It is therefore cheaper to use urea or urea carbamate or other compounds instead of ammonia, in which no free ammonia is present and which give rise to the ammonia when heated. This makes handling much less dangerous.
  • Fig. 1 is an exhaust system according to the invention in one schematic longitudinal section
  • Fig. 4 shows the nozzle, injection device in a schematic longitudinal section
  • Fig. 5 shows the nozzle of Fig. 4 in a plan view of the outlet side.
  • Fig. 1 shows a schematic representation of an exhaust system 1 for an internal combustion engine 2, which is preferably a diesel engine.
  • the exhaust system I includes an exhaust duct 3, which at its upstream end merges into an exhaust manifold 4, which is connected to the outlets of the diesel engine 2. Downstream of the exhaust manifold 4, an injection device 5 opens into the gas duct 3.
  • the injection device 5 is used to inject a reaction medium, which contains ammonia or splits into ammonia, into the exhaust gas duct 3.
  • the exhaust duct 3 Downstream, the exhaust duct 3 contains a plurality of swirling devices 6, 7 and 8 arranged one behind the other.
  • the gas stream emerging from the last intermingling device 8 finally arrives in a catalytic converter device 9. After flowing through the catalytic converter device 9, the cleaned exhaust gas stream is blown out into the open via an opening 11.
  • a speed sensor 12 is directly or indirectly coupled to the crankshaft of the diesel engine 2 and outputs a signal proportional to the engine speed via a signal line 13.
  • the signal reaches a converter circuit 14, which emits a control signal to a control circuit 16 on an electrical line 15.
  • the control circuit 16 serves to control a liquid pump 17 and a compressor 18.
  • the liquid pump 17 is connected to the control circuit 16 via an electrical line 18 and the compressor 18 via an electrical line 21.
  • At least the liquid pump 17 is of a type which is continuously Petite adjustment of the volume flow permitted.
  • the liquid pump 17 has two connections 22 and 23, the connection 22 being on the suction side and the connection 23 on the pressure side.
  • the suction connection 22 is connected to a storage container 25 via a pipeline 24.
  • an aqueous solution e.g. composed of 40% urea and 60% water.
  • the aqueous urea solution can be refilled into the storage container 25 with the aid of a filling line 26 which continues to open into the storage container and is to be shut off via a shut-off valve 27.
  • the pressure connection 23 is connected in terms of flow to a nebulizer nozzle 29 via a pipeline 28.
  • the atomizing nozzle 25 is set up to atomize the aqueous urea solution as finely as possible, and it also has the task of introducing additional air into the exhaust gas duct 3, which should also be mixed well with the exhaust gas stream.
  • the atomizer nozzle 29 therefore contains a larger set of nozzle openings which are connected via a line 31 to a pressure connection 32 of the compressor 18.
  • the compressor 18 draws in circulating air and presses it into the line 31.
  • the swirling devices 6, 7 and 8 arranged downstream of the atomizing nozzle 29 are essentially baffle plates arranged at an angle, the purpose of which is to improve the distribution of the atomized urea solution, ie to mix the exhaust gas stream evenly with the atomized aqueous solution and at the same time, if necessary, to increase the droplet size reduce. This is intended to create a large surface area on which the nitrogen oxides of the exhaust gas stream can react with the ammonia.
  • the catalyst device 9 consists of a mineral fiber knit whose fibers are coated with vanadium pentoxide.
  • FIGS. 2a and 2b The structure of the catalyst device 9, which is only indicated very schematically in FIG. 1, is shown in more detail in FIGS. 2a and 2b.
  • the substrate for the catalyst material vanadium pentoxide as can be seen in FIG. 2a, consists of a circular knitted tube 33 in which loops 34 are indicated.
  • the stitches 34 form rows of stitches 35 which run in the circumferential direction of the knitted tube 33 and so-called wales 36 which lie in the longitudinal direction of the knitted tube 33.
  • the threads from which the hose 33 is knitted are monofilaments or fibers or a mixture of the two.
  • the material of the fibers are minerals, such as glass and quartz or metals, which are sufficiently heat-resistant.
  • the catalyst material was applied to these fibers of the knitted fabric.
  • the knitted tube produced in this way on a circular knitting machine is compressed in the longitudinal direction to form the catalyst device, as shown in the lower part of FIG. 2a. Seen from the outside, this gives it the shape of a tree cake or an accordion, forming circular layers 37 which lie one on top of the other in the finished catalytic converter. For the purpose of better illustration only, they are shown in FIG. 2a as spaced layers 37. vividly in order to better recognize the orientation of these layers 37.
  • these annular layers 37 are integrally connected to one another on the outer and on the inner edge of each ring. Apart from the beginning and the end of the hose, there are no free edges in the stack formed by the layers 37 on which the knitted fabric could trickle.
  • a so-called candle 38 is produced from this knitted tube 33, as is shown in longitudinal section in FIG. 2b.
  • the catalyst candle contains two perforated tubes 39 and 40 which are inserted into one another.
  • the tubes 39 and 40 have the same length and are coaxial with one another. They delimit a cylindrical annular space 41 between them. Since they have no other function apart from the support function, the openings contained in the two tubes are as large as possible.
  • Both tubes 39 and 40 are gas-tightly attached at one end to a disk-shaped cover 42.
  • the cover 42 is, for example, welded to the outer tube 40 and to the inner tube 39 and thus closes both the annular space 41 and the interior space formed by the tube 38 in a gas-tight manner.
  • the annular space 41 is the leporello-like knitted tube 33 folded in the longitudinal direction.
  • Its individual layers can be seen in the longitudinal section of FIG. 2b as wavy lines.
  • the individual layers of the layers 37 are shown spaced apart from one another merely for the sake of illustration. In truth they are on top of each other, so with the stratification on average would no longer be visible to the naked eye.
  • the degree of filling of the annular space 41 depends on the required or permissible back pressure that may arise at the catalyst device 9.
  • annular space 41 is closed by an annular disk 43.
  • This disc 43 is welded gas-tight to both the outer tube 40 and the inner tube 39.
  • An opening 44 contained in the disk 43 corresponds in diameter to the inside width of the tube 39.
  • the mode of operation of the catalyst candle 38 shown in FIG. 2b is as follows:
  • the exhaust gas flow passes through the opening 44 into the interior which is kept open by the pipe 38. From here, the exhaust gas stream flows radially through the filter and catalyst body formed by the layers 37 and it emerges on the outside of the tube 40. Since the two pipes are connected to one another both via the ring 43 and via the disk 42, the exhaust gas flow only passes through in this way. It flows approximately parallel to the superimposed layers 37, i.e. approximately in the direction parallel to the alignment of the wales in the individual layers 37.
  • the catalyst device 9 in FIG. 1 is formed by only one catalyst candle 38 according to FIG. 2b.
  • the catalyst candle 38 according to FIG. 2b is used in the exhaust gas duct 3 in such a way that the opening 40
  • FIGS. 3a and 3b Another way of arranging the knitted fabric is shown in FIGS. 3a and 3b.
  • a knitted tube 33 is assumed, which, however, after knitting, is laid flat to form a band 51 which has two layers 52 and 53 connected to one another on the edge.
  • the tape 51 obtained in this way is folded like a leporello, according to FIG. 3b, and a stack 54 is formed which is rectangular in plan and consists of the endless tape 51. It in turn contains several layers 37 lying on top of one another, which are rectangular in plan view. They are shown spaced apart from one another in FIG. 3b only for reasons of illustration. In truth, they are in direct contact.
  • the cage 3b is inserted into a rectangular cage, not shown, which has the task of keeping the stack 54 in shape.
  • the cage corresponds functionally to the two tubes 38 and 39.
  • the cage can therefore be constructed, for example, in such a way that it has two walls of expanded metal which are parallel and spaced apart from one another and which are adjacent to the folded edges of the stack 54. All other walls, however, are closed. The gas flow would then flow through the stack 54 in the direction of an arrow 55.
  • FIG. 4 and 5 finally show, in section and in a top view, a highly schematic view of the atomizing nozzle 39.
  • It contains two channels 56 and 57 which are coaxial with one another and which are each connected individually to the line 28 or 31. At their downstream end, they pass into a nozzle plate 58 in a sealed manner.
  • the nozzle plate 58 contains three bores 59 which are designed in such a way that they converge towards the outlet side.
  • the bores 59 are connected in terms of flow to the channel 57. In this way, three liquid jets are generated which would meet on the central axis of the nozzle plate 58.
  • a plurality of, in total 6, slot-shaped openings 61 which are connected in terms of flow to the channel 46, which coaxially surrounds the inner channel 57 at least in the vicinity of the nozzle plate 58.
  • the slit-shaped openings 61 are arranged in a scale-like manner in the circumferential direction.
  • the mode of operation of the exhaust system 1 shown is as follows:
  • An exhaust gas stream emerges from the cylinders of the diesel engine 1, which contains carbon monoxide, unburned hydrocarbons, soot and nitrogen oxides. All of these components are undesirable.
  • the exhaust gas stream contains unburned air because the diesel engine works with an excess of air corresponding to a ⁇ value between 1.5 and 2.
  • the carbon monoxide and the unburned hydrocarbons react with one another in the catalyst device 9 and they react under the catalytic action of the vanadium pentoxide to form H, O, carbon dioxide and molecular oxygen.
  • the nitrogen oxide would escape from the exhaust system.
  • the urea solution is injected into the exhaust gas stream by means of the liquid pump 17 with the aid of the injection device 5 in the correct mixing ratio and is then atomized with the aid of the compressed air from the slot-shaped nozzles 61.
  • the injected urea solution decomposes to ammonia and carbon dioxide at the high exhaust gas temperature.
  • This ammonia (NH 3 ) reacts under the catalytic action of the vanadium pentoxide to form molecular nitrogen and water.
  • the vanadium pentoxide in the catalyst device 9 also ensures that soot contained in the exhaust gas stream burns flamelessly with the acidic oxygen portion of the air present to form carbon dioxide.
  • the knitted catalyst has the advantage that no urea solution can escape into the open.
  • the "pore structure" of the layered knitted fabric creates such strong eddies that no droplets can get through the catalyst body.
  • the catalyst acts as a trap for the urea solution, which may spread extremely thinly on the surface of the fibers and thus provide a large reaction area for reaction with the harmful nitrogen oxide.
  • urea carbamate as well as other chemical compositions can be used which produce ammonia when heated in the exhaust gas stream. Because of its toxicity, ammonia itself would only be conceivable for stationary systems.
  • An exhaust system that works according to the SCR catalyst principle contains an injection device for a chemical compound that contains ammonia or releases ammonia in the exhaust gas environment.
  • a catalyst arrangement is located downstream of the injection device, in which the substrate for the catalyst is formed by a knitted fabric.
  • the threads of the knitted fabric are coated with the catalyst material, which is preferably vanadium pentoxide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Eine Abgasanlage (1), die nach dem SCR-Katalysatorprinzip arbeitet, enthält eine Eindüseinrichtung (5) für eine chemische Verbindung, die Ammoniak enthält oder in der Abgasumgebung Ammoniak abspaltet. Stromabwärts der Eindüseinrichtung (5) befindet sich eine Katalysatoranordnung (9), bei der das Substrat für den Katalysator von einem Gestrick gebildet ist. Die Fäden des Gestricks sind mit dem Katalysatormaterial beschichtet, das vorzugsweise Vanadiumpentoxid ist.

Description

ABGASANLAGE MIT EINER VORRICHTUNG ZUR KATALYΗSCHEN NOX-REDUKΗON UND EINEM AUS FASERN BESTEHENDEN KATALYSATORTRÄGERKÖRPER
Bei der geschlossenen Verbrennung, wie sie in Ver- brennungsmocoren vorliege, entstehen bekanntermaßen unerwünschte Nebenprodukte und bei erhöhten Temperaturen Stickoxide. Bedauerlicherweise erhöht sich der Anteil an Stickoxiden dann, wenn der Motor hinsichtlich des Verbrauches an Kraftstoff besonders wirtschaftlich eingestellt wird.
Um das Stickoxid aus dem Abgasstrom weitgehend zu beseitigen, werden sogenannte SCR-Katalysatoren angewendet, wie sie in der EP 0 558 452 beschrieben sind. SCR- Katalysatoren eignen sich insbesondere dafür, sehr hohe Stickoxidanteile praktisch vollständig zu beseitigen. 3ei hohen Stickoxidbelastungen des Abgases arbeiten sie wirksamer als Katalysatoren, bei denen das Katalysatormaterial fest auf einem Substrat sitzt. Außerdem haben SCR-Katalysatoren Vorteile bei Verbrennungsmotoren, die einen beträchtlichen Rußanteil haben, weil der Rußanceil sich bei den Katalysatoreinrichtungen 'mit auch in der Oberfläche aufgebrachtem Katalysatormaterial auf dem Katalysacormate- rial niederschlage und es unwirksam mache. Deswegen sind SCR-Katalysatoreinrichtungen besonders bei Dieselmotoren von Vorteil .
Bei der Anlage, wie sie in der EP 0 558 452 beschrieben ist, wird in den Abgasstrom eine Lösung aus 40% Harnstoff und 60% Wasser eingedüst.
Der mit dem Harnstoff beladene Abgasstrom gelangt in eine Verwirbelungseinrichtung, in der eine besonders gute Durchmischung des Abgasstroms mit der Lösung erzielt werden soll. Gleichzeitig wird in der Verwirbelungseinrichtung die Tropfchengröße der eingebüßten Lösung verkleinert, um eine entsprechende Oberflächenvergrößerung zu bekommen. An dieser Stelle reagiert bereits ein Teil des NO:< mit dem Ammoniak. An den Ausgang der Verwirbelungseinrichtung schließt sich ein Reduktionskatalysator an, dessen Subscrat mit Vanadiumpentoxid oder Platin beschichtet ist. Das Substrat dieses Katalysators ist ein Monolith mit einer Vielzahl von Gaskanälen.
Trotz beträchtlicher räumlicher Abmessungen dieses Reduktionskatalysators ist die Verweilzeit des Abgasstroms in dem Oxidationskatalysator zu gering als dass der gesamte in dem Abgas enthaltene Ruß und das Kohlen onoxid beseitigt werden könnten. Es ist deswegen bei der bekannten Anordnung dem Reduktionskatalysator noch ein Oxidacions- katalysator nachgeschaltet, dessen Substrat ebenfalls ein Lochstein ist, der mit Platin oder Palladium beschichtet ist.
Die große Anzahl von Katalysatoren ist außerdem erforderlich, um sicherzustellen, dass kein freies Ammoniak am Auspuff austritt, d.h. das gesamte Ammoniak in der gewünschten Weise mit dem Stickoxid in dem Gasstrom reagiert hat . Ausgehend hiervon ist es Aufgabe der Erfindung, eine Abgasanlage für Verbrennungsmotoren zu schaffen, die hinsichtlich des Ammoniakverbrauches günstiger ist und geringere Abmessungen aufweist.
Diese Aufgabe wird erfindungsgemäß durch die Abgas - anläge mit den Merkmalen des Anspruchs 1 gelöst.
Die Verwendung einer Katalysatoreinrichtung, deren Substrat aus Fasern besteht, führt zu einer wesentlichen Oberflächenvergrößerung und hierdurch werden zwei wesentliche Vorteile erreicht:
Zufolge der größeren Oberfläche kann wirksamer das Kohlen onoxid durch Katalyse in das ungefährliche Kohlendioxid umgesetzt werden. Der austre ende Abgasstrom ist praktisch vollkommen frei von Kohlenmonoxid.
Außerdem wirkt gleichzeitig die auf Faserbasis aufgebaute Katalysatoreinrichtung als Partikel- oder Rußfilter, in dem der Ruß gefangen wird und mit Hilfe der katalyti- schen Beschichtung ebenfalls zu Kohlendioxid oxidiert wird. Schließlich wirken die Fasern mit der katalytischen Beschichtung als gleichsame Träger für die bis dahin noch nicht verbrauchte Menge an ammoniakhaltiger Lösung, die sich extrem fein auf den Fasern niederschlage und dadurch eine sehr große Reaktionsoberflache für noch vorhandenes Stickoxid bildet.
Da nur eine Katalysatoreinrichtung vorhanden ist, wird die Abgasanlage volumenmäßig sehr klein.
Um das Herauslösen von Fasern zu verhindern, sind die Fasern vorzugsweise zu einem textilen Flächengebilde verarbeitet, in dem sie fest verankert sind. Es hat sich he- rausgestellt, dass ein Gestrick ein für Katalysatoren besonders geeignetes textiles Flächengebilde ist, das die Fasern sehr gut festhält und sich auch bei Fadenbrüchen nicht auflöst. Ein Gestrick lässt sich auch bei störrischen Fasern sehr gut legen, ohne unerwünschte Kleinfalten zu bilden, die großvolumige Gaskanäle entstehen lassen, durch die das Abgas ungereinigt hindurchströmen kann.
Ein besonders guter Filter- und Katalysatoreffekt wird erreicht, wenn das Gestrick Lagen bildet, die unmittelbar aufeinander liegen und gegebenenfalls vorzugsweise längs einer Kante miteinander verbunden sind.
Derartige Lagen werden erhalten, wenn das Gestrick als Ξndlosschlauchware hergestellt wird, die sodann zu einem Band flachgelegt wird. Das erhaltene doppellagige Band wird zickzackförmig gefaltet, um die gewünschten aufeinander gestapelten Lagen zu erhalten. In der Katalysatoreinrichtung wird der so erhaltene Stapel aus Gestricklagen in einer Weise angeordnet, dass der Gasstrom gezwungen wird, zwischen den Lagen des Gestricks hindurchzuströmen.
Eine andere Möglichkeit die gewünschten Gestricklagen zu erhalten, besteht darin, den Gestrickschlauch in Schlauchlängsrichtung zu stauchen, wodurch ringförmige Lagen entstehen, die ebenfalls übereinander liegen und an der Innen- und Außenkante miteinander verbunden sind.
Beide Konfigurationen führen zu einer relativ großen Wanddicke in Strömungsrichtung und dementsprechend zu einer guten Filter- und Katalysatorwirkung. Andererseits ist der Strömungswiderstand und damit der Rückstau zum Verbrennungsmotor hin gering. Das Gestrick kann aus metallischen und/oder mineralischen Fasern hergestellt sein, die entsprechend mit Katalysatormaterial bspw. Vanadiumpentoxid beschichtet sind oder diese Material enthalten.
Je besser die Verteilung des das Ammoniak abgebenden Stoffes in dem Abgasstrom ist, umso besser wird auch die Reinigung des Abgases von dem belastenden Stickoxid. Es hat sich deswegen als zweckmäßig erwiesen, beim Eindüsen bereits möglichst kleine Tröpfchen zu erzeugen. Dies lässt sich erreichen, wenn das Eindüsen gemeinsam mit Lufe erfolgt, wobei gleichzeitig der notwendige Luftbedarf im Abgasstrom erzeuge v/erden kann. Eine Düse, die sehr günstige Eigenschaf en hat, weist schlitzförmige Auslässe für die Luft und im Wesentlichen kreisförmige Auslässe für das Ammoniak abgebende Mittel auf, wobei die schlitzförmigen Düsenauslässe für das Ammoniak abgebende Mittel umgeben.
Da Ammoniak selbst giftig ist, ist es von Vorteil, den Ammoniak nicht in unmittelbarer Form im Fahrzeug oder in der Nähe des Verbrennungsmotors bereitzuhalten. Bereits die kleinsten Leckagen könnten zu einer Gefährdung führen. Es ist deswegen günstiger, anstelle von Ammoniak Harnstoff oder Harnstoffkarbamat oder andere Verbindungen zu verwenden, bei denen kein freier Ammoniak vorhanden ist und die den Ammoniak erse bei Erwärmung entstehen lassen. Die Handhabung wird dadurch wesentlich ungefährlicher.
Im Übrigen sind Weiterbildungen der Erfindung Gegenstand von Unteransprüchen.
In der Zeichnung sind Ausführungsbeispiele des Gegenstandes der Erfindung dargestellt. Es zeigen:
Fig. 1 eine Abgasanlage gemäß der Erfindung in einem schematisierten Längsschnitt
Fig. 2a, b ein erstes Ausführungsbeispiel für den Aufbau des Katalysators
Fig. 3a, b ein zweites Ausführungsbeispiel für den Aufbau des Katalysators
Fig. 4 die Düse, Eindüseinrichtung in einem schematisierten Längsschnitt und
Fig. 5 die Düse nach Fig. 4 in einer Draufsicht auf die Auslassseite .
Fig. 1 zeigt in einer schematischen Darstellung eine Abgasanlage 1 für einen Verbrennungsmotor 2, der vorzugsweise ein Dieselmotor ist. Zu der Abgasanlage I gehört ein Abgaskanal 3 , der an seinem stromaufwärts gelegenen Ende in einen Abgaskrümmer 4 übergeht, der mit den Auslässen des Dieselmotors 2 verbunden ist. Stromabwärts des Auspuffskrümmers 4 mündet in den Gaskanal 3 eine Eindüseinrichtung 5.
Die Eindüseinrichtung 5 dient dazu, ein Reaktions- mittel, das Ammoniak enthält oder sich in Ammoniak aufspaltet, in den Abgaskanal 3 einzudüsen.
Stromabwärts enthält der Abgaskanal 3 mehrere hintereinander angeordneee Verwirbelungseinrichtungen 6, 7 und 8.
Der aus der letzten Verwirbelungseinricheung 8 austretende Gasstrom gelangt schließlich in eine Katalysatoreinrichtung 9. Nach dem Durchströmen der Katalysatoreinrichtung 9 wird der gereinigte Abgasstrom über eine Öffnung 11 ins Freie abgeblasen.
Mit der Kurbelwelle des Dieselmotors 2 ise ein Drehzahlgeber 12 mittelbar oder unmittelbar gekuppelt, der über eine Signalleitung 13 ein der Motordrehzahl proportionales Signal abgibt. Das Signal gelangt in eine Wandlerschaltung 14, die auf einer elektrischen Leitung 15 ein Steuersignal an eine Steuerschaltung 16 abgibt. Die Steu- erschaltung 16 dient dazu, eine Flüssigkeitspumpe 17 sowie einen Kompressor 18 zu steuern. Hierzu ist die Flüssig- keitspumpe 17 über eine elektrische Leitung 18 mit der Steuerschaltung 16 verbunden und der Kompressor 18 über eine elektrische Leitung 21. Zumindest die Flüssigkeits- pumpe 17 ist in einer Bauart ausgeführt, die eine kontinu- ierliche Verstellung des Volumenstroms gestattet.
Die Flüssigkeitspumpe 17 weist zwei Anschlüsse 22 und 23 auf, wobei der Anschluss 22 auf der Saugseite und der Anschluss 23 auf der Druckseite liegt. Der Sauganschluss 22 ist über eine Rohrleitung 24 mit einem Vorratsbehälter 25 verbunden. In dem Vorratsbehälter 25 befindet sich eine wässrige Lösung, die sich z.B. aus 40% Harnstoff und 60% Wasser zusammensetzt. Mit Hilfe einer weiterhin in den Vorratsbehälter mündenden Füllleitung 26, die über ein Absperrventil 27 abzusperren ist, kann die wässrige Harnstofflösung in den Vorratsbehälter 25 nachgefüllt werden.
Der Druckanschluss 23 stehe über eine Rohrleitung 28 mit einer Zerstäuberdüse 29 strömungsmäßig in Verbindung. Die Zerstäuberdüse 25 ist dazu eingerichtet, die wässrige Harnstofflösung möglichst fein verteilt zu zerstäuben, und außerdem hat sie die Aufgabe, zusätzliche Luft in den Abgaskanal 3 einzuführen, die ebenfalls gut mit dem Abgasstrom vermischt werden soll. Die Zerstäuberdüse 29 enthält deswegen einen weieeren Satz Düsenöffnungen, die über eine Leitung 31 mit einen Druckanschluss 32 des Kompressors 18 verbunden sind. Der Kompressor 18 saugt Umluft ein und drückt sie in die Leitung 31.
Die stromabwärts der Zerstäuberdüse 29 angeordneten Verwirbelungseinrichtungen 6, 7 und 8 sind im Wesentlichen verwinkelt angeordnete Prallbleche, deren Zweck darin besteht, die Verteilung der verdüsten Harnstofflösung zu verbessern, d.h. den Abgasstrom noch gleichmäßiger mit der verdüsten wässrigen Lösung zu durchmischen und gleichzeitig gegebenenfalls die Tropfchengröße zu verringern. Dadurch soll eine große Oberfläche geschaffen werden, an der die Stickoxide des Abgasstromes mit dem Ammoniak reagieren könne . Die Katalysatoreinrichtung 9 besteht aus einem Mineralfasergestrick, dessen Fasern mit Vanadiumpentoxid beschichtet sind.
Der Aufbau der Katalysatoreinrichtung 9, die in Fig. 1 nur sehr schematisch angedeutet ist, ist in den Fig. 2a und 2b genauer dargestellt.
Das Substrat für das Katalysatormaterial Vanadium- pentoxyd besteht, wie Fig. 2a erkennen lässt, aus einem rundgestrickten Schlauch 33, in dem andeutungsweise Maschen 34 gezeigt sind. Die Maschen 34 bilden Maschenreihen 35, die in Umfangsrichtung des gestrickten Schlauches 33 verlaufen und sogenannte Maschenstäbchen 36, die in Längsrichtung des gestrickten Schlauchs 33 liegen.
Die Fäden, aus denen der Schlauch 33 gestricke ist, sind Monofilamente oder Fasern oder ein Gemisch von bei- dem. Das Material der Fasern sind Mineralstoffe, wie Glas und Quarz oder auch Metalle, die hinreichend warmfest sind.
Auf diesen Fasern des Gestricks ist in einem vorhergehenden Prozess das Katalysatormaterial aufgebracht worden.
Der in dieser Weise auf einer Rundstrickmaschine hergestellte Gestrickschlauch wird zur Bildung der Katalysatoreinrichtung wie im unteren Teil von Fig. 2a gezeigt in Längsrichtung gestaucht. Er bekomme dadurch von außen gesehen etwa die Gestalt eines Baumkuchens oder einer Ziehharmonika, wobei sich kreisringförmige Lagen 37 bilden, die in der fertigen Katalysatoreinrichtung aufeinander liegen. Lediglich zum Zweck der besseren Darstellung sind sie in Fig. 2a als voneinander beabstandete Lagen 37 ver- anschaulicht , um die Orientierung dieser Lagen 37 besser zu erkennen.
Wie sich aus der Fig. 2a weiter ergibt, sind diese ringförmigen Lagen 37 an der Außen- und an der Innenkante jedes Rings einstückig miteinander verbunden. Es gibt somit, abgesehen vom Anfang und vom Ende des Schlauches, in dem durch die Lagen 37 gebildeten Stapel keine freien Kanten, an denen das Gestrick auftrieseln könnte.
Aus diesem Gestrickschlauch 33 wird eine sogenannte Kerze 38 hergestellt, wie sie in Fig. 2b im Längsschnitt gezeigt is .
Da der gestrickte und gefaleete Schlauch 33 nicht von sich aus hinreichend formstabil ist, enthält die Katalysatorkerze zwei ineinander steckende gelochte Rohre 39 und 40. Die Rohre 39 und 40 haben gleiche Länge und sind zueinander koaxial. Sie begrenzen zwischen sich einen zylindrischen Ringraum 41. Da sie außer der Stützfunktion keine weitere Aufgabe haben, sind die in den beiden Rohren enthaltenen Öffnungen so groß wie möglich.
Beide Rohre 39 und 40 sind an einem Ende gasdicht an einem scheibenfömrigen Deckel 42 befestigt. Der Deckel 42 ist bspw. mit dem äußeren Rohr 40 und mit dem inneren Rohr 39 verschweißt und schließt somit sowohl den ringförmigen Raum 41 als auch den Innenraum der durch das Rohr 38 gebildet ist, gasdicht ab. In dem Ringraum 41 befindet sich der leporelloartig in Längsrichtung gefaltete gestrickte Schlauch 33. Dessen einzelne Lagen sind in dem Längsschnitt von Fig. 2b als Wellenlinien zu erkennen. Auch hierbei sind lediglich aus Darstellungsgründen die einzelnen Schichten der Lagen 37 voneinander beabstandet dargestellt. In Wahrheit liegen sie aufeinander, so dass mit bloßem Auge die Schichtenbildung im Schnitt nicht mehr zu erkennen wäre .
Der Füllgrad des Ringraumes 41 richtet sich nach dem erforderlichen oder zulässigen Gegendruck, der an der Katalysatoreinrichtung 9 entstehen darf.
An seinem von der Scheibe 42 abliegenden Ende ist der Ringraum 41 durch eine ringförmige Scheibe 43 verschlossen. Diese Scheibe 43 ist gasdicht sowohl mit dem äußeren Rohr 40 als auch mit dem inneren Rohr 39 verschweißt. Eine in der Scheibe 43 enthaltene Öffnung 44 entspricht im Durchmesser der lichten Weite des Rohres 39.
Die Funktionsweise der in Fig. 2b gezeigten Katalysatorkerze 38 ist wie folgt:
Der Abgasstrom gelangt über die Öffnung 44 in den durch das Rohr 38 offengehaltenen Innenraum. Von hier aus strömt der Abgasstrom radial durch den von den Lagen 37 gebildeten Filter- und Katalysatorkörper hindurch und er tritt an der Außenseite des Rohres 40 aus. Da die beiden Rohre sowohl über den Ring 43 als auch über die Scheibe 42 miteinander verbunden sind, gelangt der Abgasstrom nur auf diese Weise hindurch. Er strömt dabei etwa parallel zu den aufeinanderliegenden Lagen 37 hindurch, d.h. etwa in Richtung parallel zu der Ausrichtung der Maschenstäbchen in den einzeln Lagen 37.
Die Katalysatoreinrichtung 9 in Fig. 1 wird im einfachsten Falle von lediglich einer Katalysatorkerze 38 nach Fig. 2b gebildet.
Die Katalysatorkerze 38 nach Fig. 2b wird so in dem Abgaskanal 3 eingesetzt, dass die Öffnung 40 das seromauf-
u wärtsgelegene Ende bildet.
Damit kein Abgas an der Katalysatorkerze 38 vorbeiströmen kann, ist sie mittels einer Scheibe 46 abgedichtet in dem Gaskanal 3 gehalten. Das gegenüberliegende Ende der Katalysatorkerze 38 kann über gestrichelt angedeutete Streben 47 in dem Abgaskanal 3 abgestützt sein.
Eine andere Art, das Gestrick anzuordnen zeigen die Fig. 3a und 3b. Auch hierbei wird wieder von einem Ge- strickschlauch 33 ausgegangen, der jedoch nach dem Stricken zu einem Band 51, das zwei randseitig miteinander verbundene Lagen 52 und 53 aufweist, flachgelege wird. Das so erhaltene Band 51 wird gemäß Fig. 3b leporelloareig gefaltet und es entsteht ein im Grundriss rechteckiger Stapel 54, der aus dem endlosen Band 51 besteht. Er enthält wiederum mehrere aufeinanderliegende Lagen 37, die in der Draufsicht rechteckig sind. Lediglich aus Darstel- lungsgründen sind sie in Fig. 3b voneinander beabstandet gezeigt. In Wahrheit stehen sie unmittelbar in Berührung.
Der so erhaltene Stapel gemäß Fig. 3b wird in einen nicht gezeigten quaderförmigen Käfig eingesetzt, der die Aufgabe hat, den Stapel 54 in der Form zu halten. Der Käfig entspricht insoweit funktionsmäßig den beiden Rohren 38 und 39.
Er hat ferner die Aufgabe zu verhindern, dass der Gasstrom an den falschen Stellen austritt bspw. am Stapel 54 vorbeiserömt oder vorzeitig seitlich zwischen den Lagen 37 ausströmt. Der Käfig kann deswegen bspw. so gebaut sein, dass er zwei zueinander parallel und voneinander beabstandete Wände aus Streckmetall aufweist, die den Faltkanten des Stapels 54 benachbart sind. Alle übrigen Wände sind hingegen geschlossen. Der Gasstrom würde dann entsprechend der Richtung eines Pfeiles 55 durch den Stapel 54 hindurchströmen.
Die Fig. 4 und 5 zeigen schließlich im Schnitt und in der Draufsicht stark schematisiert die Zerstäuberdüse 39. Sie enthält zwei zueinander koaxiale Kanäle 56 und 57, die jeder für sich mit der Leitung 28 oder 31 verbunden sind. An ihrem abströmseitigen Ende gehen sie in eine Düsenplatte 58 abgedichtet über. Die Düsenplatte 58 enthält drei Bohrungen 59, die so ausgeführt sind, dass sie zur Austrittsseite hin konvergieren. Die Bohrungen 59 stehen strömungsmäßig mit dem Kanal 57 in Verbindung. Auf diese Weise werden drei Flüssigkeitsstrahlen erzeugt, die auf der Mittelachse der Düsenplatte 58 aufeinander treffen würden.
Um die Bohrungen 59 herum sind mehrere, insgesamt 6 schlitzförmige Öffnungen 61 angeordnet, die mit dem Kanal 46 strömungsmäßig verbunden sind, der den inneren Kanal 57 zumindest in der Nähe der Düsenplatte 58 koaxial umgibt. Die schlitzförmigen Öffnungen 61 sind wie gezeige schup- penfömig in Umfangsrichtung verteilt angeordnet.
Die Wirkungsweise der gezeigten Abgasanlage 1 ist wie folgt :
Aus den Zylindern des Dieselmotors 1 tritt ein Abgasstrom aus, der Kohlenmonoxyd, unverbrannte Kohlenwasserstoffe, Ruß und Stickoxide enthält. All diese Komponenten sind unerwünscht. Zusätzlich enthält der Abgasstrom unverbrannte Luft, weil der Dieselmotor mit einem Luft- überschuß entsprechend einem λ-wert zwischen 1,5 und 2 arbeitet .
Das in dem Abgasstrom enthaltene Kohlenmonoxid und die unverbrannten Kohlenwasserstoffe reagieren in der Katalysatoreinrichtung 9 miteinander und sie reagieren unter katalytischer Wirkung des Vanadiumpentoxids zu H,0, Kohlendioxid und molekularem Sauerstoff .
Ohne besondere Vorkehrungen würde hingegen das Stickoxid aus der Abgasanlage ins Freie gelangen. Um dies zu verhindern, wird mit Hilfe der Ξindüseinrichtung 5 im richtigen Mischungsverhältnis die Harnstofflösung mittels der Flüssigkeitspumpe 17 in den Abgasstrom eingespritzt und dore unter Zuhilfenahme der Druckluft aus den schlitzförmigen Düsen 61 zerseäubt .
Mit Hilfe der Einspritzeinrichtung 5 gelangt in den Abgaskanal eine Mischung aus Luft und wässriger Harnstoff - lösung in einem Mengenanteil derart, dass das Stickoxid vollständig abgebaut wird und andererseits kein freier Ammoniak oder kein freier Harnstoff die Abgasanlage ver- lässt . Deswegen werden die Pumpe 17 sowie der Kompressor 18 drehzahlabhängig gesteuert.
Die eingespritzte Harnstofflösung zersetzt sich bei der hohen Abgastemperatur zu Ammoniak und Kohlendioxid. Dieser Ammoniak (NH3) reagiert unter katalytischer Wirkung des Vanadiumpentoxids zu molekularem Stickseoff und Wasser .
Das Vanadiumpentoxid in der Katalysatoreinrichtung 9 sorgt auch dafür, dass im Abgasstrom enthaltener Ruß mit dem Sauerseoffanteil der vorhandenen Luft flammenlos zu Kohlendioxid verbrennt .
Mit der erfindungsgemäßen Anordnung können mit Hilfe eines einzigen Katalysators, der ausschliesslich mit Vanadiumpentoxid beschichtet ist alle schädlichen Abgasanteile beseitigt werden. Dabei hat der aus dem Gestrick bestehende Katalysator den Vorteil, dass er keine Harnstofflösung ins Freie entkommen lässt. Die "Porenstruktur" des lagenweise geschichteten Gestricks erzeugt so starke Wirbel, dass keine Tröpfchen durch den Katalysatorkorper hindurchgelangen können. Der Katalysator wirkt gleichzeitig als Falle für die Harnstofflösung, die sich gegebenenfalls extrem dünn auf der Oberfläche der Fasern ausbreitet und so eine große Reaktionsflache zum Reagieren mit dem schädlichen Stickoxid bereithält.
Anstelle von Harnstoff können auch Harnstoffcarbamat so wie andere chemische Zusammensetzungen verwendet werden, die bei Erwärmung im Abgasstrom Ammoniak produzieren. Ammoniak selbst wäre wegen seiner Giftigkeit nur für stationäre Anlagen denkbar.
Eine Abgasanlage, die nach dem SCR-Katalysatorprinzip arbeitet, enthält eine Eindüseinrichtung für eine chemische Verbindung, die Ammoniak enthält oder in der Abgas- Umgebung Ammoniak abspaltet . Stromabwärts der Eindüseinrichtung befindet sich eine Katalysatoranordnung, bei der das Substrat für den Katalysator von einem Gestrick gebildet ist. Die Fäden des Gestricks sind mit dem Katalysatormaterial beschichtet, das vorzugsweise Vanadiumpentoxid ist .

Claims

Patentansprüche :
1. Abgasanlage () für Verbrennungsmotoren (2), mit einem von dem Verbrennungsmotor (2) kommenden Gaskanal (3) ,
mit einer in den Gaskanal (3) mündenden Eindüseinrichtung (5) für ein Mittel das bei Erwärmung Ammoniak freisetzt und
mit einer stromab der Eindüseinrichtung (5) in dem Gaskanal (3) angeordneten Katalysatoreinrichtung (9), deren das Katalysatormaterial tragendes Substrae (33) Fasern aufweist .
2. Abgasanlage nach Anspruch 1, dadurch gekennzeichnet, dass stromab der Eindüseinrichtung (5) in dem Gaskanal (3) eine Verwirbelungseinrichtung (6,7,8) angeordnet ist.
3. Abgasanlage nach Anspruch 1, dadurch gekennzeichnet, dass lediglich eine Katalysatoreinrichtung (9) oder mehrere parallel geschaltete Katalysatoreinrichtungen (9) vorhanden ist bzw. sind.
4. Abgasanlage nach Anspruch 1, dadurch gekennzeichnet, dass das Substrat (3) ein textiles Flächengebilde aufweist.
5. Abgasanlage nach Anspruch 1, dadurch gekennzeichnet, dass das Substrat ein Gestrick (33) ist.
6. Abgasanlage nach Anspruch 1, dadurch gekennzeichnet, dass das Gestrick (33) eine Vielzahl von aufeinander liegenden Lagen (37) bildet und dass der Gasstrom derart geleitet wird, dass er mit einer Strömungskomponente parallel zu den Lagen (37) das Gestrick (33) durchströmt.
7. Abgasanlage nach Anspruch 1, dadurch gekennzeichnet, dass das in Lagen (37) geschichtete Gestrick (33) derart angeordnet ist, dass der Gasstrom parallel zu den Maschenstäbchen (36) strömt.
8. Abgasanlage nach Anspruch 1, dadurch gekennzeichnet, dass das Gestrick (33) aus einem Endlosschlauch besteht.
9. Abgasanlage nach Anspruch 1, dadurch gekennzeichnet, dass der Endlosschlauch (33) zu einem Band (51) flachgelegt ist und dass das so erhaltene Band (51) leporello- artig gefaltet ist, um die aufeinander liegenden Lagen (37) zu bilden.
10. Abgasanlage nach Anspruch 1, dadurch gekennzeichnet, dass der Endlosschlauch (33) in sich gestaucht ist, derart dass ringförmige Lagen (37) entstehen, die jeweils aufeinander liegen.
11. Abgasanlage nach Anspruch 1, dadurch gekennzeichnet, dass die Fasern mineralische oder metallische Fasern aufweisen.
12. Abgasanlage nach Anspruch 1, dadurch gekennzeichnet, dass die Eindüseinrichtung (5) mit Luft arbeitet.
13. Abgasanlage nach Anspruch 1, dadurch gekennzeichnet, dass die Eindüseinrichtung (5) einen Kanal (56) für die Luft und einen weiteren Kanal (57) für das Ammoniak abgebende Mittel enthält.
π -
14. Abgasanlage nach Anspruch 1, dadurch gekennzeichnet, dass die Eindüseinrichtung (5) wenigstens einen Auslass
(61) für die Luft und wenigstens einen weiteren Auslass (59) für das Ammoniak abgebende Mittel enthält.
15. Abgasanlage nach Anspruch 1, dadurch gekennzeichnet, dass der Auslass (61) für die Luft schlitzförmig ist.
16. Abgasanlage nach Anspruch 1, dadurch gekennzeichnet, dass mehrere Auslässe (61) für die Luft vorhanden sind, die den oder die Auslässe (59) für das den Ammoniak abgebende Mittel umgeben.
17. Abgasanlage nach Anspruch 1, dadurch gekennzeichnet, dass der oder die Auslässe (59) für das den Ammoniak abgebende Mittel im Querschnitt im wesentlichen rund sind.
18. Abgasanlage nach Anspruch 1, dadurch gekennzeichnet, dass das Ammoniak abgebende Material Harnstoff oder Harns- toffcarbamat ist.
PCT/DE1999/002319 1998-07-31 1999-07-30 Abgasanlage mit einer vorrichtung zur katalytischen nox-reduktion und einem aus fasern bestehenden katalysatorträgerkörper WO2000008314A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU61876/99A AU6187699A (en) 1998-07-31 1999-07-30 Exhaust system comprising a device for catalytically reducing nox and a catalystsupport body made of fibers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19834541A DE19834541C2 (de) 1998-07-31 1998-07-31 Abgasanlage
DE19834541.0 1998-07-31

Publications (1)

Publication Number Publication Date
WO2000008314A1 true WO2000008314A1 (de) 2000-02-17

Family

ID=7875969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/002319 WO2000008314A1 (de) 1998-07-31 1999-07-30 Abgasanlage mit einer vorrichtung zur katalytischen nox-reduktion und einem aus fasern bestehenden katalysatorträgerkörper

Country Status (3)

Country Link
AU (1) AU6187699A (de)
DE (1) DE19834541C2 (de)
WO (1) WO2000008314A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107109987A (zh) * 2014-11-14 2017-08-29 全耐塑料高级创新研究公司 气体存储结构的制造方法
CN111664717A (zh) * 2020-05-25 2020-09-15 中钢集团天澄环保科技股份有限公司 一种智能型催化脱硝脱co及余热利用一体化装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10048921A1 (de) * 2000-10-04 2002-04-18 Bosch Gmbh Robert Vorrichtung zur Bildung eines Reduktionsmittel-Abgas-Gemisches und Abgasreinigungsanlage
US6601385B2 (en) * 2001-10-17 2003-08-05 Fleetguard, Inc. Impactor for selective catalytic reduction system
US6722123B2 (en) * 2001-10-17 2004-04-20 Fleetguard, Inc. Exhaust aftertreatment device, including chemical mixing and acoustic effects
US7264785B2 (en) 2001-12-20 2007-09-04 Johnson Matthey Public Limited Company Selective catalytic reduction
DE10356997A1 (de) * 2003-12-03 2005-07-07 Helmut Swars Partikelfilter
JP2005180262A (ja) * 2003-12-18 2005-07-07 Tetsuo Toyoda 粒子状物質の減少装置
DE102006024199A1 (de) * 2006-05-23 2007-11-29 Arvinmeritor Emissions Technologies Gmbh Verwirbelungselement für Abgasanlage
DE102010051691A1 (de) * 2010-11-17 2012-05-24 Bayerische Motoren Werke Aktiengesellschaft Abgasanlage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0555746A1 (de) * 1992-02-10 1993-08-18 Man Nutzfahrzeuge Ag Vorrichtung zur katalytischen NOX-Reduktion
EP0558452A1 (de) * 1992-02-24 1993-09-01 Hans Thomas Hug Reinigen von Abgasen aus Verbrennungsanlagen
WO1994018440A1 (de) * 1993-02-10 1994-08-18 Alfred Buck Vorrichtung zur katalytischen reinigung von strömenden gasen, insbesondere von abgasen von verbrennungsmotoren
WO1996036797A1 (de) * 1995-05-19 1996-11-21 Siemens Aktiengesellschaft Vormischkammer für eine abgas-reinigungsanlage

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9308772U1 (de) * 1993-06-12 1993-09-30 Schneider, Arno, Dipl.-Ing., 53343 Wachtberg Vorrichtung zum Betrieb einer Verbrennungsanlage, insbesondere in Form einer Kraft-Wärme-Kopplung oder einer Blockheizkraftwerksanlage mit einer Abgasreinigungsanlage, insbesondere zur Verbrennung von schwerem Heizöl oder von Schweröl

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0555746A1 (de) * 1992-02-10 1993-08-18 Man Nutzfahrzeuge Ag Vorrichtung zur katalytischen NOX-Reduktion
EP0558452A1 (de) * 1992-02-24 1993-09-01 Hans Thomas Hug Reinigen von Abgasen aus Verbrennungsanlagen
WO1994018440A1 (de) * 1993-02-10 1994-08-18 Alfred Buck Vorrichtung zur katalytischen reinigung von strömenden gasen, insbesondere von abgasen von verbrennungsmotoren
WO1996036797A1 (de) * 1995-05-19 1996-11-21 Siemens Aktiengesellschaft Vormischkammer für eine abgas-reinigungsanlage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107109987A (zh) * 2014-11-14 2017-08-29 全耐塑料高级创新研究公司 气体存储结构的制造方法
CN111664717A (zh) * 2020-05-25 2020-09-15 中钢集团天澄环保科技股份有限公司 一种智能型催化脱硝脱co及余热利用一体化装置
CN111664717B (zh) * 2020-05-25 2022-07-01 中钢集团天澄环保科技股份有限公司 一种智能型催化脱硝脱co及余热利用一体化装置

Also Published As

Publication number Publication date
AU6187699A (en) 2000-02-28
DE19834541C2 (de) 2001-08-09
DE19834541A1 (de) 2000-02-03

Similar Documents

Publication Publication Date Title
DE102007020812B4 (de) Vorrichtung und Verfahren zur Zudosierung von fluiden schadstoffreduzierenden Medien in einen Abgaskanal einer Brennkraftmaschine
EP0826097B1 (de) Vormischkammer für eine abgas-reinigungsanlage
EP2687697B1 (de) Mischvorrichtung zur Nachbehandlung von Abgasen
DE102013005206B3 (de) Einströmkammer für einen Katalysator einer Abgasreinigungsanlage
DE102014110592B4 (de) Nachbehandlungskomponente
DE102010021438B4 (de) Abgasnachbehandlungsvorrichtung
DE102019210877A1 (de) Mischer und Abgasnachbehandlungssystem
EP1054139A1 (de) Abgasreinigungsanlage mit Stickoxidreduktion unter Reduktionsmittelzugabe
DE112012006958T5 (de) Oberflächenausführung mit Schutz vor Ablagerungsbildung für Abgasanlagenmischer
AT516102B1 (de) Abgasreinigungsvorrichtung für ein Fahrzeug, insbesondere für ein Nutzfahrzeug
EP2813679A1 (de) Abgasanlage einer Brennkraftmaschine
EP3068989A1 (de) Abgasnachbehandlungssystem
DE112017007996T5 (de) Einspritzdüsenkegel nach Art einer Venturidüse
WO2004047952A2 (de) Abgasanlage
DE112017003665T5 (de) Strömungsumlenker zur minderung von ablagerungen in einem dosiererkegel
EP3797221B1 (de) Einrichtung zum zuführen eines chemischen reaktionsmittels in den abgasstrang einer brennkraftmaschine
DE102015111081A1 (de) System und Verfahren zum Mischen von Gas/Flüssigkeit in einem Abgasnachbehandlungssystem
DE19834541C2 (de) Abgasanlage
DE102006051788A1 (de) Abgasnachbehandlungssystem eines Verbrennungsmotors
DE102006024199A1 (de) Verwirbelungselement für Abgasanlage
EP0779096A1 (de) Verfahren und Anlage zur katalytischen Gasreinigung
DE102013104579B4 (de) Einströmkammer für einen katalysator einer abgasreinigungsanlage
DE102020124104A1 (de) Zersetzungsrohr für aufgeheizten dosierer
DE102017125619A1 (de) Abgasanlage zur kompakten und effizienten Nachbehandlung und Schalldämpfung des Abgases
EP3752721B1 (de) Abgasnachbehandlungseinrichtung zum eindosieren eines flüssigen abgasnachbehandlungsmittels

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA