WO1999064357A1 - Apparatus for photocatalytic reaction with and method for fixing photocatalyst - Google Patents

Apparatus for photocatalytic reaction with and method for fixing photocatalyst Download PDF

Info

Publication number
WO1999064357A1
WO1999064357A1 PCT/JP1999/003049 JP9903049W WO9964357A1 WO 1999064357 A1 WO1999064357 A1 WO 1999064357A1 JP 9903049 W JP9903049 W JP 9903049W WO 9964357 A1 WO9964357 A1 WO 9964357A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocatalyst
photocatalytic reaction
immobilizing
support
exposed
Prior art date
Application number
PCT/JP1999/003049
Other languages
French (fr)
Japanese (ja)
Inventor
Atsushi Toyoda
Tatsuo Kanki
Original Assignee
Kabushiki Kaisha Himeka Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Himeka Engineering filed Critical Kabushiki Kaisha Himeka Engineering
Priority to US09/719,135 priority Critical patent/US6613225B1/en
Priority to AU40601/99A priority patent/AU4060199A/en
Publication of WO1999064357A1 publication Critical patent/WO1999064357A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0228Coating in several steps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • C03C17/256Coating containing TiO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/42Coatings comprising at least one inhomogeneous layer consisting of particles only
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/71Photocatalytic coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention is applied to a photocatalytic reaction device for efficiently purifying organic compounds and nitrogen oxides contained in water or waste liquid (also referred to as a processing solution) using a photocatalyst, and to the photocatalytic device.
  • the present invention relates to a method for immobilizing a photocatalyst for efficiently fixing a photocatalyst to a support surface.
  • the photoreaction (a photoreaction using a photocatalyst is referred to as a “photocatalysis”) is performed efficiently. It is known that it can do this. It is also known that the light to be used is light such as natural sunlight or fluorescent light.
  • a powdery photocatalyst is added to a processing solution containing harmful substances such as the above-mentioned organic compounds and nitrogen oxides (N ⁇ ) to suspend the solution.
  • harmful substances such as the above-mentioned organic compounds and nitrogen oxides (N ⁇ )
  • N ⁇ nitrogen oxides
  • this purification method has a technical disadvantage that it is difficult to efficiently recover the photocatalyst after the treatment, since the photocatalyst remains as a fine powder in the treatment liquid even after a long period of time. are doing.
  • the fine-powder photocatalyst is supported on a support (glass plate) using a binder made of an organic polymer compound or an inorganic substance so that the fine-powder photocatalyst does not need to be recovered after the photoreaction.
  • a purification method has been proposed in which the support is immersed in a treatment liquid and irradiated with light from a light source placed in the air.
  • the binder is expensive and the binder is expensive.
  • the agent itself is liable to be degraded due to photolysis or photooxidation, and the surface of the photocatalyst is coated with a binder, thereby deteriorating the catalytic function.
  • a powdery photocatalyst was prepared by mixing a metal salt of silicate and an inorganic compound which is not easily subjected to photolysis or photooxidation.
  • the aqueous liquid is coated on the surface of the support such as glass (including the inner surface of the container for drainage), and this is illuminated.
  • a method of using it as a medium has been proposed.
  • the photocatalyst is coated with an alkali metal alkylate that acts as a binder, or coating is difficult depending on the ratio of the alkali metal gaylate to the photocatalyst. There was a fatal drawback.
  • the first invention is directed to a photocatalytic reaction device that has high processing efficiency but does not cause a reduction in processing capacity regardless of the elapsed time of use. It is an object of the second invention to provide a method for simply and efficiently immobilizing a photocatalyst on a support.
  • the photocatalyst reaction device is configured such that a drum having a photocatalyst fixed on its surface is partially immersed in a processing solution to be processed, and a part thereof is immersed in a processing solution to be processed. In the state where it is exposed from the processing solution, it is rotated so that immersion and exposure are continuously repeated, and light is directed toward the exposed surface of the drum, which emits a catalytic reaction. It is characterized by irradiation.
  • the liquid to be treated is formed into a thin film on the photocatalyst on the drum surface by immersing a part of the drum in the liquid. Since the particles adhere in a state and are irradiated with light in a gaseous atmosphere outside the liquid in that state, a photocatalytic reaction can always be generated efficiently and continuously.
  • the photocatalytic reaction can be realized with a relatively simple configuration.
  • a conical plate having a photocatalyst fixed to the surface and having a thickness at the center of rotation and a reduced thickness at the outer periphery and at the side is partially included.
  • Processing solution to be processed Immersed in the glass, and rotated so that immersion and exposure would be continuously repeated, with a part exposed from the processing solution, to cause a photocatalytic reaction toward the exposed surface of the plate
  • the photocatalytic reaction can be generated even when the photocatalytic reaction is irradiated from directly above.
  • a plate having a photocatalyst immobilized on the surface is continuously repeated in a state of being in a processing solution and a state of being exposed outside the processing solution, It can be configured to irradiate light that causes a photocatalytic reaction toward the exposed surface of the plate, and in such a case, a plurality of the plates are disposed around a rotating shaft like a water wheel. This has the advantage that the surface area can be increased.
  • the structure is such that the treatment liquid is securely attached to the surface in a thin film form. This is a desirable embodiment.
  • a method for immobilizing a photocatalyst according to the second invention is a method for immobilizing a photocatalyst on a support using an alkali metal silicate as a binder.
  • a high-performance powdery photocatalyst is efficiently and stably fixed on the surface of the support. Therefore, the photocatalyst on the surface of the support thus produced can be made harmless by the photoreaction for a long time without causing the photocatalyst to fall off or peel off by use.
  • the photocatalyst can be coated on the surface of the support with extremely high efficiency in production, these can be mass-produced in a short time at a low cost. Can be produced.
  • the aqueous solution of the alkali metal silicate used in the first step has a concentration of 1 to 60% by weight.
  • % Aqueous solution, and the photocatalyst used for coating in the second step is a powdery or aqueous solution having a concentration of 2% by weight or more.
  • the immobilization in the first step and the second step may be a drying process
  • the hardening in the third step may be a sintering process
  • the support is made of a heat-resistant material such as glass
  • a preferred embodiment is used.
  • the immobilization in the first step is a drying treatment at a temperature in a range from room temperature to 15 O:
  • the immobilization in the second step is a drying treatment at a temperature within a range from room temperature to 15'0, and the curing in the third step is performed at a temperature in a range of 200 to 800.
  • the sintering process below is desirable.
  • This embodiment is a preferred embodiment in that the photocatalyst can be stabilized on the surface of the support for a long period of time.
  • the thickness of the photocatalyst layer formed on the support is not limited, but the thickness of the photocatalyst layer is reduced from the viewpoint that the irradiation light is sufficiently absorbed. It is preferable to set it to about 1 to 500.
  • the form of the support may be any shape such as a plate, a sphere, a granule, a cylinder, a fiber, a woven fabric, and a nonwoven fabric.
  • the material of the support may be generally plastic, glass, metal, ceramic, or the like.
  • the photocatalyst is titanium dioxide
  • near-ultraviolet light containing light with a wavelength of 39 O nm or less is preferable, so use a high-pressure or low-pressure mercury lamp, xenon lamp, or black light as the light source.
  • a high-pressure or low-pressure mercury lamp, xenon lamp, or black light is preferable.
  • the catalyst is tungsten oxide
  • a tungsten lamp is also a preferable light source in addition to the above light source.
  • Sunlight is also effective as irradiation light.
  • a fluorescent lamp can also be used as a familiar light source.
  • the immobilized photocatalyst according to the second aspect of the present invention decomposes various harmful compounds such as in a liquid or gas similarly to a conventional powdery photocatalyst. It can be made harmless.
  • decomposes aromatic compounds such as pyridine and phenols in wastewater, organic chlorine compounds, pesticides, surfactants, etc., and benzene, toluene, NOx, etc. in contaminated air.
  • FIG. 1 is a perspective view three-dimensionally showing a schematic configuration of a photocatalytic reaction device according to a first embodiment (embodiment 1) of the first invention.
  • FIG. 2 is a diagram showing a configuration of a modified example of the embodiment shown in FIG. 1, (a) is a plan view thereof, and (b) is a side view thereof shown in a transparent manner.
  • FIG. 3 is a diagram showing a schematic configuration of a photocatalytic reaction device according to a second embodiment (Example 2) of the first invention, (a) is a side view shown in perspective, (b) () Is a front view showing a perspective view of the device shown in (a), and (c) is a side view showing the configuration of a modified embodiment in which the arrangement of the light source differs from (a) and (b).
  • FIG. 4 is a diagram showing a schematic configuration of a main part of a photocatalytic reaction device according to a third embodiment (Example 3) and a fourth 'embodiment (Example 4).
  • FIG. 10 is a perspective view showing an example (Example 3) of the present invention, and (b) is a perspective view showing a fourth example (Example 4).
  • FIG. 5 is a side sectional view showing a photocatalyst reactor having another configuration for comparing the operational effects of the photocatalyst reactor according to the embodiment of the first invention.
  • FIG. 6 is a schematic perspective view showing the immobilization process according to the second invention, wherein (a) shows the first step, (b) shows the second step, and (c) shows the second step.
  • FIG. 8 is a view showing a third step.
  • FIG. 7 is a schematic diagram showing an experimental apparatus used for decomposing harmful substances using the photocatalyst manufactured by the method shown in FIG. 6, and FIG. 8 is a vertical axis showing the substance to be treated (F).
  • Fig. 9 shows the concentration of phenol and TOC) and the time (unit: minutes) on the horizontal axis, and the processing status of phenol and TOC.
  • Fig. 9 shows the concentration of the substance to be treated (phenol) on the vertical axis.
  • the intensity of the ultraviolet rays of the sun UV: UV band of 280 to 395 nm
  • the time (unit: minute) on the horizontal axis indicate the processing state of phenol.
  • FIG. 1 The intensity of the ultraviolet rays of the sun (UV
  • the photocatalyst reactor according to the first invention can be configured as shown in the following examples, and any of the photocatalyst reactors is composed of an aromatic compound such as phenol and phenol in wastewater. Decomposes compounds, organochlorine compounds, pesticides, surfactants, and other harmful compounds such as benzene, toluene, and N Ox with high treatment efficiency and with no decrease in treatment capacity regardless of the use time. And make it harmless.
  • an aromatic compound such as phenol and phenol in wastewater.
  • Decomposes compounds, organochlorine compounds, pesticides, surfactants, and other harmful compounds such as benzene, toluene, and N Ox with high treatment efficiency and with no decrease in treatment capacity regardless of the use time. And make it harmless.
  • FIG. 1 is a perspective view showing a schematic configuration of a photocatalytic reaction device according to a first embodiment (Example 1).
  • reference numeral 11 denotes a photocatalyst coated on both surfaces (an outer peripheral surface and an inner peripheral surface of a cylindrical body) of a support (for example, a support made of plastic, glass, metal, ceramic, or the like).
  • the bottom (1'1B) of the cylinder (1) that has been turned upside down is a processing solution Q.
  • the upper part is exposed to the air.
  • a light source (lamp) L shown integrally with the rotation axis C in FIG. 1 is arranged above the cylindrical body 11 and around the rotation axis C.
  • the cylindrical body 11 is arranged such that the immersion in the treatment liquid and the exposure to the air are continuously repeated around the rotation axis C by the driving motor M arranged outside. It is configured to rotate.
  • the type of the light source that is, the wavelength of the irradiation light
  • the photocatalyst is titanium dioxide, it is 390 nm. Since near-ultraviolet light including the following wavelengths is preferred, use a high-pressure mercury lamp or low-pressure mercury lamp, xenon lamp, black light, or the like as the light source.
  • the catalyst is tungsten oxide, a tungsten lamp is also a preferred light source in addition to the above light source. In the case of a device that is used outdoors, sunlight is also effective as a light source, and a fluorescent lamp can be used as a familiar light source.
  • a hydrophilic one to which platinum is adhered is used as the photocatalyst.
  • the immobilization of the photocatalyst on the support can be efficiently performed by, for example, the photocatalyst immobilization method described as the second invention.
  • platinum is supported on the photocatalyst on the surface by using the “photoprecipitation method”.
  • the powder is preliminarily supported on the powder using a photodeposition method, a mixing method, an impregnation method, or the like. It is possible to keep it.
  • the photocatalytic reactor configured as described above operates as follows. That is, the cylindrical body 11 is rotated by the driving mode M, When ascending upward from the lower end, the treatment liquid Q adheres to the surface of the cylindrical body 11 (the outer surface and the inner surface) in a thin film form. Then, the processing liquid adhered in the form of a thin film is irradiated with light in the air by a light source L disposed above and around the rotation axis C. As a result, a photocatalytic reaction occurs on the surface of the cylindrical body 11, and harmful substances in the processing solution are processed and purified.
  • the treatment liquid adheres in a thin film form to the surface of the cylindrical body 11 on which the photocatalyst is coated, and the light that has passed through the air is radiated there. A photocatalytic reaction will occur well.
  • the treatment liquid adheres in the form of a thin film to the surface of the cylindrical body 11 on which the photocatalyst is coated, and is exposed to the air (from the liquid) by ascending. Light is radiated there through the air, and platinum is deposited on the photocatalyst, so that a photocatalytic reaction occurs extremely efficiently.
  • the photocatalyst surface is made hydrophilic, the treated water can quickly and stably spread and adhere to the photocatalyst surface in the form of a thin film as described above, which promotes the photocatalytic reaction. Contribute.
  • the photocatalytic reaction occurs between the outer surface and the inner surface of the cylindrical body, so that the processing efficiency is high. Furthermore, since the movable parts are only the drive motor M 'for rotating the cylindrical body 11 and the belt B, the device is extremely reliable and inexpensive.
  • FIGS. 2 (a) and 2 (b) As a modification of the first embodiment (embodiment of a photocatalytic reaction device of a practical type), as shown in FIGS. 2 (a) and 2 (b), a cylindrical body 11 is formed.
  • the tank 4 containing the processing liquid Q a large number of the cylinders 11 are arranged side by side, and the plurality of cylindrical bodies 11 are rotated by a driving motor to obtain a high processing capacity as a whole. it can.
  • the light source L is disposed above the plurality of cylindrical bodies 11.
  • the arrow F indicates the inflow of the processing liquid Q into the tank 4
  • the arrow G indicates the discharge of the processing liquid Q from the tank 4.
  • the photocatalyst may be coated only on the outer surface of the cylindrical body. In such a case, there is an advantage in that the configuration can be further simplified.
  • FIGS. 3 (a) and 3 (b) are diagrams showing a schematic configuration of a photocatalytic reaction device according to a second embodiment (embodiment 2) according to the first invention.
  • 31 indicates a photocatalyst on the surface (both sides of the disk and the outer peripheral surface) of the support (for example, a support made of plastic, glass, metal, ceramic, etc.).
  • the lower end 31 B of the conical plate 31 is immersed in the processing liquid Q, and the upper part thereof is exposed to the air.
  • a light source (lamp) L is disposed above the conical plate 31.
  • the conical plate 31 is rotated by a drive motor M externally arranged so that immersion in the treatment liquid and exposure to the air are continuously performed around the rotation axis C. It is configured.
  • the same type as in the case of “Example 1” is used, and it is possible to use the light including sunlight.
  • a hydrophilic photocatalyst to which platinum is adhered is also used as the photocatalyst.
  • the photocatalytic reactor configured as described above operates as follows. That is, by the rotation of the conical plate 31 by the drive motor M, the treatment liquid Q adheres to the surface in a thin film by passing through the treatment liquid Q, and the surface of the conical plate 31 adhered to the thin film is formed. The light rotates and rises, and in this raised state, that is, in the air, light is emitted by the light source L disposed above. As a result, conical plate 3 1 A photocatalytic reaction occurs on the surface, and harmful substances in the processing solution are processed and purified. Also in the case of this embodiment, the treatment liquid adheres to the surface of the conical plate 31 on which the photocatalyst is coated in the form of a thin film, and the light that has passed through the air is radiated there. A reaction will occur.
  • the photocatalytic reactor having this configuration, the processing efficiency is high, and the movable portion is mainly a drive motor M for rotating the conical plate 31. Therefore, the photocatalytic reactor is extremely reliable and inexpensive.
  • the arrow F indicates the inflow of the processing solution into the tank 4
  • the arrow G indicates the outflow of the processing solution from the tank 4 after the processing.
  • the use of the conical plate 31 coated with the photocatalyst on the surface in this way is an advantageous embodiment in that the efficiency of light irradiation from above is increased and the surface area is increased.
  • the light source L may be arranged between the conical plates 31 as shown in FIG. 3 (c).
  • the upper light source L may be left as it is or may be removed.
  • a drum having a photocatalyst coated on the surface of a support instead of the cylindrical body 11 and the conical plate 31 described above.
  • the same can be implemented by arranging 41 in a rotatable manner by a drive motor.
  • a so-called water wheel 51 in which a photocatalyst coated on the surface of a support is arranged around the rotation axis C may be used.
  • the water wheel 51 is provided with four flat plates 51a from the rotation axis C, and the connecting portion to the rotation axis C is erected along the rotation axis direction and in the normal direction.
  • the hydraulic power of the water turbine is used, but it is also possible to use a wind turbine to rotate a disk or a drum to perform a photocatalytic reaction process. Needless to say.
  • the material of the support may be the same as that of the above-described embodiment, and the light source may be an upper or side light source. Either one, or both, above and on the side, or from the upper side to the side, a large number can be arranged.
  • the present applicant sought to place a hole on the surface of a glass support having a diameter of 120 mm, which is close to the “Example 2” shown in FIGS. 3 (a) and 3 (b).
  • a prototype photocatalytic reactor was constructed in which only one conical plate 31 coated with titanium monooxide was rotated about a rotation axis, and the lower part of the conical plate 31 was 40%. While rotating the conical plate at a speed of 18 rpm, it was irradiated with a 100 W high-pressure mercury lamp from a position 20 cm lateral to the conical plate 31, and the TOC was applied. It was confirmed that the treatment solution containing 75 ppm of acetic acid reduced the T ⁇ C value of the treatment solution by about 25% after 3 hours.
  • the entire disk 21 similar to that is immersed in the processing solution Q in the transparent container (tank) 4 and rotated at the same rotation speed.
  • the T ⁇ C value of the treatment liquid decreased by only about 7% after 3 hours. did it.
  • the treatment can be performed three times or more with efficiency. This was confirmed.
  • a 6 W ultraviolet lamp (UV lamp) was used.
  • the test piece was placed on both sides above the cylindrical body 41 and tested again for the photocatalytic reaction capacity.
  • the results were as follows. In other words, when the cylindrical body 41 is rotated at a rotation speed of 25 rpm under the condition of irradiation with the ultraviolet lamp, the concentration of the substances to be treated (phenol and TOC) is plotted on the vertical axis. As shown in Fig. 8 with time (minutes) plotted on the horizontal axis, phenol with a concentration of about 50 ppm initially was almost completely decomposed in about 30 minutes.
  • Fig. 9 shows the change in the intensity of ultraviolet light in sunlight, along with the change in phenol concentration, over time when sunlight was used as the light source. Under the conditions of around 0 W / m 2, phenol with a concentration of about 45 ppm can be almost completely decomposed in about 90 minutes.
  • a pipe N for supplying air into the tank 4 is provided as shown in FIG. 3 (a). It is preferable to supply oxygen ( ⁇ 2) to the photocatalyst reduced by the photocatalytic reaction via the treatment liquid Q in order to efficiently perform the photocatalytic reaction.
  • the photocatalyst is not limited to a disk, a cylinder, a drum, or the like, and may have another shape (form).
  • the first invention is not limited to the above embodiment.
  • a commercially available water glass containing 52 to 57% by weight of sodium gayate is added with twice the volume of purified water to make a homogeneous solution.
  • the drying temperature in the first step of Example 1 was 50 in this example, and the drying time was about 1 hour. Then, an aqueous liquid in which a powdery photocatalyst was dissolved in a boric acid saturated solution was uniformly applied (coated) on the surface of the sodium silicate layer in the same manner as in Example 1 to reduce the atmospheric temperature. It was dried for about 2 hours in a drying space of 120 X (step 2). Thereafter, sintering was performed for about 1-hour in an electric furnace with an ambient temperature of 400 (third step). Otherwise, use the same conditions as in Example 1. Was.
  • Example 2 a homogeneous liquid aqueous solution composed of the same “analyze type titanium dioxide TP—2” manufactured by Fuji Titanium Co., Ltd. and purified water as in Example 1 was applied to the sodium manganate on the surface of the glass plate 71.
  • a uniform coating (coating) is performed on the surface of the lithium layer in the same manner as in Example 1, and the coating is dried for about 3 hours in a drying space with an ambient temperature of 120 (second step).
  • the glass plate 71 having the titanium dioxide catalyst layer formed on the surface in this way was placed in a cell having a capacity of 400 cc and having a T ⁇ C of 60 ppm in the same manner as in Example 1.
  • An aqueous liquid containing acetic acid was added, and the inside of the cell was irradiated with light from a 100 W high-pressure mercury lamp while blowing air.
  • the TOC of the aqueous solution containing acetic acid was reduced by 60% by irradiation for 5 hours.
  • a three-fold amount of purified water is added to a commercially available water glass to make a uniform liquid.
  • the aqueous liquid is uniformly applied to a glass plate 71 of 2 mm thick and 10 ⁇ 4 O mm in the same manner as in Example 1 above. Apply (coat) and air dry at room temperature (about 20) for about 1 hour (first step).
  • an aqueous liquid in which a powdery photocatalyst was dissolved in a boric acid saturated solution was uniformly applied (coated) to the surface of the sodium silicate in the same manner as in Example 1, and the solution was cooled to room temperature (about 20 t). :)) for about 5 hours (second step).
  • the glass plate 71 was immersed in a boric acid saturated solution for 10 hours, dried at room temperature and cured to prepare a glass plate 71 having a titanium oxide catalyst layer (third step).
  • the glass plate 71 having the titanium oxide catalyst layer formed on the surface in this manner was placed in a cell having a capacity of 400 cc, as in Example 1, by adding 100 ppm of acetic acid by TOC.
  • the aqueous solution containing the solution was added, and the inside of the cell was irradiated with light from a high-pressure mercury lamp of 100 W while blowing air.
  • TOC of the aqueous solution containing acetic acid was reduced by 70% by irradiation for 8 hours.
  • the glass plate 71 is used as the support.
  • another type of glass for example, cylindrical glass
  • a plastic may be used.
  • a fibrous material may be used.
  • the sintering temperature in the third step can be in the range of 200 to 800 depending on the material of the support.
  • the sunshine can be obtained by simply placing a turbine-shaped body in an agricultural waterway or the like with its lower end immersed in running water. With this light, it becomes possible to decompose harmful compounds such as pesticides used in the field and release them to the downstream.
  • the method for immobilizing a photocatalyst according to the second invention it is possible to obtain a photocatalyst immobilized on a support while maintaining a high-performance powdery state. Moreover, this photocatalyst can stably decompose harmful compounds over a long period of time.
  • the photocatalyst does not peel off from the support even when the support having the photocatalyst fixed on the surface is used or washed, and the harmful compounds in the wastewater and the contaminated air are decomposed and made harmless by an automatic device. I do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

(1) A method which comprises fixing (coating) a photocatalyst on the surface of a support, and feeding continuously a thin film of a liquid to be treated to the surface of the fixed photocatalyst in a gaseous atmosphere and at the same time irradiating a light capable of causing a photocatalytic reaction toward the photocatalyst surface; and (2) a method for fixing a photocatalyst on a support using an alkali metal silicate as a binding agent which comprises a first step of coating an aqueous solution of an alkali metal silicate on a support to fix the silicate, a second step of coating, after the first step, a photocatalyst in a powder form on the above alkali metal silicate to fix the photocatalyst, and a third step of curing, after the second step, the above coated and fixed material. According to the above methods, an apparatus for a photocatalytic reaction can be provided which exhibits a high treatment efficiency and shows no reduction of treating ability even after the elapse of a long period of operating time can be provided, and a photocatalyst can be fixed with ease and efficiency.

Description

明 細 TO 光触媒反応装置及び光触媒の固定化方法  METAL TO Photocatalytic reactor and method for fixing photocatalyst
〔技術分野〕 〔Technical field〕
本発明は、 水あるいは廃液等 (処理液と もいう ) に含まれる有 機化合物や窒素酸化物を、 光触媒を利用 して効率良く 浄化するた めの光触媒反応装置、 および該光触媒装置に利用 される光触媒を 支持体表面に効率良 く 固着させるための光触.媒の固定化方法に 関する。  INDUSTRIAL APPLICABILITY The present invention is applied to a photocatalytic reaction device for efficiently purifying organic compounds and nitrogen oxides contained in water or waste liquid (also referred to as a processing solution) using a photocatalyst, and to the photocatalytic device. The present invention relates to a method for immobilizing a photocatalyst for efficiently fixing a photocatalyst to a support surface.
〔技術背景〕 [Technical background]
近年、 環境問題がク ローズア ッ プざれ、 廃液あるいは排ガス等 の規制の強化が叫ばれ、 その一貫と して、 上記廃液あるいは排ガ スの浄化技術が一躍脚光を浴びている。  In recent years, environmental issues have been closed up, and there has been a call for tighter regulations on waste liquids or exhaust gas, and as a whole, the technology for purifying the above-mentioned waste liquid or exhaust gas has been in the spotlight.
その一つと して、 有機化合物や窒素酸化物 ( N Ox)に、 特定波 長の光を照射させて光分解や光酸化の所謂 「光反応」 によって、 これら の有害な化合物を含む廃液ある いは排ガス等の無害化を おこなおう とする試みが種々おこなわれている。  One of these is wastewater containing these harmful compounds by so-called "photoreaction" of photodecomposition or photooxidation by irradiating organic compounds or nitrogen oxides (NOx) with light of a specific wavelength. Various attempts have been made to detoxify exhaust gas.
そして、 上記光反応させる際に、 二酸化チタ ンや酸化ジルコ二 ゥム等を触媒 (光触媒) と して用いる と、 該光反応 (光触媒を用 いた光反応を 「光触媒反応」 という) が効率良く おこなえる こ と が知られている。 また、 使用する光と しては、 身じかな太陽光や 蛍光灯等の光を利用 しておこなう こ と も知 られている。  When titanium dioxide, zirconium oxide, or the like is used as a catalyst (photocatalyst) during the photoreaction, the photoreaction (a photoreaction using a photocatalyst is referred to as a “photocatalysis”) is performed efficiently. It is known that it can do this. It is also known that the light to be used is light such as natural sunlight or fluorescent light.
具体的には、 例えば、 上述のよ うな有機化合物や窒素酸化物 ( N Οχ)等の有害物を含む処理液中に、 粉末状の光.触媒を投入して懸 濁させ、 この処理液に向かって、 正確には処理液中の光触媒に向 かっ て、 光を照射する こ とによっ て、 上記有害物を無害化させる、 浄化方法が提案されている。 Specifically, for example, a powdery photocatalyst is added to a processing solution containing harmful substances such as the above-mentioned organic compounds and nitrogen oxides (N 上述) to suspend the solution. Toward the photocatalyst in the processing solution Thus, a purification method has been proposed in which the above harmful substances are rendered harmless by irradiating light.
しかし、 この浄化方法の場合、 光触媒が処理液中に微粉末となつ て長時間経過後も懸濁しているため、 処理後に効率良く 該光触媒 を回収するのが困難である という技術的欠点を有している。 However, this purification method has a technical disadvantage that it is difficult to efficiently recover the photocatalyst after the treatment, since the photocatalyst remains as a fine powder in the treatment liquid even after a long period of time. are doing.
このため、 上記微粉末状の光触媒を光反応後に回収する必要が ないよう に、 微粉末状の光触媒を、 有機高分子化合物又は無機物 質か らなる結着剤を用いて、 支持体 (ガラス板等) に固定化させ て、 この支持体を処理液中に浸漬させた状態で、 空気中に配置し た光源か ら光を照射する浄化方法が提案されている。  For this reason, the fine-powder photocatalyst is supported on a support (glass plate) using a binder made of an organic polymer compound or an inorganic substance so that the fine-powder photocatalyst does not need to be recovered after the photoreaction. A purification method has been proposed in which the support is immersed in a treatment liquid and irradiated with light from a light source placed in the air.
しかし、 この净化方法の場合、 水没している支持体表面の光触媒 表面に光が届き難いため、 光触媒反応が低下し、 処理効率が低く なる。 一方、 光源を光触媒に近づけて光触媒反応を向上させよ う と して、 該光源も光触媒と と もに水没させる手法も提案されてい るが、 この場合、 この光源表面をガラス管等で覆う必要があ り 、 その結果、 浸漬時間の経過と共に、 上記ガラス管表面に次第に異 物が付着し、 やはり処理能力が時間の経過と と もに低下する とい う技術的欠点がある。 と ころで、 上記微粉末状の光触媒を、 有機高分子化合物からな る結着剤を用いて、 支持体 (ガラス板等) に固定する場合、 該結 着剤が高価な上に、 結着剤自身が光分解や光酸化を受けて劣化し 易 く 、 また、 光触媒の表面が結着剤で被覆されて、 触媒機能を低 下させてしまう という欠点がある。 However, in the case of this curing method, it is difficult for light to reach the photocatalyst surface of the submerged support surface, so that the photocatalytic reaction is reduced and the treatment efficiency is reduced. On the other hand, a method has been proposed in which the light source is brought close to the photocatalyst to improve the photocatalytic reaction, and the light source is also submerged with the photocatalyst. In this case, however, it is necessary to cover the surface of the light source with a glass tube or the like. As a result, there is a technical disadvantage that foreign substances gradually adhere to the surface of the glass tube as the immersion time elapses, and the processing capacity also decreases with the elapse of time. Here, when the fine powdered photocatalyst is fixed to a support (a glass plate or the like) using a binder made of an organic polymer compound, the binder is expensive and the binder is expensive. The agent itself is liable to be degraded due to photolysis or photooxidation, and the surface of the photocatalyst is coated with a binder, thereby deteriorating the catalytic function.
そこで、 特願平 7 — 1 2 6 3 2 4 号に記載されているよ う に、 光分解や光酸化を受け難い無機化合物のケィ酸アル力 リ 金属塩 と粉末状の光触媒とを混合した水性液を、 ガラ.ス等の支持体表面 (排水を入れる容器内面を含む) にコーティ ングし、 これを光触 媒と して用いる方法が提案されている。 Therefore, as described in Japanese Patent Application No. 7-126326, a powdery photocatalyst was prepared by mixing a metal salt of silicate and an inorganic compound which is not easily subjected to photolysis or photooxidation. The aqueous liquid is coated on the surface of the support such as glass (including the inner surface of the container for drainage), and this is illuminated. A method of using it as a medium has been proposed.
しかしながら、 この場合、 光触媒が、 結着剤と して作用するゲイ 酸アル力 リ 金属塩に被覆されてしまっ た り 、 あるいはゲイ酸アル カ リ 金属塩と光触媒の比率によっては、 コーティ ングが困難とな る とい う致命的な欠点があった。 However, in this case, the photocatalyst is coated with an alkali metal alkylate that acts as a binder, or coating is difficult depending on the ratio of the alkali metal gaylate to the photocatalyst. There was a fatal drawback.
上述のよ う な現況に鑑み行われたもので、 本第 1 の発明は、 処 理効率の高い しか も使用時間の経過に拘 らず処理能力が低下す る こ とのない光触媒反応装置を提供する こ とを目的と し、 本第 2 の発明は、 支持体に光触媒を簡単に且つ効率良く 固定化する方法 を提供する こ とを目的とする。  In view of the above situation, the first invention is directed to a photocatalytic reaction device that has high processing efficiency but does not cause a reduction in processing capacity regardless of the elapsed time of use. It is an object of the second invention to provide a method for simply and efficiently immobilizing a photocatalyst on a support.
〔発明の開示〕 [Disclosure of the Invention]
上記技術的課題を解決すべく 本第 1 の発明にかかる光触媒反 応装置は、 表面に光触媒を固定化した ド ラムを、 その一部が処理 しょう とする処理液中に浸漬し、 一部が処理液か ら露出するよう な状態で、 浸潰と露出が連続的に繰り 返すよう 、 回転させ、 上記 露出 している上記 ド ラムの表面に向かっ て光.触媒反応を生 じ さ せる光を照射するよう構成こ とを特徴とする。  In order to solve the above technical problems, the photocatalyst reaction device according to the first invention is configured such that a drum having a photocatalyst fixed on its surface is partially immersed in a processing solution to be processed, and a part thereof is immersed in a processing solution to be processed. In the state where it is exposed from the processing solution, it is rotated so that immersion and exposure are continuously repeated, and light is directed toward the exposed surface of the drum, which emits a catalytic reaction. It is characterized by irradiation.
しかして、 上述のよう に構成された光触媒反応装置によれば、 処理しょ う とする液は、 ドラムの一部が液中に浸漬する こ とによ つて、 ド ラム表面の光触媒に薄膜状の状態で付着し、 その状態に おいて液外の気体雰囲気中で光が照射されるため、 常に効率的に 且つ連続して光触媒反応を生じさせる こ とができる。 そして、 比 較的簡単な構成によって、 光触媒反応を実現する こ とができる。  However, according to the photocatalytic reactor configured as described above, the liquid to be treated is formed into a thin film on the photocatalyst on the drum surface by immersing a part of the drum in the liquid. Since the particles adhere in a state and are irradiated with light in a gaseous atmosphere outside the liquid in that state, a photocatalytic reaction can always be generated efficiently and continuously. The photocatalytic reaction can be realized with a relatively simple configuration.
上記本第 1 の発明にかかる光触媒反応装置の一つの実施の 形態と して、 表面に光触媒を固定化した、 回転中心で肉厚で外周 · 側で肉薄になった円錐板を、 その一部が処理しょう とする処理液 中に浸漬し、 一部が処理液か ら露出するよ うな状態で、 浸漬と露 出が連続的に繰り返すよ う 、 回転させ、 上記露出している上記板 表面に向かっ て光触媒反応を生じさせる光を照射するよ う構成 されていると、 真上か ら光触媒反応を生じさせる光が照射されて も、 光触媒反応を生じさせる こ とができる。 As one embodiment of the photocatalytic reaction device according to the first invention, a conical plate having a photocatalyst fixed to the surface and having a thickness at the center of rotation and a reduced thickness at the outer periphery and at the side is partially included. Processing solution to be processed Immersed in the glass, and rotated so that immersion and exposure would be continuously repeated, with a part exposed from the processing solution, to cause a photocatalytic reaction toward the exposed surface of the plate When configured to irradiate light, the photocatalytic reaction can be generated even when the photocatalytic reaction is irradiated from directly above.
さ らに、 他の一つの実施形態と して、 表面に光触媒を固定化し た板を、 処理液中にある状態と該処理液外に露出するよ うな状態 を連続的に繰り 返えし、 上記露出している上記板表面に向かって 光触媒反応を生じさせる光を照射するよ う構成する こ とができ、 かかる場合、 上記板を複数枚、 水車のよ う に回転軸の周囲に配設 しておく こ とにって、 表面積を広く する こ とができる という利点 がある。  Further, as another embodiment, a plate having a photocatalyst immobilized on the surface is continuously repeated in a state of being in a processing solution and a state of being exposed outside the processing solution, It can be configured to irradiate light that causes a photocatalytic reaction toward the exposed surface of the plate, and in such a case, a plurality of the plates are disposed around a rotating shaft like a water wheel. This has the advantage that the surface area can be increased.
また、 他の一つの実施形態と して、 前記表面に固定化される光 触媒が親水性のものである と、 処理液が表面に薄膜状に確実に付 着するような構成となる点で、 望ま しい実施形態となる。  Further, as another embodiment, when the photocatalyst immobilized on the surface is a hydrophilic one, the structure is such that the treatment liquid is securely attached to the surface in a thin film form. This is a desirable embodiment.
さ らに、 他の一つの実施形態と して、 前記表面に固定化される 光触媒の表面に、 予め、 触媒作用をする白金を付着させたもので ある と、 処理液中に溶存酸素が少ない場合であっても、 光触媒反 応が活発に安定して生ずる構成となる。 従って、 処理液が薄膜状 で供給されるような場合には、 雰囲気中の酸素 (空気) が利用で きるため、 白金の付着が必ず必要となる ものではない。 上記技術的課題を解決すべく 本第 2 の発明にかかる光触媒 の固定化方法は、 ケィ酸アルカ リ 金属塩を結着剤と して、 光触媒 を支持体上に固定化する手法において、  Further, in another embodiment, when the surface of the photocatalyst immobilized on the surface is pre-adhered to a catalytically active platinum, there is little dissolved oxygen in the processing solution. Even in such a case, the photocatalytic reaction is actively and stably generated. Therefore, when the treatment liquid is supplied in the form of a thin film, the oxygen (air) in the atmosphere can be used, so that the deposition of platinum is not necessarily required. In order to solve the above technical problems, a method for immobilizing a photocatalyst according to the second invention is a method for immobilizing a photocatalyst on a support using an alkali metal silicate as a binder.
上記ケィ酸アルカ リ 金属塩の水性液を支持体上に コーティ ン グし固定化させる第 1 の工程と、 第 1 の工程後.、 粉末状の光触媒 を上記ケィ酸アル力 リ 金属塩上にコーティ ン グ し固定化させる 第 2 の工程と、 上記第 2 の工程後、 上記コ一テ 'イ ングし固定化さ せたものを硬化させる第 3 の工程を有する こ とを特徴とする。 A first step of coating and immobilizing the aqueous solution of the alkali metal silicate on the support; and after the first step, a powdery photocatalyst is coated on the metal salt of the alkali silicate. Coating and immobilizing The method is characterized by comprising a second step and, after the second step, a third step of curing the coated and fixed article.
しかして、 このよう に構成された光触媒の固定化方法によれば、 高性能な粉末状態の光触媒が、 支持体表面上に効率良く しかも安 定して固定される。 従って、 このよう に製作された支持体表面の 光触媒は、 使用によっ て脱落、 剥離する こ となく 長時間にわたつ て有害化合物を光反応によ り無害化する こ とが可能となる。  Thus, according to the photocatalyst fixing method configured as described above, a high-performance powdery photocatalyst is efficiently and stably fixed on the surface of the support. Therefore, the photocatalyst on the surface of the support thus produced can be made harmless by the photoreaction for a long time without causing the photocatalyst to fall off or peel off by use.
また、 本第 2 の発明による方法によれば、 製造面においても、 極 めて高い効率によって、 光触媒を支持体の表面にコ一ティ ングで きるため、 これらを、 短時間で、 安価に大量生産する こ とができ る。 In addition, according to the method of the second aspect of the present invention, since the photocatalyst can be coated on the surface of the support with extremely high efficiency in production, these can be mass-produced in a short time at a low cost. Can be produced.
上記本第 2 の発明にかかる光触媒の固定化方法の一つの実 施の形態と して、 前記第 1 の工程で使用するケィ酸アルカ リ 金属 塩の水性液は、 濃度が 1 〜 6 0 重量%の水性液であ り 、 前記第 2 の工程でコーティ ングに使用する光触媒が、 粉末状あるいは、 濃 度が 2 重量%以上の水性液である こ とが、 実施する上で望ま しい 条件となる。  In one embodiment of the method for immobilizing a photocatalyst according to the second aspect of the present invention, the aqueous solution of the alkali metal silicate used in the first step has a concentration of 1 to 60% by weight. % Aqueous solution, and the photocatalyst used for coating in the second step is a powdery or aqueous solution having a concentration of 2% by weight or more. Become.
この構成において、 上記水性液に対し、 0 . 0 2 〜 1 重量%のケ ィ酸アルカ リ 金属塩を添加する と、 粘性が低く な り 、 スプレイ に よって塗布する場合、 ノズルが詰ま り難く好ま しい実施の形態と なる。 In this configuration, when 0.02 to 1% by weight of an alkali metal silicate is added to the aqueous liquid, the viscosity becomes low, and the nozzle is less likely to be clogged when applied by spraying. This is a new embodiment.
また、 他の一つの実施形態と して、 第 1 の工程および第 2 のェ 程における固定化が乾燥処理であ り 、 第 3 の工程における硬化が 焼結処理であって良い。  In another embodiment, the immobilization in the first step and the second step may be a drying process, and the hardening in the third step may be a sintering process.
この場合、 支持体が耐熱性のもの、 例えばガラス等である場合に は、 好ま しい実施形態となる。 In this case, when the support is made of a heat-resistant material such as glass, a preferred embodiment is used.
さ ら に、 一つの実施形態と して、 第 1 の工程における固定化が 常温から 1 5 O :の範囲内の温度下における乾燥処理であ り 、 前 記第 2 の工程における固定化が常温か ら 1 5 '0 での範囲内の温 度下における乾燥処理であ り 、 前記第 3 の工程における硬化が、 2 0 0 〜 8 0 0 での温度下における焼結処理である こ とが望ま しい。 Further, in one embodiment, the immobilization in the first step is a drying treatment at a temperature in a range from room temperature to 15 O: The immobilization in the second step is a drying treatment at a temperature within a range from room temperature to 15'0, and the curing in the third step is performed at a temperature in a range of 200 to 800. The sintering process below is desirable.
この実施形態の場合、 支持体表面に光触媒が長期間にわたって安 定させる こ とができる点で好ま しい実施形態となる。 This embodiment is a preferred embodiment in that the photocatalyst can be stabilized on the surface of the support for a long period of time.
本第 2 の発明では、 支持体上に形成される光触媒層の厚みにつ いては制約される ものではないが、 照射光が充分吸収される とい う点か らは、 光触媒層の厚みを 0 . 1 ~ 5 0 0 程度とするの が好ま しい。  In the second invention, the thickness of the photocatalyst layer formed on the support is not limited, but the thickness of the photocatalyst layer is reduced from the viewpoint that the irradiation light is sufficiently absorbed. It is preferable to set it to about 1 to 500.
また、 支持体の形態に関しては、 板状、 球状、 顆粒状、 円筒状、 繊維状、 織布状、 不織布状等の任意の形状であってもよい。  The form of the support may be any shape such as a plate, a sphere, a granule, a cylinder, a fiber, a woven fabric, and a nonwoven fabric.
また、 支持体の材質に関しては、 一般的には、 プラスチッ ク、 ガ ラス、 金属、 セラ ミ ッ ク等であってよい。 The material of the support may be generally plastic, glass, metal, ceramic, or the like.
そして、 上記記載した方法によって、 支持体上に固定化した光 触媒を用いて、 上述した有機化合物や窒素酸化物 ( N o X )の有害 化合物を分解又は光酸化する場合、 近紫外光の照射下において、 上記有害物質を含む液ある いは気体を光触媒層に接触させれば よい。 照射光の波長は、 光触媒の種類によって、 変えるのが効率 の点か ら好ま しい。 例えば、 光触媒が、 二酸化チタ ンの場合は 3 9 O n m以下の波長の光を含む近紫外光が好ましいので、 光源に は高圧又は低圧水銀灯、 キセノ ンラ ンプあるいはブラ ッ ク ライ ト 等を使用するのが好ま しい。 また、 触媒が酸化タ ングステンの場 合は、 上記光源の他、 タ ングステンラ ンプも好ま しい光源となる。 なお、 太陽光も、 照射光と しては有効である。 また、 身近な光源 と して、 蛍光灯も使用する こ とができる。  In the case where the above-mentioned organic compound or the harmful compound of nitrogen oxide (No x) is decomposed or photo-oxidized using the photocatalyst immobilized on the support by the method described above, irradiation with near-ultraviolet light is performed. Below, a liquid or a gas containing the harmful substance may be brought into contact with the photocatalytic layer. It is preferable to change the wavelength of the irradiation light depending on the type of the photocatalyst from the viewpoint of efficiency. For example, if the photocatalyst is titanium dioxide, near-ultraviolet light containing light with a wavelength of 39 O nm or less is preferable, so use a high-pressure or low-pressure mercury lamp, xenon lamp, or black light as the light source. Is preferred. When the catalyst is tungsten oxide, a tungsten lamp is also a preferable light source in addition to the above light source. Sunlight is also effective as irradiation light. A fluorescent lamp can also be used as a familiar light source.
本第 2 の発明にかかる固定化された光触媒は、 従来の粉末状光 触媒と同様に、 液体あるいは気体中等の各種の有害化合物を分解 無害化する こ とができる。 例えば、 排水中のピ 'ク リ ン酸やフエ一 ノール類等の芳香族化合物、 有機塩素化合物、 農薬、 界面活性剤 等、 並びに、 汚染空気中のベンゼン、 トルエン、 N o X 等を分解 無害化する こ とができる。 The immobilized photocatalyst according to the second aspect of the present invention decomposes various harmful compounds such as in a liquid or gas similarly to a conventional powdery photocatalyst. It can be made harmless. For example, decomposes aromatic compounds such as pyridine and phenols in wastewater, organic chlorine compounds, pesticides, surfactants, etc., and benzene, toluene, NOx, etc. in contaminated air. Can be
〔図面の簡単な説明〕 [Brief description of drawings]
第 1 図は、 本第 1 の発明の第 1 の実施例 (実施例 1 ) にかか る光触媒反応装置の概略の構成を立体的に示じた斜視図である。 第 2図は、 第 1 図に示した実施例の変形実施例の構成を示す図 で、 ( a ) はその平面図、 ( b ) は透視的に示したその側面図で ある。  FIG. 1 is a perspective view three-dimensionally showing a schematic configuration of a photocatalytic reaction device according to a first embodiment (embodiment 1) of the first invention. FIG. 2 is a diagram showing a configuration of a modified example of the embodiment shown in FIG. 1, (a) is a plan view thereof, and (b) is a side view thereof shown in a transparent manner.
第 3 図は、 本第 1 の発明の第 2 の実施例 (実施例 2 ) にかかる 光触媒反応装置の概略の構成を示した図で、 ( a ) は透視的に示 した側面図、 ( b ) は ( a ) に示す装置を透視的に示した正面図、 ( c ) は ( a ) , ( b ) とは光源の配置が異なる変形実施例の構 成を示す側面図である。  FIG. 3 is a diagram showing a schematic configuration of a photocatalytic reaction device according to a second embodiment (Example 2) of the first invention, (a) is a side view shown in perspective, (b) () Is a front view showing a perspective view of the device shown in (a), and (c) is a side view showing the configuration of a modified embodiment in which the arrangement of the light source differs from (a) and (b).
第 4図は、 第 3 の実施例 (実施例 3 ) と第 4'の実施例 (実施例 4 ) にかかる光触媒反応装置の要部の概略の構成を示す図で、 ( a ) は第 3 の実施例 (実施例 3 ) を示す斜視図、 ( b ) は第 4 の実施例 (実施例 4 ) を示す斜視図である。  FIG. 4 is a diagram showing a schematic configuration of a main part of a photocatalytic reaction device according to a third embodiment (Example 3) and a fourth 'embodiment (Example 4). FIG. 10 is a perspective view showing an example (Example 3) of the present invention, and (b) is a perspective view showing a fourth example (Example 4).
第 5図は、 本第 1 の発明の実施例にかかる光触媒反応装置の作 用効果を比較するための、 他の構成を具備した光触媒反応装置を 示す側断面図である。  FIG. 5 is a side sectional view showing a photocatalyst reactor having another configuration for comparing the operational effects of the photocatalyst reactor according to the embodiment of the first invention.
第 6図は、 本第 2 の発明にかかる固定化のプロセスを示す概略 斜視図で、 ( a ) は第 1 工程を示す図、 ( b ) は第 2工程を示す · 図、 ( c ) は第 3工程を示す図である。 第 7 図は、 第 6 図に示す方法で製作された'光触媒を用いて有 害物質を分解させるために使用 した実験装置を表す概略図、 第 8 図は、 縦軸に被処理物質 (フヱ ノールと T O C ) の濃度を、 横軸 に時間 (単位:分) を取って、 フエ ノールと T O Cの処理状態を表 した図、 第 9 図は、 縦軸に被処理物質 (フエノール) の濃度と太 陽光の紫外線 ( U V : U Vバン ドが 2 8 0〜 3 9 5 n mの U V ) の強さを、 横軸に時間 (単位:分) を取って、 フエ ノ ールの処理状 態を表した図である。 FIG. 6 is a schematic perspective view showing the immobilization process according to the second invention, wherein (a) shows the first step, (b) shows the second step, and (c) shows the second step. FIG. 8 is a view showing a third step. FIG. 7 is a schematic diagram showing an experimental apparatus used for decomposing harmful substances using the photocatalyst manufactured by the method shown in FIG. 6, and FIG. 8 is a vertical axis showing the substance to be treated (F). Fig. 9 shows the concentration of phenol and TOC) and the time (unit: minutes) on the horizontal axis, and the processing status of phenol and TOC. Fig. 9 shows the concentration of the substance to be treated (phenol) on the vertical axis. The intensity of the ultraviolet rays of the sun (UV: UV band of 280 to 395 nm) and the time (unit: minute) on the horizontal axis indicate the processing state of phenol. FIG.
〔発明を実施するための最良の形態〕 [Best mode for carrying out the invention]
本第 1 の発明にかかる光触媒反応装置は、 以下の実施例に 示すよう に構成する こ とができ、 いずれの光触媒反応装置も、 排 水中のピク リ ン酸ゃフエ一ノール類等の芳香族化合物、 有機塩素 化合物、 農薬、 界面活性剤等、 並びに、 ベンゼン、 トルエン、 N Ox 等の有害化合物を、 高い処理効率でしかも使用時間の経過に 拘らず処理能力の低下が生じない状態で、 分解し、 無害化する こ とができる。  The photocatalyst reactor according to the first invention can be configured as shown in the following examples, and any of the photocatalyst reactors is composed of an aromatic compound such as phenol and phenol in wastewater. Decomposes compounds, organochlorine compounds, pesticides, surfactants, and other harmful compounds such as benzene, toluene, and N Ox with high treatment efficiency and with no decrease in treatment capacity regardless of the use time. And make it harmless.
以下、 本第 1 の発明にかかる光触媒反応装置の実施例について 図面を参照しながら具体的に説明する。  Hereinafter, embodiments of the photocatalytic reactor according to the first invention will be specifically described with reference to the drawings.
〔実施例 1 〕 (Example 1)
第 1 図は第 1 の実施例 (実施例 1 ) にかかる光触媒反応装置の 概略の構成を示す斜視図である。  FIG. 1 is a perspective view showing a schematic configuration of a photocatalytic reaction device according to a first embodiment (Example 1).
第 1 図において、 1 1 は、 支持体 (例えばプラスチッ ク、 ガラス、 金属、 セラ ミ ッ ク等からなる支持体) の両方の表面 (円筒体の外 周表面と内周表面) に光触媒をコーティ ング (固定化) した円-筒 体で、 横倒 しに したこ の円筒体 1 1 の下端部 1 ' 1 Bが、 処理液 Q に浸漬してお り 、 その上方の部分は空気中に露出している。 そし て、 この円筒体 1 1 の上方および回転軸 Cの周囲には、 光源 (ラ ンプ) L (第 1 図では回転軸 C と一体のものと して図示する) が 配置されている。 また、 この円筒体 1 1 は、 外部配置された駆動 モー夕 Mによ り 、 回転軸 C を中心に、 処理液中への浸漬と空気中 への露出が連続的に繰り 返されるよう。 回転するよ う構成されて いる。 In FIG. 1, reference numeral 11 denotes a photocatalyst coated on both surfaces (an outer peripheral surface and an inner peripheral surface of a cylindrical body) of a support (for example, a support made of plastic, glass, metal, ceramic, or the like). The bottom (1'1B) of the cylinder (1) that has been turned upside down is a processing solution Q. The upper part is exposed to the air. Above the cylindrical body 11 and around the rotation axis C, a light source (lamp) L (shown integrally with the rotation axis C in FIG. 1) is arranged. Further, the cylindrical body 11 is arranged such that the immersion in the treatment liquid and the exposure to the air are continuously repeated around the rotation axis C by the driving motor M arranged outside. It is configured to rotate.
上記光源 (ラ ンプ) の種類、 つま り 、 照射光の波長は、 光触媒 の種類によって、 変えるのが効率の点から好ま し く 、 例えば、 光 触媒が、 二酸化チタ ンの場合は 3 9 0 n m以下の波長の光を含む 近紫外光が好ま しいこ とから、 光源には高圧水銀灯又は低圧水銀 灯、 キセノ ンラ ンプあるいはブラ ッ ク ライ ト等を使用する。 また、 触媒が酸化タ ングステンの場合は、 上記光源の他に、 タ ングステ ンラ ンプも好ま しい光源となる。 また、 野外において使用するよ うな装置の場合には、 太陽光も、 光源と しては有効であ り 、 身近 な光源と して、 蛍光灯も使用する こ とが可能である。  The type of the light source (lamp), that is, the wavelength of the irradiation light, is preferably changed depending on the type of photocatalyst from the viewpoint of efficiency. For example, when the photocatalyst is titanium dioxide, it is 390 nm. Since near-ultraviolet light including the following wavelengths is preferred, use a high-pressure mercury lamp or low-pressure mercury lamp, xenon lamp, black light, or the like as the light source. When the catalyst is tungsten oxide, a tungsten lamp is also a preferred light source in addition to the above light source. In the case of a device that is used outdoors, sunlight is also effective as a light source, and a fluorescent lamp can be used as a familiar light source.
また、 光触媒については、 親水性のもので白金を付着させたもの が用い られている。 As the photocatalyst, a hydrophilic one to which platinum is adhered is used.
なお、 上記支持体への光触媒の固定化は、 例え'ば、 本第 2 の発明 と して記載する、 光触媒の固定化方法によって効率的にお こなう こ とができる。 The immobilization of the photocatalyst on the support can be efficiently performed by, for example, the photocatalyst immobilization method described as the second invention.
さ らに、 この実施例では、 光触媒反応を安定して活発にお こなわ せるために、 上記表面の光触媒に 「光析出法」 を用いて白金を担 持させている。 白金の担持方法と しては、 固定化光触媒膜を粉体 から作る場合、 予め粉体に対し、 「光析出法」 や 「混合法」 、 「含 浸法」 などを用いて白金を担持させておく こ とが考え られる。 Further, in this embodiment, in order to stably and vigorously carry out the photocatalytic reaction, platinum is supported on the photocatalyst on the surface by using the “photoprecipitation method”. As a method for supporting platinum, when the immobilized photocatalyst film is formed from powder, the powder is preliminarily supported on the powder using a photodeposition method, a mixing method, an impregnation method, or the like. It is possible to keep it.
しかして、 このよう に構成された光触媒反応装置は、 以下のよ う に作用する。 即ち、 駆動モー夕 Mによ り 円筒'体 1 1 が回転して、 下端か ら上方に上昇する際に円筒体 1 1 表面 (·外表面および内表 面) に処理液 Qが薄膜状に付着する。 そして、 薄膜状に付着した 処理液は、 空気中において、 上方および回転軸 C周囲に配置され た光源 L によって光が照射される。 その結果、 円筒体 1 1 表面で 光触媒反応が生じ、 処理液中の有害物質が処理され、 浄化される。 この実施例の場合も、 光触媒がコ一ティ ングされている円筒体 1 1 の表面に、 処理液が薄膜状に付着し、 そこに空気中を通ってき た光が照射されるため、 極めて効率良く 光触媒反応が生じる こ と になる。 特に、 このよう に光触媒がコーティ ングされた円筒体 1 1 の表面に処理液が薄膜状の形態で付着して、 '上昇する こ とによ り (液中か ら) 空気中に露出し、 そこに空気中を通って光が照射 されるため、 また、 光触媒に白金を付着させているため、 極めて 効率良く 光触媒反応が生じる こ とになる。 また、 光触媒表面を親 水性に しているため、 上述のよ う に光触媒表面に処理水が速やか に且つ安定して薄膜状に拡がって付着する こ とができ、 上記光触 媒反応の促進に寄与する。 Thus, the photocatalytic reactor configured as described above operates as follows. That is, the cylindrical body 11 is rotated by the driving mode M, When ascending upward from the lower end, the treatment liquid Q adheres to the surface of the cylindrical body 11 (the outer surface and the inner surface) in a thin film form. Then, the processing liquid adhered in the form of a thin film is irradiated with light in the air by a light source L disposed above and around the rotation axis C. As a result, a photocatalytic reaction occurs on the surface of the cylindrical body 11, and harmful substances in the processing solution are processed and purified. Also in the case of this embodiment, the treatment liquid adheres in a thin film form to the surface of the cylindrical body 11 on which the photocatalyst is coated, and the light that has passed through the air is radiated there. A photocatalytic reaction will occur well. In particular, the treatment liquid adheres in the form of a thin film to the surface of the cylindrical body 11 on which the photocatalyst is coated, and is exposed to the air (from the liquid) by ascending. Light is radiated there through the air, and platinum is deposited on the photocatalyst, so that a photocatalytic reaction occurs extremely efficiently. In addition, since the photocatalyst surface is made hydrophilic, the treated water can quickly and stably spread and adhere to the photocatalyst surface in the form of a thin film as described above, which promotes the photocatalytic reaction. Contribute.
そして、 この構成の光触媒反応装置の場合、 円筒体の外表面と内 表面で光触媒反応が生じるため、 処理効率が高い。 さ らに、 可動 部分は円筒体 1 1 を回転させる駆動モー夕 M 'とベル ト B のみで あるため、 極めて信頼性の高い、 しかも安価な装置となる。 In the case of the photocatalytic reactor having this configuration, the photocatalytic reaction occurs between the outer surface and the inner surface of the cylindrical body, so that the processing efficiency is high. Furthermore, since the movable parts are only the drive motor M 'for rotating the cylindrical body 11 and the belt B, the device is extremely reliable and inexpensive.
と ころで、 この実施例 1 の変形実施例 (実用タイ プの光触媒反 応装置の実施例) と して、 第 2 図 ( a ) , ( b ) に図示するよう に、 円筒体 1 1 を、 処理液 Qの入っ た槽 4 内に、 多数本並設し、 これら複数の円筒体 1 1 を駆動モー夕 Μ ίこよって回転させ、 全体 的に高い処理能力を得るよう構成する こ とができる。 なお、 この 場合にも、 光源 Lが複数本円筒体 1 1 の上方に配設されている。 また、 第 2 図 ( a ) で、 矢印 F は処理液 Qの槽 4 内への流入を、' 矢印 Gは処理液 Qの槽 4からの排出を示す。 また、 上記実施例では円筒体 1 1 の外表面と.内表面の両方に光 触媒をコーティ ングしている力 、 これに代えて、 円筒体の外表面 のみに光触媒をコーティ ングしてもよ く 、 かかる場合、 よ り構成 が単純化できる点で利点がある。 As a modification of the first embodiment (embodiment of a photocatalytic reaction device of a practical type), as shown in FIGS. 2 (a) and 2 (b), a cylindrical body 11 is formed. In the tank 4 containing the processing liquid Q, a large number of the cylinders 11 are arranged side by side, and the plurality of cylindrical bodies 11 are rotated by a driving motor to obtain a high processing capacity as a whole. it can. In this case as well, the light source L is disposed above the plurality of cylindrical bodies 11. Also, in FIG. 2 (a), the arrow F indicates the inflow of the processing liquid Q into the tank 4, and the arrow G indicates the discharge of the processing liquid Q from the tank 4. Further, in the above embodiment, the force of coating the photocatalyst on both the outer surface and the inner surface of the cylindrical body 11. Instead of this, the photocatalyst may be coated only on the outer surface of the cylindrical body. In such a case, there is an advantage in that the configuration can be further simplified.
〔実施例 2 〕  (Example 2)
第 3 図 ( a ) , ( b ) は本第 1 の発明にかかる第 2 の実施例 (実 施例 2 ) にかかる光触媒反応装置の概略の構成を示す図である。 第 3 図 ( a ) , ( b ) において、 3 1 は、 支持体 (例えばプラス チッ ク、 ガラス、 金属、 セラミ ッ ク等からなる支持体) の表面 (円 板の両面と外周面) に光触媒をコーティ ング 〈光触媒を固定化) した円錐板で、 この円錐板 3 1 の下端部 3 1 Bが処理液 Qに浸漬 してお り 、 その上方の部分は空気中に露出している。 そして、 第 3 図 ( b ) に図示するよう に、 この円錐板 3 1 の上方には、 光源 (ラ ンプ) Lが配置されている。 また、 この円錐板 3 1 は、 外部 配置された駆動モータ Mによ り 、 回転軸 C を中心に、 処理液中へ の浸漬と空気中への露出が連続しておこなわれるべく 、 回転する よ う構成されている。  FIGS. 3 (a) and 3 (b) are diagrams showing a schematic configuration of a photocatalytic reaction device according to a second embodiment (embodiment 2) according to the first invention. In Figs. 3 (a) and (b), 31 indicates a photocatalyst on the surface (both sides of the disk and the outer peripheral surface) of the support (for example, a support made of plastic, glass, metal, ceramic, etc.). The lower end 31 B of the conical plate 31 is immersed in the processing liquid Q, and the upper part thereof is exposed to the air. Then, as shown in FIG. 3 (b), a light source (lamp) L is disposed above the conical plate 31. The conical plate 31 is rotated by a drive motor M externally arranged so that immersion in the treatment liquid and exposure to the air are continuously performed around the rotation axis C. It is configured.
上記光源 (ラ ンプ) の種類に関しては、 「実施例 1 」 の場合と 同様のものが使用され、 また太陽光を含めて使用する こ とが可能 である。  With respect to the type of the above light source (lamp), the same type as in the case of “Example 1” is used, and it is possible to use the light including sunlight.
また、 光触媒についても、 実施例 1 と同様に、 親水性のもので白 金を付着させたものが用い られている。 As in the first embodiment, a hydrophilic photocatalyst to which platinum is adhered is also used as the photocatalyst.
しかして、 このよう に構成された光触媒反応装置は、 以下のよ う に作用する。 即ち、 駆動モータ Mによる円錐板 3 1 の回転によ り 、 処理液 Q中を通過する こ とによって表面に処理液 Qが薄膜状 に付着し、 その薄膜状に付着した該円錐板 3 1 表面が回転して上 昇するが、 この上昇した状態で、 つま り空気中において、 上方に 配置された光源 L によって光が照射される。 ぞの結果、 円錐板 3 1 表面で光触媒反応が生じ、 処理液中の有害物質が処理され、 浄 化される。 この実施例の場合も、 光触媒がコーティ ングされてい る円錐板 3 1 の表面に、 処理液が薄膜状に付着し、 そこに空気中 を通ってきた光が照射されるため、 極めて効率良く 光触媒反応が 生じる こ とになる。 Thus, the photocatalytic reactor configured as described above operates as follows. That is, by the rotation of the conical plate 31 by the drive motor M, the treatment liquid Q adheres to the surface in a thin film by passing through the treatment liquid Q, and the surface of the conical plate 31 adhered to the thin film is formed. The light rotates and rises, and in this raised state, that is, in the air, light is emitted by the light source L disposed above. As a result, conical plate 3 1 A photocatalytic reaction occurs on the surface, and harmful substances in the processing solution are processed and purified. Also in the case of this embodiment, the treatment liquid adheres to the surface of the conical plate 31 on which the photocatalyst is coated in the form of a thin film, and the light that has passed through the air is radiated there. A reaction will occur.
そして、 この構成の光触媒反応装置の場合、 処理効率が高い上に、 可動部分は主と して円錐板 3 1 を回転させる駆動モー夕 Mのみ であるため、 極めて信頼性の高い、 しかも安価な装置となる。 なお、 第 3 図 ( a ) において、 矢印 Fは処理液の槽 4 内への流入 を、 矢印 Gは処理された後の処理液の槽 4から.の流出を示す。 こ のよ う に表面に光触媒をコーティ ングした円錐板 3 1 を用い ると、 上方からの光の照射効率が増加し、 且つ表面積が増加する 上で有利な実施例となる。 In addition, in the case of the photocatalytic reactor having this configuration, the processing efficiency is high, and the movable portion is mainly a drive motor M for rotating the conical plate 31. Therefore, the photocatalytic reactor is extremely reliable and inexpensive. Device. In FIG. 3 (a), the arrow F indicates the inflow of the processing solution into the tank 4, and the arrow G indicates the outflow of the processing solution from the tank 4 after the processing. The use of the conical plate 31 coated with the photocatalyst on the surface in this way is an advantageous embodiment in that the efficiency of light irradiation from above is increased and the surface area is increased.
また、 照射効率を向上させるため、 第 3 図 ( c) に図示するよう に、 光源 L を円錐板 3 1 の間に配置してもよい。 この場合、 上方の光 源 Lはそのまま残しておいても、 あるいは取り除いてよい。 Further, in order to improve the irradiation efficiency, the light source L may be arranged between the conical plates 31 as shown in FIG. 3 (c). In this case, the upper light source L may be left as it is or may be removed.
〔実施例 3 〕  (Example 3)
上述した円筒体 1 1 、 円錐板 3 1 に代えて、 第 4 図 ( a ) に図 示する如く 、 支持体表面に光触媒をコーティ ングした ド ラム (円 筒体の両端が鏡板で閉塞された形状のもの) 4 1 を駆動モータに よって回転可能に配置する こ とによつても、 同様に実施できる。 また、 第 4 図 ( b ) に図示するよう に、 支持体表面に光触媒をコ 一ティ ングしたものを回転軸 C 周囲に配置 した所謂水車状体 5 1 を用いてもよい。 この実施例では、 水車状体 5 1 は、 回転軸 C から平板 5 1 a を 4枚、 回転軸 Cへの接続部分が回転軸方向に沿 う よ う 且つ法線方向に向かっ て立設する こ と によ っ て構成され ているが、 スパイ ラル状に配設してもよい。 このよ うな水車状体 5 1 の場合には、 下端が処理液たる流水に浸 *するよう水路等に 昔の水車のよう に配置できる状況下において有利な構成で、 かか る実施例の場合には、 単に配置しておく だけで、 太陽を光源と し て、 光触媒反応をおこなう こ とができる、 経済的な、 エネルギー が不要な光触媒反応装置となる。 As shown in FIG. 4 (a), a drum having a photocatalyst coated on the surface of a support (both ends of which are closed with end plates, as shown in FIG. 4 (a)) instead of the cylindrical body 11 and the conical plate 31 described above. The same can be implemented by arranging 41 in a rotatable manner by a drive motor. Further, as shown in FIG. 4 (b), a so-called water wheel 51 in which a photocatalyst coated on the surface of a support is arranged around the rotation axis C may be used. In this embodiment, the water wheel 51 is provided with four flat plates 51a from the rotation axis C, and the connecting portion to the rotation axis C is erected along the rotation axis direction and in the normal direction. Although it is configured in this way, it may be arranged in a spiral shape. In the case of such a water wheel 51, the lower end should be placed in a water channel so that This is an advantageous configuration in a situation where it can be arranged like an old water turbine. In the case of such an embodiment, it is possible to perform a photocatalytic reaction using the sun as a light source simply by arranging it. An economical, energy-free photocatalytic reactor.
また、 こ こでは、 水車による水力を利用 しているが、 風力を利用 して円板あるいは ド ラム等を回転させて、 光触媒反応処理をおこ なう ような装置する こ と もできる こ とは言う までもない。 In addition, here, the hydraulic power of the water turbine is used, but it is also possible to use a wind turbine to rotate a disk or a drum to perform a photocatalytic reaction process. Needless to say.
これら第 4 図に示すいずれの実施例の場合も、 支持体は材質的に は、 上述した実施例のものと同様のものを用いる こ とができ、 ま た、 光源は、 上方あるいは側方のいずれか、 又.は上方および側方 の両方に、 あるいは上方から側方にかけて多数配設する こ とが可 能である。 In any of the embodiments shown in FIGS. 4A and 4B, the material of the support may be the same as that of the above-described embodiment, and the light source may be an upper or side light source. Either one, or both, above and on the side, or from the upper side to the side, a large number can be arranged.
と ころで、 本出願人は、 出願に際し、 上記第 3 図 ( a ) 、 ( b ) に示す 「実施例 2 」 に近い、 直径が 1 2 0 m mのガラス製の支持 体の表面にアナ夕一ゼ型ニ酸化チタ ンをコーティ ングした円錐 板 3 1 を、 1 枚だけ回転軸を中心に回転するよう に構成した光触 媒反応装置を試作し、 該円錐板 3 1 の下部 4 0 %程度を処理液内 に浸漬させた状態で、 回転数 1 8 r p mで回転させ、 円錐板 3 1 の側方 2 0 c mの位置か ら 1 0 0 Wの高圧水銀灯を照射した と ころ、 T O Cで 7 5 p p mの酢酸を含む処理液は、 3 時間後には、 処理液の T〇 Cの値が略 2 5 %低下した こ とが確認できた。  At the time of filing the application, the present applicant sought to place a hole on the surface of a glass support having a diameter of 120 mm, which is close to the “Example 2” shown in FIGS. 3 (a) and 3 (b). A prototype photocatalytic reactor was constructed in which only one conical plate 31 coated with titanium monooxide was rotated about a rotation axis, and the lower part of the conical plate 31 was 40%. While rotating the conical plate at a speed of 18 rpm, it was irradiated with a 100 W high-pressure mercury lamp from a position 20 cm lateral to the conical plate 31, and the TOC was applied. It was confirmed that the treatment solution containing 75 ppm of acetic acid reduced the T〇C value of the treatment solution by about 25% after 3 hours.
これに対して、 第 5 図に図示するよう に、 それと同じような円板 2 1 全体を、 透明容器 (槽) 4 内の処理液 Q中に浸漬させ、 同じ 回転数で回転させる と ともに、 その底面方 2 0 c mの位置から同 じ 1 0 0 Wの高圧水銀灯 L を照射したと ころ、 3 時間後には、 処 理液の T〇 C の値が略 7 % しか低下しないこ とが確認できた。 つま り 、 本第 1 の発明のよ う に、 気体中で、 光触媒の表面に薄膜 状に付着させ、 光源で照射する と、 3 倍以上の.効率で処理できる こ とが確認できた。 On the other hand, as shown in Fig. 5, the entire disk 21 similar to that is immersed in the processing solution Q in the transparent container (tank) 4 and rotated at the same rotation speed. When irradiated with the same 100 W high-pressure mercury lamp L from a position 20 cm below the bottom surface, it was confirmed that the T〇C value of the treatment liquid decreased by only about 7% after 3 hours. did it. In other words, as in the first invention, when a thin film is attached to the surface of the photocatalyst in a gas and irradiated with a light source, the treatment can be performed three times or more with efficiency. This was confirmed.
さ ら に、 こ の出願に先立って、 第 4 図 (a ) に'図示するよ う な円 筒体 4 1 を 1 本だけ用いた装置において、 6 Wの紫外線ランプ( U Vラ ンプ) を 2 本、 該円筒体 4 1 の上方の両側に配置して、 光触 媒反応の処理能力について再度試験した結果、 以下のとお り であ つた。 つま り 、 上記紫外線ラ ンプを照射した状況下において、 円 筒体 4 1 を 2 5 r p mの回転速度で回転させた場合、 縦軸に被処 理物質 (フエ ノ ールと T O C ) の濃度を、 横軸に時間 (分) を取 つ て表した、 第 8 図に図示する とお り 、 当初約 5 0 p p m の濃 度のフエ ノ ールが約 3 0 分程度でほぼ完全に分解され、 当初約 4 0 p p m の濃度の T O C についても約 6 0 分'程度でほぼ完全に 分解された。 なお、 点線で示すよう に、 表面に光触媒がコーティ ングされていない円筒体の場合 ( 「ブラ ンク」 の円筒体の場合) には、 上記フ エノールおよび T〇 C について、 全く といってよい 程分解されない こ とが判る。 また、 第 9 図は、 太陽光を光源と し て用いた場合に、 その太陽光の紫外線の強さの変化をフエノール の濃度変化と ともに時間の経過に沿って表したもので、 紫外線が 2 0 W / m 2 前後で推移した状況下において、 当初約 4 5 p p m の濃度のフエノールが約 9 0 分程度でほぼ完全に分解できる。 Prior to the filing of this application, in an apparatus using only one cylindrical body 41 as shown in FIG. 4 (a), a 6 W ultraviolet lamp (UV lamp) was used. The test piece was placed on both sides above the cylindrical body 41 and tested again for the photocatalytic reaction capacity. The results were as follows. In other words, when the cylindrical body 41 is rotated at a rotation speed of 25 rpm under the condition of irradiation with the ultraviolet lamp, the concentration of the substances to be treated (phenol and TOC) is plotted on the vertical axis. As shown in Fig. 8 with time (minutes) plotted on the horizontal axis, phenol with a concentration of about 50 ppm initially was almost completely decomposed in about 30 minutes. Initially, the concentration of TOC at about 40 ppm was almost completely decomposed in about 60 minutes. As shown by the dotted line, in the case of a cylinder whose surface is not coated with a photocatalyst (in the case of a “blank” cylinder), the above phenol and T〇 C can be almost completely ignored. You can see that it is not decomposed. Fig. 9 shows the change in the intensity of ultraviolet light in sunlight, along with the change in phenol concentration, over time when sunlight was used as the light source. Under the conditions of around 0 W / m 2, phenol with a concentration of about 45 ppm can be almost completely decomposed in about 90 minutes.
と ころで、 上記いずれの実施例においても、 光触媒に白金を付 着させない場合には、 第 3 図 ( a ) に図示するよう に、 槽 4 内へ 空気を供給するパイ プ Nを配設し、 光触媒反応によって還元され る光触媒に酸素 (〇 2 ) を、 処理液 Qを介して、 供給するよ う 構成する こ とが、 効率良く 光触媒反応を行う上で好ま しい。  In any of the above embodiments, when platinum is not attached to the photocatalyst, a pipe N for supplying air into the tank 4 is provided as shown in FIG. 3 (a). It is preferable to supply oxygen (〇 2) to the photocatalyst reduced by the photocatalytic reaction via the treatment liquid Q in order to efficiently perform the photocatalytic reaction.
また、 上記実施例では、 それぞれ支持体表面に光触媒がコーテ イ ングされている具体的な形状 (形態) のものについて説明した が、 これらの形状 (形態) に限定される ものではなく 、 例えば、 実施例 1 の場合の 「平板」 に代えて、 表面に凹凸のある板であつ ても、 又は多孔質状の表面であっても、 あるいは八二カム構造で あってもよ く 、 かかる場合、 接触面積が増加し.、 処理能力が向上 する。 また、 板状の場合、 集光効率を向上させるために、 全体的 に湾曲したよ う な板であってもよい。 また、 支持体と して細い繊 維状のものを用い、 これら繊維状のものを枝状に下方にぶら下げ たような言わば 「網のれん」 状に枝を張り 出させた形態にしても よ く 、 かかる場合には、 平板に比べてよ り広い接触面積が得られ る こ とから、 処理能力の向上が期待できる。 また、 光触媒がコ 一 ティ ングされたものを回転させる場合にも、 円板、 円筒体、 ドラ ム等に限定される ものではなく 、 他の形状 (形態) のものであつ てもよい。 Further, in the above-described embodiments, specific shapes (forms) in which the photocatalyst is coated on the surface of the support have been described. However, the present invention is not limited to these shapes (forms). Instead of the “flat plate” in the case of Example 1, a plate with uneven surface , Or a porous surface, or an 82-cam structure. In such a case, the contact area increases, and the processing capacity improves. In the case of a plate shape, the plate may be entirely curved in order to improve the light collection efficiency. Also, a thin fiber-like support may be used as the support, and the fiber-like thing may be hung downward in a branch shape, so that the branches may protrude in a so-called “mesh noren” shape. In such a case, since a larger contact area can be obtained as compared with a flat plate, an improvement in processing capacity can be expected. Also, when rotating the coated photocatalyst, the photocatalyst is not limited to a disk, a cylinder, a drum, or the like, and may have another shape (form).
このよう に、 本第 1 の発明の基本的技術思想に変更を与えない範 囲で、 種々 に変更する こ とが可能である。 従って、 本第 1 の発明 は、 上述した実施例に限定される ものではない。 As described above, various modifications can be made without changing the basic technical idea of the first invention. Therefore, the first invention is not limited to the above embodiment.
つぎに、 本第 2 の発明にかかる光触媒の固定化方法の実施例に ついて述べる。 Next, an embodiment of the method for immobilizing a photocatalyst according to the second invention will be described.
〔実施例 1 〕  (Example 1)
5 2 〜 5 7 重量% のゲイ酸ナ ト リ ウムを含む市販の水ガラス に 2 倍量の精製水を加えて均一液と し、 この水性液を、 第 6 図 A commercially available water glass containing 52 to 57% by weight of sodium gayate is added with twice the volume of purified water to make a homogeneous solution.
( a ) あるいは同 ( b ) に図示するよう に、 厚み 2 mmで 1 0 X 4 0 mmのガラス板 7 1 に刷毛ある いはスプレーで均一に塗布As shown in (a) or (b), apply a brush or spray evenly to a glass plate 71 with a thickness of 2 mm and a size of 10 x 40 mm.
(コ一ティ ング) して、 雰囲気温度が 9 0 の乾燥空間の中で約 4 0分間乾燥する (第 1 工程) 。 (Coating) and drying is performed for about 40 minutes in a drying space having an ambient temperature of 90 (first step).
次に、 2 gの 「冨士チタ ン社製アナターゼ型ニ酸化チタ ン T P — 2」 に、 6 gの精製水を加えて均一液と し、 この水性液を、 第 6 図 ( a ) あるいは同 ( b ) に図示するよ う に、 上記ガラス板 7 1 の表面で固定化されているゲイ酸ナ ト リ ゥム層の上に、 刷毛ある いはスプレーで均一に塗布 (コーチイ ンク) し.て、 雰囲気温度がNext, 6 g of purified water was added to 2 g of “Anatase-type titanium dioxide TP-2 manufactured by Fuji Titanium Co., Ltd.” to make a homogeneous solution. As shown in (b), the above glass plate 7 1 Apply evenly by brush or spray (coach ink) on the sodium gay acid layer immobilized on the surface of the
1 2 0 °Cの乾燥空間の中で約 3 時間乾燥する (第 2 工程) この際、 スプレーによ り塗布する場合には、 水性液に対し、 0 . 0 2 〜 1 重量%程度のケィ酸アルカ リ 金属塩を添加しておく と、 水性液の 粘性が低下し、 スプレーのノズルを詰ま り難く する。 Dry for about 3 hours in a dry space at 120 ° C (second step). When applying by spraying, about 0.02 to 1% by weight of aqueous solution The addition of the acid alkali metal salt reduces the viscosity of the aqueous liquid and makes it difficult to block the spray nozzle.
その後、 第 6 図 ( c ) に図示するよう に、 雰囲気温度が 4 0 0で の電気炉の中で、 約 1 時間焼結する (第 3 工程) 。 Thereafter, as shown in FIG. 6 (c), sintering is performed for about 1 hour in an electric furnace at an ambient temperature of 400 (third step).
このよ う に して表面に二酸化チタ ン触媒層が形成されたガラ ス板 7 1 を、 4枚製作し、 これらを、 第 7 図に図示するよう に、 4 0 0 c c の容量のパイ レッ クスガラス製円筒.セル 7 2 に入れ、 セル中に T O C ( 「全有機性炭素 (水質の分析で有機物指標と し て用い られている もの) 」 をいう) で 6 O p p mの酢酸を含む水 性液を添加 (供給) し、 供給管 7 4からエア一を吹き込みながら、 セル内部から 1 0 0 Wの高圧水銀灯 7 3 の光を照射した。 その結 果、 5 時間の照射で上記酢酸を含む水性液の T 0 C は 9 0 %低減 した。 なお、 水銀灯 7 3 の周囲には矢印 Xで示すよう に、 冷却水 を供給し、 水冷を施している。  In this way, four glass plates 71 each having a titanium dioxide catalyst layer formed on the surface were manufactured, and these were piled up to a capacity of 400 cc as shown in FIG. Water-based glass containing 6 O ppm of acetic acid in TOC (referred to as “total organic carbon (used as an indicator of organic matter) in water quality analysis”) in a cell. The liquid was added (supplied), and the inside of the cell was irradiated with light from a 100 W high-pressure mercury lamp 73 while blowing air from a supply pipe 74. As a result, the T0C of the aqueous solution containing acetic acid was reduced by 90% by irradiation for 5 hours. In addition, cooling water is supplied around the mercury lamp 73 as shown by the arrow X to perform water cooling.
この照射実験を 1 0 回繰 り 返して行っ たがガラ ス板 7 1 か ら の 触媒層剥離は全く 認め られなかった。 This irradiation experiment was repeated 10 times, but no peeling of the catalyst layer from the glass plate 71 was observed.
〔実施例 2 〕  (Example 2)
上記実施例 1 の第 1 工程の乾燥温度を こ の実施例では 5 0 で行い、 乾燥時間を約 1 時間と した。 そして、 ケィ酸ナ ト リ ウム 層の表面に、 粉末状の光触媒をホウ酸飽和溶液に溶解した水性液 を上記実施例 1 と同様に均一に塗布 (コーティ ング) して、 雰囲 気温度が 1 2 0 X の乾燥空間の中で約 2 時間乾燥 した (第 2 ェ 程) 。 しかる後、 雰囲気温度が 4 0 0 の電気炉の中で、 約 1-時 間焼結した (第 3 工程) 。 それ以外は、 実施例 1 と同 じ条件を用 いた。 The drying temperature in the first step of Example 1 was 50 in this example, and the drying time was about 1 hour. Then, an aqueous liquid in which a powdery photocatalyst was dissolved in a boric acid saturated solution was uniformly applied (coated) on the surface of the sodium silicate layer in the same manner as in Example 1 to reduce the atmospheric temperature. It was dried for about 2 hours in a drying space of 120 X (step 2). Thereafter, sintering was performed for about 1-hour in an electric furnace with an ambient temperature of 400 (third step). Otherwise, use the same conditions as in Example 1. Was.
こ のよ う に して表面に二酸化チタ ン触媒層が形成されたガラ ス板 7 1 を、 4枚製作し、 これら を、 4 0 0 c' c の容量のパイ レ ッ クスガラス製円筒セル 7 2 に入れ、 セル中に T O Cで 1 0 0 0 p p mの酢酸を含む水性液を添加し、 エアーを吹き込みながら、 セル内部か ら 1 0 0 Wの高圧水銀灯の光を照射した。 その結果、 3 時間の照射で上記酢酸を含む水性液の T 0 C は 3 0 %低減 し た。  In this way, four glass plates 71 each having a titanium dioxide catalyst layer formed on the surface were manufactured, and these were assembled into a pyrex glass cylindrical cell 7 having a capacity of 400 c'c. Then, an aqueous liquid containing 100 ppm of acetic acid was added to the cell by TOC with TOC, and the inside of the cell was irradiated with light from a 100 W high-pressure mercury lamp while blowing air. As a result, T 0 C of the aqueous solution containing acetic acid was reduced by 30% by irradiation for 3 hours.
この照射実験の後、 セル内の水性液中やガラス板 7 1 の洗浄液中 には、 脱落あるいは剥離したと思われるよ うな固形物は認め られ なかっ た。 After this irradiation experiment, no solid matter seemingly dropped or peeled was found in the aqueous liquid in the cell or in the cleaning liquid for the glass plate 71.
〔実施例 3 〕  (Example 3)
5 2〜 5 7 重量%のゲイ酸ナ ト リ ウムを含む市販の水ガラス に 3 倍量の精製水を加えて均一液と し、 この水性液を、 厚み 2 m mで 1 0 X 4 0 mmのガラス板 7 1 に上記実施例 1 と同様に均 一に塗布 (コーティ ング) して、 室温 (約 2 0 ) で約 4 0 分間 自然乾燥する (第 1 工程) 。  52 Three to three times the amount of purified water is added to a commercially available water glass containing 2 to 57% by weight of sodium gayate to make a homogeneous liquid, and this aqueous liquid is 10 mm × 40 mm thick at a thickness of 2 mm. The glass plate 71 is uniformly coated (coated) in the same manner as in Example 1 and air-dried at room temperature (about 20) for about 40 minutes (first step).
次に、 実施例 1 と同じ 「冨士チタ ン社製アナ夕一ゼ型ニ酸化チタ ン T P — 2 」 と精製水からなる均一液状の水性液を、 上記ガラス 板 7 1 表面のゲイ酸ナ ト リ ウム層の表面に、 実施例 1 と同様に均 一に塗布 (コ一テイ ンク) して、 雰囲気温度が 1 2 0 の乾燥空 間の中で約 3 時間乾燥する (第 2 工程) 。 Next, a homogeneous liquid aqueous solution composed of the same “analyze type titanium dioxide TP—2” manufactured by Fuji Titanium Co., Ltd. and purified water as in Example 1 was applied to the sodium manganate on the surface of the glass plate 71. A uniform coating (coating) is performed on the surface of the lithium layer in the same manner as in Example 1, and the coating is dried for about 3 hours in a drying space with an ambient temperature of 120 (second step).
その後、 雰囲気温度が 4 0 0 の電気炉の中で、 約 1 時間焼結す る (第 3 工程) 。 Thereafter, sintering is performed for about 1 hour in an electric furnace with an ambient temperature of 400 (third step).
こ のよ う に して表面に二酸化チタ ン触媒層が形成されたガラ ス板 7 1 を、 実施例 1 と同じ く 、 4 0 0 c c の容量のセル中に T 〇 Cで 6 0 p p mの酢酸を含む水性液を添加し、 エアーを吹き込 みながら、 セル内部から 1 0 0 Wの高圧水銀灯の光を照射した。 その結果、 5 時間の照射で上記酢酸を含む水性液の T O C は 6 0 %低減した。 The glass plate 71 having the titanium dioxide catalyst layer formed on the surface in this way was placed in a cell having a capacity of 400 cc and having a T の C of 60 ppm in the same manner as in Example 1. An aqueous liquid containing acetic acid was added, and the inside of the cell was irradiated with light from a 100 W high-pressure mercury lamp while blowing air. As a result, the TOC of the aqueous solution containing acetic acid was reduced by 60% by irradiation for 5 hours.
この照射実験を 3 回繰 り 返して行っ たがガラス板か らの触媒層 剥離は全く 認め られなかった。 This irradiation experiment was repeated three times, but no peeling of the catalyst layer from the glass plate was observed.
〔実施例 4〕  (Example 4)
市販の水ガラスに 3 倍量の精製水を加えて均一液と し、 この水 性液を、 厚み 2 m mで 1 0 X 4 O m mのガラス板 7 1 に上記実施 例 1 と同様に均一に塗布 (コーティ ング) して、 室温 (約 2 0 ) で約 1 時間自然乾燥する (第 1 工程) 。  A three-fold amount of purified water is added to a commercially available water glass to make a uniform liquid.The aqueous liquid is uniformly applied to a glass plate 71 of 2 mm thick and 10 × 4 O mm in the same manner as in Example 1 above. Apply (coat) and air dry at room temperature (about 20) for about 1 hour (first step).
次に、 ケィ酸ナ ト リ ウムの表面に、 粉末状の光触媒をホウ酸飽和 溶液に溶解した水性液を実施例 1 と同様に均一に塗布 (コーティ ング) して、 室温 (約 2 0 t: ) で約 5 時間乾燥'した (第 2 工程) 。 その後、 ホウ酸飽和溶液に 1 0 時間浸漬後、 室温で乾燥して硬化 処理して、 酸化チタ ン触媒層を持つガラス板 7 1 を作成した (第 3 工程) 。 Next, an aqueous liquid in which a powdery photocatalyst was dissolved in a boric acid saturated solution was uniformly applied (coated) to the surface of the sodium silicate in the same manner as in Example 1, and the solution was cooled to room temperature (about 20 t). :)) for about 5 hours (second step). After that, the glass plate 71 was immersed in a boric acid saturated solution for 10 hours, dried at room temperature and cured to prepare a glass plate 71 having a titanium oxide catalyst layer (third step).
こ のよ う に して表面に酸化チタ ン触媒層が形成されたガラス 板 7 1 を、 実施例 1 と同じ く 、 4 0 0 c c の容量のセル中に T O Cで 1 0 0 p p mの酢酸を含む水性液を添加し、 エアーを吹き込 みながら、 セル内部から 1 0 0 Wの高圧水銀灯の光を照射した。 その結果、 8 時間の照射で上記酢酸を含む水性液の T O C は 7 0 %低減した。  The glass plate 71 having the titanium oxide catalyst layer formed on the surface in this manner was placed in a cell having a capacity of 400 cc, as in Example 1, by adding 100 ppm of acetic acid by TOC. The aqueous solution containing the solution was added, and the inside of the cell was irradiated with light from a high-pressure mercury lamp of 100 W while blowing air. As a result, TOC of the aqueous solution containing acetic acid was reduced by 70% by irradiation for 8 hours.
この照射実験を 2 回繰 り 返して行っ たがガラス板 7 1 か ら の触 媒層剥離は全く 認め られなかった。 This irradiation experiment was repeated twice, but no peeling of the catalyst layer from the glass plate 71 was observed.
と ころで、 上記実施例では、 支持体と して、 ガラス板 7 1 を用 いたが、 他の形態のガラス (例えば、 円筒状ガラス) であっても よく 、 あるいはプラスチッ ク を用いてもよ く 、 繊維状のものを用 いてもよい。  In the above embodiment, the glass plate 71 is used as the support. However, another type of glass (for example, cylindrical glass) may be used, or a plastic may be used. Alternatively, a fibrous material may be used.
上記、 本第 2 の発明は、 上記実施例に限定される ものではなく 、 本第 2 の発明の技術的思想から外れる こ となく 、 種々 の形態で実 施できる。 The above second invention is not limited to the above embodiment, but The present invention can be implemented in various forms without departing from the technical idea of the second invention.
本発明者の理解による と、 上記第 3 の工程の焼結温度は、 支持体 の材質等によって、 2 0 0 〜 8 0 0 の範囲において可能である。 According to the understanding of the present inventor, the sintering temperature in the third step can be in the range of 200 to 800 depending on the material of the support.
〔産業上の利用の可能性〕 [Possibility of industrial use]
本第 1 の発明にかかる光触媒反応装置によれば、 従来の光触媒 反応装置に比べて、 画期的な高い効率で、 しかも使用時間の経過 に拘らず処理能力が低下しない光触媒反応装置となる。  According to the photocatalyst reactor according to the first aspect of the present invention, a photocatalyst reactor with epoch-making high efficiency as compared with the conventional photocatalyst reactor, and in which the processing capacity does not decrease regardless of the use time.
また、 構成的にも、 単純な信頼性の高い、 且つ比較的安価に供給 できる装置となる。 Also, in terms of configuration, it is a simple and highly reliable device that can be supplied relatively inexpensively.
特に、 第 4 図 ( b ) に図示する実施例にかかる'光触媒反応装置の 場合、 農水路等に水車状体のものをその下端部が流水に浸漬する 状態で配置しておく だけで、 太陽の光によって、 田圃で使用され る農薬等の有害化合物を分解して、 下流に放流する こ とが可能と なる、 環境に優しい光触媒反応装置となる。 In particular, in the case of the photocatalyst reactor according to the embodiment shown in FIG. 4 (b), the sunshine can be obtained by simply placing a turbine-shaped body in an agricultural waterway or the like with its lower end immersed in running water. With this light, it becomes possible to decompose harmful compounds such as pesticides used in the field and release them to the downstream.
本第 2 の発明にかかる光触媒の固定化方法によれば、 高性能な 粉末状を保っ たま ま支持体上に固定化された光触媒を得る こ と ができる。 しかも、 この光触媒は、 長期間にわたって、 安定して 有害化合物を分解する こ とができる。  According to the method for immobilizing a photocatalyst according to the second invention, it is possible to obtain a photocatalyst immobilized on a support while maintaining a high-performance powdery state. Moreover, this photocatalyst can stably decompose harmful compounds over a long period of time.
従って、 表面に光触媒を固定した支持体の使用'時や洗浄時にも、 支持体から光触媒は剥離する こ とがなく 、 排水や汚染空気中の有 害化合物を自動化装置で分解無害化するの寄与する。 Therefore, the photocatalyst does not peel off from the support even when the support having the photocatalyst fixed on the surface is used or washed, and the harmful compounds in the wastewater and the contaminated air are decomposed and made harmless by an automatic device. I do.

Claims

請 求 の 範 囲  The scope of the claims
. 表面に光触媒を固定化した ド ラムを、 その一部が処理し よう とする処理液中に浸漬し、 一部が処理液か ら露出するよ う な状態で、 浸潰と露出が連続的に繰り 返すよ う 、 回転させ、 上記露出 している 上記 ド ラムの表面に向かっ て光触媒反応 を生 じ させる光を照射する よ う構成 した こ と を特徴とする 光触媒反応装置。A drum with a photocatalyst immobilized on its surface is immersed in the processing solution to be partially treated, and immersed and exposed continuously in a state where part of the drum is exposed from the treatment solution. A photocatalytic reaction device, wherein the photocatalytic reaction device is configured to rotate so as to repeat the process, and to irradiate light that causes a photocatalytic reaction toward the exposed surface of the drum.
. 表面に光触媒を固定化した、 回転中心.で肉厚で外周側で 肉薄になった円錐板を、 その一部が処理しょう とする処理液 中に浸潰し、 一部が処理液から露出するよう な状態で、 浸漬 と露出が連続的に繰り返すよう 、 回転させ、 上記露出 してい る上記板表面に向かっ て光触媒反応を生 じ させる光を照射 するよ う構成した こ とを特徴とする光触媒反応装置。A conical plate with a photocatalyst fixed on its surface and thick at the center of rotation and thin on the outer periphery is partially immersed in the treatment liquid to be treated and partially exposed from the treatment liquid. In such a state, the photocatalyst is configured to rotate so that immersion and exposure are continuously repeated, and to irradiate the exposed plate surface with light for generating a photocatalytic reaction. Reactor.
. 表面に光触媒を固定化した板を、 処理液中にある状態と 該処理液外に露出するよ うな状態を連続的に繰り 返えし、 上 記露出 している上記板表面に向かっ て光触媒反応を生 じ さ せる光を照射するよ う構成した こ と を特徴とする光触媒反 応装置。The plate with the photocatalyst immobilized on the surface is continuously repeated in a state of being in the processing solution and in a state of being exposed to the outside of the processing solution. A photocatalytic reaction device configured to irradiate light that causes a reaction.
. 前記表面に固定化される光触媒が親水性のものである こ と を特徴とする請求項 1 か ら 3 までのいずれか 1 の項に記 載の光触媒反応装置。 The photocatalyst reaction device according to any one of claims 1 to 3, wherein the photocatalyst fixed to the surface is hydrophilic.
. 前記表面に固定化される光触媒の表面に、 予め、 触媒作 用 をする 白金を付着させた ものである こ と を特徴とする-請 求項 1 か ら 4 までのいずれか 1 の項に記載の光触媒反応装 The photocatalyst immobilized on the surface is preliminarily coated with platinum that acts as a catalyst, according to any one of claims 1 to 4. The photocatalytic reactor described
6 . ケィ酸アルカ リ 金属塩を結着剤 と して、 光触媒を支持体 上に固定化する手法において、 6. In the method of immobilizing a photocatalyst on a support using an alkali metal silicate as a binder,
上記ケィ酸アル力 リ 金属塩の水性液を支持体上にコーテ イ ングし固定化させる第 1 の工程と、 第 1 の工程後、 粉末状 の光触媒をケィ酸アルカ リ 金属塩上にコーティ ングし固定 化させる第 2 の工程と、 上記第 2 の工程後、 上記コ一ティ ン グし固定化させたものを硬化させる第 3 の工程を有する こ とを特徴とする光触媒の固定化方法。 7 . 前記第 1 の工程で使用するケィ酸アルカ リ 金属塩の水性 液は、 濃度が 1 〜 6 0重量%の水性液であ り 、 前記第 2 のェ 程でコーティ ングに使用する光触媒が、 粉末状あるいは、 濃 度が 2 重量%以上の水性液である こ と を特徴とする請求項 6 記載の光触媒の固定化方法。 8 . 前記水性液に対し、 0 . 0 2 〜 : [ 重量%のケィ酸アル力 リ 金属塩を添加 した こ と を特徴とする請求項 7 記載の光触 媒の固定化方法。  A first step of coating and immobilizing the aqueous solution of the metal silicate on the support; and, after the first step, coating a powdery photocatalyst on the metal silicate. A method of fixing a photocatalyst, comprising: a second step of fixing and fixing the coated and fixed article after the second step. 7. The aqueous solution of the alkali metal silicate used in the first step is an aqueous solution having a concentration of 1 to 60% by weight, and the photocatalyst used for coating in the second step is used. 7. The method for immobilizing a photocatalyst according to claim 6, wherein the photocatalyst is in the form of a powder or an aqueous liquid having a concentration of 2% by weight or more. 8. The method for immobilizing a photocatalyst according to claim 7, wherein 0.02 to [% by weight of a metal salt of a calcium silicate is added to the aqueous liquid.
9 . 前記第 1 の工程および第 2 の工程における固定化が乾燥 処理であ り 、 第 3 の工程における硬化が焼結処理である こ と を特徴とする請求項 6 か ら 8 までのいずれか 1 の項に記載 の光触媒の固定化方法。  9. The immobilization in the first and second steps is a drying treatment, and the curing in the third step is a sintering treatment. 2. The method for immobilizing a photocatalyst according to item 1.
1 0 . 前記第 1 の工程における固定化が常温か ら 1 5 0 での 範囲内の温度下における乾燥処理であ り 、 前記第 2 の工程に おける固定化が常温か ら 1 5 0 での範囲内の温度下におけ る乾燥処理であ り 、 前記第 3 の工程における硬化が、 2 0 0 100. The immobilization in the first step is a drying treatment at a temperature within a range from room temperature to 150, and the immobilization in the second step is room temperature from room temperature to 150. The drying process is performed at a temperature within the range, and the curing in the third step is 200
〜 8 0 0 での温度下における焼結処理であ る こ と を特徴と する請求項 9 記載の光触媒の固定化方法。 10. The method for immobilizing a photocatalyst according to claim 9, wherein the sintering is performed at a temperature of about 800 to 800.
PCT/JP1999/003049 1998-06-12 1999-06-07 Apparatus for photocatalytic reaction with and method for fixing photocatalyst WO1999064357A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/719,135 US6613225B1 (en) 1998-06-12 1999-06-07 Apparatus for photocatalytic reaction with and method for fixing photocatalyst
AU40601/99A AU4060199A (en) 1998-06-12 1999-06-07 Apparatus for photocatalytic reaction with and method for fixing photocatalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP16510398 1998-06-12
JP10/165103 1998-06-12

Publications (1)

Publication Number Publication Date
WO1999064357A1 true WO1999064357A1 (en) 1999-12-16

Family

ID=15805962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003049 WO1999064357A1 (en) 1998-06-12 1999-06-07 Apparatus for photocatalytic reaction with and method for fixing photocatalyst

Country Status (3)

Country Link
US (1) US6613225B1 (en)
AU (1) AU4060199A (en)
WO (1) WO1999064357A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107098542A (en) * 2017-06-22 2017-08-29 广西国宏智鸿环境科技发展有限公司 A kind of solar energy domestic sewage processing system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002301378A (en) * 2001-04-04 2002-10-15 Mitsui Eng & Shipbuild Co Ltd Photocatalyst module, method for producing the same and photocatalytic reactor
EP1673309A1 (en) * 2003-09-30 2006-06-28 The Robert Gordon University Apparatus and method for treating fluid by means of a transparent container
TWI447074B (en) * 2010-06-04 2014-08-01 Hon Hai Prec Ind Co Ltd Liquid purification apparatus
CN102274644B (en) * 2010-06-08 2014-04-23 鸿富锦精密工业(深圳)有限公司 Liquid purification device
US8480964B2 (en) * 2011-07-05 2013-07-09 King Fahd University Of Petroleum And Minerals Plate reactor
US20210322963A1 (en) * 2018-08-28 2021-10-21 University Of Louisville Research Foundation Organic polymers as photocatalysts
CN110194502B (en) * 2019-06-18 2020-09-01 联科华技术股份有限公司 Landscape lake water purifier
CN110294510A (en) * 2019-07-11 2019-10-01 南京理工大学 A kind of water treatment facilities with detachable light catalytic module
CN113213576B (en) * 2021-04-27 2022-11-29 哈尔滨工业大学 Drum car type adsorption-photocatalytic degradation micro-plastic device applied to water area
CN113588927A (en) * 2021-07-02 2021-11-02 同济大学 Rotary supporting device for fiber testing and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07171408A (en) * 1993-06-28 1995-07-11 Ishihara Sangyo Kaisha Ltd Photocatalytic body and its production
JPH08318166A (en) * 1995-05-25 1996-12-03 Agency Of Ind Science & Technol Immobilized photocatalyst and method for immobilizing photocatalyst
JPH10202257A (en) * 1997-01-24 1998-08-04 Sumitomo Heavy Ind Ltd Photocatalytic water treating device and photocatalytic water treating method
JPH10263534A (en) * 1997-03-28 1998-10-06 Ngk Insulators Ltd Water treatment and water treating apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9102766D0 (en) * 1991-02-09 1991-03-27 Tioxide Group Services Ltd Destruction process
JP2907814B1 (en) * 1998-05-13 1999-06-21 扶桑建設工業株式会社 Photocatalytic reactor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07171408A (en) * 1993-06-28 1995-07-11 Ishihara Sangyo Kaisha Ltd Photocatalytic body and its production
JPH08318166A (en) * 1995-05-25 1996-12-03 Agency Of Ind Science & Technol Immobilized photocatalyst and method for immobilizing photocatalyst
JPH10202257A (en) * 1997-01-24 1998-08-04 Sumitomo Heavy Ind Ltd Photocatalytic water treating device and photocatalytic water treating method
JPH10263534A (en) * 1997-03-28 1998-10-06 Ngk Insulators Ltd Water treatment and water treating apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107098542A (en) * 2017-06-22 2017-08-29 广西国宏智鸿环境科技发展有限公司 A kind of solar energy domestic sewage processing system

Also Published As

Publication number Publication date
US6613225B1 (en) 2003-09-02
AU4060199A (en) 1999-12-30

Similar Documents

Publication Publication Date Title
US5294315A (en) Method of decontaminating a contaminated fluid by using photocatalytic particles
JPH08318166A (en) Immobilized photocatalyst and method for immobilizing photocatalyst
WO1999064357A1 (en) Apparatus for photocatalytic reaction with and method for fixing photocatalyst
US20050224335A1 (en) Apparatus and method for photocatalytic purification and disinfection of fluids
CN103373750A (en) Light source device for removing organic matters and heavy metal ions by visible light and preparation method thereof
US20090062109A1 (en) Composite catalytic material and process for manufacture of such material
JP3484470B2 (en) Film material with photocatalytic function
JP4787253B2 (en) Alumina coating forming method, alumina fiber, and gas treatment apparatus equipped with the same
EP1491218A1 (en) Illuminator capable of cleaning air
JPH11335187A (en) Photocatalyst module and equipment for photocatalyst
CN109225212A (en) A kind of preparation method of the perforated membrane of silver oxide load
JP2003135576A (en) Apparatus and method for purifying contaminated air by photolysis
JP2000218161A (en) Photo-catalyst body
JPH11226419A (en) Immobilizing method of photocatalyst
JP2003024748A (en) Photocatalytic reaction apparatus
Nasr-Esfahani et al. Alumina/TiO 2/hydroxyapatite interface nanostructure composite filters as efficient photocatalysts for the purification of air
JP3792577B2 (en) Water treatment equipment using photocatalyst
JPH1071331A (en) Zno-pd complex catalyst and preparation thereof
JP3118558B2 (en) Water treatment catalyst and water treatment method
US5834069A (en) In situ method for metalizing a semiconductor catalyst
JP3430218B2 (en) Water treatment equipment
KR102135142B1 (en) A system for deodorizing using activated carbon
JPH10202257A (en) Photocatalytic water treating device and photocatalytic water treating method
KR100627972B1 (en) equipment for treatment of air using immobilized photocatalytic fiber filter
CN108698020B (en) Solid photocatalytic material comprising solid matter composed only of titanium dioxide having photocatalytic function, method for producing same, and processing apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09719135

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase