WO2000003054A1 - Method for ion plating of synthetic resin and molded synthetic resin article having ion-plated coating - Google Patents

Method for ion plating of synthetic resin and molded synthetic resin article having ion-plated coating Download PDF

Info

Publication number
WO2000003054A1
WO2000003054A1 PCT/JP1999/003607 JP9903607W WO0003054A1 WO 2000003054 A1 WO2000003054 A1 WO 2000003054A1 JP 9903607 W JP9903607 W JP 9903607W WO 0003054 A1 WO0003054 A1 WO 0003054A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthetic resin
resin
plating
metal
film
Prior art date
Application number
PCT/JP1999/003607
Other languages
French (fr)
Japanese (ja)
Inventor
Osamu Miyata
Original Assignee
Nihon Seimitsu Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Seimitsu Co., Ltd. filed Critical Nihon Seimitsu Co., Ltd.
Publication of WO2000003054A1 publication Critical patent/WO2000003054A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating

Definitions

  • the present invention relates to an IP method for applying an IP coating to a synthetic resin surface by ion plating (hereinafter sometimes simply referred to as IP) and a synthetic resin product coated with the IP method.
  • IP IP
  • metal nitride coatings and metal carbides have been applied to the surface of metal exterior members to improve the surface strength of the exterior members of various products or to obtain a coloring effect to enhance the decorativeness of the products.
  • An ion plating method for forming a coating, a metal oxide coating, or a mixed coating thereof has been used in various fields. Ion plating method, well known as 1 X shown in FIG.
  • titanium vacuum chamber one inside 1 which is evacuated to a vacuum of (T i) of any metal component
  • the metal element is evaporated by irradiating an electron beam with an electron gun 4 in the presence of a gas such as nitrogen gas, acetylene gas, or oxygen gas introduced from a gas supply mechanism 3 to an evaporation source 2 composed of
  • the evaporated metal element is ionized by the ionization electrode 5 and deposited on the surface of the target substrate 6 to be treated, so that a metal nitride film, a metal carbide film, a metal oxide film or a metal oxide film is formed on the surface of the substrate 6 to be processed. This is a method of forming a mixed film.
  • the metal nitride film, metal carbide film, metal oxide film or mixed film obtained by the ion plating method usually has a thickness of about 0.2 to 3 microns and is a very thin film.
  • the hardness is about 60 ⁇ to 3,000 HV, which is very hard, so it is not easily scratched, and is also excellent in anti-corrosion properties. It is a good film.
  • the vacuum plating method includes a vapor deposition method and a sprinkling link method.
  • the vapor deposition method is a method in which the temperature inside the vacuum chamber is kept low to evaporate aluminum and attach it to a resin or the like, but the metal film formed by this vapor deposition method has poor hardness and adhesion, so it is used for general cargo. It is used in the manufacture of decorative coatings for cosmetic containers.
  • the sputtering method is a method in which a metal is sputtered in a vacuum chamber and the metal is deposited on a substrate to be processed.
  • the ionization rate is lower and the reactivity with gas is poor, so that the metal is not used.
  • Aluminum is used as a coating for interior parts in automobiles.
  • the IP method is characterized in that the film is coated on the substrate under the most severe conditions, but has good reactivity with gas and has a high surface hardness. Utilizing the characteristics of the hard surface obtained by the IP method, it is used not only as a coating on cutting tools such as surface coatings on cutting tools, but also on coatings that require abrasion resistance. It is also used as a color surface coating with a beautiful appearance that is hard to scratch.
  • the IP treatment of the substrate to be treated is performed in a vacuum, and depending on the target film by radiant heat for vaporizing the energy carried by the ions and metals such as titanium.
  • the substrate to be treated is made of metal, and the substrate must be hard to adhere to in order to ensure adhesion to the IP treatment film.
  • the substrate to be processed is exposed to a high temperature state of 200 to 300 as described above, or for the purpose of improving the adhesion of the coating to the substrate to be processed. Since a bias voltage is applied to accelerate metal ions, if the substrate to be processed does not have characteristics that can handle the processing environment, it will cause defects such as deformation, and as a real product Can not be used. For this reason, metal materials have conventionally been used as the workpieces for ion plating. However, even when metal materials are used, there is a tendency that only uniform designs and designs can be obtained for each product due to the restrictions on the metal materials that can be used for the product and the manufacturing restrictions. Was.
  • the synthetic resin material has a complicated shape compared to the metal material, it has excellent workability, such as being easily formed into the shape, and has a wide range of materials. It is widely used because it can be selected according to the needs.
  • Various measures have been taken to increase the commercial value of the synthetic resin by applying a metal plating to the molding surface by various methods such as immersion and vapor deposition.
  • the metal plating film has considerably reduced properties such as mechanical strength as compared with a metal nitride film, a metal carbide film, a metal oxide film or a mixed film obtained by ion plating (IP).
  • IP processing can be easily softened by heat like synthetic resin, and even if it is applied to a material that may generate gas and contaminate the inside of the vacuum chamber, a product with commercial value is obtained. It was virtually impossible.
  • an object of the present invention is to establish a method of performing ion plating on a synthetic resin member, provide a coating by ion plating, and provide a durability and surface state that can be sufficiently evaluated as a practical product.
  • the goal is to obtain a synthetic resin product with an IP coating.
  • the present inventors have developed a method capable of stably applying a high-quality IP coating to a synthetic resin member.
  • the temperature of the base material becomes 200 to 300 ° C due to radiant heat for vaporizing the energy carried by the ions and metals such as titanium during the IP processing.
  • Materials with high heat resistance, such as materials can be sufficiently IP-treated at this temperature, but most synthetic resins are thermally deformed. No processed product is obtained.
  • the synthetic resin base material is heated to around 200 to 300 ° C. during the IP treatment process, gas is generated inside the synthetic resin as described above, and it is easy to expand. It is necessary to perform IP processing at low temperature.
  • the synthetic resin base material having high water absorption is subjected to the IP treatment, it is inevitable that the water absorbed by the synthetic resin vaporizes and expands at a high temperature of about 200 to 300 ° C.
  • IP processing is possible, but IP processing is actually performed using heat-resistant engineering plastic or super engineering plastic.
  • the IP coating sometimes swelled or peeled off. This is considered to be due to the difference in the coefficient of thermal expansion between the resin and the metal plating layer, etc., and the type and physical properties of the resin and the metal plating must be properly selected, or between the metal plating and the IP coating. A proper relationship It was foreseen that finding it would be indispensable to complete the resin IP processing technology.
  • a multilayer metal plating is often performed using a metal composed of copper (Cu), nickel (Ni), and chromium (Cr).
  • the metal plating used for the outermost layer is replaced with Cr in accordance with the application, and gold (Au) plating, palladium (Pd) plating or alloy plating thereof are commonly used. Used for exterior parts, handles, bumpers, etc.
  • IP-processable resins polyphthalamide resin and syndiotactic polystyrene resin
  • polyphthalamide resin may be a mineral-reinforced polyphthalamide resin
  • syndiotactic polystyrene resin may be a glass fiber-reinforced syndiotactic resin
  • the quality of the IP-treated product may not be stable, and the IP-treated film surface may have a small swelling of about 20%.
  • One of the causes of the above-mentioned defective products is that the synthetic resin base material is placed in a high-temperature environment that is easily deformed by heat at approximately 2 ° C to 300 ° C during IP processing, and the gas in the synthetic resin is It is considered that the metal plating film swells due to the difference between the generation and its expansion, the thermal expansion coefficient of the synthetic resin, and the thermal expansion coefficient of the metal plating layer.
  • As a countermeasure shorten the IP processing time to keep the temperature near the synthetic resin low during IP processing. As a result of study, if the IP processing time was shortened, a sufficient film suitable for practical use could not be obtained.
  • degassing heat treatment If gas other than water is likely to be generated from the synthetic resin, perform degassing heat treatment. Normally, before applying metal plating to a resin molded product, a heat treatment called anneal is performed to remove molding distortion of the synthetic resin in order to improve the adhesion of the metal plating. This is a heat treatment at 150 ° C for about 30 minutes. However, when IP treatment is applied to a metal-coated synthetic resin, in addition to removing the molding distortion of the synthetic resin, the purpose of degassing is to prevent the generation of gas from the synthetic resin when processed at vacuum and high temperature. It is necessary to perform degassing heat treatment at a high temperature for a long time.
  • the metal plating layer swells and causes poor appearance.
  • the heat resistance changes depending on the resin and even with the same resin due to the strengthening of glass fiber and minerals.
  • a resin that does not have heat resistance process at a low temperature for a long time, and for a heat resistant resin, process at a high temperature for a short time. Is economical.
  • the degassing treatment of the synthetic resin is performed, for example, by heat treatment at 200 ° C for 1 to 2 hours, or 180 ° C for 1.5 to 3 hours, or 150 ° C for 2 to 4 hours. .
  • the synthetic resin is degassed, and at the same time, the annealing treatment and the dehydration treatment are performed.
  • IP processing can be performed by appropriately pre-treating ABS resin, polyamide resin, polyphenylene sulfide resin, and liquid crystal polymer resin. That there is The inventor has found out.
  • metal plating is applied to a non-conductive substrate to apply a bias voltage to the substrate during IP processing, but a metal plating with a film thickness sufficient to suppress the thermal expansion of the synthetic resin is applied. .
  • the metal plated together with the synthetic resin expands, however, the expansion ratio of the synthetic resin and the plated metal film differs, and In general, the synthetic resin has a higher coefficient of thermal expansion than the plated metal film, so that the synthetic resin generates a force to spread the plated metal film. However, if expanded beyond the coefficient of thermal expansion of the metal, the metal film will stretch and in some cases break.
  • the metal film that has grown at a high temperature contracts when the temperature returns to room temperature, but the metal film and the synthetic resin separate from each other or swell due to the difference in the shrinkage between the synthetic resin and the metal film.
  • a metal plating film having a thickness of 20 to 50 ⁇ m such as Cu (2 O m) + N i (10 zm to 30 ⁇ m) + (P dN i) (1 jm) is formed on a synthetic resin. It is desirable to apply
  • Providing a plating metal film with a thickness of 50 m or more is expensive and uneconomical in plating treatment cost.
  • a metal metal film having a thickness of 20 m or less cannot suppress the thermal expansion of the synthetic resin.
  • a film having the following composition is used as a film obtained by the IP treatment.
  • Examples include titanium nitride, titanium carbide, titanium oxide, and a mixed film thereof.
  • the products obtained by the resin IP treatment of the present invention include, for example, Side parts (cases, watch bands, decorative rings), fishing equipment peripheral parts (parts such as reel bobbins, handles, bodies, guides for fishing rods), camera-related parts (power camera bodies), home appliance peripheral parts (body , Phone, switch, mobile phone, MD player, CD player, etc.), daily necessities, daily necessities (tableware, garbage frames), ornaments (pendants, key chains), automobiles (emblems, interior parts), housing-related It is used for other resin parts, such as products (exterior and interior decorations), office supplies (stationery, writing tools), fasteners for garments, and buttons for clothes. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a schematic diagram of an IP processing apparatus of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • Syndiotactic polystyrene resin (trade name: Zarek (Idemitsu Petrochemicals Co., Ltd.)
  • polyphthalamide resin (trade name: Amodel (Tijinamoco)
  • IP ion plating
  • ABS resin (trade name: Diat ABS (Mitsubishi Rayon Co., Ltd.)
  • MD represents the flow direction
  • TD represents the direction perpendicular to the flow
  • ABS resin (trade name: Diamond ABS (Mitsubishi Rayon Co., Ltd.)
  • Liquid crystal polymer resin brand name Vectra (Polyplastics Co., Ltd.)
  • First step A resin molded product is formed as a product by injection molding or the like using the resin material.
  • Second step Degas, anneal or dehydrate the obtained resin molded product to prevent the coating film from peeling off from the substrate during the metal plating and IP processing in the subsequent steps.
  • heat treatment was performed at 200 ° C. for 1 to 2 hours as a degassing treatment, an annealing treatment, or a dehydration treatment.
  • a method was used in which the temperature of the drying oven was raised to 200 ° C, and the resin molded product was left in the oven for 1 to 2 hours.
  • Third step A large number of micropores are formed by etching on the surface of the resin molded product, and a part of the underlying metal film generated by the metal plating in the subsequent process is prevented from entering the micropores and peeling off.
  • Fourth step After the etching, metal plating using Cu, Ni, Pd-Ni, or the like is performed as a conductivity imparting treatment for performing a subsequent IP treatment.
  • Fifth step The resin molded product after metal plating is put into the IP vacuum chamber and subjected to ion plating. This ion plating is performed by a known method.
  • the resin surface is degreased with a solution containing 20 g / L of sodium borate, 20 g / L of sodium phosphate, and 2 g / L of a higher fatty acid surfactant at 50 ° C for 3 to 5 minutes, and then washed with water.
  • concentrated sulfuric acid 400/1 0 0 3 400 / in 6 5 ° C of the etching 97 wt% performed 15-20 minutes, the resin surface to form a fine roughness, hydrophilicity enhances the adhesion of the plated To
  • the etching solvent is removed and neutralized with 1 Oml / L of 36 wt% concentrated hydrochloric acid and 10 ml / L of 30 wt% hydrogen peroxide at 25 ° C for 0.5 to 2 minutes.
  • polarity is imparted to the resin surface in order to improve the adsorbability of the catalyst described below.
  • treatment with a 1 Oml / L polyethyleneimine aqueous solution is performed at 50 ° C for 5 minutes, and The Pd and Sn complex compounds are adsorbed to form the catalyst nuclei necessary for the first deposition of electroless plating.
  • 2 g / L of palladium chloride as a Pd compound and 5 to 20 g / L of stannous chloride as a Sn complex compound were mixed with 100 to 200 ml / L of concentrated hydrochloric acid and subjected to a catalyst treatment at 25 ° C for 4 minutes. .
  • the solution is treated with 10 Oml of concentrated sulfuric acid at 30 to 50 ° C for 3 to 4 minutes to remove tin components, metallize the palladium component, and wash with water.
  • the outermost plating portion can be replaced with the following plating layer.
  • the procedure for forming the plating layer will be described with reference to the plating layer to be formed.
  • Potassium gold cyanide 1.23 g / L, free potassium cyanide 7.5 g / L, potassium phosphate 15 g / L at 70 ° C. 1-2 min, A at a current density of 1. OA / dm 2 u Flash the electrode to 0.5 ⁇ m.
  • Rhodium sulfate 2 g / L sulfuric acid 3 Oml / L, 50 ° C, 1-2 minutes, current density 2 A / dm 2 Flash Rh electrode 0.5 ⁇ 0.5m electrodeposit.
  • Titanium carbide and titanium nitride are applied to the resin whose surface is subjected to the metal plating treatment.
  • the procedure for forming an IP coating of a synthetic film will be described.
  • the base material to be processed was attached to the IP jig, and pre-processing and IP processing were performed as follows.
  • a degreasing treatment to remove fingerprints, oil, dust, etc. adhering to the substrate to be treated is performed by an ultrasonic bath. Incubate at 40 ° C for 3 minutes.
  • the jig with the substrate to be processed attached is set in the vacuum chamber 1 (Fig. 1) of the IP device, and a titanium block is set in the evaporation source 2 of the IP device as a vapor deposition material.
  • the chamber 11 is closed and a vacuum is drawn for several tens minutes.
  • the final pressure value varies depending on the type of the IP membrane, but is set to about l to 9 xl 0 to 5 torr.
  • titanium is applied to the processed surface of the substrate 6 to be processed, but the substrate of the substrate 6 to be processed is minus 10 to 120 V, the ionization electrode 5 is plus 20 to 40 V, 20 to 60 A, and an electron gun.
  • the reason for applying titanium here is to improve the reactivity by raising the temperature to some extent while adding titanium, because sufficient reaction cannot be obtained at room temperature even if gas is introduced from the beginning.

Abstract

A method for ion plating of a synthetic resin which comprises subjecting a molded synthetic resin to metal plating after degassing and annealing, and subsequently subjecting it to ion plating, thereby forming a metal nitride coating, a metal carbide coating, a metal oxide coating or a mixed coating thereof on a surface of the molded resin, and a molded synthetic resin article having an ion-plated coating provided by using the method. The molded synthetic resin article thus obtained exhibits a durability and a state of the surface thereof which are sufficiently good for the article to be practically used.

Description

合成樹脂のイオンプレーティング方法とイオンプレーティング被膜を有する合成 樹脂成型品 技術分野 Synthetic resin ion plating method and synthetic resin molded product having ion plating coating
本発明は、 合成樹脂表面にイオンプレーティング (以下、 単に I Pと言うこと がある) 処理により I P被膜を施す I P方法と該 I P方法で被覆された合成樹脂 製品に関するものである。 背景技術  TECHNICAL FIELD The present invention relates to an IP method for applying an IP coating to a synthetic resin surface by ion plating (hereinafter sometimes simply referred to as IP) and a synthetic resin product coated with the IP method. Background art
従来より、 各種製品における外装部材の表面強度を向上させたり、 あるいは製 品の装飾性を高めるための着色効果を得るために、 金属からなる外装部材の表面 に対して金属窒化物被膜、 金属炭化物被膜、 金属酸化物被膜あるいはそれらの混 合被膜を形成するイオンプレーティング法が多方面にわたって用いられている。 イオンプレーティング法は、 よく知られているように図 1に示す 1 X 1 0— 5 T 0 r r程度の真空状態にまで排気された真空チャンバ一 1内でチタン (T i ) な どの金属成分からなる蒸発源 2に対してガス供給機構 3から導入したチッ素ガス、 アセチレンガス、 酸素ガスなどのガスの存在下に電子銃 4により電子ビームを照 射して前記金属元素を蒸発させ、 その蒸発した金属元素をイオン化電極 5により イオン化し、 対象となる被処理基材 6の表面に堆積させるによって、 被処理基材 6の表面に金属窒化物被膜、 金属炭化物被膜または金属酸化物被膜あるいはそれ らの混合被膜を形成する方法である。 Conventionally, metal nitride coatings and metal carbides have been applied to the surface of metal exterior members to improve the surface strength of the exterior members of various products or to obtain a coloring effect to enhance the decorativeness of the products. An ion plating method for forming a coating, a metal oxide coating, or a mixed coating thereof has been used in various fields. Ion plating method, well known as 1 X shown in FIG. 1 1 0- 5 T 0 rr about titanium vacuum chamber one inside 1 which is evacuated to a vacuum of (T i) of any metal component The metal element is evaporated by irradiating an electron beam with an electron gun 4 in the presence of a gas such as nitrogen gas, acetylene gas, or oxygen gas introduced from a gas supply mechanism 3 to an evaporation source 2 composed of The evaporated metal element is ionized by the ionization electrode 5 and deposited on the surface of the target substrate 6 to be treated, so that a metal nitride film, a metal carbide film, a metal oxide film or a metal oxide film is formed on the surface of the substrate 6 to be processed. This is a method of forming a mixed film.
イオンプレーティング法で得られた金属窒化物被膜、 金属炭化物被膜または金 属酸化物被膜あるいはそれらの混合被膜は通常 0 . 2〜3ミクロン程度の膜厚で あり、 非常に薄い被膜ではあるが、 硬度が約 6 0◦〜 3 , 0 0 0 H V程度と非常 に硬く、 このためキズが付きにく く、 その上防食性に優れ、 また生体に対してァ レルギー性のなレ、、 生体適合性の良い被膜である。  The metal nitride film, metal carbide film, metal oxide film or mixed film obtained by the ion plating method usually has a thickness of about 0.2 to 3 microns and is a very thin film. The hardness is about 60◦ to 3,000 HV, which is very hard, so it is not easily scratched, and is also excellent in anti-corrosion properties. It is a good film.
真空メツキ法には I P法の外に蒸着法、 スパッ夕リンク法などがある。 例えば  In addition to the IP method, the vacuum plating method includes a vapor deposition method and a sprinkling link method. For example
- 1 蒸着法は真空チャンバ一内の温度を低く抑えてアルミニウムを蒸発させて樹脂な どに付着させる方法であるが、 この蒸着法で形成された金属膜は硬度、 密着度が 劣るので一般雑貨物用として位置付けられてレ、て化粧品の容器の装飾被膜などの 製造に利用されている。 -1 The vapor deposition method is a method in which the temperature inside the vacuum chamber is kept low to evaporate aluminum and attach it to a resin or the like, but the metal film formed by this vapor deposition method has poor hardness and adhesion, so it is used for general cargo. It is used in the manufacture of decorative coatings for cosmetic containers.
また、 スパッタリング法は真空チャンバ一内で金属をスパッ夕させ、 その金属 を被処理基材に堆積させる方法であるが、 I P法に比べイオン化率が低くガスと の反応性に乏しく、 金属としてはアルミニウムなどが使用され、 自動車内の内装 部品の被膜などとして用いられている。  The sputtering method is a method in which a metal is sputtered in a vacuum chamber and the metal is deposited on a substrate to be processed. However, compared to the IP method, the ionization rate is lower and the reactivity with gas is poor, so that the metal is not used. Aluminum is used as a coating for interior parts in automobiles.
これに対して I P法は最も苛酷な条件で被膜が基材上にコーティングされる代 わりに、 ガスとの反応性が良く、 その表面硬度が硬いという特徴がある。 I P法 で得られた硬い表面の特徴を生かして切削工具の表面被膜など耐摩耗性の要求さ れる製品の被膜として利用されるだけでなく、 当該被膜が光沢を有することから 装飾品の表面処理に用いられ、 傷が付き難い美感の有るカラー表面被膜としても 利用されている。  In contrast, the IP method is characterized in that the film is coated on the substrate under the most severe conditions, but has good reactivity with gas and has a high surface hardness. Utilizing the characteristics of the hard surface obtained by the IP method, it is used not only as a coating on cutting tools such as surface coatings on cutting tools, but also on coatings that require abrasion resistance. It is also used as a color surface coating with a beautiful appearance that is hard to scratch.
この被処理基材に対する I P処理は真空中で行われ、 またイオンが運ぶエネル ギ一とチタンなどの金属を気化させるための輻射熱で目的とする被膜によっては The IP treatment of the substrate to be treated is performed in a vacuum, and depending on the target film by radiant heat for vaporizing the energy carried by the ions and metals such as titanium.
2 0 0〜3 0 0 °C以上の高温に曝されることと、 I P処理膜の被処理基材への密 着性を良くする目的で金属イオンを加速させるためにバイァス電圧をかけること のために、 被処理基材は金属とされており、 さらに、 その基材は I P処理膜との 密着性を確保する上で鯖びにくいものであることが必要である。 Exposure to a high temperature of 200 to 300 ° C or higher and application of a bias voltage to accelerate metal ions for the purpose of improving the adhesion of the IP processing film to the substrate to be processed. For this reason, the substrate to be treated is made of metal, and the substrate must be hard to adhere to in order to ensure adhesion to the IP treatment film.
前記従来の I P方法では、 前記のように処理中の被処理基材が 2 0 0〜3 0 0 の高温状態に曝されるため、 あるいは、 被処理基材に対する被膜の密着を良く する目的で金属イオンを加速するためにバイアス電圧をかけるため、 被処理基材 としては、 その処理環境に対応することができる特性を備えたものでなければ、 変形などの不具合を生じてしまい、 実用品として用いることができない。 このた め、 従来はイオンプレーティングの被処理品としては金属材料が用いられていた。 しかしながら、 金属材料を使用するにしても、 その製品により使用することが できる金属材料の制約およびその製造上の制約などから製品ごとに画一的な設計、 意匠のものしか得られない傾向にあった。 一方、 前記金属材料に比べて合成樹脂材料は複雑な形状であっても、 その形状 に容易に成形できるなど、 加工性が優れていることおよび広範囲な材質を有する 材料の中から目的とする用途に応じたものを選択できることなどの理由で多方面 に利用されている。 そして、 合成樹脂の成形表面に金属メツキを浸漬法ゃ蒸着法 などの各種方法で施すことで、 その商品価値を高める工夫がなされている。 しか し、 その金属メツキ被膜はイオンブレーティング ( I P ) によって得られる金属 窒化物被膜、 金属炭化物被膜あるいは金属酸化物被膜あるいはそれらの混合被膜 に比べて機械的強度などの特性がかなり落ちる。 In the conventional IP method, the substrate to be processed is exposed to a high temperature state of 200 to 300 as described above, or for the purpose of improving the adhesion of the coating to the substrate to be processed. Since a bias voltage is applied to accelerate metal ions, if the substrate to be processed does not have characteristics that can handle the processing environment, it will cause defects such as deformation, and as a real product Can not be used. For this reason, metal materials have conventionally been used as the workpieces for ion plating. However, even when metal materials are used, there is a tendency that only uniform designs and designs can be obtained for each product due to the restrictions on the metal materials that can be used for the product and the manufacturing restrictions. Was. On the other hand, even if the synthetic resin material has a complicated shape compared to the metal material, it has excellent workability, such as being easily formed into the shape, and has a wide range of materials. It is widely used because it can be selected according to the needs. Various measures have been taken to increase the commercial value of the synthetic resin by applying a metal plating to the molding surface by various methods such as immersion and vapor deposition. However, the metal plating film has considerably reduced properties such as mechanical strength as compared with a metal nitride film, a metal carbide film, a metal oxide film or a mixed film obtained by ion plating (IP).
そこで、 合成樹脂表面に対しても実用上の問題がない程度の品質を備えた I P 処理ができれば、 高品質の合成樹脂の I P被覆品を得ることができ、 また合成樹 脂材料の特性を活かして多様な意匠を有し、 また広範囲な用途に適用できる合成 樹脂の成形品を得ることができる。  Therefore, if the surface of the synthetic resin can be subjected to IP treatment with quality that does not cause any practical problems, a high-quality synthetic resin IP coated product can be obtained, and the characteristics of the synthetic resin material can be utilized. Thus, it is possible to obtain a molded article of a synthetic resin having various designs and applicable to a wide range of uses.
しかし、 従来は I P処理は合成樹脂のように熱で容易に軟化し、 またガスが発 生して真空チャンバ一内を汚染するおそれのある素材に適用しても、 商品価値の ある製品を得ることは実質的に不可能とされていた。  However, in the past, IP processing can be easily softened by heat like synthetic resin, and even if it is applied to a material that may generate gas and contaminate the inside of the vacuum chamber, a product with commercial value is obtained. It was virtually impossible.
そこで本発明の課題は合成樹脂製部材に対してイオンプレーティングを施す方 法を確立してイオンプレーティングによる被膜を設け、 実用品として充分に評価 することができるような耐久性と表面状態を呈する I P被膜が施された合成樹脂 製品を得ることである。 発明の閧示  Therefore, an object of the present invention is to establish a method of performing ion plating on a synthetic resin member, provide a coating by ion plating, and provide a durability and surface state that can be sufficiently evaluated as a practical product. The goal is to obtain a synthetic resin product with an IP coating. Invention
本発明者らは、 鋭意研究を進めた結果、 合成樹脂製部材に対して高品質な I P 被膜を安定的に施すことができる方法を開発した。  As a result of intensive research, the present inventors have developed a method capable of stably applying a high-quality IP coating to a synthetic resin member.
合成樹脂基材に I P法を適用する場合の問題点について、 以下に述べる。 まず、 I P被膜の合成樹脂基材に対する密着性を良くする目的で金属イオンを 加速するためにバイアス電圧を印加するので、 合成樹脂基材に導電性を持たせな ければならない。 このため合成樹脂基材にメツキを付けて導電性を持たせること が必要である。  Problems when applying the IP method to a synthetic resin base material will be described below. First, since a bias voltage is applied to accelerate the metal ions in order to improve the adhesion of the IP coating to the synthetic resin base material, the synthetic resin base material must have conductivity. For this reason, it is necessary to impart a conductivity to the synthetic resin base material by applying a plating.
本発明者の研究及び実験の過程において、 合成樹脂基材に金属メツキにより金 属の被覆膜を形成した後に、 I P処理を行うことによって I P被膜の形成がなさ れることが分かったが、 最も問題となったことは基材である合成樹脂の耐熱性特 性、 組成成分及び含有ガス成分などによる表面状態に与える影響であった。 すなわち、 I P処理雰囲気による熱変形および合成樹脂基材内部に含まれる組 成物質のガス化によると考えられる形成した被膜の膨れが発生すること、 あるい は合成樹脂の耐熱性の補強のために樹脂に含有されるガラス繊維などの物質が I P処理により形成される被膜表面における平滑度、 光沢性を低下させること等が I P処理した合成樹脂の市場性のある製品化の阻害要因であった。 これらの問題 は、 特に合成樹脂製品が外装品として使用されるものでは、 さらに重要な問題で めった。 In the course of the research and experiments of the present inventor, gold was applied to the synthetic resin substrate by metal plating. It was found that the IP coating was formed by applying IP treatment after forming the metal coating film, but the most problematic was the heat resistance characteristics and composition of the synthetic resin as the base material. And the effect of the contained gas components on the surface state. That is, the formed film may swell due to thermal deformation due to the IP treatment atmosphere and gasification of the constituent material contained in the synthetic resin base material, or the heat resistance of the synthetic resin may be reinforced. The fact that substances such as glass fibers contained in the resin reduced the smoothness and gloss on the surface of the film formed by the IP treatment was an impediment to the commercialization of the IP-treated synthetic resin to market. These problems were particularly important when synthetic resin products were used as exterior products.
基材を I P処理する場合には、 基材の温度は I P処理時にイオンが運ぶエネル ギ一とチタンなどの金属を気化させるための輻射熱で 2 0 0〜3 0 0 °Cになり、 金属基材などの耐熱性の高い基材は十分この温度で I P処理ができるが、 ほとん どの合成樹脂は熱変形してしまうので、 合成樹脂はより低温で I P処理ができな いと、 製品価値のある I P処理品は得られない。  When the base material is subjected to IP processing, the temperature of the base material becomes 200 to 300 ° C due to radiant heat for vaporizing the energy carried by the ions and metals such as titanium during the IP processing. Materials with high heat resistance, such as materials, can be sufficiently IP-treated at this temperature, but most synthetic resins are thermally deformed. No processed product is obtained.
また、 合成樹脂基材の I P処理過程で 2 0 0〜3 0 0 °C付近まで加熱すると、 前述のように合成樹脂内部でガスが発生し、 膨張し易いので、 これを避けるため に、 より低温で I P処理をする必要がある。 また、 吸水性の高い合成樹脂基材を I P処理する場合には、 合成樹脂に吸水された水分が 2 0 0〜3 0 0 °C程度の高 温では気化、 膨張することは避けられない。  Also, if the synthetic resin base material is heated to around 200 to 300 ° C. during the IP treatment process, gas is generated inside the synthetic resin as described above, and it is easy to expand. It is necessary to perform IP processing at low temperature. In addition, when the synthetic resin base material having high water absorption is subjected to the IP treatment, it is inevitable that the water absorbed by the synthetic resin vaporizes and expands at a high temperature of about 200 to 300 ° C.
したがって、 2 0 0〜3 0 0 °Cより低温で金属メツキされた合成樹脂を I P処 理ができる条件及びこの I P処理に適した合成樹脂の選択などを試行錯誤で行わ ざるを得なかった。  Therefore, the conditions under which the synthetic resin metal-plated at a temperature lower than 200 to 300 ° C. can be subjected to the IP processing and the selection of the synthetic resin suitable for the IP processing have to be performed by trial and error.
例えば、 耐熱性の樹脂であって金属メツキが可能なものであれば、 I P処理が 可能であると考えられるが、 実際に耐熱性のあるエンジニアリングプラスチック またはスーパーエンジニアリングプラスチックを用いて I P処理をしても、 I P 被膜が膨れたり、 剥がれたりすることがあった。 これは樹脂と金属メツキ層との 間の熱膨張率の差などに起因するものと考えられ、 樹脂と金属メツキの種類、 物 性などを適切に選択することまたは金属メツキと I P被膜との間の適切な関係を 見い出すことが樹脂の I P処理技術を完成させるためには不可欠であることを予 想させた。 For example, if it is a heat-resistant resin that is capable of metal plating, it is considered that IP processing is possible, but IP processing is actually performed using heat-resistant engineering plastic or super engineering plastic. However, the IP coating sometimes swelled or peeled off. This is considered to be due to the difference in the coefficient of thermal expansion between the resin and the metal plating layer, etc., and the type and physical properties of the resin and the metal plating must be properly selected, or between the metal plating and the IP coating. A proper relationship It was foreseen that finding it would be indispensable to complete the resin IP processing technology.
合成樹脂の表面処理方法として金属メツキ処理を行うには、 一般的に銅 (C u ) とニッケル (N i ) とクロム (C r ) からなる金属で多層金属メツキをする 場合が多い。 そして、 最外層部分に用いる金属メツキは用途に応じて C rに替え て金 (A u ) メヅキ、 パラジュゥム (P d ) メツキまたはそれらの合金メッキな どを行う方法が汎用され、 主に自動車の外装部品、 取っ手、 バンパーなどに使わ れている。  In order to perform metal plating as a surface treatment method for a synthetic resin, generally, a multilayer metal plating is often performed using a metal composed of copper (Cu), nickel (Ni), and chromium (Cr). The metal plating used for the outermost layer is replaced with Cr in accordance with the application, and gold (Au) plating, palladium (Pd) plating or alloy plating thereof are commonly used. Used for exterior parts, handles, bumpers, etc.
そこで、 合成樹脂成型品の表面に I P処理被膜を施すに際して、 まず前述のよ うに合成樹脂に C uと N iと C rからなる金属メツキを施した後、 この金属メッ キ層が施された合成樹脂を用いて I P処理の可能性を検討した。  Therefore, when applying the IP treatment coating on the surface of the synthetic resin molded product, first, as described above, the metal coating made of Cu, Ni and Cr was applied to the synthetic resin, and then this metal plating layer was applied. The possibility of IP processing using synthetic resin was examined.
まず、 I P処理の可能性のある樹脂として、 耐熱性がありメツキ可能なェンジ ニァリングプラスチック及びスーパーエンジニアリングプラスチックの中から十 数種類選定し、 I P処理を行った所、 ほとんどの樹脂で I P処理時の熱環境のた め、 膨れや金属メツキ膜の剥がれが起きた。  First, as a resin that can be treated with IP, dozens of types were selected from engineering plastics and super-engineering plastics, which are heat-resistant and capable of plating. Due to the thermal environment, swelling and peeling of the metal plating film occurred.
しかし、 ポリフタルアミ ド樹脂とシンジオタクチックポリスチレン樹脂の二種 類の I P処理が可能な樹脂が特定できた。 また、 前記二種類の樹脂に用途により 物性、 耐熱強化のためにガラス繊維又はミネラル強化を施した樹脂からも安定し た I P処理樹脂製品が得られた。 すなわち、 ポリフタルアミ ド樹脂はミネラル強 化型のポリフタルアミ ド樹脂でも良いし、 シンジオタクチックポリスチレン樹脂 はガラス繊維強化型のシンジオタクチック樹脂でも同様に品質の高い I P処理品 が得られた。  However, two types of IP-processable resins, polyphthalamide resin and syndiotactic polystyrene resin, were identified. In addition, a stable IP-treated resin product was obtained from a resin in which glass fibers or minerals were reinforced to enhance physical properties and heat resistance depending on the use of the two resins. That is, the polyphthalamide resin may be a mineral-reinforced polyphthalamide resin, and the syndiotactic polystyrene resin may be a glass fiber-reinforced syndiotactic resin, and similarly, a high-quality IP-treated product is obtained.
ところが、 上記二種類の樹脂であっても I P処理品の品質が安定しない場合が あり、 I P処理膜表面には約 2 0 %の小さい膨れが出ているものもあった。 上記不良品が発生する原因の一つは、 I P処理時において約 2◦ 0〜3 0 0 °C と熱変形し易い高温環境下に合成樹脂基材がおかれて、 合成樹脂内でのガス発生 及びその膨張と合成樹脂の熱膨張率と金属メツキ層の熱膨張率が異なることによ り金属メツキ膜に膨れが生じるためと考えられる。 その対策として I P処理時に おける合成樹脂近傍の温度を低く抑えるために、 I P処理時間を短くすることを 検討したが、 I P処理時間を短くすると、 実用に適する充分な被膜が得られなか つた。 However, even with the above two types of resins, the quality of the IP-treated product may not be stable, and the IP-treated film surface may have a small swelling of about 20%. One of the causes of the above-mentioned defective products is that the synthetic resin base material is placed in a high-temperature environment that is easily deformed by heat at approximately 2 ° C to 300 ° C during IP processing, and the gas in the synthetic resin is It is considered that the metal plating film swells due to the difference between the generation and its expansion, the thermal expansion coefficient of the synthetic resin, and the thermal expansion coefficient of the metal plating layer. As a countermeasure, shorten the IP processing time to keep the temperature near the synthetic resin low during IP processing. As a result of study, if the IP processing time was shortened, a sufficient film suitable for practical use could not be obtained.
しかし、 このような問題点に対しては、 本発明者は次のような解決策を見い出 した。  However, the inventor has found the following solution to such a problem.
( 1 ) 合成樹脂中に吸水された水分が I P処理中の高温により、 蒸気化して膨張 することを防く、ために、 吸水性の少なレ、合成樹脂を選定するかあるいは吸水性樹 脂を予め合成樹脂が吸水しない環境下において置く。 また、 吸水した合成樹脂は 脱水処理を行った後に金属メツキと I P処理を行う。  (1) In order to prevent the water absorbed in the synthetic resin from evaporating due to the high temperature during IP processing and expanding, select a resin with low water absorption, select a synthetic resin, or use a water-absorbent resin. It is placed beforehand in an environment where the synthetic resin does not absorb water. The dehydrated synthetic resin that has absorbed water is subjected to metal plating and IP treatment.
( 2 ) 水分以外のガスが合成樹脂より発生するおそれがある場合は脱ガス熱処理 を行う。 通常、 樹脂成形品に金属メツキを施す前には、 金属メツキの密着性を良 くするために合成樹脂の成形歪みを除去する目的でァニールと呼ばれる熱処理を 施すが、 このァニールは 1 0 0〜 1 5 0 °Cで 3 0分程度の熱処理である。 しかし、 金属メツキした合成樹脂に I P処理を施す場合は合成樹脂の成形歪みを除去する と共に、 真空、 高温で処理した時に、 合成樹脂からガスが発生することを防ぐた めに、 脱ガスを目的とした高温で、 長時間の脱ガス熱処理を行うことが必要であ る。  (2) If gas other than water is likely to be generated from the synthetic resin, perform degassing heat treatment. Normally, before applying metal plating to a resin molded product, a heat treatment called anneal is performed to remove molding distortion of the synthetic resin in order to improve the adhesion of the metal plating. This is a heat treatment at 150 ° C for about 30 minutes. However, when IP treatment is applied to a metal-coated synthetic resin, in addition to removing the molding distortion of the synthetic resin, the purpose of degassing is to prevent the generation of gas from the synthetic resin when processed at vacuum and high temperature. It is necessary to perform degassing heat treatment at a high temperature for a long time.
I P処理前に合成樹脂の脱ガス処理をしない場合には金属メツキ層が膨らみ、 外観不良の原因になる。 樹脂によって、 又同じ樹脂でもガラス繊維、 ミネラル強 化等により耐熱性が変化するので、 耐熱性がない樹脂の場合は低温で長く、 耐熱 性がある樹脂の場合は高温で短時間に処理することが経済的である。 合成樹脂の 脱ガス処理は、 例えば、 2 0 0 °Cで 1〜 2時間、 又は 1 8 0 °Cで 1 . 5〜 3時間、 又は 1 5 0 °Cで 2〜 4時間の熱処理により行う。  If the synthetic resin is not degassed before the IP treatment, the metal plating layer swells and causes poor appearance. The heat resistance changes depending on the resin and even with the same resin due to the strengthening of glass fiber and minerals.For a resin that does not have heat resistance, process at a low temperature for a long time, and for a heat resistant resin, process at a high temperature for a short time. Is economical. The degassing treatment of the synthetic resin is performed, for example, by heat treatment at 200 ° C for 1 to 2 hours, or 180 ° C for 1.5 to 3 hours, or 150 ° C for 2 to 4 hours. .
上記熱処理により、 合成樹脂の脱ガスがなされると同時にァニール処理と脱水 処理が行われる。  By the heat treatment, the synthetic resin is degassed, and at the same time, the annealing treatment and the dehydration treatment are performed.
上記熱処理温度における熱処理時間が短いと十分に脱ガス、 脱水、 ァニール処 理がなされず、 上記熱処理温度における熱処理時間が長すぎると不経済である。 こうして、 ポリフタルアミ ド樹脂とシンジオタクチックポリスチレン樹脂以外 にも A B S樹脂、 ポリアミ ド樹脂、 ポリフエ二レンサルファイ ド樹脂、 液晶ポリ マ一樹脂でもそれそれ適正な前処理を施すことで、 I P処理が可能であることを 本発明者は見い出した。 If the heat treatment time at the above heat treatment temperature is short, degassing, dehydration, and annealing treatments are not sufficiently performed, and if the heat treatment time at the above heat treatment temperature is too long, it is uneconomical. Thus, in addition to polyphthalamide resin and syndiotactic polystyrene resin, IP processing can be performed by appropriately pre-treating ABS resin, polyamide resin, polyphenylene sulfide resin, and liquid crystal polymer resin. That there is The inventor has found out.
次に合成樹脂基材に対する I P処理前に行う金属メツキについて述べる。  Next, the metal plating performed before the IP processing on the synthetic resin base material will be described.
前述のように Cuと N iと C rからなる金属でメツキ以外に、 合成樹脂の I P 処理に適した金属メツキとそのメツキ条件を見い出すべく鋭意検討した結果、 合 成樹脂の熱膨張を抑えるに十分な膜厚の金属メツキを樹脂に施した場合には良好 な合成樹脂基材に対する I P処理が可能な場合があることが判明した。  As described above, in addition to the metal plating consisting of Cu, Ni, and Cr, as a result of intensive studies to find a metal plating suitable for IP processing of synthetic resin and its plating conditions, we found that the thermal expansion of the composite resin was suppressed. It has been found that when a metal plating having a sufficient film thickness is applied to a resin, good IP processing of a synthetic resin base material may be possible.
本来金属メツキは I P処理時に被処理基材にバイアス電圧を掛けるために導電 性のない被処理基材に施すものであるが、 合成樹脂の熱膨張を抑えるに十分な膜 厚の金属メツキを施す。  Originally, metal plating is applied to a non-conductive substrate to apply a bias voltage to the substrate during IP processing, but a metal plating with a film thickness sufficient to suppress the thermal expansion of the synthetic resin is applied. .
I P処理中の高温 (2 00° (〜 30 0°C程度) 環境下で合成樹脂と共にメツキ された金属は膨張する。 しかし、 合成樹脂とメツキされた金属膜とは膨張率が異 なり、 一般的には合成樹脂の方がメツキされた金属膜より熱膨張率が高い。 従つ て合成樹脂がメツキされた金属膜を押し広げようとする力が発生する。 メツキ金 属膜が合成樹脂により、 その金属の熱膨張率以上に押し広げられると、 金属膜は 伸び、 場合によっては破れることがある。  Under the high temperature (approximately 200 ° C. (approximately 300 ° C.)) environment during IP processing, the metal plated together with the synthetic resin expands, however, the expansion ratio of the synthetic resin and the plated metal film differs, and In general, the synthetic resin has a higher coefficient of thermal expansion than the plated metal film, so that the synthetic resin generates a force to spread the plated metal film. However, if expanded beyond the coefficient of thermal expansion of the metal, the metal film will stretch and in some cases break.
高温時に伸びた金属膜は、 常温に戻ったときに収縮するが、 合成樹脂と金属膜 との収縮率の違いによりメツキ金属膜と合成樹脂との間はかい離し、 または膨れ が発生する。 これを防く'ためには、 膜厚の大きいメツキ金属膜を合成樹脂に施し、 合成樹脂の膨張をメツキ金属膜により抑え込む方法を採ると有効な場合がある。 例えば、 Cu (2 O m) +N i ( 1 0 zm〜30〃m) + (P d-N i) ( 1 j m) などの 2 0〜 5 0〃mの膜厚の金属メツキ膜を合成樹脂上に施すこと が望ましい。  The metal film that has grown at a high temperature contracts when the temperature returns to room temperature, but the metal film and the synthetic resin separate from each other or swell due to the difference in the shrinkage between the synthetic resin and the metal film. In order to prevent this, it may be effective to apply a method of applying a metal film having a large thickness to the synthetic resin and suppressing the expansion of the synthetic resin by the metal film. For example, a metal plating film having a thickness of 20 to 50 μm such as Cu (2 O m) + N i (10 zm to 30 μm) + (P dN i) (1 jm) is formed on a synthetic resin. It is desirable to apply
50 m以上の膜厚のメツキ金属膜を設けることはメツキ処理コス卜がかさみ 不経済である。 また、 2 0 m以下の膜厚のメツキ金属膜では合成樹脂の熱膨張 を抑えることはできない。 次に I P処理により得られる被膜として次のような組成の被膜を用いる。  Providing a plating metal film with a thickness of 50 m or more is expensive and uneconomical in plating treatment cost. In addition, a metal metal film having a thickness of 20 m or less cannot suppress the thermal expansion of the synthetic resin. Next, a film having the following composition is used as a film obtained by the IP treatment.
窒化チタン、 炭化チタン、 酸化チタン、 及びそれらの混合された膜などである。 上記本発明の樹脂 I P処理により得られる製品としては、 例えば、 腕時計用周 辺パーツ (ケース、 時計バンド、 飾り リング) 、 釣り具周辺パーツ (リールのボ ビン、 ハンドル、 ボディ、 釣り竿用のガイ ドなどの部品) 、 カメラ関係部品 (力 メラボディ) 、 家電製品周辺パーツ (ボディ、 ッマミ、 スィッチ、 携帯電話、 M Dプレイヤー、 CDプレイヤ一などの外装部品) 、 日用品、 生活用品 (食器、 メ ガネフレーム) 、 装飾品 (ペンダント、 キーホルダー) 、 自動車 (エンブレム、 内装部品) 、 住宅関連品 (外装、 内装用の飾り) 、 事務用品 (文房具、 筆記具) 、 鞫などの止め具、 洋服のボタンなど、 その他の樹脂部品に用いられる。 図面の簡単な説明 Examples include titanium nitride, titanium carbide, titanium oxide, and a mixed film thereof. The products obtained by the resin IP treatment of the present invention include, for example, Side parts (cases, watch bands, decorative rings), fishing equipment peripheral parts (parts such as reel bobbins, handles, bodies, guides for fishing rods), camera-related parts (power camera bodies), home appliance peripheral parts (body , Phone, switch, mobile phone, MD player, CD player, etc.), daily necessities, daily necessities (tableware, garbage frames), ornaments (pendants, key chains), automobiles (emblems, interior parts), housing-related It is used for other resin parts, such as products (exterior and interior decorations), office supplies (stationery, writing tools), fasteners for garments, and buttons for clothes. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の I P処理装置の概略図である。 発明を実施するための最良の形態  FIG. 1 is a schematic diagram of an IP processing apparatus of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について説明する。  Hereinafter, embodiments of the present invention will be described.
本発明の実施の形態でイオンブレーティング (I P) 処理を行った樹脂成形品 の素材としてシンジオタクテックポリスチレン樹脂 (商品名ザレック (出光石油 化学 (株) ) 、 ポリフタルアミ ド樹脂 (商品名ァモデル (ティジンァモコ  Syndiotactic polystyrene resin (trade name: Zarek (Idemitsu Petrochemicals Co., Ltd.)), polyphthalamide resin (trade name: Amodel (Tijinamoco), as a material of a resin molded product subjected to ion plating (IP) treatment in the embodiment of the present invention.
(株) ) ) 、 ABS樹脂 (商品名ダイヤぺッ ト ABS (三菱レイヨン (株) ) 、 ポリアミ ド樹脂 (PA) : MXD 6 (商品名レニ一 (三菱ガス化学 (株) ) 、 ポ リアミ ド樹脂 (PA) : ナイロン一 6 (商品名東洋紡ナイロン (東洋紡績  )), ABS resin (trade name: Diat ABS (Mitsubishi Rayon Co., Ltd.)), Polyamide resin (PA): MXD6 (trade name: Renishi (Mitsubishi Gas Chemical Co., Ltd.), Polyamide Resin (PA): Nylon 1 6 (trade name Toyobo Nylon (Toyobo
(株) ) 、 ポリフヱニレンサルフアイ ド樹脂 (PPS) (商品名サスティール Co., Ltd.), Polyphenylene Sulfide Resin (PPS)
(東ソ一 (株) ) 、 液晶ポリマー樹脂 (LCP) (商品名べクトラ (ポリプラス チックス (株) ) 、 ポリエーテルスルホン樹脂 (PES) (商品名スミカェクセ ル (住友化学工業 (株) ) 、 ポリアリレート樹脂 (PAR) (商品名 Uポリマー(Tosoichi Co., Ltd.), liquid crystal polymer resin (LCP) (trade name: Vectra (Polyplastics Co., Ltd.)), polyether sulfone resin (PES) (trade name: Sumikaxel (Sumitomo Chemical Co., Ltd.)), poly Arylate resin (PAR) (Product name U-Polymer
(ュニチカ (株) ) 、 ポリエーテルィミ ド樹脂 (PE I ) (商品名ウルテム (日 本ジ一ィ一プラスチック (株) ) 、 ポリエチレンテレフ夕レート樹脂 (PET)(Unitichika Co., Ltd.), polyetherimide resin (PEI) (brand name Ultem (Nihon Jichi Plastics Co., Ltd.)), polyethylene terephthalate resin (PET)
(商品名 G— PET (ュニチカ (株) ) を用いた。 (Product name G-PET (Unitichika Co., Ltd.)) was used.
上記した樹脂の中で主なものの熱的性質について列挙する。  Among the above resins, the thermal properties of the main ones are listed.
(a) シンジオタクチックポリスチレン樹脂 (商品名ザレック (出光石油化学 (a) Syndiotactic polystyrene resin (trade name: Zarek (Idemitsu Petrochemical)
(株) ) (a- 1 ) スタンダート品 (stock) ) (a-1) Standard product
荷重たわみ温度 (AS TMD 648で試験)  Deflection temperature under load (Tested with AS TMD 648)
1. 80MPa : 95 °C  1.80MPa: 95 ° C
0. 45MP a : 1 10°C  0.45MPa: 1 10 ° C
線膨張率 (MD) (AS TMD 696で試験)  Linear expansion coefficient (MD) (Tested with AS TMD 696)
9. 2 x 10- 5/。C 9. 2 x 10- 5 /. C
(a— 2) ガラス繊維強化非難燃性品 (ガラス繊維 1 5重量%含有)  (a-2) Glass fiber reinforced non-flame-retardant product (containing 15% by weight of glass fiber)
荷重たわみ温度 (AS TMD 648で試験)  Deflection temperature under load (Tested with AS TMD 648)
1. 8 OMP a : 170 °C  1.8 OMPa: 170 ° C
0. 45MP a : 260。C  0.45MPa: 260. C
線膨張率 (MD) (AS TMD 696で試験)  Linear expansion coefficient (MD) (Tested with AS TMD 696)
3. 9 x 10— 5/°C 3. 9 x 10- 5 / ° C
(a- 3) ガラス繊維強化難燃性品 (ガラス繊維 40重量%含有)  (a-3) Glass fiber reinforced flame retardant product (containing 40% by weight of glass fiber)
荷重たわみ温度 (A S TMD 648で試験)  Deflection temperature under load (Tested with ASTMD 648)
1. 8 OMP a : 245°C  1.8 OMPa: 245 ° C
0. 45MP a : 268。C  0.45 MPa: 268. C
線膨張率 (MD) (AS TMD 696で試験)  Linear expansion coefficient (MD) (Tested with AS TMD 696)
2. 3 x 10— 5/°C 2. 3 x 10- 5 / ° C
(a— 4) 炭酸カルシウム強化品 (炭酸カルシウム 2◦重量%含有)  (a-4) Calcium carbonate reinforced product (containing calcium carbonate 2% by weight)
荷重たわみ温度 (ASTMD 648で試験)  Deflection temperature under load (Tested with ASTM D648)
1. 8 OMP a : 97。C  1.8 OMPa: 97. C
線膨張率 (MD) (AS TMD 696で試験)  Linear expansion coefficient (MD) (Tested with AS TMD 696)
l l x l (T5/°C llxl (T 5 / ° C
(b) ポリフタルアミ ド樹脂 (商品名ァモデル (ァモコ社) )  (b) Polyphthalamide resin (Product name: Amodel (Amoco))
(b— 1 ) スタンダート品  (b-1) Standard product
荷重たわみ温度 (AS TMD 648で試験)  Deflection temperature under load (Tested with AS TMD 648)
1 8. 6 kg/cm2 : 120°C 18.6 kg / cm 2 : 120 ° C
(b— 2) ミネラル強化品 (炭酸カルシウムからなるミネラルを 20重量%含 有) 荷重たわみ温度 (A S TMD 648で試験) (b-2) Mineral reinforced product (containing 20% by weight of mineral made of calcium carbonate) Deflection temperature under load (Tested with AS TMD 648)
1 8. 6 k g/cm2 : 1 79。C 1 8. 6 kg / cm 2: 1 79. C
線膨張率 (MD/TD) (ASTME 83 1で試験)  Linear expansion coefficient (MD / TD) (Tested in ASTME 83 1)
3. 4/4. 0 x 1 0 cm/cm - °C  3.4 / 4.0 x 10 cm / cm-° C
ここで、 MDは流れ方向、 TDは流れに直角方向を表す。  Here, MD represents the flow direction, and TD represents the direction perpendicular to the flow.
(c) ポリアミ ド樹脂 MX D 6 (商品名レニー (三菱ガス化学 (株) )  (c) Polyamide resin MX D6 (trade name: Lenny (Mitsubishi Gas Chemical Co., Ltd.)
荷重たわみ温度 (ASTMD 648で試験)  Deflection temperature under load (Tested with ASTM D648)
1 8. 5k g/cm2 : 1 60°C 1 8. 5k g / cm 2: 1 60 ° C
熱膨張率 (ASTMD 696で試験)  Thermal expansion coefficient (tested with ASTM D696)
2. 7 x 10—5 cm/ cm ·。C 2. 7 x 10- 5 cm / cm ·. C
成形収縮率 (ASTMD 955で試験)  Mold shrinkage (tested with ASTM D955)
0. 92%  0.92%
(d) ポリアミ ド樹脂ナイロン— 6 (商品名東洋紡ナイロン (東洋紡績 (株) ) (d— 1 ) スタンダート品  (d) Polyamide resin nylon-6 (trade name Toyobo Nylon (Toyobo Co., Ltd.)) (d-1) Standard product
荷重たわみ温度 (A S TMD 648で試験)  Deflection temperature under load (Tested with ASTMD 648)
1 8. 6k g/cm2 : 143。C 1 8. 6k g / cm 2: 143. C
4. 6 kg/cm2 : 204。C 4. 6 kg / cm 2: 204 . C
線膨張率 (MD/TD) (AS TMD 696で試験)  Linear expansion coefficient (MD / TD) (Tested with AS TMD 696)
7. 0 x 1 0—5 cm/ cm · °C 7. 0 x 1 0- 5 cm / cm · ° C
(d— 2) ガラス繊維 1 5wt%とミネラル 20wt%による強化品 (d-2) Glass fiber reinforced with 15wt% and mineral 20wt%
荷重たわみ温度 (ASTMD 648で試験)  Deflection temperature under load (Tested with ASTM D648)
1 8. 6 k g/cm2 : 1 55。C 1 8. 6 kg / cm 2: 1 55. C
4. 6k g/cm2 : 205°C 4.6 kg / cm 2 : 205 ° C
線膨張率 (ASTMD 696で試験)  Linear expansion coefficient (tested with ASTM D696)
4. 3 X 10—5 cm/cm · °C 4. 3 X 10- 5 cm / cm · ° C
(e) AB S樹脂 (商品名ダイヤぺッ ト AB S (三菱レイヨン (株) )  (e) ABS resin (trade name: Diamond ABS (Mitsubishi Rayon Co., Ltd.)
荷重たわみ温度 (ASTMD 648で試験)  Deflection temperature under load (Tested with ASTM D648)
1 8. 56 k g/cm2 : 92 °C 1 8. 56 kg / cm 2 : 92 ° C
4. 64 k g/cm2 : 99 °C 熱膨張率 (ASTMD 696で試験) 4. 64 kg / cm 2 : 99 ° C Thermal expansion coefficient (tested with ASTM D696)
8. 5 x 10—5 cm/ cm · °C 8. 5 x 10- 5 cm / cm · ° C
成形収縮率 (AS TMD 955で試験)  Mold shrinkage (tested with AS TMD 955)
0. 5%  0.5%
(f ) 液晶ポリマー樹脂 (商品名べク トラ (ポリプラスチックス (株) )  (f) Liquid crystal polymer resin (brand name Vectra (Polyplastics Co., Ltd.)
荷重たわみ温度 (ASTMD 648で試験)  Deflection temperature under load (Tested with ASTM D648)
18. 56 k g/cm2 : 200 °C 18. 56 kg / cm 2 : 200 ° C
(g) ポリフヱニレンサルファイ ド樹脂 (商品名サスティール (東ソ一 (株) ) 荷重たわみ温度 (A S TMD 648で試験)  (g) Polyphenylene sulfide resin (trade name: SASTIL (Tosoichi Co., Ltd.)) Deflection temperature under load (Tested with ASTMD648)
18. 56k g/cm2 : 260 °C以上 18.56k g / cm 2 : 260 ° C or more
熱膨張率 (AS TMD 696で試験)  Thermal expansion coefficient (tested with AS TMD 696)
2. 2 x 1 CP5 cm/ cm · °C 2.2 x 1 CP 5 cm / cm ° C
(1) 上記シンジオタクテックポリスチレン樹脂 (商品名ザレック (出光石油化 学 (株) ) を例に I P処理までの概略工程を以下に説明すると、 大略次の 5つの 工程からなる。  (1) Taking the above syndiotactic polystyrene resin (trade name: Zarek (Idemitsu Petrochemicals Co., Ltd.)) as an example, the schematic process up to IP processing is roughly described as the following five steps.
第 1工程:前記樹脂材料を用いて射出成形などによって、 製品として樹脂成形 品を形成する。  First step: A resin molded product is formed as a product by injection molding or the like using the resin material.
第 2工程:得られた樹脂成形品の脱ガス処理、 ァニーリング処理または脱水処 理を行い、 次工程以降の金属メツキ処理、 I P処理時の被覆膜の基材からの剥離 を防ぐ。  Second step: Degas, anneal or dehydrate the obtained resin molded product to prevent the coating film from peeling off from the substrate during the metal plating and IP processing in the subsequent steps.
本実施例では脱ガス処理、 ァニーリング処理または脱水処理として 200°Cで 1〜2時間熱処理を行った。 例えば、 乾燥炉を 200°Cに昇温し、 その中に樹脂 成形品を 1〜 2時間放置し、 終了後乾燥炉より取り出し常温にて冷却する方法を 用いた。  In this example, heat treatment was performed at 200 ° C. for 1 to 2 hours as a degassing treatment, an annealing treatment, or a dehydration treatment. For example, a method was used in which the temperature of the drying oven was raised to 200 ° C, and the resin molded product was left in the oven for 1 to 2 hours.
第 3工程:樹脂成形品の表面にエッチングによって多数の微細孔を形成し、 微 細孔に、 後工程の金属メツキにより生成される下地金属被膜の一部が入り込んで 剥離しないようにしておく。  Third step: A large number of micropores are formed by etching on the surface of the resin molded product, and a part of the underlying metal film generated by the metal plating in the subsequent process is prevented from entering the micropores and peeling off.
第 4工程: エッチングの後に、 後工程の I P処理を行うための導電付与処理と して Cu, Ni, P d— N i等による金属メツキを行う。 第 5工程:金属メツキ後の樹脂成形品を I P用真空チャンバ一に入れて、 ィォ ンプレーティングを行う。 このイオンプレーティングは公知の方法によるもので ある。 Fourth step: After the etching, metal plating using Cu, Ni, Pd-Ni, or the like is performed as a conductivity imparting treatment for performing a subsequent IP treatment. Fifth step: The resin molded product after metal plating is put into the IP vacuum chamber and subjected to ion plating. This ion plating is performed by a known method.
(a) 前記第 3工程のエッチングされた樹脂成形品の表面に金属メツキは次のよ うに行った。 なお、 以下の処理で使用する薬品の容量または重量は水の 1 L (リ ットル) に対して行ったものである。  (a) Metal plating was performed on the surface of the resin molded article etched in the third step as follows. The volumes or weights of chemicals used in the following treatments are based on 1 L (liter) of water.
まず、 樹脂表面の脱脂をホウ酸ソーダ 20 g/Lとリン酸ソーダ 20 g/Lと 高級脂肪酸系の界面活性剤 2 g/Lからなる溶液で 50°C、 3〜5分間行い、 水 洗後、 エッチングを 97wt%の濃硫酸 400 /1と0 03400 / で6 5°C、 15〜20分間行い、 樹脂表面に微細な凹凸を形成させて、 メツキの密着 性を高めると共に親水性にする。 First, the resin surface is degreased with a solution containing 20 g / L of sodium borate, 20 g / L of sodium phosphate, and 2 g / L of a higher fatty acid surfactant at 50 ° C for 3 to 5 minutes, and then washed with water. after concentrated sulfuric acid 400/1 0 0 3 400 / in 6 5 ° C of the etching 97 wt%, performed 15-20 minutes, the resin surface to form a fine roughness, hydrophilicity enhances the adhesion of the plated To
次いで、 水洗後に 1 Oml/Lの 36wt %の濃塩酸と 10ml/Lの 30w t%の過酸化水素で 25°C、 0. 5〜2分間、 エッチング溶剤の除去と中和処理 を行う。  Next, after washing with water, the etching solvent is removed and neutralized with 1 Oml / L of 36 wt% concentrated hydrochloric acid and 10 ml / L of 30 wt% hydrogen peroxide at 25 ° C for 0.5 to 2 minutes.
水洗の後、 後述の触媒の吸着性を良くするために樹脂表面に極性を付与するが、 このために 1 Oml/Lのポリエチレンイ ミン水溶液で 50°C、 5分間処理を行 い、 水洗後、 無電解メツキの最初の析出に必要な触媒核を形成させるために、 P d、 Sn錯化合物を吸着させる。 Pd化合物として塩化パラジウム◦ . 2 g/L、 Sn錯化合物として塩化第 1錫 5〜 20 g/Lを濃塩酸 100~200ml/L と混合して 25 °C、 4分間触媒付与処理を行った。  After washing with water, polarity is imparted to the resin surface in order to improve the adsorbability of the catalyst described below.For this purpose, treatment with a 1 Oml / L polyethyleneimine aqueous solution is performed at 50 ° C for 5 minutes, and The Pd and Sn complex compounds are adsorbed to form the catalyst nuclei necessary for the first deposition of electroless plating. 2 g / L of palladium chloride as a Pd compound and 5 to 20 g / L of stannous chloride as a Sn complex compound were mixed with 100 to 200 ml / L of concentrated hydrochloric acid and subjected to a catalyst treatment at 25 ° C for 4 minutes. .
次に、 水洗後、 10 Omlの濃硫酸で 30〜50°C、 3〜4分間処理して錫成 分を除去し、 パラジウム成分を金属化し、 水洗を行う。  Next, after washing with water, the solution is treated with 10 Oml of concentrated sulfuric acid at 30 to 50 ° C for 3 to 4 minutes to remove tin components, metallize the palladium component, and wash with water.
以上の操作の後、 以下の金属メツキ層を順次形成させる。  After the above operation, the following metal plating layers are sequentially formed.
(b- 1 ) 無電解ニッケルメツキ  (b-1) Electroless nickel plating
硫酸ニッケル 240 g/L、 次亜リン酸ソ一ダ 20 g/L、 クェン酸アンモン 50 g/Lを加え、 NH3 (アンモニア) にて pH8〜9. 5に調整して、 30〜 40°C、 5〜10分間、 無電解ニッケルメヅキを行い、 ニッケルの電導層を 0. 2〜0. 8〃m形成する。 Add 240 g / L of nickel sulfate, 20 g / L of sodium hypophosphite, 50 g / L of ammonium citrate, adjust the pH to 8 to 9.5 with NH 3 (ammonia), and 30 to 40 ° C. Perform electroless nickel plating for 5 to 10 minutes to form a nickel conductive layer of 0.2 to 0.8 μm.
(b- 2 ) ストライクメツキ 次いで、 水洗した後、 濃硫酸 10 Oml/Lで 25°C、 0. 5〜1分間処理し てニッケル層の酸化物除去を行い、 ニッケル層を活性化させる。 水洗後、 硫酸二 ヅケル 240 g/Lと塩化ニッケル 45 g/Lとホウ酸 30 g/Lからなる水溶 液で 30〜45° 3〜6分間、 0. 5〜 1 A/dm2で処理して、 ニッケル層の 補強のためにニッケル 2〜3〃を電着させるストライクメツキを行う。 (b-2) Strike Metsuki Then, after washing with water, the nickel layer is removed by treatment with 10 Oml / L of concentrated sulfuric acid at 25 ° C for 0.5 to 1 minute to activate the nickel layer. After washing with water, sulfate dihydrate characterize 240 g / L and 30-45 ° 3 to 6 minutes with a water solution comprising nickel chloride 45 g / L and boric acid 30 g / L, was treated with 0. 5~ 1 A / dm 2 Then, strike to deposit nickel 2 to 3 mm to reinforce the nickel layer.
(b— 3) 電気銅メツキ  (b— 3) Electrolytic copper plating
水洗後に、 硫酸銅 200 g/L, 硫酸 50 g/L及び光沢剤適量からなる溶液 で 20〜30°C、 20〜60分間、 2〜4 A/dm2の電流値で電気銅メツキを 2 0〃m電着させる。 After washing with water, copper sulfate 200 g / L, 20~30 ° C in a solution consisting of 50 g / L and gloss q.s. sulfate, 20 to 60 minutes, the electrolytic copper plated at a current of 2~4 A / dm 2 2 Electrodeposit 0〃m.
(b-4) 電気半光沢ニッケルメツキ  (b-4) Electric semi-bright nickel plating
水洗後、 硫酸ニッケル 300 g/L, 塩化ニッケル 50 g/L, ホウ酸 45 g /L及び添加剤適量を 50°C、 10〜30分間、 2〜4 A/dm2の電流値で半光 沢ニッケルメツキを 5〃電着させる。 After washing, add 300 g / L of nickel sulfate, 50 g / L of nickel chloride, 45 g / L of boric acid and an appropriate amount of additives at 50 ° C for 10 to 30 minutes at a current of 2 to 4 A / dm2. Electrodeposit a nickel plating for 5 mm.
(b- 5) 電気光沢ニッケルメヅキ  (b-5) Electric bright nickel plating
次いで、 硫酸ニッケル 300 g/L, 塩化ニッケル 50 g/L, ホウ酸 45 g /L及び光沢剤適量を 50°C、 10〜30分間、 2〜4 A/dm2の電流値で光沢 ニッケルメツキを 5〃電着させる。 Then, apply 300 g / L of nickel sulfate, 50 g / L of nickel chloride, 45 g / L of boric acid and a suitable amount of brightener at 50 ° C for 10 to 30 minutes at a current value of 2 to 4 A / dm2. Electrodeposit 5〃.
(b— 6— 1) 電気 Pd— Niメツキ  (b— 6— 1) Electric Pd—Ni plating
水洗後、 パラジウム塩 (P d (NH3) 4C 12 · H2O) 25 g/L及びニヅケ ル塩 (Ni (CHsCOO) 2C I2 · 4H20) 10 /しを30° 1分間、 1 A/dm2、 Na〇Hで pH8に調整して Pd— Niを 1〃m電着させる。 この後、 水洗して乾燥を行い、 治具から取り外す。 After washing with water, palladium salt (P d (NH 3) 4 C 12 · H2O) 25 g / L and Nidzuke Le salts (Ni (CHsCOO) 2 C I2 · 4H 2 0) 10 / teeth 30 ° 1 minute, 1 A Adjust the pH to 8 with / dm 2 and Na〇H and electrodeposit Pd-Ni for 1〃m. Then, wash with water, dry, and remove from the jig.
以上の操作で、 最外層に P d— N iメツキ層を備えた樹脂のメツキ製品が得ら れる。 なお、 ABS樹脂では、 前記極性付与は不要である。  By the above operation, a resin plating product having a Pd—Ni plating layer on the outermost layer can be obtained. In the case of ABS resin, it is not necessary to provide the polarity.
また、 前記最外層メツキ部分を以下のようなメツキ層に置き換えることができ る。 形成するメツキ層により、 そのメツキ層の作製手順をそれそれ説明する。 (b- 6 - 2) 金 (Au) メツキ  Further, the outermost plating portion can be replaced with the following plating layer. The procedure for forming the plating layer will be described with reference to the plating layer to be formed. (b-6-2) Gold (Au)
シアン化第一金カリウム 1. 23 g/L、 遊離シアン化カリウム 7. 5 g/L, リン酸カリウム 15 g/Lを 70°C。 1〜2分間、 電流密度1. OA/dm2で A uメツキをフラッシュ〜 0. 5〃m電着させる。 Potassium gold cyanide 1.23 g / L, free potassium cyanide 7.5 g / L, potassium phosphate 15 g / L at 70 ° C. 1-2 min, A at a current density of 1. OA / dm 2 u Flash the electrode to 0.5〃m.
(b— 6— 3) Au— Cuメツキ  (b— 6— 3) Au—Cu plating
シアン化第一金カリウム 12 g/L、 シアン化銅カリウム 7 g/L、 ロダン力 リウム 10 g/L、 2—ピリジンカルボン酸 8 g/Lを K0Hで pH 8に調整 し、 70°C、 1〜2分間、 電流密度◦ . 4 A/dm2で Au— Cuメツキをフラッ シュ〜 0. 5〃m電着させる。 12 g / L potassium potassium cyanide, 7 g / L potassium potassium cyanide, 10 g / L rhodium, 8 g / L 2-pyridinecarboxylic acid adjusted to pH 8 with K0H, 70 ° C, Electrodeposit Au—Cu plating at a current density of. .4 A / dm 2 for 1 to 2 minutes.
(b- 6 -4) Au—銀 (Ag) メツキ  (b-6-4) Au—Silver (Ag) plating
シアン化第一金カリウム 15 g/L、 シアン化銀カリウム 3 g/L、 シアン化 ニッケルカリウム 2◦ g/L、 シアン化コノ "レトカリウム 10 g/L、 シアン化 カリウム 80 g/L、 アンモニア 2 O g/Lを 15°C、 1〜2分間、 電流密度 0. 6八/€11112で八11—八 メヅキをフラッシュ〜◦ . 5〃m電着させる。 Potassium gold (I) cyanide 15 g / L, potassium silver cyanide 3 g / L, nickel potassium cyanide 2◦g / L, potassium cyano 10 g / L, potassium cyanide 80 g / L, ammonia 2 O g / L to 15 ° C, 1 to 2 minutes, current density 0.6 eight / € 1111 2 was eight 11- eight Medzuki flash ~◦. to 5〃M electrodeposition.
(b— 6— 5) Au— Snメツキ、  (b— 6— 5) Au—Sn plating,
シアン化第一金カリウム 30 g/L、 硫酸第 1スズ 7 g/L、 ピロリン酸カリ ゥム 100 g/Lを常温で 1〜2分間、 電流密度 1 /011112で八11ー 311メツキ をフラッシュ〜 0. 5〃m電着させる。 Cyanide aurous potassium 30 g / L, stannous 7 g / L sulfuric acid, pyrophosphoric acid potassium © beam 100 g / L at room temperature for 1-2 minutes, at a current density of 1/01111 2 eight 11-1 311 plated Flash ~ 0.5〃m electrodeposited.
(b- 6 - 6) Au— Cu— Cdメヅキ、  (b-6-6) Au—Cu—Cd
シアン化第一金力リウム 15 g/L, シアン化力ドミゥム力リゥム 5 g/L, シアン化銅カリウム 200 g/L、 L—グルタミン酸 50 g/Lを 70°C、 1〜 2分間、 電流密度 1 A/dm2で Au— Cu— Cdメツキをフラッシュ〜 0. 5〃 m電着させる。 Gold (I) cyanide 15 g / L, Power cyanide dominate power 5 g / L, Potassium copper cyanide 200 g / L, L-glutamic acid 50 g / L at 70 ° C, 1-2 minutes, current density 1 a / dm 2 Au- Cu- Cd plated to flush ~ 0. 5〃 m electrodeposit.
(b- 6 - 7) Au— Coメヅキ、  (b-6-7) Au—Co
シアン化第一金カリウム 8 g/L、 クェン酸ナトリウム 80 g/L、 コバルト 硫酸塩 3 g/Lを 21°C、 1〜2分間、 電流密度 1 A/dm2で Au— Coメツキ をフラッシュ〜 0. 5 zm電着させる。 Gold Au (Co) cyanide 8 g / L, Sodium citrate 80 g / L, Cobalt sulfate 3 g / L at 21 ° C, 1-2 minutes, flashing Au—Co plating at current density 1 A / dm 2 Electrodeposit ~ 0.5 zm.
(b—6— 8) Au— Ni— Coメヅキ、  (b-6-8) Au—Ni—Co plating,
シアン化第一金カリウム 8 g/L、 クェン酸 150 g/L、 クェン酸カリウム 100 g/L, クェン酸ニッケル 25 g/L、 硫酸コバルト 1 g/L、 シアン化 カリウム 1 g/Lを 40°Cで 1〜2分間、 電流密度 1八/011112で八11— 1ー〇 0メツキをフラッシュ〜 0. 5〃m電着させる。 (b— 6— 9) Au— Ni— I nメツキ、 40 g of potassium gold cyanide 8 g / L, 150 g / L of citric acid, 100 g / L of potassium citrate, 25 g / L of nickel citrate, 1 g / L of cobalt sulfate, and 1 g / L of potassium cyanide 1 ~ 2 minutes at ° C, flash 11 ~ 1 ~ 0 at a current density of 18/01111 2 to 0.5 ~ 0.5〜m electrodeposit. (b— 6— 9) Au— Ni— I n
シアン化第一金カリウム 12 g/L、 クェン酸 85 g/L、 クェン酸カリウム 140 g/L、 クェン酸ニッケル 5 g/L、 硫酸インジウム 5 g/Lを 40°C、 1〜2分間、 電流密度 1八/ 1112で八 1—1^丄一 I nメツキをフラッシュ〜 0. 5〃m電着させる。 12g / L potassium potassium cyanide, 85g / L citrate, 140g / L potassium citrate, 5g / L nickel citrate, 5g / L indium sulfate at 40 ° C for 1-2 minutes, current density 1 eight / 111 2 was eight 1-1 ^丄one I n plated to flush ~ 0.1 5〃M electrodeposit.
(b- 6 - 10) プラチナ (P t ) メツキ、  (b-6-10) Platinum (Pt) plating,
ジニトロジァミン白金 10 g/L、 硝酸アンモニゥム 100 g/L、 亜硝酸ナ トリウム 10 g/L、 水酸化アンモニゥム 55ml/Lを 90°C、 1〜2分間、 電流密度 l A/dm2で Ptメツキをフラッシュ〜 0. 5〃 m電着させる。 Jinitorojiamin platinum 10 g / L, nitrate Anmoniumu 100 g / L, nitrite sodium 10 g / L, hydroxide Anmoniumu 55 ml / L of 90 ° C, 1 to 2 minutes, the Pt plated at a current density of l A / dm 2 Flash ~ 0.5〃m Electrodeposit.
(b- 6 - 1 1) Pdメツキ、  (b-6-1 1) Pd plating,
ジァミンパラジウム亜硝酸塩 100 g/L、 硝酸アンモニゥム 90 g/L, 亜 硝酸ナトリウム 10 g/Lを 70°C、 1〜2分間、 電流密度 1. OA/dm2で P dメツキをフラッシュ〜 0. 5〃m電着させる。 Di § Min palladium nitrite 100 g / L, nitrate Anmoniumu 90 g / L, sodium nitrite 10 g / L to 70 ° C, 1 to 2 minutes, current density 1. Flush the P d plated with OA / dm 2 ~ 0.5 電 m electrodeposited.
(b— 6— 12 ) ロジウム (Rh) メツキ、  (b— 6— 12) Rhodium (Rh)
硫酸ロジウム 2 g/L、 硫酸 3 Oml/L、 50°C、 1〜2分間、 電流密度 2 A/dm2で Rhメヅキをフラッシュ〜 0. 5 m電着させる。 Rhodium sulfate 2 g / L, sulfuric acid 3 Oml / L, 50 ° C, 1-2 minutes, current density 2 A / dm 2 Flash Rh electrode 0.5 ~ 0.5m electrodeposit.
(b— 6— 13) ルテニウム (Ru) メツキ  (b— 6— 13) Ruthenium (Ru)
硫酸ルテニウム 5 g/L、 スルファミン酸 15 g/Lを 50°C、 1〜2分間、 電流密度 1八/(11112で1 11メツキをフラッシュ〜◦ . 5〃m電着させる。 Ruthenium sulfate 5 g / L, sulfamic acid 15 g / L to 50 ° C, 1 to 2 minutes at a current density 1 eight / (1111 2 1 11 plated flash ~◦. To 5〃M electrodeposition.
(b- 6 - 14) Ni— Pメツキ、  (b-6-14) Ni-P plating,
硫酸ニッケル 150 g/L, 正リン酸 50 g/L, 塩化ナトリウム 20 g/L, ホウ酸 20 g/L、 次亜リン酸ナトリウム 20 g/Lを 70°C、 5〜 10分間、 電流密度 5 A/dm2で N i—Pメヅキを 1〃m電着させる。 Nickel sulfate 150 g / L, orthophosphoric acid 50 g / L, sodium chloride 20 g / L, boric acid 20 g / L, sodium hypophosphite 20 g / L at 70 ° C, 5 to 10 minutes, current density 5 a / dm 2 to 1〃M electrodeposit N i-P Medzuki in.
(b- 6 - 15) Sn_Niメツキ  (b-6-15) Sn_Ni plating
塩化スズ 28 g/L、 塩化ニッケル 30 g/L、 ピロリン酸カリウム 200 g /L、 グリシン 20 g/L、 アンモニア水 5ml/Lを 50°C、 5〜10分間、 電流密度 1 A/dm2で N i—Pメヅキを 1〃m電着させる。 28 g / L tin chloride, 30 g / L nickel chloride, 200 g / L potassium pyrophosphate, 20 g / L glycine, 5 ml / L aqueous ammonia at 50 ° C, 5-10 minutes, current density 1 A / dm 2 Then electrodeposit Ni-P plating for 1m.
(2) 次に、 I P処理工程について説明する。  (2) Next, the IP processing step will be described.
上記金属メツキ処理が表面に施された樹脂に対して炭化チタンと窒化チタンの 合成膜の I P被膜を形成した手順を説明する。 Titanium carbide and titanium nitride are applied to the resin whose surface is subjected to the metal plating treatment. The procedure for forming an IP coating of a synthetic film will be described.
まず、 被処理基材を I P治具へ取り付けて、 次のように前処理と I P処理を行 ラ。  First, the base material to be processed was attached to the IP jig, and pre-processing and IP processing were performed as follows.
(2 - 1 ) 前処理工程  (2-1) Pretreatment process
例えば、 非イオン性化学洗浄剤 (商品名 sonic- cean205、 超音波工業 (株) 製) を用いて被処理基材に付着している指紋、 油、 ゴミ等を除去する脱脂処理を 超音波槽内で 40°C、 3分間行う。  For example, using a non-ionic chemical cleaning agent (trade name: sonic-cean205, manufactured by Ultrasonic Industry Co., Ltd.), a degreasing treatment to remove fingerprints, oil, dust, etc. adhering to the substrate to be treated is performed by an ultrasonic bath. Incubate at 40 ° C for 3 minutes.
次いで、 アルカリ成分が被加工物に残留しないように硝酸 0. 2wt%液で、 常温で 3分間中和処理を行う。 次いで、 常温で 3分間 X 3回にわたり、 超音波 3 連槽内で水道水により水洗して洗浄液を洗い流し、 さらに、 洗浄シミを発生させ ないために純水洗浄を行う。 次いで、 70°Cで、 3分間 X 3回、 温風乾燥するこ とで水分を除く。  Next, neutralization treatment is performed for 3 minutes at room temperature with 0.2 wt% nitric acid so that no alkali component remains on the workpiece. Next, at room temperature for 3 minutes X 3 times, the washing liquid is washed off with tap water in a triple ultrasonic bath, and the washing liquid is washed off. Further, pure water washing is performed so as not to cause washing stains. Then remove the water by drying with hot air at 70 ° C for 3 minutes X 3 times.
(2 - 2 ) I P処理工程  (2-2) IP process
被処理基材の基板を取り付けた治具を I P装置の真空チャンバ一 1 (図 1) 内 にセッ トし、 蒸着材として I P装置の蒸発源 2にチタンのプロックをセッ トする。 次いで、 チャンバ一 1を閉じて数十分間、 真空引きを行う。 このとき I P膜の種 類により最終圧力値は異なるが、 約 l〜9 x l 0— 5t o r r程度にする。 The jig with the substrate to be processed attached is set in the vacuum chamber 1 (Fig. 1) of the IP device, and a titanium block is set in the evaporation source 2 of the IP device as a vapor deposition material. Next, the chamber 11 is closed and a vacuum is drawn for several tens minutes. At this time, the final pressure value varies depending on the type of the IP membrane, but is set to about l to 9 xl 0 to 5 torr.
ついで、 被処理基材 6の加工面にチタン付けを行うが、 被処理基材 6の基板に はマイナス 10〜 120 V、 イオン化電極 5にはプラス 20〜40 V、 20〜6 0A、 電子銃 4にはマイナス 6〜9 kV、 400〜800mAの電圧、 電流値を それそれ被膜により設定し 3〜4分チタン付けを行う。 ここでチタン付けを行う 理由は、 最初からガスを導入しても常温では充分な反応が得られないので、 チタ ン付けをしながらある程度温度を上げて反応性を良くする為である。  Next, titanium is applied to the processed surface of the substrate 6 to be processed, but the substrate of the substrate 6 to be processed is minus 10 to 120 V, the ionization electrode 5 is plus 20 to 40 V, 20 to 60 A, and an electron gun. For 4, set the voltage and current value of minus 6 to 9 kV and 400 to 800 mA by coating, and perform titanium attachment for 3 to 4 minutes. The reason for applying titanium here is to improve the reactivity by raising the temperature to some extent while adding titanium, because sufficient reaction cannot be obtained at room temperature even if gas is introduced from the beginning.
ついで、 I P被膜の色だしを行うために、 チャンバ一 1内に窒素ガス、 ァセチ レンガス、 酸素などを適量注入、 圧力を 1 X 10— 4〜5 X 1◦— 3t 0 r rに調整 し、 被処理基材 6の基板にはマイナス 120 V、 イオン化電極 5にはプラス 20 〜60V、 40〜80A、 電子銃 4にはマイナス 6~9 kV、 500〜1000 mAの電圧、 電流値をそれそれ設定して約 15〜20分間程度行う。 Then, in order to perform the color out of IP coating was adjusted nitrogen gas into the chamber one 1, Asechi Rengasu, oxygen and an appropriate amount injected, the pressure to 1 X 10- 4 ~5 X 1◦- 3 t 0 rr, Substrate of substrate to be processed 6 has minus 120 V, ionization electrode 5 has plus 20 to 60 V, 40 to 80 A, electron gun 4 has minus 6 to 9 kV, 500 to 1000 mA voltage and current value Set for about 15-20 minutes.
以後は一定時間冷却後、 大気をチャンバ一 1内に注入して大気圧にして、 治具 をチャンバ一から出し、 治具に取り付け被処理基材 6を治具より外す。 Thereafter, after cooling for a certain period of time, air is injected into chamber 11 to atmospheric pressure, and jig Is taken out of the chamber 1 and attached to a jig, and the substrate 6 to be processed is removed from the jig.
以下に示す表 1には前記各種樹脂を Cuメツキ (20〃m) と Niメツキ (C 5 m+ 5/ m) と Pd— Niメツキ ( 1〃m) 処理を施し、 さらに炭化チタン と窒化チタンの混合膜からなる I P膜のコーティング処理を行った場合の I P膜 の外観を目視による仕上がりの程度を示す。  In Table 1 below, the various resins were treated with Cu plating (20 m), Ni plating (C5m + 5 / m) and Pd-Ni plating (1 m), and titanium carbide and titanium nitride were treated. The appearance of the appearance of the IP film when the coating treatment of the IP film composed of the mixed film is performed is shown by visual inspection.
1]  1]
Figure imgf000019_0001
Figure imgf000019_0001
◎:良好、 〇:形状により良、 △:小さなフクレが数力所発生  ◎: good, 〇: good by shape, △: small blisters at several places
X : フクレによるメッキ膜に破れあり  X: The plating film is broken by blisters
産業上の利用可能性 Industrial applicability
本発明により合成樹脂製品に対してイオンプレーティング処理を行うことによ つて、 合成樹脂材料の特性である意匠の多様性と軽量化を生かした、 耐摩耗性、 装飾性の高い製品を安価に提供することができる。  By subjecting a synthetic resin product to ion plating according to the present invention, it is possible to inexpensively produce a product with high wear resistance and decorativeness by making use of the versatility of design and the weight reduction, which are characteristics of the synthetic resin material. Can be provided.

Claims

請求の範囲 The scope of the claims
1 . 合成樹脂の脱ガス処理及びァニール処理を行った後、 金属メツキを施し、 そ の後イオンプレーティングを行って合成樹脂の成形面に、 イオンプレーティング 被膜を形成することを特徴とする合成樹脂のイオンプレーティング方法。 1. After degassing and annealing of the synthetic resin, apply a metal plating, and then perform ion plating to form an ion plating film on the molding surface of the synthetic resin. Ion plating method for resin.
2 . 合成樹脂の脱ガス処理とァニール処理の前又は後に脱水処理を行うことを特 徴とする請求項 1記載の合成樹脂のイオンプレーティング方法。 2. The method according to claim 1, wherein dehydration is performed before or after the degassing and annealing of the synthetic resin.
3 . 合成樹脂を、 2 0 0 °Cで 1〜 2時間、 又は 1 8 0 °Cで 1 . 5〜 3時間、 又は 1 5 0 °Cで 2〜 4時間の熱処理することを特徴とする請求項 1記載の合成樹脂の イオンプレーティング方法。 3. The synthetic resin is heat-treated at 200 ° C for 1-2 hours, or at 180 ° C for 1.5-3 hours, or at 150 ° C for 2-4 hours. An ion plating method for the synthetic resin according to claim 1.
4 . 合成樹脂がシンジオタクチックポリスチレン樹脂又はポリフタルアミ ド樹脂 であることを特徴とする請求項 1記載の合成樹脂のイオンプレーティング方法。 4. The method according to claim 1, wherein the synthetic resin is a syndiotactic polystyrene resin or a polyphthalamide resin.
5 . 脱ガス処理及びァニール処理を施した合成樹脂の成形表面に金属メツキ膜と イオンプレーティング被膜を順次形成したイオンプレーティング被膜を有する合 成樹脂成型品。 5. A synthetic resin molded product having an ion plating film in which a metal plating film and an ion plating film are sequentially formed on a molding surface of a synthetic resin subjected to degassing treatment and annealing treatment.
6 . 合成樹脂の金属メツキは 5 0〜2 0 mの膜厚とすることを特徴とする請求 項 5記載のイオンプレーティング被膜を有する合成樹脂成型品。 6. The synthetic resin molded article having an ion plating film according to claim 5, wherein the metal plating of the synthetic resin has a thickness of 50 to 20 m.
7 . 合成樹脂がシンジオタクチックポリスチレン樹脂又はポリフタルアミ ド樹脂 であることを特徴とする請求項 5記載のイオンブレーティング被膜を有する合成 樹脂成型品。 7. The synthetic resin molded article having an ion plating film according to claim 5, wherein the synthetic resin is a syndiotactic polystyrene resin or a polyphthalamide resin.
PCT/JP1999/003607 1998-07-10 1999-07-02 Method for ion plating of synthetic resin and molded synthetic resin article having ion-plated coating WO2000003054A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP22991698 1998-07-10
JP10/229916 1998-07-10
JP11/57697 1999-03-04
JP11057697A JP2000080482A (en) 1998-07-10 1999-03-04 Ion plating method of synthetic resin and synthetic resin molding having ion plating film

Publications (1)

Publication Number Publication Date
WO2000003054A1 true WO2000003054A1 (en) 2000-01-20

Family

ID=26398763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003607 WO2000003054A1 (en) 1998-07-10 1999-07-02 Method for ion plating of synthetic resin and molded synthetic resin article having ion-plated coating

Country Status (2)

Country Link
JP (1) JP2000080482A (en)
WO (1) WO2000003054A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3458252A4 (en) * 2016-05-17 2020-04-01 Shamir Optical Industry Ltd. Back side anti-reflective coatings, coating formulations, and methods of coating ophthalmic lenses

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270276A (en) * 2006-03-31 2007-10-18 Shimano Inc Parts for outdoor use
CN105568216A (en) * 2016-01-27 2016-05-11 太仓捷公精密金属材料有限公司 Surface treatment process of metal product
KR102502033B1 (en) * 2022-03-11 2023-02-21 주식회사 앨피스 Plating Method on Injection Molding of Polyphenylene Sulfide Composites
WO2023181964A1 (en) * 2022-03-25 2023-09-28 東洋紡株式会社 Styrene resin molded body
WO2023181963A1 (en) * 2022-03-25 2023-09-28 東洋紡株式会社 Molded styrene-based resin

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55151864U (en) * 1979-04-16 1980-11-01
JPS60131712A (en) * 1983-12-20 1985-07-13 住友ベークライト株式会社 Method of producing transparent conductive film
JPS60177177A (en) * 1984-02-24 1985-09-11 Hitachi Condenser Co Ltd Dehydrator for sheet-like material
JPS61167903A (en) * 1985-01-19 1986-07-29 Olympus Optical Co Ltd Coating method of synthetic resin optical parts
JPS62262248A (en) * 1986-05-08 1987-11-14 Nec Corp Production of magneto-optical recording medium
JPH0196364A (en) * 1987-10-07 1989-04-14 Teijin Ltd Method for removing moisture from high polymer resin substrate
JPH04329864A (en) * 1991-05-07 1992-11-18 Seiko Epson Corp External ornamental parts for timepiece
EP0539260A1 (en) * 1991-10-22 1993-04-28 Thomson-Csf Process for the metallization of articles of plastic material
EP0787762A1 (en) * 1995-07-28 1997-08-06 Idemitsu Petrochemical Co., Ltd. Plated molding and process for preparing plated moldings

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55151864U (en) * 1979-04-16 1980-11-01
JPS60131712A (en) * 1983-12-20 1985-07-13 住友ベークライト株式会社 Method of producing transparent conductive film
JPS60177177A (en) * 1984-02-24 1985-09-11 Hitachi Condenser Co Ltd Dehydrator for sheet-like material
JPS61167903A (en) * 1985-01-19 1986-07-29 Olympus Optical Co Ltd Coating method of synthetic resin optical parts
JPS62262248A (en) * 1986-05-08 1987-11-14 Nec Corp Production of magneto-optical recording medium
JPH0196364A (en) * 1987-10-07 1989-04-14 Teijin Ltd Method for removing moisture from high polymer resin substrate
JPH04329864A (en) * 1991-05-07 1992-11-18 Seiko Epson Corp External ornamental parts for timepiece
EP0539260A1 (en) * 1991-10-22 1993-04-28 Thomson-Csf Process for the metallization of articles of plastic material
EP0787762A1 (en) * 1995-07-28 1997-08-06 Idemitsu Petrochemical Co., Ltd. Plated molding and process for preparing plated moldings

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROTHER B. et al., Thin Solid Films, 142(1), (1986), pages 83-99. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3458252A4 (en) * 2016-05-17 2020-04-01 Shamir Optical Industry Ltd. Back side anti-reflective coatings, coating formulations, and methods of coating ophthalmic lenses

Also Published As

Publication number Publication date
JP2000080482A (en) 2000-03-21

Similar Documents

Publication Publication Date Title
EP2009142B1 (en) Composition for etching treatment of resin molded article
KR101803583B1 (en) Metal-clad polymer article
US20070059449A1 (en) Plating method of metal film on the surface of polymer
US20100304171A1 (en) Metal-clad polymer article
US20080156638A1 (en) Process for sputtering aluminum or copper onto aluminum or magnalium alloy substrates
US20060086620A1 (en) Textured decorative plating on plastic components
WO2006110633A1 (en) Aqueous coating compositions and process for treating metal plated substrates
TW201307611A (en) Hard film-coated member and method of producing the same
US20210363643A1 (en) Chrome-free adhesion pre-treatment for plastics
US3661538A (en) Plastics materials having electrodeposited metal coatings
WO2000003054A1 (en) Method for ion plating of synthetic resin and molded synthetic resin article having ion-plated coating
US20090255823A1 (en) Method for electroplating a plastic substrate
JP2001355094A (en) Base material having ornamental coating film and its manufacturing method
JP6671583B2 (en) Metal plating method
JPH0247547B2 (en)
KR100671422B1 (en) Forming method of Aluminum coatings by sputtering
JPH06299328A (en) Article with corrosion and wear resistant coating film
JP2005082844A (en) Coating method for base material and coating structure
EP2082631B1 (en) A coating method and the coating formed thereby
CA2048486A1 (en) Synthetic resin molded article having metallic thin film on the surface thereof
CN110438499A (en) A kind of non-metal material surface metalized article and its method for metallising
US20220213600A1 (en) Light permeable metallic coatings and method for the manufacture thereof
CN110424013B (en) Plastic product surface metallization method and product
CN110438500B (en) Plastic/metal product and preparation method thereof
CN110424014B (en) Plastic product and method for selectively metallizing surface of plastic substrate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase